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Chapter 1 

Introduction 

1.1 Background 

 

Global drivers such as climate change, population growth, rapid urbanization and 

land use changes may adversely affect the hydrological cycle, causing challenging 

water-related problems. The magnitude and frequency of hydrological extreme 

events, such as floods and droughts are rising; and so are the associated economic 

losses (WMO, 2021; Fig 1.1). Although there is evidence that the vulnerability to these 

extreme events has been decreasing due to successful risk management (Formetta and 

Feyen, 2019), the rise in flood and drought hazard under climate change (IPCC, 2012), 

together with increased exposure due to population and economic growth will likely 

lead to higher flood and drought risks in the future (Winsemius et al., 2015; Zhai et al., 

2020). 

 

Addressing these increased hazards and risks driven by global changes, calls for a 

global approach, where the interacting atmospheric, ocean and land as well as human 

systems are integrated in an Earth systems concept (Sood and Smakhtin, 2014; 

Harrigan et al., 2020). It also demands hydrological knowledge at the global scale, since 

climate and other human induced changes affect the terrestrial water cycle beyond the 

scale of a catchment (Bierkens et al., 2015; Eagleson, 1986). These needs have given rise 

to global hydrology as a growing research field, that collaborates closely with other 

scientific disciplines, such as atmospheric sciences and water resources management. 

Global hydrology is concerned with understanding the role of environmental change 

on the Earth’s water cycle and focuses on the development of global-scale models to 

describe the terrestrial hydrology (Bierkens et al., 2015; Wood et al., 2011). 
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Figure 1.1 Number of (a) reported disasters, (b) number of death and (c) economic 

losses by hazard type by decade globally (WMO Atlas of Mortality and Economic 

Losses from Weather, Climate and Water Extremes (1970–2019)). 

 

Global hydrological models (GHMs) that simulate land surface dynamics of the 

hydrological cycle on a global scale have developed rapidly over the past decades. 

GHMs are comparable to land surface models (LSMs), such as H-TESSEL 

(Pappenberger et al., 2011; Balsamo et al., 2009), ISBA-SGH (Decharme and Douville, 

2006), MOSES (Gedney and Cox, 2003), NOAH (Ek et al., 2003), MATSIRO (Takata et 

al., 2003) and SWAP (Gusev and Nasonova, 2003), which were introduced in general 

circulation models (GCMs) to resolve the land component and provide realistic lower 

boundary conditions on temperature and moisture (Decharme and Douville, 2007). 

Although largely similar to LSMs, GHMs focus more on modeling runoff and 

streamflow, as well as a more comprehensive representation of the terrestrial 

hydrological processes. Examples are VIC (Wood et al., 1992; Nijssen et al., 2001), 

WaterGap (Alcamo et al., 2003; Döll et al., 2003), LaD (Milly and Schmakin, 2002), 

WBM (Vörösmarty et al., 2000; Fekete et al., 2002), MacroPDM (Arnell, 1999; 2004) and 

PCR-GLOBWB (Van Beek et al., 2011; Sutandudjaja et al., 2018). Most GHMs run at a 

daily time step and a spatial resolution of 30 arc min, corresponding to 50 km at the 

equator. The spatial resolution of GHMs is determined by computational resources as 
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well as the available resolution of climate input data provided by global climate 

models. As higher computational power and finer resolution global input data become 

available, newer versions of GHMs are being developed which run on finer resolutions 

down to 5 arc min, such as WaterGAP, PCR-GLOBWB 2.0 and WBMplus (Bierkens et 

al., 2015; Sood and Smakhtin, 2015; Sivapalan, 2018). In addition to refinements of 

spatial resolution, newer versions of GHMs are being improved by features such as 

inclusion of reservoir operations, hydrodynamic routing and floodplain inundation 

(Bierkens et al., 2015). 

 

GHMs and LSMs have been widely applied to estimate current and future continental 

runoff (Nijssen et al., 2001a; Fekete et al., 2002; Milly et al., 2005), to investigate the 

hydrological response to global warming (Arnell, 2004; Nijssen et al., 2001b; Milly et 

al., 2005), to study future projections of extremes in river discharge (Hirabayashi et al., 

2008; Lehner et al., 2006), to assess freshwater availability (Alcamo et al., 2003; Islam et 

al., 2007; Oki et al., 2001; Vorosmarty et al., 2000; Van Beek et al., 2011; Wada et al., 

2011), to map global flood hazard and risk (Pappenberger et al., 2012; Hirabayashi et 

al., 2013; Ward et al., 2013), to model global freshwater temperature (van Beek et al., 

2012; Van Vliet et al., 2012) and to determine the contribution of terrestrial water stores 

to global sea level change (Wada et al., 2012; Pohkrel et al., 2013). While some of these 

applications focus on long-term trends, all rely on the ability of GHMs and LSMs to 

capture the relation between weather and hydrology, including the occurrence of 

extremes, such as floods and droughts, on shorter intervals, i.e., days to months. 

1.2 Research problem 

Studies on GHMs demonstrate the potential of their application for streamflow 

forecasting in large river basins. Streamflow forecasting with GHMs has been enabled 

in the past decade thanks to recent scientific and technological developments. These 

developments include advancement of global modelling capabilities both in 

meteorology and in land surface hydrology, enhanced collaboration between 

hydrological and meteorological communities, increased availability and quality of 

relevant data derived from ground observations and remote sensing by satellite and 

ground-based radars, as well as improvements in computing capabilities and 

resources (Emerton et al., 2016). Reliable and timely forecasts of water availability and 

scarcity are vital for mitigation of flood and drought hazards. While short- to mid-term 

forecasts inform immediate responses on the scales of hours to days, forecasts with 

lower temporal resolutions but longer lead times, e.g., months in advance, can be 

useful for increasing preparedness. Seasonal forecasts are beneficial not only in case of 

hydrological extreme events, but also during normal flow conditions, allowing several 

sectors to make more informed management decisions, in the fields of hydropower 
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reservoirs, water supply, agriculture and navigation. The rationale behind operating 

global hydrological forecasting systems is that, as they are based on global 

meteorological datasets, they provide continuous and spatially consistent forecasts of 

streamflow. This may be valuable for regions where the spatial scale of hydrological 

extreme events goes beyond individual catchments or political borders as well as for 

the most vulnerable regions of the world where no local forecasting systems exist to 

alert the population. Still, where national scale forecasting systems exist, global 

forecasts provide an additional guidance at larger spatial scales (Harrigan et al., 2019). 

Disaster management organizations operating at global scale and international 

humanitarian aid agencies can benefit from global forecasts to prepare for appropriate 

response, and global water and energy markets can be informed about future 

availability of water and hydropower in different regions of the world. The economic 

rationale is that the provision of forecasts for basins across the globe does not require 

a large scale-up of resources. Rather than focusing on developing forecasting systems 

and issuing forecasts for individual basins in regions of scarce resources, it is more 

cost-effective to provide forecasts with global scale hydrological forecasting systems. 

Also, the economic benefit is evident for those countries who do have some existing 

capabilities, such as local hydrological models but are not able to produce hydrological 

forecasts, since they cannot afford to pay for access to, or processing of 

computationally expensive probabilistic and extended time scale meteorological 

forecast products (Emerton et al., 2018). 

 

Despite their potential, GHMs have rarely been used for river flow forecasting up to 

now, mainly because appropriate routing of river discharge is not included, and 

forecasting systems are limited mainly to higher resolution national or regional 

domains. In the last decade, several seasonal hydrological forecasting systems have 

been developed for forecast applications and research purposes at the continental scale 

(De Roo et al., 2000; Bennett et al., 2016; Mo et al., 2014; Wood et al., 2002, 2005; Yuan 

et al., 2013). Continental scale operational systems include the European Flood 

Awareness System (EFAS) (Arnal et al., 2018), the European Hydrological Predictions 

for the Environment (E-HYPE) (Donnely et al., 2015), the Australian Government 

Bureau of Meteorology (BoM) Seasonal Streamflow Forecasts (BoM, 2018), and the 

National Hydrologic Ensemble Forecast Service (HEFS) for continental USA 

(Demargne et al., 2014; Emerton et al., 2016). Yet, currently only a few systems produce 

operational seasonal hydrological forecasts at the global scale, including the NASA 

Hydrological Forecast and Analysis System (NHyFAS) (Arsenault et al., 2020), the 

Global Flood Awareness System (GloFAS - Seasonal) (Emerton et al., 2018), the Global 

Flood Forecasting and Information System (GLOFFIS) (Emerton et al., 2016), and the 

Global Water Scarcity Information Service (GLOWASIS) (Weerts et al., 2013). In 

addition, a couple of studies on global scale forecast applications have been conducted 

for research purposes (Alfieri et al., 2013; Yuan et al., 2015), including three published 

studies by Candogan Yossef et al. (2012, 2013, 2017), which constitute the core of this 
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thesis. These three studies together with an additional chapter of this thesis approach 

one main research problem from different angles. The main research problem with 

which this thesis is concerned may be stated as exploring the apparent but yet unmet 

potential of GHMs in operational seasonal forecasting applications on a global scale. 

1.3 Research objectives  

This thesis aims to assess the skill and value of seasonal streamflow forecasts produced 

by GHMs, as well as to investigate possible ways to improve the current skill and 

value. Here, the skill of a forecast is defined as its ability to capture the occurrence of 

an event; and the value as its usefulness in making informed decisions. In order to 

tackle the main research problem defined in the previous section, I have determined 

the following objectives which I address in the next four chapters.  

 

1) to identify a methodology that can serve as a benchmark verification procedure for 

hydrological forecasting 

2) to assess the prospect of using a GHM for forecasting hydrological extremes 

3) to determine the relative contributions of meteorological forcing and initial 

hydrologic conditions to the skill of seasonal streamflow forecasts 

4) to identify promising skill improvement methods 

5) to assess the total skill of hydrological forecasts as affected by errors in model 

structure, in the estimation of initial hydrologic conditions as well as in the 

meteorological forcing obtained by numerical weather prediction 

6) to shed light on the value of global scale seasonal streamflow forecasts for water 

management 

7) to discuss possible ways to improve the value during various stages of the forecast 

chain 

1.4 Context and outline 

Figure 1.1 displays a conceptual schematization of the logical progression of my 

research and the organization of this thesis, with the research objectives addressed 

through Chapters 2 to 5. Chapter 2 presents the first study by Candogan Yossef et al. 

(2012). This study investigates the skill of the global hydrological model PC-Raster 

Global Water Balance (PCR-GLOBWB) in reproducing the occurrence of past extremes 

in the monthly discharges of 20 large rivers of the world. The motivation for this paper 

is to address the first two research objectives listed above: to present my evaluation of 

PCR-GLOBWB as an initial step in assessing the prospect of using a GHM for 

forecasting hydrological extremes, and to identify a methodology that can serve as a 
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benchmark verification procedure for hydrological forecasting. This procedure uses 

methods and skill scores that were developed primarily for verification of 

meteorological forecasts. Global terrestrial hydrology is simulated for a historical 

period from 1958 until 2001, by forcing PCR-GLOBWB with a meteorological data set 

produced by combining ERA40 reanalysis (Uppala et al., 2005) and Climate Research 

Unit (CRU) data from the University of East Anglia (New et al., 2000). The use of a 

historical meteorological dataset implies that the hydrological forecasts are not 

affected by forecasting uncertainty in the forcing and the propagation thereof with 

increasing lead times. In this sense, the results presented here are indicative of the 

maximum skill that can currently be achieved by this and similar GHMs given the 

associated errors in forcing, discharge observations, model structure and 

parameterization. Monthly discharge observations from the Global Runoff Data 

Center (GRDC) reference dataset are used for verification. The skill of PCR-GLOBWB 

in reproducing hydrological extremes is assessed in three ways; a general verification 

of simulated hydrographs, assessment of the skill in reproducing significantly higher 

and lower flows than the monthly normals using skill scores for forecasts of ordinal 

categorical events, as well as the skill in reproducing flood and drought events using 

verification measures for forecasts of binary events, where floods and droughts are 

defined in terms of discharge values being higher or lower than discharges associated 

with a given return period.  

 

This preliminary assessment in hindcast quantifies skill using a climate forcing based 

on observations and concludes that the prospects for seasonal forecasting with PCR-

GLOBWB or comparable models are positive. However, this study does not include 

actual forecasts. Thus, the meteorological forcing errors due to uncertainty from 

numerical weather prediction models are not assessed. In an actual forecasting setup, 

the predictive skill of a hydrological forecasting system is affected by errors in model 

structure and parameterization, meteorological forcing (MF), and initial conditions 

(ICs), most importantly soil moisture, groundwater and snow. Skill of seasonal 

hydrological forecasts can thus be improved on the one hand by better prediction of 

future weather and on the other hand by better estimation of initial hydrologic states 

through assimilation of independent hydrological observations such as soil moisture 

and snow data from earth observation. The improvement in the overall predictability 

that may be attained depends on the relative importance of these two sources of 

uncertainty, MF and ICs, which varies considerably according to location, season and 

lead time (Bierkens and van den Hurk, 2007; Bierkens and van Beek, 2009; Shukla and 

Lettenmaier, 2011; Shukla et al., 2011). Therefore, determining the role of each factor is 

helpful in deciding which skill improvement methods are more promising (Paiva et 

al., 2012). The theoretical framework for quantifying the contributions of boundary 

forcing and initial conditions to predictability was developed in atmospheric sciences 

by Collins and Allen (2002). Wood and Lettenmaier (2008) and Wood et al. (2002, 2005) 

adopted this approach in hydrological forecasting. They presented an Ensemble 
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Streamflow Prediction (ESP) and reverse Ensemble Streamflow Prediction (revESP) 

approach and evaluated the relative roles of MF and ICs in seasonal hydrologic 

prediction in two western US basins. The ESP/revESP framework contrasts the forecast 

variance arising from a forecast ensemble based on perturbations of the initial states, 

and the forecast variance arising from an ensemble of meteorological forcing, to the 

internal, climatological variance.  

 

The ESP/revESP approach is applied on the global scale to examine the relative 

contributions of ICs and MF to the skill of seasonal streamflow forecasts in my second 

study (Candogan Yossef et al., 2013), which is presented in Chapter 3 of this 

dissertation. As shown in Fig. 1.1, this study addresses research objectives 3 and 4; and 

investigates the roles of both sources of uncertainty in the skill of the global seasonal 

streamflow forecasting system Flood Early Warning System – World (FEWS-World), 

using the global hydrological model PCR-GLOBWB.  Global monthly streamflow is 

simulated with lead times ranging from 1 to 6 months for a historical period of 30 years 

(1981–2010). The impact of both sources of uncertainty is analysed at 78 stations on 

large river basins across the globe by comparing the ESP and revESP forecast 

ensembles with retrospective model simulations driven by meteorological 

observations, and not with direct hydrological observations. In this way model errors 

are eliminated and predictability is related only to knowledge of ICs and the 

uncertainty in future MF. The results suggest that in some basins, and during certain 

seasons forecast skill may be improved by better estimation of initial hydrologic states 

through assimilation of snow, soil moisture or surface water data; whereas in others 

improvement of forecast skill depends on more accurate seasonal climate prediction. 

This analysis shows the relative contributions of ICs and MF to the potential skill of 

the forecasting system FEWS-World. However, in a real forecast mode, where both the 

ICs and the MF will be uncertain, the actual forecasting skill of the system should be 

assessed using probabilistic seasonal meteorological forecasts and comparing the ESP 

results to actual discharge observations, as I do in my third study. 

 

Chapter 4 of this dissertation presents my third study (Candogan Yossef et al., 2017) 

which carries out a skill assessment in actual forecasting mode. In this study, I address 

research objective 5, as shown in Fig 1.1, and assess the total skill of hydrological 

forecasts as affected by errors in model structure, in the estimation of IC as well as in 

the actual MF obtained by numerical weather prediction. The skill of seasonal 

streamflow forecasts with the global hydrological forecasting system FEWS-World, 

which incorporates the global hydrological model PCR-GLOBWB, is investigated for 

20 of the largest rivers in the world. The ability of FEWS-World to predict high and 

low flows, defined as discharges higher than the 75th and lower than the 25th 

percentiles for a given month respectively, is evaluated. The skill of streamflow 

forecasts using the seasonal climate forecast dataset S3 by the European Centre for 

Medium Range Weather Forecasts (ECMWF) is quantified as compared to the 
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reference ESP forecasts using the Brier skill score (BSS), both for high and low flows. 

The analysis of the results in the context of prevailing hydroclimatic conditions suggest 

that the skill varies considerably according to location, season and lead time. The 

performance of the S3 forecast run is found to be generally close to that of the ESP run, 

with some basins where the ECMWF S3 forecast run performing significantly better 

than the ESP, during certain periods of the year and at certain lead times; but in fact, 

there are more cases where the forecast run performs worse than the ESP. The study 

concludes that in most cases, the apparent potential for improvement in seasonal 

hydrological forecasts by using climate predictions cannot be realized as yet until more 

accurate hydrological models and more skilful seasonal meteorological forecasts 

become available in the future.  

 

Chapter 5 of this thesis investigates the value of global scale seasonal streamflow 

forecasts. I address the research objectives 6 and 7, as schematized in Fig 1.1, where 

skill contributes to value. With the skill varying considerably by region and season and 

showing a decrease with increasing lead time, in many cases, seasonal streamflow 

forecasts produced by these large-scale systems need to have a better skill before they 

can be adopted for water management applications (Samaniego et al., 2019). However, 

even with little added skill, the forecast may still be useful for end-users, allowing 

them to decide for themselves if they should take the risk of using the forecast 

information (Viel et al., 2016). The success of a hydrological forecasting system will 

ultimately be determined not by its skill but by the effect it has on decision-making for 

water management (Plummer et al., 2019). The current ability of seasonal streamflow 

forecasting systems to predict the right category of an event months ahead is 

potentially valuable for many water-related applications. The aim of this study, 

therefore, is to shed some further light on the value problem. For this purpose, I study 

the interaction between skill and value and discuss the possible ways to improve the 

value of seasonal streamflow forecasts on a global scale with an emphasis on flood and 

drought mitigation.  

 

The final Chapter 6 of this thesis presents a synthesis of my conclusions and future 

recommendations. 
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Figure 1.2 Conceptual schematization of the logical progression of research in this 

thesis on the skill and value of seasonal global hydrological forecasts. 
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Chapter 2 

Assessment of the potential forecasting skill of a global 

hydrological model in reproducing the occurrence of 

monthly flow extremes 

Abstract 
 

As an initial step in assessing the prospect of using global hydrological models 

(GHMs) for hydrological forecasting, this study investigates the skill of the GHM PCR-

GLOBWB in reproducing the occurrence of past extremes in monthly discharge on a 

global scale. Global terrestrial hydrology from 1958 until 2001 is simulated by forcing 

PCR-GLOBWB with daily meteorological data obtained by downscaling the CRU 

dataset to daily fields using the ERA-40 re-analysis. Simulated discharge values are 

compared with observed monthly streamflow records for a selection of 20 large river 

basins that represent all continents and a wide range of climatic zones. 

 

We assess model skill in three ways all of which contribute different information on 

the potential forecasting skill of a GHM. First, the general skill of the model in 

reproducing hydrographs is evaluated. Second, model skill in reproducing 

significantly higher and lower flows than the monthly normals is assessed in terms of 

skill scores used for forecasts of categorical events. Third, model skill in reproducing 

flood and drought events is assessed by constructing binary contingency tables for 

floods and droughts for each basin. The skill is then compared to that of a simple 

estimation of discharge from the water balance (P-E). 

 

The results show that the model has skill in all three types of assessments. After bias 

correction the model skill in simulating hydrographs is improved considerably. For 

most basins it is higher than that of the climatology. The skill is highest in reproducing 

monthly anomalies. The model also has skill in reproducing floods and droughts, with 

a markedly higher skill in floods. The model skill far exceeds that of the water balance 

estimate. We conclude that the prospect for using PCR-GLOBWB for monthly and 

seasonal forecasting of the occurrence of hydrological extremes is positive. We argue 

that this conclusion applies equally to other similar GHMs and LSMs, which may show 

sufficient skill to forecast the occurrence of monthly flow extremes. 
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2.1 Introduction  

Global hydrological models (GHMs) that simulate land surface dynamics of the 

hydrological cycle on a global scale have developed rapidly over the past decades. 

GHMs are comparable to land surface models (LSMs), such as H-TESSEL 

(Pappenberger et al., 2011; Balsamo et al., 2009), ISBA-SGH (Decharme and Douville, 

2006), MOSES (Gedney and Cox, 2003), NOAH (Ek et al., 2003), MATSIRO (Takata et 

al., 2003) and SWAP (Gusev and Nasonova, 2003), which were introduced in general 

circulation models (GCMs) to resolve the land component and provide realistic lower 

boundary conditions on temperature and moisture (Decharme and Douville, 2007). 

Although largely similar to LSMs, GHMs focus more on modelling runoff and 

streamflow, as well as a more comprehensive representation of the terrestrial 

hydrological processes. Examples are VIC (Wood et al., 1992), WaterGap (Dӧ ll et al., 

2003), LaD (Milly and Schmakin, 2002), WBM (Fekete et al., 2002), and Macro-PDM 

(Arnell, 1999). GHMs and LSMs have been widely applied to estimate current and 

future continental runoff (Nijssen et al., 2001a; Fekete et al., 2002; Milly et al., 2005), to 

investigate the hydrological response to global warming (Arnell, 2004; Nijssen et al., 

2001b; Milly et al., 2005), to study future projections of extremes in river discharge 

(Hirabayashi et al., 2008; Lehner et al., 2006) and to assess freshwater availability 

(Alcamo et al., 2003; Islam et al., 2007; Oki et al., 2001; Vӧ rӧ smarty et al., 2000; Van Beek 

et al., 2011; Wada et al., 2011). Given the capability of GHMs to quantify streamflow, 

their relevance for integrated water resources management of large river basins has 

been recognized (Refsgaard, 2001). Reliable and timely forecasts of extremes in 

streamflow can help mitigate flood and drought risks and optimize water allocations 

to different sectors and sub-regions. The application of GHMs could be particularly 

promising for developing regions of the world where no effective flood and drought 

early warning systems are in place. However, up to now large-scale hydrological 

models have rarely been used for river flow forecasting, mainly because appropriate 

routing of river discharge is not included, and forecasting systems are limited to higher 

resolution national or regional domains (e.g., the European LISFLOOD system with a 

grid resolution of 5 × 5 km; De Roo et al., 2000). 

 

In this paper we investigate the skill of the global hydrological model PCR-GLOBWB 

in reproducing the occurrence of past extremes in the monthly discharges of 20 large 

rivers of the world that represent all continents and a wide range of climatic zones. 

The motivation for the paper is twofold. The first objective is to present our evaluation 

of PCR-GLOBWB as an initial step in assessing the prospect of using a GHM for 

forecasting hydrological extremes. The second one is to identify a methodology that 

can serve as a benchmark verification procedure for hydrological forecasting. This 

procedure uses methods and skill scores that were developed primarily for verification 

of meteorological forecasts. 
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Global terrestrial hydrology is simulated for a historical period from 1958 until 2001, 

by forcing PCR-GLOBWB with a meteorological data set produced by combining 

ERA-40 reanalysis (Uppala et al., 2005) and Climate Research Unit (CRU) data from 

the University of East Anglia (New et al., 2000). The use of a historical meteorological 

dataset implies that the hydrological forecasts are not affected by forecasting 

uncertainty in the forcing and the propagation thereof with increasing lead times. In 

this sense, the results presented here are indicative of the maximum skill that can 

currently be achieved by this and similar GHMs given the associated errors in forcing, 

discharge observations, model structure and parameterization. 

 

We assess the skill of PCR-GLOBWB in reproducing hydrological extremes in three 

ways. First, a general verification of simulated hydrographs is carried out. Second, 

model skill in reproducing significantly higher and lower flows than the monthly 

normals is assessed by constructing categorical contingency tables and applying skill 

scores used in meteorology for forecasts of ordinal categorical events. Third, model 

skill in reproducing flood and drought events is assessed by applying verification 

measures for forecasts of binary events, where floods and droughts are defined in 

terms of discharge values being higher or lower than discharges associated with a 

given return period. The model skill quantified in terms of these three sets of skill 

scores is then compared with the skill obtained by a simple estimation of discharge 

from the water balance (P-E) over each basin. 

 

We use discharge observations from the Global Runoff Data Center (GRDC) reference 

dataset which contains monthly discharges for most basins. Consequently, the 

forecasting skill that we assess in this study is indicative for the potential skill that 

could be achieved in monthly and seasonal forecasting, rather than medium-range 

forecasting. Among other studies in which the discharge simulations of other GHMs 

and LSMs have been compared to discharge observations, the novelty of this work is 

to evaluate the ability of a GHM in reproducing the occurrence of anomalous flows 

and past flood and drought events with skill measures used in verification of 

meteorological forecasts, in the prospective context of operational hydrological 

forecasting. 

 

The rest of this paper is set up as follows: Sect. 2 describes the GHM PCR-GLOBWB, 

the historical simulation, the meteorological forcing as well as the discharge data used 

for skill assessment. Section3 describes the assessment of skill in reproducing 

hydrographs, anomalous flows and floods and droughts. Results are presented and 

discussed in Sect. 4, followed by conclusions in the last section. 
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2.2 Historical simulation 

2.2.1 Hydrological model 

PCR-GLOBWB (PCRaster Global Water Balance) is a hydrological model that 

simulates the terrestrial part of the global water cycle (Van Beek and Bierkens, 2009; 

Bierkens and Van Beek, 2009). It is coded in the high-level computer language 

PCRaster for constructing environmental models (Wesseling et al., 1996). PCR-

GLOBWB is fully distributed and operates on a regular grid with a cell size of 0.5×0.5O 

(ca. 55 km squared at the Equator). Meteorological forcing is applied on a daily time 

step and assumed to be constant over the grid cell. Sub-grid variability is taken into 

account in the representation of short and tall vegetation, open water, different soil 

types, saturated area, surface runoff, interflow and groundwater discharge. 

 

PCR-GLOBWB is a “leaky-bucket” type of model that calculates the water balance for 

every grid cell by tracking the transfer of water between the atmosphere and the cell, 

through stores within each cell, and laterally, as discharge, from one cell to the next. 

The model calculates the storages and fluxes of water, simulates the generation of 

runoff and its propagation as discharge through the river network. Precipitation falls 

either as snow or rain depending on atmospheric temperature. It can be intercepted 

by vegetation and added to the finite canopy storage, which is subject to open water 

evaporation. Snow is accumulated when the temperature is lower than 0OC and melts 

when it is higher. Snow melt is added to rain and throughfall; it is stored in the 

available pore space in the snow cover, or reaches the top soil layer. Part of this water 

is transformed into surface runoff and the remainder infiltrates into the soil through 

two vertically stacked soil layers and an underlying groundwater layer. Water is 

exchanged between these layers following Darcy’s law and the resulting soil moisture 

is subject to evapotranspiration. The remaining water contributes to lateral drainage 

as interflow from the soil layers or baseflow from the groundwater reservoir. The total 

drainage which consists of surface runoff, interflow and baseflow is routed through 

the drainage network of rivers, lakes and wetlands, based on DDM30 (Dӧ ll and 

Lehner, 2002), using the kinematic wave approach. An extensive description of PCR-

GLOBWB can be found in Van Beek and Bierkens (2009) and Van Beek et al. (2011). 

2.2.2 Meteorological dataset 

The meteorological variables required to force PCR-GLOBWB are daily values of 

precipitation, evapotranspiration and temperature. In the absence of direct estimates 

of actual evapotranspiration, the model can be forced with values of potential 
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evapotranspiration calculated from temperature, radiation, cloud cover, vapour 

pressure and wind speed.  

 

In order to force PCR-GLOBWB with daily meteorological data at 0.5O resolution, the 

monthly fields of the CRU TS 2.1 data set (New et al., 2000) have been downscaled to 

daily fields using ERA-40 reanalysis (Uppala et al., 2005). Precipitation fields are 

downscaled multiplicatively while an additive correction is used for temperature. 

Reference potential evapotranspiration is calculated first on a monthly basis, based on 

monthly cloud cover and vapour pressure deficit from CRU TS 2.1 as well as radiation 

and wind speed from CRU CLIM 1.0 (New et al., 2002). Reference evapotranspiration 

is converted to crop-specific potential evapotranspiration using crop factors derived 

following FAO guidelines. Finally, potential evapotranspiration is downscaled 

multiplicatively to daily values using ERA-40 temperature fields. The methodology 

used to calculate potential evaporation for the different land surfaces in PCR-

GLOBWB and the downscaling of the meteorological data is described in detail by Van 

Beek (2008). The resulting meteorological data set is limited to the period from 1958 to 

2001 for which ERA-40 data are available. 

2.2.3 Simulated and observed discharge time series 

The simulated discharge time series represent non-regulated flow. Twenty large river 

basins are selected for comparison of simulated and observed time series on the basis 

of three criteria. The first one is to represent all the continents, a wide range of climate 

zones and latitudes as well as a variety of precipitation regimes. The second criterion 

is the availability of observed monthly streamflow records for at least part of the period 

1958–2001. The third criterion is to focus on developing regions which would benefit 

most from operational seasonal forecasting. Selected basins can be seen in Fig. 2.1 

(Sperna Weiland et al., 2010). Basin characteristics and record length are presented in 

Table 1, adapted from Sperna Weiland et al. (2010). 

 

 

Figure 2.1 Selected basins. 



16 Chapter 2 

The discharge data for most of the selected basins are obtained from the Global Runoff 

Data Center (GRDC, 2007). When GRDC data are not available, records from the 

Global River Discharge Database, RivDis 1.1 (Vӧ rӧ smarty et al., 1998) are used. The 

period of record for the discharge values reported in the GRDC and RivDis databases 

varies widely from basin to basin (Table 2.1). Simulated daily discharges for the model 

grid cells corresponding to gauging stations are aggregated into monthly values, since 

this is the temporal resolution at which observed discharge data are available for 

validation. The simulated and observed discharge time series are used in the 

assessment of skill as described in the following section. 

 

Table 2.1 Basins data. 

 

Basin Area 

(km2) 

Q avg 

(m3/s) 

Duration with 

available records 

Amazon 6,915,000 190,000 28 years 

Congo 3,680,000 41,800 26 years 

Mississippi 2,981,076 12,743 40 years 9 months 

Nile 3,400,000 2,830 40 years 7 months 

Lena 2,500,000 17,000 24 years 

Parana 2,582,672 18,000 33 years 

Yangtze 1,800,000 31,900 31 years 

MacKenzie 1,805,000 10,700 16 years 4 months 

Volga 1,380,000 8,060 24 years 

Niger 2,117,700 6,000 21 years 10 months 

Murray 1,061,469 767 16 years 

Orange River 973,000 365 20 years 3 months 

Ganges 907,000 12,015   9 years 

Indus 1,165,000 6,600 10 years 6 months 

Danube 817,000 6,400 42 years 10 months 

Yellow River 752,000 2,571 30 years 

Brahmaputra 930,000 48,160   5 years 10 months 

Rhine 65,638 2,200 29 years 

Zambezi 1,390,000 3,400   4 years 

Mekong 795,000 16,000 29 years 5 months 
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Figure 2.2 Discharge time series. 
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2.3 Skill assessment methodology 

2.3.1 Measuring the skill in reproducing hydrographs 

The performance of the model in hydrograph simulation is assessed in terms of 

verification measures used in forecasting of continuous variables, without applying 

thresholds. For this assessment, the most commonly applied statistical measure, mean 

squared error (MSE) is calculated for each river basin. In order to judge the predictive 

skill, the raw MSE scores are transferred into MSE Skill Scores, (MSESS). The MSESS 

provide a relative measure of the quality of the simulation compared to the mean 

climatology as a low skill alternative method of estimation. Here climatology refers to 

the long term mean of the available monthly discharge records for each of the 12 

months of the year. The MSESS is defined as: 

 

𝑀𝑆𝐸𝑆𝑆 = 1 −
𝑀𝑆𝐸

𝑀𝑆𝐸𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦
 

 

The range of values that MSESS can take is (-∞, 1); with the maximum value of 1 

indicating perfect skill; a value of 0 indicating a model skill equivalent to the 

climatology; and a negative value implying that the model performs worse than the 

climatology. 

 

Additionally, we use the coefficient of determination (R2) and Nash and Sutcliffe’s 

coefficient of efficiency (NS), which are often employed in the validation of 

hydrological models. These coefficients provide a measure of the model skill relative 

to the long-term mean, that is independent of the climatology. NS takes on the values 

(-∞, 1) and R2 (0, 1), with higher values indicating higher skill. 

 

Bias due to errors in the meteorological forcing, discharge records, model parameters, 

or simplifying assumptions, can highly degrade the quality of the output of a 

hydrological model (Hashino et al., 2007). This is true for our simulations as well. We 

applied these skill measurement methods on both non-bias-corrected and bias-

corrected simulation results. Verification with non-bias-corrected data presents a 

better reflection of potential shortcomings in the skill of the GHM and provides the 

opportunity to compare our simulations with the results of other studies which use 

non-bias-corrected data, such as the Water Model Intercomparison Project 

(WaterMIP), which quantifies and explains the differences in the results of five GHMs 

and six LSMs (Haddeland et al., 2011). Verification with bias-corrected data, on the 

other hand, is relevant for the assessment of forecasting skill, which is the ultimate 

purpose of this study. It provides an indication of the maximum skill that can be 



20 Chapter 2 

achieved when the systematic bias due to model errors or forcing is eliminated, as is 

generally the case in operational forecasting. 

 

Table 2.2 Skill scores for reproducing hydrographs. 

 

Basin  

uncorrected bias corrected 

MSESS R2 NS MSESS R2 NS 

Amazon -4.92 0.55 -0.13 -0.29 0.79 0.75 

Congo -3.83 0.27 -0.87 -0.35 0.64 0.48 

Mississippi 0.40 0.77 0.68 0.72 0.85 0.85 

Nile -31.51 0.59 -4.35 -4.38 0.57 0.11 

Lena -7.81 0.62 0.52 0.40 0.97 0.97 

Parana -2.10 0.48 -1.70 0.48 0.65 0.54 

Yangtze -0.89 0.89 0.64 0.75 0.95 0.95 

Mackenzie -10.51 0.62 0.11 0.33 0.95 0.95 

Volga -0.81 0.58 0.51 0.50 0.86 0.86 

Niger -81.30 0.11 -18.62 -6.75 0.32 -0.85 

Murray -0.70 0.37 -0.45 0.32 0.48 0.42 

Orange River 0.11 0.22 0.20 0.17 0.26 0.25 

Ganges 0.33 0.90 0.90 0.47 0.92 0.92 

Indus -1.63 0.12 0.12 0.08 0.69 0.69 

Danube -0.04 0.68 0.38 0.50 0.76 0.70 

Yellow River -1.98 0.77 -0.49 0.57 0.79 0.78 

Brahmaputra -1.40 0.88 0.71 0.32 0.92 0.92 

Rhine 0.57 0.72 0.65 0.74 0.79 0.79 

Zambezi -1.49 0.16 -1.13 0.24 0.38 0.35 

Mekong -0.61 0.85 0.82 0.13 0.90 0.90 
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Figure 2.2 Bias-corrected discharge time series. 
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Figure 2.3 Reliability diagrams (different colors indicate different months of the 

year). 

 

In this study a simple method of a posteriori bias-correction is carried out. It is true 

that an a priori correction by basin-specific calibration has a stronger physical basis 

than an a posteriori adjustment of the model output. On the other hand, given the time, 

data and computational capacity required for model calibration, a simple post-

processing has the advantage of being far more straightforward and transparent. The 

post-processing method we employed is as follows: Bias is calculated for each pair of 

simulation and observation. Calculated biases are grouped into 12 months of the year, 

and a mean bias is calculated for each of these 12 months. Every discharge value is 

corrected for the mean bias calculated for the corresponding month of the year. The 

correction is done by simply subtracting the mean bias for the corresponding month 

from the simulated monthly discharge value. 
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2.3.2 Measuring the skill in reproducing anomalous flows 

In order to analyse whether the model is capable of reproducing higher or lower flows 

than usual for a given month, the discharge time series are transformed into categorical 

events defined in terms of three categories of high, normal and low flow. The analysis 

is carried out for two different sets of categories. For the first set, high flow is defined 

as discharge values above the 75th percentile for the month in question; normal flow 

between the 75th and the 25th percentile; and low flow below the 25th percentile. For 

the second set, the 90th and the 10th percentiles are used. Thresholds are identified 

separately for simulated and observed discharge. This approach eliminates any 

systematic under- or overestimation in the simulations and thus removes the need for 

bias correction. The skill in simulating these three classes is assessed by constructing 

categorical contingency tables and applying skill scores for ordinal categorical events. 

 

Here we use Gerrity Scores (GS) (Gerrity, 1992) which is a subset of the Gandin and 

Murphy (GM) family of equitable scores for deterministic categorical forecasts 

(Gandin and Murphy, 1992). The criterion of equitability is based on the principle that 

random forecasts or constant forecasts of the same single category receive a no-skill 

score (Murphy and Daan, 1985). GM scores use a scoring matrix which represents the 

reward or penalty accorded to each pair of simulation and observation on the 

contingency table. In contrast to other equitable scores such as the Heidke skill score 

(Heidke,1926), and Peirce’s skill score (PSS) (Haansen and Kuipers, 1965), the GM 

family considers differences in relative sample probabilities of categories when 

appropriating a reward or penalty (Livezey, 2003). A correct forecast of a low 

probability category is rewarded more than that of a high probability category. 

Likewise, failure to forecast a rare event receives a lighter penalty than a common 

event. 

 

GS and LEPSCAT scores (Potts et al., 1996) are the two subsets of the GM family that 

are appropriate for the specific case of ordinal categories, defined as ranges of a 

continuous variable such as discharge. In this study, GS are preferred since they are 

recommended by Livezey (2003) for ordinal categorical events, on the practical basis 

of being more convenient to use compared to LEPSCAT. GS provide higher penalties 

as the discrepancy between simulated and observed classes increase. For example, a 

forecast of low flow receives a heavier penalty when the observed flow is high, and a 

lighter one when the observed flow is normal. 

 

This score takes on the maximum value of 1 for perfect skill, and the value of 0 for no-

skill. The value of GS for a categorical forecast with K number of categories is given by 

Eq. (2.2): 
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𝐺𝑆 = ∑∑𝑝𝑖𝑗

𝐾

𝑗=1

𝐾

𝑖=1

𝑠𝑖𝑗 

 

where the relative sample frequency pij of each outcome on the K × K contingency table 

is multiplied by the corresponding scoring factor sij (i, j = 1, . . . , K) from a scoring 

matrix S with relative levels of rewards and penalties and summing the values. The 

elements sij of the scoring matrix S is given by Eq. (2.3): 

 

 

𝑆 =

[
 
 
 
𝑠𝑖𝑖 𝑠𝑖𝑗 ⋯ 𝑠𝑖𝐾

𝑠𝑗𝑖 𝑠𝑗𝑗 … 𝑠𝑗𝐾

⋮
𝑠𝐾𝑖

⋮
𝑠𝐾𝑗

⋱ ⋮
… 𝑠𝐾𝐾]
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Table 2.3 Categorical contingency tables for 75th and 25th percentiles. 

 o: observed, s: simulated, L: low flow, N: normal flow, H: high flow. 

 

Amazon  Parana  Murray  Yellow River 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 53 27 4  L 73 23 0  L 30 14 4  L 34 45 4 

N 35 96 37  N 37 140 27  N 29 46 21  N 37 116 40 

H 1 32 51  H 2 34 60  H 4 18 26  H 2 25 57 

                   

Congo  Yangtze  Orange River  Brahmaputra 

o 
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 24 40 8  L 76 20 0  L 32 26 1  L 6 6 0 

N 16 101 51  N 21 141 19  N 38 76 10  N 9 29 7 

H 1 14 57  H 0 29 66  H 5 28 26  H 2 7 4 

                   

Mississippi  Mackenzie  Ganges  Rhine 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 83 37 0  L 24 28 0  L 18 4 2  L 59 24 0 

N 34 181 34  N 19 73 10  N 18 31 11  N 25 131 25 

H 2 27 91  H 3 32 17  H 2 8 14  H 1 24 59 

                   

Nile  Volga  Indus  Zambezi 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 61 49 10  L 51 19 2  L 12 11 4  L 0 9 3 

N 57 133 57  N 38 93 14  N 25 32 14  N 1 14 9 

H 11 48 61  H 2 26 43  H 2 11 15  H 1 5 6 

                   

Lena  Niger  Danube  Mekong 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 26 39 6  L 11 40 15  L 92 35 3  L 41 36 7 

N 14 103 28  N 6 72 52  N 34 182 38  N 24 119 43 

H 2 29 41  H 2 25 39  H 2 38 90  H 7 27 49 
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Table 2.4 Categorical contingency tables for 90th and 10th percentiles. 

 o: observed, s: simulated, L: low flow, N: normal flow, H: high flow. 

 

Amazon  Parana  Murray  Yellow River 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 18 18 0  L 21 15 0  L 6 17 0  L 9 27 0 

N 16 228 20  N 25 291 8  N 17 115 13  N 17 253 18 

H 0 19 17  H 0 12 24  H 1 12 11  H 0 15 21 

                   

Congo  Yangtze  Orange River  Brahmaputra 

o 
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 4 31 1  L 20 16 0  L 13 11 0  L 3 6 0 

N 7 214 19  N 17 277 7  N 15 174 5  N 3 45 4 

H 0 12 24  H 0 13 22  H 1 15 8  H 0 8 1 

                   

Mississippi  Mackenzie  Ganges  Rhine 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 25 23 0  L 4 19 0  L 6 5 1  L 18 16 0 

N 18 360 15  N 10 149 2  N 10 70 4  N 17 252 9 

H 0 15 33  H 0 12 10  H 0 6 6  H 0 13 23 

                   

Nile  Volga  Indus  Zambezi 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 16 29 3  L 12 10 0  L 1 11 0  L 0 0 0 

N 31 332 28  N 24 213 5  N 9 84 9  N 0 35 13 

H 1 31 16  H 0 13 11  H 0 11 1  H 0 0 0 

                   

Lena  Niger  Danube  Mekong 

o  
s L N H  o  

s L N H  o  
s L N H  o  

s L N H 

L 3 21 0  L 0 22 2  L 25 23 0  L 15 20 1 

N 8 211 21  N 4 181 29  N 23 373 22  N 8 250 23 

H 1 17 6  H 1 14 9  H 0 22 26  H 0 25 11 
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Table 2.5 Gerrity skill scores in reproducing anomalous flows for 75th and 25th 

percentiles; and 90th and 10th percentiles. 

 

Basin GS-75/25 GS-90/10 Basin GS-75/25 GS-90/10 

Amazon 0.47 0.43 Murray 0.33 0.27 

Congo 0.40 0.34 Orange River 0.34 0.39 

Mississippi 0.63 0.57 Ganges 0.47 0.42 

Nile 0.32 0.26 Indus 0.21 0.01 

Lena 0.35 0.13 Danube 0.60 0.48 

Parana 0.58 0.58 Yellow River 0.39 0.36 

Yangtze 0.67 0.56 Brahmaputra 0.25 0.16 

Mackenzie 0.29 0.28 Rhine 0.61 0.54 

Volga 0.53 0.45 Zambezi 0.07 n.a. 

Niger 0.15 0.12 Mekong 0.39 0.31 

 

 

2.3.3 Measuring the skill in reproducing floods and droughts 

Floods and droughts are regarded as simple binary events defined as exceedances of 

threshold discharges. For some rivers a monthly time scale may seem to be too coarse 

to correctly predict flood sizes. However, when we limit ourselves to forecasting 

monthly flows in terms of binary events, these will certainly be indicative for increased 

probability of floods for large rivers. It can be seen in Appendix 2.A that at gauging 

station Lobith on the Rhine, throughout the years with available records during the 

period from 1815 to 2008, extreme daily discharges almost always coincide with large 

monthly discharges. When the annual maxima of daily discharge are plotted against 

the monthly mean discharge of the month in which this daily maximum occurred, 

resulting points cluster along a straight line (see Fig. 2.A1), with daily maxima higher 

than monthly mean values as would be expected. Moreover, Fig. 2.A2 shows that for 

most of the years, the month in which the annual maximum daily discharge occurred 

is also the month of maximum monthly flow or directly precedes or succeeds this 

month. Since the Rhine is the smallest of the 20 global rivers in this study, and given 

the fact that it has a rather complex regime, one can infer that the same assumption 

holds for other larger basins as well. 
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Table 2.6 Binary contingency tables for floods and droughts  

o:observed, s:simulated 

 

Flood  Drought   Flood  Drought 

Amazon   Parana 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 4 5  yes 4 6   yes 11 6  yes 0 17 

no 5 322  no 3 323   no 7 372  no 13 366 

                

Congo   Yangtze 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 3 6  yes 0 5   yes 4 0  yes 5 5 

no 3 300  no 10 297   no 2 366  no 2 360 

                

Mississippi   Mackenzie 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 7 3  yes 7 11   yes 1 0  yes 0 4 

no 3 476  no 11 460   no 3 202  no 7 195 

                

Nile   Volga 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 5 6  yes 1 49   yes 2 1  yes 2 6 

no 8 468  no 11 426   no 3 282  no 4 276 

                

Lena   Niger 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 2 4  yes 0 1   yes 1 6  yes 0 31 

no 3 279  no 5 282   no 3 252  no 6 225 
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Flood  Drought   Flood  Drought 

Murray   Yellow River 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 5 9  yes 2 25   yes 6 6  yes 2 6 

no 4 174  no 2 163   no 3 345  no 7 345 

                

Orange River   Brahmaputra 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 1 1  yes 4 13   yes 1 0  yes 1 2 

no 4 236  no 12 213   no 0 69  no 0 67 

                

Ganges   Rhine 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 1 2  yes 0 3   yes 3 2  yes 5 9 

no 2 103  no 2 103   no 3 340  no 6 328 

                

Indus   Zambezi 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 1 2  yes 0 15   yes 0 0  yes 0 0 

no 1 122  no 2 109   no 1 47  no 1 47 

                

Danube   Mekong 

o     
s Yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 7 7  yes 4 7   yes 2 3  yes 2 6 

no 6 494  no 6 497   no 4 344  no 9 336 
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Decision thresholds for a basin may be defined using various hydrological and 

economic criteria. A comprehensive approach with verification over the full range of 

possible thresholds for each basin is beyond the scope of this study. Therefore, a single 

set of decision thresholds for floods and droughts common for all river basins is 

selected that can reasonably distinguish between the usual and extreme states of each 

basin. The flood and drought thresholds used in this study correspond to 5-yr return 

periods for each river. The discharges corresponding to the 5-yr flood and drought 

events have been derived using the Annual Maximum Series method. 

 

The choice of 5-yr return periods for floods as well as droughts is made on the basis of 

two considerations. On the one hand, events with return periods of a few years do not 

reflect the long-term variability, and do not represent unusually extreme states of a 

river. On the other hand, the limited availability of discharge observations does not 

allow the estimation of rare events beyond a fraction of the record length. Five years 

in this case appears to be a practical return period for the assessment of model skill in 

reproducing both types of hydrological extremes observed in all basins, the record 

lengths for which are given in Table 2.1. For the two basins with the longest records, 

i.e., the Danube and the Mississippi, we repeat the analysis for return periods of ten 

years. 

 

Similar to the approach used in the construction of categorical tables described in Sect. 

2.3.2, for the construction of binary tables, the thresholds for observations and 

simulations are identified separately in order to decrease the effect of any systematic 

under- or over-estimation. The skill in simulating flood and drought events is assessed 

by constructing 2 × 2 contingency tables and applying binary skill scores. Binary 

contingency tables present the 2 × 2 possible combinations of simulated and observed 

event outcomes: hit, false alarm, miss and correct rejection. 

 

Equitable skill scores used in the verification of binary forecasts are Heidke skill score 

(HSS) (Heidke, 1926), Peirce’s skill score (PSS) (Haansen and Kuipers, 1965), Gilbert’s 

skill score (GSS) (Schaefer, 1990) and odds ratio skill score (ORSS) (Stephenson, 2000). 

As stated in Sect. 3.2, the criterion of equitability is based on the principle that random 

forecasts or constant forecasts of the same single category receive a no-skill score 

(Murphy and Daan, 1985). Two of these four equitable scores, namely HSS and GSS, 

are markedly dependent on sample climate. Sample climate, defined as the sample 

estimate of the unconditional probability of occurrence of an event, is purely a 

characteristic of the observations with no direct relevance to skill assessment (Mason, 

2003). Since dependence on sample climate makes a skill score unjustifiably sensitive 

to variations in observed climate and therefore unreliable, HSS and GSS are excluded 

in this study. The remaining two equitable scores PSS and ORSS are independent of 

the sample climate and recommended in several studies (McBride and Ebert, 2000; 
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Stephenson, 2000; Gӧ ber et al., 2004). However, ORSS is also excluded because the 

presence of zero in any cell of the contingency table renders this skill score 

inappropriate (Livezey, 2003). PSS is preferred to other scores in this study on the basis 

of these considerations. 

 

The possible values of PSS are within the range (−1, 1) and its true zero-skill value is 0. 

Negative values imply less skill than a random prediction. The PSS for floods and 

droughts for each basin are calculated in terms of cell counts of the relevant 

contingency tables according to the formula: 

 

𝑃𝑆𝑆 =
𝑎

𝑎 + 𝑐
−

𝑏

𝑏 + 𝑑
 

 

where a, b, c and d represent the cell counts for each of the possible outcomes of hit, 

false alarm, miss and correct rejection respectively. 

 

Table 2.7 Peirce’s skill scores for floods and droughts. 

 

Basin PSS-f PSS-d Basin PSS-f PSS-d 

Amazon 0.44 0.40 Murray 0.36 0.07 

Congo 0.33 0.00 Orange River 0.50 0.24 

Mississippi 0.70 0.39 Ganges 0.33 0.00 

Nile 0.45 0.02 Indus 0.33 0.00 

Lena 0.33 0.00 Danube 0.50 0.36 

Parana 0.65 0.00 Yellow River 0.50 0.25 

Yangtze 1.00 0.50 Brahmaputra 1.00 0.33 

Mackenzie 1.00 0.00 Rhine 0.60 0.36 

Volga 0.67 0.25 Zambezi n.a. n.a.  

Niger 0.14 0.00 Mekong 0.40 0.25 

 

2.3.4 Measuring added skill over a simple water balance estimate 

In order to demonstrate the added value of running a complex hydrological model 

over a simple estimation of the water balance, the MSESS (non-bias corrected), GS and 

PSS are applied on an alternative set of monthly discharge values at the outlet of each 
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basin. These discharge values are computed as follows: monthly actual 

evapotranspiration (E) is subtracted from the precipitation (P) on a monthly basis, then 

aggregated over the drainage network including downstream losses due to open water 

evaporation to obtain the instantaneous monthly discharge. This estimate of P-E 

incorporates the same information from the climatic forcing, but ignores hydrological 

information on stores and fluxes that lead to temporal and spatial redistribution. Skill 

comparison of model results with this estimate shows the added value of the routing 

and hydrology, while both suffer from the same poor climatological forcing. 

2.4 Results and discussion 

2.4.1 Skill in reproducing hydrographs 

The results of the historical simulation and observed discharge time series for the 

selected rivers are presented in Fig.2.2 for visual inspection. The difference between 

the simulations and observations can be attributed to several errors such as those in 

the meteorological forcing, discharge records, model parameters, or simplifying 

assumptions. The possible model errors are discussed in depth in Van Beek and 

Bierkens (2009) and Van Beek et al. (2011). 

 

Three groups of rivers present a large discrepancy between the simulations and 

observations. The first group is the Arctic rivers, such as the Lena and Mackenzie, and 

snow and glacier dominated rivers such as the Indus. Undercatch in the CRU snowfall 

amounts reported by Fiedler and Dӧ ll (2007) results in a large underestimation of the 

spring discharge after the start of snowmelt. The second group consists of those basins 

with heavy regulation and large amounts of withdrawal for irrigation and 

consumption, such as the Murray, Zambezi and Parana. The routing scheme in the 

current version of PCR-GLOBWB simulates natural discharge and does not include 

reservoir operations and withdrawals. Therefore, the simulated natural flow on these 

heavily regulated rivers is in disagreement with the measured discharge. Although it 

is one of the most heavily regulated rivers, the Nile does not show this discrepancy 

since measurements of natural flow upstream of the High Dam is available for 

comparison. The last group consists of rivers in the tropics, which show either 

overestimation as in Africa, or underestimation as in the Amazon. This is mostly 

attributable to the low station coverage over the tropics in the CRU dataset and to a 

lesser extent poor precipitation forecasts in ERA-40 (Troccoli and Kalberg, 2004). 

 

The improvement in predictive skill due to the correction of bias can be seen on the 

discharge time series before and after the bias correction (Figs. 2.2 and 2.3), as well as 
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the reliability diagrams (Fig. 2.4). It can be observed from these figures that bias 

correction highly improves the results. This improvement is documented 

quantitatively in Table 2, which shows the MSE skill scores for the selected basins, both 

before and after the bias correction. Table 2 shows that without a bias correction, the 

MSESS for the majority of basins are negative. The improvement in the MSESS due to 

the correction varies widely, but is quite high in general, yielding a skill higher than 

the climatology for most basins. The three basins where the highest skill is observed 

are the Yangtze, the Rhine and the Mississippi, with MSESS above 0.70. The model 

performs worse than the climatology in four basins. It is interesting to note that the 

three basins with the worst performance, namely the Niger, the Nile, and the Congo 

are all African rivers. The fourth basin with negative skill is the Amazon. The relatively 

low skill in the Amazon and other monsoon-dominated basins such as the Indus and 

the Mekong can be explained to a certain degree by the fact that for such basins the 

climatology is already a good estimate of the expected discharge, so that it is difficult 

to perform better than that. The relatively high values of R2 and NS for these basins, 

which are also presented in Table 2, indicate that the model performance is not poor 

in monsoon-dominated basins, provided that it is evaluated using measures 

independent of the climatology. 

2.4.2 Skill in reproducing anomalous flows 

A complete summary of the joint distribution of categorical simulations and 

observations for the selected basins is presented in 3 × 3 contingency tables (Tables 2.3 

and 2.4). These tables provide the basis for the calculation of the Gerrity Scores for each 

basin. As can be seen in Table 2.5, all the resulting values of GS are positive, indicating 

that the model has skill in reproducing categorical events. In general, GS values are 

higher for reproducing the 75th and the 25th percentile flows than for the 90th and the 

10th, as the skill is expected to decrease for more extreme flow. 

 

The same three rivers with the highest skill in simulating exact discharges, namely the 

Yangtze, the Rhine and the Mississippi, have again the highest scores for categorical 

events. The model performance in categorical simulations for the African rivers the 

Niger, the Nile, and the Congo is much better than in reproducing hydrographs. The 

lowest skill among all the basins is observed for another African river, the Zambezi, 

though still above the climatology. For the Amazon, where the skill in reproducing 

hydrographs is less than that of the climatology, we observe that the skill in 

reproducing anomalous flows is rather high compared to other basins. This shows that 

even in cases where the model simulations are biased and do not outperform the 

climatology in reproducing hydrographs, the skill in reproducing anomalous flows 

can be relatively high. 
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2.4.3 Skill in reproducing floods and droughts 

The 2 × 2 contingency tables for flood and drought events for the selected basins can 

be seen in Table 6. The PSS calculated on the basis of these tables are presented in Table 

2.7. The resulting PSS show that the skill obtained by binary forecasts of 5-yr floods 

and droughts is also higher than an unskilled forecasting system. The system has a 

markedly higher skill in forecasting floods compared to droughts. Model structure and 

process descriptions explain the difference in skill in reproducing floods and droughts. 

Floods are largely controlled by the rapid response of basins and thus react almost 

directly to the above-average rainfall of the forcing depending on the antecedent 

conditions. In contrast, droughts or low flows represent the response of the 

hydrological system to prolonged periods of below-average rainfall. As such, they are 

more sensitive to the uncertainty in model parameterization affecting processes such 

as the build-up of soil moisture deficit, the depletion of the groundwater system by 

baseflow and the regulation of discharge by reservoirs or changed withdrawal. With 

respect to baseflow, PCR-GLOBWB contains a conceptual model to describe the 

influence of lithology and drainage density. This model is parameterized using global 

datasets but not calibrated. As a consequence, it can resolve the general trend but not 

all local variations. Moreover, the simulated discharge in this study is the natural one 

and regulation and consumption are not considered. All in all, this makes droughts 

more sensitive to model uncertainty, all the more so as the rank order of these events 

can be less accurately assessed due to the relatively larger variability of this 

phenomenon. 

 

There are no basins where the model has a negative skill score in reproducing either 

floods or droughts; but for seven basins, the PSS indicates no skill in reproducing 

droughts. This is because the PSS takes on the value of zero when the contingency table 

shows no hits. For some basins, the model demonstrates perfect skill in reproducing 

floods. This is a shortcoming of the skill score used. The score takes on the value of one 

in cases where there are either no misses or no false alarms. Yet, to be able to assign 

perfect skill, one would expect the number of both misses and false alarms to be zero. 

 

The skill assessment in reproducing 5-yr events is not applicable to the Zambezi for 

which the available discharge record only covers four years (see Table 2.1). For this 

basin, PSS is undefined due to the absence of any observed event. The short length of 

the observed discharge records affects the assessment of skill negatively for the 

Brahmaputra (five years and ten months) and the Ganges (nine years; Table 2.1). 

 

For the two basins with the longest records, i.e., the Danube and the Mississippi, we 

have repeated the analysis for return periods of ten years. The results, which are 

presented in Appendix C, show that for both basins, PSS in floods decrease when the 

return period increases, as expected. For the Mississippi, the PSS in reproducing 10-yr 
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droughts is surprisingly slightly higher than in 5-yr droughts. For the Danube, the PSS 

in 10-yr droughts is zero since there are no hits on the contingency tables. 

 

Notwithstanding the problems related to limited observation lengths, skill in 

reproducing flood and drought events is demonstrated. 

2.4.4 Added skill over a simple water balance estimate 

The added value of running a complex hydrological model over a simple estimation 

of the water balance is demonstrated by comparison of the skill scores MSESS (non-

bias-corrected), GS and PSS for model simulated discharges and for the P-E estimate. 

Skill scores for both the model results and for the P-E estimate are presented in 

Appendix 2.B. 

 

The results show that model skill by far exceeds that of the P-E estimate in all cases. 

Skill comparison of model results with this estimate shows the added value of the 

routing and hydrology, while both suffer from the same poor climatological forcing. 

In contrast, the monthly climatology of observed discharge performs better than the 

P-E estimate as it is more attuned to the actual climate, save for its anomalies, as well 

as the regulation. 

2.5 Conclusions and recommendations 

As an initial step in assessing the prospect of global hydrological forecasting, we tested 

the ability of a global hydrological model PCR-GLOBWB in reproducing the 

occurrence of past extremes in the monthly discharge of 20 large rivers of the world 

We assessed the model skill in three ways: first in simulating hydrographs, second in 

reproducing monthly anomalies and third in reproducing flood and drought events. 

The advantage of such a procedure is that it provides a more detailed assessment of 

forecasting skill and an insight into which types of forecasting are more promising. 

 

Verification of non-bias-corrected hydrographs reflects model and forcing errors, thus 

providing the opportunity for improvement. In addition, it allows comparison with 

the results of other studies which use non-bias-corrected data. Eliminating the 

systematic bias due to model errors or forcing, on the other hand, provides an 

indication of the maximum skill that can be achieved in operational forecasting. 

Simulations with PCR-GLOBWB are biased for most basins, and the skill in 

reproducing hydrographs is lower than the observed climatology. The model skill 

improves significantly after a post-processing bias correction and surpasses the 

observed climatology in most basins. 
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Results of the analysis indicate that the skill obtained in reproducing monthly 

anomalies using non-bias-corrected data is higher than the climatology for all basins. 

The model also has skill in reproducing floods and droughts, with a markedly better 

performance in the case of floods. The model skill surpasses that of a simple water 

balance estimate in all cases. Although simulated hydrographs may be biased and do 

not always outperform the observed climatology even after bias correction, higher 

skills can be attained in forecasting the occurrence of monthly anomalies as well as 

floods. The prospects for operational forecasting of monthly hydrological extremes are 

thus positive. PCR-GLOBWB is similar to other GHMs in model structure and 

parameterization; and the forcing data is similar to those used in simulations with 

other GHMs and LSMs. The performance of PCR-GLOBWB in reproducing runoff is 

comparable to those of other GHMs (Sperna Weiland et al., 2010; Wada et al., 2008) and 

to LSMs (Sperna Weiland et al., 2011). Given these similarities we argue that our 

conclusion is valid for other comparable GHMs and LSMs as well. 

 

This assessment in retrospect is a preliminary one and it shows a potential skill given 

the current GHM, with a meteorological forcing based on observations. The true skill 

should be assessed in forecasting mode using meteorological forecasts subject to 

uncertainty from numerical weather prediction (NWP) models. 
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2.6 Appendix 2.A: Correlation between annual maxima of daily and 

monthly discharges at gauging station Lobith on the Rhine 

 

 
 

Figure 2.A.1 Annual maxima of daily discharge vs. corresponding monthly mean 

flows. 

 

 

Figure 2.A.2 The difference between the month in which the annual maximum daily 

discharge occurred and the month of maximum monthly flow. 
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2.7 Appendix 2.B: Skill comparison between routed streamflow and 

estimated flow based on water balance 

Table 2.B.1 Skill comparison of model results of routed streamflow and streamflow 

estimates based on P-E fields from the water balance. 

Basin MSESS GS PSSf PSSd 

model estimate model estimate model estimate model estimate 

Amazon -4.92 -21.03 0.47 0.18 0.44 0.66 0.40 0.00 

Congo -3.83 -50.09 0.40 0.19 0.33 0.00 0.00 0.00 

Mississippi 0.40 -6.69 0.63 0.11 0.70 0.00 0.39 0.14 

Nile -31.51 -75474.70 0.32 0.02 0.45 n.a. 0.02 0.00 

Lena -7.81 -13.21 0.35 0.02 0.33 n.a. 0.00 0.03 

Parana -2.10 -19.80 0.58 0.15 0.65 0.22 0.00 0.00 

Yangtze -0.89 -4.35 0.67 0.23 1.00 0.33 0.50 0.00 

Mackenzie -10.51 -12285.40 0.29 0.04 1.00 0.00 0.00 0.00 

Volga -0.81 -30.34 0.53 -0.01 0.67 0.00 0.25 0.03 

Niger -81.30 -696.49 0.15 0.05 0.14 0.00 0.00 0.03 

Murray -0.70 -13.63 0.33 0.04 0.36 0.00 0.07 0.00 

Orange River 0.11 -2.58 0.34 0.08 0.50 0.00 0.24 0.01 

Ganges 0.33 -14.04 0.47 0.06 0.33 n.a. 0.00 0.00 

Indus -1.63 -3.26 0.21 -0.03 0.33 0.00 0.00 0.00 

Danube -0.04 -15.17 0.60 0.13 0.50 0.00 0.36 0.02 

Yellow River -1.98 -32.76 0.39 0.11 0.50 0.33 0.25 0.01 

Brahmaputra -1.40 -2.25 0.25 0.12 1.00 n.a. 0.33 n.a. 

Rhine 0.57 -2.40 0.61 0.35 0.60 1.00 0.36 0.00 

Zambezi -1.49 -17.34 0.07 0.04 n.a. n.a. n.a. n.a. 

Mekong -0.61 -8.85 0.39 0.19 0.40 0.00 0.25 0.07 
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2.8 Appendix 2.C: Comparison of skill in reproducing 5-yr and 10-yr 

floods and droughts for the Mississipi and the Danube 

Table 2.C.1 Binary contingency tables and PSS for the Mississippi 

 

5-yr floods  10-yr floods  5-yr droughts  10-yr droughts 

    
o     

s Yes no o     
s yes no o     

s yes no o     
s yes no 

yes 7 3 yes 3 2 yes 7 11 yes 4 5 

no 3 476 no 2 482 no 11 460 no 6 474 

    
PSS= 0.70 PSS= 0.60 PSS= 0.39 PSS= 0.44 

 

 

Table 2C.1 Binary contingency tables and PSS for the Danube 

 

5-yr floods  10-yr floods  5-yr droughts  10-yr droughts 

    
o     

s Yes no o     
s yes no o     

s yes no o     
s yes no 

yes 7 7 yes 3 4 yes 4 7 yes 0 5 

no 6 494 no 4 503 no 6 497 no 5 504 

    
PSS= 0.50 PSS= 0.43 PSS= 0.36 PSS= 0.00 
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Chapter 3 

Skill of a global seasonal streamflow forecasting 

system, relative roles of initial conditions and 

meteorological forcing 

Abstract 
 

We investigate the relative contributions of initial conditions (ICs) and meteorological 

forcing (MF) to the skill of the global seasonal streamflow forecasting system FEWS-

World, using the global hydrological model PCRaster Global Water Balance. Potential 

improvement in forecasting skill through better climate prediction or by better 

estimation of ICs through data assimilation depends on the relative importance of 

these sources of uncertainty. We use the Ensemble Streamflow Prediction (ESP) and 

reverse ESP (revESP) procedure to explore the impact of both sources of uncertainty 

at 78 stations on large global basins for lead times up to 6 months. We compare the ESP 

and revESP forecast ensembles with retrospective model simulations driven by 

meteorological observations. For each location, we determine the critical lead time 

after which the importance of ICs is surpassed by that of MF. We analyse these results 

in the context of prevailing hydroclimatic conditions for larger basins. This analysis 

suggests that in some basins forecast skill may be improved by better estimation of 

initial hydrologic states through data assimilation; whereas in others skill 

improvement depends on better climate prediction. For arctic and snow fed rivers, 

forecasts of high flows may benefit from assimilation of snow and ice data. In some 

snow fed basins where the onset of melting is highly sensitive to temperature changes, 

forecast skill depends on better climate prediction. In monsoonal basins, the variability 

of the monsoon dominates forecasting skill, except for those where snow and ice 

contribute to streamflow. In large basins, initial surface water and groundwater states 

are important sources of skill. 

3.1 Introduction 

Forecasting of water availability and scarcity is a prerequisite for managing the risks 

and opportunities caused by the interannual variability of streamflow. Reliable 

seasonal streamflow forecasts are necessary to prepare for an appropriate response in 

disaster relief, management of hydropower reservoirs, water supply, agriculture, and 
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navigation. Seasonal hydrological forecasting on a global scale could be valuable, 

especially for developing regions of the world, where effective hydrological 

forecasting systems are scarce. Furthermore, global seasonal forecasts may provide 

spatially consistent predictions of streamflow anomalies. These may provide 

information to disaster management organizations operating at global scale to prepare 

for response, as well as to the energy market about the regional availability of 

hydropower in the coming months. 

 

Several studies demonstrated the capability of global hydrological models to predict 

streamflow, such as the WaterGap ((Alcamo et al., 2003; Döll et al., 2003), LaD (The 

Land Dynamics Model) (Milly and Schmakin, 2002), VIC (Variable Infiltration 

Capacity Model) (Nijssen et al.,2001), WBM (Water Balance Model) (Vörösmarty et al., 

2000; Fekete et al., 2002), Macro-PDM (Probability Distributed Moisture Model) 

(Arnell, 1999, 2004), and PCRaster Global Water Balance (PCR-GLOBWB) (Sperna-

Weiland et al., 2010; Van Beek et al., 2011). Candogan Yossef et al. (2012) assessed the 

skill of the global hydrological model PCR-GLOBWB in reproducing past discharge 

extremes in 20 large rivers of the world, as a first step toward developing and assessing 

a global seasonal hydrological forecasting system. This preliminary assessment in 

hindcast quantified skill using a meteorological forcing (MF) based on observations 

and concluded that the prospects for seasonal forecasting with PCR-GLOBWB or 

comparable models are positive. Note that this study did not include actual forecasts. 

Thus, the meteorological forcing errors due to uncertainty from numerical weather 

prediction models were not assessed. 

 

In an actual forecasting setup, the predictive skill of a hydrological forecasting system 

is affected by errors in model structure and parameterization, MF, and initial 

conditions (ICs), most importantly soil moisture, groundwater and snow. Skill of 

seasonal hydrological forecasts can thus be improved on the one hand by better 

prediction of future climate and on the other hand by better estimation of initial 

hydrologic states through assimilation of independent hydrological observations such 

as soil moisture and snow data from earth observation. The improvement in the overall 

predictability that may be attained depends on the relative importance of these two 

sources of uncertainty, which varies considerably according to location, season and 

lead time (Bierkens and van den Hurk, 2007; Bierkens and van Beek, 2009; Shukla and 

Lettenmaier, 2011; Shukla et al., 2011). Therefore, determining the role of each factor is 

helpful in deciding which skill improvement methods are more promising (Paiva et 

al., 2012). 

 

The theoretical framework for quantifying the contributions of boundary forcing and 

initial conditions to predictability was developed in atmospheric sciences by Collins 

and Allen (2002). Wood and Lettenmaier (2008) and Wood et al. (2002, 2005) adopted 

this approach in hydrological forecasting. They presented an Ensemble Streamflow 
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Prediction (ESP) and reverse Ensemble Streamflow Prediction (revESP) approach and 

evaluated the relative roles of MF and ICs in seasonal hydrologic prediction in two 

western US basins. The ESP/revESP framework contrasts the forecast variance arising 

from a forecast ensemble based on perturbations of the initial states, and the forecast 

variance arising from an ensemble of meteorological forcing, to the internal, 

climatological variance. Li et al. (2009) used a similar approach for the Ohio River basin 

and the southeastern US to investigate the varying roles of ICs and MF in seasonal 

hydrologic forecasting. The ESP/revESP approach was applied to seasonal forecasts in 

the US by Shukla and Lettenmaier (2011). Shukla et al. (2011) used the same approach 

to evaluate cumulative run-off and soil moisture forecasts on a global scale. Paiva et al. 

(2012) applied the ESP/revESP approach to the Amazon River basin. 

 

In this study, we apply the ESP/revESP approach on a global scale to examine the 

relative contributions of ICs and MF to the skill of seasonal streamflow forecasts. We 

investigate the roles of both sources of uncertainty in the skill of the global seasonal 

streamflow forecasting system FEWS-World, using the global hydrological model 

PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th 

Framework Programme project Global Water Scarcity Information Service 

(GLOWASIS). The assessment is based on the ESP/revESP procedure outlined by 

Wood and Lettenmaier (2008). We simulate global monthly streamflow with lead times 

ranging from 1 to 6 months for a historical period of 30 years (1981–2010). We analyze 

the impact of both sources of uncertainty at 78 stations on large river basins across the 

globe, for all the months of the year and for lead times up to 6 months. These 78 stations 

have previously been selected for analysis within the GLOWASIS project to represent 

different hydroclimatic conditions and all continents, but in the same time considering 

the availability of discharge data. In this study, we compare the ESP and revESP 

forecast ensembles with retrospective model simulations driven by meteorological 

observations, and not with direct hydrological observations. The advantage of 

comparing against simulations instead of observations is that in the former case model 

errors are eliminated and predictability is related only to knowledge of ICs and the 

uncertainty in future MF. Note that in previous work (Candogan Yossef et al., 2012) 

we investigated the model errors of the forecasting system.  

 

The remaining part of this paper is set up as follows. Section 3.2 describes the global 

seasonal hydrological forecasting system, FEWS-World, the global hydrological model 

PCR-GLOBWB and the meteorological forcing data. Section 3.3 describes the 

hydrological simulations and the skill measures. Results are presented in section 3.4, 

followed by discussion in section 3.5 and conclusions in the last section. 
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3.2 Materials and methods 

3.2.1 Global hydrological forecasting system FEWS-World 

FEWS-World is a global hydrological forecasting system configured within the 

forecasting environment Delft-FEWS (Flood Early Warning System). Delft-FEWS is an 

open shell for managing, data handling and guiding of forecasting processes (Werner 

et al., 2013). It is used by a large number of operational forecasting centres and agencies 

around the world for various purposes such as forecasting hydrological storm surges, 

river flows, reservoir management and water quality. FEWS-World has been built as 

part of the GLOWASIS project. The FEWS-World system consists of a Master 

Controller, a Postgres database and 18 forecasting shells (i.e., computational cores) for 

efficient handling of ensemble forecasts and data processing. Within FEWS-World 

several workflows have been setup for running the global hydrological model PCR-

GLOBWB sing the precipitation, temperature and potential evaporation fields from 

the ERA Interim-Global Precipitation Climatology Project (GPCP) data set (Balsamo et 

al., 2010). Further descriptions of the meteorological forcings are given in section 3.2.2. 

 

PCR-GLOBWB simulates the terrestrial part of the global water cycle (van Beek et al., 

2011; van Beek and Bierkens, 2009). It is coded in the high-level computer language 

PCRaster for constructing environmental models (Wesseling et al., 1996). The model is 

fully distributed and operates on a regular grid with a cell size of 0.5 x 0.5 O on a daily 

time step. Meteorological forcing is assumed to be constant over the grid cell. Subgrid 

variability of hydrological processes is taken into account in the representation of short 

and tall vegetation, open water, different soil types, saturated area, surface runoff, 

interflow and groundwater discharge. 

 

PCR-GLOBWB calculates the water balance for every grid cell by tracking the transfer 

of water between the atmosphere and the cell, through stores within each cell, and 

laterally, as discharge, from one cell to the downstream neighbour. The model 

calculates the storages and fluxes of water, simulates the generation of runoff and its 

propagation as discharge through the river network. Precipitation falls either as snow 

or rain depending on atmospheric temperature. It can be intercepted by vegetation 

and added to the finite canopy storage, which is subject to open water evaporation. 

Snow is accumulated when the temperature is lower than 0 O C and melts when it is 

higher. Snow melt is added to rain and throughfall; it is either stored in the available 

pore space in the snow cover, or it infiltrates into the top soil layer. Part of this water 

is transformed into surface runoff and the remainder infiltrates into the soil through 

two vertically stacked soil layers and an underlying groundwater layer. Water is 

exchanged between these layers following Darcy’s law and the resulting soil moisture 
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is subject to evapotranspiration. The remaining water contributes to lateral drainage 

as interflow from the soil layers or base flow from the groundwater reservoir. The total 

drainage, consisting of surface runoff, interflow and base flow is routed through the 

drainage network of rivers, lakes, wetlands and reservoirs based on DDM30 (Döll and 

Lehner, 2002), using the kinematic wave approach. An extensive description of PCR-

GLOBWB can be found in Van Beek and Bierkens (2009). 

3.2.2 Meteorological forcing data 

The meteorological variables required to force PCR-GLOBWB are daily values of 

precipitation, evapotranspiration and temperature. In the absence of direct estimates 

of actual evapotranspiration, the model can be forced with values of potential 

evapotranspiration calculated from temperature, radiation, cloud cover, vapor 

pressure and wind speed. 

 

We force PCR-GLOBWB with the ERA Interim-GPCP data set (Balsamo et al., 2010). 

This is a global meteorological data set, which is a combination of the ERA Interim 

reanalysis (Dee et al., 2011) and GPCP monthly rainfall observations (Huffman and 

Bolvin, 2011; Huffman et al., 2009). ERA-Interim is the latest global atmospheric 

reanalysis produced by the European Centre for Medium-Range Weather Forecasts. It 

is an ‘‘interim’’ reanalysis initially started from year 1989; later extended back to the 

year 1979; and continues to be updated forward in time. ERA-Interim reanalysis was 

produced as a part of the next-generation extended reanalysis intended to replace 

ERA-40. The GPCP is part of the Global Energy and Water Cycle Experiment of the 

World Climate Research program. The GPCP provides global precipitation estimates 

by merging infrared and microwave satellite estimates with rain gauge data from more 

than 6000 stations. 

 

Potential evaporation has been estimated from ERA-Interim as well. We estimated the 

monthly values of potential evaporation by application of the Penman-Monteith 

equation (Monteith, 1981; Penman, 1948) for a reference grass canopy, according to the 

Food and Agriculture Organization methodology (Allen et al., 1998). Reference 

potential evaporation is multiplied by a monthly crop factor to obtain land cover 

specific potential evaporation 

3.2.3 Hydrological simulations 

PCR-GLOBWB is run at a daily time step to produce ESP/revESP forecast ensembles 

as well as the control simulation. The model spin-up is carried out over the period 

1979–1984 using ERA-Interim-GPCP data set. Subsequently, the hydrological states at 

the end of this 5 year spin-up are used as initial states for the 30 year historical 
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simulation covering the historical period from 1981 to2010, with an extra 2 years spin-

up period from 1979 to 1981. 

 

The control run is a single simulation covering the whole 30 years period. Daily 

discharge values are aggregated into monthly totals. Monthly aggregation provides a 

more appropriate forecast at the seasonal scale and a proxy of the underlying 

distribution. Hydrologic states, as well as monthly discharge totals are saved at the 

end of each month. These states are used for both running the ESP forecasts and 

producing resampled ICs for each month of the year for the revESP forecasts. 

 

The ESP and revESP forecast ensembles are produced with ESP and revESP 

workflows. In the ESP workflow, input ensembles of MF are created from the 32 year 

input data series (1979–2010). PCR-GLOBWB model runs are initialized on the first 

day of each month for the period 1981–2010 using the stored ICs. In the revESP 

workflow, stored ensembles of ICs for 12 x 30 = 360 months and the meteorological 

input data are used to start a PCR-GLOBWB run on the first day of each month for the 

period 1981–2010. This results in 360 ESP runs, each run containing 32 members and 

360 revESP runs, each run containing 30 members. The runs are carried out in batch 

using the FEWS-World forecasting system. Each run continues for 6 months ahead and 

produces an ensemble of monthly discharge values for 6 lead times, from 1 to 6 

months. 

 

The skill of ESP forecasts comes from ICs and the ensemble spread is caused by MF 

uncertainty. RevESP on the other hand, uses an ensemble of ICs resampled from the 

hydrologic states for the same day of the year and the model is forced by observed MF 

for the given forecast period. RevESP skill results from the MF and the ensemble 

spread is caused by uncertainty in ICs. 

3.2.4 Measures of skill 

We assess the relative contribution of ICs and MF to forecast skill in 78 stations on large 

global basins. To quantify each contribution to predictability, we use a ratio of 

variances framework that compares the skill obtained from the ESP and revESP with 

the skill resulting when climatology is used as an ensemble prediction, which is 

equivalent to the climatological variance (Wood and Lettenmaier, 2008)  

 

We calculate the mean squared error (MSE) values of the ESP and revESP as well as of 

the climatology for 78 global locations, for 12 months of the year and for 6 lead times. 

The MSE values for a given month and lead time are calculated according to the 

following formulas: 
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where, hsm(t) = streamflow for initial state s, meteorological forcing m 

S = number of years in the historical period 

M = number of ensemble members, i.e., number of meteorological forcing values 

 

We then calculate the ratios of MSE of both ESP and revESP to the MSE of climatology 

for all locations, months and lead times. 

 

When the ratio of the MSE of either forecast ensemble to the MSE of the climatology is 

equal to one, the forecast skill is equal to that of a climatological forecast. Ratios smaller 

than one indicate a forecast that is more skillful than the mere climatology; whereas 

ratios greater than one indicate less skill than the climatology. The ratio approaches 

zero for a perfect forecast. 

 

When calculating the MSE ratios for a given month and a given lead time, we use the 

forecast ensembles that predict the total monthly discharge generated during that 

given month. In other words, we use the discharge ensembles resulting from the 

simulations which start at time t0 and end at time tn, with a lead time of n months, 

where t0 is prior to the end of the given forecast month by n months. Thus, for the 

month of May and for 1 month lead time, n = 1, t0 is the 1st of May and tn is the 31st of 

May. For 2 months lead time, n = 2, t0 is the 1st of April and tn is again the 31st of May. 

3.3 Results 

3.3.1 Results of the hydrological simulations 

The results of the 360 ESP runs and 360 revESP runs at each location, each one covering 

a period of 6 months, are combined in 12 discharge time series, 6 for ESP and 6 for 

revESP, each 360 months long. These time series represent the chained discharge 
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forecasts at the 6 monthly lead times of interest. To demonstrate the typical behaviour 

of the ESP and revESP, the discharge time series in the Amazon and the Murray are 

presented in Figure 3.1. For better visual inspection the results of only the first 24 

months period are shown. The ensemble results as well as the results of the control run 

are presented. Discharge time series for the ESP and revESP runs for all 78 locations 

can be seen in supporting information Figure 1 in the online supporting information 

data file 2013WR013487-fs01.doc. 

 

 

 
 

Figure 3.1a Chained discharge time series of ESP for the Amazon. 
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Figure 3.1b Chained discharge time series of reverse ESP for the Amazon. 

 

 
Figure 3.1c Chained discharge time series of ESP for the Murray. 
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Figure 3.1d Chained discharge time series of reverse ESP for the Murray. 

 

 

The ESP discharge time series in the Amazon (Figure 3.1a) show that the ensemble 

spread of the ESP simulations increases with increasing lead time as the relative 

importance of ICs diminish. For the revESP simulations at the same location (Figure 

3.1b), the ensemble spread decreases with increasing lead time, converging toward the 

control run as the relative role of the MF becomes more dominant. 

 

In the Murray basin the ESP ensemble spreads much more rapidly with increasing 

lead time (Figure 3.1c) than the discharge series in the Amazon, while the revESP 

ensemble spread collapses to the value of the control run very rapidly (Figure 3.1d). 

This means that the expected skill due to IC memory is much smaller in the Murray 

than in the Amazon, while the expected skill due to MF is much larger. The relative 

importance of ICs and MF is further discussed in section 3.4. 
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3.3.2 Skill for ESP and reverse ESP 

Ratios of MSE of the ensemble simulations to the MSE of climatology for all 78 

locations, 12 months of the year and 6 lead times are documented in the supporting 

information Table 1 that can be found online in the supporting information data file 

2013WR013487-ts01.xls. 

 

As explained in section 3.2.3, the MSE ratios for a given month are calculated using the 

results of the simulations starting at a prior time t0, and end at the end of the considered 

month. Therefore, the month mentioned in the MSE tables denote the month for which 

the forecast is made, not the month at which the forecast starts. 

3.3.3 Changes in skill with increasing lead time 

The MSE ratios for the ESP and revESP are plotted on bar charts. As two contrasting 

examples, the skill charts for the Nile and Ob basins are presented in Figure 3.2. Skill 

charts for all 78 locations are presented in supporting information Figure 3.2 that can 

be found online in supporting information data file 2013WR013487-fs02.doc. 

 

 

 
 

Figure 3.1d ESP and revESP skill charts for the Nile and the Ob. 
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The charts in Figure 3.2 demonstrate that the MSE ratios of the ESP increase with 

increasing lead time, while the MSE ratios of the revESP decrease. In the Nile basin, 

the MSE ratios of the ESP for all lead times are smaller than 1, indicating that the ESP 

is more skillful than climatology over the full lead time considered. In contrast, in the 

Ob the ESP is skillful only up to 2 months lead time. As the relative importance of the 

ICs diminishes with increasing lead time and the importance of MF becomes more 

dominant, the skill of the revESP increases, hence the MSE ratios decrease. It can be 

observed that for the Ob, the graphs of the ESP and revESP intersect each other at a 

point. This point denotes the time within the 6 months lead time range, after which the 

relative importance of MF surpasses that of ICs. In the Nile however, there is no such 

intersection point, since the ICs dominate throughout the 6 months range. The reasons 

for these differences are discussed at global scale in section 3.5. 

3.3.4 Seasonal and geographical distribution of skill 

Skill maps are prepared to present the seasonal and geographical distribution of skill. 

The maps indicate skill of the simulations for each month of the year at each location. 

Separate maps are prepared for the ESP and revESP runs, as well as for each lead time. 

MSE ratios for each basin are shown on each map for a given lead time and a given 

month of the year. Maps for the month of January for all lead times are presented in 

Figure 3.3. Maps for the ESP and revESP runs for all months of the year are presented 

in supporting information Figure 3 that can be found online in supporting information 

data file 2013WR013487-fs03.doc. The 78 stations are marked with a circle, coloured 

according to a skill scale from 0 to 1.5, 0 indicating perfect skill, 1 indicating skill 

equivalent to that of the climatology, and values above 1 indicating less skill than the 

climatology. The sizes of the circles reflect basin size. 

 

The ESP maps for January and for all 6 lead times (Figure 3.3a) show in which basins 

and up to what lead times, forecasts for the given month may be skillful, with the 

knowledge of ICs only and no information besides past observed climatology on the 

future MF. The revESP maps (Figure 3.3b) show on the other hand, the forecast skill 

that may be attained for a given month, with perfect knowledge of future MF, but no 

information on ICs. 
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Figure 3.2a World maps indicating ESP skill scores in January 
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Figure 3.2b World maps indicating reverse ESP skill scores in January 
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Figure 3.4 World maps indicating the Critical Lead Time (CLT) in months. 

 

3.3.5 Critical lead times 

Combining the skill measures of the ESP and revESP simulations, we calculate critical 

lead times (CLT) for each station and for each month of the year. CLT is defined as the 

lead time in months after which the importance of ICs is surpassed by that of MF. The 

CLT are plotted on 12 maps for each month and presented in Figure 3.4. 

 

The maps show that there are some basins, where in certain months of the year, it is 

not likely to make skillful forecasts on any lead time, with only the knowledge of ICs 

and none on the future MF. These basins are marked with 0. There are also some basins 

where without any information on future MF, perfect knowledge of ICs allows 

forecasts for certain months up to 6 months ahead. It should be noted that CLT is only 

meaningful when there is skill in ESP and revESP. When both ESP and revESP are of 

poor skill, the resulting CLT may be high but this does not mean that forecasts are 

skillful. In most basins, this critical lead time changes significantly with the season. 

These issues are discussed in section 3.5.  
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3.4 Discussion of results 

Our results show that the relative roles of ICs and MF in hydrological forecasting skill 

vary both seasonally and geographically. In this section, we discuss the results for 

several larger basins in the context of prevailing hydroclimatic conditions. 

3.4.1 Tropical, monsoon-dominated basins 

Results indicate that in the tropical, monsoon-dominated South American basins, such 

as the Amazon and the Parana, skill due to ICs is limited to 1–2 months lead time 

during most of the year. Hydrological forecasts beyond 1–2 months are dominated by 

MF. In the Amazon basin, forecasts for the spring months August until November have 

a higher CLT of 3–4 months. Hence knowledge of ICs contributes to the skill of 

forecasts, initiated 3–4 months ahead. This shows that better estimates of ICs during 

winter months (June, July, and August) may improve the spring forecasts in the 

Amazon. Our conclusion is in agreement with the conclusions of the study of Paiva et 

al. (2012) where they demonstrated that in the Amazon River uncertainty on ICs play 

an important role for hydrological predictability for up to 90 days. Paiva et al. (2012) 

conclude that ICs are more important especially during high flow conditions (March, 

April, and May) and recession (June, July, and August). Our results emphasize the 

importance of ICs during the recession period (June, July, and August), when the 

increased groundwater recharge plays an important role. Our findings, as well as the 

findings of Paiva et al. (2012) are in disagreement with Shukla et al. (2011), who found 

that MF uncertainty dominates the forecasts in the Amazon, even for shorter lead 

times. The reason for the disagreement may be the importance of routing in large 

basins such as the Amazon where long travel times are involved. Extensive floodplains 

store water and release it slowly, so that the outflow has already been in the river for 

a number of months. Therefore, the knowledge of surface water ICs is an important 

source of forecast skill. Shukla et al. (2011) studied cumulative runoff, without flow 

routing, whereas our study as well as the study by Paiva et al. (2012) include routing. 

 

In the large rivers of the Indian subcontinent the relative roles of ICs and MF follow 

the seasonal patterns of the monsoon. In the Ganges and Brahmaputra, forecast skill is 

strongly dominated by MF during the monsoon season. At the onset of the monsoon, 

the ICs are always more or less the same, which reduces the impact of the ICs on model 

skill. Snowmelt coincides with the monsoon and the contribution of snowmelt to 

streamflow is very low compared to rainfall. The interannual variability of the 

monsoon is the determining factor in forecasts during the wet season. Maps in 

supporting information Figure 3 (online supporting information data file 

2013WR013487-fs03.doc) indicate that in the Brahmaputra skill of the ESP is below the 

climatology from April to September even for lead times of 1 month; hence the 
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forecasts are dominated by the MF for all lead times. In the period from October to 

March, the knowledge of ICs contributes to skill for lead times up to 6 months. The 

results for the Ganges show that during the monsoon season the ICs play a more 

important role than the Brahmaputra. Only June and July forecasts are dominated by 

the MF for all lead times. Skill derived from ICs is similar to the Brahmaputra for the 

rest of the year. The hydrographs for the Ganges and Brahmaputra are characterized 

by double peaks during the wet season. The second peak due to the reverse North-

eastern monsoon in June is more pronounced in the Brahmaputra. Whereas the ICs 

prior to the first peak are generally the same every year, the ICs before the second peak 

are strongly conditioned by the strength of the monsoon in the first peak. Therefore, 

ICs are more important for the skill in the second peak. The decreased skill of the 

revESP for June to September can be seen on the maps in supporting information 

Figure 3 (online supporting information data file 2013WR013487-fs03.doc). 

 

In the Indus, where snow and ice have a larger contribution to streamflow (Immerzeel 

et al., 2012), ICs play a relatively more important role. Snow at lower altitudes begins 

to melt in March to April, whereas glaciers and snow at higher altitudes begin to melt 

in June. Therefore, June and July forecasts in the Indus are dominated by the ICs for 4 

months lead times. The effect of ICs in June on the flow after July is less however 

because the ice and snowpack at higher altitudes is more or less consistent from year 

to year. Flow is low during the winter months when most precipitation is stored as 

snow and ice. The effect of MF is relatively low from November to January, causing a 

higher CLT of up to 4 months. For the rest of the year forecasts beyond 1 month are 

dominated by MF. 

 

Our results for the large rivers of China, such as the Yangtze and the Yellow River 

indicate that hydrologic forecasts are dominated by MF beyond 1 month lead time 

except for the low flow period in winter. High flows extend from May to October in 

the Yellow River and from April to September in the Yangtze. Summer flows are 

monsoon dominated for the most part and the onset of the monsoon coincides with 

the melting season of snowpack and glaciers, just as for the Indian basins. The 

variability in MF during these months dominates forecast skill. ICs do not contribute 

to skill of forecasts for the wet period longer than 1 or 2 months ahead. For the dry 

period from November through February, the relative importance of MF decreases and 

the CLT increases to 2, 3, or 4 months lead time. 

 

The results for the Mekong are similar to the Yangtze and the Yellow River. The rainy 

months in the Mekong are May to October and highest discharges occur from July to 

October. During the wet season MF dominates the forecasts beyond 1 month lead time. 

ICs become more important during the dry months. Forecasts for the months February 

through April derive their skill from ICs of up to 6 months earlier. 
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3.4.2 Arctic basins 

In the North American arctic rivers, such as the McKenzie, Yukon and Nelson, 

forecasts are dominated by ICs for lead times up to 6 months. The importance of ICs 

is due to the large memory of these arctic river systems. The temperature in the 

McKenzie is below freezing for about 300 days during the year. The rainy months are 

July to September. Discharge is lowest in March, and peaks from May to September. 

The Yukon basin is frozen for almost half of the year with little or no flow. Discharge 

peaks in May to June, following snowmelt and declines until November when the 

basin freezes again. Both snowpack and groundwater play an important role in these 

arctic rivers. These processes have a long memory, causing the large importance of ICs 

in forecast skill. The forecasts for the month of March in the McKenzie for instance 

have a CLT of 6 months, which reduces to 2 months by July. In the lake area the large 

memory introduced by the lakes continues through the summer months (June, July 

and August) as well. 

 

The relative importance of ICs and MF in Asian arctic rivers follow seasonal patterns 

similar to the North American arctic rivers. The Ob, Yenisey, and Lena are ice bound 

from October to April. Forecasts for the colder months are dominated by ICs for lead 

times of 5–6 months. Following snowmelt, the discharge peaks in all three rivers in the 

beginning of June. The results show that the skill in the Yenisey basin derives from ICs 

for up to 6 months for March forecasts, whereas April forecasts are dominated by MF 

even for a lead time of 1 month. This sudden increase in the importance of MF can be 

attributed to the effect of temperature in April that determines the start of the melting 

season. Similar decrease in CLT occurs in the Ob from 6 months for March forecasts to 

0 for April forecasts. During the summer, which is the rainy season, ICs play a less 

important role in these rivers. In the Lena a CLT of 4 months persist into the forecasts 

for April and May, which again decreases to 0 for July. The Lena basin has a more 

continental climate than the Ob and Yenisey, with a later onset of the snowmelt in June. 

This explains the time lag in Lena compared to Ob and Yenisey. 

3.4.3 Temperate regions 

European rivers display quite uniform results in the relative roles of ICs and MF in 

forecast skill. In general MF dominates beyond lead times of 1–2 months throughout 

the year. The forecasts for the months of July to October are dominated by MF even 

for 1 month lead time in Western Europe. In the Rhine basin, skill of the ESP forecasts 

for these months initiated 1 month ahead is below the climatology. The results agree 

with the fact that forecast skill in the Rhine is limited to a maximum of 2 weeks during 

the rain dominated season. Therefore, improvement in seasonal hydrological forecasts 

in these basins depends on better climate forecasts. 
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In the Danube and Volga, relative skill due to ICs and MF follows the same seasonal 

pattern as the Rhine but the role of ICs is relatively higher, especially in the Volga 

where skill due to ICs extends back up to 4 months lead time. Snowmelt dominates 

the flows in April and May more than it does in the Rhine and groundwater is 

important during the low flows in winter when most precipitation falls as snow, 

therefore reducing the importance of MF. 

 

In the western United States Shukla and Lettenmaier (2011) showed that skill due to 

ICs is high during spring and summer months, mainly June. Our results for the 

Columbia and Colorado basins agree with the findings of this study. Discharge (80–

90%) of the Colorado River originates from snowmelt and the rest from groundwater 

base flow and summer monsoon rain. Snowmelt begins in April, peaks in May to June, 

and finishes by July to August. ESP skill maps presented in the online supporting 

information data file 2013WR013487-fs03.doc demonstrate high skill for up to 6 

months lead time in the Colorado basin in spring and summer. Our findings support 

the conclusions of Shukla and Lettenmaier (2011) that spring and summer forecasts for 

the western US regions could benefit from improvements in knowledge of ICs during 

winter and spring months. 

 

For the eastern US, the results of Shukla and Lettenmaier (2011) show that ESP 

forecasts initialized from December to April are skillful only for 1–2 months lead times. 

Our results for the St. Lawrence River are in disagreement with these findings. Skill 

maps presented in supporting information Figure 3 (online supporting information 

data file 2013WR013487-fs03.doc) indicate that skill due to knowledge of ICs in this 

basin is higher than the climatology for up to 5–6 months. Peak flow in the St. 

Lawrence is due to spring and summer snowmelt accompanied by rain. Forecast skill 

in the spring therefore depends largely on the snowpack accumulated during the 

previous winter months. The disagreement between our results and those of Shukla 

and Lettenmaier (2011) is probably due to errors in one or both of the modelling 

applications in the estimation of snow accumulation. The presence of lakes implies 

that the routing in our study may also have an effect. The reasons for the different 

results may be clarified by a further comparative study involving both applications. 

 

For the southeastern rivers such as Mississippi, Missouri and Arkansas our results also 

agree with those of Shukla and Lettenmaier (2011), showing that skill due to ICs 

diminishes after 1–2 months lead time. At Vicksburg station on the Mississippi peak 

flow in spring depends not only on the winter ICs of snowpack, but also on the MF 

which determines the timing of snowmelt and on rains in the Great Plains and the 

lower valley. Our results thus confirm the conclusion of Shukla and Lettenmaier (2011) 

that forecasts in the eastern US would benefit most from improvements in MF 

throughout the year. 
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3.4.4 Semi-arid regions 

The results for the Australian basins such as the Murray, Darling, Fitzroy and Coopers 

Creek show that the relative importance of ICs is the lowest in this continent. 

Streamflow is not seasonal and highly sensitive to precipitation. Year-round rain is 

highly erratic with large interannual variability. Different precipitation patterns exist 

for different parts of the Murray basin. In summer, water from subtropical 

mountainous regions is lost on the way downstream due to high evaporation. Flow is 

not fed by groundwater and therefore knowledge of ICs does not contribute to the 

skill. MF dominates the forecast skill even for 1 month lead time throughout the year. 

Figure 4 shows that only for July forecasts in the Murray CLT is 2 months. However, 

the skill due to knowledge of ICs for 2 months lead time is below the climatology 

therefore the CLT is not a meaningful measure in this case. Improvement of 

hydrological forecasts for Australian basins therefore depends on better climate 

forecasts. 

 

The interannual variability of rainfall is also high in the semiarid Orange River basin 

in Africa. The runoff coefficient in this basin is very sensitive to rainfall variability; 

therefore, the ICs do not contribute much to skill. Rainfall after a very dry period 

causes high unpredictability in the Zambezi as well. While skill of the ESP for 

November forecasts is high up to 6 months ahead, skill due to ICs is very low for 

February and March forecasts, which is the season when large floods occur. This is due 

to the peak inflows into the reservoir Cahora Bassa in February causing the reservoir 

to either spill or not spill, which in return depends very sensitively on the MF. The 

results for the Niger basin show the strongest seasonality in the relative importance of 

ICs and MF. Knowledge of ICs is the main source of skill for forecasts for the months 

of January to July initiated up to 6 months ahead. Groundwater outflow is the 

dominant factor for this season. For the rain dominated period from August to 

December on the other hand, the importance of ICs is limited to lead times of 1–2 

months, after which MF becomes more important. In the Congo where there is no rain 

during the months of May, June and July, ICs play an important role in the forecasts 

for the months of July and August for up to 4 months lead time. From October to 

December MF dominate beyond 1 month, while for the rest of the year, ICs contribute 

to skill for 2–3 months lead time. The Nile stands out in Africa, with CLTs of 5–6 

months. Since both stations on the Nile are downstream of the High Aswan Dam, skill 

of the ESP forecasts is very high throughout the year, assuming that the release 

strategy of the reservoir is known. 
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3.5 Conclusions 

We investigated the relative contributions of ICs and MF to the forecasting skill of the 

global seasonal streamflow forecasting system FEWS-World. Potential improvement 

in forecasting skill through better climate prediction or by better estimation of initial 

conditions through data assimilation depends on the relative importance of these two 

sources of uncertainty. We explored the impact of both sources of forecast uncertainty 

at large river basins across the globe using the ESP/revESP procedure. Global monthly 

streamflow was simulated with lead times of 1–6 months for a historical period of 30 

years (1981–2010). The ESP and revESP forecast ensembles were compared with 

retrospective model simulations driven by meteorological observations, thus model 

errors are eliminated and predictability is related only to knowledge of ICs and the 

uncertainty in future MF. We compared the variance of the ESP and revESP forecast 

ensembles to the climatological variance by calculating the ratios of the MSE of both 

ESP and revESP to the MSE of the climatology for 78 locations, for 12 months of the 

year and for 6 lead times. We also calculate for each basin and for each month of the 

year, the CLT after which the importance of ICs is surpassed by that of MF. 

 

Skill maps for the ESP and revESP as well as the CLT values indicate that the 

contribution of ICs and MF to hydrological forecasting skill varies considerably 

according to location, season and lead time. We analysed these results in the context 

of prevailing hydroclimatic conditions for several larger basins. This analysis suggests 

that in some basins forecast skill may be improved by better estimation of initial 

hydrologic states through assimilation of snow, soil moisture or surface water data; 

whereas in others improvement of forecast skill depends on more accurate seasonal 

climate prediction. The conclusions can be summarized as follows: 

 

1. For arctic rivers as well as for rivers fed by snow and ice from mountainous regions, 

such as the Volga and Colorado, forecasts of high flows during the melt season depend 

largely on the ice and snowpack, especially where these have a high interannual 

variability. These forecasts may thus benefit from assimilation of data on the snow and 

ice accumulated during the cold season. 

 

2. In some snow fed basins such as the Yenisey and the Mississippi, the onset of ice 

and/or snowmelt and consequently the timing of peak flow are highly sensitive to 

temperature changes at the end of the cold season. The importance of ICs diminishes 

in these cases and improvement of forecast skill in these cases depends more heavily 

on better climate prediction. 

 

3. In monsoonal basins, the interannual variability of the monsoon is the main factor 

determining the skill of hydrological forecasts for the wet period. In basins such as the 

Brahmaputra and the Yangtze where the onset of the thawing of snowpack and 
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glaciers coincides with the start of the monsoon season, forecasts of high flows are 

dominated by the MF and skill improvement depends on prediction of the monsoon. 

ICs play a more important role in basins like the Indus where snow and ice have a 

larger contribution to streamflow, especially when the ice and snowpack is variable 

from year to year. Better estimation of initial snow/ice states is likely to improve 

forecast skill during the wet season. 

 

4. In large basins like the Amazon with extensive flood plains and large travel times of 

surface water, knowledge of ICs of surface water is an important source of skill for 

high flow forecasts on lead times of 2–3 months. The role of initial groundwater states 

also gains importance during the recession stage, when the groundwater discharge 

plays an important role. 

 

The results of this study show the relative contributions of initial conditions and 

meteorological forcing to the potential skill of the global seasonal streamflow 

forecasting system FEWS-World. In an actual forecast, both the ICs and the MF will be 

uncertain. Therefore, as a next step, the actual forecasting skill of the system should be 

assessed in a real forecasting mode, using probabilistic seasonal meteorological 

forecasts and comparing the ESP results to actual discharge observations. Since model 

error cannot be excluded in actual forecasting mode, the resulting skill should be 

further improved by bias-correcting the meteorological input as well as by better 

estimation of ICs through data assimilation where it is indicated by this study to be 

potentially useful. 
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Chapter 4 

Skill of a global forecasting system in seasonal 

ensemble streamflow prediction 

Abstract 
 

In this study we assess the skill of seasonal streamflow forecasts with the global 

hydrological forecasting system Flood Early Warning System (FEWS)-World, which 

has been set up within the European Commission 7th Framework Programme Project 

Global Water Scarcity Information Service (GLOWASIS). FEWS-World incorporates 

the distributed global hydrological model PCR-GLOBWB (PCRaster Global Water 

Balance). We produce ensemble forecasts of monthly discharges for 20 large rivers of 

the world, with lead times of up to 6 months, forcing the system with bias-corrected 

seasonal meteorological forecast ensembles from the European Centre for Medium-

range Weather Forecasts (ECMWF) and with probabilistic meteorological ensembles 

obtained following the ESP procedure. Here, the ESP ensembles, which contain no 

actual information on weather, serve as a benchmark to assess the additional skill that 

may be obtained using ECMWF seasonal forecasts. We use the Brier skill score (BSS) 

to quantify the skill of the system in forecasting high and low flows, defined as 

discharges higher than the 75th and lower than the 25th percentiles for a given month, 

respectively. We determine the theoretical skill by comparing the results against model 

simulations and the actual skill in comparison to discharge observations. We calculate 

the ratios of actual-to-theoretical skill in order to quantify the percentage of the 

potential skill that is achieved. The results suggest that the performance of ECMWF S3 

forecasts is close to that of the ESP forecasts. While better meteorological forecasts 

could potentially lead to an improvement in hydrological forecasts, this cannot be 

achieved yet using the ECMWF S3 dataset. 

4.1 Introduction 

Reliable seasonal streamflow forecasts potentially have many benefits including 

disaster relief, management of hydropower reservoirs, water supply, agriculture and 

navigation. Seasonal hydrological forecasting on a global scale could be especially 

valuable for developing regions, where effective hydrological forecasting systems are 

scarce. Furthermore, global seasonal forecasts provide spatially consistent predictions 
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of streamflow anomalies. These may supply information to disaster management 

organizations operating at global scale to prepare for response as well as to the 

international water and energy markets about the regional availability of water and 

hydropower in the coming months.  

 

Approaches to seasonal streamflow forecasting can be divided into two categories, 

empirical/statistical methods and numerical/dynamical methods. Empirical/statistical 

methods use statistical techniques (e.g., simple correlation, multiple regression, linear 

or quadratic discriminant analysis, canonical correlation analysis, and neural 

networks) to find statistically significant relationships between atmospheric/oceanic 

indicators and river flow on the basis of historical observations. While statistical 

forecasts are quite successful in some regions of the world and in some seasons, in 

many cases the available records are too short to accurately capture climatic variability. 

Moreover, forecasts derived from past climate do not include anthropogenic or other 

long-term changes in the climate, such as global warming, and statistical methods do 

not explain the underlying physical mechanisms. Although statistical methods are the 

more widely developed and reliable methods that are used for most current 

operational seasonal forecasts, dynamical modelling is thought to hold the greatest 

potential for future improvement in reliable seasonal streamflow forecasting (Zwiers 

and von Storch, 2004). 

 

Dynamical model experiments involve the integration of general circulation models 

(GCMs), which model atmospheric, oceanic and land surface interactions and 

processes as a set of dynamic equations. Seasonal forecasting by GCMs is based on 

coupled ocean–atmospheric integrations, where both atmospheric and oceanic 

components of the Earth’s system are taken into account. The main source of 

predictability for climate forecasting at seasonal scale is the long-term predictability of 

the oceanic circulation and its large impact on the global atmospheric circulation. The 

most important cause of seasonal climate variability is the ENSO (El Niño–Southern 

Oscillation) cycle, which is the large-scale fluctuation of ocean temperatures, rainfall, 

atmospheric circulation, vertical motion and air pressure centred over the tropical 

Pacific but affecting other ocean basins as well. Similarly, unusually warm or cold sea 

surface temperatures (SST) in other tropical oceans, the extent and thickness of snow 

cover and the amount of soil moisture can have a persistent influence on the 

atmospheric circulation (Persson and Grazzini, 2007). Due to the chaotic nature of the 

atmospheric–oceanic system, model runs made with small, random perturbations in 

the input data may produce a wide range of difference in the output. Therefore, GCMs 

are run multiple times with slightly different sets of initial conditions, producing a set 

of output data called an ensemble. The hydrological output from the land surface 

scheme of a GCM may be used as streamflow forecasts. Alternatively, the 

meteorological forecast ensemble by a GCM may be used as input to a hydrological 

model, which produces streamflow forecast ensembles, as we do in this research. 
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This paper investigates the skill of seasonal streamflow forecasts for 20 of the largest 

rivers in the world with the global hydrological forecasting system Flood Early 

Warning System (FEWS)-World, which has been set up within the European 

Commission 7th Framework Programme Project Global Water Scarcity Information 

Service (GLOWASIS). These 20 rivers have been selected for analysis to represent 

different hydroclimatic conditions and all continents. Selected basins can be seen in 

Fig. 4.1; gauging stations and basin characteristics are summarized in Table 4.1. 

 

 
 

Figure 4.1 Selected basins. 

 

FEWS-World incorporates the global hydrological model PCR-GLOBWB (PCRaster 

Global Water Balance). The capability of global hydrological models to predict 

streamflow was demonstrated previously by several studies such as the WaterGap 

(Alcamo et al., 2003; Döll et al., 2003), LaD (Milly and Schmakin, 2002), VIC (Nijssen et 

al., 2001), WBM (Vörösmarty et al., 2000; Fekete et al., 2002), Macro-PDM (Arnell, 1999, 

2004) and PCR-GLOBWB (Sperna-Weiland et al., 2010; van Beek et al., 2011). Candogan 

Yossef et al. (2012) assessed the skill of the global hydrological model PCR-GLOBWB 

in reproducing past discharge extremes for 20 large rivers of the world, as a first step 

towards developing a global seasonal hydrological forecasting system and assessing 

its skill. The study quantified skill in deterministic hindcast mode, using the ERA-40 

reanalyses by the European Centre for Medium-range Weather Forecasts (ECMWF). 

This preliminary assessment by Candogan Yossef et al. (2012) concluded that the 

prospects for seasonal forecasting with PCR-GLOBWB or comparable models are 

positive. Since actual probabilistic meteorological forecast ensembles were not used, 

the assessment did not include errors in the meteorological forcing. 
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Table 4.1 Basin characteristics and gauging stations (GRDC). 

 

Basin Gauging Station Area (km2) Qavg (m3/s) 

Amazon Obidos 6,915,000 190,000 

Parana Corientes 2,583,000 18,000 

Brahmaputra Bahadurabad 930,000 48,160 

Yangtze Datong 1,800,000 31,900 

Yellow River Huayuankou 752,000 2,570 

Mekong Muhdahan 795,000 16,000 

McKenzie ArcticRedRiver 1,660,000 9,213 

Nelson Kettle Generating Station 1,060,000 3,447 

Ob Salekhard 2,950,000 12,680 

Lena Kyusur 2,430,000 17,000 

Rhine Rees 65,700 2,200 

Danube Ceatal Izmail 817,000 6,400 

Volga Volgograd Power Plant 1,360,000 8,115 

Columbia Beaver Army Terminal 665,400 6,670 

St. Lawrence Cornwall 774,000 7,367 

Mississippi Vicksburg 2,981,000 12,740 

Murray-Darling Lock 9 Upstream 991,000 257 

Orange River Vioolsdrif 866,500 259 

Zambezi Lukulu 206,530 776 

Nile El Ekhsase 2,900,000 1,251 

 

 

However, in an actual forecasting setup, the predictive skill of a hydrological 

forecasting system is affected not only by errors in model structure and 

parameterization and initial conditions such as soil moisture, groundwater and snow, 

but also by meteorological forcing errors. Skill of seasonal hydrological forecasts can 

thus be improved by better meteorological forecasts on the one hand and by better 

estimation of initial hydrologic states through assimilation of independent 

hydrological observations on the other hand. The improvement in the overall 

predictability that may be attained depends on the relative importance of these two 

sources of uncertainty, which varies considerably among hydrological systems 

according to location, season and lead time (Bierkens and van den Hurk, 2007; 

Bierkens and van Beek, 2009; Shukla and Lettenmaier, 2011; Shukla et al., 2011; Yuan 

et al., 2015). Candogan Yossef et al. (2013) assessed the roles of initial conditions (ICs) 
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and meteorological forcing (MF) in the skill of the global seasonal streamflow 

forecasting system FEWS-World, based on the ESP/revESP procedure outlined by 

Wood and Lettenmaier (2008). This study shows the potential for improvement in the 

skill of streamflow forecasts by a better estimation of IC or a more accurate MF input 

per region and per time of the year. The current paper aims to assess the total skill of 

hydrological forecasts, as affected by errors in model structure, in the estimation of IC 

as well as in the actual meteorological forecasts that are used to force the model. 

 

The remaining part of this paper is set up as follows. Section 4.2 describes the global 

seasonal hydrological forecasting system, FEWS-World, the global hydrological model 

PCR-GLOBWB, the meteorological forcing data, the hydrological simulations and the 

skill assessment. Results are presented in Sect. 4.3, followed by discussion in Sect.4.4 

and conclusions in the last section. 

4.2 Materials and methods 

4.2.1 Global hydrological forecasting system FEWS-World 

FEWS-World is a global hydrological forecasting system configured within the 

forecasting environment Delft-FEWS. Delft-FEWS is an open shell for data handling, 

managing and guiding forecasting processes (Werner et al., 2013). It is used by a large 

number of operational forecasting centres and agencies around the world for various 

purposes such as forecasting hydrological storm surges, river flows, reservoir 

management and water quality. FEWS-World has been built as part of the GLOWASIS 

project. The FEWS-World system consists of a master controller, a Postgres database 

and 18 forecasting shells (i.e., computational cores) for efficient handling of ensemble 

forecasts and data processing. Within FEWS-World several workflows have been set 

up for running the global hydrological model PCR-GLOBWB using the precipitation, 

temperature and potential evaporation fields from the ERA-Interim/Land GPCP-

corrected dataset (Balsamo et al., 2015). Further descriptions of the meteorological 

forcing datasets are given in Sect. 4.2.2. 

 

PCR-GLOBWB simulates the terrestrial part of the global water cycle (van Beek et al., 

2011; van Beek and Bierkens, 2009). It is coded in the high-level computer language 

PCRaster for constructing environmental models (Wesseling et al., 1996). The model is 

fully distributed and operates on a regular grid with a cell size of 0.5 × 0.5O on a daily 

time step. Meteorological forcing is assumed to be constant over the grid cell. Sub-grid 

variability of hydrological processes is taken into account in the representation of short 
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and tall vegetation, open water, different soil types, saturated area, surface runoff, 

interflow and groundwater discharge. 

 

PCR-GLOBWB calculates the water balance for every grid cell by tracking the transfer 

of water between the atmosphere and the cell, through stores within each cell, and 

laterally as discharge from one cell to the downstream neighbour. The model 

calculates the storages and fluxes of water, and simulates the generation of runoff and 

its propagation as discharge through the river network. Precipitation falls either as 

snow or rain depending on atmospheric temperature. It can be intercepted by 

vegetation and added to the finite canopy storage, which is subject to open-water 

evaporation. Snow is accumulated when the temperature is lower than 0OC and melts 

when it is higher. Snowmelt is added to rain and throughfall; it is either stored in the 

available pore space in the snow cover, or it infiltrates into the top soil layer. Part of 

this water is transformed into surface runoff and the remainder infiltrates into the soil 

through two vertically stacked soil layers and an underlying groundwater layer. Water 

is exchanged between these layers following Darcy’s law and the resulting soil 

moisture is subject to evapotranspiration. The remaining water contributes to lateral 

drainage as interflow from the soil layers or baseflow from the groundwater reservoir. 

The total drainage, consisting of surface runoff, interflow and baseflow, is routed 

through the drainage network of rivers, lakes, wetlands and reservoirs, using the 

kinematic wave approach, based on the global drainage direction map DDM30, which 

describes the drainage directions of surface water with a spatial resolution of 300 

longitude by 300 latitude (Döll and Lehner, 2002). An extensive description of PCR-

GLOBWB can be found in van Beek and Bierkens (2009). 

4.2.2 Meteorological forcing data 

The meteorological variables required to force PCR-GLOBWB are daily values of 

precipitation, evapotranspiration and temperature. In the absence of direct estimates 

of actual evapotranspiration, the model can be forced with values of reference potential 

evapotranspiration, calculated from temperature, radiation, cloud cover, vapor 

pressure and wind speed. 

 

We force PCR-GLOBWB with two different datasets. The first one is the ERA-

Interim/Land dataset (Balsamo et al., 2015). This is a global meteorological dataset, 

which is a combination of the ERA-Interim reanalysis (Dee et al., 2011) and Global 

Precipitation Climatology Project (GPCP) monthly rainfall observations (Huffman and 

Bolvin, 2011; Huffman et al., 2009). ERA-Interim is a robust global atmospheric 

reanalysis produced by the ECMWF. It is an “interim” reanalysis initially started from 

the year 1989; later extended back to the year 1979, and continues to be updated 

forward in time. ERA-Interim reanalysis was produced as a part of the next-generation 
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extended reanalysis intended to replace ERA-40. The GPCP is part of the Global 

Energy and Water Cycle Experiment (GEWEX) of the World Climate Research 

program (WCRP). The GPCP provides global precipitation estimates by merging 

infrared and microwave satellite estimates with rain gauge data from more than 6000 

stations. Monthly values of potential evaporation have been estimated from ERA-

Interim, using fields of temperature, radiation, cloud cover, vapor pressure and wind 

speed, by application of the Penman–Monteith equation (Monteith, 1981; Penman, 

1948) for a reference grass canopy, according to the FAO methodology (Allen et al., 

1998). Reference potential evaporation is multiplied by a monthly crop factor to obtain 

land cover specific potential evaporation in PCR-GLOBWB. 

 

The second dataset that we use to force the model is the re-forecast ensemble of the 

System-3 (S3) seasonal forecast archives of the ECMWF covering the period 1981–2010. 

S3 seasonal forecasts are run in ensemble mode on a fully coupled ocean–atmosphere 

model. They are run on the first of every month as the initial date, integrated forward 

for 6 months. Verifications show that the skill of forecasts in regions and seasons 

known to have a teleconnection with the El Niño is much higher than during neutral 

conditions. ECMWF seasonal forecast system has been shown to be superior to 

statistical systems in forecasting the onset of El Niño or La Niña. But once an event has 

started statistical systems have comparable skill. The dynamical model is also better 

than the statistical models in forecasting the SST in the Atlantic Ocean and the Indian 

Ocean. In many parts of the tropics, where changes such as those associated with El 

Niño can have a large impact on global weather patterns, a substantial part of the year-

to-year variation in seasonal-mean rainfall and temperature is predictable. In mid-

latitudes, the level of predictability is lower and Europe, in particular, is a difficult area 

to predict. Seasonal forecasts start to show signs of systematic model errors after about 

10 days into the forecast. The ECMWF does not introduce any artificial terms in the 

equations to reduce the drift. Rather, a daily bias correction based on quantile–quantile 

transformation is applied on each forecast. In order to account for drift, we applied a 

bias correction using datasets varying per forecast month. As a result, there are 12 bias 

correction datasets each with a length equal to a seasonal forecast. The bias correction 

dataset was provided by the ECMWF (Emanuel Dutra, personal communication, 2015) 

within the GLOWASIS project. Since November 2011 the seasonal forecast system S4 

has become operational to replace S3 with the goal of improving those aspects, where 

S3 had problems. The improvements brought by S4 include, a next-generation ocean 

model, a higher spatial resolution, a larger ensemble size. The ensemble number of re-

forecasts, which is relevant to our study, was increased from 11 to 15, and the forecasts 

integrated forward for 7, instead of 6 months. Though there are not many published 

references on S4 yet, initial studies indicate that there are some improvements in 

performance over S3, such as higher skill for ENSO forecasts. However, there are also 

certain aspects where the performance is worse. For instance, S4 suffers from a 

stronger bias in tropical Pacific SST than S3 (Molteni et al., 2011). Concerning the skill 
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of re-forecast ensembles, an initial report by Norton and Rowlands (2011) compares 

the skill of 15-member S4 re-forecasts, to the 11-member S3 re-forecasts for the period 

1981–2010; and concludes that there is no clear separation in skill between S3 and S4 

on seasonal forecast timescales, from month 2 onwards. Therefore, taking into 

consideration that temperature and precipitation from the S3 re-forecast ensembles 

were bias corrected, we conclude that S3 is the preferred dataset for our study. 

4.2.3 Streamflow forecast runs 

PCR-GLOBWB is run at a daily time step to produce two sets of streamflow forecast 

ensembles, as well as the control simulation run. The first forecast run follows the ESP 

procedure using the ERA-Interim/Land dataset as basis for the meteorological input. 

The second forecast run uses actual ECMWF S3 seasonal forecasts as meteorological 

input.  

 

Model spin-up is carried out over the period 1979–1984 using ERA-Interim/Land 

dataset. Subsequently, the hydrological states at the end of this 5-year spin-up are used 

as initial states for the control run. The control run started from these initial states with 

the ECMWF S3 seasonal forecasts for the period 1979–2010. Daily discharge values are 

aggregated into monthly totals. Monthly aggregation provides a more appropriate 

forecast at the seasonal scale and a proxy of the underlying distribution. Hydrologic 

states, as well as monthly discharge totals, are saved at the end of each month. These 

states are used as ICs for running the ESP as well as the ECMWF S3 seasonal forecasts. 

 

The ESP forecast ensemble is produced with the ESP workflow within Delft-FEWS. 

Input ensembles of the meteorological forcing are created from the 32-year input data 

series (1979–2010). PCR-GLOBWB model runs are initialized on the first day of each 

month using the stored ICs. In order to avoid any further bias, we excluded the first 2 

years and limited the subsequent analysis to the period 1981–2010. This results in 360 

ESP runs, each run containing 31 members, excluding the year in question from the 

32-year series. The ECMWF S3 streamflow forecast ensemble is produced by forcing 

the model with bias-corrected meteorological input dataset from the ECMWF S3 

seasonal forecast archive, containing 11 ensemble members for each forecast and 

covering the period 1981–2010. (12 monthly forecasts over the 30-year period result in 

30×12 = 360 runs, with 11 ensemble members for each run.) Both the ESP and ECMWF 

S3 runs are carried out in batch using the FEWS-World forecasting system. Each run 

spans 6 months and produces an ensemble of 11 monthly discharge values for six lead 

times. 
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4.2.4 Skill assessment 

The Brier skill score (BSS) is commonly used for the skill assessment of meteorological 

probabilistic forecasts. In order to quantify the added skill obtained by using ECMWF 

S3 seasonal meteorological forecasts compared to the reference ESP forecast, we 

employ the BSS, calculated by Eq. (1): 

 

𝐵𝑆𝑆 = 1 −
𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐵𝑆𝑟𝑒𝑓
 

 

The BS values for a given month and lead time are given by Eq. (2): 

 

𝐵𝑆 =
1

𝑁
∑(𝑝𝑡 − 𝑜𝑡)

2

𝑁

𝑡=1

 

 

where N is the number of forecasting instances, p is the forecasted probability and o is 

the observed probability. 

 

The range of the BSS is (−∞, 1) and the best value for a perfect forecast is 1. When the 

BSS is equal to 0, the forecast skill is equal to that of the reference forecast. Here, a skill 

of zero or less implies that the seasonal forecasts provide no additional information 

compared to the random generated climatology of the ESP forecast run. The range of 

the BS is (0, 1), 0 being the best value for a perfect forecast and 1 the worst. 

 

Besides the BS and its associated skill score BSS, it is possible to use other verification 

metrics, such as the relative operating characteristic (ROC) score, or the continuous 

ranked probability skill score (CRPSS) for the skill assessment. We prefer to use the BS 

and BSS since we would like to assess the skill of our forecasting system in predicting 

a category of high, low or normal flow for the given month, rather than an exact 

discharge value, and BS is very suitable for this purpose. BS is the mean squared error 

of probabilistic forecasts for a given dichotomous event. A probability threshold is 

used to define the binary event to be observed and forecasted. The BS is a relevant 

verification metric for analysing the performance of a forecast system for specific 

categories, defined by a set of thresholds. It is preferred for being a proper score, i.e., 

being optimized for forecasts that correspond to the best judgment of the forecaster. It 

is also a highly compressed score; i.e., it directly accounts for forecast probabilities 

without necessitating a contingency table for each probability threshold (Bartholmes 

et al., 2009; Ferro, 2007). 

 

In this study, we use two probability thresholds corresponding to the 25th and 75th 

percentiles for high and low flows, respectively. Values below the 25th percentile of a 
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given month of the year are considered low flows and those above the 75th percentile 

are considered high flows. The thresholds are calculated separately for forecasted 

values and observed values. In other words, we classify a forecasted value as high flow 

if it exceeds the 75th percentile of all forecasted values for the same month of the year 

and low flow if it is below the 25th percentile. Similarly, an observed value is classified 

as high flow if it exceeds the 75th percentile of all observed values for the same month 

of the year and low flow if it is below the 25th percentile. This approach eliminates any 

systematic bias in the simulations compared to the observations. In this way, we are 

able to assess the skill in forecasting the occurrence of flows that are higher or lower 

than usual for a given month. 

 

We calculate the BS and BSS values in 20 large global basins separately for the 12 

months of the year and for all six lead times. When calculating the BS for a given month 

and a given lead time, we use the forecast ensembles that predict the total monthly 

discharge generated during that given month. In other words, we use the discharge 

ensembles resulting from the simulations that start at time t0 and end at time tn with a 

lead time of n months, where t0 is prior to the end of the given forecast month by n 

months. Thus, for the month of May and for a 1-month lead time, n = 1, t0 is1 May and 

tn is 31 May. For a 2-month lead time, n = 2, t0 is 1 April and tn is again the 31 May. 

 

For the ESP approach and the ECMWF S3 seasonal meteorological forecasts, we 

quantify the theoretical as well as the actual skill. To calculate the theoretical skill, we 

compare the ESP and ECMWF S3 streamflow forecast ensembles to the results of the 

control simulation; and for the actual skill we compare them to observed discharge 

records. The discharge records used are provided by the Global Runoff Data Centre 

(GRDC) and measured at stations located at the basin outlets. The meteorological 

datasets used in the calculation of scores are clarified in Table 4.2. 

 

 

Table 4.2 Meteorological datasets used for calculating BS. 

 
 theoretical (BStheo) actual (BSact) 

forecasted (p) observed (o) forecasted (p) observed (o) 

BSforecast ECMWF S3 ERA 40 ECMWF S3 GRDC 

BSref ESP ERA 40 ESP GRDC 
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4.3 Results 

4.3.1 Skill scores 

We present the results of the skill assessment in 20 score tables for 20 rivers (Tables S1–

S20). The tables are presented in the Supplement. The first eight parts of each table 

show the BS values for the ECMWF S3 forecast as well as the BSS values, calculated for 

the four cases of actual and theoretical skill, for low and high flows, i.e., the 25th and 

the 75th percentiles. Tables present the scores for the 12 months of the year and for six 

lead times. 

 

The tables are colour coded for easier visual inspection. Values are highlighted in blue 

where the accuracy of the ECMWF S3 forecasts is considerably higher than that of the 

ESP forecast, and in yellow where it is considerably lower. Since the best value for BS 

is 0, higher forecast accuracy corresponds to a lower BS. Where the difference between 

the BS values of the ECMWF S3 and ESP forecasts are larger or equal to 0.05, the value 

is highlighted in light blue or light yellow; where it is larger or equal to 0.1, it is 

highlighted in dark blue or dark yellow. The last two parts of each table show the ratios 

of the BSact to BStheo of both the ESP and ECMWF S3 forecasts, for the 12 months of the 

year and six lead times, for low and high flows, respectively. 

4.3.2 Overview of the basins with added skill 

We provide a global overview of the basins where added skill is obtained using 

ECMWF S3 meteorological forecast input compared to the ESP input. The locations of 

improved skill are presented on four world maps for the four cases of actual and 

theoretical skill, for low and high flows, i.e., the 25th and the 75th percentiles (Fig. 4.2). 

The maps indicate the number of months per year with skillful forecasts at each 

location, as well as the maximum lead time for which the skill is retained. 

4.4 Discussion of results 

In this section, we discuss the results for several larger basins in the context of 

prevailing hydroclimatic conditions. 

 

 

 



78 Chapter 4 

a 

b 

c 

d 

 

 

Figure 4.2 Global overview of basins with improved forecast skill.  

Panels (a) theoretical skill in low flows, (b) theoretical skill in high flows, (c) actual 

skill in low flows, (d) actual skill in high flows. 

0 
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4.4.1 Tropical, monsoon-dominated basins 

As can be seen in Fig. 4.2a, results indicate that in the Amazon basin the theoretical 

skill of the ECMWF S3 forecasts is quite high for predicting lower flows than usual for 

the given month. In Table S1 for the Amazon, the colour-coded first part, which 

presents the BStheo for low flow, shows that most of the values are coloured blue. This 

indicates that the accuracy of ECMWF S3 forecasts are significantly higher than the 

ESP forecasts; i.e., the difference between the BS values is higher than 0.05. For lead 

times of 1 and 2 months, the improvement is larger, as can be seen on the first two 

columns, which are coloured mostly dark blue, indicating a difference between BS 

values higher than 0.1. 

 

The results for high flows are very different than those for low flows, as can be seen in 

Fig. 4.2b, as well as the third and fourth parts of Table S1. Most BS values of the 

ECMWF S3 are very close to the ESP, with only a few yellow highlighted values 

denoting a worse performance. 

 

The results are also different for the actual skill as can be seen in Fig. 4.2c and d. Both 

for low and high flows (the fifth to eighth parts of the Table S1), the performance of 

the ECMWF S3 is either very close to the ESP or lower, as can be seen again by the 

yellow colour. The average ratio of BSact to BStheo of the ECMWF S3 forecasts over the 

year and the six lead times is 0.5 in forecasting low flows and 0.57 in high flows (the 

last two parts of Table S1). These ratios increase with increasing lead time, starting 

from 0.21 for low flows at a lead time of 1 month, and rising to 0.68 at a lead time of 6 

months. There are considerable differences in the ratios between months as well. 

 

Candogan Yossef et al. (2012) showed that hydrological forecasting skill in the Amazon 

basin is dominated by initial conditions for lead times of 1–2 months, and even up to 

4 months for forecasting the discharge during the Southern Hemisphere spring, from 

August until November. Initial conditions are especially important during high-flow 

conditions (March, April and May) (Paiva et al., 2012) and the recession period (June, 

July, August), when the increased groundwater storage plays an important role. 

Moreover, in large basins such as the Amazon where long travel times are involved, 

the knowledge of surface water conditions several months ahead is an important 

source of forecast skill. Meteorological forcing starts to play a more important role 

beyond 1–2-month lead times throughout the rest of the year. The present study 

shows, however, that by using ECMWF S3 seasonal forecasts the biggest skill 

improvement over the ESP procedure can be attained at lead times of 1–2 months, but 

less at longer lead times when meteorological forcing plays a more important role. For 

lead times beyond 1–2 months an improvement in skill during most of the year still 

exists, but it should be noted that this improvement is observed only in the theoretical 

skill in forecasting low flows. 
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The results for the other tropical South American basin that we study, the Parana, show 

a somewhat similar pattern to the Amazon, in the sense that the theoretical skill of 

ECMWF S3 in forecasting low flows is higher than ESP in some cases, whereas for high 

flows it is mostly lower (see Table S2). In contrast, the actual skill of ECMWF S3 in 

forecasting both high and low flows in the Parana is quite different than that in the 

Amazon. The ratio of actual to theoretical skill of ECMWF S3 forecasts is much lower 

than that in the Amazon. Averaged over the months of the year and different lead 

times, it is 0.27 and 0.25 for low and high flows, respectively. Notwithstanding, 

comparing the actual skill of the ECMWF S3 forecasts to the ESP, we see several 

months and lead times where the actual skill is significantly improved by using 

ECMWF S3 forecasts, especially for forecasting high flows at longer lead times and 

during the first half of the year. For shorter lead times and for the second half of the 

year however, the actual performance of ECMWF S3 in forecasting high flows is 

significantly worse than ESP. In forecasting low flows, forecast accuracy is also mostly 

reduced by using ECMWF S3 forecasts. 

 

Another monsoon-dominated tropical river, the Brahmaputra in the Indian sub-

continent, shows a similar pattern to the Parana. In Table S3, we see again a significant 

improvement in the actual skill for forecasting high flows at longer lead times during 

the first half of the year. Just like the Parana, forecast accuracy is significantly lower at 

shorter lead times during the second half of the year. In contrast, the actual skill for 

forecasting low flows is significantly low at longer lead times, and high at a lead time 

of 1 month. In theoretical skill, the accuracy of ECMWF S3 re-forecasts in the 

Brahmaputra for both high and low flows is either very close to that of the ESP or 

lower. The ratio of the theoretical skill of ECMWF S3 to the actual skill varies 

considerably for high and low flows, as well as over the year and the range of lead 

times. The averages are 0.24 and 0.34 for low and high flows, respectively, ranging 

from as low as 0.2 for low flow forecasts in January to as high as 1.25 for high-flow 

forecasts in April. The BS values for April high flows at all lead times are higher for 

actual skill calculations where the forecasted discharges are compared to actual 

discharge records, than the theoretical skill where they are compared to model 

simulations. Indeed, it was shown by Candogan Yossef et al. (2012) that the ESP 

procedure performs worse than the unconditional climatological record of observed 

flow from April to September even for lead times of 1 month. The forecast skill in the 

Brahmaputra is strongly dominated by MF during the monsoon season for all lead 

times. During these months, at a lead time of 1 month, the ECMWF S3 performs 

significantly worse than the ESP, for the assessment of actual skill. This means the 

apparent potential for improvement in hydrological forecasts at short lead times by 

using ECMWF S3 seasonal meteorological forecasts cannot be realized at the moment. 

 



4.4 Discussion of results 81 

In the two large rivers of China, the Yangtze and the Yellow River, there exists a 

potential for improving forecasts beyond 1-month lead time through better MF during 

the high-flow period (see Table S4 and S5). This period extends from May to October 

in the Yellow River and from April to September in the Yangtze (Candogan Yossef et 

al., 2012). Our results for the actual skill in forecasting high flows show that this 

opportunity may be partly realized in both rivers. The added skill of ECMWF S3 over 

ESP in forecasting higher than usual discharges during the high-flow periods at longer 

lead times may aid the estimation of increased probability of flooding at lead times of 

4–6 months. Moreover, the actual skill of ECMWF S3 is also high in forecasting low 

flows at short lead times during some months of the highflow periods, especially for 

the Yellow River. This may help a better estimation of the probability of less than 

expected discharges during high-flow periods, at 1–2-month lead times. The actual 

skill of ECMWF S3 forecasts in the Yangtze captures on average 0.23 of the theoretical 

skill for low flows, and 0.25 for high flows. These numbers are 0.22 and 0.26 in the 

Yellow River for low and high flows, respectively. In both rivers, for both high and low 

flows, a significant pattern emerges in the ratios of actual to theoretical skill. The ratios 

are considerably higher during wet periods than during dry periods. 

 

Similar to the Yellow River and the Yangtze, also in the Mekong basin forecast skill 

during the wet period from July to October is dominated by MF beyond 1-month lead 

time. However, the results for the Mekong are different from those for the Chinese 

basins. Added skill of ECMWF S3 over ESP in forecasting higher than usual discharges 

during the wet periods can be seen not at longer lead times, but only at a lead time of 

1 month, as can be seen in Table S6. This may aid better estimation of flood probability 

at short notice. Beyond 1 month, the performance of ECMWF S3 forecasts are either 

worse or not significantly different than ESP. ECMWF S3 forecasts of lower than usual 

discharges during either the wet or dry periods perform worse than ESP at short lead 

times, but there are some months of improved skill at long lead times. The ratios of 

theoretical skill of ECMWF S3 forecasts to the actual skill in the Mekong are 0.37 and 

0.60 for low and high flows, respectively. During the high-flow period from July to 

October, the actual skill in forecasting higher than usual discharges reaches more than 

0.80 of the theoretical skill. 

4.4.2 Arctic basins 

In Arctic basins, snowpack, ice and groundwater processes have a long memory, 

causing the forecast skill to be dominated by ICs for lead times up to 6 months 

(Candogan Yossef et al., 2013). The North American Arctic rivers Mackenzie and 

Nelson, as well as the Asian Ob and Lena are ice bound for a significant part of the 

year and peak discharges follow snowmelt. The ESP forecasts already perform quite 

well in these Arctic rivers as would be expected for basin with such a large memory. 
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Tables S7–S10 show that the ECMWF S3 forecasts for these rivers are not significantly 

skillful when compared to the ESP. During May–June, which is the beginning of the 

high-flow season in Arctic rivers, one might expect some improvement in skill with 

ECMWF S3 forecasts over the ESP due to the temperature effect determining the onset 

of snowmelt. However, there is no significant increase in the performance of ECMWF 

S3 forecasts over the ESP forecasts, not even during the beginning of the high-flow 

season. ECMWF S3 forecasts perform very similar to ESP, and even worse in some 

cases. Especially the actual skill of ECMWF S3 forecasts in the Arctic basins in Asia is 

considerably low when compared to the ESP forecasts. 

 

The ratios of actual skill to theoretical skill are not very low in the Arctic basins in 

general. Low ratios would be expected in areas where the model has large errors 

associated with snow and glaciers and consequent errors in the timing of peak 

discharges. In the river Ob for instance, where the discharge peaks in June, the actual 

skill reaches 0.60–0.70 of the theoretical skill, so it may be concluded that the timing of 

the model is well approximated. 

4.4.3 Temperate regions 

The ECMWF S3 forecasts in general do not perform significantly better than ESP in the 

temperate European basins, such as Rhine, Danube and Volga as can be seen in Tables 

S11–S13. There are some cases with improvement in the skill in forecasting flows lower 

than usual, especially in the theoretical skill. However, for high flows the ECMWF S3 

forecasts perform worse than the ESP. In the Rhine basin, where improvement in 

forecast accuracy depends on better climate forecasts, using the ECMWF S3 forecasts 

does not provide an improvement over the ESP. In the Danube and the Volga, we see 

an improvement in the theoretical skill in forecasting low flows during winter months. 

In the Danube and especially the Volga basins snowmelt and groundwater processes 

play a bigger role than the Rhine. Low flows during winter months are actually 

dominated by the groundwater processes rather than the meteorological forcing. 

Nevertheless, this is where we see a consistent improvement in skill by using the 

ECMWF S3 forecasts. For high flows on the other hand, ECMWF S3 forecasts perform 

worse, both in their theoretical and actual skill.  

 

The ratios of actual to theoretical skill are in general quite high for the European basins, 

but lower in temperate basins of North America. In the Columbia River forecasts are 

dominated by the ICs due to snow and the performance of ESP forecasts is already 

high. Using ECMWF S3 forecasts does not bring a significant improvement (see Table 

S14). 
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In the St. Lawrence River, peak flows are fed by spring and summer snowmelt 

accompanied by rain. Candogan Yossef et al. (2013) concluded that the forecasting skill 

in spring and summer months depends largely on the snowpack accumulated during 

the previous winter months, dominating seasonal forecasts up to 6 months ahead. 

These findings are in disagreement with the results of Shukla and Lettenmaier (2011), 

which show that ESP forecasts initialized from December to April are skillful only for 

1–2-month lead times. As it was mentioned in Candogan Yossef et al. (2013), the 

disagreement is probably due to errors in one or both models in the estimation of snow 

accumulation. The results of the present study confirm the importance of ICs on the 

one hand. Table S15 shows that the theoretical skill of ECMWF S3 forecasts is 

considerably low compared to the ESP in the St. Lawrence, especially for forecasting 

higher flows than usual during the summer months. On the other hand, the actual skill 

of the ECMWF S3 forecasts in forecasting lower than usual summer flows is 

significantly high for 2, 3 and 4-month lead times. This finding supports the conclusion 

of Shukla and Lettenmaier (2011), which emphasizes the importance of MF beyond 1–

2-month lead times. Additionally, the fact that the ratio of actual skill to theoretical 

skill in St. Lawrence is rather on the low side may be an indication of errors in our 

model in representing the snow processes. 

 

For the southeastern US rivers, the results of Candogan Yossef et al. (2013) as well as 

those of Shukla and Lettenmaier (2011) show that skill due to ICs diminishes after 1–

2- month lead time and that forecasts would benefit most from improvements in MF 

throughout the year. However, the results of the present study show that in general 

this potential improvement cannot be realized for the Mississippi by using ECMWF S3 

forecasts. The performance of ECMWF S3 forecasts is similar to the ESP in most cases, 

as can be seen in Table S16, and it is lower than ESP in more case than it is higher, with 

no apparent pattern. 

4.4.4 Semi-arid regions 

Candogan Yossef et al. (2013) concluded that the relative importance of ICs is the 

lowest in the Murray–Darling basin and any improvement of hydrological forecasts 

depends on better climate forecasts. The results of the present study for this basin show 

that the theoretical skill of ECMWF S3 forecasts are significantly high in some cases, 

but lower in other cases, with no apparent pattern (see Table S17). The accuracy of 

ECMWF S3 forecasts in assessment of actual skill is lower than ESP in most cases. Also, 

the ratios of actual to theoretical skill are quite low in this basin for both high and low 

flows. 

 

Similarly, in the semi-arid African basins of the Orange River and the Zambezi, where 

the knowledge of MF plays a very important role in the forecast skill, the performance 
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of ECMWF S3 forecasts is worse compared to the ESP in most cases. Tables S18 and 

S19 show that the accuracy of ECMWF S3 is lower than ESP in these basins, 

particularly in actual skill. In contrast, in the Nile basin, the ICs dominate the forecast 

skill, resulting in high performance of ESP forecasts throughout the year assuming that 

the release strategy of the Aswan reservoir is known (Candogan Yossef et al., 2013). 

The results of the present study show that the theoretical skill of ECMWF S3 cannot 

surpass the already high performance of the ESP (see Table S20). Actually, forecasts 

with ECMWF S3 perform considerably worse. In actual skill however, the accuracy of 

the ESP forecasts in the Nile is very low due to the large effect of the reservoir 

operations. In fact, the ratio of actual to theoretical skill is the lowest by far in this basin. 

With such a low accuracy of ESP forecasts despite the dominance of ICs, comparison 

of the performance of ECMWF S3 to ESP is not very meaningful. Our results of actual 

skill in both high and low flows in the Nile appear to be very erratic indeed  

4.5 Conclusions 

We assessed the skill of seasonal streamflow forecasts with the global hydrological 

forecasting system FEWS-World, set up within the GLOWASIS project. Global 

hydrological model PCR-GLOBWB was run with the ESP procedure as well as with 

ECMWF S3 bias-corrected seasonal meteorological forecast ensembles. We produced 

ensemble forecasts of monthly discharges for 20 large rivers of the world, with lead 

times of up to 6 months. We quantified the skill of ECMWF S3 forecasts compared to 

the reference ESP forecasts using the BSS, both for high and low flows. We determined 

the theoretical skill by comparing the results against model simulations, as well as the 

actual skill by comparing against discharge observations. We also calculated the ratios 

of actual to theoretical skill. 

 

We analysed these results in the context of prevailing hydroclimatic conditions. This 

analysis suggests that the skill varies considerably according to location, season and 

lead time. The conclusions can be summarized as follows: 

 

– In general, the performance of the ECMWF S3 forecast run is close to that of the ESP 

forecast run. 

 

– There are basins where the ECMWF S3 forecast run performs significantly better than 

the ESP, during certain periods of the year and at certain lead times. 

 

– However, there are in fact more cases where the ECMWF S3 forecast run performs 

worse than the ESP. 
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– In most cases, the apparent potential for improvement in seasonal hydrological 

forecasts by using better meteorological forecasts cannot be realized as yet with the 

model PCR-GLOBWB and the ECMWF S3 re-forecast dataset. 

 

– As more accurate global hydrological models and more skillful seasonal 

meteorological forecasts become available in the future, such as the most recent 

ECMWF system S4, further studies will be needed to assess the improvement in 

seasonal hydrological forecasts, as well as the effect of meteorological forecast quality 

vs. model errors on the hydrological forecasts. 

The Supplement related to this article is available online at 

https://doi.org/10.5194/hess-21-4103-2017- supplement. 
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Chapter 5 

Skill and value of global-scale seasonal hydrological 

forecasts, a perspective 

5.1 Introduction 

While the skill of global seasonal hydrological forecasting systems has been 

demonstrated in this thesis, their value for the society has not yet been examined 

systematically. In fact, definitions of skill and value differ significantly among studies. 

Existing studies have mostly investigated the value of seasonal hydrological forecasts 

for a specific sector in one basin or region, but the value of global seasonal hydrological 

forecasting systems for water management has not been discussed comprehensively. 

With this study, we aim to shed some further light on the value problem as a 

contribution to the improvement of the usefulness of global seasonal hydrological 

forecasting systems for water management. For this purpose, we present the current 

practice of global-scale seasonal hydrological forecasting in Section 5.2, and we study 

the interaction between skill and value in Section 5.3. In Section 5.4, we discuss the 

possible ways to improve the value of seasonal streamflow forecasts on a global scale 

during various stages of the forecast chain, i.e. forecast communication (5.4.1), forecast 

adoption (5.4.2), forecast use in decision making (5.4.3), feedback from forecast users 

to forecast providers (5.4.4); with an emphasis on flood and drought mitigation. Finally 

in Section 5.5, we present the conclusions of this chapter. 

5.2 Global-scale seasonal hydrological forecasting 

Seasonal hydrological forecasting is the attempt to provide useful information about 

hydrological variables such as streamflow, soil moisture etc. that can be expected in 

the coming months. Effectively communicated forecasts of water availability and 

scarcity months in advance have a potential for successful application in water related 

sectors. Reliable streamflow forecasts on monthly and seasonal time ranges are vital 

for mitigation of flood and drought hazards as they give disaster management 

agencies and humanitarian aid organizations the opportunity to prepare for an 

appropriate response. Seasonal forecasts are beneficial not only in case of hydrological 
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extreme events, but also during normal flow conditions, allowing several sectors, e.g. 

water supply, hydropower production, agriculture and navigation, to make more 

informed management decisions. Seasonal hydrological forecasting on a global scale 

could be especially valuable for developing regions, where effective hydrological 

forecasting systems are scarce.  

 

Global hydrological forecasting has been enabled in the past decade thanks to recent 

scientific and technological developments. These developments include advancement 

of global modelling capabilities both in meteorology and land surface hydrology, 

enhanced collaboration between hydrological and meteorological communities, 

increased availability and quality of relevant data derived from ground observations 

and remote sensing by satellite and ground-based radars, as well as improvements in 

computing capabilities and resources (Emerton et al., 2016). The rationale behind 

operating global hydrological forecasting systems is that, as they are based on global 

meteorological datasets, they provide continuous and spatially consistent forecasts of 

streamflow. This may be valuable for regions where the spatial scale of hydrological 

extreme events goes beyond individual catchments or political borders as well as for 

the most vulnerable regions of the world where no local forecasting systems exist to 

alert the population. Still, where national scale forecasting systems exist, global 

forecasts provide an additional guidance at larger spatial scales (Harrigan et al., 2019). 

Disaster management organizations operating at global scale and international 

humanitarian aid agencies can benefit from global forecasts to prepare for appropriate 

response, and global water and energy markets can be informed about future 

availability of water and hydropower in different regions of the world. The economic 

rationale is that the provision of forecasts for basins across the globe does not require 

a large scale-up of resources. Rather than focusing on developing forecasting systems 

and issuing forecasts for individual basins in regions of scarce resources, it is more 

cost-effective to provide forecasts with global scale hydrological forecasting systems. 

Also, the economic benefit is evident for those countries who do have some existing 

capabilities, such as local hydrological models but are not able to produce hydrological 

forecasts, since they cannot afford to pay for access to, or processing of 

computationally expensive probabilistic and extended time scale meteorological 

forecast products (Emerton et al., 2018).  

 

Over the last decade, several seasonal hydrological forecasting systems have been 

developed for forecast applications and research purposes at the continental (Bennett 

et al., 2016; Mo et al., 2014; Wood et al., 2002, 2005; Yuan et al., 2013) and global scale 

(Yuan et al., 2015). Yet currently only a few systems produce operational seasonal 

hydrological forecasts on such large scales. Continental scale operational systems 

include the European Flood Awareness System (EFAS) (Arnal et al., 2018), the 

European Hydrological Predictions for the Environment (E-HYPE) (Donnely et al., 

2015), the Australian Government Bureau of Meteorology (BoM) Seasonal Streamflow 
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Forecasts (BoM, 2018), and the National Hydrologic Ensemble Forecast Service (HEFS) 

for continental USA (Demargne et al., 2014; Emerton et al., 2016). Seasonal 

hydrological forecasting systems that are or have been operational at the global scale 

include the NASA Hydrological Forecast and Analysis System (NHyFAS) (Arsenault 

et al., 2020), the Global Flood Awareness System (GloFAS - Seasonal) (Emerton et al., 

2018), the Global Flood Forecasting and Information System (GLOFFIS) (Emerton et 

al., 2016), and the Global Water Scarcity Information Service (GLOWASIS) (Weerts et 

al., 2013). 

5.3 Skill and value of global seasonal streamflow forecasts 

Seasonal streamflow forecasts produced by large scale hydrological forecasting 

systems are continually being verified, often as an automated quality check. Their 

predictive skill is being quantified using increasingly sophisticated methods and their 

value is being assessed for water management applications.   

 

The most basic verification for streamflow forecasts consists of quantifying their skill 

in terms of how close they are to actual observations of river discharge. However, a 

key element in the evaluation of large-scale hydrological ensemble prediction systems 

is to determine whether the forecasts have added skill over climatology or another 

naïve forecast (Pappenberger et al., 2015). For this purpose, the skill of a probabilistic 

forecast can be assessed by comparing the relative closeness of both the forecast and a 

benchmark to the observations. Quantifying the added skill over a benchmark is 

important for forecasters to understand and improve the performance of forecast 

components, as well as for users to know how much better the forecast is compared to 

a lower-cost, second-best guess. In practice, several different benchmarks are being 

used for shorter range forecasts, but most seasonal hydrological forecasting systems 

use the ensemble streamflow prediction (ESP) as a benchmark (Samaniego et al., 2019). 

The ESP approach provides the forecast skill that can be achieved from the initial 

hydrological conditions, by using the climatology as meteorological forcing. For 

shorter lead times and in regions that have a long hydrological memory, the ESP can 

provide a highly skillful forecast because the impact of the initial hydrological 

conditions dominates the seasonal predictability (Wanders et al. 2019a). For longer 

lead times, the ESP tends to become close to hydroclimatology and the performance of 

ESP-based forecasts is comparable to that of dynamical forecasts based on general 

circulation models (GCMs). When the forecast skill of the GCM-based seasonal 

streamflow forecasts is benchmarked with respect to the skill of the ESP, it can be 

identified whether using actual meteorological forecasts provides an added skill over 

using historical meteorological observations. 
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The predictive skill of a hydrological forecasting system is affected not only by errors 

in model structure and parameterization and initial states such as soil moisture, 

groundwater and snow, but also by meteorological forcing errors. Skill of seasonal 

hydrological forecasts can be improved by including better meteorological forecasts, 

and/or by better estimation of initial hydrologic states through assimilation of 

independent hydrological observations. The improvement in the overall predictability 

that may be attained depends on the relative importance of these two sources of 

uncertainty, which varies considerably among hydrological systems according to 

location, season and lead time (Bierkens and van den Hurk, 2007; Bierkens and van 

Beek, 2009; Shukla and Lettenmaier, 2011; Shukla et al., 2011; Yuan et al., 2015) Here, 

the ESP ensembles, which contain no actual information on weather, serve as a 

benchmark to assess the added skill that may be obtained using actual seasonal 

meteorological forecasts. Verification metrics are calculated for the ESP benchmark as 

well as the GCM-based forecast and translated into skill scores which quantify this 

additional skill. 

 

The skill assessment of ensemble probabilistic forecasts includes verification measures 

which describe the relationship between forecasts and observations based on their 

joint distribution. Various attributes of forecast quality are addressed by using 

different verification measures. These attributes include accuracy, sharpness, 

reliability, discrimination and overall performance (Arnal et al., 2018). Accuracy refers 

to the magnitude of the errors between the forecast ensemble mean and the 

observation, given by the mean absolute error (MAE). Sharpness is an attribute of the 

forecast only, which indicates the ability to predict forecast values with probabilities 

that differ from climatology. It is a measure of the spread of the ensemble members of 

a forecast, given by an interquantile range (IQR), i.e., the difference between the nth 

and (100-n)th percentiles of the forecast distribution. Another skill attribute is 

reliability, which is the statistical consistency between forecast probabilities and 

observed frequencies. It is given by the probability integral transform (PIT) diagram, 

which is the cumulative distribution of the PIT values as a function of the PIT values, 

in which the PIT values measure where the observation falls relative to the percentiles 

of the forecast distribution. To determine the skill in terms of overall performance, 

several skill scores can be used in the verification of seasonal hydrological forecasts. 

 

Rather than producing exact discharge amounts, a streamflow forecasting system may 

predict the category in which the expected discharge falls into, i.e., whether it is higher 

or lower than normal conditions. High and low flows are defined as discharges higher 

and lower than certain thresholds which are calculated for each given month, 

separately for forecasted values and observed values. This approach eliminates any 

systematic bias in the simulations compared to the observations. In this way, the added 

skill obtained by using actual seasonal meteorological forecasts compared to the 

reference ESP forecast in predicting the right category of high, normal or low flows for 
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a given month can be assessed. In the case of categorical forecasts, the Brier skill score 

BSS, given by Eq. (5.1) is an appropriate metric that may be employed for the 

assessment of skill. 

 

𝐵𝑆𝑆 = 1 −
𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐵𝑆𝑟𝑒𝑓
 

 

The BSS quantifies skill on the basis of the ratio of the Brier score (BS) of the actual 

forecast over that of a chosen reference dataset, such as a naïve estimator: 

 

The BS values for a given month and lead time are given by Eq. (5.2):  
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where N is the number of forecasting instances, p is the forecasted probability and o is 

the observed probability of an event. 

 

BS is the mean squared error of probabilistic forecasts for a given dichotomous event. 

A probability threshold is used to define the binary event to be observed and 

forecasted. The BS is one of the most commonly used skill scores for seasonal 

forecasting in meteorology and hydrology. It is a relevant verification metric for 

analysing the performance of a forecast system for specific categories, defined by a set 

of thresholds. It uses categorical forecast thresholds to determine the quality of the 

forecast compared to a reference simulation. It is preferred for being a proper score, 

i.e., being optimized for forecasts that correspond to the best judgment of the 

forecaster. It is also a highly compressed score; i.e., it directly accounts for forecast 

probabilities without necessitating a contingency table for each probability threshold 

(Bartholmes et al., 2009; Ferro, 2007). Besides the BS and the associated skill score BSS, 

it is possible to use other verification metrics, such as the relative operating 

characteristic (ROC) score, or the continuous ranked probability skill score (CRPSS) 

for the assessment of forecasting skill. 

 

In chapter 3, we investigated the relative contributions of initial conditions (IC) and 

meteorological forecasts (MF) to the forecasting skill of the global seasonal streamflow 

forecasting system Flood Early Warning System-World (FEWS-World). Potential 

improvement in forecasting skill through better MF or by better estimation of IC 

through data assimilation depends on the relative importance of these two sources of 

uncertainty. The study explored the impact of both sources of forecast uncertainty at 

large river basins across the globe using the ESP/revESP procedure outlined by Wood 
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and Lettenmaier (2008). The results suggested that in some basins, such as arctic rivers 

or very large rivers, forecast skill may be improved by better estimation of initial 

hydrologic states through assimilation of snow, soil moisture or surface water data; 

whereas in others, such as monsoonal rivers improvement of forecast skill depends on 

more accurate seasonal climate prediction. This analysis showed the relative 

contributions of IC and MF to the potential skill of the forecasting system FEWS-

World. In an actual forecast, where both the IC and the MF will be uncertain, the actual 

forecasting skill of the system should be assessed in a real forecasting mode, using 

probabilistic seasonal meteorological forecasts and comparing the ESP results to actual 

discharge observations. 

 

A skill assessment in real forecasting mode is presented in chapter 4, where we 

evaluated the ability of the FEWS-World seasonal forecasting system based on the 

global hydrological model PC-Raster Global Water Balance (PCR-GLOBWB) to predict 

high and low flows, defined as discharges higher than the 75th and lower than the 25th 

percentiles for a given month, respectively. The thresholds were calculated separately 

for forecasted values and observed values. This approach eliminates any systematic 

bias in the simulations compared to the observations. In this way, the skill in 

forecasting the occurrence of flows that are higher or lower than usual for a given 

month were assessed. This study quantified the skill of ECMWF S3 forecasts compared 

to the reference ESP forecasts using the BSS, both for high and low flows. The analysis 

of the results in the context of prevailing hydroclimatic conditions suggested that the 

skill varies considerably according to location, season and lead time. The performance 

of the ECMWF S3 forecast run was found to be generally close to that of the ESP 

forecast run. In some basins the ECMWF S3 forecast run performed significantly better 

than the ESP, during certain periods of the year and at certain lead times, for example 

in some tropical monsoon dominated basins. However, in fact there were more cases 

where the forecast run performs worse than the ESP, such as many of the semi-arid 

basins. The study concluded that in most cases, the apparent potential for 

improvement in seasonal hydrological forecasts by using climate predictions cannot 

be realized until more accurate hydrological models and more skillful seasonal 

meteorological forecasts become available in the future, such as the Seas6 forecasts that 

are now in production at ECWMF, with substantial improvements like standard 

variables of soil moisture and river flow. 

 

Global hydrological models such as PCR-GLOBWB tend to show a long hydrological 

memory, which limits the impact of the dynamical forecast improvement. Wanders et 

al. (2019a) argue that hydrological models which respond rapidly to precipitation or 

temperature changes are more likely to benefit from accurate dynamical seasonal 

forecasts and thus show a stronger improvement in the BSS. A more accurate 

representation of the observed hydrology is therefore needed to benefit from GCM-
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based seasonal streamflow forecasts, especially in regions with shorter hydrological 

response times (Samaniego et al., 2019). 

 

Besides FEWS-World used by Candogan Yossef et al. (2017), the skill of several other 

large-scale hydrological forecasting systems is being assessed by various research 

groups. However, only a few systems have been thoroughly validated in real-time, 

operational conditions. Moreover, in most cases, a comprehensive analysis of the 

relative importance of the main sources of hydrological forecast skill is lacking. 

Understanding the influence of these sources on skill is crucial to determine how the 

forecast performance can be improved, and the biases of models that can affect the 

quality of the forecasts in terms of reliability, sharpness and accuracy can be eliminated 

(Lavers et al., 2020).  

 

What appears from the studies on continental and global hydrological forecasting 

systems is that forecast quality varies considerably by region and season. As would be 

expected, systems generally show a decrease in forecasting skill with increasing lead 

time. Similar to the skill assessment of the FEWS-World system, the evaluation of the 

operational global forecasting system GloFAS-Seasonal shows that in many regions 

and seasons, forecasts of both high and low flow events are more skillful than the 

climatology for 1 or 2 and in some cases up to 4 months ahead (Emerton et al., 2018). 

However, there are regions and seasons for which the GloFAS-Seasonal forecasts are 

less skillful than climatology. In these river basins it would still be more useful to use 

a long-term average climatology rather than GCM-based climate prediction. In many 

cases, seasonal streamflow forecasts produced by these large-scale systems do not yet 

have the skill necessary for their adoption for water management applications.  

 

Samaniego et al., (2019) report that through consultations with stakeholder focus 

groups, including representatives of national government agencies, regional and local 

government authorities, international water and hydropower companies, agricultural 

sector, river basin authorities, consultancies, and academic sector, it was found that in 

general seasonal forecasts need to have a better skill before they can be used 

operationally. Lavers et al., (2020) refer to a gap between the low skill currently 

available in seasonal hydrometeorological forecasts and the high expectation from the 

user community for forecasts at such lead times. They also point out the lack of 

accuracy of seasonal forecasts at local scales due to local anthropogenic influences such 

as dams and reservoirs, which have large and potentially predictable impacts on 

streamflow.  These impacts change the space and time dynamics of floods and 

droughts but are not usually taken into account in global models. It is recommended 

in the said study that forecasts may be improved by coupling hydrological models 

with reservoir management information such as data on regulated dam releases 

during drought periods, maximum storage capacity for flood retention or objective 

filling curves for seasonal reservoir operations. Still, incorporating human regulated 
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systems and quantifying the impacts of human activities represent one grand 

challenge in large-scale hydrological modelling (Bierkens, 2015). Emerton et al., (2018) 

suggest that the use of river flow observations could lead to significant improvements 

in skill by adjusting the forecasts through model calibration using historical 

observations and assimilation of real-time data. However, this too remains a challenge 

due to the lack of openly available river flow data, especially in real-time. Another 

problem for large-scale hydrological forecasting, therefore, is the need for more 

observations, which is essential not only for providing initial hydrological states to 

force the models, but also for evaluation of the forecasts and continuous improvement 

of skill.  

 

Murphy et al. (2001) argue that although the information given by large-scale seasonal 

streamflow forecasts may have limited utility for operational water management until 

forecast skill can be improved, users should be offered the opportunity to understand 

this information. This would allow users to decide for themselves whether to take the 

inherent risk of using the forecast information in their water management practice. 

Therefore, no matter what level of accuracy may actually be obtained, it is always 

important to provide users with streamflow forecasts. In fact, even if there is 

apparently little added skill, the forecast may still be useful and it may offer a large 

added value for decision-making (Viel et al., 2016). 

 

Although the term added value is used in some studies, rather inaccurately, to denote 

improved forecast skill, forecast value signifies the benefit achieved by incorporating 

the forecast into the decision-making process within a certain field of application. Skill 

and quality are interchangeable terms which denote a measure of how similar the 

forecast is to the actual outcome, independent of how the forecast is used. Forecast 

value differs from forecast skill in that it is dependent on the forecast application 

(Anghileri et al., 2016 after Murphy, 1993). While decisions based on more accurate 

forecasts are expected to be more effective, better forecast skill does not necessarily 

translate into improved efficacy of the decisions based on the forecast. 

 

According to Ritchie et al. (2004) a forecasting system may be considered useful if the 

forecast is statistically verified and offers a positive value of information. Benefits 

gained by using streamflow forecasts depend not only on their skill but also on the 

way they are presented, distributed and used. An effective application of a seasonal 

climate forecast is defined as the use of forecast information leading to a change in a 

decision that generates improved outcomes in the system where it is applied. 

Producing skillful predictions is a necessary but insufficient condition for this. The 

success of a hydrological forecasting system will ultimately be determined not by its 

skill but by the effect it has on decision-making for water management (Plummer et 

al., 2019). The current ability of seasonal streamflow forecasting systems to predict the 

right category of an event months ahead is potentially valuable for many water-related 
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applications such as flood preparedness, drought-risk management, reservoir 

management, hydropower and navigation. It is not so straightforward however to 

convert the forecast skill into an added value for decision-making. Integrating new 

forecasting products into established decision-making chains is not an easy task (Arnal 

et al., 2018).  A seemingly useful scientific finding does not simply translate into usable 

information that fits into any decision-making process (Soares and Dessai, 2016). 

Although the quality and usefulness of seasonal streamflow forecasts have been 

improving in the last decades, their usability for decision-making has lagged behind. 

The current gap between the usefulness and the usability of seasonal streamflow 

information is pointed out by White et al. (2017). It is important to recognize that the 

usefulness of seasonal forecasts depends strongly on user requirements. Actual 

realization of the potential added value by incorporating forecast information into 

decision-making, is an important outcome that may be achieved by collaboration of 

forecast producers and users throughout the forecast chain (Block, 2011; Plummer et 

al., 2019). Even though no single objective measure can quantify the value of a forecast 

for all users, cost-benefit studies may be carried out on individual applications to 

assess the value of forecasts for each user (Lavers et al., 2020; Bischiniotis et al., 2019.) 

5.4 Improving the value of global seasonal streamflow forecasts 

A typical streamflow forecast chain entails a sequence of actions, which starts with 

construction of forecasts and warnings, communication of forecasts to users, adoption 

of forecasts by users, decision-making processes to take appropriate response action 

and feedback from the users to forecasters. Suggestions in the literature to improve the 

value of seasonal streamflow forecasts through the steps of the forecast chain are 

discussed in the following sub-sections and summarized in Table 5.1 below. 

 

Table 5.1: Suggestions to improve forecast value through the forecast chain 

 

Step Suggestion 

 

Reference 

Forecast 

construction 

 

Tailoring forecast products to 

users’ needs 

Aligning the timing of forecasts 

with the timing of users’ 

decisions  

Information exchange between 

forecast providers and users   

 

 

Soares and Dessai, 

2016 

 

Plummer et al., 2019 

 

Lavers et al., 2020 
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Forecast 

communication 

 

Timely transmission through 

correct channels  

Communication of forecast skill 

and uncertainty 

Assessment of users’ perception 

of uncertainty 

Visualization tools for graphical 

representation 

Internet websites based on a user-

centered design 

International and 

interdisciplinary cooperation  

 

Plummer et al., 2019 

 

Lavers et al., 2020  

 

Samaniego et al., 2019 

 

Ramos et al., 2010 

 

Emerton et al., 2018 

Forecast adoption 

 

Development of local decision 

support systems 

Tailoring forecast information to 

needs of water managers 

Simulation modelling using 

retrospective forecasts 

Reducing the risks of forecast use 

through insurance hedging  

Documentation of existing uses 

and experiences with forecasts 

Development of knowledge 

portals for information sharing 

 

Whateley et al., 2014 

Forecast use in 

decision making 

Training decision makers through 

workshops, training activities, 

games, simulation environments  

Development of decision support 

systems  

 

Coelho and Costa, 2010 

Feedback from 

users to providers 

Increased communication within 

the forecast community  

Users taking an active role in 

forecast production  

Output from user-specific  

decision support systems 

 

Soares and Dessai, 2016  

 

 

 

Lavers et al., 2020 
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5.4.1 Forecast Construction 

The first step in the forecast chain is forecast construction. This step includes running 

a hydrological model driven by meteorological forecasts and initial conditions 

determined by observations, interpretation of model outputs, defining appropriate 

threshold values and construction of forecasts and warnings according to these 

thresholds. Continued information exchange between scientific researchers, forecast 

providers, water managers and forecast users is crucial for the provision of timely and 

reliable forecasts (Lavers et al., 2020). Forecast providers should understand users’ 

needs and tailor their present and future products to these needs. They should 

consider the timing of forecasts to align well with the timing of users’ decisions 

(Plummer et al., 2019). The cooperation between forecast producers and users is 

important not only for providing better forecasts, but through all the steps in the 

forecast chain, as it increases accessibility of users to forecast information, contributes 

to informed decision-making and in return, provides users’ feedback to forecasters so 

that they can improve the usefulness and usability of their forecasts and warnings 

(Lavers et al., 2020). Arnal et al. (2018) argue after Soares and Dessai (2016) that a key 

factor for improving the value of seasonal forecast information is collaboration 

between forecast producers and users. They mention two international projects, 

namely the Horizon 2020 IMPREX (IMproving PRedictions and management of 

hydrological EXtremes) project and the Hydrologic Ensemble Prediction EXperiment 

(HEPEX). The IMPREX project (van den Hurk et al., 2016) is a gathering where forecast 

providers and users have the opportunity to discuss the integration of seasonal 

information in decision-making in the management of floods and droughts over 

Europe. HEPEX is another international platform where forecasters and water 

management professionals come together for collaboration on the use of ensemble 

prediction in water management applications, that offers a perfect setting for 

discussing the usefulness and usability of seasonal streamflow forecasts for decision-

making (Arnal et al, 2018). 

 

5.4.2 Forecast Communication 

Communication of forecasts is one of the vital steps in the forecast chain. Forecasts 

should be transmitted to decision makers through the correct channels in a timely 

manner. Forecast skill should always be communicated to users, so that they can 

decide for themselves how much confidence to attach to the forecast information. 

 

Seasonal forecasting has become possible as a consequence of a shift from 

deterministic to probabilistic forecasting schemes (Murphy et al., 2000), producing 

large amounts of data, which necessitates providing the user with the essence of the 
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information and enabling correct interpretation of the forecasts (Emerton et al., 2016; 

Samaniego et al., 2019). Therefore, communication of forecast uncertainty as well as 

forecast skill is crucial. This has resulted in an emphasis on the communication of 

probabilistic forecasts, with increased efforts from the forecasting community to 

understand how users perceive uncertainty information, to develop forecast 

visualization tools and products for graphical representation and to provide guidance 

and support in using ensemble forecasts in decision-making (Ramos et al., 2013). 

 

Lavers et al. (2020) suggest that decision-making in several water management sectors 

is not fully developed to consider probabilistic scenarios. The user community 

includes not only specialists in the disciplines of hydrology and water management, 

but also individuals with no experience in using forecasts. Users may interpret 

ensemble streamflow forecasts in different ways and be reluctant to use them in their 

decision-making unless they have confidence in forecast skill and uncertainty. It is 

important therefore, to avoid uncertainty miscommunication by forecast providers, as 

well as misinterpretation by users. Efficient communication of forecasts requires 

quantification of uncertainty, as well as an assessment of users’ perception of 

uncertainty (Ramos et al., 2010).  

 

Communication of forecasts is a bigger challenge when seasonal streamflow forecasts 

are produced for the whole globe and need to be communicated to a large range of 

user groups in countries all over the world. An important medium for dissemination 

of global seasonal streamflow forecasts is internet websites. A good example is the 

website of the operational global-scale system GloFAS-seasonal (Emerton et al., 2018), 

which is based on a user-centred design, with user needs central to the web interface 

developed to promote simplicity, joy of use, and usability. Emerton et al. (2016) discuss 

the difficulties of incorporating global-scale forecasts into national warning chains, 

while respecting the single voice principle, which states that national services are the 

sole authoritative voice on hydro-meteorological warnings in their respective 

countries. They identify international and interdisciplinary cooperation as key in 

overcoming these difficulties and underline the importance of political agreement 

between upstream and downstream countries for the sharing of information. 

5.4.3 Forecast Adoption 

The next step in the forecast chain is adoption of forecasts by users. Adoption of 

forecast information is influenced by a complex array of factors including forecast skill, 

behavioural effects, financial and institutional constraints. A lack of forecast adoption 

is well documented, especially for seasonal time-scales (Pagano et al., 2002; Rayner et 

al., 2005; Yarnal et al. 2006; Lemos 2008; Block, 2011). Despite the potential benefits and 

wide public availability of seasonal streamflow forecasts, water managers are usually 
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reluctant to incorporate the use of seasonal forecast information into their practice.  

Reasons for this reluctance include low forecast skill, excessive uncertainty, poor 

timing of forecast production and dissemination, risk averse and inflexible behaviour 

of water managers, individual accountability, preference for established practices, 

insufficient human and institutional capacities, financial constraints, political 

disincentives, and technical difficulties in incorporating information in the existing 

decision support systems (Kirchoff et al., 2013; Coelho and Costa, 2010; Block, 2011; 

Whateley et al., 2014; Crochemore et al., 2015). 

 

In order to understand the adoption of seasonal hydro-climatic forecasts in water 

management, Whateley et al. (2014) applied the Diffusion of Innovations (DoI) 

framework (Rogers, 2003) to the water sector. DoI is a general tool to analyse the 

spread and adoption of innovations within a social system, by investigating the 

influence of five key characteristics of innovation on the rate of adoption, defined by 

Rogers (2003) as shown below in Table 5.2:  

 

Table 5.2: Key characteristics of innovation by Rogers (2003) 

 

1 Relative 

advantage 

The amount of improvement a new innovation contributes to 

present conditions. 

2 Complexity The challenges associated with understanding and utilizing a 

new innovation. 

3 Compatibility The ease at which a new innovation can be incorporated into 

existing and future decision-making processes. 

4 Trialability The ability to experiment with a new innovation without 

having to fully commit to its adoption and implementation. 

5 Observability The ability to observe the implementation and use of a new 

innovation by an external source. 

 

 

Application of the DoI framework to the use of seasonal hydro-climatic forecasts, in 

water management provides valuable insights into the issues related to the adoption 

of seasonal forecasts. Addressing the challenges faced in each of the key attributes of 

DOI may help increase forecast adoption by water managers, and therefore improve 

the value of seasonal hydro-climatic forecasts. 

 

In terms of adoption of seasonal hydroclimatic forecasts, relative advantage appears 

to be the most challenging of the five key characteristics. Typically measured against 

climatology, relative advantage depends strongly on the forecast skill, as well as the 

nature of the system being managed. In most cases, the relative advantage of seasonal 

forecasts is not evident for water managers, and seasonal forecast information is rarely 

incorporated into their operations due to perceived low forecast skill. Whateley et al. 
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(2014) suggest that decision support systems (DSS) may present a higher relative 

advantage for a given skill level. The relative advantage of seasonal forecasts may 

increase in the future with expected climate change, increasing climatic variability and 

continuing human interventions to water resource systems, thus the existing historic 

climatological record becoming less useful in predicting future conditions. 

  

Complexity is the next key characteristic influencing adoption and use of forecast 

information in water management. The challenges involved are the complexity of the 

forecast itself, i.e., the difficulty to understand or interpret, as well as the difficulty in 

obtaining it. Seasonal forecasts are typically presented in probabilistic terms, which 

makes it more difficult to incorporate into decisions than a simple deterministic 

prediction. Misinterpretation of forecast information as well as the tedious and time-

consuming process of obtaining relevant forecast information stand out as the main 

problems related to complexity, which Whateley et al. (2014) suggest may be helped 

through the increased communication between forecast providers and users, as well 

as development of local, tailored DSS. 

 

Compatibility of seasonal forecasts to water management appears to be one of the two 

most significant factors, besides relative advantage. It includes spatial, temporal and 

institutional compatibility, i.e., whether forecasts are geographically suitable for 

application to a specific system, temporally appropriate for operations, or consistent 

with institutional goals. Seasonal forecast information is often not compatible with 

water management operations. Spatial scales resolved in global climate models are 

often too coarse, which neglects local particularities, limits the predictive skill in 

hydrologic processes, and thereby the willingness of water managers to incorporate 

forecast information into the operation of local systems. The temporal compatibility of 

seasonal forecasts depends on the type of water-related system being managed, i.e., 

the temporal compatibility may be higher for the mitigation of droughts rather than 

floods. Due to their long temporal scales, seasonal forecasts are often perceived to be 

less useful than short-term forecasts, though they prove to be useful especially for 

planning purposes. Institutional compatibility presents many barriers to seasonal 

forecast adoption, including institutional rigidity, risk-aversion, financial and legal 

limitations. The issues associated with compatibility may be overcome by tailoring 

forecast information to the needs of water managers at specific locations. 

 

Trialability appears to have a small effect on the use of seasonal hydro-climatic 

forecasts in water management, although the lack of trialability may be an important 

but overlooked aspect of seasonal forecast adoption. Given the extremely large 

negative consequences of an operational error in water management, any trial of a new 

innovation holds the risk of a major failure and societal impacts. Simulation modelling 

using retrospective forecasts may address this problem, but translating model results 

to practice is a challenge. Reducing the risks associated with forecast use for instance 
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through employing insurance mechanisms to hedge the risk of low-probability events 

may help increase the adoption of seasonal hydroclimatic forecasts 

 

The final key characteristic of the DoI framework applied to seasonal forecast adoption 

is observability. It would mean in this case, the ability for water managers to witness 

other users benefiting from the use of seasonal hydroclimatic forecasts. The 

documentation of existing uses and experiences with seasonal forecasts may provide 

insight into the value of forecasts in water management operations. The flow of 

information on the benefits of seasonal forecast use is limited however, because private 

hydroelectricity firms, which are often the leading agencies to adopt seasonal forecasts 

in their operations, tend to hold back from sharing their operational procedures. 

Knowledge portals may help address the challenges of observability as they improve 

communication between forecast providers and users and provide a medium for water 

managers to collaborate and share useful information. 

5.4.4 Forecast use for decision making in water related sectors 

Appropriate use of forecasts in decision making also presents room for improvement 

of seasonal forecast value. The decision-making processes for water management are 

extremely complex, as they involve many scientific, technical, financial, social and 

environmental issues; and decisions are expected to satisfy several possibly conflicting 

objectives (Crochemore et al., 2015). Decision makers thus face the challenge of 

arriving at a decision by making an assessment of forecasts and the uncertainty 

inherent to them. The assessment is dependent on the judgement of the decision 

maker, which means that it is inevitably subjective, and likely to be biased and 

inconsistent (Kreye et al., 2011). Individuals’ biases and ignorance of uncertainty in the 

decision process may lead to misinterpretation of circumstances and erroneous 

decisions. Knowledge and experience on the part of the decision maker is crucial and 

may be achieved through cooperative engagement among forecast users, providers, 

researchers and stakeholders, in the context of workshops, training activities, games, 

simulation environments where they can experiment with forecasts and decisions. 

Another important factor is the development of decision support systems which 

produce relevant information for decision making. Decision makers need to be trained 

for assimilating the information produced by these decision support systems in order 

to maximize the benefits of using forecasts in their decisions (Coelho and Costa, 2010). 

With appropriate training and decision support tools, the potential for successful 

application of seasonal streamflow forecasts to decision making processes in several 

water-related sectors can be realized. These sectors include disaster management 

agencies and humanitarian organizations responding to floods and droughts, 

reservoir operators and hydro-power companies, water supply companies, irrigation 

agencies and the agricultural sector, the navigation sector, wildlife agencies and the 
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tourism sector, and insurance companies. While many of these sectors use short- and 

medium-term forecasts as well, they may highly benefit from forecasts of expected 

water availability and scarcity on seasonal lead times, especially for longer term 

planning purposes. Provided they have sufficient skill, seasonal forecasts may present 

an opportunity to decision makers in water-related sectors to prepare for an 

appropriate response months in advance. Forecasts produced by global hydrological 

forecasting systems in particular could be useful to international aid organizations 

operating at the global scale. 

5.4.5 Feedback from forecast users 

The final step in the forecast chain is feedback from forecast users and decision makers 

to forecast providers and researchers. Increased communication within the forecast 

community may help improve the value of seasonal forecasts by giving users an 

opportunity to take a more active role in forecast production and provision. It allows 

users to feedback their needs and thus push for development of problem-driven 

science in forecasting. It also allows forecast producers and providers to understand 

users’ needs and tailor their present and future products to these needs (Soares and 

Dessai, 2016). Output from user-specific application models for decision-making 

processes provides valuable feedback which is crucial in tailoring forecasts to specific 

applications (Lavers et al., 2020). 

5.5 Seasonal streamflow forecasts in the management of floods and 

droughts 

An essential application of seasonal streamflow forecasts is in the management of 

hydrologic extreme events such as droughts and floods. Flood and drought 

management aims to reduce the devastating socio-economic and environmental 

impacts of these disasters. The special report of the Intergovernmental Panel on 

Climate Change (IPCC, 2012), ‘Managing the risks of extreme events and disasters to 

advance climate change adaptation’, anticipates an increase in the frequency, duration 

and severity of hydrological extreme events globally due to climate change. Droughts 

are expected to increase in intensity and duration in arid regions, while extreme 

precipitation and floods events show a strong tendency to increase over large areas 

including wet tropical regions (Yuan et al., 2013; IPCC, 2013). In the same time a rise 

in the economic and social damages caused by these events is to be expected due to 

population growth, urbanization and economic development. The increasing risk 

associated with hydrological extreme events emphasize the importance of flood and 

drought mitigation for societies, and the necessity to predict the occurrence of these 

events in advance. Another implication of the changing climate and increasing climatic 
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variability is that the past climate information is becoming less useful in predicting 

hydrological extreme events that may occur in the coming months. The assumption of 

a stationary climate, which is at the basis of the use of the historical climatological 

record to force hydrological models, is losing its validity; and the relative advantage 

of seasonal climate forecasts as opposed to climatology is increasing in those parts of 

the globe where seasonal climatic predictability is good (Viel et al., 2016). Climate 

change and the related increase in seasonal hydroclimatic uncertainty, as well as the 

rising complexity of socio-economic systems necessitate more adaptive strategies in 

decision making for better management of floods and droughts, a crucial part of which 

is making the best use of available seasonal forecast information. 

 

One of the most useful measures for the mitigation of risks associated with 

hydroclimatic hazards is a well-functioning early warning system that provides 

reliable and timely information. This contributes economic benefits for developed 

countries, while it is essential for protection of lives and livelihoods in developing 

nations and vulnerable populations (Murphy et al., 2011). Seasonal forecasts buy the 

time needed to take vital actions well in advance of the anticipated hazard if they are 

integrated into efficient disaster management policies. This timing presents different 

opportunities for prevention, planning, preparedness and response (WMO, 2008). The 

value of a forecast depends on the degree to which it initiates effective mitigation 

measures. Specific response options to an expected flood or drought depend on the 

socio-economic conditions as well as the financial, technical and institutional capacity 

of the impacted regions. Often, a disaster situation overwhelms the capability of the 

affected society to cope and therefore an international response arises to provide 

assistance. Major international disaster response organizations such as the United 

Nations, the Red Cross/Red Crescent, international private voluntary organizations, 

and institutions from donor countries provide aid and assistance to national 

institutions in the affected countries.  

 

Humanitarian organizations originally had a mandate to react to disasters only after 

they take place (de Perez et al., 2015). During the last couple of decades, the focus has 

shifted to understanding and mitigation of disaster risks, in addition to post-disaster 

response and restoration. The Sendai Framework that was adopted at the Third United 

Nations World Conference on Disaster Risk Reduction held in Sendai, Japan in 2015, 

introduced a number of innovations that emerged from the discussions (UNDRR, 

2015). These include a shift to disaster risk management as opposed to disaster 

management and a strong emphasis on understanding and reduction of disaster risk 

as well as preparedness for effective response. Long term plans for response actions 

have become key components of disaster mitigation (Murphy et al., 2011). Increasing 

availability of forecasts and early warnings on several time scales has contributed to 

this development, allowing for a window of time in which to act before a potential 

extreme event occurs; and thereby reducing the adverse effects on the impacted society 
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and environment. Disaster management agencies can take different types of 

preventative action after receiving forecasts at various lead-times, ranging from hours 

to months. These types of actions have different aims, costs and preparation needs (de 

Perez et al., 2015). Short lead-time forecasts are required for emergency response, but 

within this short period of time between the warning and the actual event, the response 

options are limited. Goods, services and information are often provided in the form of 

disaster relief in this initial phase of an emergency response.  

 

In case of flood events disaster management agencies communicate the warning to 

local communities, and organise a response such as timely evacuation of the flood 

plain, relocation of valuables, distribution of water purification tablets, building 

shelters, pre-positioning relief items before roads get blocked, organizing civil defence 

and first aid procedures. Flood preparedness efforts include improvement of strategies 

for reservoir operation during high flows. In regulated basins the occurrence of 

flooding will be determined to a large extent by the operation of reservoirs upstream. 

In this case the mitigation action to prevent flooding may be the operation of the 

reservoir to release water prior to the onset of high flows into the reservoir. Longer 

lead time flood mitigation strategies include reinforcing infrastructure for flood 

defence, developing flood storage ponds, preparing for emergency response. 

 

In case of drought warnings, emergency response includes arrangement of alternative 

water sources and allocation of available water resources based on priority use criteria. 

Aid organizations can initiate transport of food aid to affected regions. Longer lead 

time drought preparedness plans are aimed at extending the availability of water and 

reducing water demand. They include adjusting planting dates, planting drought-

tolerant crops, selecting appropriate irrigation methods, applying restrictions of water 

use such as rationing programs, special water tariffs, and reduction of low-value uses. 

Water conservation measures that can be undertaken are recycling water, reduction of 

wastage, development of water allocation strategies among competing demands, 

examination of water pricing system, improved land-use practices, watershed 

management, rainwater/runoff harvesting, joint use of surface and groundwater, 

storing water in groundwater reservoirs, well improvement. Food policies can be 

adjusted to ensure adequate food stocks or regional trade linkages. With seasonal 

forecasts, aid organizations can act earlier to anticipate food-aid needs. This is 

important since international aid organizations require about four months to deliver 

food to an area after receiving confirmation of a need for aid. 

 

Chances for reducing vulnerability to disasters are better when longer term forecasts 

are integrated into decision-making processes for flood and drought preparedness as 

they provide an extended time available for prevention, planning, preparedness and 

response in order to mitigate the risks of the anticipated hazard. Seasonal forecasts on 

the global scale are potentially valuable in two ways. Firstly, international disaster 
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management and humanitarian aid agencies may benefit from them as they indicate 

regions of the world where the probability of drought or flood conditions is increased 

or reduced. Secondly, they may help improve the management of hydrological 

extremes in transboundary river basins as they offer a spatially consistent prediction 

of the future condition. 

5.6 Conclusions and discussion 

In this chapter, we discuss the skill and value of seasonal streamflow forecasts in 

general, and those produced by global scale hydrological models in particular. We 

argue that seasonal hydrological forecasting on a global scale could be especially 

valuable for transboundary river basins as well as for developing regions of the world, 

where no effective local hydrological forecasting systems exist. It has been established 

that the skill of forecasts produced by global hydrological forecasting systems varies 

considerably by region and season, showing a decrease in forecasting skill with 

increasing lead time, and that in many cases, seasonal streamflow forecasts produced 

by these large-scale systems need to have a better skill before they can be adopted for 

water management applications. However, even with little added skill, the forecast 

may still be useful for end-users, allowing them to decide if they should take the risk 

of using the forecast information. We conclude that the success of a hydrological 

forecasting system will ultimately be determined not by its skill but by the effect it has 

on decision-making for water management. The current ability of seasonal streamflow 

forecasting systems to predict the right category of an event months ahead is 

potentially valuable for many water-related applications. 

 

A review of the literature to determine possible ways of improving the value of 

seasonal forecasts shows that the realization of the potential added value depends 

largely on the collaboration between forecast producers and users, during each link in 

the forecast chain, i.e., communication, adoption, use of forecasts in decision-making 

and feedback from users. Our conclusion is that appropriate communication of 

forecast uncertainty as well as forecast skill is the crucial first step in order to avoid 

misinterpretation by users. Faced with the challenges of communication when 

seasonal streamflow forecasts are produced for the whole globe and have to be 

disseminated to users in countries all over the world, we emphasize the need for 

international cooperation as well as the importance of internet websites based on a 

user-centred design as a medium for dissemination of global seasonal streamflow 

forecasts. We identify the reasons for the lack of adoption of seasonal forecasts by users 

as perceived low forecast skill, behavioural effects, technical, financial and 

institutional constraints. Our recommendations for increasing adoption by users are: 

developing decision support systems tailored to users’ needs, reducing the risks of 
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forecast use through insurance hedging mechanisms, as well as building knowledge 

portals to provide a medium for communication and information sharing. For 

successful application of seasonal forecasts in water-related sectors, we recognize the 

extreme complexity of the decision-making processes for water management, and the 

challenges of application of seasonal forecasts into these processes, given the 

uncertainty inherent to them. An important facilitator of forecast use appears to be the 

development of decision support systems and application models in various water-

related sectors. Knowledge and experience turn out to be crucial in decision making, 

and attainable through collaboration among forecast users, providers, researchers and 

stakeholders; workshops, training activities, games, simulation environments where 

professionals can experiment with forecasts and decisions. Such communication 

opportunities allow decision makers and forecast users to provide valuable feedback 

to researchers and forecast providers, so that forecast products can be tailored to 

specific needs of users.  

 

Appropriate use of seasonal forecasts is vital in the management of floods and 

droughts, in order to reduce the devastating socio-economic and environmental 

impacts of these disasters. The anticipated global increase in the frequency, duration 

and severity of hydrological extreme events due to climate change, as well as the rise 

in the economic and social damages caused by these events due to population growth, 

urbanization and economic development emphasize the importance of flood and 

drought mitigation and the necessity to predict the occurrence of these events in 

advance. The value of seasonal forecasts which provide the time needed for 

prevention, planning, preparedness and response, depends on their level of 

integration into efficient disaster management policies and on the degree to which they 

initiate effective mitigation measures. A shift of focus to disaster risk management 

instead of disaster management is arising as well as a strong emphasis on reduction of 

disaster risk and preparedness for effective response through long-term planning. 

There exist many different types of preventative action that may be taken by disaster 

management agencies in case of flood and drought events, in short and long-term, and 

the chances for reducing vulnerability to disasters are better when longer term 

forecasts are integrated into decision-making processes. We conclude that seasonal 

forecasts are useful because they provide a longer time for mitigation of the risks posed 

by the anticipated hazard, and that seasonal forecasting at the global scale has 

potential value for the operations of international disaster aid agencies, as well as for 

management of extreme hydrological events in transboundary river basins. 
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Synthesis 

This thesis consists of three studies on the skill of a global seasonal streamflow 

forecasting system and a discussion on the value of seasonal streamflow forecasts on 

the global scale. In this concluding chapter, the major findings of these studies are 

discussed in relation to the research objectives before general conclusions are drawn 

and recommendations presented. These objectives are iterated here: 

 

1) to identify a methodology that can serve as a benchmark verification procedure for 

hydrological forecasting 

2) to assess the prospect of using a global hydrological model GHM for forecasting 

hydrological extremes 

3) to determine the relative contributions of meteorological forcing and initial 

hydrologic conditions to the skill of seasonal streamflow forecasts 

4) to identify promising skill improvement methods 

5) to assess the total skill of hydrological forecasts as affected by errors in model 

structure, in the estimation of initial hydrologic conditions as well as in the 

meteorological forcing obtained by numerical weather prediction 

6) to shed light on the value of global scale seasonal streamflow forecasts for water 

management 

7) to discuss possible ways to improve the value during various stages of the forecast 

chain 

6.1 Assessment of the prospective skill of a GHM 

The first study presented in Chapter 2 addresses the first 2 research objectives as can 

be seen in Fig 1.1, which displays a conceptual schematization of the logical 

progression of research in this thesis. This first study is an initial step in assessing the 

prospect of global hydrological forecasting, by testing the ability of the global 

hydrological model PC-Raster Global Water Balance (PCR-GLOBWB) in reproducing 

the occurrence of past extremes in the monthly discharge of 20 large rivers of the 

world. Model skill is assessed in three ways: first in simulating hydrographs, second 

in reproducing monthly anomalies and third in reproducing flood and drought events. 

This procedure provides a detailed assessment of forecasting skill and an insight into 

which types of forecasting are more promising. Verification of non-bias-corrected 
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hydrographs that reflects model and forcing errors proves to be useful since it provides 

an opportunity for improvement and allows comparison with the results of other 

studies which use non-bias-corrected data. Eliminating the systematic bias due to 

model errors or forcing provides an indication of the maximum skill that can be 

achieved in operational forecasting. Simulations with PCR-GLOBWB are biased for 

most basins, and the skill in reproducing hydrographs is lower than the observed 

climatology. The model skill improves significantly after a post-processing bias 

correction and surpasses the skill of the observed climatology in most basins. Results 

of the analysis indicate that the skill obtained in reproducing monthly anomalies is 

higher than the climatology for all basins. The model also shows skill in reproducing 

floods and droughts, with a markedly better performance in the case of floods. The 

model skill surpasses that of a simple water balance estimate in all cases. Although 

simulated hydrographs may be biased and do not always outperform the observed 

climatology even after bias correction, higher skills can be attained in forecasting the 

occurrence of monthly anomalies as well as floods. I conclude that the use of PCR-

GLOBWB for operational forecasting of monthly hydrological extremes is promising, 

and that the prospects for seasonal forecasting with PCR-GLOBWB are positive. Given 

the similarity of PCR-GLOBWB to other GHMs in model structure and 

parameterization, comparability of its performance in reproducing runoff to those of 

other GHMs and the forcing data being similar to those used in simulations with other 

GHMs and LSMs (land surface models), I argue that this conclusion is valid for other 

comparable GHMs and LSMs as well.  

6.2 Assessment of the contribution of ICs and MF to forecast skill 

In the previous assessment in Chapter 2, actual meteorological forecasts (MF) are not 

included but data from the observed climatology are used in order to concisely 

quantify the maximum attainable forecasting skill, also assuming initial conditions 

(ICs) are perfectly known. In this study presented in Chapter 3, research objectives 3 

and 4 are assessed (see Fig 1.1). The relative contributions of initial conditions (ICs) 

and meteorological forcing (MF) to the forecasting skill of the global seasonal 

streamflow forecasting system Flood Early Warning System-World (FEWS-World) are 

investigated. Potential improvement in forecasting skill through better climate 

prediction or by better estimation of initial conditions through data assimilation 

depends on the relative importance of these two sources of uncertainty. The impact of 

both sources of forecast uncertainty is explored at large river basins across the globe 

using the ensemble streamflow prediction (ESP) and reverse ensemble streamflow 

prediction (revESP) procedure. Global monthly streamflow is simulated with lead 

times of 1–6 months for a historical period of 30 years (1981–2010). The ESP and revESP 

forecast ensembles are compared with retrospective model simulations driven by 
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meteorological observations, thus eliminating model errors and relating predictability 

only to knowledge of ICs and the uncertainty in future MF. The variance of the ESP 

and revESP forecast ensembles are compared to the climatological variance by 

calculating the ratios of the mean squared error (MSE) of both ESP and revESP to the 

MSE of the climatology for 78 discharge stations on major global rivers, for 12 months 

of the year and for 6 lead times. Also, the critical lead time (CLT) after which the 

importance of ICs is surpassed by that of MF, is calculated for the corresponding basins 

and for each month of the year.  Skill maps for the ESP and revESP as well as the CLT 

values indicate that the contribution of ICs and MF to hydrological forecasting skill 

varies considerably according to location, season and lead time. These results are 

analysed in the context of prevailing hydroclimatic conditions for several larger basins. 

This analysis suggests that in some basins forecast skill may be improved by better 

estimation of initial hydrologic states through assimilation of snow, soil moisture or 

surface water data. In others, improvement of forecast skill depends on more accurate 

seasonal climate prediction. General patterns are identified in the results based on 

hydro-climatological conditions, for arctic and snow-fed basins, monsoonal basins and 

for very large rivers. This shows that for arctic rivers as well as for rivers fed by snow 

and ice from mountainous regions, such as the Volga and Colorado, forecasts of high 

flows during the melt season depend largely on the ice and snowpack, especially 

where these have a high interannual variability. Thus, forecasts in these basins may 

benefit from assimilation of data on the snow and ice accumulated during the cold 

season. It is also recognized however, that in some snow-fed basins such as the Yenisey 

and the Mississippi, the onset of ice and/or snowmelt and consequently the timing of 

peak flow are highly sensitive to temperature changes at the end of the cold season, 

and consequently the importance of ICs diminishes in these cases. So, my conclusion 

is that improvement of forecast skill in these basins depends more strongly on better 

climate prediction. For monsoon-dominated rivers, it is observed that the interannual 

variability of the monsoon is the main factor determining the skill of hydrological 

forecasts for the wet period. In basins such as the Brahmaputra and the Yangtze where 

the onset of the thawing of snowpack and glaciers coincides with the start of the 

monsoon season, forecasts of high flows are dominated by the MF and skill 

improvement depends on prediction of the monsoon. ICs seem to play a more 

important role in basins like the Indus where snow and ice have a larger contribution 

to streamflow, especially when the ice and snowpack is variable from year to year. I 

conclude that better estimation of initial snow/ice states is likely to improve forecast 

skill during the wet season in such basins. Finally in large basins like the Amazon with 

extensive flood plains and large travel times of surface water, knowledge of ICs of 

surface water turns out to be an important source of skill for high flow forecasts on 

lead times of 2–3 months. In addition to surface water, the role of initial groundwater 

states also gains importance during the recession stage, when the groundwater 

discharge plays an important role. 
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6.3 Assessment of the skill of seasonal streamflow forecasts in actual 

forecasting mode 

In the next study presented in Chapter 4, research objective 5 is addressed and the 

actual forecasting skill is assessed in real forecasting mode, where the ICs and the MF 

are uncertain (see Fig 1.1). To this end, I conduct a skill assessment of the FEWS-World 

system, which uses actual seasonal meteorological forecasts as input into the global 

hydrological model PCR-GLOBWB. The model is run with the ESP procedure as well 

as with European Centre for Middle Range Weather Forecasts (ECMWF) S3 bias-

corrected seasonal meteorological forecast ensembles. Ensemble forecasts of monthly 

discharges are produced for 20 large rivers of the world, with lead times of up to 6 

months. The skill of ECMWF S3 forecasts compared to the reference ESP forecasts are 

quantified using the Brier skill score (BSS), both for high and low flows. The theoretical 

skill is determined by comparing the results against model simulations, and the actual 

skill is determined by comparing against discharge observations. Also, the ratios of 

actual to theoretical skill are calculated. Analysis of these results in the context of 

prevailing hydroclimatic conditions suggested that the skill varies considerably 

according to location, season and lead time. It is determined that in general, the 

performance of the ECMWF S3 forecast run is close to that of the ESP forecast run. 

There are basins where the ECMWF S3 forecast run performs significantly better than 

the ESP, during certain periods of the year and at certain lead times. However, there 

are in fact more cases where the ECMWF S3 forecast run performs worse than the ESP. 

My conclusion is that in most cases, the apparent potential for improvement in 

seasonal hydrological forecasts by using better meteorological forecasts cannot be 

realized as yet with the model PCR-GLOBWB and the ECMWF S3 re-forecast dataset. 

I recommend that as more accurate global hydrological models and more skillful 

seasonal meteorological forecasts become available in the future, further studies 

would be needed to assess the improvement in seasonal hydrological forecasts, as well 

as the effect of meteorological forecast quality vs. model errors on the hydrological 

forecasts. 

 

Although my findings in skill assessment studies indicate that the skill of forecasts 

produced by global hydrological forecasting systems varies considerably by region 

and season, showing a decrease in forecasting skill with increasing lead time, and that 

in many cases, seasonal streamflow forecasts produced by these large-scale systems 

need to have a better skill before they can be adopted for water management 

applications, I realize that even with little added skill, forecasts may still be useful for 

end-users, allowing them to decide if they should take the risk of using the forecast 

information. I recognize that the success of a hydrological forecasting system will 

ultimately be determined not only by its skill but also by its value to inform decision-

making for water management. 



6.4 Discussion of the skill and value of global seasonal streamflow forecasts 111 

6.4 Discussion of the skill and value of global seasonal streamflow 

forecasts 

In Chapter 5, the last two research objectives 6 and 7 are addressed, as can be seen in 

Fig 1.1. The value of seasonal streamflow forecasts in general, and those produced by 

global scale hydrological models in particular are discussed. I argue that seasonal 

hydrological forecasting on a global scale could be especially valuable for 

transboundary river basins as well as for developing regions of the world, where no 

effective local hydrological forecasting systems exist. I conclude that the current ability 

of seasonal streamflow forecasting systems to predict the right category of an event 

months ahead is potentially valuable for many water-related applications. A review of 

the literature to determine possible ways of improving the value of seasonal forecasts 

shows that the realization of the potential added value depends largely on the 

collaboration between forecast producers and users, during each link in the forecast 

chain, i.e., forecast construction, communication, adoption, use of forecasts in 

decision-making and feedback from stakeholders and decision makers to forecasters 

and researchers. Appropriate communication of forecast uncertainty as well as 

forecast skill turns out to be a crucial step in order to avoid misinterpretation by users. 

Faced with the challenges of communication when seasonal streamflow forecasts are 

produced for the whole globe and have to be disseminated to users in countries all 

over the world, I emphasize the need for international cooperation as well as the 

importance of internet websites based on a user-centred design as a medium for 

dissemination of global seasonal streamflow forecasts. The reasons for the lack of 

adoption of seasonal forecasts by users are identified as perceived low forecast skill, 

behavioural effects, technical, financial and institutional constraints. My 

recommendations for increasing adoption by users are developing decision support 

systems tailored to users’ needs, reducing the risks of forecast use through insurance 

mechanisms, as well as building knowledge portals to provide a medium for 

communication and information sharing. For a successful application of seasonal 

forecasts to decision making in water management, one needs to recognize the extreme 

complexity of the decision-making processes for water management, and the 

challenges of application of seasonal forecasts into these processes, given the 

uncertainty inherent to them. Knowledge and experience are identified to be crucial in 

decision making, and attainable through collaboration among forecast users, 

providers, researchers and stakeholders; workshops, training activities, games, 

simulation environments where professionals can experiment with forecasts and 

decisions. Another important facilitator of forecast use is found to be the development 

of decision support systems and application models in various water-related sectors. 

 

As I look specifically into the case of forecast use in the mitigation of hydrological 

disasters, I conclude that appropriate use of seasonal forecasts is vital in the 

management of floods and droughts, in order to reduce the devastating socio-
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economic and environmental impacts of these disasters. I argue that the anticipated 

global increase in the frequency, duration and severity of hydrological extreme events 

due to climate change, as well as the rise in the economic and social damages caused 

by these events due to population growth, urbanization and economic development 

highlight the importance of flood and drought mitigation and the necessity to predict 

the occurrence of these events in advance. The value of seasonal forecasts which 

provide the time needed for prevention, planning, preparedness and response, is 

found to depend on their level of integration into efficient disaster management 

policies and on the degree to which they initiate effective mitigation measures. A shift 

of focus to disaster risk management instead of disaster management is arising as well 

as a strong emphasis on reduction of disaster risk and preparedness for effective 

response through long-term planning. With several existing types of preventative 

action that may be taken by disaster management agencies in case of flood and drought 

events, in short and long-term, I argue that the chances for reducing vulnerability to 

disasters are better when longer term forecasts are integrated into decision-making 

processes. I conclude that seasonal forecasts are vital as they provide the much-needed 

time for mitigation of the risks posed by the anticipated hazard, and that seasonal 

forecasting at the global scale has potential value for the operations of international 

disaster aid agencies, as well as for management of extreme hydrological events in 

transboundary river basins. 

6.5 Conclusions and recommendations 

Returning to the discussion of global hydrology presented at the very beginning of the 

thesis introduction, and given the aforementioned scientific, technical, and economic 

rationale behind operating global hydrological forecasting systems, I argue that in an 

era of global environmental change, seasonal streamflow forecasting on the global 

scale is not only relevant but also essential. 

 

The conclusions reached through my studies may be summarized as: 

 

1. Assessment of the prospective skill of a GHM 

 

a. The use of PCR-GLOBWB for operational forecasting of monthly 

hydrological extremes is promising, and the prospects for seasonal 

forecasting with PCR-GLOBWB are positive. 

 

b. Given the similarity of PCR-GLOBWB to other GHMs in model structure 

and parameterization, comparability of its performance in reproducing 

runoff to those of other GHMs and the forcing data being similar to those 
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used in simulations with other GHMs and LSMs, the previous 

conclusion is valid for other comparable GHMs and LSMs as well. 

 

2. Assessment of the contribution of ICs and MF to forecast skill 

 

a. In some basins forecast skill may be improved by better estimation of 

initial hydrologic states through assimilation of snow, soil moisture or 

surface water data. In others improvement of forecast skill depends on 

more accurate seasonal climate prediction. 

 

b. General patterns are identified in the results based on hydro-

climatological conditions, for arctic and snow-fed basins, monsoonal 

basins and for very large rivers. 

 

c. In arctic rivers as well as in rivers fed by snow and ice from mountainous 

regions, such as the Volga and Colorado, forecasts of high flows during 

the melt season depend largely on the ice and snowpack, especially 

where these have a high interannual variability. Thus, forecasts in these 

basins may benefit from assimilation of data on the snow and ice 

accumulated during the cold season.  

 

d. In some snow-fed basins such as the Yenisey and the Mississippi, where 

the onset of ice and/or snowmelt and consequently the timing of peak 

flow are highly sensitive to temperature changes at the end of the cold 

season, the importance of ICs diminishes, and improvement of forecast 

skill in these basins depends more strongly on better climate prediction. 

 

e. In monsoon-dominated rivers, the interannual variability of the 

monsoon is the main factor determining the skill of hydrological 

forecasts for the wet period. In basins such as the Brahmaputra and the 

Yangtze where the onset of the thawing of snowpack and glaciers 

coincides with the start of the monsoon season, forecasts of high flows 

are dominated by the MF and skill improvement depends on prediction 

of the monsoon. 

 

f. ICs seem to play a more important role in some monsoonal basins like 

the Indus where snow and ice have a larger contribution to streamflow, 

especially when the ice and snowpack is variable from year to year. 

Better estimation of initial snow/ice states is likely to improve forecast 

skill during the wet season in such basins. 
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g. In large basins like the Amazon with extensive flood plains and large 

travel times of surface water, knowledge of ICs of surface water turns out 

to be an important source of skill for high flow forecasts on lead times of 

2–3 months. In addition to surface water, the role of initial groundwater 

states also gains importance during the recession stage, when the 

groundwater discharge plays an important role. 

 

3. Assessment of the actual skill of seasonal streamflow forecasts 

 

a. The skill varies considerably according to location, season and lead time, 

but in general, the performance of the ECMWF S3 forecast run is close to 

that of the reference ESP forecast run. 

 

b. While there are a few basins where the ECMWF S3 forecast run performs 

significantly better than the ESP, during certain periods of the year and 

at certain lead times, there are in fact more cases where the ECMWF S3 

forecast run performs worse than the ESP 

 

c. In most cases, the apparent potential for improvement in seasonal 

hydrological forecasts by using better meteorological forecasts cannot be 

realized as yet with the model PCR-GLOBWB and the ECMWF S3 re-

forecast dataset. 

 

d. As more accurate global hydrological models and more skillful seasonal 

meteorological forecasts become available in the future, further studies 

would be needed to assess the improvement in seasonal hydrological 

forecasts, as well as the effect of meteorological forecast quality vs. model 

errors on the hydrological forecasts. 

 

4. Discussion of the skill and value of global seasonal streamflow forecasts 

 

a. Seasonal hydrological forecasting on a global scale could be especially 

valuable for transboundary river basins as well as for developing regions 

of the world, where no effective local hydrological forecasting systems 

exist. 

 

b. The current ability of seasonal streamflow forecasting systems to predict 

the right category of an event months ahead is potentially valuable for 

many water-related applications.  

 

c. The realization of the potential added value depends largely on the 

collaboration between forecast producers and users, during each link in 
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the forecast chain, i.e., forecast construction, communication, adoption, 

use of forecasts in decision-making and feedback from stakeholders and 

decision makers to forecasters and researchers.  

 

d. Forecast providers should understand users’ needs and tailor their 

present and future products to these needs.  

 

e. Appropriate communication of forecast uncertainty as well as forecast 

skill is crucial first in order to avoid misinterpretation by users. 

 

f. The challenges of communication are greater when seasonal streamflow 

forecasts are produced for the whole globe and have to be disseminated 

to users in countries all over the world, which necessitates international 

cooperation as well as the use of internet websites based on a user-

centred design. 

 

g. The reasons for the lack of adoption of seasonal forecasts by users are 

perceived low forecast skill, behavioural effects, technical, financial and 

institutional constraints. 

 

h. Adoption by users may be encouraged through developing decision 

support systems tailored to users’ needs, reducing the risks of forecast 

use through insurance mechanisms, as well as building knowledge 

portals to provide a medium for communication and information 

sharing.  

 

i. Given the extreme complexity of the decision-making processes for 

water management, and the inherent uncertainty in the application of 

seasonal forecast into these processes, knowledge and experience are 

crucial, and attainable through collaboration among forecast users, 

providers, researchers, and stakeholders. 

 

j. Appropriate use of seasonal forecasts is vital in the management of 

floods and droughts, as they provide the much-needed time for 

prevention, planning, preparedness, and response. 

 

k. The value of seasonal forecasts in reducing the devastating socio-

economic and environmental impacts of these disasters depends on their 

level of integration into efficient disaster management policies and on 

the degree to which they initiate effective mitigation measures 
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l. Seasonal forecasting at the global scale has potential value for the 

operations of international disaster aid agencies, as well as for 

management of extreme hydrological events in transboundary river 

basins. 

 

Synthesizing my conclusions, I maintain that global seasonal streamflow forecasting 

offers a great potential to fulfil a critical societal need, but there is a long way to go 

from its current state to reach this full potential. Continuing efforts by scientific 

research groups and the forecasting community at large would help reach this 

potential. I may summarize my main recommendations to improve the skill and value 

of global seasonal hydrological forecasts in the future as: 

 

• improvements in model structure and parametrization 

• inclusion of new and better model features such as reservoir operations and 

hydrodynamic routing 

• refinement of spatial resolution of models 

• enhancement of computing capabilities 

• better prediction of future climate 

• better estimation of initial hydrologic states through assimilation of higher 

quality data derived from ground observations and remote sensing by satellite 

and ground-based radars 

• enhanced collaboration between hydrological and meteorological 

communities, as well as between forecast producers, users, researchers, and 

stakeholders 

• enhanced international cooperation in data sharing and decision making 

• developing internet websites based on a user-centred design as a medium for 

forecast dissemination 

• developing decision support systems tailored to users’ needs 

• reducing the risks of forecast use through insurance hedging mechanisms 

• building knowledge portals as a medium for communication and information 

sharing 

• organizing workshops, training activities, games, simulation environments for 

professionals 
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Summary 

In our changing world, humans experience increasingly the negative consequences of 

floods and droughts. While short-term and mid-term hydrological forecasts can be 

vital for risk management on the event scale, seasonal forecasts are necessary to 

increase global preparedness and to inform local mitigation. Such forecasts with longer 

lead times extend over several months, and cover larger areas from continental to 

global scale. These global seasonal forecasts should eventually become operational, 

thus providing a constant and consistent feed of information. The quality of this 

information, however, needs to be assessed and this thesis explores the potential of 

global hydrological models in operational seasonal forecasting applications. The 

research aims to assess the skill and value of seasonal streamflow forecasts produced 

by global hydrological models, as well as to investigate possible ways to improve the 

current skill and value. 

 

To assess the prospect of applying a global hydrological model for seasonal 

forecasting, global terrestrial hydrology is simulated with the model PCR-GLOBWB, 

which is very similar to other large scale hydrological models in its model structure 

and parameterization. As a first step, the model is forced with a meteorological data 

set based on historical observations and its skill in simulating the hydrology is 

analysed by adopting methods that were primarily developed for the verification of 

meteorological forecasts. The skill is assessed based on monthly discharges for twenty 

large river basins across the world. For these basins, PCR-GLOBWB cannot forecast 

the historical hydrographs adequately for all basins but the results indicate higher 

skills can be attained in forecasting the occurrence of monthly streamflow anomalies 

that are indicative of floods and droughts. The use of global hydrological models for 

operational forecasting of monthly hydrological extremes is found promising, and the 

prospects for seasonal forecasting with PCR-GLOBWB or other comparable models 

are assessed to be positive. 

  

The simulated hydrological response depends on both the initial hydrological 

conditions and the meteorological forcing. Uncertainty in both inputs is important and 

is evaluated by comparing Ensemble Streamflow Prediction (ESP) and reverse ESP 

forecast ensembles with retrospective model simulations driven by meteorological 

observations. The results are analysed in the context of prevailing hydroclimatic 

conditions for larger rivers across the globe. The influence of the initial conditions and 

meteorological forcing on the hydrological forecasting skill is found to vary 

considerably according to location, season and lead time. As the meteorological 
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forcing deteriorates in quality with longer lead times, the initial conditions gain 

importance; without correct initial conditions, the relatively better quality of the 

meteorological forcing early in the forecasting period will be largely obscured. In 

particular snow and ice are important sources of water that contribute to the quality 

of long-term forecasts, but their influence varies depending on the nature of the river 

basin considered. For arctic and snow fed rivers, forecasts of high flows may benefit 

from assimilation of snow and ice data. In some snow fed basins where the onset of 

melting is highly sensitive to temperature changes, forecast skill depends on better 

climate prediction. Groundwater is a slow hydrological process that also strongly 

influences the skill. In very large rivers, initial surface water and groundwater states 

are important contributors to skill. In monsoonal basins, the variability of the monsoon 

dominates forecasting skill, except for those where snow and ice contribute to 

streamflow. 

  

The total skill of a forecasting system is affected by the errors in the model structure 

and parameterization, in the initial conditions and in the meteorological forcing. When 

the total skill is assessed in actual forecasting mode, actual seasonal meteorological 

forecasts are used as input into the global hydrological model PCR-GLOBWB. The 

model is forced with S3 seasonal meteorological forecast ensembles from the European 

Centre for Medium-range Weather Forecasts (ECMWF) as well as with probabilistic 

meteorological ensembles obtained following the ESP procedure. Ensemble forecasts 

of monthly discharges for twenty large rivers of the world are produced with lead 

times of up to six months. The skill of ECMWF S3 forecasts compared to the reference 

ESP forecasts are quantified using the Brier skill score (BSS), both for high and low 

flows. Analysis of these results suggest that forecasting skill decreases with increasing 

lead time and that it varies considerably by region and season. The performance of 

ECMWF S3 forecasts is close to that of the ESP forecasts. In the current setup, the 

forecasting skill is limited and needs to be improved before forecasts can be adopted 

for water management applications. However, even with little added skill, forecasts 

may still be useful for end-users, allowing them to decide for themselves if they should 

take the risk of using the forecast information. 

 

The success of a hydrological forecasting system will ultimately be determined not 

only by its skill but also by its value to inform decision-making for water management. 

This thesis concludes by presenting a study on the value of seasonal streamflow 

forecasts, where the interaction between skill and value is explored and possible ways 

to improve the value of seasonal hydrological forecasts on a global scale for water-

related applications are discussed with an emphasis on flood and drought mitigation. 

The current ability of seasonal streamflow forecasting systems to predict the right 

category of an event months ahead is potentially valuable for many water-related 

applications. Seasonal hydrological forecasting on a global scale could be especially 

valuable for transboundary river basins as well as for developing regions of the world, 
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where no effective local hydrological forecasting systems exist. The realization of the 

potential added value depends largely on the collaboration between forecast 

producers and users, during each link in the forecast chain, i.e., construction of 

forecasts, their communication, their adoption, their use in decision-making and 

finally, during feedback from stakeholders and decision makers to forecasters and 

researchers. 
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Samenvatting 

In onze veranderende wereld ondervindt de mens steeds meer de negatieve gevolgen 

van overstromingen en droogte. Hoewel hydrologische voorspellingen op korte en 

middellange termijn van vitaal belang kunnen zijn voor risicobeheer bij een 

gebeurtenis, is er behoefte aan seizoensvoorspellingen om de wereldwijde paraatheid 

te vergroten en lokale mitigatie form te geven. Zulke voorspellingen hebben langere 

aanlooptijden die zich uitstreken over meerdere maanden, en zij beslaan grotere 

gebieden, op continentale tot wereldschaal. Dergelijke wereldwijde 

seizoensvoorspellingen zouden uiteindelijk operationeel moeten worden, zodat een 

constante en consistente stroom van informatie kan worden geboden. De kwaliteit van 

deze informatie moet echter worden beoordeeld en dit proefschrift verkent het 

potentieel van wereldwijde hydrologische modellen in operationele 

seizoensvoorspellingen op wereldschaal. Het onderzoek heeft tot doel de 

nauwkeurigheid en de waarde van seizoensgebonden stroomvoorspellingen te 

beoordelen zoals die worden geproduceerd door wereldwijde hydrologische 

modellen, en om mogelijke manieren te onderzoeken om de huidige nauwkeurigheid 

en waarde hiervan te verbeteren.  

 

Om de toepassing van een mondiale hydrologische model binnen 

seizoensvoorspellingen te beoordelen, is gebruik gemaakt van het mondiale 

hydrologische model PCR-GLOBWB, dat qua modelstructuur en parameterisatie sterk 

lijkt op andere grootschalige hydrologische modellen. Als eerste stap is dit 

hydrologische model toegepast met klimaatforceringen op basis van historische 

waarnemingen en is zijn nauwkeurigheid om de hydrologie te simuleren geanalyseerd 

met methoden die voornamelijk ontwikkeld zijn voor de verificatie van 

meteorologische voorspellingen. De nauwkeurigheid is beoordeeld op basis van de 

maandelijkse rivierafvoeren voor twintig grote stroomgebieden over de hele wereld. 

Voor deze stroomgebieden kan PCR-GLOBWB de historische afvoerreeksen niet 

volledig adequaat voorspellen, maar de resultaten geven aan dat hogere 

nauwkeurigheden verkregen kunnen worden bij het voorspellen van het optreden van 

maandelijkse anomalieën. Het gebruik van mondiale hydrologische modellen voor 

operationele voorspellingen van maandelijkse hydrologische extremen is 

veelbelovend, en de vooruitzichten voor seizoensvoorspellingen met PCR-GLOBWB 

of andere vergelijkbare modellen kan als positief worden beoordeeld. 

 

De gesimuleerde hydrologische respons hangt af van zowel de beginvoorwaarden als 

de meteorologische forcering. Onzekerheid in beide invoeren is belangrijk en is 
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geëvalueerd door Ensemble Streamflow Prediction (ESP)- en reverse-ESP-

voorspellingsensembles te vergelijken met retrospectieve modelsimulaties op basis 

van meteorologische waarnemingen. De resultaten zijn geanalyseerd in relatie tot de 

heersende hydro-klimatologische omstandigheden voor grotere rivieren over de hele 

wereld. De invloed van de beginvoorwaarden en meteorologische forcering op de 

hydrologische voorspellingsnauwkeurigheid varieert aanzienlijk afhankelijk van de 

locatie, het seizoen en de aanlooptijd. Naarmate de meteorologische forcering in 

kwaliteit verslechtert met langere aanlooptijden, winnen de beginvoorwaarden aan 

belang; zonder de juiste beginvoorwaarden, zal de relatief betere kwaliteit van de 

meteorologische forcering vroeg in de voorspellingsperiode grotendeels teniet worden 

gedaan. Met name sneeuw en ijs zijn belangrijke waterbronnen die bijdragen aan de 

temporele variabiliteit, maar hun invloed varieert per stroomgebied. Voor arctische en 

voor met sneeuw gevoede rivieren kunnen voorspellingen van hoge afvoeren 

verbeteren door de assimilatie van sneeuw- en ijsgegevens. In sommige met sneeuw 

gevoede bekkens waar het begin van het smelten zeer gevoelig is voor 

temperatuurveranderingen, hangt de vaardigheid in het voorspellen af van betere 

klimaatvoorspellingen. Grondwater is een ander langzaam hydrologisch proces dat 

ook de nauwkeurigheid sterk beïnvloedt. In zeer grote rivieren zijn de initiële 

oppervlaktewater- en grondwatertoestanden belangrijke bronnen van 

nauwkeurigheid. In moessongebieden domineert de variabiliteit van de moesson de 

nauwkeurigheid bij het voorspellen, behalve in die gebieden waar sneeuw en ijs 

bijdragen aan de rivierafvoer. 

 

De totale nauwkeurigheid wordt beïnvloed door de fouten in de modelstructuur en 

parameterisatie, door fouten in de beginvoorwaarden en door fouten in de 

meteorologische forcering. Bij de beoordeling van de totale vaardigheid in de 

werkelijke voorspellingsmodus, zijn actuele seizoensmeteorologische voorspellingen 

gebruikt als input voor het mondiale hydrologische model PCR-GLOBWB. Het model 

is geforceerd met S3-seizoensmeteorologische voorspellingsensembles van het 

European Centre for Medium-range Weather Forecasts (ECMWF). Daarnaast zijn 

probabilistische meteorologische ensembles verkregen volgens de ESP-procedure. Er 

zijn ensemblevoorspellingen van maandelijkse afvoeren gemaakt voor twintig grote 

rivieren in de wereld, met aanlooptijden tot wel zes maanden. De vaardigheid van de 

ECMWF S3-voorspellingen is vergeleken met de referentie-ESP-voorspellingen en is 

gekwantificeerd met behulp van de Brier-vaardigheidsscore (BSS), zowel voor hoge 

als lage afvoeren. Uit analyse van deze resultaten blijkt dat de 

voorspellingsvaardigheid afneemt met toenemende aanlooptijd en dat deze 

aanzienlijk varieert per regio en seizoen. De prestaties van de ECMWF S3-

voorspellingen blijken vergelijkbaar te zijn met die van de ESP. In de huidige opzet is 

de voorspellende nauwkeurigheid dus beperkt en zal deze verbeterd moeten worden 

voordat zij toegepast kunnen worden voor toepassingen op het gebied van 

waterbeheer. Echter, zelfs zonder directe nauwkeurigheid, kan de voorspellingen nog 
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steeds nuttig zijn voor eindgebruikers, waardoor ze zelf kunnen beslissen of ze het 

risico moeten nemen om de voorspellingsinformatie te gebruiken. 

 

Het succes van een hydrologisch voorspellingssysteem zal uiteindelijk niet alleen 

worden bepaald door zijn nauwkeurigheid, maar ook door de waarde waarmee 

besluitvorming voor waterbeheer ondersteund kan worden. Tenslotte, presenteert dit 

proefschrift een onderzoek naar de waarde van seizoensgebonden 

afvoervoorspellingen, waarbij de interactie tussen nauwkeurigheid en waarde wordt 

onderzocht en mogelijke manieren worden besproken om de waarde van 

seizoensgebonden hydrologische voorspellingen op wereldschaal voor 

watergerelateerde toepassingen te verbeteren, met de nadruk op het matigen van de 

impact van overstromingen en droogte. Het huidige vermogen van hydrologische 

seizoensvoorspellingssystemen om maanden van tevoren de juiste categorie van een 

gebeurtenis te voorspellen, is potentieel waardevol voor veel watergerelateerde 

toepassingen. Seizoensgebonden hydrologische voorspellingen op mondiale schaal 

kunnen vooral waardevol zijn voor grensoverschrijdende stroomgebieden, maar ook 

voor ontwikkelingsgebieden, waar nog geen effectieve lokale hydrologische 

voorspellingssystemen bestaan. De potentiële toegevoegde waarde hangt grotendeels 

af van de wisselwerking tussen de producenten en de gebruikers van voorspellingen, 

tijdens elke schakel in de voorspellingsketen, dat will zeggen bij het opstellen van 

voorspellingen, bij de kennisoverdracht en adoptie, bij het gebruik van voorspellingen 

in het besluitvormingproces en bij het terugkoppelen van de wensen en ervaringen 

van eindgebruikers als belanghebbenden en besluitvormers aan de onderzoekers en 

de opstellers van voorspellingen. 
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