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Abstract

In many organizations, especially in healthcare,
workers may work around prescribed procedures.
Detecting these workarounds can give insights into
difficulties concerning the procedures, which in turn
can be used to improve them. Previous studies have
shown that workarounds may be discovered from an
event log using a set of predefined patterns such as the
duration of a trace or the number of resources involved
in one. However, domain experts may find it difficult
to evaluate and monitor results if there are multiple
patterns that indicate workarounds. Training a model
that merges the features is often difficult because there are
no available datasets covering workarounds. Labeling
traces generally requires a lot of time from domain
experts. In addition, this would have to be repeated for
every new domain, company, or even department since
the types of workarounds that occur may differ strongly
between them. In this work, we propose to combine
the features using a Logistic Regression model and train
through Active Learning. In a case study at a hospital, we
find that after training the model on only 10 to 15 traces,
it stabilizes with an approximate F1 score of .75. This
shows that we create and train a model that can detect
workarounds well without requiring a large amount of
labeled data or a lot of time from a domain expert.

Keywords: Workarounds, Event log, Active Learning,
Logistic Regression, Process Mining.

1. Introduction

Workarounds are deviations from the prescribed
procedure to reach an intended goal (Ejnefjäll
& Ågerfalk, 2019; van der Waal et al., 2022).
Especially in hospital settings, they are a widespread

phenomenon (Azad & King, 2008; Beerepoot et al.,
2021; Röder et al., 2014; van der Waal et al., 2022),
but workarounds are also commonplace in other sectors,
such as retail (van de Weerd et al., 2019), or consulting
agencies (Wolf & Beverungen, 2019). The discovery of
workarounds can help to identify problems in processes
and systems. They contain valuable information on how
the process could be improved.

Workarounds may be discovered through interviews
and observations, but recent work shows that they can
be detected in a more efficient and automated way by
using event logs that contain sequences of events, also
called traces. Various studies have identified patterns
that indicate that a trace may contain workaround
behavior. For example, certain activities may be
skipped (Outmazgin & Soffer, 2014) or repeated (Alter,
2014; Weinzierl et al., 2022), certain process participants
may perform tasks they are not authorized for (Beerepoot
et al., 2021; Outmazgin & Soffer, 2014), or activities are
executed at unlikely times (van der Waal et al., 2022).

To classify a deviating trace as a workaround
instead of user error or malicious behavior, we need
to know the intent behind the diverging trace. Thus,
even if patterns are used to indicate workaround
candidates, these candidates need to be evaluated
by an expert before workarounds can be used for
process improvements (Bezemer et al., 2019). Previous
work (van der Waal et al., 2023) proposes to create
a ranking of the traces that result from applying a
pattern, which reflects the likelihood that a trace is a
workaround. This already helps to prioritize which
traces should be evaluated. The idea of a ranking is
that there is always one most interesting trace to evaluate.
However, if there are multiple patterns taken into account,
there are also multiple most interesting traces, which
limits the effectiveness of the approach. Combining
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the patterns is not straightforward since every ranking
follows a completely different distribution. Minimum
and maximum scores may also differ strongly per pattern.
Even when normalized between 0 and 1, means and
standard deviations are rarely similar.

One way to combine patterns is to express them as
scores that indicate how strong the pattern matches and
use this as input features for machine learning models.
However, training complex models usually requires a
large dataset. Such a dataset containing many traces
labeled as normative or workaround does not currently
exist. Constructing one would require an expert to
manually label hundreds of traces, which would not be
feasible. Another challenge is that such a model would be
specific to the domain and dependent on the workaround
patterns used. Since workarounds can differ strongly per
domain (Weinzierl et al., 2022), organization (Ejnefjäll
& Ågerfalk, 2019), or even department (van der Waal
et al., 2023), the model needs to be retrained from scratch
for every new application, which would require a sizable
time investment from interested process managers.

To address the problem of combining the patterns, as
well as the data requirement and training issues that arise
when we do, we propose to make efficient use of the
limited time domain experts have available. We do so by
using Active Learning (Settles, 2009) to train a Logistic
Regression model that combines multiple features into a
single score. We evaluate this approach with a case study
at the emergency room of the University Medical Center
Utrecht. We train the model during a single one-hour
interview in which we identify several workaround types.
To evaluate the performance of the model, we create a
testing set by defining specific rules to detect all instances
of these types in the event log. Using this testing set,
we show that our approach can distinguish traces as
normative or workaround after a short training session.

The primary contribution of this paper is an approach
to detect workarounds in event data. It is an extension
of the SWORD framework (van der Waal et al., 2022)
to make it more applicable and useful. The extended
approach involves Active Learning to ensure that the data
requirements can be fulfilled with limited queries for a
domain expert. By employing Logistic Regression it then
becomes possible to combine features to establish the
occurrence of a workaround from various perspectives.

From a practical point of view, the model can be
quickly tailored to a new application domain, because of
to the little training time required. In addition, combining
features makes complex multi-feature frameworks much
easier to use for real-life workaround detection by
process managers. For scientific purposes, our approach
requires very little time and effort from domain experts to
both train and test a model. This can help future studies

where no suitable datasets are available or possible to
create. While our focus is on workaround detection, this
approach may apply to other process mining fields where
traces need to be classified by domain experts.

The remainder of the paper is structured as follows:
In Section 2 we explore the current state of the art
concerning workaround mining, as well as common
approaches in statistics and data science to create models
using limited data. In Section 3 we further explain our
approach to create, train, and evaluate our model. Then
in Section 4, we evaluate the performance of our model
using a case study. Finally, we discuss our findings
and limitations in Section 5 and conclude the paper in
Section 6.

2. Related Work

2.1. Workaround Mining

There are two main goals for workaround mining:
discovering new workaround types and detecting
instances based on these types. Traditionally,
workaround types can be discovered through
qualitative measures, such as interviews and
observations (Beerepoot & van de Weerd, 2018).
By defining a rules, new instances of discovered type
can be detected in new datasets (Beerepoot et al., 2021).
In recent work, there has been an increase in attention
to discovering workaround types using quantitative,
data-driven methods, which we discuss here.

Outmazgin and Soffer (2014) define six patterns
to mine workarounds from event logs. While the
patterns are set up broadly, they require specific domain
knowledge to detect in an event log. For example, the
“Incompliance to role definition” pattern requires a known
set of users that are allowed to perform a specific activity.
As such, while this approach can find new instances of
known workaround types, discovering completely new
types may be difficult.

The SWORD framework makes use of 22
patterns (van der Waal et al., 2022). Depending on
the data requirements of a corresponding pattern, new
instances of known workaround types can be detected,
or new types may be discovered. Depending on the
case, some patterns may turn out to be more useful than
others. This can make it challenging for domain experts
to evaluate the large number of patterns.

Weinzierl et al. (2022) use neural networks to detect
workarounds using seven patterns defined in various other
papers. While this approach manages to reach F1 scores
up to 0.83, depending on the case, it has only been tested
on synthetic data for now. In addition, training a neural
network usually requires a large dataset, which is not
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always available for workaround mining.
Starting from an event log, Wijnhoven et al. (2023)

first discover a process model. This model is used to
investigate 11 patterns that may indicate workarounds.
While they show that this approach can be applied in
practice, there is the underlying assumption that a process
model is discoverable. This may not hold in complex
scenarios, such as healthcare. For example, there may
be theoretical procedures in the emergency room, but
patients rarely follow the same path. To complicate
matters more, patients may arrive with multiple ailments
that are treated in parallel, making process model
discovery infeasible using the limited data available.

2.2. Data Requirements

Existing workaround detection tends to rely on
readily labeled data, where the labels indicate the specific
workarounds. When only very limited labeled data is
available, common techniques such as Support Vector
Machines or Decision Trees perform poorly (Sordo
& Zeng, 2005) or require users to manually inspect
many patterns and instances to identify workarounds.
Active learning (Schein & Ungar, 2007; Settles, 2009)
is a stream of algorithms in machine learning that can
interactively query a user to optimize the learning rate
and improve performance. As a result, Active Learning
can handle initially unlabeled data and minimize the
user’s effort. Active Learning aims to do this by
predicting the information gain for every possible query.
Selecting the option with the highest expected gain would
then lead to training a strong model using limited data.
Since expected information gain must be determined,
Active Learning does restrict the possible models that
may be used with it. Two common, straightforward
classification models that have been used with Active
Learning are Naive Bayes and Logistic Regression.

The Naive Bayes classifiers (Lewis, 1998) use
probabilistic reasoning to classify items by predicting the
highest chance label based on a set of features as input.
While they can reach high accuracy levels, they assume
the individual features are independent. However, many
of the features currently used in workaround mining
are strongly related. For example, one indication of
a workaround is the number of process participants
involved in a trace. This may initially seem unrelated
to another pattern that relates to the total duration of the
trace. However, if a trace takes a long enough time, it
may be natural that more participants start being involved
because of, for example, shift changes.

Logistic regression (Kleinbaum & Klein, 2002) is
a regression technique that assigns a score between 0
and 1 to a set of features as input. Binary classification

is simply done by setting a cut-off value. Any result
above this value would be considered one option (e.g.,
a workaround), and the ones below it the other (e.g.,
a normative trace). The model is trained by adjusting
the weight of each feature, making certain patterns either
more or less important than the others to classify traces as
workarounds. As opposed to the Naive Bayes classifier,
Logistic Regression has no issues with strongly related
features, making it well suited for workaround mining.
Thus, for this study, we will use Logistic Regression as
the model and train it through Active Learning.

3. Approach

In this section, we explain the proposed approach
to combine multiple workaround patterns into a single
score. As shown in Figure 1, we start by describing
how we construct the Logistic Regression model. Then,
we discuss how we train this with domain experts using
Active Learning. Finally, we talk about how we can
evaluate the performance of the model.

3.1. Constructing the Model

To construct our Logistic Regression model, we start
with an event log. As we discussed in Section 2, we use
the SWORD framework (van der Waal et al., 2022) to
assign features to individual traces from such a log in
this paper. Table 1 shows two example patterns for each
perspective from the full framework.

All 22 patterns in the SWORD framework have
separate data requirements, meaning that depending on
the data available in the event log, specific patterns
may be applied. For example, activities executed by
a different-than-usual resource, i.e., a process participant,
can indicate a workaround, but to detect it, information
about resources must be in the event log. Based on these
requirements, we select the patterns that can be used for
the specific log. When applied, each pattern leads to one
score per trace that reflects its deviation from the norm as
established by the full set of traces. While these scores
were previously used to create a ranking per pattern, in
this study, we use the scores as input for the model.

As discussed in Section 2, we use Logistic Regression
for actively detecting workarounds, since the features
from the SWORD framework are not independent. As
illustrated in Table 2, each trace and pattern is assigned a
score. The set of scores for all traces and patterns is the
input of the model. After training, each trace has a value
between 0 and 1. When a trace is assigned a value close
to 0, this indicates there is likely no workaround; when
the value is close to 1, there is very likely a workaround.
Since this is binary classification, the default cutoff point
is 0.5. If a score is lower than 0.5, the trace will be
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Figure 1. A schematic overview of how we create, train, and evaluate a model starting from an event log.

classified as normative, otherwise as a workaround.

3.2. Training the Model

To optimize the limited data we can query from
domain experts, we use Active Learning to train the
model. Active Learning aims to optimize the training
speed of a model by selecting the item that will most
likely provide the highest information gain (Schein &
Ungar, 2007). Depending on the model, the selection
process may be very different. In the case of binary
classification, the item with the highest uncertainty
generally provides the most information gain (Settles,
2009). Since Logistic Regression assigns a score between
0 and 1 to items, continuously selecting the item that is
closest to 0.5 will likely train the model fastest (Lewis &
Catlett, 1994).

To train the Logistic Regression model, we
interviewed a domain expert. In doing so, we present
the trace with the highest expected information gain and
ask whether it should be classified as normative or a
workaround. Since the model is relatively simple, we can
immediately use this classification to retrain the model.
We then present the trace that offers the highest gain for
this new model and ask the same question. We continue
this process until the expert is out of time. Note that
if multiple traces provide the same highest expected
information gain, such as at the start when all traces
are equally uncertain, we select one randomly.

3.3. Evaluating the Model

Common measures to quantify the performance of
classification models are recall and precision (Powers,
2011). Recall compares the true positives and the false
negatives to discover how many of the relevant items are
found. Precision compares the number of true positive
and false positive classifications to determine how many
of the matches are relevant in the model. For further

evaluation, precision and recall can be combined into an
Fβ score. The β can be varied to put more emphasis on
either precision or recall. We follow a recent workaround
mining study by weighing them equally using an F1
score (Weinzierl et al., 2022).

To determine a reasonable recall score, we need many
labeled traces, but we face the same issue as before:
There is no large dataset with labeled workarounds
available. Creating such a dataset with domain experts
would require them to evaluate a lot of traces, which
would require a large time investment. In addition, since
workarounds may differ strongly, it would have to be
repeated for every new application (e.g., department). To
solve this problem, we propose to use the discovered
workaround types to generate labels for a test set.

When a workaround type is discovered, new instances
of that type may be discovered using a rule specific
to the type. Any trace that the expert indicates as a
workaround for reasons that do not fall under an existing
rule is considered a new type. For example, after taking
measurements of a patient, a nurse may be required to
log them as soon as possible. While a small delay can be
acceptable, an expert may be able to explain that a delay
of more than an hour always means that the measurement
was written down somewhere else before recording it into
the system. We can define such a rule together with the
expert as soon as they indicate a trace is a workaround
for a new reason.

Using such rules, we can identify all instances of
the discovered workaround types. Since these instances
were not included during the training of the model, they
can serve as a testing set containing traces that an expert
would classify as a workaround. Note that this approach
will not return all workarounds, only a complete set of
the workaround types that were discovered beforehand.
Even though this approach will most likely not result
in the true recall value of the model, it does reflect all
workarounds that the model should be able to classify.
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Table 1. Two example patterns for each perspective

in the SWORD framework (van der Waal et al., 2022).

Detection pattern Explanation
Control-flow perspective

Occurrence of an
activity

A specific activity occurs

Activity frequency out
of bounds

There is a deviation in the
frequency of an activity
within a trace

Data perspective
Data object with value
outside boundary

The value of a data object
deviates from the usual
values

Change in value
between events

Data values change
unexpectedly between
events

Resource perspective
Activity executed by
unauthorized resource

An activity is executed by a
resource other than those
authorized

Activities executed by
a single resource

Activities within the same
trace are all executed by the
same resource

Time perspective
Occurrence of activity
outside of time period

An activity occurs outside
of the usual time period

Delay between start of
trace and activity is
out of bounds

There is a deviation in the
delay between the start of
the trace and the time of an
activity

Thus, this approach serves as a reasonable performance
approximation.

We approximate precision using the same data by
assuming any trace that is not marked by any rule as a
workaround is normative. In truth, these traces are not
evaluated, so these traces may still contain workarounds.
As such, this is a lower-bounded approximation for
precision. Note that the undershoot is inconsistent and
may differ strongly per iteration. Therefore, it may not
be usable to investigate the change in performance while
training the model.

4. Case Study

To test our approach, we performed a case study
with the University Medical Center Utrecht (UMCU),
a Dutch academic teaching hospital with around 12,000
employees, which cares for more than 220,000 patients
annually. Before we started, our study was positively
evaluated according to the Medical Research Ethics

Table 2. The patterns scores and the score assigned

by the Logistic Regression model.
Case ID P1 P2 ... LR score
Case-0001 2.294017 1.672582 ... 0.000
Case-0002 6.641274 0.643885 ... 1.000
... ... ... ... ...
Case-0728 1.228111 0.384811 ... 0.997
... ... ... ... ...
Case-1488 1.000074 0.899160 ... 1.000
Case-1489 1.143432 0.899160 ... 0.000

Committee (MREC) NedMec policy (research protocol
number 22/1055). In the UMCU, HiX1 is used as
the Hospital Information System (HIS) to store patient
data across 386 tables. In collaboration with a data
manager, we extracted data covering one September
for the Emergency Room (ER). This department has
19 treatment rooms and treats around 18,000 patients
annually. With the data, we created an event log that
contained 34,929 events for 1,489 completed cases. To
evaluate our findings, we interviewed a specialist in
acute internal medicine who works in the department
and is directly involved with many of the patients. In this
section, we will elaborate on how we used this dataset
for testing our method.

4.1. Constructing the Model

To construct a classification model for the ER, we
started by creating a set of workaround indication
features for each trace in the event log. In this study,
we did this by applying the SWORD framework. Each
pattern requires certain data to be available in the event
log. For example, the “Event executed by a single
resource” pattern requires a resource, i.e., a process
participant, linked to each activity, whereas the “Event
executed by an unauthorized resource” requires at least
resource roles to be available. Taking such requirements
into account, we could apply nine of the patterns of the
SWORD framework:

• Activity frequency out of bounds

• Occurrence of a directly repeating activity

• Activities executed by multiple resources

• Activities executed by a single resource

• Occurrence of activity outside of time period

• Delay between start of trace and activity is out of
bounds

1 https://chipsoft.com/solutions
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• Time between activities out of bounds

• Duration of trace out of bounds

• Delay between event and logging is out of bounds

The “Occurrence of a directly repeated activity”
pattern resulted in the number of direct repeats that
occurred within a trace. All remaining patterns each
resulted in a Z-score that reflected the deviation from the
norm per trace, effectively determining the bounds based
on the data. These scores served as input for the Logistic
Regression model.

4.2. Training the Model

We trained the model through Active Learning
by presenting the trace with the highest expected
information gain to the involved expert. In a single
one-hour session, the expert evaluated 26 traces: 12
traces were considered normative, 14 contained at
least one workaround. In total, we discovered seven
workaround types, which can be seen in Table 3. When
a new workaround type was discovered during the
interview, we defined a rule to find similar instances
of the type with the expert. These rules were used during
the evaluation of the model for labeling test data.

4.3. Evaluating the Model

After training the model, we construct a test set by
applying the expert-defined rules to the 1,463 unlabeled
traces. Only if a rule showed that a workaround type
occurred within the trace, it was marked as a workaround.
In total, the test set contained 985 workaround traces.
With this, we calculated the approximate precision and
recall of the model after each training iteration, the results
of which are shown in Figure 2.

The points on the left of the dotted line indicate
the “warming-up” iterations. During these, the model
was primarily trained on workarounds. This leads to it
classifying all traces as a workaround and thus reaching
a perfect recall score. Starting from iteration 5, we see a
steep curve, showing quick improvement in performance,
which stabilizes around 0.85 from iteration 11 onward.

The approximate precision barely changes over the
training iterations. As stated earlier, this value is a lower
bound on the actual precision, which may therefore be
higher. Nevertheless, the minimum precision for the final
model is about 0.67. This means that the corresponding
F1 score for this model is 0.75.

To investigate the performance of the model on
each workaround type, we determined the approximate
recall per type for the final model. The results are
in Table 4 with an overview of in which training

iterations the workarounds occur. Since we only classify
as “workaround” or “normative” and do not further
distinguish between these types, we cannot determine an
accompanying precision and F1 score. However, these
scores can be used to compare performance between
types. Note that within our context of workaround
mining, recall is more important than precision; A
normative trace that has been falsely identified as a
workaround can quickly be dismissed by an expert, but a
missed workaround may not be found at all.

5. Discussion

In this study, we combined multiple features that
can indicate workarounds using Logistic Regression.
To train the model with limited data availability and
time involvement of a domain expert, we applied Active
Learning. We evaluated this approach on real hospital
data during a case study at the emergency room of the
UMCU and found an approximate F1 score of 0.75 after
training the model. In the remainder of this section, we
discuss the implications and limitations of our work.

5.1. Implications

Our study has several implications we would like to
discuss. First, while the recall scores per workaround
type differ, all types are recognized with a score of at
least 0.75. This shows that the model can be used even
for strongly varying types of workarounds. In addition,
we notice that a workaround type can be recognized with
few examples in the training set. This is especially clear
from workaround type 3, which occurs only in training
iteration 19 but is recognized with a recall of 0.81. This
is multiple rounds after the model stabilizes. Even
before the expert marked this new workaround type, it is
already classified correctly. This shows that the model
can also classify traces that contain workarounds that
have not been discovered yet. Therefore, investigating
high-ranked traces that do not fit any of the known
workarounds can lead to new workarounds that may be
interesting for process managers.

Second, our framework can be applied with fewer
requirements than the existing techniques. The patterns
by Outmazgin and Soffer (2014) require boundaries to be
set manually and the approach by Wijnhoven et al. (2023)
requires a process model to be discovered beforehand.We
can make a more quantitative comparison with Weinzierl
et al. (2022). The performance of the neural network
approach differs strongly with F1 scores ranging from
0.33 to 0.83. These scores vary strongly depending on
the exact dataset used. Our score of 0.75 is slightly
lower than their highest score, but much higher than the
lowest. Since we used different data, these scores are
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Table 3. The workaround types discovered at the ER, their explanation, and the rule to discover similar

instances. Note that rules have a little slack time (10 - 15 minutes) to account for the order of activity

registrations. For example, if an activity can only occur after a patient was seen by a nurse, the activity may be

performed first and the checkmark placed directly afterward.
Workaround type Reasoning Rule

1 Activities after
discharge

Activities cannot be performed on a patient
after they have left the ER. If this is
observed in a trace, registration was late.

If an activity occurs after a patient has been
discharged, there is a workaround.

2 Orders before the
patient was seen by a
physician and after
initial intake

Orders can be placed in two ways: 1) a
physician inspects the patient and places
orders, or 2) the patient is expected and
tests were ordered before their arrival.

If an order is placed more than 10 min
before “Seen by physician”, there is a
workaround. Exception: Orders placed
within 10 min of triage are normative.

3 Extra tests performed
before a patient was
seen by a physician

Nurses generally only order standard tests.
A physician may determine that “extra tests”
are required. These should naturally only
occur after they saw the patient.

If the “extra test” activity occurs more than
10 min before “Seen by physician”, there is
a workaround.

4 Late triage registration Triage (determining the urgency of care)
always occurs at the start of a treatment
process. It should also be registered quickly.

If the registration of the triage is performed
after more than 15 min after the first activity
by a nurse, there is a workaround.

5 Activities were
executed before the
patient was seen

Similar to the previous type, nurse activities,
such as taking measurements, should only
occur after they saw the patient

If triage, measurement, or order is
registered more than 10 min before “Seen
by nurse”, there is a workaround.

6 Discharge without two
pain scores

Any patient in the ER is asked twice how
much pain they have to see if any needs to
be addressed and to see if treatment helped.

If a patient was discharged with fewer than
two registered pain scores, there is a
workaround.

7 Immediate release after
an x-ray

After an x-ray is performed, there is some
time required to interpret and explain the
results before a patient can be released.

If a patient was released less than 20 min
after an x-ray was taken, there is a
workaround.

not sufficient to conclude that either approach performs
better in general, but we can see our performance is in
the same range. In addition, it should be noted that the
neural network approach has been tested on partially
synthetic data, so it is unclear how it performs on real
data. One advantage of our model is that it requires
relatively little data. Where our model stabilizes after
11 instances, the neural network is trained on 7,000 to
16,000 instances. Even if our approach does not match
the optimal performance, the low data requirements make
it easier to apply in a practical scenario.

Finally, while any feature-based model can be used
to indicate traces of interest, domain experts are required
for actual classification. To limit the time and effort
requirements of these experts, we optimize training
the model by only querying the most valuable traces
using Active Learning. With nine features as input, the
performance of the model still stabilizes after only 10 to
15 items, which we reached well within a single one-hour
session with a domain expert. This shows that training a
model with Active Learning to recognize workarounds
requires little time and data, especially when compared
to qualitative studies that spent between 20 and 30 hours

on interviews and observations (Beerepoot et al., 2019;
Beerepoot & van de Weerd, 2018). This makes it easier
for process managers to apply our research in practice.

5.2. Limitations

As with most studies, there are limitations to this
work, which we will discuss in this section. First, we
can only approximate precision and recall in this study.
We cannot calculate a true score for either because this
would require labeling all workaround traces in the log.
Recall varies strongly over time and follows a curve
that shows a learning effect. However, precision varies
very little. It is around 0.67 during all training iterations.
We see two possible explanations for this behavior. 1)
The model learns to recognize workarounds, but not
normative traces, or 2) The test set, which consists of 67%
workarounds, is not suitable to approximate precision.
The second option would also explain why the F1 score
during the warming-up phase is higher than after the
model is trained. As to the impact of this on our research,
we stated earlier that the approximate precision does
provide a lower bound. This means the F1 score can still
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Table 4. The approximate recall of the final model

per workaround type.
Workaround Type Occurs in

Training
Iteration

Approx.
Recall

1 Activities after discharge 1, 7, 10 0.86
2 Orders before the patient

was seen by a physician and
after initial intake

2, 5, 8, 15,
17, 19

0.76

3 Extra tests performed
before a patient was seen by
a physician

19 0.81

4 Late triage registration 5, 11, 15,
17

0.75

5 Activities were executed
before the patient was seen

5, 8, 11,
16, 17

0.76

6 Discharge without two pain
scores

5, 24 0.81

7 Immediate release after an
x-ray

3, 6 0.82

be used to give a lower bound for our results.
The second limitation is related to the use of event

logs for the discovery of workarounds. We discover
seven workaround types in this study but based on
previous research in the same department (van der Waal
et al., 2023), we are aware of more workarounds
that occur there. Some of these workarounds could
likely be discovered with a second interview, but other
workarounds cannot be discovered at all through event

logs. For example, a nurse that calls the pharmacy
for current information concerning a medication order
instead of looking it up in the HIS can never be detected
if these activities are not logged. While we show that we
can discover new workarounds using our approach, there
is no guarantee we find all workarounds in the data.

Thirdly, the workarounds we can find with our
approach depend heavily on the knowledge of the domain
expert. We interviewed a physician who was aware of
many of the workarounds that other workers, such as
nurses, employ. If an expert is less familiar with their
day-to-day tasks, evaluating traces that primarily focus
on their process will be difficult to classify. To put the
results of our approach to use, expert involvement will
always be of paramount importance conform Bezemer
et al. (2019). Even though our approach minimizes
experts’ involvement, it still relies on them for evaluation,
so the involved experts should be carefully selected.

Finally, we only evaluate a single ward in this study.
Previous research shows that different contexts may have
strong effects on performance (Weinzierl et al., 2022),
which makes generalizing the results of detection models
problematic. During this study, we also investigated data
from the Critical Care Unit (CCU). Because the care is
by definition critical in the department, there is a strong
sense of urgency to follow the official procedures, which
leads to few workarounds in this department.

6. Conclusion

With this study, we extend the field of quantitative
workaround mining by creating a Logistic Regression
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model that combines multiple features that are known
to be useful when discovering workarounds. To train
such a model, we required labeled training data, which
is not readily available. We make the most use of the
experts’ limited time by training the model through
Active Learning. In this way, domain experts only need
to evaluate the traces that provide the most information
to the model. In a case study, we approximate
the performance of the model by creating a test set
based on the workaround types we discovered during
a one-hour interview with a domain expert. Using
this approximation, we find an F1 score of 0.75 after
training the model. To conclude, we propose multiple
directions for future research: the evaluation can be
broadened, expert involvement can be improved, and
there are alternatives to several choices for our approach.

First, as we state in the discussion, we only test this
approach in one case. The evaluation can be improved
by investigating different departments or even different
domains. We expect that the performance can change
depending on how common workarounds are and what
types of workarounds occur most often. While we
initially tried this at the CCU, the related evaluation was
limited by the few workarounds that are applied here.
Thus, it is important to note that this should be tested in
a context where we can expect workarounds to occur.

Second, during the interview, the domain expert did
not feel like the presented rank and standardized pattern
scores were useful to determine what happened in a trace.
Instead, they felt more comfortable looking through a
full trace without focusing on any part indicated by the
patterns. In future work, it may be more useful to give
more specific guidance. For example, if an activity occurs
relatively late in a trace, this specific deviation could be
highlighted instead of using abstract scores.

Finally, we suggest six alternatives to the choices
we made: (1) Precision and recall may be approximated
by querying a small number of random traces to the
expert. We decided against this approach in this work
because we lacked information concerning the ratio of
workaround traces compared to normative traces. If this
ratio is strongly skewed to either side, an approximation
with too few traces would not be accurate. This made it
difficult to determine how many traces should be labeled
by the expert (Powers, 2011). In addition, it was unclear
how much time an expert would require to label a trace.
Since their time is limited, we opted for our rule-based
evaluation. (2) To score the performance of our model,
we used F1 scores to strike a balance between precision
and recall. However, there are many alternatives, such
as F scores (Verbeek, 2020) or Cohen’s Kappa (Warrens,
2015). We decided to use F1 scores to be able to compare
our approach with the existing workaround detection

technique by Weinzierl et al. (2022). (3) Based on
the discovered workaround types, we define rules with
the expert to create a test set. The domain experts
were confident about the rules they posed, but it may
be interesting to look into rule-mining (Alman et al.,
2020) instead to automate this process and reduce the
expert’s time investment even further. (4) For reasons
we outline in this paper, we decided to create our model
based on Logistic Regression. More complex models,
such as Support Vector Machines or Decision Trees
can outperform simple models, but they may require
more labeled data (Sordo & Zeng, 2005). (5) Both
previous suggestions require more data than our current
approach. In this paper, we optimize data selection
through Active Learning. Alternatively, we could
construct a dataset through, for example, crowdsourcing
with medical students. While the individual quality of
the students would be lower, the group may be able to
provide quality labels in a larger quantity than possible
for “expensive” physicians. (6) To create our model, we
have only investigated supervised techniques. However,
unsupervised methods may be an alternative option to
circumvent the data requirements. Methods such as trace
clustering (Song et al., 2009) may be used to train models
without labeled data or it could be used as a starting point
to further optimize evaluating traces with domain experts.
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Röder, N., Wiesche, M., & Schermann, M. (2014).
A Situational Perspective on Workarounds in
IT-Enabled Business Processes: A Multiple
Case Study. Proceedings of the 22nd European
Conference on Information Systems (ECIS).

Schein, A. I., & Ungar, L. H. (2007). Active learning
for logistic regression: An evaluation. Machine
Learning, 68(3), 235–265.

Settles, B. (2009). Active learning literature survey
(Computer Sciences Technical Report
No. 1648). University of Wisconsin–Madison.

Song, M., Günther, C. W., & van der Aalst, W. M. P.
(2009). Trace Clustering in Process Mining.
Business Process Management Workshops,
109–120.

Sordo, M., & Zeng, Q. (2005). On Sample Size
and Classification Accuracy: A Performance
Comparison. Biological and Medical Data
Analysis (ISBMDA 2005), 193–201.

van der Waal, W., Beerepoot, I., van de Weerd, I.,
& Reijers, H. A. (2022). The SWORD is
Mightier Than the Interview: A Framework
for Semi-automatic WORkaround Detection.
Business Process Management (BPM), 91–106.

van der Waal, W., van de Weerd, I., Beerepoot, I.,
Kappen, T., Haitjema, S., & Reijers, H. A.
(2023). Putting the SWORD to the Test: Finding
Workarounds with Process Mining [Manuscript
submitted for publication].

van de Weerd, I., Vollers, P., Beerepoot, I., &
Fantinato, M. (2019). Workarounds in retail
work systems: Prevent, redesign, adopt or
ignore? Proceedings of the 27th European
Conference on Information Systems (ECIS).

Verbeek, H. M. W. (2020). Process discovery contest
2020.

Warrens, M. J. (2015). Five ways to look at Cohen’s
kappa. Journal of Psychology & Psychotherapy,
5(4), 1.

Weinzierl, S., Wolf, V., Pauli, T., Beverungen, D.,
& Matzner, M. (2022). Detecting temporal
workarounds in business processes – A
deep-learning-based method for analysing event
log data. Journal of Business Analytics (JBA),
5(1), 76–100.

Wijnhoven, F., Hoffmann, P., Bemthuis, R., &
Boksebeld, J. (2023). Using process mining
for workarounds analysis in context: Learning
from a small and medium-sized company
case. International Journal of Information
Management Data Insights (IJIM Data
Insights), 3(1), 100163.

Wolf, V., & Beverungen, D. (2019). Conceptualizing
the impact of workarounds: An organizational
routines perspective. Proceedings of the 27th
European Conference on Information Systems
(ECIS).

Page 3696


