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WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Accurate and practical methods for predicting birth weight can help identify 

pregnancies at greater risk of adverse perinatal outcomes and provide 
opportunities for early intervention to improve outcomes

 ⇒ Because of their small sample size and dichotomisation of birth weight 
outcome, current birth weight prediction models have a high risk of bias, 
further limiting their power and usefulness

 ⇒ Existing prediction models show varying levels of accuracy with limited 
assessment of their generalisability in different populations or settings

WHAT THIS STUDY ADDS
 ⇒ A prediction model for birth weight at various potential gestational ages 

was developed and validated, based on data readily available at the first 
antenatal visit

 ⇒ The model was derived from a large, ethnically diverse dataset, with cohorts 
from the US, UK, Norway, and Australia, with continuous birth weight 
data, and showed good calibration performance on internal- external cross 
validation

 ⇒ The model was particularly well calibrated (smallest prediction errors) in the 
lower end of predicted birth weight, and explained about 50% of individual 
variation in birth weights

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE, OR POLICY
 ⇒ The predictive ability of the model could be useful for early identification of 

babies at risk of abnormal growth at the time of the antenatal booking
 ⇒ The model could help inform clinical decision making in pregnancies at high 

risk of fetal growth restriction and its complications
 ⇒ Use of the prediction model in practice might require evaluation in cluster 

randomised trials and should be evaluated in other countries, settings, and 
subgroups

ABSTRACT
OBJECTIVE To predict birth weight at various 
potential gestational ages of delivery based on data 
routinely available at the first antenatal visit.
DESIGN Individual participant data meta- analysis.
DATA SOURCES Individual participant data of 
four cohorts (237 228 pregnancies) from the 
International Prediction of Pregnancy Complications 
(IPPIC) network dataset.

ELIGIBILITY CRITERIA FOR SELECTING 
STUDIES Studies in the IPPIC network were 
identified by searching major databases for 
studies reporting risk factors for adverse pregnancy 
outcomes, such as pre- eclampsia, fetal growth 
restriction, and stillbirth, from database inception 
to August 2019. Data of four IPPIC cohorts (237 228 
pregnancies) from the US (National Institute of Child 
Health and Human Development (NICHD), 2018; 
233 483 pregnancies), UK (Allen et al, 2017; 1045 
pregnancies), Norway (STORK Groruddalen research 
programme, 2010; 823 pregnancies), and Australia 
(Rumbold et al, 2006; 1877 pregnancies) were 
included in the development of the model.
RESULTS The IPPIC birth weight model was 
developed with random intercept regression 
models with backward elimination for variable 
selection. Internal- external cross validation was 
performed to assess the study specific and pooled 
performance of the model, reported as calibration 
slope, calibration- in- the- large, and observed versus 
expected average birth weight ratio. Meta- analysis 
showed that the apparent performance of the model 
had good calibration (calibration slope 0.99, 95% 
confidence interval (CI) 0.88 to 1.10; calibration- in- 
the- large 44.5 g, −18.4 to 107.3) with an observed 
versus expected average birth weight ratio of 1.02 
(0.97 to 1.07). The proportion of variation in birth 
weight explained by the model (R2) was 46.9% 
(range 32.7- 56.1% in each cohort). On internal- 
external cross validation, the model showed good 
calibration and predictive performance when 
validated in three cohorts with a calibration slope 
of 0.90 (Allen cohort), 1.04 (STORK Groruddalen 
cohort), and 1.07 (Rumbold cohort), calibration- in- 
the- large of −22.3 g (Allen cohort), −33.42 (Rumbold 
cohort), and 86.4 g (STORK Groruddalen cohort), and 
observed versus expected ratio of 0.99 (Rumbold 
cohort), 1.00 (Allen cohort), and 1.03 (STORK 
Groruddalen cohort); respective pooled estimates 
were 1.00 (95% CI 0.78 to 1.23; calibration slope), 
9.7 g (−154.3 to 173.8; calibration- in- the- large), 
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and 1.00 (0.94 to 1.07; observed vs expected ratio). 
The model predictions were more accurate (smaller 
mean square error) in the lower end of predicted 
birth weight, which is important in informing clinical 
decision making.
CONCLUSIONS The IPPIC birth weight model 
allowed birth weight predictions for a range of 
possible gestational ages. The model explained 
about 50% of individual variation in birth weights, 
was well calibrated (especially in babies at high risk 
of fetal growth restriction and its complications), 
and showed promising performance in four different 
populations included in the individual participant 
data meta- analysis. Further research to examine the 
generalisability of performance in other countries, 
settings, and subgroups is required.
TRIAL REGISTRATION PROSPERO CRD42019135045

Introduction
Identifying abnormal fetal growth patterns ante-
natally can help reduce perinatal mortality and 
morbidity.1 Birth weight and estimated fetal weight 
for gestational age are important indicators of the 
health of the mother and the baby's chance of 
survival and future health.2–4 Babies with a birth 
weight below the population threshold of the 10th 
centile are usually classified as small for gesta-
tional age and considered to be at greater risk of 
adverse outcomes because of growth restriction.5 6 

In these babies, the odds of stillbirth and neonatal 
death are substantially higher than normal weight 
fetuses at every week beyond the expected date 
of delivery.2 Also, the healthcare needs for babies 
born small for gestational age is higher on average 
than babies born at appropriate weight for their 
gestational age.7

Accurate and practical methods of predicting birth 
weight can help identify babies with an increased 
risk of adverse perinatal outcomes and provide 
opportunities for early intervention to improve 
their outcomes. Current methods of estimating birth 
weight and fetal weight rely on formulas from fetal 
biometry on antenatal ultrasound,8 9 an approach 
associated with considerable variation in precision 
and consistency of measurement.10 11 Global health 
inequity is further widened in many resource poor 
settings with a high burden of perinatal mortality 
but limited access to ultrasound machines or expe-
rienced operators, which affects effective antenatal 
monitoring of fetal growth.12

Developing accurate birth weight prediction 
models in individual studies is limited because of 
small sample size, selectiveness in the population 
used for developing the model,13 and dichotomi-
sation of predictors or birth weight outcome.14 15 
Furthermore, the predictive performances of previ-
ously published models have not been validated 
externally, and so none can currently be recom-
mended for use in routine clinical practice.16 In this 
study, we used an individual participant data meta- 
analysis to overcome these limitations. We devel-
oped and validated a multivariable prediction model 
for birth weight at various potential gestational ages 
of delivery, with routinely available obstetric history 
and personal data collected at the first antenatal 
visit. Figure 1 shows the visual abstract.

Methods
Our individual participant data meta- analysis 
followed existing recommendations for developing 
and validating a prediction model,17–20 and used 
a prospective protocol registered with PROSPERO. 
We reported our findings based on the transparent 
reporting of a multivariable prediction model for 
individual prognosis or diagnosis (TRIPOD) cluster 
guideline for development and validation of a 
prediction model in clustered data (online supple-
mental appendix 1).21

Data sources and study population
Eligible studies were identified from the International 
Prediction of Pregnancy Complications (IPPIC) indi-
vidual participant data network dataset.22 23 Access 
to the IPPIC dataset was provided after application to 
the IPPIC data access committee. The IPPIC dataset 
contains individual participant data from observa-
tional studies and cohorts nested within randomised 
studies reporting various maternal and perinatal 
outcomes.22 Women in the studies were recruited 

Visual abstract

© 2024 BMJ Publishing Group Ltd

The birthweight prediction model was well calibrated, showed promising 
performance across the validation cohorts, and explained about % 
of individual variation in birth weight
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Figure 1 | Visual abstract.

copyright.
 on A

ugust 29, 2024 at U
trecht U

niversity Library. P
rotected by

http://bm
jm

edicine.bm
j.com

/
bm

jm
ed: first published as 10.1136/bm

jm
ed-2023-000784 on 14 A

ugust 2024. D
ow

nloaded from
 

https://dx.doi.org/10.1136/bmjmed-2023-000784
https://dx.doi.org/10.1136/bmjmed-2023-000784
http://bmjmedicine.bmj.com/


Allotey J, et al. BMJMED 2024;3. doi:10.1136/bmjmed-2023-000784 3

OPEN ACCESSOPEN ACCESS

with sampling methods and inclusion criteria 
designed to capture a broad cross section of the target 
population. Studies in the network were identified 
by searching major databases for studies reporting 
risk factors for adverse pregnancy outcomes, such 
as pre- eclampsia, fetal growth restriction, and still-
birth, from database inception to August 2019. The 
quality of the individual participant data from each 
study was assessed with the participants, predictors, 
and outcomes domains of the prediction model risk- 
of- bias assessment (PROBAST) tool.24 Details of the 
search, identification, inclusion of studies, and indi-
vidual participant data harmonisation for the IPPIC 
dataset are provided elsewhere.25 26

Candidate predictors
Clinically relevant candidate predictors were identi-
fied from the literature27 and prioritised by clinical 
experts with a two round Delphi process. From an 
initial list of 33 predictor variables, candidate predic-
tors were: maternal weight at the first antenatal visit, 
maternal height, maternal age, parity, smoking 
status, ethnic group (white, black, South Asian, 
Hispanic, mixed, or other), history of chronic hyper-
tension, history of diabetes, assisted conception, and 
any previous history of pre- eclampsia, stillbirth, and 
a baby born small for gestational age. We included 
gestational age at delivery as a predictor in our model 
to allow us to produce birth weight predictions for 
a range of assumed gestational ages at delivery.27 
Maternal weight at the first antenatal visit was stand-
ardised in the IPPIC dataset to include weight before 
pregnancy and at the first trimester.

Outcome
Our primary aim was to develop a model to predict 
the birth weight of a baby at any potential gesta-
tional age of delivery. As a continuous measure, our 
outcome was not limited by arbitrary cut- off values 
and, if needed, the predicted birth weight could be 
converted into predicted centiles based on any fetal 
growth standard.28–30 Predicting birth weight at 
various gestational ages at delivery also provides 
information on the severity of any restricted growth 
and the expected timing of onset to allow planning 
for appropriate management.

Model development and validation cohorts
Data from four studies (237 228 pregnancies;31–34 
online supplemental appendix 2) within the IPPIC 
individual participant data network dataset provided 
the best combination of candidate predictor vari-
ables while maximising the numbers of cohorts 
and participants for developing the model. All four 
studies included pregnant women from different 
ethnic groups. Data on obstetric history and personal 
characteristics were obtained by various methods, 
including self- reporting, routine data collected from 
medical records, or recorded by the research team 
with prespecified definitions.

The sample size for developing the model should 
ensure small optimism in predictor effect esti-
mates, a small difference between the apparent and 
adjusted R2, precise estimation of the mean predicted 
birth weight (the model intercept), and precise esti-
mation of the model's residual standard deviation.35 
To calculate the minimum sample size required, we 
assumed a lower bound of 0.5 for the anticipated 
adjusted R2 of the model to be developed, and an 
intercept value of −0.935, with a standard error of 
0.043 (on the log10 scale) based on a previously 
published birth weight prediction model.27 Hence 
a minimum sample of 618 women was required to 
consider up to 50 predictor parameters in a linear 
regression model. The sample size in the develop-
ment and internal- external cross validation cohorts 
far exceeded these estimates.

Statistical analysis
Missing data
We used multiple imputation by chained equa-
tions, assuming a missing- at- random mechanism, 
to generate 100 imputed datasets for each of the 
included cohorts separately to retain heterogeneity 
between the study cohorts.36 Continuous varia-
bles were imputed with linear regression, binary 
variables with logistic regression, and categorical 
variables with predictive mean matching. The impu-
tation model included all candidate predictors and 
outcome to help ensure that the missing- at- random 
assumption was reliable. Imputed outcomes were 
not included in the analysis. We did not impute when 
all values were missing or when >90% of values were 
missing. After imputation, we checked the consist-
ency of imputations by comparing distributions of 
values and summary statistics for imputed datasets 
with the original unimputed data.

Non- linear relations between continuous candi-
date predictors and the outcome were considered 
with multivariable fractional polynomial models.37 38 
Fractional polynomials were first identified in the 
complete case datasets, with each of the non- linear 
terms, and then included in the imputation model to 
allow us to consider this non- linearity when devel-
oping the model. Fractional polynomial terms for 
gestational age at delivery and maternal height were 
included in the final model to account for non- linear 
relations with birth weight (online supplemental 
appendix 3).

Model development
We developed the prediction model with multilevel 
linear regression, with a random effect on the inter-
cept to account for clustering by cohort. We used 
backward elimination for variable selection where 
the same model (with the same candidate predictors) 
was fitted to all imputations, and pooled Wald tests 
(with Rubin's rules) were used for backward elimi-
nation, with P>0.157 (proxy for Akaike information 
criterion) for exclusion.39
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To adjust for overfitting in the development of the 
model, we calculated the heuristic shrinkage factor 
in each imputation and pooled for all imputations 
with Rubin's rules to obtain the average shrinkage 
factor.40 41 This average shrinkage factor was then 
applied to each beta coefficient in the model, and 
subsequently the average intercept value was re- esti-
mated (holding fixed the shrunken beta coefficients) 
to ensure that the final model predictions were 
calibrated- in- the- large.

Internal-external cross validation
We maximised our access to individual participant 
data from multiple studies and used an internal- 
external cross validation approach.42 43 With the same 
approach as described above, a model predicting 
birth weight was developed with all but one of the 
four cohorts, keeping one cohort for validation. The 
shrunken model equation was then applied to the 
excluded cohort to calculate the predicted birth weight 
at the observed gestational age at delivery. Predictive 
performance was then evaluated for the model in this 
excluded cohort, based on values for calibration- in- 
the- large, calibration slope, root mean squared error, 
mean absolute error, and R2. This process was then 
repeated until each cohort had been used to assess the 
external validation of the model. If required, we will 
include the largest cohort in all cycles of the internal- 
external cross validation approach to ensure a large 
sample size for developing the model in each cycle. 
Calibration plots were also produced for each cycle of 
the internal- external cross validation, plotting average 
observed and expected values for all imputations.

Predictive performance measures from the 
internal- external cross validation were summa-
rised with a random effects meta- analysis to give 
a summary estimate of overall performance. The 
calibration slope and calibration- in- the- large were 
pooled on their original scales. Confidence intervals 
were derived with the Hartung- Knapp- Sidik- Jonkman 
variance correction.44 Heterogeneity in model perfor-
mance for all internal- external cross validation cycles 
was quantified with τ2 and 95% prediction intervals.

Apparent performance of the model developed with 
all four cohorts was calculated for each cohort indi-
vidually and for all four cohorts (without accounting 
for clustering). Cohort specific apparent predictive 
performance was summarised with a random effects 
meta- analysis to give a pooled estimate of overall 
apparent model performance. We also carried out 
a sensitivity analysis of the predictive performance 
of the model by gestational age at delivery (32- 36 
weeks and ≥37 weeks) to assess the differential 
model performance in these populations. All anal-
yses were performed with Stata 16 software.45

Patient and public involvement
Members of the public were involved in prioritising 
the research question, and developing, designing, 

and managing the research. The study is supported 
by the Hildas (https://www.dhlnetwork.com/news), 
a dedicated patient and public involvement group in 
women's health. The team members were involved 
in the interpretation and reporting of the results. 
Findings will be further disseminated in workshop 
events with key stakeholders and in a format more 
suitable for patients and members of the public.

Results
Study population
The model development and validation dataset 
included four studies (237 228 pregnancies) from 
four countries, one each from the UK (Allen et al, 
2017),32 Norway (STORK Groruddalen research 
programme 2010),33 Australia (Rumbold et al, 
2006),31 and the US (National Institute of Child 
Health and Human Development (NICHD), 2018).34 
Three studies were prospective observational studies 
of unselected pregnant women32–34 whereas one was 
a randomised trial of nulliparous pregnant women 
at low risk of complications of pregnancy.31 The US 
based study34 made up >95% of the pooled sample 
size. Women in the combined dataset were mostly 
from the white ethnic group (50%, n=118 554), 
followed by black (22%, n=52 691) and Hispanic 
(17%, n=40 422) ethnic groups. Median gestational 
age at delivery for the four studies was 39 weeks 
(interquartile range 38- 40), mean maternal age was 
27.7 years (standard deviation (SD) 7.4), and birth 
weight was 3202 g (SD 643.4) (table 1). Assessment 
of risk of bias of the cohorts with the PROBAST tool 
considered that all cohorts were at low risk of bias in 
the domains of participant selection, predictor, and 
outcome reporting.

Apparent model performance
The final multivariable model included all 13 candi-
date predictors of assumed gestational age at delivery, 
maternal weight at the first antenatal visit, maternal 
height, maternal age, parity, smoking status, ethnic 
group, history of chronic hypertension, history of 
diabetes, assisted conception, and previous history 
of pre- eclampsia, stillbirth, and a baby born small 
for gestational age (table 2).

The apparent performance of the model showed 
good calibration within each cohort, with calibration 
slopes of 0.88 (95% confidence interval (CI) 0.89 
to 0.96) for the Allen et al, 2017 cohort, 1.04 (0.99 
to 1.09) for the Rumbold et al, 2006 cohort, 1.30 
(0.95 to 1.11) for the STORK Groruddalen research 
programme, 2010 cohort, and 0.99 (0.99 to 0.99) 
for the NICHD 2018 cohort. Calibration- in- the- large 
values were near zero in each cohort: 33.1 g (95% CI 
7.1 to 59.1) for the Allen cohort, 13.4 g (−6.5 to 33.3) 
for the Rumbold cohort, 104.7 g (75.6 to 133.8) for 
the STORK Groruddalen cohort, and 31.4 g (29.7 
to 33.2) for the NICHD cohort. The ratio of mean 
observed to mean predicted birth weight in each 
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cohort was near 1.00 (range 1.01- 1.04), with confi-
dence intervals that overlapped one (table 3).

We used a meta- analysis to summarise perfor-
mance for the four cohorts and found good cali-
bration, on average, with a pooled calibration 
slope of 0.99 (95% CI 0.88 to 1.10) and a pooled 
calibration- in- the- large of 44.5 g (−18.4 to 107.3), 
corresponding to a pooled ratio of mean observed to 
mean predicted birth weight of 1.02 (0.97 to 1.07) 
(table 3). Calibration curves were close to the line of 
ideal calibration for all four cohorts.

The pooled estimate for proportion of variation 
in birth weight explained by the birth weight model 
(R2) was 46.9% (range 32.7- 56.1% in each cohort) 
(table 3). Errors in predictions varied in individuals, 
as shown by the range of observed versus expected 
birth weights in the pooled data panel of figure  2, 
with a root mean squared error of 427.8 g for all 
cohorts, ranging from a low of 427.7 g (NICHD, 2018 
cohort) to 438.2 g (Rumbold et al, 2006 cohort). We 
found no evidence of overfitting in the development 
data in any cycle of the internal- external cross valida-
tion, with a heuristic shrinkage estimate of ≥0.9997 
for all imputed datasets and internal- external cross 
validation cycles. Figure  2 shows the final predic-
tion equation developed with all four cohorts, to 

calculate birth weight at any desired gestational age 
of delivery, with examples of how to calculate birth 
weight with the equation.

Internal-external cross validation
The internal- external cross validation analysis was 
done by including the largest of the four cohorts 
(NICHD, 2018)34 in all cycles of the internal- 
external cross validation, to ensure that the sample 
size for development of the model was always large 
enough to develop a reliable model, and that the 
validation performance calculated was represent-
ative of an external validation of the final model, 
which was highly influenced by this cohort. We 
therefore developed a model in three cohorts and 
applied this model within the fourth cohort, but 
did not include a cycle where a model was devel-
oped without the NICHD 2018 study. Estimates of 
calibration slope for the internal- external cross 
validation cycles showed minimal overfitting to the 
development cohort in each cycle, with estimates 
of 0.90 (95% CI 0.82 to 0.97) when validated in the 
Allen et al, 2017 cohort, 1.07 (1.02 to 1.12) when 
validated in the Rumbold et al, 2006 cohort, and 
1.04 (0.96 to 1.12) when validated in the STORK 
Groruddalen research programme, 2010 cohort 

Table 2 | Model coefficients for final birth weight model and each internal- external cross validation cycle, with study 
specific intercepts

Continuous outcome model, coefficient

Pooled data
Excluding Allen et al, 
2017 cohort*

Excluding Rumbold et al, 
2006 cohort†

Excluding STORK 
Groruddalen, 2010 
cohort‡

Gestational age at delivery (weeks)
  Weeks−2 24 200 000 24 300 000 24 600 000 24 200 000
  Weeks−2 × ln weeks −9274661 −9278365 −9383827 −9256070
Maternal weight (kg) 2.708811 2.706337 2.702486 2.712717
Maternal height (cm)
  cm3 0.0000752 0.0000750 0.0000747 0.0000749
Maternal age (years) 3.138301 3.142642 3.160154 3.160331
Nulliparous −92.03335 −91.72014 −91.86725 −91.48258
Smoker −118.0368 −118.025 −119.9714 −118.4065
Ethnic group
  White Reference Reference Reference Reference
  Black −174.2521 −174.4343 −174.5623 −174.2543
  South Asian −73.23465 −71.06526 −73.76615 −72.71608
  Hispanic −9.562515 −9.582163 −10.10826 −9.50801
  Mixed −64.73106 −62.95441 −65.91944 −64.19719
  Other −60.38814 −59.96023 −60.27113 −62.70106
History of hypertension −36.27748 −36.01454 −36.19573 −36.47012
History of diabetes 149.9896 150.6165 150.6321 150.0034
Assisted conception −78.7545 −81.1364 −79.92499 −93.85787
Any previous pre- eclampsia −84.16068 −84.04261 −83.93942 −84.10901
Any previous stillbirth −13.59535 −13.11023 −13.67015 −13.1444
Any previous baby small for gestational −481.7414 −486.7372 −481.4254 −485.4757
Intercept (average for all studies) 9210.304 9212.973 9259.176 9200.492
Heuristic shrinkage factor 0.9997 0.9997 0.9998 0.9997

*UK cohort, Allen et al, 2017.32

†Australia cohort, Rumbold et al, 2006.31

‡Norway cohort, STORK Groruddalen research programme, 2010.33
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Table 3 | Overall apparent model performance and by cohort: UK (Allen et al, 2017),32 Australia (Rumbold et al, 2006),31 
Norway (STORK Groruddalen research programme, 2010),33 and US (National Institute of Child Health and Human 
Development (NICHD), 2018)34 cohorts, and pooled data

Pooled estimate

Allen et al, 
2017
(n=1045)

Rumbold et al, 
2006 (n=1877)

STORK Groruddalen, 
2010 (n=823)

NICHD, 2018 
(n=233 483)

Pooled data
(n=237 228)

Calibration slope
  Point estimate 0.99 0.88 1.04 1.03 0.99 0.99
  Confidence interval 0.88 to 1.10 0.89 to 0.96 0.99 to 1.09 0.95 to 1.11 0.99 to 0.99 0.99 to 0.99
  Prediction interval 0.70 to 1.28 — — — — —
  τ2 (95% CI) 0.00 (0.00 to 0.04) — — — — —
Calibration- in- the- large (g)
  Point estimate 44.45 33.11 13.40 104.69 31.43 31.53
  Confidence interval −18.44 to 107.33 7.07 to 59.14 −6.45 to 33.26 75.62 to 133.76 29.69 to 33.17 29.81 to 33.26
  Prediction interval −136.62 to 225.51 — — — — —
  τ2 (95% CI) 1400 (257 to 13000) — — — — —
Observed to expected birth weight ratio
  Point estimate 1.02 1.01 1.01 1.04 1.01 1.01
  Confidence interval 0.97 to 1.07 0.96 to 1.06 0.94 to 1.07 0.98 to 1.09 0.92 to 1.11 0.92 to 1.11
  Prediction interval 0.95 to 1.08 — — — — —
  τ2 (95% CI) 0.00 (0.00 to 0.00) — — — — —
R2* (%)
  Median 46.9 32.7 47.8 45.7 56.1 56.0
  Range 32.3- 56.3 32.3- 32.9 47.5- 48.1 45.1- 46.3 56.0- 56.3 55.9- 56.1
  Interquartile range 39.0- 52.1 32.6- 32.8 47.8- 47.9 45.6- 45.9 56.1- 56.2 56.0- 56.1

*Reported as median, range, and interquartile range for imputations because R2 cannot be summarised for all imputations with Rubin's rules.
CI, confidence interval.
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Figure 2 | Calibration plots of observed versus expected birth weights for UK (Allen et al, 2017; 1045 pregnancies),32 
Norway (STORK Groruddalen research programme, 2010; 823 pregnancies),33 and Australia (Rumbold et al, 2006; 
1877 pregnancies)31cohorts, and for pooled data (237 228 pregnancies)
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(table  4). The pooled calibration slope for the 
internal- external cross validation cycles showed 
excellent performance with little overfitting and 
negligible miscalibration (on average 1.00, 95% CI 
0.78 to 1.23). Model performance by calibration- 
in- the- large also showed minimal miscalibration, 
with overestimation of birth weight, on average, 
by only 22.3 g and 33.4 g when validated in the 
Allen et al, 2017 and Rumbold et al, 2006 cohorts 
respectively, whereas the model underestimated 
birth weight by 86.4 g, on average, when validated 
in the STORK Groruddalen research programme, 
2010 cohort (table  4). For each internal- external 
cross validation cycle, the ratio of mean observed 
to mean predicted birth weight was near perfect, 
ranging from 0.99 to 1.03 (table  4). The pooled 
calibration- in- the- large suggested an underestima-
tion of birth weight by only 9.7 g (−154.3 to 173.8), 
on average, for the internal- external cross valida-
tion cycles (table 4).

Visual inspection of the calibration plots also 
showed good calibration, on average, for all three 

cycles of internal- external cross validation, with 
calibration curves close to the ideal line (figure  2). 
Errors in individual level predictions were still large 
for some, however, with a root mean squared error of 
428.9 g, 441.3 g, and 424.6 g, for the models vali-
dated in the Allen et al, 2017, Rumbold et al, 2006, 
and STORK Groruddalen research programme, 2010 
cohorts, respectively. Sensitivity analysis of predic-
tive performance of the IPPIC birth weight model by 
gestational age at delivery did not show differential 
calibration performance for prediction of birth weight 
in term and late preterm babies (online supplemental 
appendix 4) or difference in individual level error 
distributions for different numbers of weeks of gesta-
tion (online supplemental appendix 5).

Discussion
Principal findings
Our IPPIC birth weight model, developed with data 
that are readily available at the antenatal booking, 
showed excellent prediction of birth weight, on 
average, and promising performance in four different 

Birth weight = 9210.3 + 3.1 × (age) − 92 × (nulliparous) − 118 × (smoked) − 174.3 × (black) − 73.2 × (South Asian) − 9.6 × (Hispanic) − 64.7 × (mixed) − 60.4 
× (other) − 36.3 × (hypertension) + 150 × (diabetes) − 78.8 × (assisted conception) − 84.2 × (any previous pre-eclampsia) − 13.6 × (any previous stillbirth) −
481.7 × (any previous baby small for gestational age) + 2.7 × (weight at first antenatal visit) + 0.0000752 × (height3)+2 4200 000 × (gestational age at 
delivery-2) − 9274661 × (gestational age at delivery-2 × ln (gestational age at delivery))

• Age (years), weight (kg), and height (cm)
• Score 1 if ethnic group of the mother is black, South Asian, Hispanic, mixed, or other, and score 0 if not (black ethnic group included women with African 
origin, including African American and African Caribbean women; South Asian were women from the Indian subcontinent, Hispanic were women in the 
USA with Spanish speaking or Latin American descent, and other ethnic group included those of East Asian origin).
• Score 1 if mother is nulliparous, smoked in pregnancy, has a history of hypertension, diabetes, any previous pre-eclampsia, any previous stillbirth, any 
previous baby born small for gestational age baby, any previous stillbirth, or conceived through assisted conception (including in vitro fertilisation) and 
score 0 if not
• Gestational age at delivery is desired gestational age (weeks) at which birth weight prediction is sought

Example A
For a nulliparous mother from South Asian ethnic group, aged 28 years, height 176 cm, weight 75 kg, and history of diabetes

Predicted birth weight = 9210.3 + 3.1 × (28) − 92 × (1) − 118 × (0) − 174.3 × (0) − 73.2 × (1) − 9.6 × (0) − 64.7 × (0) − 60.4 × (0) − 36.3 × (0) + 150 × (1) − 78.8 
× (0) − 84.2 × (0) − 13.6 × (0) −481.7 × (0) + 2.7 × (75) + 0.0000752 × (1763) + 24 200 000 × (gestational age at delivery-2) − 9 274 661 × (gestational age at 
delivery-2 × ln (gestational age at delivery))

Example B
For a mother, aged 23 years, from South Asian ethnic group, who is a smoker, height 152 cm, weight of 50 kg, history of hypertension, pre-eclampsia, and 
a previous baby born small for gestational age

Predicted birth weight = 9210.3 + 3.1 × (23) − 92 × (0) − 118 × (1) − 174.3 × (0) − 73.2 × (1) − 9.6 × (0) − 64.7 × (0) − 60.4 × (0) − 36.3 × (1) + 150 × (1) − 78.8 
× (0) − 84.2 × (1) − 13.6 × (0) −481.7 × (1) + 2.7 × (50) + 0.0000752 × (1523) + 24 200 000 × (gestational age at delivery-2) − 9 274 661 × (gestational age at 
delivery-2 × ln (gestational age at delivery))

Predicted birth weight

Mother’s age: 28 years
Mother’s weight: 75 kg
Mother’s height: 176 cm
Nulliparous: Yes
Smoker: No
Ethnic group: South Asian

History of hypertension: No
History of diabetes: Yes
Assisted conception: No
Any previous pre-eclampsia: No
Any previous  stillbirth: No
Any previous SGA: No

Mother’s age: 23 years
Mother’s weight: 50 kg
Mother’s height: 152 cm
Nulliparous: No
Smoker: Yes
Ethnic group: South Asian

History of hypertension: Yes
History of diabetes: No
Assisted conception: No
Any previous pre-eclampsia: Yes
Any previous  stillbirth: No
Any previous SGA: Yes

Example A

Assumed gestational age at delivery (weeks)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Example B

Assumed gestational age at delivery (weeks)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
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Figure 3 | Final equation for prediction of birth weight at any potential gestational age of delivery with worked 
examples, superimposed over a GROW growth chart. SGA=baby born small for gestational age.
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populations included in the individual participant 
data meta- analysis. We used a robust Delphi process 
to prioritise candidate predictors, ensuring that we 
included clinically meaningful variables. We also used 
best practice prognostic model methods to develop 
and validate our birth weight prediction model. Our 
model predicted the birth weight of a baby at various 
potential gestational ages of delivery, based on 
maternal weight, height, age, parity, smoking status, 
ethnic group, history of chronic hypertension, history 
of diabetes, assisted conception, and previous history 
of pre- eclampsia, stillbirth, and babies born small 
for gestational age. We validated the model with an 
internal- external cross validation approach.

The model, when tested in cohorts in different 
countries, explained about 50% of individual level 
variability, and had good calibration performance 
in high and low risk populations. Prediction errors 
were smallest in individuals at the lower end of the 
range of predicted birth weights, which is impor-
tant in informing clinical decisions in pregnancies 
at high risk of fetal growth restriction and related 
complications.

Strengths and limitations of this study
Our individual participant data meta- analysis 
simultaneously developed and validated a predic-
tion model for birth weight. We developed our model 
with data from the harmonised IPPIC individual 

participant data, from cohorts from different coun-
tries,22 23 which provided us with a larger sample size 
than is achievable with just one study. This approach 
allowed us to develop a more comprehensive predic-
tion model, applicable in different populations and 
settings included in these individual participant 
data. We evaluated clinically relevant predictors 
that are routinely available at the antenatal booking 
in both high and low resource settings, allowing the 
model to be easily applied in high income as well as 
in low income countries where perinatal mortality 
rates are highest.46 Although our prediction model 
showed promising performance after three cycles 
of internal- external cross validation in women from 
the UK, Norway, and Australia, multiple external 
validations with data specifically from low income 
settings are needed to fully evaluate if the the model 
can be transferred to these settings. These external 
validations will help verify the model's robust-
ness and suitability for use in other countries and 
subgroups, strengthening its practical use in clin-
ical practice.

Our model can be used to generate predictions of 
birth weight conditional on any clinically relevant 
gestational age at delivery. Integration of the model 
as part of routine growth charts has the potential to 
inform antenatal counselling and empower women 
to contribute towards shared decision making with 
clinicians about the frequency of monitoring in 

Table 4 | Predictive performance of developed birth weight model with average intercept in each internal- external 
cross validation cycle. UK (Allen et al, 2017),32 Australia (Rumbold et al, 2006),31 and Norway (STORK Groruddalen 
research programme, 2010)33 cohorts, and pooled estimate

Pooled estimate Allen et al, 2017 Rumbold et al, 2006 STORK Groruddalen, 2010

No of pregnancies for model develop-
ment

— 236 183 235 351 236 405

No of pregnancies for external validation — 1045 1877 823
Calibration slope
  Point estimate 1.00 0.90 1.07 1.04
  Confidence interval 0.78 to 1.23 0.82 to 0.97 1.02 to 1.12 0.96 to 1.12
  Prediction interval −0.25 to 2.26 — — —
  τ2 (95% CI) 0.01 (0.00 to 0.14) — — —
Calibration- in- the- large (g)
  Point estimate 9.72 −22.32 −33.42 86.41
  Confidence interval −154.3 to 173.8 −48.36 to 3.7 −53.4 to −13.5 57.3 to 115.5
  Prediction interval −943.23 to 962.67 — — —
  τ2 (95% CI) 4200 (801 to 76000) — — —
Observed to expected birth weight ratio
  Point estimate 1.00 1.00 0.99 1.03
  Confidence interval 0.94 to 1.07 0.95 to 1.04 0.94 to 1.05 0.97 to 1.09
  Prediction interval 0.81 to 1.20 — — —
  τ2 (95% CI) 0.00 (0.00 to 0.01) — — —
R2* (%)
  Median 45.7 32.6 47.4 45.7
  Range 32.2- 47.8 32.2- 32.8 47.1- 47.8 45.0- 46.2
  interquartile range 32.7- 47.4 32.5- 32.7 47.4- 47.5 45.5- 45.8

*Reported as median, range, and interquartile range for imputations because R2 cannot be summarised for all imputations with Rubin’s rules.
CI, confidence interval.
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pregnancy and discussions on timing of birth, where 
concerns about the growth of the fetus exist. Further 
external validation of the model in different popula-
tions and settings, however, is required before imple-
mentation in clinical practice. Our prediction of birth 
weight was on the continuous scale, and therefore 
our model is not limited by arbitrary cut- off values 
used to define small or large for gestational age. This 
approach allows clinicians to calculate predicted 
birth centiles based on any fetal growth standard of 
their choice, such as GROW, INTERGROWTH 21st, 
and WHO.28–30

We used a systematic approach to develop and 
validate our birth weight prediction model, by first 
identifying and prioritising candidate predictors 
with a Delphi process and then using multiple impu-
tation to deal with missing data for both predictors 
and outcome to avoid the loss of useful informa-
tion.47 48 We used rigorous statistical methods to 
develop the prediction model and evaluate the 
predictive performance, with individual participant 
data from multiple cohorts to assess any potential 
heterogeneity in performance for the cohorts.

Our study had some limitations. Although mean 
birth weight was similar in all cohorts, the NICHD 
cohort had a higher standard deviation in birth 
weight, with greater variability than the other 
cohorts. This heterogeneity could be a result of vari-
ation in personal characteristics within the popu-
lation, potentially affecting the generalisability of 
the model. Considering that the NICHD cohort was 
retained in all internal- external cross validation 
cycles, exploring the model's performance within 
this heterogenous context is important. External vali-
dation of the model in other datasets that represent 
different regions and populations will help confirm 
the model's generalisability, enhancing its practical 
applicability.

The average calibration performance of the model 
was good for all cohorts but varied in individual 
cohorts, with some underprediction in the smaller 
cohorts, mainly in those with the highest birth 
weight. Although overall calibration of the model 
was good, miscalibration for individual observa-
tions was found, particularly at the higher end of the 
range of predicted birth weights. This miscalibration 
produced a wide range of observed birth weights for 
a particular predicted birth weight in all cycles of the 
internal- external cross validation. This range was 
much narrower in the clinically important range for 
the lower predicted birth weights, however, where 
pregnancies have a higher risk of growth restric-
tion and require intervention. Our model explained 
47% of the variability in birth weight in the dataset, 
ranging from 56% (NICHD, 2018 cohort) to 33% 
(Allen et al, 2017 cohort). These differences in R2 
estimates are partly a result of chance, but could 
also be because of differences in predictor effects 
in the various populations. Future research might 

explore if some variables, such as maternal weight 
or height, interact with country location and should 
be modelled differently for each location to improve 
variance explained.

Comparison with existing evidence
Most published models predict the risk of a baby born 
small for gestational age rather than birth weight.16 
Dichotomisation of birth weight limits the power and 
usefulness of a prediction model. The use of specific 
cut- off values can also result in both overdiagnosis 
and underdiagnosis of fetal growth abnormalities, 
depending on the criteria used.49 These models were 
also usually poorly reported, with only a third being 
internally validated (10/28, 36%), and two (7%) 
were externally validated and showed limited predic-
tive performance.50 51 Calibration measures were 
rarely reported in these studies, with only four (14%) 
reporting these performance measures. A prediction 
formula, rule, or score that would allow independent 
external validation was reported in only 16 (57%) of 
these models. Other published birth weight predic-
tion models were developed for use in specific popu-
lations and have not undergone external validation to 
determine their generalisability to new and different 
populations.13 So far, no individual test is satisfacto-
rily predictive of birth weight or small for gestational 
age to warrant recommendation in routine clinical 
use.52

We reported the development and validation of our 
prediction model in line with current guidelines on 
the transparent reporting of multivariable prediction 
models developed or validated with clustered data.21 
Our model showed good calibration performance on 
internal- external cross validation, with only slight 
overprediction of birth weight, by 9.7 g on average. 
Our model also required the user to enter the assumed 
gestational age at delivery. Although the actual date 
of delivery is not known when making predictions, 
the option to enter various possible gestational 
ages for delivery allows the user to produce a plot of 
predictions of birth weight for various time points.

The Royal College of Obstetricians and 
Gynaecologists in the UK recommends, at the ante-
natal booking, assessing for risk factors for fetuses 
that are small for gestational age, to identify those 
who might need increased surveillance.53 The 
American College of Obstetricians and Gynecologists 
recommends screening for unspecified medical and 
obstetric risk factors, but does not recommend use of 
uterine artery Doppler or biochemical markers, citing 
lack of evidence on improvement of outcomes.54 
The Society of Obstetricians and Gynaecologists 
of Canada calls for clinical risk factor based 
screening,55 whereas the Royal Australian and New 
Zealand College of Obstetricians and Gynaecologist 
suggests risk assessment through a combination 
of biomarkers, Doppler ultrasound, and major 
maternal clinical risk factors.56 The choice of risk 
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factors and their combination to predict risk of small 
for gestational age or fetal growth restriction in any 
of these guidelines was not based on formal predic-
tion modelling.

Relevance for clinical practice and research
The prediction of birth weight is an important aspect 
of antenatal care because it can provide valuable 
information to healthcare providers and expectant 
mothers about the growth and development of the 
fetus, with cost effective use of limited fetal moni-
toring resources. Accurate predictions of birth weight 
can also help identify infants who might have an 
increased risk of adverse outcomes, such as preterm 
birth or stillbirth, and allow for early interventions 
to improve outcomes. The development of accurate 
birth weight prediction models has been challenging, 
however, because individual studies often have 
limited sample sizes, variable definitions of birth 
weight outcome and predictors, with no external 
validation of any model developed.11 14 49 57 Our 
individual participant data meta- analysis combined 
data from multiple studies to develop a mathemat-
ical model, providing a more robust estimate of the 
association between included predictors and birth 
weight. Use of multiple datasets in the IPPIC data 
repository allowed us to carry out extensive valida-
tion of the model for different geographical regions, 
health systems, settings, and in populations of 
women with different baseline risks.

Only clinical characteristic predictors were 
included in the model, making it potentially appli-
cable to both low and high resource settings. 
The predictors included are easy to measure and 
routinely available in clinical practice. Incorporating 
the model into practice will be simple because no 
additional measures are required to calculate the 
birth weight for potential gestational ages of delivery. 
Because the model includes factors that influence 
fetal growth and perinatal risk, its predictive ability 
is particularly useful for early identification of risk of 
abnormal growth at the antenatal booking. Thus the 
model can alert healthcare providers to take appro-
priate actions and provide necessary care in moni-
toring high risk pregnancies.

Our work was in direct response to calls from the 
National Institute for Health and Care Excellence 
and the Royal College of Obstetricians and 
Gynaecologists for predictive tests or strategies to 
identify women at risk of delivering a small baby, 
particularly growth restricted infants with compli-
cations,53 58 and the priorities of the UK Department 
of Health to reduce the incidence of stillbirths and 
neonatal deaths. Further research is needed to eval-
uate the ease of implementation of our birth weight 
model into routine clinical practice and to determine 
any barriers and facilitators of its use. This research 
should include assessment of the acceptability of the 
prediction model as a screening tool for pregnant 

women and their families, as well as healthcare 
providers.

The effect of using our birth weight model in 
clinical practice might require evaluation in cluster 
randomised trials to assess whether its use improves 
perinatal outcomes, or evaluation in an implemen-
tation study to show that it can be integrated into 
routine care at a population level. These studies 
could evaluate the use of the model to inform inter-
ventions (such as close monitoring or planned 
delivery) compared with routine care on perinatal 
mortality. Although the feasibility of these trials is 
challenging because of the sample size required to 
show an effect on perinatal mortality, proxies for 
perinatal mortality could be used, such as morbidity, 
to achieve sufficient power.59

Conclusions
We have developed a simple prediction model incor-
porating routinely available clinical predictors to 
predict birth weight at various potential gestational 
ages at delivery. The model explained about 50% of 
the variability, showed good calibration, and its use 
could help identify pregnancies at increased risk of 
adverse outcomes to allow planning of appropriate 
management or early intervention to improve peri-
natal outcomes. Further multiple external valida-
tions in different settings and populations will help 
confirm the generalisability of the model.
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