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Introduction
Now more than 20 years ago, Merboldt et al.1 published a brief 
commentary titled: “Functional MRI of the Human 
Amygdala?.” At the time, Merboldt and his colleagues wrote 
this commentary to draw attention to the (then often over-
looked) presence of magnetic susceptibility artifacts occurring 
in the amygdala due to the proximity of bone and air-filled 
cavities (ie, sinuses). Although these artifacts are less of a con-
cern now that we scan at (much) higher field strengths, the 
question itself is now relevant as it was back then—albeit for 
somewhat different reasons. The purpose of this review is to 
provide an overview of the contributions amygdala functional 
magnetic resonance imaging (fMRI) has made over the years 
to the affective neurosciences at large, in order to critically 
assess its enduring role as a research tool in the current scien-
tific landscape

Academic interest in the amygdala as an emotion processing 
region originally arose due to observations of hypo-emotional 
behavior in rhesus monkeys after (bilateral) ablation (part of 
the “Klüver-Bucy syndrome”).2-4 A more explicit proposal for 
the amygdala’s role in emotion processing would not follow, 
however, until the structure came to be closely associated with 
Pavlovian fear conditioning in animal models (eg, see Maren & 
Fanselow5 for a review). From this perspective, the amygdala 
(particularly its basolateral subdivision) is seen as the locus at 
which stimulus-reward/punishment associations are forged 
within the brain, thus linking noxious unconditioned stimuli 

(eg, an electric shock) on the 1 hand, to otherwise innocuous 
conditioned stimuli (eg, a tone) on the other hand. The auto-
nomic response to this conditioned fear is then mediated indi-
rectly by the (centromedial) amygdala via descending pathways 
projecting to lower brain regions such as the periaqueductal 
gray, while the activity of the amygdala itself can be modulated 
by regulatory prefrontal regions such as the medial prefrontal 
cortex (MPFC).6,7 While not always explicitly addressed any-
more in the literature, this fear conditioning framework has in 
fact shaped much of our way of thinking about the amygdala’s 
role in emotion processing.

With the advent of fMRI in the early 1990s, the study of 
amygdala and emotion was no longer confined to animal 
models, as the early work on Pavlovian fear conditioning 
often was, but could also be extended to human populations. 
Initially, this burgeoning field was mostly limited to studies 
that utilized some form of emotion provocation to measure 
the magnitude of the amygdala’s blood-oxygen-level-
dependent (BOLD) response to in-scanner stimuli (see sec-
tion “Amygdala Activation fMRI”; Figure 1, top-left panel). 
From the mid-to-late 2000s onwards, however, scientific 
interest began to shift more and more towards the study of 
the brain’s (and by extension, the amygdala’s) functional- and 
effective connectivity architecture (see sections “Amygdala 
PPI fMRI” and “Amygdala RSFC fMRI”; Figure 1, top-
right and middle-left panels, respectively). In the 2010s, a 
general trend towards more reproducible science saw some 
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research-groups more closely examining the test-retest reli-
ability of amygdala fMRI (see section “Amygdala Test-Retest 
Reliability fMRI”; Figure 1, middle-right panel). At around 
the same time, advances in the field of real-time fMRI neu-
rofeedback enabled researchers to target the human amyg-
dala in vivo (see section “Amygdala Real-Time fMRI 
Neurofeedback”; Figure 1, lower panel). We end this review 
by integrating the main insights garnered by these sub-
branches of research, after which we aim to answer the ques-
tion: What part (if any) can amygdala fMRI still play within 
the current landscape of the affective neurosciences (see sec-
tion “Integration”)?

Amygdala Activation fMRI
Functional MRI first appeared in the early 1990s.8-11 The 
first 2 studies to specifically target the amygdala via fMRI, 
Breiter et al.12 successfully elicited an amygdala response by 

using stimuli based on human facial expressions (ie, fearful or 
happy), whereas Irwin et  al.13 utilized pictures taken from 
the International Affective Picture System (IAPS) to the 
same avail. Interestingly, these 2 tasks have remained the 2 
gold standards for emotion provocation/amygdala fMRI to 
this very day.

Following in the footsteps of Breiter et  al.12 and Irwin 
et  al.,13 multiple studies were published that similarly exam-
ined the amygdala’s role in emotion processing using task fMRI 
(see Figure 1, top-left panel; see Costafreda et al.14 and Sergerie 
et al.15 for meta-analyses). In most of these studies, either (a 
variant of ) the facial expression task described by Breiter et al.12 
was used (eg, 16-22), or an emotional pictures (ie, IAPS-based) 
task like the 1 detailed in Irwin et  al.13 (eg, 23-27)—although 
(written) emotional words (eg, 28-30), and tasks based on 
Pavlovian fear conditioning (eg, 31-34) were also quite common. 
In 1 landmark study, Hariri et  al.35 directly compared the 

Figure 1. Number of publications per year for each of the amygdala fMRI subtopics discussed in the main body of the text. For the top-left panel 

(amygdala activation fMRI), a combination of the following search-terms was used: “amygdala” AND “fMRI” AND (“activity” OR “activation”). For the 

top-right panel (amygdala PPI fMRI), the following search-terms were used: “amygdala” AND “fMRI” AND (“PPI” OR “psychophysiological interaction” OR 

“psycho-physiological interaction”). For the middle-left panel (amygdala RSFC fMRI), the following search-terms were used: “amygdala” AND “fMRI” AND 

(“resting-state” OR “resting state”) AND “functional connectivity”. For the middle-right panel (amygdala test-retest reliability fMRI), the following search-

terms were used: “Amygdala” AND “fMRI” AND (“test-retest reliability” OR “intraclass correlation coefficient” OR “ICC”). Finally, for the lower panel 

(amygdala rt-fMRI neurofeedback), the following search-terms were used: “amygdala” AND “fMRI” AND (“neurofeedback” OR “real-time fMRI”). All 

searches were conducted on PubMed based on keyword matches in the title/abstract field.
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efficacy of stimuli based on facial expressions (ie, fearful or 
angry) or (negative) IAPS pictures, and found that while both 
types of stimuli were indeed able to induce a significant increase 
in amygdala (re)activity relative to baseline, facial expressions 
were significantly better at doing so than IAPS pictures were; 
it should be mentioned, however, that subsequent studies have 
been unable to replicate this finding.36,37 While the amygdala 
was initially hypothesized to play a distinct role in the process-
ing of facial emotion (fear, anger, happiness, disgust, etc.; eg, 
16,18,38), fMRI researchers later began to consider the amygdala 
more as a region involved in the detection of salience in general 
(eg, 39-42). This altered viewpoint fitted well with observations 
of relatively high magnitudes of amygdala activation when 
using either scrambled pictures, a fixation cross, or a blank 
screen, instead of non-expressive faces, as a neutral baseline for 
contrast discriminability.15,40,42 When viewed in this light, the 
amygdala responds to all stimuli that signal some form of per-
sonal relevance or threat, including emotional stimuli, be they 
of the facial variety or otherwise.

Given the above, it is perhaps not surprising that the 
amygdala has (also) garnered much attention by researchers 
interested in face processing. In fact, some authors have 
advocated that the amygdala should be seen as a core compo-
nent of a larger network involved in processing faces (eg, see 
Mende-Siedlecki et  al.43). Consequently, much effort has 
been spent over the years in trying to uncover the optimal 
task and stimulus parameters to adequately activate the 
amygdala using facial expressions. A number of consistent 
findings have emerged from this research: (1) the amygdala 
responds more strongly to the presentation of dynamic (ie, 
rather than static) expressions of affect;44-46 (2) the amygdala 
response is higher when the faces are looking directly toward 
(versus away from) the observer; 21,47,48 and (3) paying overt 
attention to facial expressions seems to augment the amyg-
dala’s response, 17,20—although non-consciously perceived 
faces are apparently still able to elicit a significant increase in 
amygdala activity relative to baseline.18,49,50 More recently, 
Kätsyri et al.51 observed that the amygdala’s response to facial 
stimuli may also be higher when participants are exposed to 
real versus computer-generated faces, although Moser et al.52 
were unable to record a similar effect previously. Overall, this 
body of literature seems to indicate that the amygdala 
response is strongest when participants are paying overt 
attention to facial stimuli that are presented to them in as 
much of a naturalistic and personally relevant (ie, salient) 
manner as possible.

An early systematic review of the amygdala fMRI literature 
by Baas et al.53 was the first to point towards a possible laterali-
zation effect of the amygdala’s reactivity to emotion stimuli, 
with more of the included studies reporting activation in the 
left than in the right amygdala—regardless of the stimulus 
type, task instructions, habituation rate, or complexity of the 
in-scanner task that was used. Sergerie et al.15 later replicated 

this finding in a quantitative meta-analysis of the emotion pro-
cessing fMRI literature; however, these authors were unable to 
record a significant difference in the magnitude of left versus 
right amygdala activation. In another meta-analysis, Costafreda 
et al.14 recorded a left lateralization effect for the processing of 
(static) emotional expressions only when the stimuli contained 
language elements, at the same time recording right lateraliza-
tion only when the stimuli were masked to prevent consciously 
perceiving the facial expressions. Importantly, no other indica-
tions of lateralization were observed in that study. In a voxel-
based meta-analysis of facial expression task fMRI studies, 
Fusar-Poli et  al.54 were similarly unable to record significant 
lateralization of the amygdala’s task reactivity. Finally, in a 
meta-analysis of the dynamic facial expression task fMRI lit-
erature, Zinchenko et  al.46 recorded significant activation 
within the left amygdala but not the right amygdala. Together, 
these findings paint a somewhat unclear picture of the possible 
lateralization of amygdala activation.

The amygdala has frequently been linked to alterations in 
BOLD-reactivity in individuals suffering from some form of 
psychopathology. Indeed, the list of psychiatric disorders to 
which task fMRI studies have now been able to link the amyg-
dala is long and includes (but is not limited to) disorders such 
as social anxiety disorder (SAD; eg, 55,56; see Etkin & Wager57 
for a meta-analysis), schizophrenia (eg, 58-60; see Anticevic 
et  al.61 for a meta-analysis), posttraumatic stress disorder 
(PTSD; eg, 62-65; see Hayes et al.66 for a meta-analysis), border-
line personality disorder (BPD; eg, 67,68; see Ruocco et al.69 for 
a meta-analysis), major depressive disorder (MDD; eg, 70-72; see 
Groenewold et al.73 for a meta-analysis), bipolar disorder (eg, 
74,75; see Chen et al.76 for a meta-analysis), intermittent explo-
sive disorder (IED)77,78—and even Turner syndrome79 and 
Alzheimer’s disease80. (We note that the meta-analyses of 
Etkin & Wager,57 Anticevic et  al.,61 and Hayes et  al.66 also 
include Positron Emission Tomography [PET] studies; how-
ever, a full list of the included studies is presented in each meta-
analysis in table-form, along with the imaging methodology 
that was employed in each incorporated study [ie, fMRI or 
PET].) Overall, this body of research suggests that hyperreac-
tivity of the amygdala may be present in individuals suffering 
from disorders such as SAD, PTSD, BPD, bipolar disorder, or 
IED, whereas hypoactivation has often been recorded in schiz-
ophrenia; MDD has been linked both to hypoactivation in 
response to positive emotional stimuli, and hyperreactivity to 
emotional stimuli with negative valence. Together, these find-
ings have led many researchers to posit that altered amygdala 
reactivity might be able to serve as a biomarker of emotion 
regulation pathology.

It should be mentioned that while the above body of lit-
erature may seem consistent in its reporting of amygdala reac-
tivity in response to emotion provocation, there are, in fact, 
many examples of studies that failed to record such an effect 
(eg, 81-85). What is more, there are also many examples in 



4 Neuroscience Insights 

which no significant difference in amygdala reactivity could 
be recorded when patients with a psychiatric disorder were 
compared to those without (eg, 86-90). This indicates that acti-
vation of the amygdala via emotion provocation fMRI may 
not be as robust a phenomenon as often assumed in the litera-
ture. It is also important to point out that only 3 of the 66 
research articles cited in this section had a sample size of 
N ⩾ 30 (median N = 12; IQR = 10-15 participants). Such 
small sample sizes may increase the risk of false positive find-
ings and inflate effect sizes, especially when considering that 
the shadow of publication bias looms large over the overarch-
ing field of functional neuroimaging.91

Amygdala Connectivity fMRI
In the early years of fMRI, most studies focusing on the amyg-
dala only examined the region’s magnitude of BOLD-reactivity 
in task-based settings. From the mid-2000s and onwards, how-
ever, fMRI researchers became increasingly interested in (also) 
examining the connectivity patterns of the amygdala, following 
a broader trend taking place in neuroscience at the time. These 
studies can be (roughly) subdivided into the following 2 cate-
gories: (1) psychophysiological interaction (PPI) studies that 
have examined task-dependent effective connectivity during 
active task periods, and (2) functional connectivity studies 
examining task-free (ie, intrinsic) fluctuations of the BOLD-
signal at rest (ie, resting-state functional connectivity [RSFC]). 
An overview of the insights garnered by these 2 research areas 
is provided in the following 2 subsections.

Amygdala PPI fMRI

PPI is a measure of effective connectivity designed to ascertain 
instances of communication between brain regions that only 
take place under specific task demands, as maintaining these 
connections might otherwise prove costly in terms of energy 
consumption. In PPI analysis, linear regression is used to test 
for an interaction between a physiological variable (ie, the 
time-series of a seed region) on the 1 hand, and a psychologi-
cal variable (ie, the experimental task) on the other hand. If 
significant, the brain region expressing the interaction is said 
to exhibit context-dependent effective connectivity with the 
seed ROI.92

PPI analysis was developed by Karl Friston and co-workers 
in the mid-to-late 1990s.93,94 Although the first PPI studies 
focusing on the amygdala date from the early 2000s, most of 
the work conducted in this field was actually published in the 
2010s (see Figure 1, top-right panel). As before, the majority of 
these studies employed either a facial expression task (eg, 43,95-

99), or an emotional pictures task based on IAPS-photographs 
depicting non-facial objects or scenes (eg, 100-104). In many of 
these studies, amygdala PPI was examined while participants 
were performing some form of emotion regulation training (eg, 
100,104,105; see Berboth & Morawetz106 for a meta-analysis). 

Furthermore, some of these studies were conducted in patients 
with (versus without) a psychiatric disorder—examples of 
which include schizophrenia107,108 (although see Fakra et al.109), 
MDD,110 bipolar disorder,111,112 PTSD113,114 (although see Van 
Rooij et al.88), IED77,78 (although see Heesink et al.90), BPD,115 
and generalized anxiety disorder (GAD).116,117 Still others 
report on the relationship between amygdala PPI and person-
ality constructs such as trait neuroticism,118 aggression,77 and 
psychopathy.119 Whatever the exact research aims, however, 
most of these studies converge on the same target regions 
exhibiting significant PPI with the amygdala during task per-
formance. These regions include the early visual cortex (ie, 
Brodmann areas 17-19), fusiform gyrus—including the fusi-
form face area (FFA)—the anterior cingulate cortex (ACC) 
and insula; the 2 main constituents of the salience network,120 
the inferior frontal gyrus (IFG), orbitofrontal cortex (OFC), 
and dorsolateral prefrontal gyrus (DLPFC)—the last of which 
is considered to be a main constituent of the central executive 
network.121 Other regions of the brain with which PPI research 
has often associated the amygdala include the MPFC (both its 
ventral and dorsal aspects) and the ventrolateral prefrontal cor-
tex (VLPFC), as indicated by meta-analyses of the amygdala 
PPI literature by Smith et  al.,122 Di et  al.,123 and Berboth 
et  al.106. Importantly, the results of these PPI studies are 
(largely) consistent with the patterns of task-based effective 
connectivity of a landmark study using structural equation 
modelling by Stein et  al.124. (Note: 1 complicating factor in 
reviewing this literature is that authors tend to differ in their 
operational definitions of anatomical or functional brain 
regions. For instance, [part of ] what is labelled as the ACC in 
1 study, may instead be labelled as the MPFC or the OFC by 
others. This overlap should be kept in mind when reading both 
the sections on amygdala PPI and RSFC.)

Taken together, this body of research seems to support the 
notion that the activity of the amygdala is gated by executive 
control regions in the prefrontal cortex. Diminished coupling 
between these prefrontal regions and the amygdala might lead 
to the development of mental health issues, particularly those 
marked by emotion dysregulation problems. The amygdala’s 
PPI with the primary nodes of the salience network (ACC and 
insula) further support the region’s role in salience detection. 
Its effective connectivity with the fusiform gyrus is likely to 
reflect the amygdala’s role in facial processing.

Amygdala RSFC fMRI

Almost since the inception of fMRI, researchers were aware 
that spontaneous low-frequency fluctuations (<0.1 Hz) occur 
in BOLD-weighted data.125 While initially (dis)regarded as 
noise, it was not until Biswal et al.126 observed significant cor-
relations between the resting-state signals of the left and right 
sensorimotor cortices that fMRI researchers truly began to 
take notice of these fluctuations, and realized that they are, in 
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fact, of neuronal origins. Even then, however, “the neuroscience 
community, with few exceptions, was remarkably slow to take note 
of this important result,” as Snyder & Raichle127 phrased it. 
Eventually, however, resting-state functional connectivity 
(RSFC)—also known as task-free, intrinsic, or spontaneous 
functional connectivity—began to gain a foothold in fMRI 
research.

Biswal’s seed-based approach remains a very common way 
to assess RSFC today. The first RSFC studies to use this 
method to target the amygdala were published in the late 
2000s/early 2010s (see Figure 1, middle-left panel). In a study 
that would become a major landmark in the literature, Roy 
et al.128 characterized the patterns of amygdala-based RSFC in 
a (large) sample of healthy volunteers (N = 65), showing that 
the amygdala exhibits (1) positive RSFC with the hippocam-
pus, parahippocampal gyrus, and superior temporal gyrus, as 
well as with medial prefrontal regions such as the ACC and 
(medial) OFC, a finding that is largely consistent with the 
amygdala’s purported role in associative learning; (2) positive 
RSFC with the insula (and ACC)—which again points towards 
its role in salience detection; (3) negative RSFC with (dorso)
lateral regions of the prefrontal cortex, including the middle 
and superior frontal gyri, which is in line with a top-down 
(executive) control model on emotion regulation; and (4) nega-
tive RSFC with the precuneus/posterior cingulate cortex 
(PCC)—two main components of the “task-negative”, or 
default mode network. Following in the footsteps of Roy 
et al.,128 many others subsequently sought to chart the land-
scape of amygdala-based RSFC in populations suffering from 
psychiatric disorders, such as GAD (eg, 129), SAD (eg, 130,131), 
PTSD (eg, 132-134; see Koch et al.135 for a systematic review), 
MDD (eg, 136,137; see Tang et al.138 for a meta-analysis), bipolar 
disorder (eg, 139,140; see Vargas et al.141 for a systematic review), 
and to a lesser extent, schizophrenia.142-144 In our own work, we 
conducted amygdala-based RSFC analysis in war veterans 
with versus without a IED, recording group differences only 
when applying a rather lenient threshold of significance.145 
Intriguingly, even though (task) activation studies on BPD 
were quite common in the heyday of emotion provocation 
fMRI, relatively little research has focused on the amygdala-
based RSFC of this Axis II disorder. Possibly, the high degree 
of psychiatric comorbidity common in this population has pre-
vented researchers from conducting RSFC fMRI research in 
BPD patients (eg, see Table 1 in Shafie et al.146). Nevertheless, 
taken as a whole, this body of literature tends to show that the 
strength of many of the functional connections reported by 
Roy et al.128 may be disrupted in psychiatric disorders marked 
by emotion regulation problems.

In 2001, Raichle and colleagues147 at Washington University 
proposed the existence of a network of (primarily) midline 
brain structures that activates when not engaged by a specific 
task, based on observations in PET-data. A few years later, 
Greicius et al.148 used Biswal’s seed-based approach to demon-
strate that the BOLD-signals of these same brain regions are 

highly intercorrelated during rest. It is now clear that this 
default mode network (or DMN)—which mainly comprises 
the (dorsal) MPFC and PCC/precuneus—can routinely be 
extracted from resting-state fMRI data by using independent 
component analysis (ICA).149,150 The discovery of the DMN 
would mark the first of many large-scale connectivity networks 
to be uncovered (through ICA) over the years. Other well-
known examples include the central executive network (CEN), 
a constellation of brain regions centering around the DLPFC 
and dorsal posterior parietal regions,121 and the salience net-
work (SN), which is anchored around the anterior insula and 
dorsal ACC.120 Importantly, rather than (sub)serving any 1 
function in particular, the activity and/or connectivity dynam-
ics of these large-scale networks are purported to support a 
broad range of psychological faculties, operating in a much 
more domain-general fashion than often assumed by tradi-
tional views on brain functioning, which tend to focus on func-
tional segregation (rather than integration).151 For instance, the 
DMN has often been linked to functions that vary from 
remembering personal memories, to moral cognition and rea-
soning, and imagining the future, while the SN is associated 
with the detection of personally-relevant stimuli, be they inter-
nally or externally generated, of the emotional, cognitive, or 
social variety (or otherwise).120,151 The interaction (switching) 
between these networks is thought to give rise to complex  
phenomena such as emotion and cognition. Importantly, the 
amygdala is often considered to be a part of the SN,120,152 
which on the 1 hand, fits well with its hypothesized role in sali-
ence detection, but on the other hand, somewhat trivializes the 
region’s importance, as when viewed from this angle, the amyg-
dala is only a very small and non-central component of a much 
larger apparatus. It cannot be denied, however, that this (net-
work-based) perspective does far more to consider the complex 
nature of brain functioning than do traditional small-scale cir-
cuit models on emotion processing. It also provides a viable 
explanation as to why much of the brain’s energy consumption 
actually takes place during the resting-state.153

Amygdala Test-Retest Reliability fMRI
In the 2010s, researchers became increasingly interested in 
(re)evaluating the test-retest reliability of (amygdala) fMRI 
(see Figure 1, middle-right panel), perhaps prompted by the 
reproducibility crisis that was slowly making its way over 
from the psychological sciences.91 This is not to say that ear-
lier work had not already explored the retest reliability of 
amygdala fMRI to some extent. For instance, Johnstone 
et al.154 recorded mostly poor test-retest reliability for task-
evoked amygdala responses to neutral or fearful faces meas-
ured over 3 (scan) sessions separated by several weeks (most 
intraclass correlation coefficients [ICC’s] <.4), indicating 
low replicability at the subject-level—although ICC’s tended 
to be somewhat higher when averaging across runs within 
scan sessions (ICC’s in the range of 0.4-0.63). (In the fMRI 
literature, ICC’s are generally categorized as follows: poor 
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<0.4, fair 0.4-0.59, good 0.6-0.74, excellent >0.75.155) In 
another early study, Manuck et al.156 recorded poor test-retest 
reliability of BOLD activation in response to fearful or angry 
faces in the left amygdala (ICC = −0.08), but fair test-retest 
reliability in the right amygdala (ICC = 0.59). (We note that 
although raw ICC’s are reported here, it is common to inter-
pret negative ICC’s as being equivalent to zero.) In a later 
study, Plichta et al.157 were able to record good-to-excellent 
replicability of the amygdala response to facial expressions at 
the group-level (ICC’s in the range of 0.62-0.79), even 
though test-retest reliability was rather poor at the within-
subject level (all ICC’s <0.4). Sauder et al.158 recorded poor-
to-fair intra-subject test-retest reliability of the amygdala 
response to fearful- (ICC’s in the range of 0.32-0.43) but not 
happy or angry faces (all ICC’s <0.4 for both expressions). A 
subsequent study by Nord et al.159 showed poor-to-fair intra-
subject reliability of amygdala activation in response to 3 dif-
ferent facial expression tasks, when administered either across 
multiple sessions, or across multiple runs within single scan 
sessions (ICC’s in the range of −0.52 to 0.77, although most 
were below 0.4). These findings were confirmed by Lois 
et  al.,160 who also recorded low within-subject reliability of 
the amygdala response to IAPS stimuli (ICC’s <0.4), even 
though quite excellent ICC’s (ie, >0.75) were observed for 
that same task—as well as 2 different facial expression tasks—
at a group-level. Finally, Elliot et  al.161 observed low test-
retest reliability (ICC’s <0.4) of the amygdala response to a 
face matching task in 2 separate datasets. (In fact, the results 
of that study showed that the ICC’s of most common fMRI 
tasks outside the realm of amygdala and/or emotion provoca-
tion were below 0.4.) In aggregate, this literature clearly 
shows that the test-retest reliability of amygdala activation by 
emotional pictures (facial expressions or IAPS-based) is 
rather poor at the subject-level, even though robust task (re)
activity is often observed at the group-level, leading to serious 
questions in regards to the viability of task-evoked amygdala 
responsivity as a (clinical) biomarker. We should note, how-
ever, that the results of 1 study suggest that the intra-subject 
reliability of amygdala reactivity may be higher when measur-
ing at 7 Tesla.162 Moreover, some of the above-cited work 
tends to show somewhat higher ICC’s for task runs acquired 
within the same (as compared to across) scan session(s), 
which is consistent with the results of a study by Infantolino 
et al.163 who recorded excellent split-half reliability for blocks 
of facial stimuli across runs within the same scan session, but 
only when blocks of fixation were used for contrast discrimi-
nability (split-half reliability = 0.97), and not when non-facial 
control stimuli (ie, geometric shapes) were instead used as a 
baseline (split-half reliability = −0.06). Of further interest, 1 
study by Plichta et al.164 suggests that the habituation of the 
amygdala’s BOLD signal may be a much more reliable intra-
subject marker (ICC = 0.53) than the magnitude of the 
region’s task responsivity. Ironically, even though many of the 
above ICC papers point to the importance of larger sample 

sizes, only 2 studies cited in this section had a sample size 
exceeding 30 participants; ie, Lois et  al.160 (N = 46) and 
Infantolino et  al.163 (N = 139). The median sample size was 
N = 26.5 participants (IQR = 22.5-29).

To our knowledge, no study has ever specifically examined 
the test-retest reliability of amygdala-based RSFC. By and 
by, however, research focusing on the general test-retest reli-
ability of RSFC tends to record rather low ICC’s of seed-
based connectivity metrics, with higher ICC’s often being 
observed for network-based connectivity measures. For 
instance, in a meta-analysis of all test-retest reliability stud-
ies conducted on seed-based RSFC conducted (up until that 
point), Noble et al.165 recorded a mean ICC of only 0.29. In 
a systematic review conducted in that same study, Noble 
et al.165 found that connections within the same connectivity 
networks were generally stronger, particularly those within 
the DMN or CEN. These latter results are largely consistent 
with a replicability study of networks extracted via ICA by 
Zuo et al.,166 although Wisner et al.167 recorded rather lower 
internal consistencies of large-scale connectivity networks in 
another (similar) study—especially at the intra-subject level. 
Furthermore, although Noble et al.165 did not explicitly tar-
get the amygdala in their systematic review/meta-analysis, 
they did observe that the seed-based connectivity of subcor-
tical brain regions was relatively low when compared to cor-
tical areas. Finally, 1 study by Nord et  al.168 showed that 
amygdala’s PPI with the DMPFC during emotion provoca-
tion exhibited good test-retest reliability at the intra-subject 
level (ie, most ICC’s close to or above 0.59). However, this 
last finding awaits further confirmation/replication.

Amygdala Real-Time fMRI Neurofeedback
Many of the milestones of fMRI research discussed thus far 
can trace their roots to proof-of-concept papers already pub-
lished in the 1990s. Real-time fMRI (rt-fMRI) is no excep-
tion.169 Initially, this branch of research focused primarily on 
optimizing methodological aspects such as online quality 
assurance and motion correction/realignment. The first studies 
to apply rt-fMRI in a neurofeedback setting were published in 
the early 2000s (see Weiskopf170 for a historical overview).

Neurofeedback is a form of biofeedback that has partici-
pants receiving “live” and ongoing information on their own 
brain (re)activity, so that they may learn to gain volitional con-
trol over it. Applications of neurofeedback in humans were ini-
tially based on electroencephalography (EEG) recordings. 
However, due to the lack of localization precision and limited 
coverage of EEG, many researchers were keen to discover novel 
ways of administering brain-based biofeedback to their study 
participants. As mentioned, the first studies to deliver on this 
promise and successfully apply rt-fMRI neurofeedback were 
published in the early 2000s. One of these early rt-fMRI neu-
rofeedback studies already targeted the amygdala. In that study, 
Posse et al.171 provided their participants with real-time feed-
back on amygdala activation in order to (successfully) augment 
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neutral or sad feelings in their subjects via pictures of (corre-
sponding) facial expressions. The majority of amygdala neuro-
feedback studies was published roughly ten years after this 
initial report by Posse et  al.,171 in the 2010s (see Figure 1, 
lower panel). Invariably, the express goal of these later studies 
was to employ neurofeedback in order to reduce the amygda-
la’s responsiveness to stimuli that were explicitly emotional in 
nature172-188 (see Linhartová et al.189 for a review), even though 
the general consensus in the field had already shifted towards 
a more domain-general and far less central view of the amyg-
dala’s role in salience detection. Notably, none of these studies 
had a sample size exceeding 30 participants (median N = 14; 
IQR = 9-16). (We also note that many of the research articles 
cited in this section were actually based on the same or partly 
overlapping datasets. For instance, Yuan et  al.173 and Young 
et  al.178 are based on partly overlapping datasets; as are 
Nicholson et  al.187 and Nicholson et  al.,186 as well as Young 
et  al.174 and Young et  al.,176 and the same goes for Zotev 
et al.,172 Misaki et al.,175 and Misaki et al.190. The analyses of 
Paret et al.183 and Paret al.185 are even based on identical data-
sets.) Only 2 of these inquiries targeted the amygdala based on 
localizer data collected immediately prior to the neurofeedback 
runs:191,192 In the work of Johnston et al.,191 only 2 out of thir-
teen subjects showed preferential amygdala activation during 
the localization stage (ie, in favor of other potential target 
regions); in Hamilton et al.,192 not a single participant showed 
any localizer-induced activation of the amygdala above and 
beyond that of either the dorsal ACC or insula, the 2 other 
main components of the salience network mask that these 
authors considered. These findings show that—when viewed 
as a salience detection area, rather than a structure dedicated 
specifically to the processing of emotion—the amygdala may 
not be an optimal target for rt-fMRI neurofeedback training.

With the exception of 1 study by Brühl et al.,180 who des-
cribed the use of a facial expression task, most other neurofeed-
back works cited here used either IAPS stimuli (eg, 181,183,184), 
autobiographical (happy) memories (eg, 173,176,179,182), or per-
sonalized (trauma) words187 to elicit an emotional amygdala 
response in their study participants. This is a bit surprising, 
given the predominance of facial expressions in other areas of 
amygdala fMRI. In some of these inquiries, only healthy vol-
unteers were included,179-183 while in others, patients suffering 
from psychiatric disorders, such as MDD173,174,176,178 (see 
Young et al.193 for a review), PTSD,172,175,186-188,190 or BPD184 
(also) participated. Importantly, in all this work, at least some 
degree of self-regulation success was reported by the authors, 
with the observed (and expected) direction of effect (ie, up- or 
down-regulation) depending on task instructions. Insofar as 
clinical populations were recruited, successful BOLD regula-
tion was frequently associated with significant reductions in 
symptom self-report questionnaire scores (eg, 172,174,177,178,184). 
One study even recorded an increase in hippocampal volume 
one-to-two weeks after self-regulation training of the amyg-
dala’s BOLD activity in a sample of PTSD patients.190 Overall, 

these findings tend to show that it is possible to gain volitional 
control over the amygdala’s activity via rt-fMRI neurofeedback, 
and that significant (clinical) improvements in emotion regula-
tion may follow after (successful) amygdala neurofeedback 
training.189

Finally, some of the rt-fMRI neurofeedback work dis-
cussed thus far has also examined the amygdala’s connectivity 
with other brain regions either during active feedback runs 
(ie, via PPI),181,184,185,187 or immediately thereafter, during 
rest.173,175,176,184 Overall, this (small) body of research tends to 
report an increase in RSFC of the amygdala with regions 
such as the VLPFC, DLPFC, ACC, PCC, and precuneus, 
from pre- to post-training, with more variable effects being 
recorded in the hippocampus and parahippocampal gyrus. 
With the addition of the insula and ventral- and dorsal 
MPFC, largely these same brain regions have been associated 
with an increase in amygdala PPI during active neurofeed-
back runs. Interestingly, 1 study based their neurofeedback on 
task-evoked effective connectivity between the DMPFC and 
amygdala, rather than the magnitude of the amygdala’s 
BOLD responsivity,194 showing effects similar to the other 
works discussed here. In sum, these are largely the same brain 
regions for which amygdala-based connectivity effects were 
recorded previously, in the literature described in sections 
“Amygdala PPI fMRI” and “Amygdala RSFC fMRI.”

Integration
In this review, an overview was presented of the major develop-
ments that have occurred within the field of amygdala fMRI 
since its first appearance in 1996. We note that the body of 
literature discussed here should be considered as a general 
overview, and that it by no means is meant to be exhaustive; 
wherever possible or relevant, we have referred to other (sys-
tematic) reviews and meta-analyses for further reading. We 
also wish to emphasize that the conclusions drawn here are 
based entirely on our review of the fMRI literature, inspired by 
our personal experiences in that field; it does not cover pre-
clinical (ie, animal) work on the amygdala’s role in emotion 
processing. For an overview of that line of research, we refer the 
reader to other sources (eg, Maren & Holmes195). To visually 
complement the narrative provided here, a timeline of all the 
major landmark papers cited throughout this manuscript is 
presented in Figure 2.

To recapitulate what we have discussed here: In section 
“Introduction,” we saw how early work in animal models, par-
ticularly within the sphere of Pavlovian fear conditioning, has 
shaped much of our way of thinking about the neurobiology of 
emotion processing. Next, we saw that soon after the first two 
amygdala fMRI publications, a veritable goldrush of studies 
ensued that similarly explored the amygdala’s BOLD response 
to emotional stimuli, most of which used either facial stimuli or 
IAPS photographs. Several key findings stand out from this 
literature: First, although many studies reported an increase in 
amygdala activation in response to emotional stimuli, there are 
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also quite a few examples in which no such effects could be 
recorded. Second, as the years went by, the general consensus 
gradually shifted towards a frame of reference in which the 
amygdala was no longer seen as a brain region devoted specifi-
cally to the processing of emotional information, but more as 
an area involved in the detection of salience in a much broader 
sense. This idea resonated well with observations of higher 
activation magnitudes when using non-emotional and non-
salient stimuli as a contrast baseline, such as scrambled pictures, 
a fixation cross, or a blank screen, rather than emotionally neu-
tral, but potentially still relevant control stimuli (eg, neutral 
faces). Third, based on fMRI work in clinical populations, 
abnormal amygdala reactivity (hypo- or hyperactivation) began 
to be viewed as a potential biomarker of emotion dysregulation 
pathology. In the third section, we reviewed the literature on 
task-based effective- (ie, PPI) and RSFC of the amygdala as 
seed region. We saw that these 2 types of amygdala connectiv-
ity converge on many of the same target regions within the 
prefrontal cortex (OFC, MPFC, DLPFC, and VLPFC), as 
well as the ACC and insula involved in salience detection. 
During the resting-state, the amygdala exhibits additional con-
nectivity with other regions involved in associate learning (eg, 
the hippocampus), as well as with the precuneus/PCC. A sepa-
rate branch of RSFC research demonstrated the existence of 
large-scale connectivity networks such as the DMN, CEN and 
SN, leading to a fundamental shift in our collective under-
standing of brain functioning. Rather than assuming that com-
plex functions such as emotion processing could be ascribed to 
the activity of single brain regions such as the amygdala, the 
connectivity dynamics of entire networks of brain regions 
gained more of a central focus, with each of these networks 
supporting a much broader range of psychological faculties 
that transcend the boundaries of cognitive, affective, and social 
neuroscience. According to this framework, the interactions (ie, 
shifting) between networks give rise to complex phenomena 
such as emotion and cognition, instead of the activity of any 1 
brain region acting (more or less) in isolation.151 This idea res-
onates well with the patterns of seed-based functional and 

effective connectivity observed for the amygdala, as many of its 
notable target regions are part of different large-scale networks, 
such as the CEN and DMN. Importantly, the amygdala itself 
is often considered a constituent of the SN—a network 
anchored around the (dorsal) ACC and anterior insula. While 
this notion fits well with the amygdala’s purported role in sali-
ence detection, it also greatly diminishes its central importance 
therein, as—according to this viewpoint—the amygdala is only 
a very small part of a much larger (salience) network. Yet it is 
difficult to deny the appeal of this network-based perspective, 
as it does far more to consider the complex nature of brain 
functioning than do traditional small-scale neurocircuit models 
on emotion processing. In section “Amygdala test-retest relia-
bility fMRI,” we saw that, even though robust activation of the 
amygdala is often observed at a group-level, the test-retest reli-
ability of that (same) task reactivity (as well as the amygdala’s 
seed-based RSFC) is quite poor at the single-subject level. We 
note that these results are consistent with some of our own 
observations.196 In spite of this poor intra-subject reliability, 
however, there have been many recent studies targeting the 
amygdala via rt-fMRI neurofeedback, as we have seen in sec-
tion “Amygdala real-time fMRI neurofeedback.”

So, what part (if any) can amygdala fMRI still play in the 
current landscape of the affective neurosciences? For 1 thing, if 
the amygdala is indeed just a small portion of a much larger 
network devoted to salience detection, and if the activity of the 
amygdala cannot be measured reliably at the single-subject 
level, than further targeting only the amygdala via rt-fMRI 
neurofeedback might be ineffective. Indeed, if the explicit pur-
pose of such an approach is to facilitate emotion processing by 
influencing how the brain processes potentially salient infor-
mation, than according to the literature reviewed here, some 
measure of clinical efficacy might only be expected if at least 
some of the other brain regions within the same salience net-
work (ie, the anterior insula and/or ACC) are targeted as well. 
Even then, however, the poor test-retest reliability of amygdala 
fMRI suggests that the method may not (yet) be viable for 
real-time neurofeedback applications. How then should we 

Figure 2. Timeline depicting some of the major landmark publications in amygdala fMRI research, color-coded by theme.
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interpret the body of amygdala rt-fMRI neurofeedback 
research reviewed in section “Amygdala real-time fMRI neuro-
feedback”? To answer this question, it is perhaps best to quote 
Thibault et al.,197 who’s critical assessment of the (larger) rt-
fMRI neurofeedback literature aligns well with our own obser-
vations: “For someone perusing the literature, the aggregate of the 
above studies might give the impression of a robust base of converg-
ing f indings in support of fMRI neurofeedback, whereas in fact, 
positive f indings remain scattered across select runs and chosen par-
ticipants. Statistical nuances can further frame the available evi-
dence with an overly positive spin.” Extrapolating beyond the 
realm of rt-fMRI neurofeedback, given the available evidence, 
it is perhaps time to move away from a classical neurocircuit 
model that places the amygdala at the center of all things emo-
tion. The evidence garnered over the years simply does not fit 
this notion very well. That is not to say that the amygdala is not 
involved in emotion processing at all, or that it is not (function-
ally) connected to brain regions such as the MPFC; it very 
likely is. For instance, preclinical work has often demonstrated 
the importance of the MPFC-amygdala circuit in the acquisi-
tion and extinction of conditioned fear in animal models (eg, 
see Maren & Holmes195 for an overview). However, as we have 
seen, the amygdala does not respond selectively, or even very 
consistently, to emotional stimuli—at least not when measured 
with fMRI. Rather, it responds to all manner of cognitive, 
emotional or social information that signals some form of per-
sonal relevance or threat (ie, salience), and does so as part of a 
much larger network devoted to that same purpose. The amyg-
dala is likely neither sufficient nor entirely necessary in that 
capacity. Of course, what constitutes as salient information is 
likely to vary considerably from person to person, as well as 
within individuals at any given time of day, which may help to 
explain why null-findings have been so prevalent in the amyg-
dala activation fMRI literature, as well as why habituation of 
the amygdala’s BOLD response to emotion provocation is per-
haps the region’s most replicable quality (at least, at the 
subject-level).

Whatever the precise function of the amygdala may be, 
however, the reliability of its task-induced BOLD reactivity, ie, 
insofar as emotion provocation fMRI is concerned, is at present 
simply too low to warrant its reputation as a robust single-sub-
ject neuroimaging biomarker of emotion processing. 
Interestingly, a recent overview of the most common 3 Tesla 
scanning protocols used in amygdala fMRI, suggests that 
methodological aspects such as the type of scan sequence, the 
spatial resolution (voxel size), imaging plane (axial, coronal, 
sagittal), brain coverage, scan time, and type of radiofrequency 
coil used, can all significantly impact the quality of the data 
(Foster et al.198). These observations highlight the possibility 
that suboptimal imaging parameters, along with other meth-
odological details, may lie at the root (at least partly) of the 
reliability-related issues amygdala fMRI currently faces. We 
certainly do not discount this possibility. Hence, we encourage 

future research efforts to take (even) further steps to identify 
the optimal scan parameters for adequately imaging the amyg-
dala in vivo.

As mentioned above, our review of the amygdala fMRI 
literature is by no means meant to be exhaustive; rather, it is 
intended as a broad-strokes historical overview of the major 
themes in the field of amygdala fMRI. There are several 
lines of fMRI research that we have not discussed here that, 
although important in their own right, have had—at least in 
our opinion—somewhat less of an impact on the field over-
all. Examples of these include the effective connectivity of 
the amygdala as measured via Granger causality (eg, see 
Liao et al.199) and/or dynamic causal modeling (DCM; eg, 
see Sladky et al.200), the dynamic functional connectivity of 
the amygdala (eg, Cisler201), which measures changes in 
intrinsic connectivity that occur over shorter periods of 
time, and the (fractional) amplitude of low frequency fluc-
tuation ([f ]ALFF) of the amygdala (eg, Sato et  al.202)—a 
measure of the magnitude of spontaneous (versus task-
based) fluctuations in the BOLD-signal. In addition, we re-
emphasize that the current work does not cover the 
developments that took place over the years in preclinical/
animal research on the role of the amygdala in emotion pro-
cessing. Although such work was instrumental for providing 
much of the foundation on which the field of amygdala 
fMRI was eventually able to flourish5—a point we already 
highlighted in section “Introduction”—the preclinical field 
has since progressed—largely independently—in its own 
disparate directions. We do note, however, that the overall 
picture emerging from the preclinical/animal literature is, by 
and large, mostly compatible with a domain-general role of 
the amygdala in salience processing as described here (eg, 
see Maren & Holmes,195 McEwen et  al.,203 and Zhang 
et  al.204; see also Koen et  al.205 for a more translational 
perspective).

We started this review by reiterating the question Merboldt 
et al.1 posed in the title of their commentary: “Functional MRI 
of the Human Amygdala?”. In answer to this question: If 
within the confines of emotion processing, than barring some 
justified exceptions, it is perhaps time we set our sights towards 
a new—or at least, a broader—horizon, 1 in which the intrica-
cies of emotion processing are understood as the complex 
interplay between entire constellations of interacting brain 
regions, rather than any single brain region acting more or less 
in isolation. The amygdala simply does not respond selec-
tively—or even very reliably—to emotional content; it responds 
to all things that are new, exciting, threatening or otherwise 
relevant to an individual at any given time of day, and does so 
as part of a much larger network devoted to that same purpose. 
In our opinion, these are important conclusions to draw from 
roughly 30 years of fMRI research on the amygdala’s role in 
emotion processing. We hope that further improvements in 
imaging equipment and methodology will help amygdala 
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fMRI to finally fulfill its long-standing promise to the broader 
field of affective neuroscience. In the meantime, however, we 
are forced to reassess the possible therapeutic efficacy of rt-
fMRI neurofeedback training regimens that target only the 
amygdala in the treatment of emotion regulation disorders. 
Based on the literature reviewed here, such a strategy is unlikely 
to bear much fruit at present.
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