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ABSTRACT

BACKGROUND: Mechanism-based treatments such as bumetanide are being repurposed for autism spectrum
disorder. We recently reported beneficial effects on repetitive behavioral symptoms that might be related to regulating
excitation-inhibition (E/I) balance in the brain. Here, we tested the neurophysiological effects of bumetanide and the
relationship to clinical outcome variability and investigated the potential for machine learning—based predictions of
meaningful clinical improvement.

METHODS: Using modified linear mixed models applied to intention-to-treat population, we analyzed E/I-sensitive
electroencephalography (EEG) measures before and after 91 days of treatment in the double-blind, randomized,
placebo-controlled Bumetanide in Autism Medication and Biomarker study. Resting-state EEG of 82 subjects out
of 92 participants (7-15 years) were available. Alpha frequency band absolute and relative power, central
frequency, long-range temporal correlations, and functional E/I ratio treatment effects were related to the
Repetitive Behavior Scale-Revised (RBS-R) and the Social Responsiveness Scale 2 as clinical outcomes.
RESULTS: We observed superior bumetanide effects on EEG, reflected in increased absolute and relative alpha
power and functional E/I ratio and in decreased central frequency. Associations between EEG and clinical outcome
change were restricted to subgroups with medium to high RBS-R improvement. Using machine learning, medium and
high RBS-R improvement could be predicted by baseline RBS-R score and EEG measures with 80% and 92%
accuracy, respectively.

CONCLUSIONS: Bumetanide exerts neurophysiological effects related to clinical changes in more responsive sub-
sets, in whom prediction of improvement was feasible through EEG and clinical measures.

https://doi.org/10.1016/j.bpsc.2021.08.009

Autism spectrum disorder (ASD) is a heterogeneous group of
neurodevelopmental disorders (1), of which some forms
require pharmacological intervention to cope with severe so-
cial, sensory, and affective symptoms (2). At present, only two
antipsychotic drugs are registered to reduce irritability, often at
the cost of serious side effects (3). Novel treatments are being
developed on the basis of specific pathophysiological mech-
anisms, which have been indicated in studies with animal
models of genetic disorders (4). Some of these new ap-
proaches are based on existing drugs, which may facilitate
their implementation (5,6). However, drug repurposing is
accompanied by extensive variability in treatment responses in
conventional ASD trials (7). Successful application may
depend on incorporation of functional brain measures related
to the hypothesized mechanistic effects (8). Here, we show the
results of the first randomized controlled ASD medication trial

to incorporate quantitative electroencephalography (EEG)
before and after treatment.

A large body of literature exists on quantitative EEG in ASD
(9-11), which may inform ASD treatment development. For
instance, excitation/inhibition (E/I) ratio dysregulation has
become an important pathophysiological target in ASD since
both changes in inhibition and excitation have been implicated
(12-15). We and others have shown that E/I ratio may be
quantified at the network level using EEG (16,17), which may
have purpose in understanding treatment effects and clinical
responses as indicated by preclinical studies and open-label
trials (18-283). To date, no pharmacological placebo-
controlled clinical trials have used pre- and post-treatment
EEG measurements, a strategy that has been tested for non-
pharmacological interventions such as neurofeedback and
repetitive transcranial magnetic stimulation (24-26). Following
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a similar path as in antidepressant trials (27-29), evaluation of
EEG biomarkers in ASD together with machine learning anal-
ysis may show promise to develop treatment prediction
models.

To test the potential of EEG analysis for treatment optimi-
zation for ASD, we developed Bumetanide in Autism Medica-
tion and Biomarker (BAMBI) (EudraCT 2014-001560-35), the
first completed randomized, placebo-controlled ASD medica-
tion trial to incorporate EEG measurements to indicate brain
effects of bumetanide and to develop stratification and pre-
diction biomarkers of treatment response. Bumetanide is a
diuretic drug currently repurposed for ASD treatment. It acts as
a selective chloride importer NKCC1 antagonist, which is
important to regulate intraneuronal chloride concentration and
GABA (gamma-aminobutyric acid) polarity. Animal models
have shown that the postnatal GABA shift through down-
regulation of NKCC1 activity is abolished, leading to excitatory
actions of GABA and increased network activity (30,31). From
these findings, it was postulated that bumetanide may have
favorable clinical effects since elevated E/I has become an
important theory in autistic development (12-15).

The potential neurologic effect of bumetanide has been
disputed, given its poor brain bioavailability due to limited
crossing of the blood-brain-barrier (32). Several trials have
nonetheless shown promising effects on ASD symptom-
atology (33-35). We recently published the clinical results of
the BAMBI study; although there was no superior effect on the
primary Social Responsiveness Scale 2 (SRS-2) end point
between placebo and bumetanide, we did find a superior effect
of bumetanide on the Repetitive Behavior Scale-Revised (RBS-
R), a scale of core symptomatology. In addition, a subgroup of
most responsive individuals seemed delineated from that of
placebo-treated individuals (36). It is plausible that particularly
these subgroups share a mechanistic element targeted by
bumetanide. In this subset of participants with stronger
improvement, neurophysiological measures may be more
prominently related to clinical improvement.

In line with this reasoning, we first hypothesized that
resting-state EEG measures would confirm that bumetanide
has neurophysiological effects in the brain; second, that clin-
ical improvement would be related to bumetanide’s neuro-
physiological effects; and third, that EEG measures could be
used to develop prediction models for bumetanide in ASD. We
used a set of alpha frequency band EEG measures that have
proven sensitive to the ratio of excitation and inhibition in
computational models, including a method to quantify a
functional form of E/I at the network level (fE/l; see Methods
and Materials) (16).

METHODS AND MATERIALS

Study Design and Participants

This study is a secondary analysis of the BAMBI trial (Eudra-CT
2014-001560-35), a single-center, double-blind, participant-
randomized, placebo-controlled, phase 2 superiority trial
testing bumetanide (twice-daily up to 1.0 mg) in otherwise
medication-free children with ASD. The trial included children
aged 7-15 years with expert-confirmed ASD diagnosis.
Exclusion criteria were an IQ < 55 and use of psychoactive
medication. Outcomes were assessed at pretreatment (DO),
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after 91 days of treatment (D91), and after 28-day washout
(D119). Clinical outcome measures were the SRS-2, the RBS-
R, and resting-state EEG. The study was approved by the
medical ethical committee of the UMC Utrecht, Utrecht, the
Netherlands, and all participants or their legal guardians signed
informed consent. The CONSORT (Consolidated Standards of
Reporting Trials) flow diagram with the included participants
and measurements performed is given in Figure 1. Detailed
description of the protocol and clinical effects have been
published previously (36) and summarized in Supplemental
Methods.

EEG Recordings and Preprocessing

EEGs were recorded during 5 minutes of eyes-closed rest with
a 64-channel BioSemi system (2048 Hz). EEG analyses were
done using the Neurophysiological Biomarker Toolbox and
custom-made scripts (37). All recordings were manually
cleaned for artifacts and re-referenced to the average refer-
ence. After preprocessing, on average 210 seconds per
recording (80-327 s) were available for analysis.

EEG Analysis

Computational neuronal network models generating oscilla-
tions have shown that changes in excitation and inhibition
affect the amplitude, frequency, temporal correlations, and fE/I
in the alpha band (8-13 Hz) (16,38). Therefore, we applied
these measures to the EEG data in the alpha band.

Spectral power was computed using the Welch method with
an 8192-point Blackman window and a frequency resolution of
0.125 Hz. Relative alpha power is expressed in percent and
was calculated by dividing the absolute power in the alpha
band by the integrated power in the range of 1 to 45 Hz.
Central frequency provides a measure of the frequency at
which most of the power in the alpha band is concentrated.
Central frequency has the advantage over peak frequency that
it does not require the presence of a strong peak or—as it
sometimes appears—that the peak is identified close to 8 Hz
because of increasing power at lower frequencies. The
detrended fluctuation analysis was used to quantify the long-
range temporal correlations in the amplitude fluctuation of
alpha oscillations (39). The detrended fluctuation analysis ex-
ponents in the interval of 0.5 to 1.0 indicate long-range tem-
poral correlation and rich temporal structure fluctuations,
whereas an exponent of 0.5 characterizes an uncorrelated
signal. Finally, we used the recently introduced measure of
functional E/I ratio (fE/l), which has been shown to track
pharmacological intervention and reveal large heterogeneity in
an ASD sample (16). Inhibition-dominated networks are char-
acterized by an fE/I < 1, excitation-dominated networks fE/I >
1, and E/I-balanced networks will have fE/I = 1. A detailed
description of the EEG measures is provided in the
Supplement.

Statistical Analysis

The secondary analyses in this paper were conducted ac-
cording to the predefined statistical analysis in the study pro-
tocol, which included the development of EEG biomarkers for
stratification and functional assessment of treatment effects
[see (36) and trial protocol link in the Supplement].
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Figure 1. CONSORT (Consolidated Standards of
Reporting Trials) flow diagram for the patients
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included for electroencephalography (EEG) analysis
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Effect of Bumetanide Treatment on EEG Measures

To assess whole-brain treatment effect of bumetanide versus
placebo on EEG measures, we analyzed the average
biomarker value (mean) of the 64 channels using a linear mixed
model (SAS, version 9.4; SAS Institute). Treatment and
treatment-by-time interaction were included to assess the
difference between bumetanide and placebo and washout
effects. Sex, age, and pretreatment EEG measures were
included to correct for potential confounding factors (40,41).
We derived estimated means for each treatment group and a
mean difference between treatment groups at 91 days with
95% confidence intervals and p values. This analysis and the
machine learning parts were run as sensitivity analyses,
excluding participants with unreliable clinical reports as moti-
vated in the initial report of BAMBI (36). For the EEG effects
irrespective of clinical report, we also ran an intention-to-treat
analysis. The topographical distribution of EEG treatment
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effects was analyzed per treatment group by comparing each
electrode at different time points using a paired t test. False
discovery rate was used to correct for multiple testing at the
electrode level (see Supplemental Methods).

Clinical Outcome Analyses

The SRS-2 (primary end point; total raw score; range 0—195;
higher score indicates more affected) and RBS-R (secondary
end point; total score; range 0—129; higher score indicates
more affected) were used to relate EEG parameters to clinical
outcome in core symptomatology. The original study findings
showed that a subset of participants with the greatest SRS-2
and RBS-R improvement were in the bumetanide group,
which we took as a basis to define thresholds for treatment
response stratification and prediction. We set a high threshold
to indicate the level of clinical improvement outcome above
which there were no or few (n = 3 for SRS-2) placebo-treated
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subjects present (16 points for RBS-R and 20 points for SRS-2)
and may be more successful to identify true responders in
terms of effects being related to bumetanide targeting mech-
anisms. In addition, we defined a medium response threshold,
using mean clinical score improvement as a reference (7 and
10 points for RBS-R and SRS-2, respectively) to test stability of
stratification and prediction under a medium treatment
response threshold. We investigated the association between
EEG and symptom change in the whole sample and for the
different treatment thresholds to test the stability of correla-
tions under different stratification scenarios.

Machine Learning Models for Clinical Outcome
Predictions

The data preprocessing, feature selection, classifier training,
and validation steps were performed in RStudio (version
1.3.959) (42) and R (version 4.0) (43). We visualize each step in
Figure 2, Figure S1, and Supplemental Methods.

Preprocessing

Features and Improvement Classes. For D91 treatment
response predictions from pretreatment EEG using machine
learning analysis, we compiled the pool of potential features
from 5 resting-state measures on 63 channels. We also
incorporated pretreatment SRS-2 and RBS-R scores, total 1Q,
age, and a binary variable describing whether they had
received treatment prior to the study, resulting in a total of 5
clinical features, thus 320 features in total. After data pre-
processing, using a shuffle-split technique, which randomly
and repeatedly splits the data (44), we created 100 random
data partitions for training and 100 random data partitions for
out-of-sample validation. In each partition, 80% (=5%) of the
data was reserved for training and testing and 20% (+=5%) for
validation.

Feature selection was performed to identify from the 320
starting features the subsets that could classify subjects for
being below or above medium and high response treatment
thresholds. This resulted in 100 feature subsets, 1 per training
partition. For clinical interpretation of which features were most
important in the prediction models, we reported the 10 features
with the highest frequency of appearance in 70%-or-higher
raw accuracy runs as most informative.

Training, Hyperparameter Tuning, and Testing. A fast
implementation of a random forest classifier (45) was trained
and optimized 100 times on each of the training sets con-
taining 80% (+5%) of the data, using the feature subsets
obtained in the feature selection step using leave-one-out
cross-validation.

Validation. The leave-one-out cross-validation results were
validated on each of the 100 out-of-sample sets containing
20% (=5%) of the data. The performance measures expressed
in terms of balanced and raw accuracy, sensitivity, and
specificity were averaged over the out-of-sample runs. We
report the raw accuracy showing all the correctly classified
observations irrespective of class. Balanced accuracy was
reported to even out imbalances between sensitivity and

EEG-Assisted Treatment Prediction in Autism

Machine Learning Workflow
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100 x Optimal Model

Validation
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Figure 2. Machine learning workflow. The dataset comprised 5 electro-
encephalography biomarkers over 63 channels and 5 clinical features used
to predict clinical improvement of n = 34 bumetanide-treated subjects above
or below the thresholds Repetitive Behavior Scale-Revised: 7- and 16-point.
To develop and validate the random forests classifier using a shuffle-split
method, the data were divided into training and validation sets of 80%
and 20%, respectively, with a £5% margin to ensure a minimum number of
above threshold improvement subjects in each validation set. To generalize
results and aid replicability, these steps were repeated 100 times, and each
time, a new random split was generated. For each of the 100 training splits,
the most optimal features were selected using a recursive method to
discriminate subjects with outcomes above and below the selected treat-
ment thresholds. The selected feature sets served as input for the random
forest classifiers trained on each of the 100 training partitions. This process
generated 100 models with different selected feature constellations that
were optimized using leave-one-out cross-validation. The resulting optimal
models were validated on the out-of-sample partitions. The number of
correctly and incorrectly classified datapoints for each of the 100 iterations
rendered 100 accuracy results, which were then averaged to obtain overall
results for each improvement threshold.

specificity resulting from the higher prevalence of low-clinical-
improvement cases (Figure S2).

RESULTS

Ninety-two participants were randomized, of whom 88
completed the trial (36). EEG recordings of 82 of these trial
completers were available for analysis: 42 from the bumetanide
group (mean age 10.5 = 2.5 years; 14 females) and 40 from
the placebo group (mean age 10.5 = 2.5 years; 12 females).
EEG recordings from 10 participants (n = 12) were excluded
after preprocessing because of poor quality of EEG data or no
eyes-closed rest EEG could have been recorded (DO n = 6, D91
n =3, D119 n = 3; 1 participant had poor quality EEG at each
time point). This left 76 EEGs for analysis at DO, 79 at D91, and
79 at D119 (for details, see Figure 1). Tables S1 and S2
describe the participants included, their demographics,
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clinical scores, and EEG biomarker values. To test EEG effects
of bumetanide, we investigated 5 EEG measures in the alpha
band (8-13 Hz) that have proven sensitive to pharmacological
E/l intervention (see Methods and Materials).

Effect of Bumetanide Treatment on EEG Measures

After 91 days, superior EEG effects of bumetanide to placebo
were found for absolute power, relative power, fE/I, and central
frequency (Table 1 and Figure 3A-D). These effects were of
medium size (Cohen’s d = 0.5), except for central frequency
showing a small effect size (Cohen’s d = 0.3). No effects were
found between D91 and the D119 washout period. Sub-
analysis of treatment interaction with age, IQ, and attention-
deficit/hyperactivity disorder comorbidity did not show signif-
icant effects. These findings were not different in the intention-
to-treat analysis (Table S3). Subsequently, we analyzed the
topographical distribution of EEG changes between DO and
D91 in each treatment group. Significant effects were only
present in the bumetanide group, where absolute power,
relative power, and fE/I increased and central frequency
decreased in a cluster of channels (Figure 3E-H).

Correlation Between EEG Measures and Clinical
Outcome

Correlations of EEG biomarker D91-DO changes with change
in SRS-2 or RBS-R after bumetanide treatment did not reveal
significant associations at the group level. Stratification by the
medium treatment response threshold (RBS-R = 7 points
improvement [n = 8]) did reveal high, significant correlations
between an increment in absolute and relative power and RBS-
R improvement after bumetanide (Figure 4A, B), albeit just a
trend for fE/I (Figure 4C). The subgroup with improvement < 7
points (n = 24) showed no significant correlations between
EEG changes and clinical outcome (Figure 4D, E) or even an
opposite trend for fE/I by contrast to the =7 points group
(Figure 4C, F). No correlations were found for the RBS-16
threshold or both SRS-2 tested thresholds.

Prediction of Clinical Improvement Through
Machine Learning Analysis

To test the potential of clinical outcome predictions, we
entered channel-level pretreatment EEG measures together
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with 5 clinical features (pretreatment SRS-2 and RBS-R
scores, total 1Q, age, and prior treatment) into a random for-
est machine learning classifier to predict clinical improvement
of bumetanide-treated subjects above or below the thresholds
RBS-R: 7- and 16-point, and SRS-2: 10- and 20-point (for
details, see Methods and Materials) (Figures 5 and 6;
Figure S1). The distributions of the individual change in SRS-2
and RBS-R clinical outcomes in relationship to each of the
chosen treatment thresholds are illustrated in Figures 5A and
6A for those individuals included in the machine learning
analysis (n = 34).

To generalize results and aid replicability, the classifiers
were trained in 100 runs using leave-one-out cross-validation
and further validated on 100 out-of-sample partitions. For
SRS-2, 10- and 20-point improvement predictions, the out-of-
sample validation accuracy, sensitivity, and specificity did not
exceed chance levels (Figure 5B, C; Figure S3A, B). In contrast,
the classifiers predicted 7- and 16-point improvement on RBS-
R with 80% and 92% average balanced accuracy, the equiv-
alent of 63% and 86% average sensitivity and 96% and 99%
average specificity for each threshold, respectively (Figure 6C;
Figure S3C, D). The 16-point RBS-R improvement had a better
trade-off between sensitivity and specificity than the 7-point
improvement (Figure 6B).

The selection of features with the highest frequency of
appearance (out of 100) in runs achieving a high validation
accuracy (>70%) revealed that there was no consistent
pattern for SRS-2 in the most predictive features (Figure 5D, E),
apparently in line with poor prediction success for this scale.
RBS-R baseline score was ranked as the most important
predictor of RBS-R improvement, followed by EEG features of
absolute power and fE/I in the parietal and central-parietal
regions (Figure 6D, E).

DISCUSSION

The presented analysis of resting-state placebo-controlled
EEG measures has implications for the application of bume-
tanide and potentially for other similar ASD treatments. First,
bumetanide and not placebo altered spectral and temporal
characteristics of neuronal oscillations, indicating a neuro-
physiological treatment effect. Second, changes in brain ac-
tivity after bumetanide were only related to improvement in

Table 1. Superior Effect of Bumetanide to Placebo in Power, Central Frequency, and fE/I

Placebo Group, Mean + SEM

Bumetanide Group, Mean = SEM

Treatment Effect

Baseline, DO, D91, D119, Baseline, DO, D91, D119, Treatment Effect
EEG Biomarker n =238 n =238 n =236 n =236 n =236 n =236 (95% Confidence Interval) p Value
Absolute Power, pV 107 £ 1.2 10.06 = 1.2 10.1 £ 11 8.1 1.1 9.4 +12 8.4 1 1.44 (0.23 to 2.64) .027
Relative Power, % 285 *+ 1.8 29019 292 =*19 255 + 1.8 27619 291 =19 2.4 (0.88 to 4.00) .00267
Central Frequency, Hz 9.7 + 0.07 9.8 +0.06 9.8*+0.07 9.64 + 0.06 9.6 =+ 0.06 9.64 = 0.05 —0.07 (—0.13 to —0.008) .037
DFA, B 0.72 = 0.01 0.73 = 0.01 0.72 +£0.02 0.72 +£0.02 0.71 =0.01 0.71 = 0.02 —0.02 (—0.04 to 0.007) 2
fE/ 1.05 = 0.02 1.02 £ 0.02 1.03 =0.03 1.01 £0.02 1.07 £0.03 1.04 = 0.02 0.06 (0.02 to 0.11) .0067

Data are shown for participants who completed D91. Linear mixed model analysis of whole-brain average electroencephalography (EEG)
biomarkers reveal superior effect of bumetanide to placebo on absolute power, relative power, central frequency, and fE/I after 91 days of
treatment. Treatment effect, 95% confidence intervals, and p values are reported.

DO, day 0 baseline recording; D91, day 91 of treatment; D119, day 119 (after 28-day washout period); DFA, detrended fluctuation analysis; fE/I,

functional excitation-inhibition ratio.
4Significance was set at p < .05.
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Figure 3. Bumetanide treatment—but not pla-
cebo—affects alpha oscillations in children with
autism spectrum disorder. (A-D) Whole-brain
average electroencephalography (EEG) measures
at treatment time points. No baseline differences
(D0) were found for EEG measures between treat-
ment groups (A-D) (t test). Linear mixed model
analysis of treatment effects (D0-D91) showed a
superior effect of bumetanide to placebo in absolute
power (A), relative power (B), central frequency (C),
and functional excitation-inhibition ratios (fE/l) (D)
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repetitive behavior in more responsive subsets. Finally, pre-
dictions of improvement in repetitive behavior were feasible by
implementing pretreatment EEG and clinical severity in ma-
chine learning analysis.

The observed EEG effects suggest that bumetanide enters
the brain sufficiently to alter both power and network-level E/I
of neuronal oscillations after 91 days of treatment, effects that
did not significantly decrease after the washout period. Other
studies have indicated functional brain effects of bumetanide in
ASD using magnetic resonance spectroscopy and eye
tracking, albeit in open-label trial designs (33,46). Previously,
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D91 D119 (see also Table 1). Analysis of treatment-by-time
interaction revealed no washout effect at D119 for
any of the EEG measures. Bumetanide group (solid
red lines). Placebo group (black dashed lines). Mean
+ SEM are plotted. *p < .05; **p < .01. (E-H) Grand-
average topographies of the treatment effects on
EEG measures (D91—DO0). Significant channels are
shown in white circles (p < .05, false discovery rate
corrected) indicating widespread effects in the
bumetanide group with an increase in absolute po-
wer (E), relative power (F), and fE/I (H) and a cluster
of channels with decreased central frequency (G).
No significant channels were found in the placebo
group. DO, day 0 baseline recording; D91, day 91 of
treatment; D119, day 119 (after 28-day washout
period).

EEG effects of bumetanide in ASD and tuberous sclerosis
complex have been described in case reports (47,48), and
recently, our group also showed bumetanide effects on event-
related potentials in a tuberous sclerosis complex open-label
study (22). It is possible that brain availability of bumetanide
is higher in ASD owing to different pharmacokinetics, a more
permeable blood-brain barrier (33), or effects through blood-
brain barrier—free areas (e.g., the median eminence) (49,50).
Another question is whether the observed EEG effects relate to
a shift from depolarizing to hyperpolarizing GABAergic trans-
mission. In healthy subjects, GABA receptor positive allosteric

Figure 4. Correlations between electroencepha-
lography and clinical outcome changes in partici-
pants with below (D-F) and equal to or exceeding (A~
C) 7 points improvement on the Repetitive Behavior
Scale-Revised (RBS-R). (A, B) An increment in ab-
solute and relative power after bumetanide was
strongly correlated (rho = —0.8) to repetitive behavior
improvement, in participants with improvement of at
least 7 points. (C) A medium-high (rho = —0.6), albeit
nonsignificant, correlation was observed between an
increment in functional excitation-inhibition ratio (fE/1)

fE/

o091
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N=24

DRBS-R and repetitive behavior improvement. (D, E) No sig-
nificant correlations were found between electroen-
cephalography change and repetitive behavior
improvement in participants with improvement below
7 points. (F) An increase in fE/I is moderately (rho =
0.4) and borderline significantly (p = .06) associated
with worsening in repetitive behavior in the opposite
direction when compared with the =7 points
improvement group (C). Correlations were calculated
using Spearman correlation coefficient. Channels
with significant (p < .05, false discovery rate cor-
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-0.08
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rected) correlations are shown in white circles. Abs.,
absolute; Rel., relative.
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A » B Figure 5. Machine learning delineation between
SRS-2 Individual Change ROC Curves clinical improvement levels did not exceed chance
100 when predicting improvement in social responsive-
%0 ness. (A) Distribution of the individual change in
_ = plecebon =35 Social Responsiveness Scale 2 (SRS-2) (D91—-D0) in
g 20 T _ relation to treatment thresholds used for machine
g 10 I || | = learning analysis (SRS 10-point orange line and SRS
T -""'"“"""" Zz 20-point yellow line). Data presented ly f
> "““",. g 20-p¢ yello . presented are only for
‘g 0 "I"I"“I“""""I!!!I“" 2 individuals with pretreatment electroencephalog-
%_20 ""I""I""I""“I ] raphy measures and clinical outcome scores avail-
E 30 "I"“ll able (bumetanide n = 34, placebo n = 35). (B)
&f SRS 10-pt. Receiver operating characteristic (ROC) curves to
o 40 AUC = .5 illustrate the diagnostic ability of the binary classi-
-50 o Sa%%();p_ﬁiz fiers for the different improvement thresholds across
60 the SRS-2 clinical outcome scale. This ability is

0 1 - Specificity [%] 100 expressed by the relationship between true (sensi-
tivity) and false-positive rates, as depicted by the
ROC curves. The curve for the perfect model that
correctly classifies 100% below and above
) threshold improvers contains the point (0, 1), while a
—95%C. 1. A ‘ random estimate curve is closer to the nondiscrim-
_I_ 1T | ination line (gray). An area under the curve (AUC)
Moo n om0 M closer to 1 indicates a classifier having both high

T . sensitivity and specificity. Classifiers for 10- and 20-

= ) G, point SRS improvement demonstrate close to or
worse than chance performance. (C) Classification
performance of SRS 10-point and SRS 20-point
treatment thresholds. As per out-of-sample valida-
tion, the classifiers predicted 10- and 20-point
improvement on SRS-2 with an average sensitivity
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of 44% and 25% and 57% and 77% average
specificity for each threshold, respectively, which
corresponded to 56% and 51% average balanced
accuracy (mean between specificity and sensitivity),

2 CP6fE/N
2 CP3RP
2 C3DFA

respectively. (D, E) The 10 most frequently selected electrodes and electroencephalography measures in iterations exceeding 70% accuracy on out-of-sample
validation partitions are shown for the outcome thresholds. Bal., balanced; C. I., confidence interval; DO, day O baseline recording; D91, day 91 of treatment;

DFA, detrended fluctuation analysis; fE/I, functional excitation-inhibition ratio.

modulators such as benzodiazepines have been shown to
reduce alpha power (51,52). We recently described a decrease
in fE/I following the administration of the positive allosteric
modulator zolpidem in healthy adults, suggesting enforcement
of inhibition, in line with the supposed drug effect (16).
Bumetanide seems to show opposite alpha-oscillation effects
in terms of power and fE/I in ASD when compared with the
acute effect of positive allosteric modulators in healthy sub-
jects. A similar opposite E/I effect in ASD has also been shown
previously for the E/I-regulating drug, riluzole, measured by
magnetic resonance spectroscopy (5). Importantly, our finding
of an increase in fE/I through bumetanide in ASD is consistent
with the open-label trial that found an increase in glutamate-to-
GABA magnetic resonance spectroscopy concentrations in
sensory cortices after 3 months of bumetanide treatment
(33)—a shift toward a larger ratio between excitatory and
inhibitory neurotransmission increases the power and fE/| also
in the computational model used to develop the measure of E/I
(58,54). Nonetheless, the direction of effects is counterintuitive
when bumetanide is expected to reinstate hyperpolarizing
GABA activity. Additional experiments are needed to gain un-
derstanding of the bumetanide effects on EEG, but we spec-
ulate that our network-level measure of E/I is sensitive to
compensatory mechanisms, which might also be affected after
3 months of bumetanide treatment and may explain the
seemingly paradoxical increase in network-level E/I. A
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homeostatic view has been postulated to gain understanding
on how activity propagates in cortical circuits after E/I disrup-
tions and how they may predict contradictory findings in ASD
(13). In this scenario, we hypothesize from our findings that
depolarizing GABA activity in neurodevelopmental disorders is
balanced by a reduction in excitation. A bumetanide-induced
shift in GABA polarity from depolarizing to hyperpolarizing ef-
fects may reduce the need for the compensatory excitatory
downregulation and hence manifest as fE/I elevation in EEG
signals. To test these ideas further, we plan follow-up EEG
studies comparing immediate and sustained effects of treat-
ment with bumetanide. Several other existing off-label drugs
with a variety of GABAergic or glutamatergic actions have been
tested in ASD using well-powered placebo-controlled trial
designs (6,55-57). Most of these trials did not meet their pri-
mary end points, but most studies did find effects on sec-
ondary end points or subscales. Our findings encourage us to
test these observations further and incorporate functional
measures such as the EEG measures presented here with the
collective aim to gain understanding on how they influence
complex homeostatic E/I balance regulations and develop
more stratified application strategies that acknowledge the
physiological heterogeneity of ASD.

We did not find significant linear associations between EEG
and outcome measures at the group level. We conducted
subsequent correlation analyses testing different
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Figure 6. Machine learning shows best delinea-
tion between clinical improvement levels when pre-
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dicting improvement in repetitive behavior. (A)
Distribution of the individual change in Repetitive
Behavior Scale-Revised (RBS-R) (D91-D0) in rela-
tion to treatment thresholds used for machine
learning analysis (RBS 7-point blue line and RBS 16-
point purple line). The data presented are only for
individuals with pretreatment electroencephalog-
raphy measures and clinical outcome scores avail-
able (bumetanide n = 34, placebo n = 35). (B)
Receiver operating characteristic (ROC) curves to
illustrate the diagnostic ability of the binary classi-
fiers for the different improvement thresholds across
the RBS-R outcome scales. This ability is expressed
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contains the point (0, 1), while a random estimate
curve is closer to the nondiscrimination line (gray).
An area under the curve (AUC) closer to 1 indicates a
classifier having both high sensitivity and specificity.
The best performance is indicated for 16-point RBS-
R improvement, followed by a 7-point reduction. (C)
Classification performance of RBS-R 7-point and
RBS-R 16-point treatment thresholds. As per out-of-
sample validation, the classifiers predicted 7-point
9 and 16-point improvement on RBS-R with an
83 average sensitivity of 63% and 86%, and 96% and
98.8% average specificity for each threshold,
respectively, which corresponded to 79.5% and

92.4% average balanced accuracy (mean between
specificity and sensitivity), respectively. (D, E) The

10 most frequently selected electrodes and elec-
troencephalography  measures in iterations
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exceeding 70% accuracy on validation partitions are shown for the two outcome thresholds. The baseline RBS-R score was most frequently selected as an
important feature to inform RBS-R improvement, followed by absolute power in centroparietal channels (CP5 and CP3) and functional excitation-inhibition ratio
(fE/) in central channels (C6) for a medium RBS-R improvement (RBS-R 7-point) (D), and absolute power in centroparietal channels (P3, CP5, CP3 and P5) for
the high RBS-R improvement threshold (RBS-R 16-point) (E). Bal., balanced; C. I., confidence interval; DO, day 0 baseline recording; D91, day 91 of treatment;

DFA, detrended fluctuation analysis.

responsiveness thresholds under the hypothesis that partici-
pants with stronger improvement, and putatively less mixed
with placebo-effects, might represent more true responsive
subjects, i.e., where treatment effects are more likely related to
the mechanism of action. The correlations between EEG and
outcome measures observed in patients above the medium
improvement threshold in repetitive behavior (RBS-R) may
support this hypothesis and indicate utility of EEG for stratifi-
cation of individuals likely to benefit from treatment. However,
these subsample correlations need to be regarded as pre-
liminary, requiring further validation as they lack power for
generalization.

Through the machine learning analysis, we shifted from
subgroup delineation to individualized predictions based on
unique EEG and clinical values for each patient. The machine
learning results indicated that baseline EEG measures can be
used to predict improvement on the RBS-R scale in the
bumetanide group with high accuracy, under both cross-
validation and out-of-sample scenarios. The highest sensi-
tivity (86%) was obtained when predicting a 16-point
improvement on RBS-R, which suggests that pretreatment
EEG measures and pretreatment RBS-R scores are more
instrumental in identifying a high rather than a medium clinical
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improvement. SRS-2 predictions failed, which may be
consistent with the fact that no superior treatment effect was
found on this measure. We discussed in the first report of the
BAMBI trial that repetitive behavior changes may be more
readily observed after 3 months treatment than social behav-
ioral change, which may be a more complex phenotype
requiring longer treatment duration or additional behavioral
therapy (58). Indeed, we found that RBS-R baseline score was
selected most frequently in the predictions of both medium
and high improvement thresholds. The results indicate that
baseline RBS-R severity together with the most frequently
selected absolute alpha power and fE/I in the parietal and
central-parietal regions are most informative in predicting
clinical improvement. The parietal cortex is relevant to ASD as
it is a key area for integration of multiple stimuli (59) and
considered part of the social brain network, with particular
functions related to social cognition (60-63). Furthermore, the
parietal area has been associated with functional E/I distur-
bances in ASD through a variety of imaging techniques (15,64).
However, further prospective selected trials are needed to
corroborate these feature combinations as potential ASD
biotypes amenable to improvement through bumetanide
treatment. Together, the correlations between the EEG and
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clinical changes and the successful prediction of clinical
improvement indicate clinical importance of the neurophysio-
logical effect induced by bumetanide.

It is possible that bumetanide EEG effects are associated
with improvement in symptoms intuitively related to network
excitability, such as lack of energy, affect problems, or
sleeping difficulty, which are not covered by the SRS-2 or
RBS-R scales. Evaluation of individual, patient-relevant
symptoms (rather than summed severity scores) may be
valuable in future research. We restricted the current analysis
to a selected set of EEG measures in the alpha frequency band
that we previously found sensitive to the ratio of excitation and
inhibition in computational models of neuronal networks
(16,38). Expanding the analysis to other measures (17) and
frequency bands can be considered for future studies. For the
present study, however, this would have resulted in an
excessive number of features relative to the sample size
available for machine learning. The modest sample size
coupled with a high dimensionality of the dataset may also
have resulted in overfitting, albeit this was mitigated by out-of-
sample validation. The validation in this study was conducted
in such a manner that the optimistic bias resulting from a
limited sample size was minimized. In addition, we reduced
high dimensionality by selecting only the most informative
features for prediction during feature selection. Because of the
distribution of treatment responses in the sample, the high
clinical improvement class is less likely to be identified
correctly. This was reflected by sensitivity being generally
lower than the specificity.

Conclusions

Quantitative analysis of alpha band resting-state EEG shows
that bumetanide has neurophysiological effects in children with
ASD. The out-of-sample treatment response predictions sup-
port the applicability of machine learning classification to future
patient cohorts and encourage further development of EEG-
assisted treatment decision-support systems.
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