
Parameterized Complexity
of Restricted Variants of
Some Classical Problems

Krisztina Szilágyi

Krisztina Szilágyi:
 Param

eterized Com
plexity of Restricted Variants of Som

e Classical Problem
s

Parameterized Complexity of
Restricted Variants of Some

Classical Problems

Geparametriseerde complexiteit van beperkte
varianten van enkele klassieke problemen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht
op gezag van de

rector magni�cus, prof. dr. H.R.B.M. Kummeling,
ingevolge het besluit van het College voor Promoties

in het openbaar te verdedigen op

woensdag 18 september 2024 des ochtends te 10.15 uur

Krisztina Szilágyi
geboren op 15 januari 1997

te Novi Sad, Servië

1

Promotor:
Prof. dr. H.L. Bodlaender

Copromotor:
dr. J. Nederlof

Beoordelingscommissie:
Prof. dr. D.N. Dadush
Prof. dr. A. Grigoriev
Dr. H.H. Liu
Prof. dr. D. Paulusma
Prof. dr. F.C.R. Spieksma

The author of this thesis was supported by the project CRACKNP that has received
funding from the European Research Council (ERC) under the European Union's
Horizon 2020 research and innovation programme (grant agreement No 853234).

2

Acknowledgments

First and foremost, I would like to thank Jesper Nederlof for being such a great
advisor. I am very grateful for his patience and guidance over these four years. I
really enjoyed working with him and I learned a lot from him. I am thankful to my
promotor Hans Bodlaender. What I particularly appreciate is that he always made
me feel like an equal, and that he was very approachable. As head of the group, he
made sure to create a healthy group dynamic, and encouraged us to maintain a good
work-life balance.

I would like to thank my coauthors, Jesper, Hans, Isja, Céline, Carla and Ivan.
I enjoyed working with all of them, and I learned a lot from them. Thanks to Ali-
son, Erik Jan, Sukanya and all the Algorithmics TAs for making my teaching tasks
enjoyable. I would also like to thank all the members of Algorithms and Complexity
group, as well as members of the Geometric Computing group, for all the lunches
we had together. Thank you for making me feel welcome in the Netherlands and for
introducing me to Sinterklaas. In no particular order, I would like to thank Till for
being my �rst friend in the Netherlands, Lucas for organizing social events, Thekla
and Carla for all the academic and life advice, Jelle for the boardgames, Bob for the
escape rooms, and Jeremy for all the dad jokes. A special thanks goes to Sukanya and
Isja, for being such great o�ce mates. Going through the whole thesis writing and
job searching process together made it feel a lot easier and a lot more fun. Thanks
for all the discussions, distractions and co�ees.

After almost two years of corona, I really enjoyed traveling to conferences and
meeting new and old colleagues. I would like to thank all the people responsible
for organizing these wonderful events, and for the European Research Council (and
Jesper) for funding all my travels. I am also grateful to Robert Ganian for hosting
me in Vienna, Du²an Knop for hosting my visit to Prauge and o�ering me a postdoc
position, and Marvin Künnemann for the upcoming visit to Karlsruhe. I learned a lot
during these short visits, and they helped me make a step closer towards becoming
an independent researcher.

I would like to take this opportunity to wholeheartedly thank my family. I am
very grateful to my parents Rozalija and �aba for their support throughout all these
years, and for believing in me more than I believed in myself. Thanks for always being
there for me, and thanks for all the advice whose value I started appreciating years
later. I would also like to thank my siblings Daniel and Eva, for always cheering me
up and for their optimistic outlook on problems. I would also like to thank Fontas,
for all the love and support and for always making sure I have enough co�ee.

3

4

Contents

1 Introduction 7

1.1 Algorithms and Complexity . 7
1.2 Thesis overview . 10

1.2.1 Adding structure to a hard problem 10
1.2.2 Adding constraints to an easy problem 15

2 Preliminaries 21

2.1 Parameterized Complexity . 21
2.1.1 Treewidth . 21
2.1.2 Lower bounds . 24

2.2 Notation . 26

3 Detecting and Counting Small Patterns in Unit Disk Graphs 29

3.1 Introduction . 29
3.1.1 Our techniques . 31

3.2 Preliminaries . 32
3.3 Turing Kernel . 35
3.4 Proof of Theorem 3.1: Algorithm . 38
3.5 Proof of Theorem 3.3: Bounding σs . 41
3.6 Proof of Theorem 3.4: Lower Bound 42
3.7 Conclusion . 45

4 Parameterized Algorithms for Covering by Arithmetic Progressions 47

4.1 Introduction . 47
4.2 Preliminaries . 50
4.3 Algorithm for Cover by Arithmetic Progressions 50
4.4 Algorithm for Exact Cover by Arithmetic Progressions 53
4.5 Strong NP-hardness of Cover by Arithmetic Progressions in Zp 57
4.6 Parameterization Below Guarantee . 60
4.7 Conclusion . 61

5 XNLP-hardness of Parameterized Problems on Planar Graphs 63

5.1 Introduction . 63
5.2 De�nitions and Notation . 64

5.2.1 Graph notions . 64

5

5.2.2 The classes XNLP and XALP 66
5.3 Binary CSP . 67

5.3.1 XNLP-completeness for k × n-grids 68
5.3.2 XALP-completeness parameterized by outerplanarity 70

5.4 Scattered Set . 71
5.5 All-or-Nothing Flow . 73
5.6 Reductions from All-or-Nothing Flow 78

5.6.1 All-or-Nothing Flow with Small Arc Capacities 79
5.6.2 Target Outdegree Orientation 80
5.6.3 Capacitated (Red-Blue) Dominating Set 82
5.6.4 Capacitated Vertex Cover . 84
5.6.5 f -Domination and k-Domination 85
5.6.6 Target Set Selection . 87

5.7 Conclusion . 89

6 On the Parameterized Complexity of the Connected Flow and Many

Visits TSP Problem 91

6.1 Introduction . 91
6.2 Preliminaries . 93
6.3 Parameterization by Number of Demand Vertices 95
6.4 Parameterization by Vertex Cover . 96

6.4.1 Enforcing edges in �ow relaxation 97
6.4.2 FPT algorithm . 100
6.4.3 Polynomial Kernel for MVTSP 103

6.5 Parameterization by Treewidth . 106
6.5.1 XP algorithm for Connected Flow 106
6.5.2 Lower bound . 108

6.6 Conclusion . 114

7 Conclusion 115

6

Chapter 1

Introduction

1.1 Algorithms and Complexity

For thousands of years, humans have used step-by-step instructions to perform calcu-
lations, starting from Babylonian mathematicians (around 2500BC) and their calcula-
tions of movements of celestial bodies. The term algorithm originates from the name
of Persian polymath Muhammad ibn Musa al-Khwarizmi, whose books present the
�rst systematic procedures for solving linear and quadratic equations. His works were
translated into Latin in the 12th century, and the Latinization of his name Algorismi
gave rise to the term algorithm.

In the following centuries, procedures for calculating various quantities have been
discovered. However, the process of formalizing the notion of algorithms was signi�-
cantly slower: the invention of one of the �rst mechanical calculators by Leibniz in the
17th century raised the question of whether a similar machine could calculate truth
values of logical formulas. In the 20th century, a lot of progress has been made in this
regard, giving rise to several models of computation and thus a better understanding
of the concept of computability and algorithms.

One of the most famous models of computation is the Turing machine, which is an
abstract machine consisting of an in�nite sequence of memory cells (memory tape), a
�head� which can read and write onto the memory cells, a �nite set of states, together
with transition rules which determine the next step that the machine will make. This
seemingly simple model is regarded as the model which captures the intuitive notion
of computability: the Church-Turing thesis [117] states, roughly speaking, that any
function on natural numbers that can be computed by a human can also be computed
by a Turing machine.

Apart from the ability to prove that a problem cannot be solved by an algorithm,
these advances in theory of computation allowed us to talk about whether a problem
can be solved e�ciently. We can measure how e�cient an algorithm is by looking at
the time (and memory) that it used as a function of its input size. At the �rst glance,
the amount of time spent depends on the computer at hand. In many cases however,
there is only so much we can achieve by upgrading our computer. For example,
consider the Traveling Salesman Problem (TSP), in which we are given n cities

7

with their pairwise distances, and we are asked to �nd the shortest possible route
visiting each city exactly once, and returning to the city of origin.

The naive algorithm for solving TSP, which tries all n! permutations, becomes
infeasible already for n = 30: on a today's desktop computer, this algorithm would
take roughly 1014 years, which is more than the age of our universe. Using a super-
computer would reduce the computation time to about 100 million years.1 If instead
of upgrading our computer we improve our algorithm, we obtain much better results.
Namely, the Bellman-Held-Karp algorithm [9, 72] takes about 2n · n2 steps, which
means that for n = 30, it takes less than two minutes on a standard computer.

Even though it is signi�cantly faster than the naive algorithm, the runtime of the
Bellman-Held-Karp algorithm increases very quickly: already for n = 40, it takes
about two days. In other words, algorithms with exponential running time are often
not feasible for large input instances. Polynomial functions grow much slower than
exponential ones, i.e. polynomial-time algorithms are signi�cantly more e�cient than
exponential ones on large input instances. For example, for n = 1000, a 2n time
algorithm is 1031 times slower than a n90 time algorithm. This example illustrates
why we can think of problems that can be solved in polynomial time as �much easier�
than problems for which we do not have a polynomial-time algorithm.

To facilitate our understanding of di�culty of a problem, we classify problems into
complexity classes. One of the most famous such classes is P, the class of problems
solvable by a Turing machine (or a modern computer) using a polynomial number of
steps. Even though polynomial-time algorithms are sometimes too slow for practical
applications, we usually think of P as the class of problems that can be solved quickly.
The class NP (somewhat counterintuitive, NP does not stand for non-polynomial, but
rather for nondeterministic polynomial) is, roughly speaking, the class of problems
whose solution can be veri�ed in polynomial time.

Intuitively, verifying a solution sounds a lot easier than solving a problem. How-
ever, the existence of a problem whose solution can be veri�ed in polynomial time,
but cannot be solved in polynomial time (i.e. the existence of a problem that is in
NP, but not in P) remains one of the fundamental open questions of computer sci-
ence. This question was �rst asked by Cook [40] and independently by Levin [87]
in the 1970s. In the same papers, the authors proved what is today known as the
Cook-Levin theorem, stating that the classical problem of Boolean Satis�ability (also
known as SAT) is NP-complete, i.e. that any problem in NP can be reduced to it in
polynomial time.

Simultaneously to the development of computational complexity, the �eld of graph
theory underwent a signi�cant expansion in the last century, and these two areas be-
came tightly intertwined. A graph is a structure consisting of vertices and edges
between them. Although simple, graphs can be used to model many complex real
world concepts, from social networks to route planning. Many of these applications
require studying graph properties from an algorithmic point of view: it is often nec-
essary to explicitly �nd a certain substructure in a given graph as opposed to merely
showing its existence. Moreover, we are usually interested in an e�cient algorithm

1A standard desktop computer performs about ten billion elementary operations per second,
whereas a supercomputer can perform about 1017 operations per second, i.e. it is roughly a million
times faster.

8

for �nding the substructure.
For example, consider the Eulerian cycle problem (incidentally, this problem

is regarded as the origin of graph theory), which asks whether there is a cycle visiting
each edge exactly once. This problem can be solved in time linear in the number of
edges. In particular, it belongs to the class P. At the �rst glance, the Hamiltonian
cycle problem, which asks whether there is a cycle visiting each vertex exactly once,
appears to be similar to Eulerian cycle. However, Karp [79] showed in 1972 that
Hamiltonian cycle is NP-complete. In the same paper, 20 other problems were
shown to be NP-complete.

In the last 50 years, many other problems have been shown to be either NP-
complete or polynomial-time solvable, however, there are still a few problems whose
complexity is not settled. The Graph Isomorphism problem is one such example.
This problem asks, informally speaking, whether two graphs are the same up to
renaming their vertices. Recently, a breakthrough was made by Babai [4], who showed
that Graph Isomorphism can be solved in quasi-polynomial time. However, it is
still not known whether it is in P or NP-complete.

Let us now consider a generalization of this problem, where we ask whether one
graph is contained in the other (formally, whether one graph is isomorphic to a sub-
graph of the other one). This problem is known as Subgraph Isomorphism. In
contrast to Graph Isomorphism, the complexity of Subgraph Isomorphism has
been settled. Namely, it is NP-complete, which can be shown by an easy reduction
from Clique, another one of Karp's 21 NP-complete problems.

This contrast between the complexity of Subgraph Isomorphism and Graph
Isomorphism illustrates one of the fundamental lines of research in complexity the-
ory: namely, the change in complexity when we add or relax restrictions in a problem.
In other words, if we have a hard problem, does it have some special cases that are
easier? Does it have special cases that are equally hard as the general problem? Or,
in another direction, if we have an easy problem, adding which (natural) restrictions
makes it hard?

One approach to studying these questions is through the lens of parameterized
complexity. Informally, we think of parameterized problems as problems where we
restrict our input instances to only those where a certain parameter is small. In
contrast to classical complexity, where the complexity of an algorithm is a function of
the input size, in parameterized complexity we express the complexity as a function of
multiple parameters. Let us brie�y return to the Subgraph Isomorphism problem,
where we ask whether a given k-vertex graph is isomorphic to a subgraph of a given
n-vertex graph. In practical applications, k is much smaller than n, so an algorithm
whose complexity is exponential in k is much faster than an algorithm whose running
time is exponential in n.

Expressing complexity in terms of multiple parameters allows us to have a more
�ne-grained classi�cation of NP-hard problems. Informally speaking, parameterized
problems that belong to the class FPT (�xed-parameter tractable) can be thought of
as the �easiest� NP-complete problems. The W hierarchy captures harder problems:
problems occupying higher levels are harder (more precisely, at least as hard) than
problems on the lower levels. The class XP (the class of problems that can be solved
in polynomial time for each �xed value of the parameter) contains the W hierarchy,

9

and contains most natural problems.

1.2 Thesis overview

The title of this thesis, Parameterized Complexity of Restricted Variants of Some
Classical Problems, leads us back to the question of how does the complexity of a
problem change when adding restrictions to it. In order to describe the hardness of
problems more precisely, we view them through the lens of parameterized complexity.
In general, we can add restrictions to a problem in two ways.

Firstly, we can consider only input instances with some additional properties, for
example by requiring the input graph to belong to a certain graph class. Note that
the additional constraints on the input do not always make the problem easier: for
example, the 3-Coloring problem (which asks whether the vertices of a graph can
be colored using three colors such that there are no monochromatic edges), remains
NP-complete even when restricted to 4-regular planar graphs [47]. However, if we
require each vertex of the input graph to have degree at most three, the 3-Coloring
problem becomes trivial: every such graph admits a 3-coloring [33], moreover, the
3-coloring can be constructed in linear time. Informally speaking, if we start from
a hard problem, the challenge lies in balancing between adding too much structure
to its input instances (and thus making the problem too easy) and adding too little
structure (in which case the problem remains equally hard).

The second way of adding restrictions to a problem is by imposing more require-
ments on the solution. One such example is integer linear programming: namely,
linear programming can be solved in polynomial time [78], but if we require the
variables to have integral values, the problem becomes NP-complete [79]. Another
common example is adding a connectivity constraint to a graph problem, e.g. Vertex
Cover. This way, we obtain the Connected Vertex Cover problem, in which
we require the vertex cover to be connected. In case of Vertex Cover, adding the
connectivity constraint does not make the problem harder, i.e. Connected Vertex
Cover remains FPT [44].

1.2.1 Adding structure to a hard problem

Firstly, we study two hard problems where adding structure to the input makes them
easier. In the �rst case, we start from the Subgraph Isomorphism problem, and
add (geometric) structure to it by restricting the problem to unit disk graphs. In the
second case, we start from the Set Cover problem, and add (arithmetic) structure
to it. Namely, we study a special case of the problem where the universe consists of
integers, and the sets correspond to arithmetic progressions.

Chapter 3: Adding geometric structure

Let us return to the Subgraph Isomorphism problem. Recall that in this prob-
lem, we are given a k-vertex graph P and an n-vertex graph G (pattern and host
graph respectively), and we are asked to determine whether there is a subgraph of G
that is isomorphic to P . We will also consider the counting version of this problem,

10

Counting Subgraph Isomorphism. For graphs P and G, we de�ne sub(P,G) and
ind(P,G) as follows:

ind(P,G) = {f : V (P)→ V (G) : f is injective, uv ∈ E(P)⇔ f(u)f(v) ∈ E(G)},

sub(P,G) = {f : V (P)→ V (G) : f is injective, uv ∈ E(P)⇒ f(u)f(v) ∈ E(G)}.
Now we de�ne Counting Subgraph Isomorphism as follows:2

Counting Subgraph Isomorphism
Input: Graph G, graph P
Task: Compute |ind(P,G)| and |sub(P,G)|.

Note that Subgraph Isomorphism can be seen as an easier version of Counting
Subgraph Isomorphism, where we are only interested in whether |ind(P,G)| or
|sub(P,G)| are equal to zero. Due to their theoretical and practical importance,
Subgraph Isomorphism and Counting Subgraph Isomorphism have been well-
studied from many perspectives. The Counting Subgraph Isomorphism problem
is an important problem in network analysis. Informally speaking, knowing how
often certain patterns appear in a graph gives us a way of measuring the similarity
between large graphs. For example, this allows us to determine which graph classes
are more suitable for modeling real-world graphs such as protein-protein interaction
networks [108].

One of the most recent (Counting) Subgraph Isomorphism solvers is Glasgow
[96], which is based on constraint programming. As is often the case with hard
counting problems, one approach is to resort to approximate counting. Several ap-
proximation techniques such as color coding [29], randomized enumeration [103] have
been used. Another approach to reduce computational time is to use distributed algo-
rithms [104,120]. A survey of Subgraph Isomorphism solvers can be found in [109].
Machine learning can also be used to speed up classical Subgraph Isomorphism al-
gorithms [89].

From the theoretical perspective, Subgraph Isomorphism generalizes many clas-
sical graph problems, such as Hamiltonian Cycle, Longest Path and Clique.
As mentioned earlier, it is an NP-complete problem. In practical applications, the
pattern size k is often very small [109], thus it is natural to study the parameteriza-
tion by k. Even very restricted cases of Subgraph Isomorphism (e.g. Clique) are
known to be W [1]-hard [53] and thus unlikely to have an FPT algorithm.

It is known that Subgraph Isomorphism can be solved in polynomial time when
both the pattern and host graphs are trees [95]. However, the problem becomes
NP-hard already on graphs of treewidth at most two, which implies that it is not
FPT parameterized by treewidth (under standard complexity theory assumptions).
Parameterizations by multiple parameters have been studied in [93].

One way to make this problem easier is to add geometric structure to it, i.e. to
restrict the input graphs to those with some geometric properties. On planar graphs,
the problem can be solved in time 2O(k/ log k) [26, 62, 100]. For this algorithm, there
is also a matching (conditional) lower bound, namely 2o(n/ logn) [26]. The Counting

2In this thesis, we consider the labelled version of this problem, i.e. we count isomorphisms
mapping P to a subgraph of G rather than counting the number of subgraphs of G isomorphic to P .

11

Subgraph Isomorphism problem on planar graphs can be solved in subexponential
time [100].

Apart from planar graphs, another large class of graphs with geometric structure
is the class of geometric intersection graphs. These graphs can be represented as
a collection of geometric objects whose intersections correspond to the edges of the
graph. The simplest such graphs are interval graphs, i.e. intersection graphs of
intervals on the real line. It has been shown that Subgraph Isomorphism is W [1]-
hard (parameterized by k) even in this case [94].

Our results. We considerCounting Subgraph Isomorphism on unit disk graphs,
which can be represented as a collection of unit disks in the plane such that edges
correspond to intersecting disks. Moreover, we restrict ourselves to bounded ply unit
disk graphs, where each point in the plane is contained in at most p disks. Bounded
ply allows us to obtain small separators, i.e. small sets whose removal disconnects the
graph. A separation of a graph G = (V,E) is a pair (A,B) such that A,B ⊆ V (G)
and there are no edges between A \B and B \A. Informally, a separation is a way of
splitting a graph into two parts which interact only via a small set of vertices, i.e. the
separator. Small separators are a key ingredient for solving Subgraph Isomorphism
for several geometric graph classes, e.g. planar graphs [100] and intersection graphs
of fat objects [36].

We use a dynamic programming approach, i.e. we break down the problem into
simpler subproblems of the same type. Roughly speaking, our dynamic programming
table is indexed by a vertical strip in embedding of the host graph, a separation of the
pattern graph, and a function describing the �boundary behaviour� of the pattern.
The small separators allow us to reduce the number of table entries, since they limit
the number of options for boundary behaviour of the pattern. To further speed up
our algorithm, we use an approach similar to [100]: we group isomorphic separations
together and use a more e�cient version of inclusion-exclusion. This allows us to
obtain an FPT algorithm. We also prove a matching (conditional) lower bound.

Main result:
A 2O(pk/ log k)nO(1) time algorithm for Counting Subgraph Isomorphism on
unit disk graphs of ply p.
Key ideas:

� Using small separators to reduce the number of possible boundary
behaviours of the pattern

� Grouping isomorphic separations to reduce the dynamic programming
table size

� Applying e�cient inclusion-exclusion for faster table entry computation

12

Chapter 4: Adding arithmetic structure

The next problem we study is the Set Cover problem, where we are given a set U
of size n (called the universe) together with a collection S of its subsets, and we are
asked to �nd the smallest number of sets in S that cover U (i.e. whose union equals
U). This problem is one of Karp's 21 NP-complete problems, and it is also known to
be W [2]-complete parameterized by the solution size k [45].

A related problem (and another one of Karp's 21 NP-complete problems), Exact
Cover, additionally requires the sets in the set cover to be disjoint. The Exact
Cover problem can be used to model various tiling problems, as well as Sudoku
puzzles. Knuth's Algorithm X [82] describes the natural algorithm for solving this
problem. Namely, the algorithm deterministically chooses an element, then nondeter-
ministically chooses a set that covers it (i.e. branches over all possible choices) and
deletes the newly covered elements. Several versions of Exact Cover were studied
in [15], where a 2nnO(1) time algorithm was described.

The greedy algorithm for Set Cover, which picks in each step the set that covers
the most uncovered elements, can be shown to be a Θ(log n)-approximation. In fact,
it is in some sense the best polynomial-time approximation: a (1− ε)-approximation
of Set Cover is NP-hard for every ε > 0 [51]. Since Set Cover has many practical
applications, including crew scheduling [98, 118], data mining [114] and information
retrieval [111], many exact and approximation algorithms have been developed. The
problem can be formulated as a linear program in a natural way, so linear program-
ming techniques and heuristics can be applied to it. One of the most e�ective ap-
proaches for exact Set Cover algorithms is the branch-and-bound method [35]. This
method consists of breaking the problem into several subproblems (branch) and uses
certain rules to cut o� some branches (bound).

From the graph perspective, an instance of Set Cover can be seen as a hy-
pergraph, where vertices correspond to elements of the universe and hyperedges to
the sets in S. In this context, the Set Cover problem becomes the Edge Cover
problem on the corresponding hypergraph. While Edge Cover can be solved in
polynomial time on graphs (i.e. 2-regular hypergraphs) [65], on general hypergraphs
it becomes W [2]-complete. Set Cover generalizes several classical graph problems
such as Vertex Cover and Dominating Set. While Vertex Cover is FPT, the
Dominating Set problem remains W [2]-complete on general graphs [45].

Several problems related to Set Cover have been studied from a number theoretic
and extremal combinatorics perspective. Erd®s introduced the notion of covering
systems in the 1950s. Recall that an arithmetic progression (AP) is a sequence of
numbers such that the di�erence between two successive elements is constant. A
covering system is a set of (in�nite) arithmetic progressions that cover the set Z (i.e.
whose union is equal to Z). An open problem, posed by Erd®s [56], was whether the
smallest di�erence of an arithmetic progression in a covering system can be arbitrarily
large. This question was answered negatively about 50 years later by Hough [74].

Our results. In this thesis, we study a ��nite version� of covering systems. Namely,
we study the special case of Set Cover where the universe U is a set of integers, and
the sets in S correspond to (�nite) arithmetic progressions containing only elements of

13

U . Formally, we study the Cover by Arithmetic Progressions problem (CAP),
de�ned as follows:

Cover by Arithmetic Progressions (CAP)
Input: Set X of n integers, integer k
Task: Is there a set of k APs that are fully contained in X and whose union
equals X?

We also study the Exact Cover by Arithmetic Progressions problem
(XCAP), a special case of Exact Cover:

Exact Cover by Arithmetic Progressions (XCAP)
Input: Set X of n integers, integer k
Task: Is there a set of k APs that are fully contained in X, and which partition
X?

Heath [71] showed that both of these problems are weakly NP-complete. Restrict-
ing ourselves to this special case gives us more structure to work with. On a high
level, our algorithms guess (i.e. branches over all possibilities) for each element of
the universe which AP covers it. The crucial insight is the way in which we exploit
the additional structure of the problem to reduce the number of guesses. Namely,
we use the result of Crittenden and Vanden Eynden [42], stating that if k in�nite
arithmetic progressions cover the set {1, 2, . . . , 2k}, then they cover the whole set of
positive integers.

Roughly speaking, our recursive algorithm for CAP branches over all possibilities
of covering the �rst k2+1 previously uncovered elements. By the pigeonhole principle,
two of these elements will be covered by the same AP. However, these two elements
might not be consecutive, i.e. their di�erence might be a multiple of the di�erence
of the corresponding AP. We use the above structural result to help us reduce the
number of possibilities for the di�erence of the AP, leading to an FPT algorithm.

The XCAP problem is intuitively harder than CAP: in contrast to CAP, in
XCAP we cannot assume that all APs in the solution are inclusion-maximal. In other
words, we might want to �interrupt� an AP to start another one. This is re�ected in
our algorithm by maintaining two sets for each AP, the set of �trully covered� elements
(those that certainly belong to the AP) and the set of those that are �potentially
covered� (those that belong to the AP unless we interrupted it earlier). Applying a
more involved version of the tools used in the algorithm for CAP, we obtain an FPT
algorithm for XCAP (albeit slower than the one for CAP).

14

Main result:
A 2O(k2)nO(1) time algorithm for CAP and a 2O(k3)nO(1) time algorithm for
XCAP.
Key ideas:

� CAP, XCAP: Branching algorithm which guesses which AP covers an
element

� CAP, XCAP: Using a structural result by Crittenden and Vanden

Eynden to reduce the number of branches

� XCAP: Distinction between trully and potentially covered elements,
re�ecting usage of non-maximal APs

1.2.2 Adding constraints to an easy problem

In the second part of this thesis, our starting point is an �easy� problem. We add
two natural requirements on the solution, making the problem harder. We consider
the Flow problem, which can be informally described as follows. A �ow network
consists of vertices (two vertices, source and sink, play a special role) and edges,
where each edge has a capacity. We are asked to maximize the amount of �ow going
from the source to the sink, subject to certain constraints (for a precise de�nition, see
Section 2.2 or standard textbooks). One famous generalization of Flow is the Min
Cost Flow. In this problem, in addition to a �ow network, we are also given costs
for each edge. The problem asks to �nd a maximum �ow of lowest cost (for a precise
problem statement, see Section 2.2).

Apart from the natural application to logistics, Flow and Min Cost Flow
can be used to model various problems, from Shortest Path to Multiple Object
Tracking [28]. As opposed to the previously discussed problems, Flow can be solved
in polynomial time: the famous Edmonds-Karp algorithm solves it in time O(|V ||E|2),
where |V | and |E| are the numbers of vertices and edges respectively.

Since all their constraints are linear, both Flow andMin Cost Flow can be for-
mulated as linear programs. Dantzig [49] used the simplex method to obtain the �rst
pseudo-polynomial algorithm forMin Cost Flow. Over the years, faster algorithms
have been developed using a combinatorial approach [66, 67]. Combining continuous
optimization techniques with the existing graph theoretic approaches lead to further
improvements [48,113]. Using the Interior Point Method together with e�cient graph
data structures, Chen et al. [39] gave an almost-linear time algorithm for Flow and
Min Cost Flow: Namely, their algorithm solves these two problems in time m1+o(1)

with high probability, where m is the number of edges and capacities and costs are
polynomially bounded.

In this thesis, we study the Flow problem with an additional all-or-nothing con-
straint, i.e. we require the �ow on each edge to either be zero or equal to the edge
capacity. We also study the Min Cost Flow problem with an additional connectiv-
ity requirement.

15

Chapter 5: Adding an all-or-nothing constraint

In this case, we require the �ow on each edge to either be zero or equal to the edge
capacity. Formally, the All-or-Nothing Flow problem is de�ned as follows:

All-or-Nothing Flow
Input: A �ow network (G, s, t, cap), and an integer r
Task: Is there an all-or-nothing �ow of value exactly r?

The above problem is known to be NP-complete [3]. The parameterization of this
problem by pathwidth and treewidth leads us to two recently introduced complexity
classes, namely XNLP and XALP.

The class XNLP was introduced by Elberfeld [54] (where it was named N [fpoly,
f log]) and Bodlaender et al. [23]. This class is de�ned as the class of parameterized
problems which can be solved by a nondeterministic Turing machine in FPT time
(i.e. in time f(k)nO(1) for some computable function f) and logarithmic space (i.e.
in space g(k) log n for some computable function g). It captures problems that are
�above� W [t]: Namely, XNLP-hardness implies W [t]-hardness for all t [23]. The
class XALP can be seen as a tree analogue of XNLP, i.e. problems that are XNLP-
hard parameterized by pathwidth are often XALP-hard parameterized by treewidth.
Formally, the class XALP contains problems that can be solved in FPT time and
logarithmic space (same as the class XNLP), using an additional stack.

Our results. The All-or-Nothing Flow problem was shown to be XNLP-
complete with pathwidth as parameter [18] and XALP-complete with treewidth as
parameter [22]. In this thesis, we show XNLP-hardness of this problem for planar
graphs parameterized by outerplanarity (informally, outerplanarity is the number of
�layers� of a planar graph). We reduce from the Binary CSP problem paramterized
by pathwidth, which was shown to be XNLP-hard in [23]. The Binary CSP problem
can be seen as a generalization of Graph Coloring and List Coloring, where
each vertex has a list of allowed colors, and the edge constraints consist of pairs of
allowed colors for their endpoints.

Given an instance of Binary CSP with bounded pathwidth, we construct an
instance of All-or-Nothing Flow as follows. Firstly, we transform the path de-
composition of the input graph to a nice path decomposition, i.e. a sequence of
Introduce, Forget, Swap and Add-Edge operations which construct the graph step by
step. For each of these operations, we describe a gadget corresponding to it. Each ver-
tex in the All-or-Nothing Flow instance will have a label, i.e. it will correspond
to one vertex of the Binary CSP graph. The �ow through a vertex will correspond
to choosing a color for its label.

The key insight is the way in which we verify whether an edge constraint is satis�ed.
Namely, in order to check whether the constraint of an edge uv is satis�ed, we will
use a gadget combining �ows from a vertex with label u and a vertex with label v.
In order to �decouple� these two �ows afterwards, we exploit the properties of Sidon
sets. A Sidon set is a set where each pair of its elements has a di�erent sum. This
allows us to ensure that, after the edge constraint check, we get exactly the same
outgoing �ows.

16

We use the All-or-Nothing Flow problem as a starting point for several other
hardness results, such as Capacitated Vertex Cover, (Red-Blue) Dominating
Set and Target Set Selection. Additionally, we improve two hardness results
on Binary CSP. Namely, we show that Binary CSP is XNLP-complete on k × n-
grids and XALP-complete parameterized by outerplanarity. We use the hardness
of Binary CSP to show hardness of Scattered Set, a problem that generalizes
Independent Set.

Main result:
All-or-Nothing Flow is XNLP-hard parameterized by outerplanarity.
Key ideas:

� Reduction from Binary CSP parameterized by pathwidth (an XNLP-
hard problem)

� Working with nice path decompositions to construct the graph via a
sequence of simple operations

� Using Sidon sets to allow uncoupling of two �ows entering the same edge

Chapter 6: Adding a connectivity constraint3

We study the Min Cost Flow problem with an additional connectivity constraint,
namely we require the underlying graph of the �ow (i.e. the graph induced by the
edges with nonzero �ow) to be connected. We call this problem Connected Flow,
and we de�ne it as follows (for a more detailed de�nition, see Section 2.2):

Connected Flow
Input: Directed graph G = (V,E), D ⊆ V , dem : D → N, cost : E → N,
cap : E → N ∪ {∞}
Task: Find a �ow f : E → N such that for every v ∈ D we have

∑
u∈V f(u, v) =

dem(v) and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

The Connected Flow problem generalizes the famous Travelling Salesman
Problem (TSP), in which we are given a graph with edge weights and we are required
to �nd the cycle of minimum weight visiting each vertex of the graph exactly once.
This well-studied problem is often used as a benchmark for optimization methods.
One of the best studied heuristic approaches is the Ling-Kernighan (LK) method,
introduced in [88]. Informally speaking, this approach starts from a (nonoptimal)
cycle, and improves it by replacing parts of the cycle that are �out of place�. Algo-
rithms based on the LK method have recently been surpassed by those using another
approach, namely stem-and-cycle, which was introduced in [105].

Moreover, Connected Flow generalizes an extension of TSP, calledMany Vis-
its TSP (MVTSP). In MVTSP, we are required to visit each vertex a number of

3The results in Chapter 6 also appeared in the thesis of Céline Swennenhuis [115].

17

times equal to its demand. The MVTSP problem was introduced by Cosmadakis and
Papadimitriou [41], and in the last few years several variations have been studied.
Kowalik et at. [85] improved the analysis of the MVTSP algorithm from Berger et
al. [13], resulting in a O∗(4n) time exponential space algorithm. A O(7.9n) time poly-
nomial space algorithm has also been developed [85]. A 3/2-approximation algorithm
for the metric Many Visits Path TSP is given in [11]. In this case, the cost func-
tion is a metric, and we are required to �nd a path rather than a cycle visiting each
vertex the required number of times. A generalization of MVTSP involving multiple
salesman has also been studied [12].

Our results. We show that adding the connectivity constraint toMin Cost Flow
makes the problem NP-hard, even in a very restricted case (namely, the case when
we have two demand vertices). We also present parameterized algorithms for solving
Connected Flow, which can be seen as an illustration of a �rounding� technique,
i.e. a graph analogue of solving integer linear programs (ILP). Namely, a common
approach to solving ILPs is to �rst solve their relaxed (i.e. fractional) version, and
use it as a starting point for constructing an integral solution. In our setting, we �rst
solve the relaxed version of Connected Flow, i.e. the Flow problem, and then
modify the solution to ful�ll the connectivity requirement.

We present an FPT algorithm for Connected Flow parameterized by the size of
vertex cover, as well as a polynomial kernel for MVTSP for the same parameterization.
We also study the parameterization by treewidth. We present an XP algorithm for
Connected Flow, using standard techniques for dynamic programming on tree
decompositions. We give a matching (conditional) lower bound for the special case
of MVTSP, using a modi�cation of the reduction from 3-CNF-SAT to Hamiltonian
Cycle [46].

Main result:
An FPT algorithm for Connected Flow parameterized by vertex cover.
Key ideas:

� Dynamic programming table indexed by connected blocks of vertex cover
and in/out degrees of some vertices

� Approximating connected �ow by �ow to reduce the table size

Organization

In Chapter 2, we introduce several important parameterized complexity notions and
notation that will be used throughout the thesis. The next chapters correspond to
the following papers:

� Chapter 3: J. Nederlof, K. Szilágyi. Algorithms and Turing kernels for detect-
ing and counting small patterns in unit disk graphs. In International Confer-

18

ence on Current Trends in Theory and Practice of Computer Science (SOFSEM
2024), pp. 125-138. Springer Nature Switzerland, 2024.

� Chapter 4: I. Bliznets, J. Nederlof, K. Szilágyi. Parameterized algorithms for
covering by arithmetic progressions. In International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2024), pp. 413-
426. Springer Nature Switzerland, 2024.

� Chapter 5: H. L. Bodlaender, K. Szilágyi. XNLP-hardness of Parameterized
Problems on Planar Graphs. In International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2024). Springer International Publishing,
2024. (to appear)

� Chapter 6: I. Mannens, J. Nederlof, C. Swennenhuis, K. Szilágyi. On the
parameterized complexity of the connected �ow and many visits TSP problem.
In International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2021), pp. 52-79. Springer International Publishing, 2021.

We �nish with some concluding remarks in Chapter 7.

19

20

Chapter 2

Preliminaries

In this chapter, we brie�y introduce the parameterized complexity framework. We
describe one of the central concepts in this area, namely treewidth. This graph pa-
rameter can be thought of as a measure of similarity between the given graph and a
tree. We also discuss lower bounds, i.e. ways of proving that a given problem cannot
be solved in certain running time. In the second section of this chapter, we introduce
notation that will be used throughout the thesis.

2.1 Parameterized Complexity

In this section, we introduce standard parameterized complexity notions and results.
This section is based on [45], where a more detailed introduction to parameterized
complexity can be found.

Let us now formally de�ne parameterized problems. For a �nite set Σ, we de�ne
Σ∗ as the collection of all (�nite) strings that can be made using the elements of Σ.

De�nition 2.1. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a
�xed �nite alphabet.

The parameterized analogue of P, i.e. the class of �easy� parameterized problems,
is the class of �xed-parameter tractable problems (FPT).

De�nition 2.2. A parameterized problem is �xed-parameter tractable (FPT) if it
can be solved in time f(k)nO(1), where f is a computable function of the parameter k
and n is the size of the input.

Informally, we think of parameter k as small, so we can �a�ord� an e.g. exponential
dependency on k, but not an exponential dependency on n.

2.1.1 Treewidth

Maximum Weight Independent Set. Consider the following problem: we are
given a map with labels (names of countries, regions, cities etc.). Showing all labels

21

at once would lead to a very cluttered and unusable map, so we have to decide which
ones to show. In particular, the labels that we show should not overlap with each
other, and we should prioritize more important labels (e.g. names of big cities as
opposed to names of small villages).

This problem can be seen as a Maximum Weight Independent Set (MWIS)
problem. Namely, we can create a con�ict graph whose vertices correspond to labels,
and we connect two vertices by an edge if the corresponding labels overlap. We
assign a weight to each vertex, which corresponds to the importance of its label (e.g.
population size). The special case when all weights are equal is known as Maximum
Independent Set (MIS). On general graphs, MIS is NP-hard [79], and can be solved
in time O(1.2n) [119], where n is the number of vertices of the input graph.

However, when we look at the special case of MWIS where the input graph is a
tree, the problem becomes signi�cantly easier. Namely, it can be solved in linear time
using the following dynamic programming approach. For a vertex v, let w(v) be the
weight of v and let Tv be the subtree rooted at v. We de�ne A[v, 0] as the MWIS in Tv

that does not contain v, and A[v, 1] as the MWIS in Tv. We can calculate A[v, 0] and
A[v, 1] recursively (starting from the leaves) as follows. Let v1, . . . , vq be the children
of v. We have

A[v, 0] =
∑

A[vi, 1];

A[v, 1] = max
{
A[v, 0], w(v) +

∑
A[vi, 0]

}
.

To prove the correctness of the above recursive formulas, we need several observations.
Firstly, the graphs Tv and G−Tv �interact� only via v, i.e. there are no edges between
them. Also, there are no edges between the subtrees Tv1 , . . . , Tvq , so if we take the
maximum independent sets in each Tvi

, their union will still be an independent set.

Treewidth. The large discrepancy in the running time for trees and general graphs
raises the question whether we can obtain a faster algorithm for a larger class of
�tree-like� graphs. The parameter treewidth captures this notion of �tree-likeness�.
Informally, a tree decomposition of a graph G consists of a tree whose nodes have
associated bags (subsets of V (G)). The bags are chosen in a way that allows us to
mimic the above properties of trees. Formally, a tree decomposition is de�ned as
follows.

De�nition 2.3. A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F)), with T a tree and {Xi | i ∈ I} a collection of subsets of V , such that

1.
⋃

i∈I Xi = V ;

2. For each edge {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi; and

3. For all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F)) is maxi∈I |Xi| − 1, and
the treewidth of a graph G is the minimum width of a tree decomposition of G.

22

Note that the treewidth of a tree is equal to one. The notion of tree decompositions
allows us to extend the above approach to a wider class of graphs. Given a graph G
with a tree decomposition, for each node t we de�ne Xt to be the corresponding bag,
and Vt = ∪t′Xt′ , where t′ goes over all nodes in the subtree rooted at t (including t).
For each node t and each subset S ⊆ Xt, we de�ne

A[t, S] = max weight of S′ such that S ⊆ S′ ⊆ Vt, S
′ ∩Xt = S

and S′ is an independent set.

Informally, the set S describes the behaviour of the independent set in the bag Xt.
The key observation is that the vertices in Vt interact with other vertices only via Xt.

Nice tree decompositions. In order to further facilitate computing the table en-
tries, we introduce the notion of nice tree decompositions:

De�nition 2.4. A rooted tree decomposition (T, {Xt}t∈V (T)) is nice if the following
conditions are satis�ed:

� For the root r of T , we have Xr = ∅. For each leaf ` of T , we have X` = ∅.
� Each node t that is not a leaf is one of the following types:

� Introduce node: t has exactly one child t′ and Xt = Xt′ ∪ {v} for some
vertex v 6∈ Xt′ ;

� Forget node: t has exactly one child t′ and Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ ;

� Join node: t has exactly two children, t1 and t2 such that Xt1 = Xt2 = Xt.

This allows us to easily compute the dynamic program table entries bottom up (i.e.
from leaves to the root). If the input graph has treewidth k, we obtain an algorithm
for MWIS that runs in time 2k · kO(1) · n (for more details, we refer to Section 7.3
of [45]). Note that if the treewidth of G is small, this algorithm has a much better
running time than the O(1.2n) algorithm for general graphs.

Computing treewidth (and the corresponding tree decompositions) is a large area
of research, and many exact and approximation algorithms have been developed.
Bodlaender [16] gives an exact algorithm for computing tree decompositions of width
k in time 2O(k3)n. Recently, Korhonen and Lokshtanov [84] gave an algorithm with
running time 2O(k2)nO(1). Often it is su�cient to obtain a constant factor approxi-
mation to treewidth: Korhonen [83] gives a 2O(k)n time algorithm for computing a
tree decomposition of width 2k + 1 or returns that the treewidth is larger than k.

Planar Graphs. Let us now focus on planar graphs. One of the key results concerns
the relationship between grid minors and treewidth of planar graphs. Informally, a
planar graph either has small treewidth or contains a large grid as a minor. Formally,
we have the following result.

Theorem 2.5 ([110], [69]). Let t ∈ Z>0. Every planar graph G either has treewidth
at most O(t), or contains a t× t-grid as a minor.

23

Furthermore, the proof of the above theorem is constructive and yields a O(n2)
algorithm that returns a t× t-grid minor or a tree decomposition of width O(t). This
gives rise to bidimensionality theory. Roughly speaking, for many problems (so-called
bidimensional problems), the following holds: if there is a solution of size k, the
treewidth of the input graph is O(

√
k). This allows us to solve many problems on

planar graphs (e.g. Vertex Cover, Independent Set, Dominating Set) in time
2O(
√
k)nO(1), parameterized by solution size.

Pathwidth. An important special case of tree decompositions are path decomposi-
tions, de�ned as follows.

De�nition 2.6. A tree decomposition ({Xi | i ∈ I}, T = (I, F)) is a path decom-
position, if T is a path, and the pathwidth of a graph G is the minimum width of a
path decomposition of G.

Pathwidth can also be related to the interval thickness of a graph:

Lemma 2.7 ([17]). A graph G has pathwidth k if and only if it is a subgraph of an
interval graph H such that ω(H) = k + 1.

Note that the treewidth of a graph is at most its pathwidth, but even graphs of
treewidth one (i.e. forests) can have arbitrarily large pathwidth. Computing path-
width is NP-complete, and the best known algorithm computes pathwidth in time
2nnO(1) on n-vertex graphs.

2.1.2 Lower bounds

In order to prove that a problem can be solved in certain running time, it su�ces
to provide an algorithm that solves it in the required time. However, proving that a
problem cannot be solved within certain time is slightly more challenging. Working
under the assumption that P 6= NP , we can show that a problem cannot be solved in
polynomial time by showing that it is NP-hard. This is usually done by showing that
there is a polynomial-time reduction from a problem that is known to be NP-hard.

In classical complexity theory, we consider two problems to be �equally hard� if
there is a polynomial-time reduction from one to the other and vice versa. Assuming
P 6= NP , Ladner [86] constructed an NP-intermediate problem: a problem that is
in between P and NP-complete (i.e. it is neither in P nor NP-complete). However,
this problem is somewhat arti�cial, and has no connection to other natural problems.
We remark here that there are several natural problems which are believed to be
NP-intermediate, e.g. the decision version of integer factorization. Until today, most
natural problems can be considered equally hard with respect to polynomial-time
reductions.

Parameterized Reductions. The parameterized complexity landscape however
looks a bit di�erent: there are some natural problems that are believed to be strictly
harder than others, i.e. we know that one problem can be reduced to the other, but
we do not know if the converse is true. In order to formalize this notion, we �rst

24

need to introduce the notion of parameterized reduction, which is the parameterized
analogue of polynomial-time reduction. Given an instance (x, k) of a parameterized
problem, we will use |x| to denote the size of x.

De�nition 2.8. Given two parameterized problems A,B ⊆ Σ∗ ×N, a parameterized
reduction from A to B is an algorithm that takes as input an instance (x, k) of A and
outputs an instance (x′, k′) of B such that the following conditions are satis�ed:

� (x, k) is a Yes-instance of A if and only if (x′, k′) is a Yes-instance of B;

� k′ 6 g(k) for some computable function g;

� the algorithm has running time f(k) · |x|O(1) for some computable function f .

It can be shown that if there is a parameterized reduction from A to B and B
can be solved in FPT time, then A can also be solved in FPT time (see Theorem
13.2 [45]). We remark that the second condition in the above de�nition ensures that
the new parameter is bounded by a function of only k: for example, reductions where
k′ = n− k do not satisfy this condition.

W-hierarchy. The W-hierarchy captures the di�erent levels of hardness of param-
eterized problems. The formal de�nition of classes W [t] is somewhat involved: infor-
mally, for each nonnegative integer t, the class W [t] contains problems which have a
parameterized reduction to a version of SAT. It is known that FPT = W [0] and that
W [i] ⊆ W [j] for all i < j. The notions of hardness and completeness are analogous
to those in classical complexity theory.

An example of a W [1]-complete problem is Independent Set. Problems that
are W [2]-complete include Dominating Set and Set Cover. It is believed that
W [t] (W [t + 1] for all t. The class XP contains problems that can be solved in
slice-wise polynomial time, i.e. in time nf(k). It is known that

FPT = W [0] ⊆W [1] ⊆W [2] ⊆ · · · ⊆ XP,

and it is known that there are problems in XP which are not in FPT.

ETH lower bounds. Let us now focus on lower bounds for FPT problems. Recall
that for FPT algorithms, the running time can have a large (e.g. double exponential)
running time in k. Therefore, it would be useful to have a tool that allows us to
distinguish better between problems in FPT. The Exponential Time Hypothesis
(ETH) states, roughly speaking, that 3-SAT cannot be solved in subexponential time
in terms of number of variables.

De�nition 2.9. Let δ be the in�mum of the set of constants c for which there exists
an algorithm that solves 3-SAT in time O∗(2cn),1 where n is the number of variables.
The Exponential Time Hypothesis states that δ > 0.

1We use O∗ to suppress polynomial factors in input size.

25

Under the assumption of ETH, we can obtain lower bounds for other problems
(i.e. show that there is no algorithm that solves our problem in certain running time):
in order to exclude an algorithm with running time O∗(2o(f(|x|))), we construct a
reduction from 3-SAT to our problem that outputs instances of size O(f−1(n+m)),
where n and m are the number of variables and clauses respectively, and f−1 is the
inverse function of f .

2.2 Notation

We let O∗(·) omit factors polynomial in the input size and Õ(·) omit polylogarithmic
factors. Given a graph G and a subset A of its vertices, we de�ne G[A] as the
subgraph of G induced by A. Given a graph G = (V,E), we denote by N(v) the open
neighbourhood of a vertex v, i.e. N(v) = {u ∈ V : {u, v} ∈ E}. We denote by ω(G)
the clique number of G, i.e. the size of the largest clique in G.

We denote all vectors by bold letters, the all ones vector by 1 and the all zeros
vector by 0. We use the Iverson bracket notation: for a Boolean statement b, we
de�ne [b] = 1 if b is true and [b] = 0 if b is false. For integers a 6 b, we de�ne
[a, b] = {a, a+ 1, . . . , b− 1, b} and [a] = {1, . . . , a}.

Given a function f : A→ B, we de�ne the image of f as Im(f) = {b ∈ B : (∃a ∈
A)f(a) = b}, and for b ∈ B we de�ne the preimage as f−1(b) = {a ∈ A : f(a) = b}.
Given C ⊆ A, we de�ne the restriction of f to C as f |C : C → B, such that
f |C(c) = f(c) for all c ∈ C. If g = f |C for some C, we say that f extends g.

We use the notion of multisets, which are sets in which the same element may
appear multiple times. Formally, a multiset is an ordered pair (A,mA) consisting of
a set A and a multiplicity function mA : A→ Z+.

Flow

Since we discuss several versions of the �ow problem in this thesis, we give an overview
of their de�nitions and relations between them.

De�nition 2.10. A �ow network is a tuple (G, s, t, cap), with G = (V,E) a directed
graph, s, t ∈ V two vertices, and cap : E → N ∪ {∞} a capacity function, assigning
to each arc a positive integer capacity. A �ow is a function f : E → N that assigns
to each arc a non-negative integer such that

1. for each arc e ∈ E, 0 6 f(e) 6 cap(e) (capacity constraint), and

2. for each vertex v ∈ V \{s, t},∑wv∈E f(wv) =
∑

vx∈E f(vx) (�ow conservation).

The value of a �ow f is
∑

sx∈E f(sx)−∑ws∈E f(ws).

The Flow problem is de�ned as follows.

Flow
Input: A �ow network (G, s, t, cap), and an integer r
Task: Is there a �ow of value exactly r?

26

In Chapter 5, we discuss the All-or-Nothing Flow problem. We say that a
�ow f is an all-or-nothing �ow if for each edge e ∈ E, we have f(e) ∈ {0, cap(e)}.

All-or-Nothing Flow
Input: A �ow network (G, s, t, cap), and an integer r
Task: Is there an all-or-nothing �ow of value exactly r?

One standard version of Flow is the Min Cost Flow problem, where we are
additionally asked to minimize the cost of the �ow.

Min Cost Flow
Input: Directed graph G = (V,E) with source node set S ⊆ V and sink nodes
T ⊆ V , cost : E → N, cap : E → N ∪ {∞}
Task: Find a function f : E → N such that

� for every v ∈ V \ (T ∪ S) we have
∑

u∈V f(u, v) =
∑

u∈V f(v, u),

� for every e ∈ E : f(e) 6 cap(e),

� the value of
∑

v∈S
∑

u∈V f(v, u) is maximal,

and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

In Chapter 6, we will use a problem equivalent to Min Cost Flow, which we
will call Demand Flow.

Demand Flow
Input: Directed graph G = (V,E), D ⊆ V , dem : D → N, cost : E → N,
cap : E → N ∪ {∞}
Task: Find a function f : E → N such that

� for every v ∈ V we have
∑

u∈V f(u, v) =
∑

u∈V f(v, u),

� for every v ∈ D we have
∑

u∈V f(u, v) = dem(v),

� for every e ∈ E : f(e) 6 cap(e),

and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

Equivalence of Demand Flow and Min Cost Flow. We argue that De-
mand Flow is equivalent toMin Cost Flow by simple reductions. First we reduce
in the forward way. For each d ∈ D, we create vertices dout, din where dout is a source
node with outgoing �ow dem(d) and din is a sink node with ingoing �ow dem(d). For
all other vertices in V \D, we create a node and connect to all its neighbors, where
all outgoing edges to a vertex in D go to din and all ingoing edges from a vertex in D
connect to dout.

For the other way, let S be the set of source nodes and T be the set of sink nodes
of the Min Cost Max Flow problem. We add one �big� node x to the graph, with
demand equal to the total outgoing �ow from all the source nodes. We add edges
(t, x) for all t ∈ T with cost(t, x) = 0. Furthermore, we add edges (x, s) for all s ∈ S

27

with cost(x, s) = 0. We set cap(x, s) and cap(t, x) to be equal to the corresponding
outgoing and incoming �ows.

28

Chapter 3

Detecting and Counting Small

Patterns in Unit Disk Graphs

3.1 Introduction

A well-studied theme within the complexity of computational problems on graphs is
how much structure within inputs allows faster algorithms. One of the most active
research directions herein is to assume that input graphs are geometrically structured.
The (arguably) two most natural and commonly studied variants of this are to assume
that the graph can be drawn on R2 without crossings (i.e., it is planar) or it is the
intersection graph of simple geometric objects. While this last assumption can amount
to a variety of di�erent models, a canonical and most simple model is that of unit
disk graphs: Each vertex of the graph is represented by a disk with unit diameter and
two vertices are adjacent if and only if the two associated disks intersect.

The computational complexity of problems on planar graphs has been a very fruit-
ful subject of study: It led to the development of powerful tools such as Bakers layering
technique and bidimensionality that gave rise to e�cient approximation schemes and
fast (parameterized) sub-exponential time algorithms for many NP-complete prob-
lems. One interesting example of such an NP-complete problem is (induced) subgraph
isomorphism: Given a k-vertex pattern P and an n-vertex host graph G, detect or
count the number of (induced) copies of P inside G, denoted with sub(P,G) (respec-
tively, ind(P,G)). Here we think of k as being much smaller than n, and therefore
it is very interesting to obtain running times that are only exponential in k (i.e.
�xed-parameter tractable time). This problem is especially appealing since it gener-
alizes many natural NP-complete problems (such as Independent Set, Longest
Path and Hamiltonian Cycle) in a natural way, but its generality poses signi�-
cant challenges for the bidimensionality theory: It does not give sub-exponential time
algorithms for this problem.

Only recently, it was shown in a combination of papers [26,62,100] that, on planar
graphs, subgraph isomorphism can be solved in 2Õ(

√
k)nO(1) time for many natural

pattern classes, and in 2O(k/ log k) time for general patterns, complementing the lower

29

bound of 2o(n/ logn) time from [26] based on the Exponential Time Hypothesis (ETH).
It was shown in [100] that (induced) pattern occurrences can even be counted in sub-
exponential parameterized (i.e. 2o(k)nO(1)) time.

Unfortunately, most of these methods do not immediately work for (induced)
subgraph isomorphism on geometric intersection graphs: Even unit disk graphs of
bounded ply1 are not H-minor free for any graph H (which signi�cantly undermines
the bidimensionality theory approach), and unit disk graphs of unbounded ply can
even have arbitrary large cliques. This hardness is inherent to the graph class: In-
dependent Set is W [1]-hard on unit disk graphs and, unless ETH fails, it has no
f(k)no(

√
k)-time algorithm for any computable function f [45, Theorem 14.34]. On

the positive side, it was shown in [101] that for bounded expansion graphs and �xed
patterns, the subgraph isomorphism problem can be solved in linear time, which im-
plies that subgraph isomorphism is �xed-parameter tractable on unit disk graphs;
however, their method relies on Courcelle's theorem and hence the dependence of k
in their running time is very large and far from optimal.

Therefore, a popular research topic has been to design such fast (parameterized)
sub-exponential time algorithms for speci�c problems such as Independent Set,
Hamiltonian Cycle and Steiner Tree [14, 50,90,121].

In this chapter we continue this research line by studying the complexity of the
decision and counting version of (induced) subgraph isomorphism. While some general
methods such as contraction decompositions [102] and pattern covering [92] were
already designed for graph classes that include (bounded ply) unit disk graphs, the
�ne-grained complexity of the subgraph problem itself restricted to unit disk graphs
has not been studied and is still far from being understood.

Our Results. To facilitate the formal statements of our results, we need the fol-
lowing de�nitions: Given two graphs P and G, we de�ne

ind(P,G) = {f : V (P)→ V (G) : f is injective, uv ∈ E(P)⇔ f(u)f(v) ∈ E(G)},
sub(P,G) = {f : V (P)→ V (G) : f is injective, uv ∈ E(P)⇒ f(u)f(v) ∈ E(G)}.

We call elements of ind(P,G) and sub(P,G) pattern occurrences. Our main theo-
rem reads as follows:

Theorem 3.1. There is an algorithm that takes as input unit disk graphs P and G
on k vertices and n vertices respectively, together with disk embeddings of ply p. It
outputs |sub(P,G)| and |ind(P,G)| in (pk)O(

√
pk)σO(

√
pk)(P)2nO(1) time.

Note that this theorem can also be used to compute the number of (induced)
subgraphs of G isomorphic to P by dividing |sub(P,G)| with |sub(P, P)| (and similarly
dividing |ind(P,G)| with |ind(P, P)|). In this theorem, the parameter σs is a somewhat
technical parameter of the pattern graph P that is de�ned as follows:

De�nition 3.2 ([100]). Given a graph P , we say that (A,B) is a separation of P
of order s if A ∪ B = V (P), |A ∩ B| = s and there are no edges between A \ B and

1The ply of an embedded unit disk graph is de�ned as the the maximum number of times any
point of the plane is contained in a disk.

30

B \ A. We say that (A,B) and (C,D) are isomorphic separations of P if there is a
bijection f : V (P)↔ V (P) such that

� For any u, v ∈ V (P), uv ∈ E(P) if and only if f(u)f(v) ∈ E(P),

� f(A) = C, f(B) = D,

� For any u ∈ A ∩B, f(u) = u.

We denote by Ss(P) a maximal set of pairwise non-isomorphic separations of P of
order at most s. We de�ne σs(P) = |Ss(P)| as the number of non-isomorphic sepa-
rations of P of order at most s.

Note that σs(P) >
(
k
s

)
ss. For ply p = O(1) and many natural classes of patterns

such as independent sets, cycles or grids, it is easy to see that σO(
√
k)(P) is at most

2Õ(
√
k) and therefore Theorem 3.1 gives a 2Õ(

√
k)nO(1) time algorithm for computing

|sub(P,G)| and |ind(P,G)|. We also give the following new non-trivial bounds on
σs(P) whenever P is a general (connected) unit disk graph:

Theorem 3.3. Let P be a k-vertex unit disk graph with an embedding of ply p, and s
be an integer. Then: (a) σs(P) is at most 2O(s log k+pk/ log k), and (b) If P is connected,
then σs(P) 6 2O(s log k).

Using Theorem 3.1, this allows us to conclude the following result.

Corollary 3.1. There is an algorithm that takes as input a k-vertex unit disk graph
P and an n-vertex unit disk graph G, together with their unit disk embeddings of ply
p, and outputs |sub(P,G)| and |ind(P,G)| in 2O(pk/ log k)nO(1) time.

We show that this cannot be signi�cantly improved even if P and G have ply two:

Theorem 3.4. Assuming ETH, there is no algorithm to determine if sub(P,G)
(ind(P,G) respectively) is nonempty for given n-vertex unit disk graph G and a unit
disk graph P in 2o(n/ logn) time, even when P and G have a given embedding of ply 2.

Note that the ply of G is 1 if and only if G is an independent set so the assumption
on the ply in the above statement is necessary. To our knowledge, this is the �rst
lower bound based on the ETH excluding 2O(

√
n) time algorithms for problems on

unit disks graphs (of bounded ply), in contrast to previous bounds that only exclude
2o(
√
n) time algorithms.
Clearly, a unit disk graph G of ply p has a clique of size p, i.e. its clique number

ω(G) is at least p. On the other hand, it was shown in [70] that p > ω(G)/5. In other
words, parameterizations by ply and clique number are equivalent up to a constant
factor.

3.1.1 Our techniques

Our approach heavily builds on the previous works [26,62,100]: Theorem 3.1 is proved
via a combination of the dynamic programming technique from [26] that stores rep-
resentatives of non-isomorphic separations to get the runtime dependence down from

31

2O(k) to σO(
√
pk)(P), and the e�cient inclusion-exclusion technique from [100] to

solve counting problems (on top of decision problems).2 We combine these techniques
with a divide and conquer strategy that divides the unit disk graph in smaller graphs
using horizontal and vertical lines as separators. As a �rst step in our proof, we give
a Turing kernelization for the counting versions of (induced) subgraph isomorphism
that uses e�cient inclusion-exclusion. Theorem 3.3 uses a proof strategy from [26]
combined with a bound from [27] on the number of non-isomorphic unit disk graphs.
Theorem 3.4 builds on a reduction from [26], although several alterations are needed
to ensure the graph is a unit disk graph of bounded ply.

Organization. In Section 3.2 we provide additional notation and some preliminary
lemmas. In Section 3.3 we provide a Turing kernel. In Section 3.4 we build on
Section 3.3 to provide the proof of Theorem 3.1. In Section 3.5 we give a bound on
the parameter σs. In Section 3.6 we give a lower bound, i.e. prove Theorem 3.4. We
�nish with some concluding remarks in Section 3.7.

3.2 Preliminaries

Given a unit disk graph G, we say that G has ply p if there is an embedding of G
such that every point in the plane is contained in at most p disks of G. Given an
embedding of a unit disk graph G and a vertex v ∈ V (G), we de�ne D(v) as the
unit disk corresponding to v. Let P and G be unit disk graphs and let |V (G)| = n,
|V (P)| = k.

De�nition 3.5. For integers b, h, we say a unit disk graph G of ply p can be drawn
in a (b×h)-box with ply p if it has an embedding of ply p as unit disk graph in a b×h
rectangle.

Throughout this chapter, we assume that the sides of the box are axis parallel,
and the lower left corner is at (0, 0). We assume that if a graph G can be drawn in a
(b× h)-box then we are given such an embedding.

Lemma 3.6. Given a unit disk graph G with a drawing in a (b×h)-box with ply p, one
can construct in polynomial time a path decomposition of G of width 4(min{b, h}+1)p.

Proof. Without loss of generality, we may assume h 6 b. For i = 1, . . . b de�ne

Li = {(x, y) ∈ R2 : i− 1 6 x 6 i},

Xi = {v ∈ V (G) : D(v) ∩ Li 6= ∅}.

It is easy to see that X1, . . . , Xb is a path decomposition of G. Let us now bound the
size of Xi. Let Si = {(x, y) ∈ Z2 : x ∈ {i − 2, i − 1, i, i + 1} and 0 6 y 6 h}. Each
disk in Xi contains a point from Si, so |Xi| 6 p · |Si| = 4p(h+ 1). �

2Similar to what was discussed in [100], this technique seems to be needed even for simple special
cases of Theorem 3.1 such as counting independent sets on subgraphs of (subdivided) grids.

32

Lemma 3.7 (Theorem 6.1 from [27]). Let a non-decreasing bound b = b(n) be given,
and let Un denote the set of unlabeled unit disk graphs on n vertices with maximum
clique size at most b. Then |Un| 6 212(b+1)n.

Non-isomorphic Separations. In this chapter we will work with non-isomorphic
separations of small order, as de�ned in De�nition 3.2.

Observation 3.1. Given a k-vertex graph P and separations (A,B) and (C,D) of
P , one can check in quasi-polynomial time in k if (A,B) and (C,D) are isomorphic
separations and, if yes, �nd the corresponding bijection.

The above observation can be shown using the quasi-polynomial time algorithm for
graph isomorphism from [4], extended to the colored subgraph isomorphism problem
by a standard reduction (see [112, Theorem 1]).

For separations (A,B), (A′, B′) ∈ Ss(P), we de�ne

µ((A,B), (A′, B′)) = |{(C,D) : (C,D) is a separation of P such that

C ⊆ A′ and (C,D) isomorphic to (A,B)}|.

Lemma 3.8. Given a graph P , one can compute Ss(P) and for each pair of separa-
tions (A,B), (A′, B′) ∈ Ss(P) the multiplicity µ((A,B), (A′, B′)) in time σs(P)nO(1).

Proof. The proof is identical the proof of [100], but recorded here for completeness.
We start enumerating separations (C,D) by iterating over all candidates X for C∩D.
There are

(
k
s

)
possibilities since we are interested in separations of order s. Now any

separation (C,D) of P with C∩D = X is formed by selecting a subset of the connected
components of P−X and adding it to C (the remaining connected components will be
added to D). Given two connected components P1 and P2 of P −X, we can check in
quasi-polynomial time in k whether there is an isomorphism f : V (P) → V (P) such
that f |X is the identity function and f(P1) = f(P2): Indeed, we apply Observation 3.1
to (P1∪X, (P −P1)∪X) and (P2∪X, (P −P2)∪X). This isomorphism relation is an
equivalence relation, and we de�ne for each equivalence class a unique representative
denoted with Pi.

Let P1, . . . ,Pt be the computed set of representatives of all isomorphism classes of
connected components of P −X, and let pi be the number of connected components
of P −X isomorphic to Pi.

Now we can construct Ss(P) as follows: For each vector t-dimensional vector
(v1, . . . , vt) ∈ {0, . . . , p1} × · · · × {0, . . . , pt}, we add to Ss(P) the separation (C,D)
where C is obtained by adding for each i = 1, . . . , t exactly vi copies of a connected
component isomorphic to Pi to C (and the remaining pi−vi components to D). This
concludes the construction of Ss.

The multiplicity µ((A,B), (A′, B′)) can be computed in a similar way: For each
candidate X for A ∩ B ⊆ A′ we compute for each two connected components of
P −X that do not contain elements from B′ whether they are isomorphic (analogous
to how it was done above). Let P1, . . . ,Pt be the computed set of representatives of
all isomorphism classes of connected components of P −X that do not intersect B′,
and let pi be the number of connected components of P −X not intersecting B′ that

33

are isomorphic to Pi. If A contains vi components that are isomorphic to Pi, then we
can compute

µ((A,B), (A′, B′)) =
t∏

i=1

(
pi
vi

)
.

It is easy to see that all the above can be done in the claimed time bound (since
σs(P) >

(
k
s

)
ss). �

Solving instances where G has low pathwidth. The following lemma can be
shown with standard dynamic programming over tree decompositions:

Lemma 3.9. Given P,G, and I ⊆ V (G), a path decomposition of G of width t,
we can compute |{g ∈ sub(P,G) : g extends f}| and |{g ∈ ind(P,G) : g extends f}|
for every P ′ ⊆ V (P) of size at most |I| and injective function f : P ′ → I in time
σt(P)(t+ 1)t(|V (P)|+ 1)|I|nO(1).

Proof. We present only the proof for the subgraph case, as the proof for induced case
is completely analogous. It is well known (see for example [45, Lemma 7.2]) that each
path decomposition can be modi�ed to a path decomposition of the same width such
that for each bag i either we have Xi = Xi−1 ∪ {v} or Xi = Xi−1 \ {v}. We say Xi

is an introduce bag in the �rst case, and a forget bag in the second case.
For a bag i, we de�ne Gi = G[∪ij=1Xj]. For each bag i, separation (A,B) of P of

order t, and functions f : P ′ → I (where P ′ ⊆ V (P)) and h : A ∩B → Xi we de�ne

Ti[(A,B), f, h] = |{g ∈ sub(P [A], Gi) : g|A∩P ′ = f |A∩P ′ and g extends h}|.

Leaf. This corresponds to i = 1 and G1 being an empty graph. Then we have
T1[(A,B), f, h] = 1 for A = ∅ and f, h being the empty function, and it is equal
to 0 otherwise.

Introduce Vertex. This corresponds toGi = Gi−1∪v for some vertex v. If h−1(v) =
∅ we have

Ti[(A,B), f, h] = Ti−1[(A,B), f, h].

Otherwise, if h is not an injective function, or there is a vertex u ∈ A∩N(h−1(v))
such that {h(u), v} 6∈ E(G), or f−1(v) is non-empty but not equal to h−1(v),
then Ti[(A,B), f, h] = 0 since h cannot be extended to any function counted in
Ti[(A,B), f, h].

Otherwise, let h−1(v) = {a}. We have that

Ti[(A,B), f, h] = Ti−1[(A \ {a}, B ∪ {a}), f, h|(A∩B)\{a}]

since any function g counted in Ti[(A,B), f, h] needs to map a vertex in A to
v and the injectivity and adjacencies and extension properties involving v are
satis�ed by assumption.

Forget Vertex. This corresponds to Xi = Xi−1 \{v} for some vertex v. In this case
we need to decide the preimage of v (if any):

Ti[(A,B), f, h] = Ti−1[(A,B), f, h] +
∑

u∈A\B
Ti−1[(A,B ∪ {u}), f, h′],

34

where h′ is obtained from h by extending its domain with u and de�ning h′(u) =
v. If u is the preimage of v is a function g contributing to Ti[(A,B), f, h], then
u ∈ A since it is mapped to a vertex of Gi, and it is not in A ∩ B because h
then already maps u to a vertex in Xi (and since Xi does not contain v, it is
therefore it is not well-de�ned).

Note that currently the �rst index of the table entries Ti goes over all separations
of P of order t, which could be too large for our purposes. We overcome this issue by
showing that it su�ces to compute the table entries indexed by separations in St(P).
Formally, given a separation (A,B) of P of order at most t and functions f : P ′ → I,
h : A ∩ B → Xi, we claim that we can �nd in quasi-polynomial time a separation
(C,D) ∈ St(P) and f ′ : P ′′ → I such that Ti[(A,B), f, h] = Ti[(C,D), f ′, h]. Indeed,
using Observation 3.1, we can check for each separation in St(P) whether it is iso-
morphic to (A,B). Once we found a separation (C,D) ∈ St(P) that is isomorphic
to (A,B) and the corresponding isomorphism φ : V (P)→ V (P) that maps (A,B) to
(C,D), we de�ne f ′ as the composition of φ and f and P ′′ = φ(P ′). Note that by
construction we have C ∩D = A ∩B and φ|A∩B is the identity function.

Now the desired value |{g ∈ sub(P,G) : g extends f}| can be found as the table
entry Ti[(V (P), ∅), f, h], where i is the last bag of the path decomposition and h the
empty function. The number of table entries is at most σt(P)(t+1)t(|V (P)|+1)|I|n,
and therefore the running time of the algorithm is at most σt(P)(t + 1)t(|V (P)| +
1)|I|nO(1). �

The following lemma simply states that a long product of matrices can be eval-
uated quickly, but is nevertheless useful as subroutine in the �e�cient inclusion-
exclusion� technique.

Lemma 3.10 ([100]). Given a set A, an integer h and a value T [x, x′] ∈ Z for every
x, x′ ∈ A, the value ∑

x1,...,xh∈A

h−1∏
i=1

T [xi, xi+1] (3.1)

can be computed in O(h|A|2) time.

3.3 Turing Kernel

We will now present a preprocessing algorithm for computing |sub(P,G)| (the algo-
rithm for |ind(P,G)| is analogous) that allows us to assume that G can be drawn in
a (O(k) × O(k))-box with ply p, i.e. that |V (G)| = O(k2p). This can be seen as a
polynomial Turing kernel in case p and σ0(P) are polynomial in k (note that σ0(P)
could be exponentially large in k). A Turing kernel of size f(k) is an algorithm that
solves the given problem in polynomial time, when given access to an oracle that
solves instances of size at most f(k) in a single step.

Lemma 3.11 describes how to reduce the width of G (and analogously the height of
G). To prove it, we use the shifting technique. This general technique was �rst used by
Baker [5] for covering and packing problems on planar graphs and by Hochbaum and
Maass [73] for geometric problems stemming from VLSI design and image processing.

35

Intuitively, we draw the graph on a grid, and delete all the disks that intersect cer-
tain columns of the grid. After doing that, the remaining graph will consist of several
small disconnected �building blocks�. Each connected component of the pattern will
be fully contained in one of the blocks, and since the blocks are small we can use the
oracle to count the number of these occurrences. We take advantage of the fact that
we can group together connected components that are isomorphic. We use Lemma
3.11 twice, to reduce the width and height of G to O(k).

Lemma 3.11. Suppose we have access to an oracle that computes |sub(P,G′)| in
constant time, where the host graph G′ can be drawn in a (h × O(k))-box for some
h with ply p. Then we can compute |sub(P,G)| for host graphs G of ply p in time
n · kO(1) · σ0(P)2.

Proof. For i ∈ {0, . . . , 2k}, let Ci = {(x, y) ∈ R2 : x ≡ i (mod 2k + 1)}. Informally,
we draw a grid and select every (2k + 1)th vertical gridline. Let Pi be the set of all
pattern occurrences whose image is disjoint from Ci:

Pi = {f : V (P)→ V (G) : f ∈ sub(P,G) and ∀v ∈ Im(f) : D(v) ∩ Ci = ∅}.

Note that every disk intersects at most two grid lines, so by the pigeonhole principle
we have that sub(P,G) = ∪2ki=0Pi. By the inclusion-exclusion principle,

∣∣∣⋃2k
i=0 Pi

∣∣∣
equals

∑
∅⊂C⊆{0,...,2k}

(−1)|C|
∣∣∣∣∣⋂
i∈C

Pi

∣∣∣∣∣ =
2k+1∑
`=1

(−1)`
∑

06c1<···<c`62k

∣∣∣∣∣∣
⋂

j∈{c1,...,c`}
Pj

∣∣∣∣∣∣ . (3.2)

Let us show how we can compute | ∩j∈{c1,...,c`} Pj | quickly. For a, b ∈ {0, ..., 2k},
we de�ne B[a, b] to be{

{(x, y) ∈ R2 : (∃t ∈ N0) a+ (2k + 1)t < x < b+ (2k + 1)t}, if a 6 b,

{(x, y) ∈ R2 : (∃t ∈ N0) a+ (2k + 1)(t− 1) < x < b+ (2k + 1)t}, if a > b.

We de�ne B[a, b] as the induced subgraph of G such that all its disks are fully
contained in B[a, b], i.e. the subgraph induced by the vertex set {v ∈ V (G) : D(v) ⊆
B[a, b]}. These sets are our �building blocks�: after deleting Cc1 , . . . Cc` , the remaining
graph is ∪`α=1B[cα, cα+1], where we de�ne c`+1 = c1.

Let t be the number of non-isomorphic connected components of P and let C0(P) =
{P1, . . . ,Pt} be the set of representatives of all isomorphism classes of connected
components of P . We can encode P as vector p = (p1, . . . , pt), where pi is the size of
the isomorphism class of Pi.

Let U = {0, . . . , p1}×· · ·×{0, . . . , pt}. For a t-dimensional vector (v1, . . . , vt) ∈ U
we de�ne P [(v1, . . . , vt)] as the subgraph of P that contains vi copies of Pi.

We would like to count in how many ways can we distribute the connected com-
ponents of P to the building blocks. Equivalently, we can count the number of ways
to assign a vector vα ∈ U to each block B[cα, cα+1] such that

∑
vα = p.

36

Thus we have∣∣∣∣∣∣
⋂

j∈{c1,...,c`}
Pj

∣∣∣∣∣∣ =
∑

v1+···+v`=p

`∏
α=1

|sub(P [vα],B[cα, cα+1])|. (3.3)

Note that |U | = (p1 + 1) · · · (pt + 1) = σ0(P): indeed, every vector u ∈ U corre-
sponds to a unique separation (V (P ′), V (P − P ′)) of order 0, where P ′ consists of ui

copies of Pi. Combining (3.2) and (3.3), we get that∣∣∣∣∣
2k⋃
i=0

Pi

∣∣∣∣∣ =
2k∑
`=1

(−1)`T`,

where

T` =
∑

06c1<···<c`62k

v1+···+v`=p

`∏
α=1

|sub(P [vα],B[cα, cα+1])|. (3.4)

Suppose for now that we have computed |sub(P [vα],B[a, b])| for all a, b ∈ {0, . . . , 2k},
vα ∈ U , and that we want to compute T` quickly.

To apply Lemma 3.10, we have to rewrite the sum (3.4) in such a way that the
variables are pairwise independent. We replace the condition ci < ci+1 by multiplying
with [ci < ci+1]. To replace the condition on the variables vi, we will re-index these
variables by u1, . . . ,u`, where ui =

∑i
j=1 v

j for i ∈ [`−1] and u` = p−u`−1, u0 = 0.
Therefore, we have

T` =
∑

c1,...,c`∈{0,...,2k}
u1,...,u`−1∈U

|sub(P [p− u`−1],B[c`, c1])|
`−1∏
i=1

[ci < ci+1] · [ui−1 6 ui]

·|sub(P [ui − ui−1],B[ci, ci+1])|.
By Lemma 3.10, we can compute T` in time ` · ((2k + 1) · σ0(P))2 if we are given

|sub(P [u],B[a, b])| for all u ∈ U , a, b ∈ {0, . . . , 2k}.
It remains to show how we can compute |sub(P [u],B[a, b])| for given u ∈ U ,

a, b ∈ {0, . . . , 2k}. Let C1, . . . , Cd be the connected components of B[a, b]. Note
that each Ci can be drawn in a (h × O(k))-box with ply p for some h, so we can
use the oracle to compute |sub(P [w], Ci)| for all w ∈ U , i ∈ [d]. We would like to
distribute the connected components of P [u] to C1, . . . Cd. We can do this by dynamic
programming. For i ∈ [d] and w ∈ U , we de�ne

T ′[i,w] = |sub(P [w], C1 ∪ · · · ∪ Ci)|

The recurrence is as follows:

T ′[i,w] =
∑

w′6w

|sub(P [w′], Ci)| · T [i− 1,w −w′],

37

where w 6 w' indicates that w is in each coordinate smaller than w'. Thus we can
compute T ′[i,u] in time d|U |2 = dσ0(P)2 6 (n/2k)σ0(P)2.

Therefore, we can compute |sub(P,G)| in time n · kO(1) · σ0(P)2. �

Theorem 3.12. For unit disk graphs P and G with given embedding of ply p, |sub(P,G)|
can be computed in time σ0(P)2 ·n ·kO(1) when given access to an oracle that computes
|sub(P,G)| where the host graph has size O(k2p) in constant time. In particular, there
is a Turing kernel for computing |sub(P,G)| when σ0(P) and p are polynomial in k.

Proof. Using Lemma 3.11, we reduce the problem to computing |sub(P,G)| for graphs
G that can be drawn in a (h×O(k))-box with ply p. Applying Lemma 3.11 one more
time, we reduce the problem to computing |sub(P,G)| for graphs G that can be drawn
in a (O(k)×O(k))-box with ply p, i.e. where |V (G)| = O(k2p).

�

3.4 Proof of Theorem 3.1: Algorithm

We present only the proof for sub(P,G), since the proof for ind(P,G) is analogous.
Before we start with the proof, we need to give a number of de�nitions: Suppose that
a unit disk embedding of G in a (b× h)-box with ply p is given.

For integers 0 6 x 6 x′ 6 b, we de�ne V 〈x, x′〉 ⊆ V (G) as the set of vertices
v ∈ V (G) such that D(v) ∩ {(x0, y0) ∈ R2 : x 6 x0 6 x′} 6= ∅. Informally, V 〈x, x′〉
consists of vertices whose associated unit disks are (partially) between vertical lines
x and x′. We de�ne G〈x, x′〉 = G[V 〈x, x′〉] and V 〈x〉 = V 〈x, x〉, G〈x〉 = G〈x, x〉.

Given functions f1 : D1 → R1 and f2 : D2 → R2, we say f1 and f2 are compatible
if

� for all u ∈ D1 ∩D2, f1(u) = f2(u), and

� for all r ∈ R1 ∩R2, we have f−11 (r) = f−12 (r).

If f1, f2 are compatible, we de�ne f = f1 ∪ f2 as the function with domain D1 ∪D2

satisfying f |D1
= f1 and f |D2

= f2.
Note that in the above de�nition, the choice of R1 and R2 matter. For example,

the identity functions f1 : {1} → {1} and f2 : {2} → {2} are compatible, but the
identity functions f3 : {1} → {1, 2} and f4 : {2} → {1, 2} are not compatible, since
f−13 (1) = {1} but f−14 (1) = ∅.

Using Theorem 3.12, we can assume that G can be drawn in a (O(k)×O(k))-box
with ply p. We will use dynamic programming. We will �rst de�ne the sets of partial
solutions that are counted in this dynamic programming algorithm. For variables

� integers 0 6 x < x′ 6 b,

� separation (A,B) of P of order at most 2
√
pk,

� injective f : A ∩B → V 〈x〉 ∪ V 〈x′〉 such that |f−1(V 〈x〉)|, |f−1(V 〈x′〉)| 6 √pk

38

we de�ne

T [x, x′, (A,B), f] = {g ∈ sub(P [A], G〈x, x′〉) : g extends f}.

Note that T is indexed by any separation of P of order 2
√
pk. We will later replace this

with a set of non-isomorphic separations to obtain the claimed σ2
√
pk(P) dependence

in the running time.
Informally, T [x, x′, (A,B), f] is the set of all occurrences of P [A] in G〈x, x′〉 such

that f describes their behaviour on the �boundary� V 〈x〉 ∪ V 〈x′〉. We will now show
how to compute the table entries. We consider two cases, depending on whether x′−x
is less than

√
k/p or not.

Case 1: x′ − x 6
√
k/p

Note that in this case, the pathwidth t of G〈x, x′〉 is O(
√
pk) by Lemma 3.6. For

a �xed subset I ⊆ V 〈x〉 ∪ V 〈x′〉 of size 2
√
pk, we apply Lemma 3.9 to compute

T [x, x′, (A,B), f] = {g ∈ sub(P [A], G〈x, x′〉) : g extends f} for every injection f :

A∩B → I in time σt(P [A])(t+1)t(|A|+1)2
√
pk|V 〈x, x′〉|O(1). Applying Lemma 3.9 to

every subset I ⊆ V 〈x〉∪V 〈x′〉 of size 2√pk, we can compute T [x, x′, (A,B), f] for every
f in time

(2pk
2
√
pk

)
σt(P)(

√
pk)O(

√
pk)|V 〈x, x′〉|O(1). Using t = O(

√
pk), |V 〈x, x′〉| =

O(k
√
kp) and a well-known bound on binomial coe�cients,

(
a
b

)
6 (aeb)

b, the above
running time is bounded by (pk)O(

√
pk)σO(

√
pk)(P).

Case 2: x′ − x >
√
k/p

Let g ∈ T [x, x′, (A,B), f], and let Q = Im(g). For m ∈ {x + 1, . . . , x′ − 1}, we say
that Q is sparse at m if |Q ∩ V 〈m〉| 6 2

√
pk, i.e. the vertical line at m intersects at

most 2
√
pk disks in Q. Since |Q| 6 k, every disk intersects at most two grid lines and

x′ − x >
√
k/p, there is at least one m such that Q is sparse at m by the averaging

principle. Therefore,

T [x, x′, (A,B), f] =

x′−1⋃
m=x+1

{g ∈ T [x, x′, (A,B), f] : g(A) is a sparse at m}.

By the inclusion-exclusion principle, |T [x, x′, (A,B), f]| is equal to∑
∅⊂X⊆{x+1,...,x′−1}

(−1)|X| |{g ∈ T [x, x′, (A,B), f] : g(A) is sparse at all m ∈ X }| .

Denoting X = {x1, . . . , x`}, where x1 < · · · < x`, we further rewrite this into

x′−x−2∑
`=1

(−1)`
∑

x<x1<···<x`<x′

|{g ∈ T [x, x′, (A,B), f] : g(A) is sparse at x1, . . . , x`}|.

Now we claim that, since Q∩V 〈m〉 is a separator of G[Q], |T [x, x′, (A,B), f]| can
be further rewritten to express it recursively as follows:

39

x x1 x′

v4
v1

v2

v3

v6

v5
p1

p4 p3

p2

p5

p6

p7

p8

A1

A2

P G〈x, x′〉

Figure 3.1: The function g : {p1, . . . , p6} → V 〈x, x′〉 de�ned by g(pi) = vi, corre-
sponds to functions g1 : A1 → V 〈x, x1〉 and g2 : A2 → V 〈x1, x

′〉, where g1(pi) = vi
and g2(pi) = vi.

Claim 3.1.

|T [x, x′, (A,B), f]| =
x′−x−2∑

`=1

(−1)`
∑
(∗)

∏̀
i=0

|T [xi, xi+1, (Ai, Bi), fi]|,

where we let x0 = x and x`+1 = x′ for convenience and the sum (∗) goes over

� integers x < x1 < · · · < x` < x′,

� separations (Ai, Bi) of P of order 4
√
pk for each i = 0, . . . , `, such that

� ∪`i=0Ai = A, and

� Ai \Bi and Aj \Bj are disjoint for each 0 6 i < j 6 `,

� functions fi : Ai ∩ Bi → V 〈xi〉 ∪ V 〈xi+1〉 for each i = 0, . . . , ` such that
f, f1, . . . , f` are pairwise compatible and |f−1i (V 〈xi〉)|, |f−1i (V 〈xi+1〉)| 6 2

√
pk.

Proof of Claim: To prove this claim, consider �rst a function g ∈ T [x, x′, (A,B), f]
such that g(A) is sparse at x1, . . . , x`. We describe how to �nd the separations (Ai, Bi)
and functions fi that correspond to g. Let Ai = g−1(V 〈xi, xi+1〉), Bi = (V (P)\Ai)∪
g−1(V 〈xi〉)∪ g−1(V 〈xi+1〉). Note that, since g(A) is sparse at xi and xi+1, (Ai, Bi) is
a separation of order at most 4

√
pk. It is easy to see that ∪Ai = g−1(V 〈x, x′〉) = A.

Also, note that Ai \Bi = g−1(V 〈xi, xi+1〉) \ (g−1(V 〈xi〉) ∪ g−1(V 〈xi+1〉)), so for any
i 6= j, Ai \Bi and Aj \Bj are disjoint. We de�ne fi : Ai ∩Bi → V 〈xi〉 ∪ V 〈xi+1〉 as
fi = g|Ai∩Bi

. By construction, f, f1, . . . , f` are pairwise compatible.
Conversely, given pairwise compatible functions g0, . . . , g` such that

gi ∈ T [xi, xi+1, (Ai, Bi), fi], we show how to construct a function g ∈ T [x, x′, (A,B), f].
Since the gi's are compatible, we can de�ne g = g0 ∪ · · · ∪ g` : A → V 〈x, x′〉. Since
f, g1, g` are pairwise compatible, g extends f . It is easy to see that this correspon-
dence is one to one, which proves the claim. �
The next step is to rewrite the sum (∗) to match the form of Lemma 3.10. The only
di�erence is that in (3.1) the summation is over variables that are pairwise indepen-
dent.

40

Formally, let us de�ne a square matrix M whose indices Mind are of the form
(xi, (Ai, Bi), fi), where xi ∈ {x, . . . , x′}, (Ai, Bi) ∈ S2√pk(P) and fi : Ai ∩ Bi →
V 〈xi〉 ∪ V 〈x0〉. Let Ii = f−1i (V 〈xi〉), Ij = f−1j (V 〈xj〉).

If xj > xi, fi, fj compatible and |Ii|, |Ij | 6
√
pk we de�ne

M [(xi, (Ai, Bi), fi), (xj , (Aj , Bj), fj)] as

µ((Ai, Bi), (Aj , Bj)) · T [xi, xj , ((Aj \Ai) ∪ Ii, Bj ∪Ai), fi|Ii ∪ fj |Ij],

and zero otherwise.
Intuitively, M [(xi, (Ai, Bi), fi), (xj , (Aj , Bj), fj)] describes the number of ways to

embed P [Aj \ Ai] between lines xi and xj , where fi and fj describe the behaviour
of these embeddings on lines xi an xj respectively. We observe that we can group
isomorphic separations together, i.e. that instead of indexing by every separation, we
can index by their representatives and take into account the multiplicities, which are
described by µ.

Now we can rewrite the sum (∗) as∑
(∗∗)

M [(x`, (A \A`−1, B \B`−1), f`−1), (x
′, (A,B), f)]

`−2∏
i=0

M [(xi, (Ai, Bi), fi), (xi+1, (Ai+1, Bi+1, fi+1))],

where the sum (∗∗) goes over (x0, (A0, B0), f0), . . . , (x`−1, (A`−1, B`−1), f`−1) ∈Mind.
Now by Lemma 3.10, we can compute the sum (∗) in time ` · |Mind|2. Let us bound
the size of Mind. Recall that |S2√pk(P)| = σ2

√
pk(P) and note that V 〈xi〉 contains at

most O(k2p) disks (since we can assume that G can be drawn in a (O(k)×O(k))-box
with ply p by Theorem 3.12). Thus we have

|Mind| 6 k2σ2
√
pk(P) · (Ck2p)

√
pk

for some constant C. Therefore, we can compute |sub(P,G)| in time

kO(
√
pk) · pO(

√
pk) · σO(

√
pk)(P)2,

which concludes the proof of Theorem 3.1.

3.5 Proof of Theorem 3.3: Bounding σs

In this section, we bound the parameter σs. We �rst present a bound for connected
graphs.

Theorem 3.13. For a connected unit disk graph P of ply p with k vertices, and an
integer s, we have σs(P) 6 2O(s log k).

Proof. For a separations (A,B) of P of order s, there are
(
k
s

)
6 ks 6 2s log k possibili-

ties for S = A∩B. Since any vertex in a unit disk graph can be adjacent to at most 6

41

pairwise non-adjacent neighbors, the number of connected components of P −A ∩B
is at most 6|A∩B|. Since (A,B) is a separation, each connected component of P −S
is either fully contained in A, or disjoint from A. Therefore we only have at most
26|A∩B| separations (A,B) ∈ Ss(P) with A ∩B = S. �

Theorem 3.14. For a unit disk graph P of ply p with k vertices, we have that σs(P)
is at most 2O(s log k+pk/ log k).

Proof. For a separations (A,B) of P of order s, there are
(
k
s

)
possibilities for S =

A ∩ B. We de�ne t = log k
3p . We split all connected components C of P − S into 3

categories as follows:

� Adjacent Components: there is an edge between C and S;

� Small Components: there is no edge between C and S, and C contains at most
t vertices;

� Large Components: there is no edge between C and S, and C contains more
than t vertices.

Let Cadj and Clar be the sets of all adjacent and large connected components of G−S
respectively. Let Csma be a maximal set of non-isomorphic small connected compo-
nents. That is, for each small component C of P − S there is exactly one component
C ′ ∈ Csma such that P [C] is isomorphic to P [C ′].

Note we can encode (A,B) as a quadruple consisting of S, a subset of Clar, Cadj,
and for each C ∈ Csma a number that indicates how many isomorphic copies of C are
contained in A. The next step is to bound the number of such quadruples:(

k

s

)
2|Clar|+|Cadj|k|Csma|. (3.5)

We have that Clar has at most k/t elements since the components are disjoint and in
total amount to at most k vertices. We have that |Cadj| 6 O(s) since each vertex of S
has at most 6 neighbors that are pairwise non-adjacent (since P is a unit disk graph).

By Lemma 3.7, the number of unlabelled unit disk graphs with t vertices and ply
p is at most 2(p+1)t and therefore |Csma| 6 2(p+1)t. Thus (3.5) is at most

2s log k+3pk/ log k+s+k1/3 log k = 2O(s log k+pk/ log k),

as claimed. �

3.6 Proof of Theorem 3.4: Lower Bound

In this section, we give a proof of Theorem 3.4, showing that under ETH there is
no algorithm deciding whether |sub(P,G)| > 0 (|ind(P,G)| > 0 respectively) in time
2o(n/ logn) even when the ply is two. We will use a reduction from the String 3-
Groups problem similar to the one in [26].

42

De�nition 3.15. The String 3-Groups problem is de�ned as follows. Given sets
A,B,C ⊆ {0, 1}6dlogne+1 of size n, �nd n triples (a, b, c) ∈ A × B × C such that for
all i, ai + bi + ci 6 1 and each element of A,B,C occurs exactly once in a chosen
triple.

We call the elements of A,B,C strings. It was shown in [26] that, assuming
the ETH, there is no algorithm that solves String 3-Groups in time 2o(n). Before
stating the formal proof of Theorem 3.4, we give an outline of the main ideas. Given an
instance (A,B,C) of String 3-Groups problem, we construct the corresponding
host graph G and pattern P as follows. Firstly, we modify slightly the strings in
A,B,C to facilitate the construction of P andG. Letm be the length of the (modi�ed)
strings. For each a ∈ A, the connected component in G that corresponds to it consists
of two paths p1 . . . pm and q1 . . . qm, where pi and qi are connected by paths of length
3 if ai = 0. For each b ∈ B, the connected component in P that corresponds to
it consists of a path t1 . . . tm, where there is a path of length two attached to ti if
bi = 1. The connected components corresponding to elements in C are constructed
in a similar way. Finally, we add gadgets (triangles and 4-cycles) to each connected
component in P and G to ensure we cannot ��ip� the components in P . For an
example, see Figure 3.2.

p1 q1

p2 q2

p3 q3

p4 q4

p5 q5

p6 q6

p7 q7

r11 r21 r31

r15 r25 r35

r17 r27 r37

x1x2

x3 x4

y1 y2

y3y4

y′
1 y′

2

y′
3

x′
1x′

2

x′
3

s1 t1

s2 t2

s3 t3

s4 t4

s5 t5

s6 t6

s7 t7

s11 s21

s17 s27

t15t25

z1z2

z3 z4

w1 w2

w3w4

z′1z′2

z′3
w′1 w′2

w′3

Figure 3.2: Connected components corresponding to a = 0111010 ∈ A (left), b =
1000001 ∈ B (middle), c = 0000100 ∈ C (right).

We present only the proof for the ind case, as the proof for sub is analogous.

Theorem 3.16. Assuming ETH, there is no algorithm to determine if ind(P,G) is
nonempty for given unit disk graphs P and G in 2o(n/ logn) time (where n = |V (G)|),
even when P and G have a given embedding of ply 2.

Proof. Given an instance A0, B0, C0 of the String 3-Groups problem, we show how
to construct an equivalent instance of subgraph isomorphism with host graph G and
pattern P . We will �rst construct another instance A,B,C of the String 3-Groups
problem by modifying the given strings as follows:

A = {ã : a ∈ A0}, B = {b̃ : b ∈ B0}, C = {c̃ : c ∈ C0},
where

43

� ã is constructed from a by inserting a 1 between every two consecutive characters
and 10 at the end;

� b̃ is constructed from b by inserting a 0 between every two consecutive characters
and 01 at the end;

� c̃ is constructed from c by inserting a 0 between every two consecutive characters
and 00 at the end.

For example, if a = 010 ∈ A0, b = 100 ∈ B0, c = 001 ∈ C0, then ã = 0111010,
b̃ = 1000001, c̃ = 0000100.

It is easy to see that for all (a, b, c) ∈ A0 × B0 × C0 we have a+ b+ c 6 1 if and
only if ã + b̃ + c̃ 6 1. Therefore, it is enough to construct an instance of subgraph
isomorphism equivalent to A,B,C. Let m = 12dlog ne+3 denote the length of strings
in A,B,C.

The graph G will consist of n connected components, representing the elements of
A. The graph P will consist of 2n connected components, representing elements of B
and C. For each string a ∈ A, add to G a connected component that is constructed
as follows: Construct two paths, p1 . . . pm and q1 . . . qm. Whenever ai = 0, add a path
pir

1
i r

2
i r

3
i qi. Construct four cycles: x1x2x3x4, y1y2y3y4, x′1x

′
2x
′
3 and y′1y

′
2y
′
3 and add

edges x1p1, x′1pm, y1q1, y
′
1qm.

Note that since a2 = 0, so the above paths are connected. By construction, there is
no i such that ai = ai+1 = 0 (i.e. there is no i such that both r1i r

2
i r

3
1 and r1i+1r

2
i+1r

3
i+1

exist), so we can embed G on the plane as shown in Figure 3.2.
Let us now construct the graph P . For each string b ∈ B, add to P a connected

component that is constructed as follows. Construct a path s1 . . . sm. Whenever
bi = 1, add a path sis

1
i s

2
i . Construct cycles z1z2z3z4 and z′1z

′
2z
′
3 and add edges z1s1

and smz′1.
Similarly, for each c ∈ C, construct a path t1 . . . tm. Whenever ci = 1, add a path

tit
1
i t

2
i . Construct cycles w1w2w3w4 and w′1w

′
2w
′
3 and add edges w1t1 and tmw′1.

Again by construction, there is no i such that bi = bi+1 = 1 or ci = ci+1 = 1, so
we can embed P in the plane as in Figure 3.2.

Given a solution to this String 3-Groups instance, we can embed P into G as
follows. If (a, b, c) ∈ A × B × C is a triple in the solution, we map the components
corresponding to b and c to the component corresponding to a, by mapping:

� si to qi and ti to pi for i = 1, . . . ,m

� zi to yi, wi to xi for i ∈ {1, 2, 3, 4} and z′i to y′i, w
′
i to x′i for i ∈ {1, 2, 3}

� s1i , s
2
i to r3i , r

2
i , and t1i , t

2
i to r1i , r

2
i for all s1i , s

2
i , t

1
i , t

2
i ∈ V (P)

This map is well de�ned: indeed, ai+bi+ci 6 1 for each i, so whenever s1i , s
2
i ∈ V (P)

or t1i , t
2
i ∈ V (P), we have r1i , r

2
i , r

3
i ∈ V (G). Also, at most one of bi and ci is equal

to one, so we either have s1i , s
2
i ∈ V (P) or t1i , t

2
i ∈ V (P) (or possibly neither), i.e.

the map is injective. It is easy to check that the above map maps P to an induced
subgraph of G.

44

Conversely, given an injective homomorphism f : P → G, we can construct a
solution to the String 3-Groups instance as follows. For each a ∈ A, we describe
how to �nd b ∈ B and c ∈ C such that ai + bi + ci 6 1 for all i.

By a counting argument it is impossible to map more than two connected compo-
nents of P to the same connected component of G. Since the number of connected
components in G and P is n and 2n respectively, each connected component in G is
therefore the image of exactly two connected components in P . Let a ∈ A, and let
Ga be the corresponding connected component in G. We denote the paths of length
m in Ga by p1 . . . pm and q1 . . . qm, the paths between pi and qi by r1i r

2
i r

3
i , the cycles

by x1x2x3x4, y1y2y3y4, x′1x
′
2x
′
3, y
′
1y
′
2y
′
3 as in the above construction.

Let P1 and P2 the connected components of P that map to Ga. Note that Ga

has exactly two 4-cycles and two triangles, while P1 and P2 have one 4-cycle and one
triangle each. Therefore, without loss of generality we can assume that the 4-cycle
in P1 is mapped to y1y2y3y4, and the 4-cycle in P2 to x1x2x3x4. Denote the paths
of length m in P1 (P2 respectively) by s̄1 . . . s̄m (t̄1 . . . t̄m respectively). Denote the
paths of length 3 by s̄is̄

1
i s̄

2
i (t̄it̄1i t̄

2
i respectively).

Claim 3.2. We have f(s̄i) = qi for all i ∈ [m].

Proof of Claim: We know that f(s̄1) = q1 (since it is the only vertex that is adja-
cent to the image of the 4-cycle in P1). Similarly, f(t̄1) = p1, and s̄m and t̄m are
mapped to qm and pm (not necessarily in that order). Suppose that f(s̄m) = pm and
f(t̄m) = qm. Every path of length m between q1 and pm contains a �vertical line�, i.e.
a subpath π = qir

1
i r

2
i r

3
i pi for some i. Note that Ga−π has two connected components,

one containing p1 and the other containing qm. This leads to a contradiction, since
f(t̄1) = p1 and f(t̄m) = qm need to be connected in f(P1) ⊆ Ga − π. Therefore, we
have f(s̄m) = qm and f(t̄m) = pm. Using a similar argument, we can conclude that
f(s̄i) = qi for all i ∈ [m], which proves the claim. �

Therefore, we have f(s̄ji) = rji , f(t̄
j
i) = rji for all i and j = 1, 2, 3. Let us now

look at the strings in B ∪ C that correspond to P1 and P2. Suppose both P1 and
P2 correspond to strings in B. Since all strings in B end with a 1, we have both
s̄2m ∈ V (P1) and s̄2m ∈ V (P2), both of which are mapped to r2i , which leads to a
contradiction. Therefore, at most one of P1 and P2 corresponds to a string in B. By
a counting argument, we conclude that exactly one of P1 and P2 corresponds to a
string in B, while the other one corresponds to a string in C. Let P1 correspond to
b ∈ B and P2 to c ∈ C.

It remains to show that a + b + c 6 1. By construction, whenever ai = 1, the
vertex r2i does not exist in Ga, so neither s̄2i nor t̄

2
i exist in P . Therefore, bi = ci = 0.

Since f is injective, whenever ai = 0, at most one of s̄2i and t̄2i exists in P1∪P2, i.e. at
most one of bi and ci is equal to one. Hence this way we can construct the n triples
(a, b, c) ∈ A×B × C such that a+ b+ c 6 1. �

3.7 Conclusion

We gave (mostly) sub-exponential parameterized time algorithms for computing
|sub(P,G)| and |ind(P,G)| for unit disk graphs P and G. Since the �ne-grained

45

parameterized complexity of the subgraph isomorphism problem was only recently
understood for planar graphs, we believe our continuation of the study for unit disk
graphs is very natural, and we hope it inspires further general results.

While our algorithms are tight in many regimes, they are not tight in all regimes.
In particular, the (sub)-exponential dependence of the runtime in the ply is not always
necessary: We believe the answer to this question may be quite complicated: For
detecting some patterns, such as paths, 2O(

√
k)nO(1) time algorithms are known [121],

but it seems hard to extend it to the counting problem (and to all patterns with few
non-isomorphic separations of small order).

For counting induced occurrences with bounded clique size our method can be
easily adjusted to get a better dependence in the ply: namely, our method can be
used to a get a (kp)O(

√
k) time algorithm for counting independent sets of size k in

unit disk graphs of ply p (which is optimal under the ETH by [91]); is there such an
improved independence on the ply for each pattern P?

It would be interesting to study the complexity of computing |sub(P,G)| and
|ind(P,G)| for various pattern classes and various other geometric intersection graphs
as well. Our results can be adapted to disk graphs where the ratio of the largest and
smallest radius is constant (using a slight modi�cation of Lemma 3.7).

A possible direction for further research would be to determine for which patterns
can one compute the above values on bounded ply disk graphs? Recent work [90]
shows some problems admit algorithms running in sub-exponential time parameter-
ized time.

Another direction would be to study the subgraph isomorphism problem for more
general graphs, e.g. intersection graphs of fat objects. Most of our proofs rely only on
a small subset of properties of bounded ply unit disk graphs, e.g. that a line segment
of �xed length can only intersect a small number of disks. These properties are not
unique to unit disk graphs of bounded ply, but also hold for a larger class of graphs,
namely intersection graphs of fat objects.

An even more general question would be to study subgraph isomorphism in higher
dimensions. In [36], it was shown that given an intersection graph G of n fat objects
in dimension d and a k-vertex graph Xk, one can determine whether Xk is a subgraph
of G in time O(n log n) for constant k. Since the proof in [36] uses several techniques
which are similar to those in this chapter, it is natural to ask whether these can be
used to obtain a parameterized algorithm for this more general graph class.

46

Chapter 4

Parameterized Algorithms for

Covering by Arithmetic

Progressions

4.1 Introduction

In the Set Cover problem we are given a universe U and a set system S ⊆ 2U of
subsets of U , along with an integer k, and we are asked to determine whether there
exist sets S1, . . . , Sk ∈ S such that

⋃k
i=1 Si = U . This problem generalizes many well-

known problems, such as Vertex Cover and Feedback Vertex Set (see [45]),
albeit the second problem requires an exponential number of elements. Unfortunately,
Set Cover is W [2]-hard parameterized by k [45, Theorem 13.28], and thus we do
not expect an algorithm with FPT runtime.

While the above special cases are FPT parameterized by k, many other special
cases of Set Cover remain W [1]-hard, and the boundary between special cases
that are solvable in FPT and W [1]-hard has been thoroughly studied already (see
e.g. Table 1 in [31]). An especially famous special case is the Point Line Cover
problem, in which one is given points U ⊆ Z2 and asked to cover them with at most
k line segments. While it is a beautiful and commonly used exercise to show this
problem is FPT parameterized by k,1 many slight geometric generalizations (such as
generalizing it to arbitrary set systems of VC-dimension 2 [31]) are alreadyW [1]-hard.

In this chapter we study another special case of Set Cover, related to Arithmetic
Progressions (APs). Recall that an AP is a sequence of integers of the form a, a +
d, a + 2d, . . . , a + xd, for some integers x, start value a and di�erence d. We study
two computational problems: Cover by APs (abbreviated with CAP) and Exact
Cover by APs (abbreviated with XCAP). In both problems we are given a set of
(distinct) integers X = {x1, x2, . . . , xn}, and our goal is to �nd the smallest number
of APs s1, s2, . . . , sk consisting only of elements of X such that their union covers2

1A crucial insight is that any line containing at least k + 1 points must be in a solution.
2We frequently interpret APs as sets by omitting the order, and �covers� can be read as �contains�.

47

exactly the set X. In the XCAP problem, we additionally require that the APs do
not have common elements. While CAP and XCAP are already known to be weakly
NP-complete since the 90's [71], the problems have been studied surprisingly little
since then.

The study of the parameterized complexity of CAP and XCAP can be motivated
from several perspectives.

� The Set Cover perspective: CAP and XCAP are natural special cases
of Set Cover for which the parameterized complexity is a priori not obvious.
While the problem looks somewhat similar to Point Line Cover, the crucial
insight1 towards showing that it is FPT in k does not apply since an AP can be
covered with 2 other APs. In order to understand the jump in complexity from
FPT to W [1]-hardness of restricted Set Cover problems better, it is natural
to wonder whether properties weaker than the one of Point Line Cover1 also
are su�cient for getting FPT algorithms.

� The practical perspective: There is a connection between CAP and XCAP
and some problems that arise during the manufacture of VLSI chips [68]. The
connection implies the NP-hardness of the latter problems. Bast and Storandt [7,
8] used heuristics for these problems to compress bus timetables and speed up
the process of �nding the shortest routes in public transportation networks.

� The additive number theory perspective: The extremal combinatorics of
covers with (generalized) APs is a very well studied topic in the �eld of additive
combinatorics. It started in the 50's with conjectures made by, among others,
Erd®s (see [42] and the references therein), and recently results in spirit of
covering sets of integers with sets of high additive energy (of which APs are a
canonical example) such as Freiman's Theorem and the Balog-Szemerédi-Gowers
Theorem also found algorithmic applications [32,37].

� The �not about graphs� perspective: Initially, applications of FPT algo-
rithms were mostly limited to graph problems.3 More recently, FPT algorithms
have signi�cantly expanded the realm of their applicability. It now includes
geometry, computational social choice, scheduling, constraint satis�ability, and
many other application domains. However, at this stage the interaction of num-
ber theory and FPT algorithms seems to be very limited.

Our Contributions. The main results of this chapter are FPT algorithms for CAP
and XCAP:

Theorem 4.1. CAP admits an algorithm running in time 2O(k2)nO(1).

On a high level, the above theorem is proved using the bounded search tree tech-
nique (similar to Point Line Cover): In each recursive call we branch on which AP
to use. Since k is the number of APs in the solution, the recursion depth is at most
k. The di�culty however is to narrow down the number of recursive calls made in

3There has even been a series of workshops titled Parameterized Complexity: Not-About-Graphs

(link) to extend the FPT framework to other �elds.

48

each iteration: As mentioned earlier, the crucial insight1 from Point Line Cover
does not apply since an AP can be covered with two other APs. We achieve this by
relying non-trivially on a result (stated in Theorem 4.5) by Crittenden and Vanden
Eynden [42] about covering an interval of integers with APs, originally conjectured
by Erd®s. The proof of Theorem 4.1 is outlined in Section 4.3.

We also give an FPT algorithm for XCAP:

Theorem 4.2. XCAP admits an algorithm running in time 2O(k3)nO(1).

The algorithm for XCAP relies on similar, but slightly more involved techniques
as the one for CAP. Namely, in order to accommodate the requirement that the
selected APs are disjoint we need a more re�ned recursion strategy. The proof of this
theorem is outlined in Section 4.4.

Our next result concerns hardness of variants of CAP and XCAP. The weak
NP-hardness proofs in [71] use numbers that are exponentially large in |X|, so it is
natural to ask if these large numbers are necessary for the reduction, or can they be
made su�ciently small, thus proving strong NP-completeness.

While we do not directly make progress on this question, we show that two closely
related problems are strongly NP-hard. Speci�cally, if p is an integer, we de�ne an
AP in Zp as a sequence of the form

a, a+ d (mod p), a+ 2d (mod p), . . . , a+ xd (mod p).

In the Cover by Arithmetic Progressions in Zp problem one is given as input an
integer p and a set X ⊆ Zp and asked to cover X with APs in Zp that are contained
in X and cover X. In Exact Cover by Arithmetic Progressions in Zp we
additionally require the APs to be disjoint. We show the following:

Theorem 4.3. Cover by Arithmetic Progressions in Zp and Exact Cover
by Arithmetic Progressions in Zp are strongly NP-complete.

While this may hint at strong NP-completeness for CAP and XCAP as well,
since often introducing a (big) modulus does not incur big jumps in complexity in
number theoretic computational problems (confer e.g. k-SUM, Partition, etc.), we
also show that our strategy cannot directly be used to prove CAP and XCAP to be
strongly-NP. Thus this still leaves the mentioned question of Heath [71] open. This
result is proven in Section 4.5.

Finally, we describe a variant of Set Cover that generalizes CAP and allows an
FPT algorithm for a certain below guarantee parameterization. In particular, CAP
always has a solution consisting of |X|/2 APs that cover all sets.

Theorem 4.4. There is an 2O(k)nO(1) time algorithm that detects if a given set X
of integers can be covered with at most |X|/2− k APs.

This result is proved in Section 4.6. Note that Theorem 4.4 typically gives a faster
algorithm when there are few (non-trivial) APs in the input set, whereas Theorem 4.1
gives a faster algorithm when there are many APs needed to cover the input set. We
�nish this chapter with some concluding remarks in 4.7.

49

4.2 Preliminaries

For integers a, b we write a|b to denote that a divides b. For integers a1, . . . , an we
denote their greatest common divisor by gcd(a1, . . . , an). Recall that every integer
divides zero, so gcd(0, a1, . . . , an) = gcd(a1, . . . , an)

An arithmetic progression (AP) is a sequence of numbers such that the di�erence
of two consecutive elements is the same. While an AP is a sequence, we will often
identify an AP with the set of its elements. Given an AP s and an AP s′ which
is a subset of s, we say s′ stops between l ∈ s and r ∈ s if the largest element of
s′ is between l and r (including both boundaries). We say it covers a set A if all
integers in A occur in it. Given an AP a, a + d, a + 2d, . . . we call d the di�erence.
Given a �nite AP T = {a, a + d, . . . , a + xd}, we de�ne its in�nite extension as
T ′ = {a+ yd : y ∈ N ∪ {0}} (if T consists of one element, T ′ will also have only one
element, i.e. it will be the in�nite AP with di�erence 0). We record the following
easy observation:

Observation 4.1. The intersection of two APs is an AP.

If X is a set of integers, we denote

X>c = {x|x ∈ X,x > c}, X>c = {x|x ∈ X,x > c},
X<c = {x|x ∈ X,x < c}, X6c = {x|x ∈ X,x 6 c}.

Given a set X and an AP A = {a, a+d, a+2d, . . . }, we denote by AuX the longest
pre�x of A that is contained in X. In other words, A u X = {a, a + d, . . . , a + `d},
where ` is the largest integer such that a+ `′d ∈ X for all `′ ∈ [0, `].

For a set of integers X and integer p we denote by Xp = 〈x mod p|x ∈ X〉. Here
the 〈〉 symbols indicate that we build a multiset instead of a set (so each number is
replaced with its residual class mod p and we do not eliminate copies).

We call an AP s in�nite if there are integers a, d such that s = (a, a+d, a+2d, . . .).
Note that under this de�nition, the constant AP containing only one number and
di�erence 0 is also in�nite.

The following result by Crittenden and Vanden Eynden will be crucial for many
of our results:

Theorem 4.5 ([42]). Any k in�nite APs that cover the integers {1, . . . , 2k} cover
the whole set of positive integers.

4.3 Algorithm for Cover by Arithmetic Progressions

Before describing the algorithm, we introduce an auxiliary lemma. This lemma will
be crucially used to narrow down the number of candidates for an AP to include in
the solution to at most 2k.

Lemma 4.6. Let s0 be an AP with at least t + 1 elements. Let s1, . . . , sk be APs
that cover the elements s0(0), . . . , s0(t − 1), but not s0(t). The APs s1, . . . , sk may
contain other elements. Suppose that each AP s1, . . . , sk has an element larger than
s0(t). Then we have t < 2k.

50

Proof. Suppose for contradiction that t > 2k. Let ti be the intersection of si and s0
for i ∈ [k]. Note that by Observation 4.1, t1, . . . , tk are APs as well. For i ∈ [k], we
de�ne Ti = {j ∈ [0, t− 1] : s0(j) ∈ ti}.

We claim each Ti is an AP: To see this, let a, b, c be consecutive elements (such
that a < b < c) of Ti (if |Ti| 6 2, it is trivially an AP). The elements s0(a), s0(b), s0(c)
are consecutive elements of ti, so s0(b)−s0(a) = s0(c)−s0(b). Let d0 be the di�erence
of s0. The above equality can be written as

(s0(0) + bd0)− (s0(0) + ad0) = (s0(0) + cd0)− (s0(0) + bd0).

Thus we get b− a = c− b, as required.
Note that the APs T1, . . . , Tk cover [0, t− 1]. For i ∈ [k], denote by T ′i the in�nite

extension of Ti. By Theorem 4.5, T ′1, . . . , T
′
k cover the whole set N. In particular,

t ∈ T ′i for some i. By assumption, si has an element larger than s0(t), so s0(t) is
covered by si, which leads to a contradiction. �

Equipped with Lemma 4.6 we are ready to prove our �rst main theorem in this
chapter:

Theorem 4.1. CAP admits an algorithm running in time 2O(k2)nO(1).

Proof. Denote the set of integers given in the input by X. Without loss of generality
we can consider only solutions where all APs are inclusion-maximal, i.e. solutions
where none of the APs can be extended by an element of X. In particular, given
an element a and di�erence d, the AP is uniquely determined: it is equal to {a −
`d, . . . , a−d, a, a+d, . . . , a+ rd}, where `, r are largest integers such that a− `′d ∈ X
for all `′ ∈ [`] and a+ r′d ∈ X for all r′ ∈ [r].

Before describing the algorithm, we introduce an auxiliary procedure called
MakeAP, returning the maximal AP with given one element and di�erence. For-
mally, the procedureMakeAP(a, d) returns the AP {a−`1d, . . . , a−d, a, a+d, . . . , a+
`2d}, where `1 (respectively `2) are the largest numbers such that a− `′d ∈ X for all
`′ 6 `1 (respectively a+ `′d ∈ X for all `′ 6 `2).

Our algorithm consists of a recursive function Covering(C, k1, k2). The algo-
rithm takes as input a set C ⊆ X of elements and assumes there are APs s1, . . . , sk1

whose union equals C. With this assumption, it will detect correctly whether there
exist k2 additional APs that cover X \ C, i.e. all remaining elements. We call the
elements of C covered, and the elements of X \C uncovered. Thus Covering(∅, 0, k)
indicates whether the instance is a Yes-instance of CAP. Algorithm 1 describes our
algorithm in pseudocode.

In Line 4 we take care of the small instances, i.e. we solve the subproblem of
covering X \C with k2 APs if |X \C| 6 k2 in time 2k

2

nO(1). This can be easily done
by rewriting the subproblem as an equivalent instance of Set Cover (with universe
U = X \ C and a set for each AP in U) and running the 2|U |nO(1) 6 2k

2

nO(1) time
algorithm for Set Cover from [15].

For larger instances, we guess an AP s in the solution and recursively call
Covering(C ∪ s, k1 + 1, k2 − 1). In order to do this, we consider the k2 + 1 smallest
uncovered elements u1, . . . , uk2+1. By the pigeonhole principle, there exist ui and uj

51

Algorithm 1 Algorithm for CAP

1: Algorithm Covering(C, k1, k2)
2: Let k = k1 + k2
3: if |X \ C| 6 k2 then
4: Use the algorithm for Set Cover from [15]
5: else

6: Let u1, . . . , uk2+1 be the k2 + 1 smallest elements of X \ C
7: for i = 1 . . . k2 do
8: for j = i+ 1 . . . k2 + 1 do
9: Let D = uj − ui

10: for ` = 1 . . . 2k do
11: if ` divides D then

12: Let s =MakeAP(ui, D/`)
13: if Covering(C ∪ s, k1 + 1, k2 − 1) then
14: return true

15: return false

which belong to the same AP s in the solution, and we can guess (i.e. branch over all
possibilities) such ui and uj .

However, we cannot guarantee that ui and uj are consecutive elements of s: we
only know that the di�erence of s divides uj − ui. The naive approach would be to
go over all divisors of uj − ui, but this is too slow (i.e. would not lead to an FPT
algorithm).

Instead, we reduce the number of candidates for the di�erence of s by using
Lemma 4.6 as follows. Intuitively, Claim 4.1 says that in some iteration of the for
loops, the AP that we construct in Line 12 will belong to the solution.

Claim 4.1. Let X be a �nite set of integers and let s1, . . . , sk be inclusion-maximal
APs that cover X. Let k1 ∈ [0, k] and C = ∪k1

i=1si. Let u1, . . . , uk2+1 be the k2 + 1
smallest elements of X \C. Then there exist i, j ∈ [k2 +1] and ` ∈ [2k] such that the
AP s =MakeAP(ui, (uj − ui)/`) is equal to sh for some h ∈ [k1 + 1, k].

Proof of Claim: Let B = {u1, . . . , uk2+1}. By the pigeonhole principle, there is an
h ∈ [k1 + 1, k] such that sh covers at least k + 1 elements of B. Thus, there are
two consecutive elements of B ∩ sh, denoted with sh(α) and sh(β), between which
no AP s1, . . . , sk1 ends. Let ui = sh(α) and uj = sh(β) be the closest such pair
(i.e. the pair such that |sh(α) − sh(β)| is minimal). By applying Lemma 4.6 (for s0
equal to sh(α+1), . . . , sh(β−1) and s1, . . . , sk1

), we conclude that there are at most
2k − 1 elements of sh between ui and uj . In other words, the di�erence of sh is a
divisor of uj − ui and at least (uj − ui)/2

k, i.e. there exists an ` ∈ [2k] such that
sh =MakeAP(ui, (uj − ui)/`). �

Let us now prove the correctness of our algorithm. It is easy to see that if Algo-
rithm 1 outputs true, we indeed have a covering of size k: We only add elements to
C if they are indeed covered by an AP, and each time we add elements to C because
of an AP we decrease our budget k2.

52

For the other direction of correctness, using Claim 4.1 it directly follows by induc-
tion on k2 = 0, . . . , k that if s1, . . . , sk is a covering of X with inclusion-maximal APs
such that ∪k1

i=1si = C, then the function Covering(C, k − k2, k2) returns true.
Let us now analyse the running time of Algorithm 1. The recursion tree has height

k (since we reduce k by one on every level). The maximum number of children of a
node is 2kk4, so the total number of nodes is 2O(k2). The running time at each node
is at most 2O(k2)nO(1). Therefore, the overall running time is 2O(k2)nO(1). �

4.4 Algorithm for Exact Cover by Arithmetic Pro-

gressions

In this section we show that XCAP is FPT as well. The key di�erence between CAP
and XCAP is that in XCAP we cannot assume that APs are inclusion-maximal:
Consider for example X = {0, 4, 6, 7, 8, 9}, where the optimal solution uses the AP
0,4 rather than 0,4,8. This also means that in XCAP we cannot describe an AP
using only one element and its di�erence. While we still use a recursive algorithm, we
need to signi�cantly modify our structure lemma (shown below in Lemma 4.8) and
our algorithm.

Before describing an FPT algorithm, let us describe an easy, but slow (i.e. not
FPT) algorithm. In order to obtain an FPT algorithm, we will need to modify a part
of it. Let X = {a1, . . . , an} be the input set, where a1 < · · · < an. We will construct
APs s1, . . . , sk that are pairwise disjoint and cover X.

Naive Algorithm. Intuitively, our algorithm works as follows. As mentioned ear-
lier, as opposed to CAP, we cannot uniquely describe an AP by one element and its
di�erence, since we do not know if our AP will be �interrupted� by another one. We
will instead maintain two sets for each AP, the set of �truly covered� and a set of
�potentially covered� elements. Namely, if we know two elements a < b of an AP s
and its di�erence d, we say that the elements a, a + d, . . . , b − d, b are truly covered
by s, while elements b+ d, b+ 2d, . . . are potentially covered by s.

Our recursive function will have parameters that correspond to the sets of truly
and potentially covered elements (Ti and Pi respectively), as well as the di�erence
(di) for each AP. Initially, we set all these sets to be the empty set, and all the
di�erences to 0. In each recursive call, we consider the smallest element of X that is
neither covered nor potentially covered, and we guess (i.e. branch) which AP covers
it. Whenever there is an AP which has two truly covered elements but we do not know
its di�erence (i.e. the corresponding di is zero), we branch to discover its di�erence.

Once we assign a non-zero number to some di, we do not change it in further
recursive calls. Similarly, once we add an element to some Ti, we do not remove it
from Ti (however, elements of Pi can be removed).

Before giving the algorithm, we describe an auxiliary function Update. It takes
as input sets A and B, and returns elements of A that are smaller than all elements
of A ∩B (see Algorithm 2).

Our algorithm for XCAP is described in pseudocode in Algorithm 3.

53

Algorithm 2 Auxiliary Function Update

1: Update(A,B)
2: if A ∩B = ∅ then
3: return A
4: else

5: x← min(A ∩B)
6: return A<x

Initially, we call the function partition with parameters T1 = · · · = Tk = P1 =
· · · = Pk = ∅, d1 = d2 = · · · = dk = 0.

Algorithm 3 Algorithm for XCAP

1: Algorithm partition(X,T1, . . . Tk, P1, . . . , Pk, d1, . . . , dk)
2: T ← ∪iTi

3: P ← ∪iPi

4: if X \ (P ∪ T) = ∅ and Pi ∩ Pj = ∅ for all i 6= j then
5: return s1 = T1 ∪ P1, . . . , sk = Tk ∪ Pk

6: else if di 6= 0 for all i then
7: abort

8: else if there is an i such that |Ti| 6 1 then
9: aβ ← min(X \ (P ∪ T))

10: for i ∈ [k] such that |Ti| 6 1 do
11: T ′i ← Ti ∪ {aβ}
12: partition(X,T1, . . . , T

′
i , . . . Tk, P1, . . . , Pk, d1, . . . , dk)

13: else if there is an i such that |Ti| = 2 and di = 0 then
14: aα ← min(Ti)
15: aβ ← max(Ti)
16: D ← all divisors of aβ − aα
17: for d ∈ D do

18: di ← d
19: Ti ← {aα, aα + di, . . . , aβ}
20: C∞ ← {aβ + di, aβ + 2di, . . . }
21: for j ∈ [k] do
22: P ′j ← Pj

23: P ′i ← C∞ uX
24: if for all j ∈ [k] \ {i} we have Ti ∩ Tj = ∅ then
25: for j ∈ [k] \ {i} do
26: P ′j ← Update(Pj , Ti)

27: Partition(X,T1, . . . , Tk, P
′
1, . . . , P

′
k, d1, . . . , dk)

28: else if there are i, j ∈ [k] s.t. i 6= j and Pi ∩ Pj 6= ∅ then
29: Let c be the smallest element s.t. ∃i, j, c ∈ Pi ∩ Pj , and i < j
30: Partition(X,T1, . . . , Tk, P1, . . . , Pi−1, P<c

i , Pi+1, . . . , Pk, d1, . . . , dk)
31: Partition(X,T1, . . . , Tk, P1, . . . , Pj−1, P

<c
j , Pj+1, . . . , Pk, d1, . . . , dk)

54

Formally, the function partition(X,T1, . . . , Tk, P1, . . . , Pk, d1, . . . , dk) returns APs
s1, . . . , sk with di�erences d′1, . . . , d

′
k respectively, such that the following is true:

For all i ∈ [k], we have that Ti ⊆ si, and if di 6= 0, we have di = d′i and si ⊆
Ti ∪ Pi. If the above conditions are satis�ed, we call the APs s1, . . . , sk consistent
with T1, . . . , Tk, P1, . . . , Pk, d1, . . . , dk. The function partition consists of four parts:

� Lines 4-7: we return the solution if all elements are covered and the APs don't
intersect, or abort the branch if it does not lead to a solution.

� Lines 8-12: we look for the smallest element that is neither covered nor poten-
tially covered, and guess to which AP it belongs. Note that, by construction, it
cannot belong to an AP which covers two or more elements (i.e. |Ti| > 2).

� Lines 13-27: we consider the case where an AP has two truly covered elements,
but we do not know its di�erence yet (i.e. aα, aβ ∈ Ti, di = 0). We know that
the di�erence of this AP divides aβ − aα, so we can guess it by branching over
all divisors of aβ − aα. We update the corresponding Ti and Pi. If the newly
created Ti disjoint from all other Tjs, we update all other Pjs to make sure that
they do not intersect Ti.

� Lines 28-31: we resolve con�icts between intersecting APs by guessing which
AP stops before the intersection, and which continues.

Lemma 4.7. Let dmax ∈ N be such that in each recursive call of Algorithm 3 we have
|D| 6 dmax. Then Algorithm 3 solves XCAP in time 2O(k2) · dkmax · nO(1).

Proof. It is easy to see that in each recursive call, Ti ∪ Pi is an AP (or an empty set)
for each i ∈ [k], and that the APs returned by the algorithm form a valid solution to
XCAP.

Consider an iteration of partition with argumentsX,T1, . . . , Tk, P1, . . . , Pk, d1, . . . , dk.
Let s1, . . . , sk be APs with increments d′1, . . . , d

′
k that form a solution to XCAP and

are consistent with T1, . . . , Tk, P1, . . . , Pk, d1, . . . , dk. Clearly, if X \ (P ∪ T) = ∅ (and
the APs do not intersect), we return s1, . . . , sk. Suppose that X \ (P ∪ T) 6= ∅.

We claim that at least one of the children in the recursion tree remains consistent
with s1, . . . , sk. In Line 12, we go over all possibilities for the AP that contains aβ
(note that aβ cannot belong to si such that |Ti| > 2, since in that case it would belong
to Ti ∪ Pi). In particular, one of the children remains consistent with s1, . . . , sk. In
Line 16, we know that aα and aβ belong to si, so we know that d′i divides aβ − aβ ,
i.e. d′i ∈ D. Thus in one of the recursive calls in Line 27 we will have di = d′i. In
Lines 30 and 31, we have a recursive call for both possible cases.

Let us now compute the number of nodes in the recursion tree: Consider a path
from the root to a leaf. It contains at most 2k nodes with k children (adding �rst
two elements to each Ti), at most k2 nodes with two children (resolving intersections
of APs) and at most k nodes with at most dmax children (determining the di�erence
of an AP with two known elements). The number of leaves (i.e. the number of such
paths) is at most 3k

2+3k · k2k · 2k2 · dkmax = 2O(k2) · dkmax. Thus the running time of
the algorithm is 2O(k2) · dkmax · nO(1). �

55

In order to obtain an FPT algorithm, we will change Line 16 to obtain a smaller
set D. Namely, we will use the following lemma to bound the number of possibilities
for the di�erence of an AP with two known elements.

Lemma 4.8. Let s1, s2, . . . , sk be a solution of an instance of XCAP with input set
X. Let s be an AP that is contained in X. For each i ∈ [k], we denote by ti the
intersection of s and si. Suppose that for some i, ti has at least k+1 elements. Then
there are at most 2k−1 − 1 elements of s between any two consecutive elements of ti.

Proof. Without loss of generality, we may assume that i = 1. Note that t1 is a sub-
set of s and an AP. Hence between any two consecutive members of t1 we have the
same number of elements of s. Suppose for contradiction that this number is at least
2k−1. Let us consider the �rst k+1 members of t1, denoted by t1(0), t1(1), . . . , t1(k).
For any j ∈ [0, k − 1] all elements of s between t1(j) and t1(j + 1) must be cov-
ered by s2, s3, . . . , sk. Therefore, by Lemma 4.6 one of the arithmetic progressions
s2, s3, . . . , sk must stop before t1(1). Similarly, another AP from s2, s3, . . . , sk must
stop before t1(2). By repeatedly applying this argument, we conclude that all APs
s2, s3, . . . , sk must stop before t1(k − 1). Hence, the elements of s between t1(k − 1)
and t1(k) are uncovered which leads to a contradiction. �

Now we have all the ingredients to prove the main theorem of this section:

Theorem 4.2. XCAP admits an algorithm running in time 2O(k3)nO(1).

Proof. We replace Line 16 in Algorithm 3 by the following expression:

D = {g/t : g = gcd(aβ − aα, b1d1, . . . , bkdk)

for some (b1, . . . , bk) ∈ [0, 2k + 1]k and t ∈ [k(k + 1)]}.
Let us now show that it is indeed enough to consider only the elements of the above

set D for the possible di�erence. Consider the recursive call of partition where we
have |Ti| = 2 and di = 0. Suppose that in this call, the sets T1, . . . , Tk are consistent
with a solution s1, . . . , sk for XCAP, and let d′j be the di�erence of sj .

Informally, for all known di�erences dj up to this point (i.e. all dj 6= 0) we branch
on the smallest positive value bj such that d′i|bjdj . We treat all cases when bj > 2k

at once, and instead of the actual value we assign 0 to the variable responsible for
storing value of bj . Intuitively, bj describes the number of elements of sj between two
consecutive interruptions by si. By Lemma 4.8, if bj is large (larger than 2k + 1),
each of these interruptions implies that an AP stops.

Formally, we apply the following claim:

Claim 4.2. Consider a recursive call of partition where |Ti| = 2 and di = 0. Suppose
T1, . . . , Tk, P1, . . . , Pk, d1, . . . , dk is consistent with a solution s1, . . . , sk to XCAP,
and let d′i be the di�erence of si. Then there exist b1, . . . , bk ∈ [0, 2k] such that
d′i >

g(b1,...,bk)
k(k+1) , where g(b1, . . . , bk) = gcd(aβ − aα, b1d1, . . . , bkdk).

Proof of Claim: Let Ti = {aα, aβ}, where aα < aβ . Note that aβ was added to Ti

in Line 9 as the smallest element that was neither in T nor in P . Therefore, the
elements aα+1, . . . , aβ−1 belong to T ∪ P . Let Si = {a ∈ si : aα < a < aβ}. By the

56

above observation, all elements of Si are covered, i.e. in T ∪ P . Since the solution
s1, . . . , sk is consistent with the parameters of the current recursive call, we know that
no element of Si is trully covered (i.e. in some Tj). In other words, each element of
Si belongs to some Pj for j 6= i. We consider two cases:

Case 1: Suppose that each Pj contains at most k elements of Si. Then Si contains
at most k2 elements, so d′i > (aβ − aα)/(k

2 + 1) > (aβ − aα)/k(k + 1). Note that
g(0, . . . , 0) = aβ − aα, so we have d′i >

g(0,...,0)
k(k+1) .

Case 2: Suppose that some of the sets Pj contain at least k + 1 elements of Si.
Let q1, . . . , qu be distinct integers such that for each j ∈ [u], |Pqj ∩Si| > k+1 and for
each j 6∈ {q1, . . . , qu}, |Pj∩Si| 6 k. Let bqj be the number of elements of Pqj (strictly)
between two consecutive elements of the AP Pqj ∩ si. The di�erence of Pqj ∩ si is
equal to (bqj + 1)dqj , so d′i divides (bqj + 1)dqj . By Lemma 4.8 (applied to s1, . . . , sk
and s = Pqj), we get bqj 6 2k−1 − 1.

Let g = gcd(aβ−aα, (bq1+1)dq1 , . . . , (bqu+1)dqu). Applying the above observation
to each j ∈ [u], we conclude that d′i divides g. It remains to show that d′i > g/k(k+1).
In other words, we need to show that si has less than k(k+1) elements in the interval
(aα, aα + g). Suppose that for some qj , Pqj ∩ si contains at least two elements, c1
and c2, in the interval (aα, aα + g). Note that |c2 − c1| is divisible by (bqj + 1)dqj , so
|c2 − c1| is divisible by g. This leads to a contradiction, since |c2 − c1| < g. Thus for
each j, Pqj ∩ si contains at most one element in (aα, aα + g). For j 6∈ {q1, . . . , qu}, we
know that |Pj ∩ si| 6 k, so there are at most k(k − 1) + k < k(k + 1) elements of si
in (aα, aα + g), which proves the claim. �

Using Lemma 4.7, the total complexity of our algorithm is 2O(k3)nO(1). �

4.5 Strong NP-hardness of Cover by Arithmetic Pro-

gressions in Zp

A natural question to ask, in order to prove Strong NP-hardness for CAP, is whether
we can replace an input set X with an equivalent set which has smaller elements.
Speci�cally, could we replace the input number with numbers polynomial in |X|,
while preserving the set of APs? This intuition can be further supported by results
on Simultaneous Diophantine approximation that exactly achieve results in this spirit
(though with more general properties and larger upper bounds) [64]. However, it turns
out that this is not always the case in our setting, as we show in Lemma 4.9. This
means that one of the natural approaches for proving strong NP-hardness of CAP
does not work: namely, not all sets X can be replaced with set a X ′ of polynomial
size which preserves all APs in X.

Lemma 4.9. Let x1 = 0, xi = 2i−2 for i > 2 and Xn = {x1, . . . , xn+2}. Then for any
polynomial p there exists an integer n such that there is no set An = {a1, . . . , an+2}
that satis�es the following criteria:

� ai 6 p(n) for all i ∈ [n+ 2],

57

� For all i, j, k ∈ [n+2], the set {xi, xj , xk} forms an AP if and only if {ai, aj , ak}
forms an AP.

Proof. Assume for contradiction that there is a polynomial p such that for any n, we
can construct a set An with elements smaller than p(n) which preserves the APs of
size 3 in Xn. Without loss of generality, we may assume that a1 = 0 (by subtracting
a1 from all elements of An and using 2p instead of p).

Clearly if |Xn| > 4 we must have a2 6= 0. If a set {0, a, b} generates an AP, then
b ∈ {2a,−a, a

2}. We know that x1, xj , xj+1 generate an AP for each j ∈ [2, n − 1],
which implies that for i > 3, ai is equal to ai−1 multiplied by 2,−1 or 1

2 . Note
that we cannot have q1 < q2 such that aq1 = aq2 . Indeed, if q2 > q1 + 1 then
a1, aq1 , aq2 generates an AP while x1, xq1 , xq2 does not. It is left to consider case
q2 = q1 + 1. If q2 < n, Xn contains the AP x1, xq2 , xq2+1, so {a1, aq2 , aq2+1} is
an AP. Since aq2 = aq1 , we have that {a1, aq1 , aq2+1} also generates an AP which
contradicts the fact that x1, xq1 , xq2+1 is not an AP. If q2 = n, then instead of the triple
{a1, aq2 , aq2+1} we consider the triple {a1, aq1−1, aq1} and instead of x1, xq1 , xq2+1 we
consider x1, xq1−1, xq2 and get the contradiction as n > 4. Therefore all numbers
a1, a2, . . . , an must be di�erent.

Recall that for each j > 1 we have either aj = 2pja2 or aj = −2pja2 for some
integer pj . As all numbers in the set {a1, a2, . . . , an} are di�erent, we have that there
is an index j such that pj > n

8 or pj < −n
8 . Since all numbers in A must be integers

we conclude that either a2 > 2
n
8 or apj

> 2
n
8 . Therefore we must have p(n) > 2

n
8 ,

which is not true if we take n su�ciently large. �

Unfortunately, we do not know how to directly circumvent this issue and improve
the weak NP-hardness proof of Heath [71] to strong NP-hardness. Instead, we work
with another variant of the problem in which we work in Zp. The de�nition of APs
naturally carries over to Zp. It is easy to see that APs are preserved:

Observation 4.2. Let p be a prime and let X be a set of integers that forms an AP.
Then the multiset Xp generates an AP in the �eld Zp.

Indeed, note that y − x = z − y implies (y mod p) − (x mod p) ≡p (z mod p) −
(y mod p), so we have that Xp is an AP in Zp.

However, the converse does not hold. Formally, if for some p the multiset Xp is
an AP in Zp it is not necessarily true that X is an AP in Z. For example, consider
X = {3, 6, 18} and p = 3: we have Xp = {0, 0, 0} which is a (trivial) AP, while X is
not an AP.

We now show strong NP-completeness for the modular variants of CAP and
XCAP. In the Cover by Arithmetic Progressions in Zp problem one is given
as input an integer p and a set X ⊆ Zp and asked to cover X with APs in Zp that are
contained in X that cover X. In Exact Cover by Arithmetic Progressions in
Zp we additionally require the APs to be disjoint.

Theorem 4.3. Cover by Arithmetic Progressions in Zp and Exact Cover
by Arithmetic Progressions in Zp are strongly NP-complete.

Proof. We recall that Heath [71] showed that CAP and XCAP are weakly NP-
complete via reduction from Set Cover. Moreover, the instances of CAP and

58

XCAP, obtained after reduction from Set Cover, consist of numbers that are
bounded by 2q(n) for some polynomial q(n). To show that Cover by Arithmetic
Progressions in Zp and Exact Cover by Arithmetic Progressions in Zp are
strongly NP-complete we take a prime p and convert instances of CAP and XCAP
with set S into instances of Cover by Arithmetic Progressions in Zp and Ex-
act Cover by Arithmetic Progressions in Zp respectively with a set Sp (we
can guarantee that the multiset Sp contains no equal numbers) and modulo p.

As shown in Claim 4.2, under such transformation a Yes-instance is converted
into a Yes-instance. However, if we take an arbitrary p then a No-instance can be
mapped to a Yes-instance or Sp can become a multiset instead of a set. In order to
prevent this, we carefully pick the value of p.

We need to guarantee that if Y is not an AP then Yp also does not generate an
AP in Zp. Suppose Yp = {y1, y2, . . . , yk} generates an AP in Zp exactly in this order.
We assume that xi maps into yi, i.e. xi ≡p yi. Since Yp is an AP in Zp, we have

y2 − y1 ≡p y3 − y2 ≡p · · · ≡p yk − yk−1.

Since Y is not an AP there exists an index j such that xj − xj−1 6= xj+1 − xj .
Therefore, we have that 2xj − xj−1 − xj+1 6= 0 and 2yj − yj−1 − yj+1 ≡p 0. Since
xi ≡p yi we conclude that p divides 2xj − xj−1 − xj+1. Hence if we want to choose p
that does not transform a No-instance into a Yes-instance, it is enough to choose p
such that p is not a divisor of 2x− y− z where x, y, z are any numbers from the input
and 2x− y− z 6= 0. Similarly, if we want Sp to be a set instead of a multiset, then for
any di�erent x, y the prime p should not be a divisor of x− y. Note that the number
of di�erent nonzero values of 2x−y−z and x−y is at most O(n3). Since all numbers
are bounded by 2q(n) the values of 2x− y − z 6= 0 and x− y are bounded by 2q(n)+2.
Note that any integer N has at most logN di�erent prime divisors. Therefore at most
O(n3)(q(n) + 2) prime numbers are not suitable for our reduction. In order to �nd a
suitable prime number we do the following:

� for each number from 2 to n6(q(n) + 2)2 check if it is prime (it can be done in
polynomial time [1]),

� for each prime number p′ 6 n6(q(n)+2)2 check if there are integers x, y, z from
the input such that (2x−y− z 6= 0 and 2x−y− z ≡p 0) or x ≡p y if such x, y, z
exist go to the next prime number,

� when the desired prime p′ is found output instance Sp′ with modulo p′.

Note that number of primes not exceeding N is at least N
2 logN for large enough N .

Hence by pigeonhole principle we must �nd the desired p′ as we consider all numbers
smaller than n6(q(n)+2)2 and n6(q(n)+2)2

log(n6(q(n)+2)2) > O(n3)(q(n)+2) for su�ciently large
n.

Therefore, in polynomial time we can �nd p′ that is polynomially bounded by n
and Cover by Arithmetic Progressions in Zp with input (Sp′ , p′) is equivalent
to CAP with input S (similarly for Exact Cover by Arithmetic Progressions
in Zp andXCAP). Hence, Cover by Arithmetic Progressions in Zp and Exact
Cover by Arithmetic Progressions in Zp are strongly NP-complete.

�

59

4.6 Parameterization Below Guarantee

In this section we present an FPT algorithm parameterized below guarantee for a
problem that generalizes CAP, namely t-Uniform Set Cover. The t-Uniform
Set Cover is a special case of the Set Cover problem in which all instances S, U
satisfy the property that {A ⊆ U : |A| = t } ⊆ S. Clearly the solution for the
t-Uniform Set Cover problem is at most dnt e where n is the size of universe. Note
that CAP is a special case of 2-Uniform Set Cover since any pair of element forms
an AP. Thus we focus on presenting a �xed-parameter tractable algorithm for the t-
Uniform Set Cover problem parameterized below dnt e (we consider t to be a �xed
constant). We note that for a special case with t = 1 the problem was considered in
works [6, 43].

We will use the deterministic version of color-coding, which uses the following
standard tools:

De�nition 4.10. For integers n, k a (n, k)-perfect hash family is a family F of
functions from [n] to [k] such that for each set S ⊆ [n] of size k there exists a function
f ∈ F such that f(S) = [k].

Lemma 4.11 ([99]). For any n, k > 1, one can construct an (n, k)-perfect hash
family of size ekkO(log k) log n in time ekkO(log k)n log n.

Now we are ready to state and prove the main result of this section:

Theorem 4.12. There is an 2O(k)nO(1)-time algorithm that for constant t and a
given instance of t-Uniform Set Cover determines the existence of a set cover of
size at most dnt e−k where k is an integer parameter and n is the size of the universe.

Proof. In the �rst stage of our algorithm we start picking sets greedily (i.e. in each
step, we pick the set that covers the largest number of previously uncovered elements)
until there are no sets that cover at least t+1 previously uncovered elements. If during
this stage we pick s sets and cover at least st + tk elements then our instance is a
Yes-instance. Indeed, we can cover the remaining elements using dn−st−tkt e sets. In
total, such a covering has at most dn−st−tkt e+ s = dnt e − k subsets. Intuitively, each
set picked during this greedy stage covers at least one additional element. Therefore,
if we pick more than tk subsets then our input instance is a Yes-instance. This means
that after the greedy stage we either immediately conclude that our input is a Yes-
instance or we have used at most tk subsets and covered at most tk · t + tk = O(k)
elements, for a �xed t. Let us denote the subset of all covered elements by G. Note
that there is no subset that covers more than t elements from U \G.

If there is a covering of size dnt e − k then there are s′ 6 |G| 6 tk · t + tk subsets
that cover G and at least s′t+ tk − |G| elements of U \G. Moreover, if such subsets
exist then our input is a Yes-instance.

Hence, it is enough to �nd s′ such subsets. For each s′′ ∈ [|G|] we attempt to �nd
subsets S1, S2, . . . , Ss′′ such that G ⊂ S1∪S2∪· · ·∪Ss′′ and S1∪S2∪· · ·∪Ss′′ contains
at least s′′t+ tk− |G| elements from U \G. Assume that for some s′′ such sets exist.
Let H be an arbitrary subset of (S1 ∪ S2 ∪ · · · ∪ Ss′′) \G of size s′′t+ tk − |G|. Note
that we do not know the set H. However, we employ the color-coding technique, and

60

construct a (n, |H|)-perfect hash family F . We iterate over all f ∈ F . Now using
dynamic programming we can �nd H in time 2O(k) as follows.

We consider a new universe U ′ which contains elements from the set G and ele-
ments corresponding to |H| colors corresponding to values assigned by f to U \ G.
Moreover, if a subset P was a subset that can be used for covering in t-Uniform Set
Cover then we replace it with (P ∩G)∪{a : a ∈ f(P ∩(U \G)) for some f ∈ F}. We
replace our t-Uniform Set Cover instance with an instance of Set Cover with a
universe of size |G|+ |H| 6 |G|+s′′t+tk−|G| 6 |G| ·t+tk 6 (tk ·t+tk) ·t+tk = O(k).
It is easy to see that our original instance is a Yes-instance if and only if the con-
structed instance of Set Cover admits a covering by at most s′′ sets (under the
assumption that f indeed assigns distinct values to elements of H). If f does not
assign distinct values then a Yes-instance can be become a No-instance. However,
a No-instance cannot become a Yes-instance. Since |H| = O(k), the overall running
time is 2O(k)nO(1). �

As a corollary of the previous theorem we get the following result.

Theorem 4.4. There is an 2O(k)nO(1) time algorithm that detects if a given set X
of integers can be covered with at most |X|/2− k APs.

Proof. The result immediately follows from Theorem 4.12 with t = 2. �

4.7 Conclusion

We presented FPT algorithms for Cover by Arithmetic Progressions and Ex-
act Cover by Arithmetic Progressions. These are one of rare parameterized
algorithms that have been used for solving problems for number theory, and we hope
our results inspire further research in this direction.

A natural direction for further research would be to obtain faster parameterized
algorithms for CAP and XCAP. Our algorithm for XCAP is slower than the one for
CAP, which coincides with the intuition that XCAP is a harder problem than CAP.
However, it is unclear whether this di�erence in complexity is just a property of the
techniques we used, or is it inherent to the problems. Another question that remains
open is the strong NP-hardness of CAP and XCAP.

61

62

Chapter 5

XNLP-hardness of

Parameterized Problems on

Planar Graphs

5.1 Introduction

In classical complexity theory, we can classify problems depending on their space
complexity or their time complexity. These two classi�cations are intertwined as
follows: L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP . In particu-
lar, the class NL (Nondeterministic Logarithmic-space) is contained in the class P
(Polynomial-time). It is natural to ask whether there is a similar chain of inclusions
for the parameterized analogues of these classes. In particular, what can we say about
the relationship between FPT (analogue of P) and XNL (analogue of NL)?

This question was �rst posed by Elberfeld et al. [55]. They de�ned the class
N [fpoly, f log] (here called XNLP) as the class of (parameterized) problems that can
be solved with a nondeterministic Turing machine in f(k)nO(1) time and g(k) log n
space and gave the �rst problems complete for this class. They also present several
problems that are complete for this class, stating: �The real challenge lies in �nding
problems together with natural parameterizations that are complete�.

In the last decade, this question has been resolved: many standard graph problems
and their generalizations were shown to be XNLP-complete (see Table 5.1 for examples
of such problems). This class turned out to be a natural home for several problems
that are W [t]-hard for all t but unlikely to belong to W [P], such as Bandwidth and
List Coloring (parameterized by pathwidth) [23].

Recently, in [22] a �tree variant� of the class XNLP was introduced. This class is
called XALP, and many problems that are XNLP-complete parameterized by path-
width are shown to be XALP-complete parameterized by treewidth (see Table 5.1).
The class XALP contains problems that can be solved by a nondeterministic Turing
machine with access to an auxiliary stack in f(k)nO(1) time and g(k) log n space.

A natural question to ask is whether we can say something about hardness for

63

other graph parameters. Several XNLP-hard problems for treewidth are known to be
easy (i.e. in FPT) parameterized by the so-called stable gonality parameter [18]. In
this chapter, we study the hardness of problems on planar graphs, parameterized by
outerplanarity, treewidth and pathwidth.

Outerplanarity is a natural parameter to study for problems on planar graphs.
As graphs of outerplanarity k have treewidth at most 3k − 1 (see e.g. [17]), algorith-
mic results for graphs of bounded treewidth carry over to planar graphs of bounded
outerplanarity. This has also been exploited in the well-known and often applied lay-
ering technique of Baker [5], resulting in approximation schemes for many problems
on planar graphs.

There are several celebrated results in the �eld of parameterized complexity where
the complexity of a problem signi�cantly decreases when we move from general graphs
to planar graphs, for instance Dominating Set parameterized by solution size then
drops from being W[2]-complete [53] to a �xed-parameter tractable problem with a
linear kernel [2]. The results of this chapter show that for several problems that are
in XP for treewidth as parameter, we have no complexity drop when we move to the
realm of planar graphs.

Our results. An overview of the results of this chapter can be seen in Table 5.1.
For all the membership results, we assume that we are given the tree decomposition
or path decomposition of the input graph. In addition to these results, we also show
the XNLP-completeness of Binary CSP for k × n-grids (parameterized by k).

Organization. In Section 5.2 we introduce some de�nitions and notations. In Sec-
tion 5.3 we strengthen two previous results concerning Binary CSP and two related
problems. Section 5.4 discusses the Scattered Set problem, whose hardness can be
shown by a reduction from Binary CSP. In Section 5.5, we consider the complexity
of the All-or-Nothing Flow problem, and prove it to be XNLP-hard with outer-
planarity as parameter by a reduction from Binary CSP. In Section 5.6 we describe
several problems whose hardness can be shown by a reduction from All-of-Nothing
Flow. We �nish with some concluding remarks in Section 5.7.

5.2 De�nitions and Notation

5.2.1 Graph notions

Throughout this chapter, graphs are undirected unless speci�ed otherwise. A planar
graph is outerplanar (or 1-outerplanar) if it has na embedding such that all its vertices
are on the outer face. Informally speaking, a planar graph G is k-outerplanar if its
vertices are on k �layers�. Formally, k-outerplanar graphs are de�ned as follows.

De�nition 5.1. An embedding of a planar graph G outerplanar if all its vertices
are on the outer face. An embedding of a planar graph G is k-outerplanar if, after
deleting the vertices on the outer face, the remaining embedding is (k−1)-outerplanar.
A planar graph is k-outerplanar if it has a k-outerplanar embedding.

64

outerplanarity treewidth pathwidth

Binary CSP XALP-c. (5.3.2) XALP-c. [22] XNLP-c. [23]

List Coloring XALP-c. (5.3.2) XALP-c. [22] XNLP-c. [23]

Precoloring
Extension

XALP-c. (5.3.2) XALP-c. [22] XNLP-c. [23]

Scattered Set XALP-c. (5.4) XALP-c. (5.4) XNLP-c. (5.4)

All-or-Nothing
Flow

XNLP-h. (5.5) XALP-c. [22] XNLP-c. [18]

All-or-Nothing
Flow with cap. 6 2

XNLP-h. (5.6.1) XALP-c. (5.6.1) XNLP-c. (5.6.1)

Target Outdegree
Orientation

XNLP-h. (5.6.2) XALP-c. [22] XNLP-c. [18]

Capacitated
(Red-Blue)
Dominating Set

XNLP-h. (5.6.3) XALP-c. [22] XNLP-c. [21]

Capacitated
Vertex Cover

XNLP-h. (5.6.4) XALP-c. [22] XNLP-c. [21]

f -Dominating Set XNLP-h. (5.6.5) XALP-c. (5.6.5) XNLP-c. (5.6.5)

k-Dominating Set XNLP-h. (5.6.5) XALP-c. (5.6.5) XNLP-c. (5.6.5)

Target Set
Selection

XNLP-h. (5.6.6) XALP-c. (5.6.6) XNLP-c. (5.6.6)

Table 5.1: An overview of results of this chapter and results from the literature.
Results of this chapter are stated with the corresponding section numbers.

In other words, a graph is k-outerplanar if after k operations consisting of removing
all the vertices on the outer face, we obtain an empty graph. The outerplanarity of a
graph can be computed in polynomial time [77].

Kloks [81] introduced the notion of nice tree and path decompositions. Throughout
this chapter, we assume that we are given a (nice) tree decomposition and a (nice) path
decomposition of the input graph. We will use a variant of nice path decompositions,
which we will describe with a sequence of operations on terminal graphs. Here, a
terminal graph is a triple (V,E,X), together with a binary relation ≺ on X which is
a strict total ordering. We call elements of X terminals. We consider the following
operations on terminal graphs:

� Introduce. Given a terminal graph G = (V,E,X), the introduce operation
adds a new isolated vertex v to V and to X, with v the smallest vertex regarding
the ordering in X: G′ = (V ∪ {v}, E, {v} ∪X), with v ≺ x for all x ∈ X.

65

� Forget. Given a terminal graph G = (V,E,X) with X 6= ∅, the largest element
of X is no longer a terminal: G′ = (V,E,X \{x}), with y ≺ x for all y ∈ X \{x}.

� Add-Edge(i). Given a terminal graph G = (V,E,X) with |X| > i, we add an
edge between the ith and the (i+ 1)st terminal: V and X are unchanged, and
one edge is added to E.

� Swap(i). Given a terminal graph G = (V,E,X) with |X| > i, swap in the
ordering in X the ith and the (i+ 1)st vertex.

To build graphs of small treewidth, we need one more operation, that now has
two terminal graphs as input.

� Join. Given two terminal graphs G1 = (V1, E1, X) and G2 = (V2, E2, X) that
only intersect in their terminal nodes, i.e., V1 ∩ V2 = X and E1 ∩ E2 = ∅,
we build the graph G = (V1 ∪ V2, E1 ∪ E2, X). The operation `fuses' the two
terminal graphs, identifying for each i, the ith terminal node of the �rst graph
with the ith terminal node of the second graph.

Note that with a sequence of Swap operations, we can order the terminals in
any manner; one can thus easily observe that a nice path decomposition of a graph
G = (V,E) of pathwidth at most k (see [81]) can be transformed into a sequence of
Introduce, Forget, Add-Edge and Swap operations that creates the terminal graph
G = (V,E, ∅) with O(kn) operations, and with each intermediate terminal graph
having at most k+1 terminals. Similarly, a nice tree decomposition can be transformed
to a similar sequence of Introduce, Forget, Add-Edge, Swap and Join operations. From
this sequence of operations, we can go back to a generalized tree decomposition, i.e.,
we have a rooted tree, with each bag consisting of the set of terminals, and of one
of the following types: Introduce, Forget, Add-Edge, Swap and Join. We omit the
simple details; one can also carry out the above transformations in logarithmic space.

5.2.2 The classes XNLP and XALP

A parameterized problem is a language L ⊆ Σ∗ × N for some �nite alphabet Σ.
The class XNLP consists of parameterized problems that can be solved by a non-
deterministic algorithm which uses f(k)nO(1) time and g(k) log n space for some com-
putable function f (where k is the parameter and n is the size of the input instance).

As in the classical complexity setting, in order to de�ne XNLP-hardness and
XNLP-completeness, we need the notion of reduction.

De�nition 5.2. A parameterized reduction from a problem L1 ⊆ Σ∗1×N to a problem
L2 ⊆ Σ∗2×N is a function f : Σ∗1×N→ Σ∗2×N such that the following two conditions
are satis�ed:

� For all (x, k) ∈ Σ∗1 × N, (x, k) ∈ L1 if and only if f((x, k)) ∈ L2,

� There is a computable function g : N → N such that for all (x, k) ∈ Σ∗1 × N we
have k′ 6 g(k), where f((x, k)) = (y, k′).

66

We call f a parameterized logspace reduction or pl-reduction if there is an algorithm
that computes f((x, k)) in space O(g′(k) + log |x|), where g′ : N→ N is a computable
function and |x| the size of x (i.e. number of bits needed to store x).

We call a problem XNLP-hard if any other problem in XNLP can be pl-reduced
to it, and XNLP-complete if it is XNLP-hard and in XNLP.

We de�ne XALP as the class of problems that can be solved by a non-deterministic
Turing machine with a stack in f(k)nO(1) time and g(k) log n space. For other equiv-
alent de�nitions of XALP we refer the reader to [22].

Membership in XNLP (respectively XALP) can usually be shown by standard
dynamic programming techniques on path decompositions (respectively tree decom-
positions). Intuitively, the log space complexity can be achieved by guessing the entry
(rather than storing all the entries). Examples of membership proofs can be found
in [21�23].

In our hardness proofs, we skip the details that show the logarithmic space bounds
for the pl-reductions. The standard technique to realize such space is to recompute
needed values instead of storing them. For example, if the reduction uses a Sidon set,
we do not store the Sidon set, but each time we need the ith element of the set, we
recompute it. This increases the time of the reduction by a polynomial factor, but
keeps the used space small.

5.3 Binary CSP

The Constraint Satisfaction Problems (CSP) form a well-known class of prob-
lems with a wide set of applications, ranging from arti�cial intelligence to operations
research. In this section, we study Binary CSP, a CSP where all constraints are
binary. Formally, the problem is de�ned as follows.

Binary CSP
Input: A graph G = (V,E), a set C, set C(v) ⊆ C for each v ∈ V , set C(u, v) ⊆
C × C for each ordered pair (u, v) ∈ V × V such that {u, v} ∈ E
Task: Is there a function f : V → C such that for every v ∈ V , f(v) ∈ C(v) and
for every uv ∈ E, we have (f(u), f(v)) ∈ C(u, v)?

We call the elements of C colors, the sets C(v) domains (or vertex constraints)
and the sets C(u, v) edge constraints. We emphasize that C(u, v) contains ordered
pairs, i.e. even though the graph is undirected, the ordering of vertices matters for
the edge constraints.

List Coloring and Precoloring Extension are special cases of Binary CSP,
de�ned as follows.

List Coloring
Input: A graph G = (V,E), a set C, set C(v) ⊆ C for each v ∈ V
Task: Is there a function f : V → C such that for every v ∈ V , f(v) ∈ C(v) and
for every uv ∈ E, f(u) 6= f(v)?

67

Precoloring Extension
Input: A graph G = (V,E), a set C, a subset W ⊆ V , a function f ′ : W → C
Task: Is there a function f : V → C such that for every v ∈W , f(v) = f ′(v) and
for every uv ∈ E, f(u) 6= f(v)?

Note that an instance of List Coloring can be seen as an instance of Binary
CSP where for each edge uv the edge constraint is C(u, v) = {(a, b) : a 6= b}. An
instance of Precoloring Extension can be seen as an instance of Binary CSP
where each vertex has a domain of size 1 or |C|. Note that we may assume without
loss of generality that C(u, v) ⊆ C(u)× C(v).

Binary CSP, List Coloring and Precoloring Extension were shown to be
XNLP-complete parameterized by pathwidth [23]. In the �rst part of this section,
we will show that Binary CSP is also XNLP-complete for a more restrictive graph
class, namely k×n-grids (parameterized by k). As vertices whose lists are larger than
their degree plus one can always be colored, and List Coloring is FPT for graphs of
bounded treewidth plus maximum list size [76], List Coloring and Precoloring
Extension are FPT for k × n-grid, parameterized by k.

Binary CSP, List Coloring and Precoloring Extension were shown to
be XALP-complete parameterized by treewidth and by treewidth plus degree [22].
In the second part of this section, we will show for each of these three problems
XALP-completeness for a more restrictive graph class, namely k-outerplanar graphs
(parameterized by k). We remark that List Coloring is in L for trees [20].

5.3.1 XNLP-completeness for k × n-grids

In order to prove the XNLP-completeness for k × n-grids, we will use an equivalent
de�nition of pathwidth (see Lemma 2.7 or standard textbooks), namely that a graph
G has pathwidth k if and only if it is a subgraph of an interval graph whose clique
number is k + 1.

Note that, if we are given a path decomposition we can easily construct the corre-
sponding interval graph H (for details see [17]). Now we are ready to prove the main
theorem of this section.

Theorem 5.3. Binary CSP is XNLP-complete for k × n-grids parameterized by k.

Proof. We will reduce from Binary CSP parameterized by pathwidth. Let G be a
graph of pathwidth k−1. By Lemma 2.7, there is an interval graph H ′ such that G is
a subgraph of H ′ and ω(H ′) = k. Let I be a collection of intervals whose intersection
graph is H ′. Intuitively, we will draw the intervals in I on a grid. Formally, we
construct an instance of Binary CSP with underlying graph H as follows. We start
with H being a k × n-grid. To each v ∈ V (G), we assign a horizontal path Iv and a
vertex `v in H such that the following conditions are met:

� `v is the left endpoint of Iv;

� Iv ∩ Iu = ∅ for all u 6= v;

� `u and `v are in di�erent columns for all u 6= v;

68

� For all edges uv ∈ E(G), there is a column in H that contains a vertex in Iv
and a vertex in Iu.

We will now make the grid H twice �ner, i.e. we will add a row between every two
adjacent rows and a column between every two adjacent columns. We will call the
newly added rows, columns and vertices green, and the original vertices black. Each
green vertex whose left and right neighbours are in Iv for some v ∈ V (G) is added to
Iv.

`v

`u

b2g1 g2

Jv Ju

Iv

Iu

Figure 5.1: A part of the graph H showing an intersection of intervals corresponding
to u and v

For each vertex v, let Jv be the column that contains `v. Consider the green
vertices on the paths Iv and Jv for some vertex v ∈ V (G). We will add constraints
to these vertices and to edges between adjacent vertices in Iv and Jv to ensure that
all of them get the same color as `v. Denote the vertices on Iv from left to right by
b1, g1, b2, g2, . . . , bt−1, gt−1, bt, where b1 = `v, the vertices gi are green, and bi are black
(see Figure 5.1). For g1, we set C(g1) = C(v) and C(`v, g1) = {(c, c) : c ∈ C(v)}.
For i = 2, ..., t, we de�ne the domains of gi and bi, as well as the constraints of the
adjacent edges as follows. We de�ne C(gi) = C(v). If bi is in column Ju for some
u ∈ V (G), we de�ne C(bi) = {cxy : (x, y) ∈ C(v, u)} (if uv 6∈ E(G), we de�ne
C(u, v) = C(u) × C(v)). We de�ne C(gi−1, bi) = {(x, cxy) : xy ∈ C(v, u)} and
C(bi, gi) = {(cxy, x) : xy ∈ C(v, u)}. If bi is not in column Ju for any u ∈ V (G),
we de�ne C(bi) = {cxx : x ∈ C(v)}, C(gi−1, bi) = {(x, cxx) : x ∈ C(v)} and
C(bi, gi) = {(cxx, x) : x ∈ C(v)}. Note that now all of the green vertices on Iv have
the same color as `v. We de�ne the domains of vertices on Jv and the constraints
between adjacent vertices analogously. For all the other vertices v and edges uv of
H, we de�ne C(v) = C and C(u, v) = C × C.

Given a valid coloring of H, we can color each vertex v ∈ V (G) with the color of
`v. For every edge uv ∈ E(G), we have that Iv and Ju intersect at a black vertex
or that Iu and Jv intersect at a black vertex. By our choice of domain for the black
vertex in the intersection, we ensured that the constraint of the edge uv is satis�ed.
Thus we get a valid coloring of G. It is easy to see that given a valid coloring of G,
we can construct a valid coloring of H. �

69

5.3.2 XALP-completeness parameterized by outerplanarity

In this section, we show the XALP-completeness of Binary CSP parameterized by
outerplanarity.

Theorem 5.4. Binary CSP is XALP-complete parameterized by outerplanarity.

Proof. We will reduce from Binary CSP parameterized by treewidth. Given a graph
G with a nice tree decomposition of treewidth k, we will construct a k-outerplanar
(plane) graph H. We �rst transform the nice tree decomposition to a generalized one,
i.e., each bag is of one of the following types: Introduce, Forget, Add-Edge, Swap or
Join.

We denote by ≺X the ordering of terminals corresponding to the bag X. For each
bag X and each terminal v in X, we add to H a vertex vX . We draw the vertices
of H in the plane as follows. For each bag X, the terminals in X are on the same
horizontal line, ordered from left to right according to ≺X . For each bag X and its
child Y , the vertices in H corresponding to X are above vertices corresponding to Y .

Denote by BX the set BX = {vX : v ∈ X} ⊆ V (H). For each node X of the tree
decomposition of G, we add the following edges to H. For each v ∈ V (G), if both X
and its child Y contain v, we add the edges vXvY . In addition, if X is an Add-Edge
node corresponding to edge vw, we add the edge vXwX to H (see Figure 5.2).

uX vX wX xX uX vX wX xX uX vX wX xX

uX vX wX xX

vY wY xY uY vY wY xY

uX vX wX

uY vY wY xY

uY vY wY xY uY vY wY uZ vZ wZ

Figure 5.2: Representation of nodes: Introduce u, Forget x, Add-Edge vw, Swap vw,
Join.

For each bag BX and each vertex vX ∈ BX , set C(vX) = C(v). For each edge
vXvY in H, set C(vX , vY) = {(d, d) : d ∈ C(v)}. For each edge vXwX in H set
C(vX , wX) = C(v, w).

Note that the graph H is not planar yet. We will now turn it into a planar graph
by using crossover gadgets. Consider edges ab and cd that intersect at a point. Add
a vertex m at the intersection point and subdivide the edges mb and md by adding
vertices a′ and c′ respectively. Set C(a′) = C(a), C(c′) = C(c), C(m) = {mij : i ∈
C(a), j ∈ C(c)}, C(m, a) = C(m, a′) = {(mij , i) : i ∈ C(a), j ∈ C(c)}, C(m, c) =
C(m, c′) = {(mij , j) : j ∈ C(c), i ∈ C(a)}, C(a′, b) = C(a, b), C(c′, d) = C(c, d). This
way, we ensure that a′ (respectively c′) has the same color as a (respectively c).

In any valid coloring of H, all vertices that correspond to the same vertex in G
must have the same color. Also, for each edge in G, we have an Add-Edge node

70

corresponding to it, and in that node we check whether the edge consraint is satis�ed.
Therefore, any valid coloring of H de�nes a valid coloring of G and vice versa. It
remains to show that H has bounded outerplanarity. For each bag X, the vertices
vX are on the outer face after at most k/2 rounds. The subgraphs corresponding
to join nodes are subgraphs of a k × n-grid (with some subdivided edges) and thus
k/2-outerplanar. The vertices corresponding to the intersection of edges in the Swap
nodes will be on the other face in at most k/2 + 1 rounds. Therefore, the graph H is
(k/2 + 1)-outerplanar. �

Corollary 5.1. List Coloring and Precoloring Extension are XALP-complete
parameterized by outerplanarity.

Proof. We observe that the existing transformations increase the outerplanarity by at
most 1, see e.g. [23]. An instance of Binary CSP can be transformed to an equivalent
instance of List Coloring by renaming some colors, and replacing edges uv by a
number of vertices of degree 2, each adjacent to u and to v. From List Coloring
we go to Precoloring Extension by adding to each vertex v precolored neighbors
of degree 1; one such vertex for each color in C \ C(v). �

5.4 Scattered Set

In this section, we will consider the Scattered Set problem, which is a generaliza-
tion of the Independent Set problem and is de�ned as follows.

Scattered set
Input: G = (V,E), k ∈ N, d ∈ N
Task: Is there a set I ⊆ V of size k such that for any pair of distinct vertices
u, v ∈ I the distance between u and v is at least d?

For a �xed d > 3, the problem with parameter k is W[1]-hard, even for bipartite
graphs [58]. The case when d = 2 gives the Independent Set problem which is W[1]-
complete [53]. For �xed d, the problem is FPT when parameterized by treewidth, by
standard dynamic programming techniques (see [80]). In this section, we consider the
case that d is part of the input.

Theorem 5.5. Scattered Set is XALP-complete parameterized by treewidth and
by outerplanarity and it is XNLP-complete parameterized by pathwidth.

Proof. Membership in XNLP and XALP, respectively, follows with standard argu-
ments, cf. the discussion in Section 5.2. A state of the machine will contain as
information the current bag in the decomposition, and for each vertex in this bag its
distance to an element in the scattered set (i.e. k + 1 integers in [0, d]).

In both cases, we will reduce from Binary CSP. Given an instance of Binary
CSP with underlying graph G and d colors, we will construct an instance H of
Scattered Set as follows. The distance between solution vertices d equals the
number of colors in C.

Firstly, for every vertex v of G construct a cycle Cv of length equal to the degree of
v. For every edge {u, v} ∈ E(G), construct an edge in H between a vertex in Cu and

71

Cu(v)1,1

Cu(v)1,2

Cu(v)2,1

Cu(v)2,2

Cv(u)4,2

Cv(u)4,1

Cv(u)3,2

Cv(u)3,1

Cu(w)1,2

Cu(w)1,1

Figure 5.3: Cycles Cu and Cv and representation of the forbidden pairs (1, 1) and
(1, 2) corresponding to the edge uv.

Cv such that the order of edges around the cycle Cv is the same as the order of edges
around v and each vertex of Cv has degree 3. Note that the obtained graph H remains
planar. For an edge {u, v} ∈ E(G), let Cv(u) ∈ Cv and Cu(v) ∈ Cu be its endpoints.
For each edge {u, v} ∈ E(G), replace Cv(u) and Cu(v) with paths Cv(u)1,1...Cv(u)d2,d

and Cu(v)1,1...Cu(v)d2,d such that the following are true (see Figure 5.3):

� Cv(u)1,1 and Cv(u)d2,d (Cu(v)1,1 and Cu(v)d2,d respectively) are adjacent to
exactly one neighbour of Cv(u) in Cv (neighbour of Cu(v) in Cu respectively);

� The vertices Cv(u)i,j (Cu(v)i,j respectively) are lexicographically ordered clock-
wise around the cycle.

For each edge {u, v} ∈ E(G), each i ∈ [d] and each color j 6∈ C(u), add a path of
length d − 1 to Cu(v)i,j . For each edge {u, v} ∈ E(G), consider the forbidden pairs
of colors, i.e. the pairs that do not belong to C(u, v). Intuitively, for each such pair
(i, j), we select a vertex in Cu(v) which corresponds to color i and a vertex in Cv(u)
which corresponds to color j. We connect the selected vertices by a gadget which will
ensure that we cannot have both of the selected vertices in S.

Formally, let (i, j) 6∈ C(u, v) and let a = (i − 1) · d + j. We construct a path
P (u, v, i, j) from Cu(v)a,i to Cv(u)d2+1−a,j of length 2d + 1. Note that the graph
remains planar: we have d2 �blocks� in Cu(v) (i.e. paths on the cycle which contain
one vertex for each color) on both sides, and the ath block has an outgoing edge if
and only if the ath pair (lexicographically ordered) (i, j) does not belong to C(u, v).
To each vertex of P (u, v, i, j) except the middle two, add paths of length d− 1.

Consider a d-scattered set S in H. We claim that it corresponds to a solution to
the given Binary CSP instance. For any vertex v and a color i 6∈ C(v), without loss
of generality we may assume that none of the vertices Cv(u)a,i belong to S. Also,
note that we cannot have Cv(u)a,i ∈ S and Cv(u

′)b,j ∈ S for i 6= j. Therefore,
there is exactly one color i such that Cv(u)a,i ∈ S for some u, and this will be the

72

color that we will assign to v. It remains to check whether the edge constraints are
satis�ed. Consider an edge uv ∈ E(G) and its constraints C(u, v). Suppose that in
the above process we selected a color i for u and j for v, such that (i, j) 6∈ C(u, v).
Then there exist a, b ∈ [d2] such that Cu(v)a,i, Cv(u)b,j ∈ S and Cu(v)a,i and Cv(u)b,j
are connected by a path. Note that on that path no vertex belongs to S, which leads
to a contradiction.

It remains to bound the outerplanarity, treewidth and pathwidth of H. Let G be
k-outerplanar and let p(v) denote the layer of a vertex v, i.e. the number of times
the outer face of G needs to be removed in order to have v on the outer face. Note
that any vertex of Cv of degree 2 belongs to the same layer as v. Therefore, in round
p(v) + 1 all vertices of Cv are on the outer face. In round p(v) + 2, all vertices of
P (u, v, i, j) are on the outer face. Therefore, the graph H is k + 2-outerplanar. Note
that k-outerplanar graphs have treewidth at most 3k − 1 [17].

Let us now compute the pathwidth of H. Consider a path decomposition of G
of width k′. Given a bag P ′i ⊆ V (G), construct Pi ⊆ V (H) as follows. For every
v ∈ P ′i , add to Pi all the vertices on Cv, and for every edge {u, v} ∈ E(G) such that
u, v ∈ P ′i , add all the vertices on paths between Cu and Cv, as well as all the vertices
on paths with an endpoint at Cu or Cv. It is easy to see that the sets Pi form a path
decomposition of H, and since d is a constant, the resulting path decomposition has
width O(k′). �

5.5 All-or-Nothing Flow

The All-or-Nothing Flow problem asks if there is an all-or-nothing �ow (i.e. a
�ow where every edge has either zero �ow or �ow equal to its capacity) with a given
value. Formally, the problem is de�ned as follows (for the de�nition of �ow, see
Section 2.2).

All-or-Nothing Flow
Input: A �ow network (G, cap, s, t), and an integer r.
Task: Is there an all-or-nothing �ow from s to t with value exactly r in G?

In this section, we show that All-or-Nothing Flow is XNLP-hard with the
outerplanarity plus the pathwidth of the graph as parameter. The problem is known
to be NP-complete [3], XNLP-complete with pathwidth as parameter [18] and XALP-
complete with treewidth as parameter [22]. The problem is a good starting point for
further hardness proofs, and a natural generalisation of network �ow.

We remark that the variant where we ask if there is a �ow whose value is at least r
is equally hard, since we can add a new source s′ and an arc from s′ to the old source
s with capacity r.

Theorem 5.6. All-or-Nothing Flow is XNLP-hard for planar graphs with out-
erplanarity as parameter.

Proof. We reduce from Binary CSP with pathwidth as parameter, and employ the
technique of modelling the choice of a colour for a vertex by choosing a number from
a Sidon set (or Golomb ruler), see e.g. [57].

73

A Sidon set is a set of positive integers {a1, . . . , an} with the property that each
di�erent pair of integers from the set has a di�erent sum: ai1 +ai2 = aj1 +aj2 implies
{i1, i2} = {j1, j2}. Sidon sets are also known as Golomb rulers. Erd®s and Turán [57]
have shown that for each n, there is a Sidon set of size n with all numbers in the set
at most 4n2; one can also observe from their proof that this set can be constructed
with logarithmic space.

Now, suppose we are given an instance of Binary CSP with pathwidth as param-
eter. That is, we have a graph G = (V,E), a set D of colours, for each vertex v ∈ V ,
a subset C(v) ⊆ D, and for each edge {v, w} ∈ E, for the ordered pair vw, a set of
allowed colour pairs C(v, w) ⊆ C(v)×C(w). Also, we are given a path decomposition
of G of width at most k.

Our aim is to construct an instance of All-or-Nothing Flow with underlying
graph H such that it has a solution if and only if the given Binary CSP instance
has a solution.

First, we modify the instance as follows. By a simple modi�cation of the colour
sets, we can assume that the sets of allowed colours for vertices are disjoint, i.e., for
v 6= w, C(v) ∩ C(w) = ∅. Second, we change the path decomposition to a series
of Introduce, Forget, Swap, and Add-Edge operations that give G = (V,E, ∅) when
starting with the empty graph.

Without loss of generality, we may assume that D =
⋃

v∈V C(v). Take a Sidon
set with |D| positive integers in O(|D|2). Suppose these are a1, . . . , a|D|. Let L =
max{a1, . . . , a|D|} + 1. Note that the set {a1 + L, . . . , a|D| + L} is also a Sidon set.
Now, we assign to each colour c in D a unique element s(c) from {a1+L, . . . , a|D|+L}.

For a vertex v ∈ V (G), we write S(v) = {s(c) : c ∈ C(v)}: the set of Sidon
numbers of the colours we can give to v. For a pair of vertices v, w ∈ V (G), we
write S(v) + S(w) = {s(c) + s(c′) : c ∈ C(v) ∧ c′ ∈ C(w)}. For an ordered pair of
endpoints of an edge {v, w} ∈ E, we write S(v, w) = {s(c) + s(c′) : c ∈ C(v) ∧ c′ ∈
C(w) ∧ (c, c′) ∈ C(v, w)}.

Gadgets. Before describing the construction of H, we introduce three auxiliary
gadgets, XOR, Edge and Swap. In order to simplify the drawing, instead of parallel
arcs, we draw one arc whose capacity is denoted by the (multi)set of capacities of the
parallel arcs. We denote the multiset consisting of t ones by 1t.

Informally, given a vertex v ∈ V (G), the XOR(v) gadget will �select� exactly one
value s(c) ∈ S(v), which corresponds to coloring v with color c. Formally, given a
vertex v ∈ V (G), XOR(v) is a graph that consists of three nodes, v1, v2, v3 and has
2L edges of capacity 1 from v1 to v2 and for each element of S(v) an arc from v2 to v3
with that capacity (see Figure 5.4). Note that, since all elements of S(v) are between
L and 2L− 1 and the incoming �ow to v2 is at most 2L, we cannot have more than
one arc from v2 to v3 with nonzero �ow.

v1 v2 v3

12L S(v) XOR(v)

Figure 5.4: XOR(v) gadget and its schematic representation.

74

The Edge(u, v) gadget checks whether the constraints of an edge {u, v} ∈ E(G)
are satis�ed and creates a �copy� of u and v. It consists of vertices u′, v′, e1, e2, u′′, v′′

which are connected as follows (see Figure 5.5). The arcs from u′ (respectively v′) to
e1 have capacities S(v) (respectively S(u)) and the arcs from e1 to e2 have capacities
S(u, v). We add anXOR(u) (respectivelyXOR(v)) gadget from e2 to u′′ (respectively
v′′).

e1

u′

v′

e2

u′′

v′′

S(u, v)

S(u)

S(v)

XOR(u)

XOR(v)

Edge
uv

Figure 5.5: The Edge gadget and its schematic representation.

In our construction, the vertices u′, v′ will have no other outgoing arcs, and the
vertices u′′, v′′ will have no other incoming arcs. The following claim follows from the
Sidon set property:

Claim 5.1. If there is nonzero incoming �ow to u′ or v′, then the outgoing �ow of u′′

(v′′ respectively) is the same as the incoming �ow to u′ (v′ respectively).

Proof of Claim: If the incoming �ow to u′ is not an element of S(u), the �ow conser-
vation property fails for u′ (and analogously for v′). In other words, we can suppose
that the incoming �ow to u′ is equal to s(c) for some c ∈ S(u) and the incoming �ow
to v′ is equal to s(c′) for some c′ ∈ S(v).

Thus the incoming �ow to e1 is equal to s(c) + s(c′). If (c, c′) 6∈ C(u, v), there is
no outgoing arc from e1 through which we can send the incoming �ow. Namely, by
the Sidon set property, there are no colors (d, d′) ∈ C(u, v) such that s(c) + s(c′) =
s(d) + s(d′) and {c, c′} 6= {d, d′}. Note that we also cannot split the outgoing �ow
into multiple outgoing arcs, since the incoming �ow is between 2L and 4L − 2, and
each outgoing arc has capacity at least 2L. Therefore, we must have (c, c′) ∈ C(u, v).

Let us now consider the outgoing �ow from e2. Since it is at least 2L + 1, both
XOR(v) and XOR(u) will have nonzero �ow. By the Sidon set property and the fact
that C(u) and C(v) are disjoint, we conclude that the incoming �ow to u′′ is s(c),
and the incoming �ow to v′′ is s(c′). �

The Swap gadget is identical to the Edge gadget with no constraints and u′ and
v′ swapped (see Figure 5.6). Analogously, the outgoing �ow from u′′ (respectively v′′)
is the same as the incoming �ow to u (respectively v).

Construction of H. We will now construct the graph H step by step, according
to the series S of Introduce, Forget, Swap and Add-Edge operations that give G =

75

e1

u

v

e2

u′

v′

S(u) + S(v)

S(u)

S(v)
XOR(u)

XOR(v)
Swap
uv

Figure 5.6: The Swap gadget and its schematic representation.

(V,E, ∅). We will denote the ith operation in this sequence by σi. We will denote by
Xi ⊆ V (G) the set of terminals after step i and by ≺i the ordering of Xi.

Informally, the graph H will consist of several parts. For each operation σi, we
add a column Ci containing |Xi| vertices to H. Each vertex v ∈ Ci will have a label
`(v) ∈ Xi, and the vertices in Ci will be ordered from bottom to top according to the
ordering ≺i of their labels.

If σi is an Add-Edge (respectively Swap) operation, we will add the Edge (respec-
tively Swap) gadget between the corresponding vertices in Ci−1 and Ci. We will also
add arcs between the remaining vertices in Ci−1 and Ci with the same label, which
will ensure that all the vertices with the same label have the same �ow. The graph
H will also contain a path on the bottom which will start at the source and will
introduce vertices according to the order in which they are introduced in S. Lastly,
we will add arcs to the sink to enforce �ow conservation (see Figure 5.7).

Let us now formally describe H and its embedding in the plane. To facilitate
the description, we will specify the coordinates of some vertices. Firstly, we draw
the source vertex s at (0, 0) and the sink t at (0,−1). For each i ∈ {1, ..., |S|}
and j ∈ {1, ..., |Xi|}, we draw a vertex hij at (i, j). We denote the ith column by
Ci = {hi1, . . . , hi|Xi|}. We set `(hij) to be the jth smallest element of Xi according
to ≺i.

We introduce an auxiliary variable last and set last = 1. Set p0 = s. For
i = 1, ..., |S|, we add the following vertices and arcs depending on σi:

� Insert a vertex v ∈ V (G): construct a vertex plast at (i, 0) and add an arc of
capacity (2n− last+ 1)L from plast−1 to plast. Add a gadget XOR(v) starting
from plast and ending at hi1 (recall that `(hi1) = v). Add L− 1 arcs of capacity
1 from pj to t. For j ∈ {1, ..., |Xi−1|}, add L arcs of capacity 1 from hij to
hi+1,j+1. Increase last by 1.

� Forget a vertex v ∈ V (G): let j be such that `(hij) = v. Add L arcs from hij

to t of capacity 1. Since v is the maximum element of Xi, there are no vertices
above hij , which implies that the arcs from hij to t can be drawn without
intersecting any other arcs.

� Add-Edge {u, v} ∈ E(G): let j be such that `(hi−1,j) = u, `(hi−1,j+1) =

76

s p1 p2 p3

t

2nL (2n− 1)L (2n− 2)L

h11 X
O
R
(v

1)

h21 X
O
R
(v

2)

h22

1L

h31

h32

Edge
v1v2

h41

h42

h43

X
O
R
(v

3)
1L

1L

h51

h52

h53

1L

Swap
v1v2

h61

h62

1L

1L

1L−1

1L−1

1L−1

1L−1

Figure 5.7: Graph H corresponding to the following sequence of operations:
Introduce(v1), Introduce(v2), Add − Edge(v1, v2), Introduce(v3), Swap(v1, v2),
Forget(v2). The blue vertices are labelled with v1.

v. Add the gadget Edge between the vertices hi−1,j , hi−1,j+1, hi,j , hi,j+1 as in
Figure 5.7.

� Swap u and v: analogous to the Add-Edge case, except that we add the Swap
gadget instead.

Finally, we add nL arcs of capacity 1 from pn to t. We also add L arcs of capacity 1
from each vertex in the last column (i.e. h|S|,j) to t.

Claim 5.2. For all j ∈ {1, . . . , n}, the arc pj−1 to pj has nonzero �ow, and there is
nonzero �ow going out from pj via the corresponding XOR gadget.

Proof of Claim: We will prove the claim by induction. Clearly, the arc from p0 = s
to p1 is used, since that is the only outgoing arc from the source. Suppose now that
for all j′ < j, the arc from pj′−1 to pj′ is used. Let the label of pj be `(pj) = v and
let pj be introduced in the operation σi. By induction, the incoming �ow of pj is
equal to (2n− j + 1)L. There are three ways for the �ow to go out from pj : through

77

the XOR(v) gadget, through the arc to pj+1 and through the arcs to t. The total
capacity of the arcs in the gadget and the arcs to t is at most 2L, so the arc from pj to
pj+1 has to be used. Suppose that the outgoing �ow through the XOR(v) is zero. In
that case, the maximum possible outgoing �ow is (2n−j)L+L−1 = (2n−j+1)L−1,
which leads to a contradiction. By the properties of the XOR gadget, the outgoing
�ow from pj through XOR(v) is equal to s(c) for some color c, which proves the
claim. �

Note that this also implies that the incoming �ow to hi,1 is equal to s(c). It is
easy to see that the same amount of �ow will go through all the other vertices with
the same label. Thus we can assign the color c to the vertex v ∈ V (G). For each edge
in G, the corresponding Edge gadget checks whether the edge constraint is satis�ed,
so we obtain a valid coloring of G.

It remains to show that the pathwidth and outerplanarity of H are bounded by
O(k). The ith bag of the path decomposition will contain t and all the vertices in
the strip {(x, y) ∈ R2 : i − 1 6 x 6 i}. It is easy to see that this gives a valid path
decomposition of width at most 2k + 10.

The vertex t is on the outer face ofH. After deleting t, the vertices s and p1, . . . , pn
are on the outer face, as well as the highest vertex in each column Ci. In each of the
following steps, the highest remaining vertex in each column will be on the outer face
(together with the gadgets adjacent to it). Since each column has at most k elements,
the outerplanarity of H is at most k + 1. �

5.6 Reductions from All-or-Nothing Flow

In this section, we build up on results of Section 5.5 and prove hardness of several
problems. Figure 5.8 shows the reductions used in this section.

All-or-Nothing Flow

All-or-Nothing
Flow cap. ≤ 2

Max. Target Out-
degree Orientation

Target Outde-
gree Orientation

Min. Target Out-
degree OrientationCap. (Red-Blue)

Dominating Set

Cap. Vertex Cover

f -Dominating Set

k-Dominating Set

Target Set Selection

Figure 5.8: Reductions from All-or-Nothing Flow.

78

In all cases, the reductions replace edges or arcs by a small gadget with outerpla-
narity at most 2, and thus the graph stays planar and the outerplanarity increases by
at most 2. This way, XNLP-hardness is obtained for each of the following problems
on planar graphs with outerplanarity as parameter. Values are always given in unary.

5.6.1 All-or-Nothing Flow with Small Arc Capacities

We now look at the hardness of All-or-Nothing Flow for the case that all arc
capacities are small. Note that when all arc capacities are 1, then a maximum all-or-
nothing �ow has the same value as a maximum �ow, and we can use a standard �ow
algorithm like the Ford-Fulkerson algorithm to solve the problem in polynomial time.
The next case, where capacities are 1 and 2 is already equally hard as the case where
capacities are given in unary.

We will see that a simple transformation can transform an arc to an equivalent
subgraph which is 2-outerplanar, and with all arc capacities 1 or 2. As the trans-
formation to Target Outdegree Orientation given in the next section has edge
weights that equal the arc capacities, the hardness results carry over to that problem.

Suppose xy is an arc with integer capacity γ > 3. We replace the arc xy by the
following subgraph (see Figure 5.9):

� Take a directed path with 2γ − 4 new vertices, say v1, v2, . . . , v2γ − 4.

� If i ∈ [1, 2γ − 5] is odd, then the arc vivi+1 has capacity 1.

� If i ∈ [2, 2γ − 6] is even, then the arc vivi+1 has capacity 1.

� Take an arc from x to v1 of capacity 2.

� For each even i ∈ [2, 2γ − 4], take an arc from x to vi of capacity 1.

� For each odd i ∈ [1, 2γ − 5], take an arc from vi to y of capacity 1.

� Take an arc from v2γ−4 to y of capacity 2.

Lemma 5.7. Suppose we have a subgraph, as described above, with only x and y
adjacent to vertices outside the gadget. Then for each all-or-nothing �ow, either all
arcs in the gadgets have �ow 0, or all arcs in the gadget have �ows equal to their
capacity.

Proof. Each vertex vi in the gadget has either two incoming arcs of capacity 1 and
one outgoing arc of capacity 2, or one incoming arc of capacity 2 and two outgoing
arcs of capacity 1. So either all three arcs incident to vi are used, or all three have
�ow 0. Suppose for contradiction that the claim from the lemma does not hold. Then
there must be a vertex vi with in�ow and out�ow 0, and a vertex vi′ with in�ow and
out�ow 2. Moreover, there must be such a pair that is adjacent (|i − i′| = 1), which
gives a contradiction. �

Corollary 5.2. The All-or-Nothing Flow problem with all arcs of capacity 1 or
2 is:

79

x

y

= 1
= 2

x

y

Figure 5.9: Examples of the gadget for arcs with capacities > 2. Fat arcs have capacity
2; thin arcs have capacity 1. The left gadget in the example functions as an arc with
capacity 7; the right for an arc with capacity 3.

1. XNLP-hard for planar graphs with outerplanarity as parameter.

2. XNLP-complete with pathwidth as parameter.

3. XALP-complete with treewidth as parameter.

Proof. For each of the hardness proofs, we replace each arc with capacity more than
2 by the gadget described above. Notice that this step increases the outerplanarity
of a planar graph by at most 1 (the vertices vi are at most one level more away from
the outer face than x or y) and the pathwidth of a graph by at most 2 (take a bag
containing x and y, replace it by 2γ−5 copies, and add vi, vi+1 to the ith copy). Also,
the operation does not increase the treewidth of a graph whose treewidth is at least
three: the gadget has treewidth at most 3, and we can attach a tree decomposition
of a gadget to a bag that contains x and y. �

5.6.2 Target Outdegree Orientation

In this section, we look at the problems Target Outdegree Orientation, Max-
imum Outdegree Orientation and Minimum Outdegree Orientation, and
show that they are XNLP-hard when parameterized by outerplanarity. Given a di-
rected graph G = (V,E) with edge weights w(e), the weighted outdegree of a vertex
is the sum of the weights of all arcs with v as tail:

∑
vx∈E w(vx).

Target Outdegree Orientation
Input: Undirected graph G = (V,E), a positive integer weight w(e) for each
edge e ∈ E, and for each vertex v ∈ V , a positive integer target t(v).
Task: Is there an orientation of G, such that for each v, the weighted outdegree
of v equals t(v)?

The Minimum Outdegree Orientation and Maximum Outdegree Orien-
tation problem are de�ned as above, except that now the weighted outdegree of
each vertex v must be at least t(v), respectively at most t(v). Each of these three
problems was shown to be XNLP-complete with pathwidth as parameter [18], FPT
with tree partition width as parameter [18], and XALP-complete with treewidth as
parameter [22].

80

To show hardness of each of the three problems, we use a simple transformation
from All-or-Nothing Flow: drop directions of all arcs, take weights equal to
capacities, and choose targets for vertices in an appropriate way. Our transformation
is similar to, but somewhat simpler than the transformation given in [18].

Suppose we have a �ow network (G, s, t, cap) with G = (V,E) a directed graph,
c : E → Z+ the capacity function, s, t ∈ V . Suppose we want to decide if there is a
�ow from s to t of value exactly r.

We assume that there are no parallel arcs, and also for each pair of vertices x, y ∈
V , at most one of the arcs xy and yx is in E; if not, we can obtain an equivalent
instance by subdividing arcs and giving both new arcs the same capacity as the old
arc.

Let H = (V, F) be the undirected graph, obtained by dropping directions of arcs
in E, and let the weight w(e) of an edge be equal to the capacity of the directed
variant of e in G.

For each vertex v ∈ V \{s, t}, set t(v) =∑xv∈E cap(xv). Set t(s) =
∑

xs∈E cap(xs)
+r, and t(t) =

∑
xt∈E cap(xt)− r.

Lemma 5.8. Let G and H be as above. The following are equivalent.

1. There is an all-or-nothing �ow of value r in G.

2. H has on orientation with each vertex weighted outdegree exactly t(v).

3. H has on orientation with each vertex weighted outdegree at least t(v).

4. H has on orientation with each vertex weighted outdegree at most t(v).

Proof. 1 ⇒ 2: Consider a �ow f . If an arc xy has positive �ow, then we direct the
edge {x, y} in H in the same way as the arc in G, i.e. from x to y. If xy has 0 �ow,
then we direct the edge in the opposite direction, i.e. from y to x.

Consider a vertex v ∈ V \ {s, t}. Suppose the total �ow sent to v by f (i.e. the
in�ow

∑
xv∈E f(xv)) is α. Then, t(v)−α weight of incoming edges is not used; thus,

the incoming arcs in G give weighted outdegree t(v)−α in H. The total weight of used
outgoing arcs from v is α; these are directed out of v, while all other outgoing arcs
are directed in the opposite direction; this gives a contribution of α to the outdegree.
So, the total outdegree equals t(v)− α+ α = t(v).

If the in�ow of s by f is α, then the out�ow of s by f is α + r; we thus have
t(s) − r − α weight of incoming edges not used by f , thus incoming arcs amount to
weighted outdegree t(s)− r − α; The analysis for t is similar.

2 ⇒ 1: Suppose we have an orientation with each vertex meeting its target. For
each arc xy, send �ow equal to its capacity over it, if and only if the edge {x, y} is
oriented from x to y (i.e., in the same way as the corresponding arc in H); otherwise
we send 0 �ow over the arc. Consider a vertex v. Suppose the total weight of arcs xv
whose edges are directed as xv is β. Then, the weight of the edges with an incoming
arc to v which are directed out of v is t(v)− β, so the weight of the edges vy with an
outgoing arc from v who are directed as vy is β; so the in�ow and out�ow of v equal
β. The analysis for s and t is similar.

2 ⇒ 3, 4 is trivial: use the same orientation.

81

3 ⇒ 2: we can use the same orientation. Note that the sum over all vertices
of the weighted outdegree must equal the sum of the weights of all edges (as each
edge is directed out of exactly one vertex in an orientation), and the latter sum
equals

∑
v∈V t(v). Thus if we have a vertex whose weighted outdegree is strictly

greater than its target, then there must be another vertex whose weighted outdegree
is strictly smaller than its target, which leads to a contradiction.

4 ⇒ 2 is similar as the previous case. �

Corollary 5.3. The Target Outdegree Orientation, Minimum Outdegree
Orientation, and Maximum Outdegree Orientation problems with all arcs of
capacity 1 or 2 is:

1. XNLP-hard for planar graphs with outerplanarity as parameter.

2. XNLP-complete with pathwidth as parameter.

3. XALP-complete with treewidth as parameter.

Proof. Start with an instance of All-or-Nothing Flow with all capacities 1 or 2,
see Corollary 5.2. Then, set the targets as described above and drop the directions of
arcs. �

5.6.3 Capacitated (Red-Blue) Dominating Set

We can use the Minimum Outdegree Orientation and Maximum Outdegree
Orientation problems as starting problems for reductions to several problems, in-
cluding Capacitated Red-Blue Dominating Set, Capacitated Dominating
Set, Capacitated Vertex Coverm Target Set Selection, and f-Dominating
Set. In each of these cases, we take an instance of Minimum Outdegree Orien-
tation or Maximum Outdegree Orientation and replace each edge by an ap-
propriate planar subgraph. We start with the capacitated variants of Dominating
Set and Vertex Cover, which use existing transformations from the literature.

Capacitated Red-Blue Dominating Set
Input: Bipartite graph G = (R ∪ B,E), with each �blue� vertex in v ∈ B a
positive integer capacity c(v), and an integer k
Task: Is there a set S ⊆ B of at most k blue vertices, and an assignment
f : R→ S of each red vertex to a (blue) neighbour in S, such that each vertex in
v ∈ S has at most c(v) red neighbours assigned to it?

Capacitated Dominating Set
Input: Graph G = (V,E), with each vertex in v ∈ R a positive integer capacity
c(v), and an integer k
Task: Is there a set S ⊆ V of at most k vertices, and an assignment f : V \S → S
of each vertex not in S to a neighbour in S, such that each vertex in v ∈ S has
at most c(v) neighbours assigned to it?

82

x y x y
a b

a b

Figure 5.10: Left: Example of edge transformation for Capacitated Red-Blue
Dominating Set. Right: Example of edge transformation for Capacitated Dom-
inating Set. The edge has weight 5, a and b have capacity 6. x has capacity t(x);
y has capacity t(y). All other black vertices (right �gure) have capacity 1.

Capacitated Red-Blue Dominating Set and Capacitated Dominating
Set are well studied problems. Both problems are XNLP-complete with pathwidth
as parameter [21] and XALP-complete with treewidth as parameter [22]. An earlier
W[1]-hardness proof for treewidth as parameter can be found in [52]. Capacitated
Dominating Set was shown to be W[1]-hard for planar graphs with the solution size
as parameter [24]. It follows from a lower bound proof in [61] that Capacitated
Red-Blue Dominating Set is W[1]-hard with feedback vertex set as parameter.

In [21], the following transformation from Maximum Outdegree Orientation
to Capacitated Red-Blue Dominating Set is given: each edge e = {v, w} with
capacity γ is replaced by a subgraph with 2γ + 3 additional vertices. Take γ red
vertices adjacent to v and γ red vertices adjacent to w. Take a new blue vertex
adjacent to the each vertex in the �rst set of γ red vertices, and a new blue vertex
adjacent to the each vertex in the second set of γ red vertices. Then take one red
vertex, adjacent to each of the latter two blue vertices. Finally, we colour all original
vertices blue. The blue vertices in the edge gadgets have capacity γ + 1; the original
vertices v ∈ V have capacity t(v). We ask if there is a red-blue dominating set of size
|V |+ |E|. See Figure 5.10 (left side) for an example.

Correctness of the transformation is easy to see (cf. [21]); the intuition is that
there is always an optimal solution S that contains all original vertices in V , and for
each edge gadget, one of the blue vertices (marked a and b in Figure 5.10) is chosen.
If a is chosen, we direct the edge from y to x; if b is chosen, the edge is directed from x
to y. A vertex dominates all neighbouring vertices in edge gadgets of outgoing edges
- a solution of the Maximum Outdegree Orientation thus has the property that
original vertices v ∈ V dominate at most t(v) neighbours.

Transforming to Capacitated Dominating Set is done by dropping all colours,
and giving each vertex that was blue an adjacent P2, with the �rst vertex on this
P2 having weight 2. All vertices that were originally red have capacity 1. On each
of these P2's, one vertex must be placed in the solution; we can choose the vertex
incident to the originally blue vertex, which thus is dominated. See [21]. An example
can be found in Figure 5.10 (right side).

Note that the transformations keep the planarity of the graph invariant, and thus
we can conclude:

Theorem 5.9. Capacitated Red-Blue Dominating Set and Capacitated Dom-

83

inating Set are XNLP-hard for planar graphs with outerplanarity as parameter.

5.6.4 Capacitated Vertex Cover

Another well studied �capacitated� variant of a classic graph problem is Capaci-
tated Vertex Cover. It is XNLP-complete for pathwidth [21], XALP-complete
for treewidth [21], improving upon an earlier W[1]-hardness proof [52]. Dom et
al. [52] give an O(2O(tw log k)nO(1)) time algorithm with k the solution size and tw
the treewidth and thus show the problem to be FPT for the combined parameter of
treewidth and solution size.

Capacitated Vertex Cover
Input: Graph G = (V,E), positive integer capacity c(v) for each v ∈ V , integer
k
Task: Is there a set of vertices S ⊆ V , with |S| 6 k, and an assignment of each
edge to an incident vertex in S such that no vertex v ∈ S has more than c(v)
edges assigned to it?

In [21], the following reduction from Maximum Outdegree Orientation to
Capacitated Vertex Cover is discussed: replace each edge {x, y} of weight γ by
a gadget, with new vertices a, b, γ paths of length 3 from x to a, one edge from a
to b, and γ paths of length 3 from b to y. For each original vertex v ∈ V , add one
pendant neighbour. Set for all new vertices their capacity equal to their degree, and
for the original vertices v ∈ V , their capacity equal to their target outdegree plus 1.
See Figure 5.11 for an example.

The correctness proof of the transformation is similar to that for Capacitated
Red-Blue Dominating Set but was not given in [21].

x ya b

2 2

x ya b x ya b

Figure 5.11: Edge gadget for Capacitated Vertex Cover. If the edge {x, y} has
weight γ, then c(a) = c(b) = γ+1. The capacity of the degree-2 vertices in the gadget
is 2. c(x) = t(x) + 1; c(y) = t(y) + 1. Middle: corresponds to directing the edge from
x to y. Right: corresponds to directing the edge from y to x.

Lemma 5.10. Let H be the graph obtained from G by applying the reduction as
described above to each edge of G, with the given capacities. G has an orientation
with each vertex v ∈ V weighted outdegree at most t(v), if and only if H has a
capacitated vertex cover of size at most |V |+∑e∈E(2w(e) + 1).

Proof. Suppose we have an orientation of G with each vertex outdegree at most its
target. Take the following set S: place all original vertices (in V) in S, and for each

84

edge xy, if it is directed from x to y, all vertices in the gadget with even distance to
x, and if it is directed from y to x, all vertices with odd distance to y, see Figure 5.11.

All vertices inside the gadget have capacity equal to their degree, and when in S,
get all incident edges assigned to it. A vertex x ∈ V has assigned to it its incident
vertex of degree one, and the neighbours in edge gadgets of outgoing edges. Note that
the number of the latter type of neighbours equals the weighted outdegree of v in the
orientation. Thus, we have a capacitated vertex cover of the correct size.

Now, supposeH has a capacitated vertex cover S of size at most |V |+∑e∈E(2w(e)+
1). For each x ∈ V , either x ∈ S or the degree-one neighbor of x is in S. Also, note
that in an edge gadget, we have one vertex in S for each pair of adjacent degree-two
vertices, and a ∈ S or b ∈ S. Therefore, an edge gadget of an edge of weight γ must
contain at least 2γ + 1 vertices in S. It follows that we cannot place both a vertex
x ∈ V and its degree-one neighbor in S, and that we use exactly 2w(e) + 1 vertices
from an edge gadget of e.

Now, if we would use a degree-one neighbor of x ∈ V , we can swap this vertex
with x, and also have a solution. Thus V ⊆ S, and each vertex x ∈ V ∩ S has its
incident degree one edge associated to it. Consider an edge e = {x, y}. If b ∈ S, then
orient the edge as xy; otherwise, a ∈ S and we orient the edge as yx. If b ∈ S, a 6∈ S,
and thus all neighbors of a are in S. This means that the edges from x to the gadget
must be covered by x, and thus x have w(e) edges from the gadget assigned to it.
The number of gadget edges assigned to x thus equals its weighted outdegree, which
is at most t(x). The lemma now follows. �

As the transformation maintains planarity, and increases the outerplanarity of a
graph by at most 1, the following result is obtained.

Theorem 5.11. Capacitated Vertex Cover is XNLP-hard for planar graphs
with outerplanarity as parameter.

5.6.5 f-Domination and k-Domination

In contrast to capacitated versions of dominating set where vertices can dominate
only a limited number of neighbours, in the f-Dominating Set problem vertices not
in the solution must be dominated multiple times.

f -Dominating Set
Input: Graph G = (V,E), demand function f : V → N, integer k
Task: Is there a set S ⊆ V such that |S| > k and for each v ∈ V , we have v ∈ S
or |N(v) ∩ S| 6 f(v)?

A special case of f -Dominating Set is the k-Dominating Set problem, where
we f(v) is equal for all vertices v ∈ V . Note that if k is �xed, standard (dynamic
programming) techniques give an FPT algorithm with treewidth as parameter.

k-Dominating Set
Input: Graph G = (V,E), integers `, k
Task: Is there a set S ⊆ V such that |S| 6 ` and for each v ∈ V we have v ∈ S
or |N(v) ∩ S| > k.

85

The notion of a k-dominating set was introduced in 1985 by Fink and Jacob-
son [60] and was mostly studied from a graph theoretic perspective. If k is �xed, then
the k-Dominating Set problem can be solved in O(kO(tw)n) time, using dynamic
programming on tree decompositions [116]. The generalization of f -domination was
introduced by Zhou, see e.g. [38]. Again, the f-Dominating Set can be easily seen
to be �xed-parameter tractable when we take a combined parameter of treewidth and
the maximum value of f , k = maxv∈V f(v), as parameter, also by using dynamic
programming on tree decompositions.

The hardness proof is quite similar. An edge of weight γ is replaced by the
following structure. We take a triangle with three vertices, say a, b, and c. Take γ
copies of a path of three vertices, and make the �rst vertices on these paths adjacent
to x, and the last (third) vertices of these paths adjacent to a. Also, take γ copies of
a path of three vertices, and make the �rst vertices on these paths adjacent to b, and
the last (third) vertices of these paths adjacent to y. See Figure 5.12 (left side) for
an example. For all vertices in the new edge gadgets, we set their f -values equal to
1. For an original vertex v ∈ V , we set f(v) = t(v).

Let H be the resulting graph, with domination demand function f .

x ya b

c

x ya b

c

Figure 5.12: Example transformation of an edge for the f-Dominating Set problem.
The right side corresponds to an orientation of the edge from x to y. All new vertices
have f(v) = 1; f(x) = t(x); f(y) = t(y)

Lemma 5.12. H has an f -dominating set of size
∑

e∈E(2w(e)+ 1), if and only if G
has an orientation with each vertex outdegree at least t(v).

Proof. Consider an orientation of G such that each vertex has outdegree at least t(v).
We will construct an f -dominating set S in H as follows. For each edge xy ∈ E(G)
that is oriented from x to y, we add to S the �rst vertex of each path from x to a,
the vertex a, and the middle vertex of each path from b to y. Note that for each such
edge we added 2w(e)+ 1 vertices to S, so |S| =∑e∈E(G)(2w(e)+ 1). It is easy to see
that all the new vertices in H have a neighbour in S. Consider a vertex x ∈ V (G) and
an edge xy ∈ E(G) oriented from x to y. This edge contributes w(e) to the outdegree
of x in G, and it contributes w(e) to the number of neighbours in the set S in H. If
an edge xy ∈ E(G) is oriented from y to x, it contributes neither to the outdegree
of x in G nor to the number of neighbours of v in S in H. The other direction (i.e.
constructing an orientation of G from an f -dominating set in H) is analogous. �

Theorem 5.13. The f-Dominating Set problem is:

1. XNLP-hard for planar graphs with outerplanarity as parameter.

86

2. XNLP-complete with pathwidth as parameter.

3. XALP-complete with treewidth as parameter.

Proof. We reduce from Target Outdegree Orientation. We construct the graph
H as in the above description. Using Lemma 5.12, we obtain the desired result. �

Corollary 5.4. The k-Dominating Set problem is:

1. XNLP-hard for planar graphs with outerplanarity as parameter.

2. XNLP-complete with pathwidth as parameter.

3. XALP-complete with treewidth as parameter.

Proof. The reduction for the hardness proofs is the following.
Suppose we are given an instance of f-Dominating Set, with G = (V,E) a

graph, f a demand function, and ` the maximum solution size. Let k = maxv∈V f(v).
We may assume k > 1, otherwise the problem is �xed-parameter tractable (this can
be shown by standard techniques).

Now, to each vertex v ∈ V , add k−f(v) new vertices, only adjacent to v. Increase
` by the total number of added new vertices. Correctness follows by observing that all
new vertices must be an element of the dominating set (they have only one neighbour
in G), and now each vertex in V must be in the dominating set, or has at least f(v)
neighbours in V in the dominating set (as it has k − f(v) neighbours that are new
vertices in the dominating set.) �

5.6.6 Target Set Selection

The Target Set Selection problem models the viral marketing process, i.e. the
style of promotion relying on consumers recommending the product to their social
network. Informally, the problem setup is as follows. We are given a graph cor-
responding to a social network, and we want to advertise our product by giving it
away to at most k �in�uencers� in this network. They will spread the word about our
product and convince others to buy it � each person will buy the product if it was
recommended by at least a certain number (i.e. threshold) of their friends.

Formally, given a graphG = (V,E), a threshold function t : V → N and S ⊆ V , the
activation process in G starting with S is a sequence of subsets Active[0] ⊆ Active[1] ⊆
. . . such that Active[0] = S and a vertex v belongs to Active[i] if it belongs to
Active[i−1] or it has at least t(v) neighbours in Active[i−1]. We repeat this process
until we get Active[j] = V or Active[j] = Active[j − 1] for some j ∈ N, and we de�ne
Active(S) = Active[j].

Target Set Selection
Input: Graph G = (V,E), a threshold t : V → N, integer k
Task: Is there a set S ⊆ V such that Active(S) = V ?

Ben-Zwi et al. [10] gave an XP algorithm with treewidth as parameter, and an
nΩ(
√
tw) lower bound. Their proof also implies W[1]-hardness.

87

x ya b

Figure 5.13: Transformation for Target Set Selection. The example transforms an
edge of weight γ = 5. a and b have threshold γ + 1 = 6; x has a threshold equal to
t(x); y has a threshold equal to t(y); the other (degree 2) vertices have threshold 1.

For our hardness proofs, we use an edge gadget that is again similar to previous
edge gadgets; it is illustrated in Figure 5.13. Here, we reduce fromMinimum Outde-
gree Orientation. Original vertices have a threshold which is equal to their target
outdegree; the vertices a and b have a threshold equal to their degree, i.e., the weight
of the edge plus one, and the vertices of degree two in the gadget have a threshold of
1. We will call the obtained graph H.

Lemma 5.14. We can activate H by initially activating |E(G)| vertices, if and only
if G has an orientation with each vertex v ∈ V total weighted outdegree at least t(v).

Proof. Suppose we can activate H by initially activating a set S such that |S| =
|E(G)|.

Firstly note that in each edge gadget, we must initially activate either a or b:
otherwise, at least one of them cannot reach the threshold. Now, in each edge gadget,
exactly one of the vertices a and b is in S, as otherwise we would have too many
vertices in S. Consider an edge gadget where b ∈ S. In order to activate a, we must
activate all of its degree 2 neighbours, which means we must activate x before that.
In other words, in order to activate x, we cannot use any of its neighbours in this
gadget. Thus, to activate x, we must use its degree 2 neighbours from edge gadgets
where a ∈ S (note that in these gadgets all the degree 2 vertices between a and x are
activated in the same round).

This gives us an orientation of edges in G: for each edge xy ∈ E(G), orient the
edge from x to y if the corresponding vertex a is in S and from y to x otherwise.
By the above arguments, there are at least t(x) neighbours of x activated before x,
which means that the sum of weights of all outgoing edges from x is t(x). The reverse
direction is analogous. �

Theorem 5.15. The Target Set Selection problem is:

1. XNLP-hard for planar graphs with outerplanarity as parameter.

2. XNLP-complete with pathwidth as parameter.

3. XALP-complete with treewidth as parameter.

Proof. As the transformation described above can be done in logarithmic space, hard-
ness follows from the hardness for Minimum Outdegree Orientation.

88

Membership follows from a modi�cation of the XP algorithm in [10]. Instead of
building the entire DP table for a path decomposition, we guess the �next element�.
In a tree decomposition, we traverse the tree in post-order, guessing elements instead
of building the entire DP table; in a (join) node with two children, after handling the
left branch, we store its result on a stack, then handle the right branch, and then
combine the results of left and right branch. �

5.7 Conclusion

In this chapter, we showed XALP-completeness or XNLP-hardness for several prob-
lems on planar graphs parameterized by outerplanarity. In a number of cases, these
were problems not yet established to be XALP-complete for treewidth, and thus
for these, we also obtained new results for the general class of graphs. For several
��ow-like� problems, we could only show XNLP-hardness; we conjecture that these
are also XALP-complete parameterized by outerplanarity. It would be su�cient to
show that All-or-Nothing Flow is XALP-hard for outerplanarity; the follow up
transformations can be used to show several other problems including Capacitated
Dominating Set, Target Set Selection are XALP-complete.

The results are also interesting in the light of a conjecture by Pilipczuk and
Wrochna [107], which claims that an XNLP-hard problem has no XP algorithm that
uses O(f(k)nO(1)) space. Our results are negative in the sense that it appears that
for the problems studied in this setting, going from graphs of bounded treewidth to
graphs of bounded outerplanarity, the complexity does not drop.

We expect that more problems that are in XP with outerplanarity as parameter are
complete for XALP, and leave �nding more examples as an interesting open problem.
One candidate is Multicommodity Flow: in [25], it was shown that it is XALP-
complete for treewidth and XNLP-complete for pathwidth; capacities are given in
unary. The result already holds for 2 commodities. The gadgets used in that proof
are non-planar, so establishing the complexity of Multicommodity Flow with
outerplanarity seems to need new techniques.

Another interesting direction for further research is the following. Problems with
an algorithm with running time of the form 2O(`)nO(1) with ` the treewidth or out-
erplanarity are in XP when we take �logarithmic treewidth� or �logarithmic outerpla-
narity� as parameter, i.e., the parameter is `

logn . In [23], it was shown that Dominat-
ing Set and Independent Set are XNLP-complete with logarithmic pathwidth as
parameter; this translates to XALP-completeness for these problems with logarithmic
treewidth as parameter [22]. As these proofs produce non-planar graphs, it is open
whether Dominating Set and Independent Set are XALP-complete when we take
logarithmic outerplanarity as parameter.

89

90

Chapter 6

On the Parameterized

Complexity of the Connected

Flow and Many Visits TSP

Problem

6.1 Introduction

In the Connected Flow problem we are given a directed graph G = (V,E) with
costs and capacities on the edges (cost and cap respectively) and a set D ⊆ V such
that each v ∈ D has a �xed demand, described by the function dem. We then ask
for a minimum cost connected �ow on the edges that satis�es the demand for each
v ∈ D, i.e. we look for a minimum cost �ow conserving function f : E → N, such that
the set of edges with strictly positive �ow f is connected and the total �ow coming
into v ∈ D is equal to its demand (see Section 6.2 for the formal problem de�nition).

One arrives at the Connected Flow problem by adding a natural connectivity
constraint to the well known Flow problem. Unfortunately, Connected Flow has
the same fate as many other generalizations of Flow: The additional requirement
changes the complexity of the problem from being solvable in polynomial time to being
NP-complete (see [65, Section A2.4] for more such NP-complete generalizations).

The problem generalizes a number of problems, including the Many Visits TSP
(MVTSP)1. This problem has a variety of potential applications in scheduling and
computational geometry (see e.g the discussion by Berger et al. [13]), and its study
from the exponential time perspective recently witnessed several exciting results. In
particular, Berger et al. [13] improved an old nO(n) time algorithm by Cosmadakis and
Papadimitriou [41] to O?(5n) time and polynomial space, and recently the analysis

1In this problem a minimum length tour is sought that satis�es each vertex a given number of
times. The generalization is by setting the demand of a vertex to the number of times the tour is
required to visit that vertex and using in�nite capacities.

91

of that algorithm was further improved by Kowalik et al. [85] to O?(4n) time.
The Connected Flow problem also generalizes other problems studied in pa-

rameterized complexity, such as the Eulerian Steiner Subgraph problem, that
was used in an algorithm for Hamiltonian Index by Philip et al. [106], or the prob-
lem of �nding two short edge disjoint paths in undirected graphs (whose parameterized
complexity was for example studied by Cai and Ye [34]).

Based on these connections with existing literature on in particular the MVTSP,
its appealing formulation, and it being a direct extension of the well-studied Flow
problem, we initiate the study of the parameterized complexity of Connected Flow
in this chapter.

Our Contributions. We �rst study the (arguably) most natural parameterization:
the number of demand vertices for which we require a certain amount of �ow. We
show that the problem is NP-complete even in a very special case:

Theorem 6.1. Connected Flow with 2 demand vertices is NP-complete.

The reduction heavily relies on the capacities and we show that this is indeed
what makes the problem hard. Namely, using the algorithm for MVTSP from [85],
we get an algorithm that can solve instances of Connected Flow if all capacities
are in�nite:

Theorem 6.2. Any instance (G,D, dem, cost, cap) of Connected Flow where
cap(e) =∞ for all e ∈ E can be solved in time O?(4|D|).

Next we study a typically much larger parameterization, the size k of a vertex
cover of G. One of our main technical contributions is that Connected Flow is
FPT, parameterized by k:

Theorem 6.3. There is an algorithm solving a given instance (G,D, dem, cost, cap)
of Connected Flow such that G has a vertex cover of size k in time O?(kO(k)).

Theorem 6.3 is interesting even for the special case of MVTSP as it generalizes
the O?(nn) time algorithm from Cosmadakis and Papadimitriou [41], though it is a
bit slower than the more recent algorithms from [13, 85]. For this special case, we
even �nd a polynomial kernel:

Theorem 6.4. MVTSP admits a kernel polynomial in the size k of the vertex cover
of G.

The starting point of the proofs of both Theorem 6.3 and Theorem 6.4 is a
strengthening of a non-trivial lemma from Kowalik et al. [85] which proves the ex-
istence of a solution s′ that is �close� to a solution r of the Flow problem instance
obtained by relaxing the connectivity requirement. Since such an r can be found in
polynomial time, it can be used to determine how the optimal solution roughly looks.

This is subsequently used by a dynamic programming algorithm that aims to �nd
such a solution close to r to establish Theorem 6.3; the restriction to solutions being
close to r crucially allows us to evaluate only O?(kO(k)) table entries. Additionally,
this is used in the kernelization algorithm of Theorem 6.4 to locate a set of O(k5)

92

vertices such that only edges incident to vertices in this set will have a di�erent �ow
in r and s′.

The last parameter we consider is the treewidth. We present a Dynamic Program-
ming algorithm for Connected Flow:

Theorem 6.5. Let M be an upper bound on the demands in the input graph G, and
suppose a tree decomposition of width tw of G is given. Then a Connected Flow
instance with G can be solved in time |V (G)|O(tw) and an MVTSP instance with G
can be solved in time min{|V (G)|,M}O(tw)|V (G)|O(1).

We also give a matching lower bound forMVTSP. This lower bound heavily builds
on previous approaches, and in particular, some gadgets from Cygan et al. [46].

Theorem 6.6. Assuming the Exponential Time Hypothesis, MVTSP cannot be
solved in time f(tw)|V (G)|o(tw) for any computable function f(·).

Note that sinceMVTSP is a special case of Connected Flow this lower bound
extends to Connected Flow.

Organization. The remainder of this chapter is organized as follows: in Section 6.3
we study the parameterization by the number of demand vertices. We show NP-
completeness and discuss the reduction of the in�nite capacities case of Connected
Flow to MVTSP.

In Section 6.4 we �rst introduce an extension of a lemma from Kowalik et al. [85]
that shows that we can transform an optimal solution to the Flow relaxation to
include a speci�c edge set from an optimal solution of the original Connected Flow
instance, without changing too many edges. This lemma is subsequently used in
Section 6.4.2 to prove Theorem 6.3 and in Section 6.4.3 to prove Theorem 6.4.

In Section 6.5 we discuss the parameterization by treewidth and pathwidth, giving
a Dynamic Programming algorithm for Connected Flow and a matching lower
bound for MVTSP.

We conclude the chapter with a discussion on further research opportunities.

6.2 Preliminaries

We assume that all integers are represented in binary, so in this chapter the input size
will be polynomial in the number of vertices of the input graph and the logarithm
of the maximum input integer. All graphs in this chapter are directed unless stated
otherwise.

Recall that a multiset is an ordered pair (A,mA) consisting of a set A and a
multiplicity function mA : A → Z+. We slightly abuse notation and let mA(e) = 0
if e 6∈ A. We can see �ow f as a multiset of directed edges, where each edge appears
f(e) number of times. We then say that f(e) is the multiplicity of e. Given a function
f : E → N, we de�ne Gf = (V ′, E′) as the multigraph where e ∈ E′ has multiplicity
f(e) and V ′ is the set of vertices incident to at least one e ∈ E′. We let E(Gf) be
equal to the multiset E′. We also de�ne supp(f) = {e ∈ E : f(e) > 0} as the support
of f .

93

Recall the de�nition of Demand Flow, a problem equivalent to the standard
Min Cost Flow:2

Demand Flow
Input: Directed graph G = (V,E), D ⊆ V , dem : D → N, cost : E → N,
cap : E → N ∪ {∞}
Task: Find a function f : E → N such that

� for every v ∈ V we have
∑

u∈V f(u, v) =
∑

u∈V f(v, u),

� for every v ∈ D we have
∑

u∈V f(u, v) = dem(v),

� for every e ∈ E : f(e) 6 cap(e),

and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

Connected Flow is de�ned as Demand Flow with an additional connectivity
requirement:

Connected Flow
Input: G = (V,E), D ⊆ V , dem : D → N, cost : E → N, cap : E → N ∪ {∞}
Task: Find a function f : E → N such that

� Gf is connected,
� for every v ∈ V we have

∑
(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u),

� for every v ∈ D we have
∑

(u,v)∈E f(u, v) = dem(v),
� for every e ∈ E we have f(e) 6 cap(e),

and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

Given an instance of Connected Flow, we call a �ow r a relaxed solution if it
is a solution of the Demand Flow instance obtained by removing the connectivity
requirement.

Note that Gf in the above de�nition is Eulerian (every vertex has the same in and
out degree), so it is strongly connected if and only if it is weakly connected.

In Kowalik et al. [85], the Many Visit TSP (MVTSP) is de�ned as follows.

Many Visits TSP (MVTSP)
Input: Directed graph G = (V,E), dem : V → N, cost : V 2 → N
Task: Find a minimal cost tour c, such that each v ∈ V is visited exactly dem(v)
times.

Note that MVTSP is a special case of Connected Flow, where D = V and the
capacities of all edges are in�nite.

2See Section 2.2 for more details and proof of equivalence. In particular, this implies thatDemand
Flow is polynomial-time solvable.

94

6.3 Parameterization by Number of Demand Ver-

tices

In this section we study the parameterized complexity of Connected Flow with
parameter |D|, the number of vertices with a demand. We �rst prove that the problem
is NP-hard, even for |D| = 2, by a reduction from the problem of �nding two vertex
disjoint paths in a directed graph. Next we show that, if cap(e) = ∞ for all e ∈ E,
the problem can be reduced to an instance of MVTSP, and hence solved in time
O?(4|D|).

Theorem 6.1. Connected Flow with 2 demand vertices is NP-complete.

Proof. We give a reduction from the problem of �nding two vertex-disjoint paths in
a directed graph to Connected Flow with demand set D of size 2. The directed
vertex-disjoint paths problem has been shown to be NP-hard for �xed k = 2 by
Fortune et al. [63], so this reduction will prove our theorem for |D| = 2. Note that
the case of |D| > 2 is at least as hard, since we can view |D| = 2 as a special case, by
adding isolated vertices with demand 0.

Given a graphG and pairs (s1, t1) and (s2, t2), we construct an instance (G′, D, dem,
cost, cap) of Connected Flow. Let V0 = V \ {s1, s2, t1, t2}, we de�ne

V (G′) = {s1, s2, t1, t2} ∪ {vin : v ∈ V0} ∪ {vout : v ∈ V0}

We let D = {s1, s2} and set dem(s1) = dem(s2) = 1. We also de�ne

E(G′) ={(vin, vout) : v ∈ V0}
∪ {(si, vin) : (si, v) ∈ E(G), i = 1, 2}
∪ {(vout, ti) : (v, ti) ∈ E(G), i = 1, 2}
∪ {(uout, vin) : u, v ∈ V0, (u, v) ∈ E(G)}
∪ {(t1, s2), (t2, s1)}.

We now set cost(u, v) = 0 and cap(u, v) = 1 for every (u, v) ∈ E(G′). We prove
that G has two vertex-disjoint paths (from s1 to t1 and from s2 to t2) if and only if
(G′, D, dem, cost, cap) has a connected �ow of cost 0.

Let P1 and P2 be two vertex disjoint paths in G, from s1 to t1 and from s2 to t2
respectively. Intuitively we will simply walk through the same two paths in G′ and
then connect the end of one to the start of the other. More formally, we construct a
�ow f in G′ as follows. Let P1 = s1, v

1, . . . , v`, t1, we set f(s1, v1in) = f(v`out, t1) = 1 as
well as f(viin, v

i
out) = f(viout, v

i+1
in) = 1 for all i ∈ [1, `]. We do the same for P2. Finally

we set f(t1, s2) = f(t2, s1) = 1 and set f to 0 for all other edges. We note that all
capacities have been respected and all demands have been met. The resulting �ow is
connected, since the paths were connected and f(t1, s2) = 1.

For the other direction, let f be a connected �ow for (G′, D, dem, cost, cap). Since
dem(s1) = dem(s2) = 1 and s1 and s2 only have one incoming edge, we have that
f(t1, s2) = f(t2, s1) = 1. We argue that Gf −{(t1, s2), (t2, s1)} consists of two vertex
disjoint paths in G′, one from s1 to t1 and the other from s2 to t2. First we note
that for every vertex in G′, it has in-degree 1 or out-degree 1 (or possibly both).

95

This means that since we have cap(u, v) = 1 for every (u, v) ∈ E(G′), every vertex
in V (Gf) has in- and out-degree 1 in Gf . Since Gf is connected we �nd that Gf

is a single cycle and thus Gf − {(t1, s2), (t2, s1)} is the union of two vertex-disjoint
paths. We now �nd two vertex-disjoint paths in G by contracting the edges (vin, vout)
in Gf − {(t1, s2), (t2, s1)}. �

Lemma 6.7. Given an instance (G,D, dem, cost, cap) of Connected Flow where
cap(e) = ∞ for all e ∈ E, we can construct an equivalent instance of MVTSP on
|D| vertices.
Proof. We construct an equivalent instance (G′, dem, cost′) of MVTSP as follows.
First we let V (G′) = D and for u, v ∈ D we let (u, v) ∈ E(G′) if and only if there is
a u− v path in G, disjoint from other vertices in D. We then set cost(u, v) to be the
total cost of the shortest such path. We keep dem(v) the same.

We now show equivalence of the two instances. Let s′ : E(G′) → N be a valid
tour on (G′, dem, cost′). We construct a connected �ow f on (G,D, dem, cost, cap) as
follows: For each (u, v) ∈ E(G′), add s′(u, v) copies of the shortest D-disjoint u-v-
path in G to the �ow. Note that the demands are met, since the demands in both
instances are the same. Also note that by de�nition the total cost of s′(u, v) copies
of the shortest D-disjoint u− v path is equal to s′(u, v) · cost′(u, v) and thus the total
cost of f is equal to that of s′. Finally, we note that the capacity constraints are
trivially met.

For the other direction, let f : E(G) → N be an optimal connected �ow on
(G,D, dem, cost, cap). Note that Gf is connected and that every vertex in this multi-
graph has equal in- and out-degrees. This means we can �nd an Eulerian tour on Gf .
We now construct anMVTSP tour s′ on G′ by adding the edge (u, v) every time v is
the �rst vertex with demand to appear after an appearance of u in the Eulerian tour.
Again it is easy to see that s′ is connected and that the demands are met. We claim
that the total cost of s′ is the same as f . Indeed, if it were larger, then there would
be a pair u, v ∈ D such that the cost of some path in the Eulerian tour from u to v is
less than cost′(u, v), which contradicts the de�nition of cost′. If it were smaller, then
there would be a D-disjoint path in the Eulerian tour from some u to some v which is
longer than cost′(u, v). We can then �nd a cheaper �ow by replacing this path with
the shortest path, contradicting the optimality of f . �

Since MVTSP can be solved in O?(4n) time by Kowalik et al. [85], we get as a
direct consequence:

Theorem 6.2. Any instance (G,D, dem, cost, cap) of Connected Flow where
cap(e) =∞ for all e ∈ E can be solved in time O?(4|D|).

6.4 Parameterization by Vertex Cover

In this section, we consider Connected Flow and MVTSP, parameterized by the
cardinality k of a vertex cover of the input graph. We �rst extend a lemma from
Kowalik et al. [85] to instances of Connected Flow. Then we use this lemma to
obtain an FPT algorithm for Connected Flow and a polynomial-sized kernel for
MVTSP.

96

6.4.1 Enforcing edges in �ow relaxation

Let s be an optimal solution of Connected Flow and let T ⊆ supp(s). We prove
that, given any optimal solution r for Demand Flow, there is always a �ow f that
is �close� to r and T ⊆ supp(f). Furthermore, it has cost cost(f) 6 cost(s). Note
that if T connects all demand vertices to each other, this implies that f is connected
and thus an optimal solution of Connected Flow.

The basic idea and arguments are from Kowalik et al. [85], where a similar theorem
forMVTSP was proved. We adjust their proof to the case with capacities and where
not all vertices have a demand. Furthermore, we note that we can restrict the tours
C ∈ C in the proof to be inclusion-wise minimal, which allows us to conclude a stronger
inequality.

Lemma 6.8. Let (G,D, dem, cost, cap) be an instance of Connected Flow, where
G = (V,E). Let s be an optimal solution of Connected Flow and let T ⊆ supp(s).
For every optimal solution r of Demand Flow for the same instance, there is a �ow
f with cost(f) 6 cost(s), with f(e) > 0 for all e ∈ T and such that for every v ∈ V :∑

u∈V
|r(u, v)− f(u, v)| 6 2|T |, and

∑
u∈V
|r(v, u)− f(v, u)| 6 2|T |.

Proof. We follow the structure of the proof of Lemma 3.2 from Kowalik et al. [85].
We build a �ow f (not necessarily optimal for Demand Flow), containing T and
with multiplicities close to r. Recall that mB denotes the multiplicity function of the
multiset B. We de�ne the multisets of edges As, Ar and A such that for all e ∈ E:

� mAs
(e) = max{s(e)− r(e), 0},

� mAr
(e) = max{r(e)− s(e), 0}, and

� mA(e) = max{mAr (e),mAs(e)} = max{s(e)− r(e), r(e)− s(e)}.
Note that A is the symmetric di�erence of s and r, and therefore A is equal to the

disjoint union of Ar and As.
Let H be a tour (i.e. a closed walk) of undirected edges. We then say that

−→
H is a

cyclic orientation of H if it is an orientation of the edges in H such that
−→
H forms a

directed tour. A directed edge e that overlaps with H is in positive orientation with
respect to

−→
H if it has the same orientation, and negative otherwise. We now de�ne

(s− r) directed tours (for an example, see Figure 6.1).

De�nition 6.9. Let C = (e0, . . . , e`) ⊆ A be a set of edges such that its underlying
undirected edge set H is a tour. We then say that C is an (s − r) directed tour if
there is an orientation

−→
H of H such that:

� if e ∈ C is in positive orientation with respect to
−→
H , then e ∈ As,

� if e ∈ C is in negative orientation with respect to
−→
H , then e ∈ Ar,

� if two subsequent edges ei, ei+1 of C have the same orientation, then their shared
vertex, v, is not in D. This also holds for the edge pair (e`, e0).

We will partition A into a multiset of (s − r) directed tours. We take (u, v) ∈ A
arbitrarily as our �rst edge of our walk and iteratively add edges until we �nd an
(s− r) directed tour. We assume the current edge (u, v) is in As (if the edge is in Ar,

97

v ∈ D

v 6∈ D

e ∈ Ar

e ∈ As

e ∈ −→H

Figure 6.1: Example of an (s− r) directed tour. Note that every time the tour visits
a vertex v ∈ D, the orientation changes. However if the tour visits a vertex v 6∈ D,
the orientation might not change.

the proof is analogous). If v ∈ D, then there exists (v, w) ∈ Ar, because v is visited
dem(v) times by both r and s. If v 6∈ D, there exists either (v, w) ∈ Ar or (w, v) ∈ As

because A is the symmetric di�erence of the �ows r and s. We take this edge as the
next edge in our (s− r) directed tour. This way we can keep �nding the next edges,
until we can take our �rst edge (u, v) as our next edge and we �nd an (s− r) directed
tour. We then remove this tour and inductively �nd the next until A is empty.

It follows that A can be partitioned into a multiset C of (s− r) directed tours, i.e.

mA =
∑
C∈C

mC ,

where mC is the multiplicity of (s− r) directed tour C.
We may assume that these (s − r) directed tours are inclusion-wise minimal, i.e.

for each (s − r) directed tour C ∈ C, no subset C ′ ⊂ C is an (s − r) directed tour.
Otherwise, C can be split into two disjoint (s− r) directed tours C ′ and C \ C ′.
Claim 6.1. For any v ∈ V and any inclusion-wise minimal C ∈ C we have∑

u∈V
[(u, v) ∈ C] 6 2 and

∑
u∈V

[(v, u) ∈ C] 6 2. (6.1)

Proof of Claim: We only prove the �rst inequality, as the second one is analogous.
Assume for contradiction that there exists C ∈ C and v ∈ V such that there exist
x1, x2, x3 ∈ V with (xi, v) ∈ C for i = 1, 2, 3. Each of these edges must be either in
As or Ar. Without loss of generality we may assume that (x1, v), (x2, v) ∈ As. Both
(x1, v) and (x2, v) can be paired with the edge it traverses v with, i.e. its subsequent
edge in the tour, as (x1, v), (x2, v) ∈ As are positively oriented. Let e1, e2 be these
subsequent edges. Then C can be split into two smaller (s− r) directed tours C1 and
C2, with C1 starting with edge e1 and ending with (x2, v), and C2 starting with edge
e2 and ending with (x1, v). This contradicts the assumption that C was inclusion-wise
minimal. �

We denote with T+ = E(T)\supp(r) the set of edges of T that are not yet covered
by r. Hence, if e ∈ T+, then e ∈ As and there is at least one C ∈ C that contains
e. We choose for each e ∈ T+ such an (s − r) directed tour Ce ∈ C arbitrarily. Let
C+ = {Ce : e ∈ T+} be the set of chosen (s−r) directed tours. We de�ne f as follows:

98

for each u, v ∈ V we set

f(u, v) = r(u, v) + (−1)[(u,v)∈Ar]
∑

C∈C+
[(u, v) ∈ C]. (6.2)

In other words, f is obtained from r by removing one copy of edges in C ∩ Ar and
adding one copy of edges in C ∩As for all C ∈ C+.

Notice that |C+| 6 |T+| 6 |T |. By using (6.2) and subsequently (6.1), we get for
all v ∈ V : ∑

u∈V
|r(u, v)− f(u, v)| 6

∑
u∈V

∑
C∈C+

[(u, v) ∈ C]

=
∑

C∈C+

∑
u∈V

[(u, v) ∈ C]

6
∑

C∈C+
2 6 2|T |.

Similarly, we can conclude that for all v ∈ V ,
∑

u∈V |r(v, u)− f(v, u)| 6 2|T |.
Claim 6.2. For all e ∈ T , f(e) > 0 and f satis�es the �ow constraints.

Proof of Claim: We �rst show that for all e ∈ E,

min{r(e), s(e)} 6 f(e) 6 max{r(e), s(e)}.

If e 6∈ A, Equation (6.2) implies that r(e) = f(e) = s(e). If e ∈ As, we have r(e) < s(e)
and we can see from (6.2) that if the multiplicity of e changes, it is because copies
of e are added to r to form f (and none are removed). Since mA(e) 6 s(e) − r(e),
at most this many copies of e can be added to r to form f . Hence r(e) 6 f(e) 6
r(e) + (s(e) − r(e)) = s(e). Similarly, if e ∈ Ar, r(e) > s(e) and at most r(e) − s(e)
copies of e are removed from r to form f .

Next we prove that f is a valid solution to the given Demand Flow instance.
Let C ∈ C+ and let e, e′ be two subsequent edges from C with common vertex v. If
e ∈ As and e′ ∈ Ar, then the in- and out-degrees of v do not change while adding a
copy of e and removing a copy of e′ (in Equation (6.2)), because the orientation of e
and e′ is di�erent. This is also true if e ∈ Ar and e′ ∈ As. If e, e′ ∈ Ar, then both
e and e′ have a copy removed in Equation (6.2). Since the orientation of e and e′ is
the same, both the in- and out-degree of v go down by one. We remark that this case
only occurs if v 6∈ D by de�nition of (s − r) directed tours. Similarly, if e, e′ ∈ As,
the in- and out-degree of v increases by one. Since r was a valid solution, this implies
that the number of incoming- and outgoing edges of v in f are equal, in other words,
the �ow is preserved. Since for v ∈ D, the total incoming (and total outgoing) edges
do not change, the demands are satis�ed by f . Furthermore, the capacity constraints
are satis�ed since f(e) 6 max{r(e), s(e)} 6 cap(e).

Finally, we need to show that T ⊆ supp(f). For e ∈ T+, we have e ∈ As so copies
of e are added to r to form f in Equation (6.2). Since e ∈ T+, at least one tour
C ∈ C+ contains e, so f(e) > 0. If e ∈ T \ T+, then r(e) > 0 since T+ = T \ supp(r).
We also see that s(e) > 0 because T ⊆ supp(s) by assumption. Using our earlier

99

result that min{r(e), s(e)} 6 f(e), we conclude that f(e) > 0. �

It remains to prove that cost(f) 6 cost(s). For any C ∈ C, de�ne δ(C) = cost(As∩
C) − cost(Ar ∩ C) as the cost of adding all edges in As ∩ C and removing all edges
in Ar ∩ C. Notice that δ(C) > 0 for all tours C ∈ C, as otherwise r would not
have been optimal since we could improve it by augmenting along C. We note that∑

C∈C+ δ(C) 6
∑

C∈C δ(C) as C+ ⊆ C. Therefore,

cost(f) = cost(r) +
∑

C∈C+
δ(C) 6 cost(r) +

∑
C∈C

δ(C) = cost(s).
�

6.4.2 FPT algorithm

Now we use Lemma 6.8 to show that Connected Flow is FPT parameterized by
the size of vertex cover of G:

Theorem 6.3. There is an algorithm solving a given instance (G,D, dem, cost, cap)
of Connected Flow such that G has a vertex cover of size k in time O?(kO(k)).

Proof. Let X be a vertex cover of size k of G = (V,E), let s be an arbitrary optimal
solution of Connected Flow and let X ′ ⊆ X be the set of vertices of X that are
visited at least once by s. We will guess this set X ′ as part of our algorithm, i.e. go
through all possible sets. Hence we do the following algorithm for all X ′ such that
D ∩X ⊆ X ′ ⊆ X, which is at most 2k times.

For any X ′, we modify G such that the vertex cover is an independent set and
all x ∈ X ′ are visited at least once in any solution as follows. We remove any edge
(xi, xj) ∈ E for xi, xj ∈ X ′ and add a new vertex y to V . The vertex y has no demand
and has edges (xi, y) and (y, xj), with capacities equal to the old capacity cap(xi, xj)
and cost(xi, y) = cost(xi, xj) and cost(y, xj) = 0. This removes any edges between
vertices in the set X ′, making it an independent set. We note that X is still a vertex
cover of size k.

The vertices x ∈ X ′ ∩D are visited at least once because of their demand. For all
x ∈ X ′ \D we add a vertex bx to V , with dem(bx) = 1 and we add edges (x, bx) and
(bx, x), both with 0 cost and a capacity of 1. As bx has a demand of 1 and has only
x as its neighbor, this ensures that x is visited at least once.

We remove all x ∈ X \ X ′ from V and denote the resulting graph with G′ =
(V ′, E′). Note that if X ′ is guessed correctly, the optimal solution s of the original
instance, is also optimal for this newly created instance (by adding �ow over the newly
created edges between x and bx, and replacing any edge (xi, xj) by the edges (xi, y)
and (y, xj)).

We use dynamic programming to construct the solution f . Namely, we iteratively
add vertices from the independent set B = V ′\X ′ and keep track of the connectedness
of our vertex cover X ′ with a partition π. We will later use Lemma 6.8 to reduce the
number of table entries we need to compute.

Denote X ′ = {x1, . . . , xk′} and B = {b1, . . . , bn}. For j ∈ [0, n] let Bj be the set
of the �rst j vertices of B, i.e. Bj = {b1, . . . , bj} and de�ne Vj = X ′ ∪ Bj . For any

100

f : (Vj)
2 → N and v ∈ Vj de�ne

fout(v) =
∑
u∈Vj

f(v, u) and f in(v) =
∑
u∈Vj

f(u, v).

Let cin = (cin1 , . . . , c
in
k′) ∈ Nk′

and cout = (cout1 , . . . , coutk′) ∈ Nk′
be two vectors of integers

and let π be a partition of the vertices of X ′.
For j ∈ [0, n] we de�ne the dynamic programming table entry Tj(π, c

in, cout) to be
equal to the minimal cost of any partial solution f : (Vj)

2 → N having the speci�ed
in and out degrees (cin and cout) for vertices in X ′ and connecting all vertices x ∈ S
for each S ∈ π. More formally, Tj(π, c

in, cout) is equal to minf cost(f) over all f :
(Vj)

2 → N such that the following conditions hold:

1. for all blocks S of the partition π, S is weakly connected in G′f ,

2. for all xi ∈ X ′: fout(xi) = couti , f in(xi) = cini ,

3. for all v ∈ Bj : fout(v) = f in(v), and if v ∈ Bj ∩D, then f in(v) = dem(v),

4. for all u, v ∈ Vj : f(u, v) 6 cap(u, v).

We set Tj(π, c
in, cout) =∞ if no such f exists.

Claim 6.3. Each table entry Tj(π, c
in, cout) can be computed from all table entries

Tj−1.

Proof of Claim: Compute table entries for j = 0 as follows. Set T0({{x1, }, . . . , {xk′}},
0,0) to 0, and all other entries of T0 to ∞, as V0 = X ′ is an independent set and so
a �ow of zero on every edge is the only possible �ow.

Now assume j > 0. Informally, in order to compute Tj(π, c
in, cout) we consider

all possible multiplicities of edges (bj , xi) and (xi, bj) (hin
i and hout

i respectively), and
partitions π′ of X ′, such that each block in π either belongs to π′, or consists of several
blocks of π′ that are connected to bj . Formally, we have

Tj(π, c
in, cout) = min

(∗)
{Tj−1(π

′, cin − hin, cout − hout)

+

k′∑
i=1

(
hin
i · cost(bj , xi) + hout

i · cost(xi, bj)
)
},

where the minimization (∗) goes over all hin = (hin
1 , . . . , h

in
k′) ∈ Nk′

, hout =

(hout
1 , . . . , hout

k′) ∈ Nk′
and partitions π′ of X ′ that satisfy the following conditions:

(i) hin
i 6 cap(bj , xi) for all i = 1, . . . , k′

(ii) hout
i 6 cap(xi, bj) for all i = 1, . . . , k′

(iii)
∑k′

i=1 h
in
i =

∑k′

i=1 h
out
i and if bj ∈ D,

∑k′

i=1 h
in
i = dem(bj)

(iv) For all S ∈ π, we have S ∈ π′ or there exist S′1, . . . , S
′
` ∈ π′ such that S′1 ∪ · · · ∪

S′` = S and for each t ∈ [`], there exists xi ∈ S′t such that hin
i + hout

i > 0.

101

Conditions (i) and (ii) correspond to capacity constraints. Condition (iii) ensures
that �ow preservation holds for bj and possibly that the demand of bj is met. Condi-
tion (iv) states that the partition π can be obtained from π′ by merging blocks that
are connected to bj .

Notice that with this recurrence, the table entries are computed correctly as only
the vertex bj was added compared to the table entries Tj−1. Therefore we may assume
that only the edges incident to bj were added to the solution for some table entry in
Tj−1. �

Let us now show how to bound the number of table entries we need to compute.
Let s be a solution of Connected Flow on the input graph G such that X ′ ⊆ X
is the set of vertices in X that are visited at least once by s. We compute a relaxed
solution r for the instance G′, which can be done in polynomial time. We claim that
there exists a directed tree T of size at most 2k such that T ⊆ supp(s) and all x ∈ X ′

are incident to at least one edge e ∈ T .
Indeed, since s is connected and visits all x ∈ X ′, we can �nd a tree T ⊆ supp(s)

that contains all x ∈ X ′. If |T | > 2k, we remove all the leaves from T not in X ′.
Since V ′ \X ′ is an independent set (as X ′ is a vertex cover), this means that the size
of T is bounded by 2k. Note that all x ∈ X ′ are still incident to an edge e ∈ T , which
proves the claim.

Applying Lemma 6.8 to s and T , we conclude that there exists a �ow f such that
cost(f) 6 cost(s) and for every v ∈ V ,∑

u∈V ′

|r(u, v)− f(u, v)| 6 4k, and
∑
u∈V ′

|r(v, u)− f(v, u)| 6 4k. (6.3)

Since T ⊆ supp(f), f visits all the vertices in X ′ at least once. As X ′ is a vertex
cover, this means that f is a connected �ow and hence an optimal solution of the
instance of Connected Flow.

We restrict our dynamic program using Equation (6.3). As X ′ is an independent
set, there are only edges between x ∈ X ′ and b ∈ Bj . Therefore, there exists a solution
f such that for every x ∈ X ′ and j ∈ [0, n]:∑

b∈Bj

|r(b, x)− f(b, x)| 6 4k, and
∑
b∈Bj

|r(x, b)− f(x, b)| 6 4k (6.4)

We only compute table entries Tj respecting Equation (6.4), by requiring that for
all i ∈ [1, k′]:

couti ∈

∑
b∈Bj

r(xi, b)− 4k,
∑
b∈Bj

r(xi, b) + 4k

 , and

cini ∈

∑
b∈Bj

r(b, xi)− 4k,
∑
b∈Bj

r(b, xi) + 4k

 .

(6.5)

Note that the dynamic program is still correct with this added restriction, as∑
b∈Bj−1

|r(b, x) − f(b, x)| 6 ∑
b∈Bj

|r(b, x) − f(b, x)| 6 4k, so any table entry Tj

102

respecting Equation (6.5) can be computed from all table entries Tj−1 respecting
Equation (6.5).

The dynamic program returns the minimum value of Tn({X ′}, c, c) for all c such
that ci = dem(xi) for all xi ∈ D ∩ X ′. This returns the value of a minimum cost
solution f for G′, respecting Equation (6.4), if one exists. Let fX′ be solution the
dynamic program found in the iteration usingX ′. Thenmin{fX′ : (D∩X) ⊆ X ′ ⊆ X}
is equal to the minimum cost connected �ow.

We count the number of di�erent table entries Tj computed by the dynamic pro-
gram for �xed j. There are at most (8k)k possible values for both cin and cout and
at most kk di�erent partitions π of X ′, so a total of kk · (8k)2k di�erent entries. To
compute one table entry of Tj , we only need table entries of Tj−1. Note that we
compute this dynamic programming table for each X ′ such that (D ∩X) ⊆ X ′ ⊆ X,
that is at most 2k di�erent X ′. Hence the algorithm runs in time O?(kO(k)). �

6.4.3 Polynomial Kernel for MVTSP

We now present how to �nd a kernel with O(k5) vertices for any instance of MVTSP,
where k is the size of a vertex cover of G. We do this by �rst �nding an optimal
solution r to the relaxed Flow problem and then �xing the amount of �ow on some
edges based on this r. We prove that there is an optimal solution s of MVTSP such
that for all except O(k5) vertices, all edges incident to these vertices have exactly the
same �ow in r and s, as a consequence of Lemma 6.8.

Theorem 6.4. MVTSP admits a kernel polynomial in the size k of the vertex cover
of G.

Proof. Fix an input instance on MVTSP. Let k be the number of vertices in the
vertex cover X = {x1, . . . , xk} of G and let n be the size of the independent set
B = V \ X. Let r be an optimal solution of the instance of Flow obtained by
relaxing the connectivity constraint in the given instance of MVTSP.

De�ne multisets
−→
F = (X ×B) ∩ r (i.e. all edges in r going from vertices in X to

vertices in B) and
←−
F = (B ×X) ∩ r.

Claim 6.4. We may assume that for both
−→
F and

←−
F , their underlying undirected edge

sets do not contain cycles.

Proof of Claim: We modify r such that for both
−→
F and

←−
F , their underlying undirected

edge sets do not contain cycles. Assume that there is an alternating cycle C ⊆ ←−F ,
meaning that its underlying edge set is a cycle and (hence) the edges alternate be-
tween being in positive and negative orientation. We can then create solutions r′ and
r′′ of Flow by alternatingly adding and removing edges from C. Note that we can
start by either adding or removing, giving us these two di�erent solutions r′ and r′′.
Since the edges added to r to form r′ are exactly the edges that were removed from
r to form r′′, and vice versa, it holds that cost(r)− cost(r′) = −(cost(r)− cost(r′′)).
Since r is an optimal solution, we conclude cost(r) = cost(r′) = cost(r′′). We can
therefore choose either r′ or r′′ to replace r, such that

←−
F now has one alternating

cycle less without changing any of the edges of r outside C. Hence we can iteratively
remove the cycles from

←−
F and

−→
F and obtain an optimal solution r to the Flow

103

instance in which both
←−
F and

−→
F are forests in polynomial time. �

We partition B as follows: B = Y ∪
(⋃

i,j∈[1,k] Bij

)
, where for each b ∈ Bij :

r(xi, b) > 0, r(b, xj) > 0, and

r(xa, b) = 0 for all a 6= i and r(b, xa) = 0 for all a 6= j,

and Y = B \
(⋃

i,j∈[1,k] Bij

)
.

We claim that |Y | 6 k. Recall that mB denotes the multiplicity function of a
multiset B. Let F = supp(m←−

F
)∪supp(m−→

F
) (note that F is a set and not a multiset).

Then |F | >
(∑

i,j∈[1,k] 2|Bij |
)
+ 3|Y | = 2n+ |Y |, as any vertex v ∈ Bij corresponds

to exactly 2 edges in F and each vertex in Y corresponds to at least 3 edges to F .
Here we use the fact that each vertex has a demand and therefore must have at least
one incoming and outgoing edge from r. As F is a union of two forests on n + k
vertices, we see that |F | 6 2(n+ k− 1). We conclude that 2(n+ |Y |) 6 2(n+ k− 1),
i.e. |Y | 6 k.

Let s be an optimal solution of theMVTSP instance. By de�nition, s visits every
vertex at least once. Using arguments similar to those in the proof of Theorem 6.3, we
conclude that there exists a directed tree T ⊆ supp(s) such that it covers all vertices
of X and has size at most 2k. We apply Lemma 6.8 to s and T , to �nd that there
exists an optimal solution f to the given MVTSP instance such that∑

v∈V
(|r(xi, v)− f(xi, v)|+ |r(v, xi)− f(v, xi)|) 6 8k ∀i ∈ [1, k]. (6.6)

We note that Gf is connected because T ⊆ supp(f) and T connects all the vertices
of the vertex cover. Equation (6.6) implies that there is an optimal solution f that
di�ers from

←−
F and

−→
F by at most 8k2 edges.

For every i, j, ` ∈ [1, k], we de�ne
−→
Aij(`) as the set of 8k2+2 vertices v ∈ Bij with

the smallest values of cost(x`, v) − cost(xi, v) (arbitrarily breaking ties if needed). If
|Bij | 6 8k2+2, we let

−→
Aij(`) = Bij . Intuitively, the vertices in

−→
Aij(`) are the vertices

for which re-routing the �ow sent from xi to v to go from x` to v is the least expensive.
Similarly we de�ne

←−
Aij(`) as a set of size 8k2 +2 containing vertices v ∈ Bij with the

smallest values of cost(v, x`)− cost(v, xj).
We also de�ne a set Rij of �remainder vertices� as follows:

Rij = Bij \

 ⋃
`∈[1,k]

←−
Aij(`)

 ∪
 ⋃

`∈[1,k]

−→
Aij(`)

 for all i, j ∈ [1, k].

Claim 6.5. There exists an optimal solution f ′ of the MVTSP instance such that for
all i, j ∈ [1, k], b ∈ Rij and x` ∈ X it holds that r(x`, b) = f ′(x`, b) and r(b, x`) =
f ′(b, x`).

Proof of Claim: We build f ′ iteratively from f , by removing any edges (xi′ , b) and
(b, xj′) for i′ 6= i and j′ 6= j for each b ∈ Rij . In particular, this implies that

104

r(xi, b) = f ′(xi, b) and r(b, xj) = f ′(b, xj), as b then only has edges coming from xi

and to xj and since b has a �xed demand.
Note that we retain optimality and connectivity for f ′. Furthermore, after each

step, the solutions r and f ′ di�er by at most 8k2 edges. We start by setting f ′ = f .
Consider b ∈ Rij and suppose that f ′(x`, b) > 0 for some ` 6= i (the case where

f ′(b, x`) > 0 for some ` 6= j is analogous). We remark that |−→Aij(`)| = 8k2 + 2
as Rij 6= ∅. As at most 8k2 edges are di�erent between r and f ′, there are vertices
v, w ∈ −→Aij(`) such that all of the edges adjacent to v and w have the same multiplicities
in r and f ′, i.e. f ′(x, v) = r(x, v) and f ′(x,w) = r(x,w) for all x ∈ X.

De�ne �ow f ′′ by removing one copy of the edges (x`, b) and (xi, v) from f ′ and
adding one copy of the edges (xi, b) and (x`, v) (see Figure 6.2). As b 6∈ −→Aij(`) and
v ∈ −→Aij(`), the cost of f ′′ is at most the cost of f ′ by de�nition of the set

−→
Aij(`).

We now argue that f ′′ is connected. As f ′ is a solution to MVTSP, it must be
connected. Since we removed (x`, b) and (xi, v) from f ′ to form f ′′, proving that the
pairs x`, b and xi, v are connected in f ′′ su�ces. The edges (xi, w), (w, xj) and (v, xj)
in f ′′ connect xi and v. As a consequence, x` and b are also connected by edges (x`, v)
and (xi, b).

We remark that the number of edges that di�er between f ′′ and r has not changed.
Hence, we continue with setting f ′ = f ′′ and repeating until f ′ has the required prop-
erties. �

xi

xj

x`

b ∈ Rij

v ∈ −→Aij(`)

w ∈ −→Aij(`)

xi

xj

x`

b ∈ Rij

v ∈ −→Aij(`)

w ∈ −→Aij(`)

Figure 6.2: Adjusting �ow f ′, depicted on the left, to get �ow f ′′, depicted on the
right. The blue edges are replaced by the red edges, the rest of the solutions are equal.
The vertex w assures the new solution remains connected

Therefore, we may assume that in Gf ′ the vertices in Rij are adjacent only to xi

and xj for all i, j ∈ [1, k]. This proves that the following reduction rule is correct:
contract all vertices in Rij into one vertex rij with edges only (xi, rij) and (rij , xj)
of cost zero and let the demand dem(rij) =

∑
v∈Rij

dem(v). Hence, we require any
solution to use the vertices in rij exactly the number of times that we would traverse
all the vertices of Rij . By applying this rule, we get a kernel with the vertices from
the sets X, Y ,

←−
Aij(`),

−→
Aij(`), and rij , which is of size

|X|+ |Y |+
∑

i,j,`∈[1,k]

(∣∣∣←−Aij(`)
∣∣∣+ ∣∣∣−→Aij(`)

∣∣∣)+ k2 6 k + k + k3 · (8k2 + 2) + k2 = O(k5).

To subsequently reduce all costs to be at most 2k
O(1)

we can use a method from
Etscheid et al. [59] in a standard manner.

105

We show that one can construct this kernel in polynomial time. First, compute
a relaxed solution r and remove any cycles in

−→
F and

←−
F in polynomial time. Next

for each i, j, ` ∈ [1, k], compute in polynomial time the sets
−→
Aij(`) and

←−
Aij(`), by

computing the values of cost(x`, v)− cost(xi, v) and sorting. Finally, we can contract
all vertices in Rij into a vertex rij polynomial time for all i, j ∈ [1, k]. �

6.5 Parameterization by Treewidth

In this section we consider the complexity of Connected Flow when parameterized
by the treewidth tw of G. We �rst give a |V (G)|O(tw) time dynamic programming
algorithm for Connected Flow. Subsequently, we give a matching conditional
lower bound on the complexity of MVTSP parameterized by the pathwidth of G.
Since MVTSP is a special case of Connected Flow, this shows that our dynamic
programming algorithm is in some sense optimal.

6.5.1 XP algorithm for Connected Flow

In this subsection we show the following:

Theorem 6.5. Let M be an upper bound on the demands in the input graph G, and
suppose a tree decomposition of width tw of G is given. Then a Connected Flow
instance with G can be solved in time |V (G)|O(tw) and an MVTSP instance with G
can be solved in time min{|V (G)|,M}O(tw)|V (G)|O(1).

Proof. The algorithm is based on a standard dynamic programming approach; we
only describe the table entries and omit the recurrence to compute table entries since
it is standard. We assume we are given a tree decomposition T = ({Xi}, R) on the
given graph. Let Yi be the set of vertices in the subtree rooted at Xi. For a given
bag Xi, let π be a partition on Xi. Furthermore, let din = (dinv)v∈Xi

∈ NXi and
dout = (doutv)v∈Xi

∈ NXi be two vectors of integers, indexed by Xi.
We de�ne the dynamic programming table entry T (Xi, π,d

in,dout) to be the cost of
the cheapest partial solution on the graph �below� the bag Xi, among solutions whose
connected components agree with the partition π and whose in and out degrees agree
with the vectors din and dout. For each bag Xi, a partition π of Xi and sequences
din and dout satisfying (i) 0 6 dinv , d

out
v 6 dem(v) for each v ∈ D and (ii) 0 6

din(v), dout(v) 6 M |V (G)| for each v /∈ D, de�ne T (Xi, π,d
in,dout) = mins cost(s)

over all s : Y 2
i → N such that the following conditions hold:

1.
∑

u∈Yi
s(u, v) =

∑
u∈Yi

s(v, u) = dem(v) for all v ∈ D ∩ (Yi \Xi),

2.
∑

u∈Yi
s(u, v) = dinv for all v ∈ Xi,

3.
∑

u∈Yi
s(v, u) = doutv for all v ∈ Xi,

4. each block of the partition π is weakly connected in Gs,

5. s(u, v) 6 cap(u, v) for all (u, v) ∈ E(G[Yi]).

106

We can compute the table starting at the leaves of R and work our way towards the
root.

Let us examine the size of this dynamic programming table. First we note that
there are at most |V (G)|O(1) bags in the tree decomposition. Next we consider the
values dinv and doutv . Note that we can assume that an optimal solution only visits any
vertex without demand at mostM |V (G)| times: Any solution can be decomposed into
a collection of paths between vertices with demand. Each such path can be assumed
to not visit any vertex more than once (except possibly in the end points of the path)
since the solution is of minimum weight and all costs are non-negative. We �nd that
each vertex gets visited at most M |V (G)| times and thus we only need to consider
M |V (G)| many values of dinv and doutv . Thus the degree values of the partial solutions
contribute a factor of (M |V (G)|)O(tw) to the overall running time of the algorithm
if the given instance is a Connected Flow instance, and only MO(tw) if the given
instance is an MVTSP instance (in which all vertices are demand vertices).

We will show that we may assume that M = |V (G)|O(1). Together with the fact
that the number of possibilities for π is twO(tw) 6 |V (G)|O(tw), the claimed result for
Connected Flow follows.

Claim 6.6. Given an instance of Connected Flow, there is an equivalent instance
such that M = |V (G)|O(1).

Proof of Claim: We will use a variation of the proof of Theorem 3.4 from Kowalik et
al. [85]. Let r be an optimal solution to Flow. By applying Lemma 6.8 with T being
a subtree of Gs spanning all demand vertices, we �nd that there is an optimal solution
s of Connected Flow such that |r(u, v)− s(u, v)| 6 2n for every edge (u, v).

We now construct a �ow f from r by subtracting simple directed cycles from r.
Note that each time that we subtract such a cycle, the result is again a �ow. We
start with f = r on all edges. Now if there is an edge (u, v) ∈ E for which f(u, v) >
max{r(u, v)− 2n− 1, 0}, we can �nd a simple directed cycle C ∈ Gf containing (u, v)
as f is a �ow and thus Gf is Eulerian. De�ne f ′(u, v) = f(u, v)− [(u, v) ∈ C]. Note
that f ′ is again a �ow. Set f = f ′. We repeat this process of subtracting simple
directed cycles from f until f(u, v) 6 max{r(u, v)− 2n− 1, 0} for every edge (u, v).

Note that 0 6 s(u, v) − f(u, v) for all (u, v) ∈ E. De�ne a new instance with
dem′(v) = dem(v) −∑u∈V f(u, v) and cap′(u, v) = cap(u, v) − f(u, v). Note that
s(u, v)− f(u, v) is an optimal connected �ow for this instance. If dem′(v) 6 2n2 + n
we are done. Otherwise let r′ be a relaxed solution for the new instance. Note that
there is an edge (u′, v′) for which r′(u′, v′) > 2n+1 and thus we can repeat the previ-
ous argument to �nd a non-zero �ow f ′ such that f ′(u, v) 6 max{r′(u, v)− 2n− 1, 0}
on every edge and de�ne a corresponding new instance. Since each time we subtract
a non-zero �ow, after some number of repetitions we �nd dem′(v) 6 2n2 + n. �

For the result for MVTSP, the above approach would give a running time of
min{|V (G)|,M}O(tw)twO(tw)|V (G)|O(1). However, the factor twO(tw) in the running
time needed to keep track of all partitions π can be reduced to 2O(tw) via a standard
application of the rank based approach (see e.g. [45, Section 11.2.2] or [19,46]). �

107

6.5.2 Lower bound

In order to obtain a lower bound for MVTSP, we will modify a lower bound from
Cygan et al. [46], which reduces 3-CNF-SAT to Hamiltonian Cycle.

We will create an instance of MVTSP that is symmetric in the sense that the
graph G is undirected, hence we denote edges as unordered pairs of vertices (i.e.
{u, v} = {v, u}). As a consequence, when c is a tour on G, then we say c(u, v) =
c(v, u). The general proof strategy is as follows. For a given 3-CNF-SAT formula
φ on n variables3 we will construct an equivalent MVTSP instance (G, d). This
graph will consist of n/s paths, for some value of s, with each path propagating some
information encoding the value of s variables of φ. For each clause of φ we will add
a gadget which checks if the assignment satis�es the clause. We then bound the size
and the pathwidth of the constructed graph G, obtaining the required lower bound.

Gadgets

We start describing the following gadget from Cygan et al. [46], called a 2-label gadget.

v1

v2

v3

v4 v5 v6

v7

v8

v9

Figure 6.3: A 2-label gadget.

The key feature of this gadget is that if all vertices in the gadget have demand
equal to 1, then if a solution tour enters the gadget at v3, it has to leave the gadget
at v9 and vice versa. A similar relation holds for v1 and v7. We will refer to any edge
connected to either v1 or v7 as having label 1 and any edge connected to v3 or v9 as
having label 2. We will use this gadget to construct a gadget that can detect certain
multisets of edges in a part of a graph. In this construction we will chain 2-label
gadgets together using label 1 edges. Whenever we do this, we always connect the
vertex v7 of one gadget to the vertex v1 in the next. To facilitate the construction, in
the rest of this section we will refer to a 2-label gadget as if it were a single vertex.

The next gadget is also inspired by a construction from Cygan et al. [46].

De�nition 6.10. A scanner gadget in an unweighted MVTSP instance (G, d) is
described by a tuple (X, a, b,F), where X ⊆ V , a, b ∈ V \X with dem(a) = dem(b) = 1,
F is a family of multisets of edges in4 E(X,X) and ∅ /∈ F . We say that a tour c of
G is consistent with (X, a, b,F) if its restriction cE(X,X) is in F and if c(a, b) > 0.

3In this section, we will only use n to refer to the number of variables of a 3-CNF-SAT instance.
4Here E(X,X) are all edges with both endpoints in X and the restriction cY are all edges in c in

Y (keeping multiplicities).

108

When refering to the gadget as a subgraph, we will use GF . We implement the
scanner gadget using the following construction, obtaining an instance (G′, dem′) of
MVTSP.

� Remove the edges in E(X,X).

� Add an independent set I = {s1, . . . , s`} and edges {a, s1} and {s`, b}, for
` = |F|.

� Let F = {F1, . . . , F`}. For i = 1, . . . , `, let Fi = {eq11 , . . . , eqzz } (i.e. Fi contains
qi copies of ei). For each i ∈ [`], do the following:

� Add a path Pi = {p1i , . . . , ptii } of 2-label gadgets, where ti = |Fi| =
∑z

i=j qj .
We connect the gadgets in a chain using label 1 edges.

� Connect p1i to si−1 and si using label 1 edges (green edges in Figure 6.4) and
connect p|Fi|

i to si and si+1 using label 1 edges (blue edges in Figure 6.4).

� For all j = 1, . . . , z add label 2 edges from x to pj
′

i and from y to pj
′

i for
ej = {x, y} and for qj di�erent, previously unused values of j′ (red edges
in Figure 6.4).

� We set the demand of all added vertices to 1.

a b

Xx1 x2

x3

x4

x5

x6 x7

s1 s2 s`

p11 pt11 p12 pt22 p1` pt``

. . .

. . .

Figure 6.4: Example of the scanner gadget.

The function of the gadget is captured by the following lemma.

Lemma 6.11. There exists an tour on (G, dem) that is consistent with (X, a, b,F) if
and only if there exists a tour on (G′, dem′).

Proof. Our proof will closely follow that in Cygan et al. [46]. Suppose we have a
tour on (G, dem) which is consistent with a gadget (X, a, b,F). Let Fi ∈ F be the
restriction of the tour on E(X,X). Then the tour on (G, dem) can be extended to a
tour on (G′, dem′) by replacing the qj instances of an edge {u, v} ∈ Fi with two edges

109

{u, pj
′

i } and {v, pj
′

i } for qj di�erent values of j′. We also replace the edge {a, b} by
the path

a, s1, P1, . . . , Pi−1, si, Pi+1, si+1, . . . , P`, s`, b.

Since the obtained tour visits all vertices in the gadget exactly once and since the re-
striction of the adjusted tour connects the same pairs of vertices inX as the restriction
of the original tour, the obtained tour is a solution for the instance (G′, dem′).

For the other direction, suppose we have a tour c′ on (G′, dem′). Note that by
the properties of the 2-label gadgets no tour can cross from some si into X through
one of the 2-label gadgets in one of the paths Pi. Thus the tour can only travel from
outside the gadget to si, by going through a or b. Therefore the tour must include the
edges {a, s1} and {s`, b}. Furthermore, s1 and s` must be connected by some path P ′

in the tour. Since I is an independent set, P ′ has to alternate between the Pi's and
the si's and has to include every si, since this is the only way to reach a vertex si.

This means that there is exactly one path Pi0 which is not covered by P ′. We can
now obtain a tour c of (G, dem) by �rst setting c(u, v) = c′(u, v) for {u, v} 6= {a, b}
for u or v not in X. We then include any edge in X a number of times according to
its multiplicity in Fi0 i.e. we set c(u, v) = Fi0(u, v). Finally, we set c(a, b) = 1. Note
that since c(a, b) > 0 and Fi0 ∈ F , we conclude that c is consistent with (X, a, b,F).
�

The following lemma will allow us to implement the gadget without increasing the
pathwidth of the graph too much.

Lemma 6.12. The scanner gadget has pathwidth at most |X|+ 21.

Proof. We de�ne the bags of the decomposition as follows

Ba := X ∪ {a, s1}
Bi,j := X ∪ {si−1, si, si+1, p

j
i , p

j+1
i }

Bb := X ∪ {b, s`}.

It is easy to see that the following bags form a path decomposition of GF :
Ba, B1,1, B1,2, . . . B1,t1 , B2,1, . . . B`,t` , Bb. �

Construction

Suppose we are given a 3-CNF-SAT formula φ = C1 ∧ · · · ∧ Cm. We will construct an
equivalent unweighted MVTSP instance Γφ using scanner gadgets. We will interpret
a tuple (q, j) ∈ {1, . . . , 2s} × {1, . . . , n/s} as an assignment of x(j−1)s+1, . . . , xjs by
�rst decomposing

q − 1 =

s∑
i=1

ci2
i−1

and setting x(j−1)s+i to true if ci = 1 and false if ci = 0. We say a clause C is satis�ed
by a set Q of such tuples if j 6= j′ for all (q, j), (q, j′) ∈ Q, and if the partial assignment
given by the tuples satis�es C. Let s be a constant that will be determined later.

110

l1,1

l1,2

l1,ns

r1,1

r1,2

r1,ns

lm,1

lm,2

lm,ns

rm,1

rm,2

rm,ns

GC1
GC2

GCm

a1

a2 a3 am

am+1

...
...

...
...

. . .

. . .

. . .

. . .

Figure 6.5: Construction of the graph Γφ.

� We start by creating vertices li,1, . . . , li,n/s and ri,1, . . . , ri,n/s for i = 1, . . . ,m.
5

� We set the demand of l1,j to 2s+1 for j = 1, . . . , n/s and add edges {l1,j , l1,j+1}
for j = 1, . . . , n/s− 1.

� We set the demand of every other li,j and every ri,j to 2s and add edges
{li,j , ri,j}, {ri,j , li+1,j} and {rm,j , l1,j} for i = 1, . . . ,m− 1 and j = 1, . . . , n/s.

� We connect l1,1 to l1,n/s using a path a1, . . . , am+1.

� For i = 1, . . . ,m let xa, xb, xc be the variables appearing in Ci. We set j1 =
da/se, j2 = db/se, j3 = dc/se. Let

X = {li,j1 , li,j2 , li,j3 , ri,j1 , ri,j2 , ri,j3}

and let FCi
be the set of all

F = {{li,j1 , ri,j1}q1 , {li,j2 , ri,j2}q2 , {li,j3 , ri,j3}q3 , }

such that Q = {(q1, j1), (q2, j2), (q3, j3)} satis�es Ci.

� For i = 1, . . . ,m we implement a scanner gadget GCi
using the tuple

(Xi, ai, ai+1,FCi
)

5If n is not divisible by s, we may either add dummy variables until it is, or lower the demand of
li,n/s and ri,n/s.

111

We prove the following useful facts about this graph.

Lemma 6.13. Γφ is a yes instance of MVTSP if and only if φ has a satisfying
assignment.

Proof. Let Γ′φ be the graph obtained by the above construction before implementing
the scanner gadgets. Let x1, . . . , xn be the variables used in the formula φ. Let
χ1, . . . , χn be a satisfying assignment. We �rst de�ne the tour on Γ′φ and then
use Lemma 6.11 to �nd the desired tour on Γφ. Set c(li,j , li+1,j) = c(l1,1, a1) =
c(am+1, l1,n/s) = c(ai, ai+1) = 1. We set

c′(li,j , ri,j) = 1 +
s∑

k=1

2k−1χ(j−1)s+k

for i = 1, . . . ,m and j = 1, . . . , n/s. Due to the chosen demands we need to set

c′(ri,j , li+1,j) = 2s+1 − c′(li,j , ri,j)

for i = 1, . . . ,m and j = 1, . . . , n/s, where we interpret i modulo m, i.e. m + 1 ≡ 1.
Note that c′ is connected and satis�es the demands on Γ′φ. Also note that since χ is
a satisfying assignment, c′ is consistent with all the scanner gadgets GCi and thus by
Lemma 6.11 we there is some valid tour c on Γφ.

Now suppose there exists a valid tour c on Γφ. Then by Lemma 6.11 there exists
a tour c′ on Γ′φ consistent with each gadget GCi

. By de�nition of GCi
, the values of

c′(li,j , ri,j) encode an assignment satisfying Ci for i = 1, . . . ,m. Since for i > 2 the
demands of li,j and ri,j equal 2s, we have that c′(li,j , ri,j) = 2s+1 − c′(ri,j , li+1,j) =
c′(li+1,j , ri+1,j) and therefore the values of c′(l1,j , r1,j) encode an assignment satisfying
all clauses C1, . . . , Cm, which means we obtain an assignment which satis�es φ. �

Let us now bound the pathwidth of Γφ.

Lemma 6.14. Γφ has pathwidth at most 3n/s+ 21.

Proof. We de�ne the bags of the decomposition as follows. First we add

A = {l1,1, . . . , l1,n/s}

to every bag. Let W1, . . . ,Wli be a path decomposition of GCi
. We de�ne the bag

Xi,j as follows:

Xi,j = A ∪ {li,k : k ∈ [n/s]} ∪ {ri,k : k ∈ [n/s]} ∪Wj .

We then de�ne Yi as {li+1,k : k ∈ [n/s]} ∪ {ri,k : k ∈ [n/s]}. The �nal path
decomposition then becomes

X1,1, . . . , X1,l1 , Y1, X2,1, . . . , Xi,li , Yi, Xi+1,1, . . . , Xm,lm .

It is easy to see that the above bags indeed form a path decomposition.
By Lemma 6.12 (noting that X ⊆ {li,k : k ∈ [n/s]}∪ {ri,k : k ∈ [n/s]}) the width

of this path decomposition is at most 3 · ns + 21. �

112

Now we use our reduction to prove the following lower bound:

Theorem 6.15. Let M be an upper bound on the demands in a graph G. Then
MVTSP cannot be solved in time f(pw)min{|V (G)|,M}o(pw)|V (G)|O(1), unless ETH
fails.

Proof. We start by proving the following claim.

Claim 6.7. |V (GCi
)| = O(23s) for i = 1, . . . ,m.

Proof of Claim: Note that FCi
is de�ned on at most three unique edges with each

edge being chosen at most 2s times. Due to the way we interpret the multiplicities
as truth assignments, we know each edge gets chosen at least once. Therefore, we
can represent FCi by tuples (z1, z2, z3) ∈ [2s]3. Since each tuple contributes a path of
z1 + z2 + z3 vertices, we �nd that

|V (GCi
)| = 8 + |FCi

|+
∑

(z1,z2,z3)∈FCi

(z1 + z2 + z3)

6 23s+1 +

2s∑
z1,z2=1

(
2s(z1 + z2) +

2s∑
z3=1

z3

)

6 23s+1 +

2s∑
z1,z2=1

(
2s(z1 + z2) + 2s+1

)
6 23s+1 +

2s∑
z1=1

(
22sz1 + 22s+1 + 22s+1

)
6 23s+3.

�

Note that by Lemma 6.13, solving a 3-CNF-SAT instance φ reduces to solving
MVTSP on Γφ for some choice of s. We will show that there is no O(f(pw)Mo(pw)

|V (G)|O(1)) time algorithm for MVTSP, unless ETH fails.
Suppose we have a O

(
f(pw)Mo(pw)|V (G)|O(1)

)
time algorithm for MVTSP. Let

s = 4n/g(n) for some strictly increasing function g(n) = 2o(n) such that f(g(n)) =
2o(n). Note that s = o(n) and pw 6 g(n) for large enough n. We construct the
instance Γφ as previously described. We �rst note that by claim 6.7

|V (Γφ)| = 2m
n

s
+

m∑
i=1

|V (GCi)| = O
(
m
(n
s
+ 23s

))
and by Lemma 6.14 we have that for any choice of s and large enough n, Γφ has
pathwidth at most 4n/s. By our reduction, we now �nd an algorithm for 3-CNF-
SAT running in time

O
(
f(pw)Mo(pw)|V (Γφ)|O(1)

)
= O

(
f(4n/s)(2s)o(n/s)

(
m
(n
s
+ 23s

))O(1)
)

= O

(
f(g(n)) · 2o(n) ·

(
m
(
g(n)/4 + 2o(n)

))O(1)
)
.

113

We may assume that m = 2o(n) by the sparsi�cation lemma [75]. Using this and
the fact that g(n) = 2o(n) we obtain an algorithm for 3-CNF-SAT running in time

O
(
2o(n) ·

(
2o(n)

)O(1)
)
= O

(
2o(n)

)
. This contradicts ETH, completing our proof. �

6.6 Conclusion

We initiated the study of the parameterized complexity of the Connected Flow
problem and showed that the problem behaves very di�erently when parameterized
by the number of demand vertices, the size of the vertex cover, or treewidth of the
input graph.

While we essentially settled the complexity of the problem parameterized by the
number of demands or by the treewidth, we still leave the following questions open
for the vertex cover parameterization:

Can Connected Flow be solved in O?(cO(k)) time, with c a constant and k the
size of the vertex cover of the input graph? Such an algorithm would be a strong
generalization of the algorithms from [13, 85]. While we believe our approach from
Theorem 6.3 makes signi�cant progress towards solving this question a�rmatively, it
seems that non-trivial ideas are required.

Does Connected Flow admit a kernel polynomial in k where k is the size of
the vertex cover if the input graph? It would be interesting to see if our arguments
for Theorem 6.4 can be extended to kernelize this more general problem as well.

114

Chapter 7

Conclusion

In this thesis, we studied several problems from the parameterized complexity point of
view. We showcased classical algorithmic paradigms such as branching and dynamic
programming, combined with various problem speci�c insights to obtain e�cient al-
gorithms. In some cases, we also presented matching (conditional) lower bounds, thus
proving that the corresponding algorithms are in some sense optimal. The problems
studied in this thesis are of both theoretical and practical interest, thus we hope our
results inspire further research in this direction. In the remainder of this chapter, we
discuss several open problems.

Open problems related to Chapter 3. In Chapter 3, we studied the Subgraph
Isomorphism problem on unit disk graphs. A natural question to ask is whether
our results can be adapted to other geometric intersection graphs, e.g. polygons of
the same size. More generally, can our techniques be used for solving the Subgraph
Isomorphism problem on a larger graph class, such as intersection graphs of fat
objects? Our approach relies on several properties of unit disk graphs. Firstly, we
rely on a result from [27] bounding the number of unlabeled unit disk graphs, thus
the �rst step would be obtaining a similar bound for other graph classes.

In order to bound the number of non-isomorphic separations, we use the fact that
each vertex has a small number of neighbours which are not adjacent to each other,
which also holds for some other geometric graph classes, e.g. intersections of unit
squares. We also exploit the fact that we are working with objects of the same size,
which allows us to ensure that each of these objects has a bounded number of grid
lines intersecting it. This remains true if we consider intersection graphs of objects
where the ratio of the smallest and largest one is bounded. Finally, we remark that
an alternative way to ensure that the separators corresponding to vertical lines are
small is to consider λ-precision disk graphs, where the distance between centres of
two disks is at least λ.

Since our algorithms heavily rely on the embedding, one important question to
ask is whether we can e�ciently construct an embedding of a given unit disk graph.
This problem is known to be NP-hard [30]. Note that it is not even clear whether
the problem is in NP: the natural certi�cate, consisting of coordinates of disk centres,

115

might contain irrational points. It is known that every unit disk graph can be realized
as the intersection graph of disks with the same integer radius and whose centres
have integer coordinates. However, it was shown in [97] that these coordinates can
be doubly exponentially large. In particular, we cannot obtain a polynomially sized
certi�cate in this way.

Open problems related to Chapter 4. Chapter 4 concerns a special case of Set
Cover and Exact Cover problems, where the universe is a set of integers, and
the sets correspond to arithmetic progressions. The question of strong NP-hardness
remains open. Another natural question to ask is whether our algorithms are optimal.
In particular, can we formalize the intuition that the Exact Cover by Arithmetic
Progressions is harder than the Cover by Arithmetic Progressions problem?

Arithmetic progressions can be de�ned in any group, so it is natural to ask whether
we can extend our algorithms to groups other than Z. We note that our algorithms use
the result of [42] (that any collection of k in�nite APs that cover the set {1, 2, . . . , 2k}
also cover the whole set of positive integers) applied to indices rather than elements
of the input set. Hence, the two structural lemmas hold for any group. However, in
our algorithms we use the fact that if we know two elements a and b of an AP, and we
know how many elements the AP has between a and b, we immediately conclude the
di�erence of the AP. In other words, our algorithms rely on division, and the XCAP
algorithm additionally relies on computation of greatest common divisors.

Another question concerns the parameterization by the number of APs that cover
a set. Intuitively, if a set can be covered by a small number of APs, that gives us
some insight into its structure. A possible direction for further research is whether
this structure can be exploited for solving problems like Subset Sum. Since number
theoretic problems have not been well studied from the parameterized point of view,
we hope our results inspire further research in this direction.

Open problems related to Chapter 5. In Chapter 5, we prove XALP-completeness
and XNLP-hardness for several problems on planar graphs. For some of the problems
we show XNLP-hardness, and it is not clear whether they belong to the class XNLP.
We conjecture that these problems are in fact XALP-complete. Since the classes
XNLP and XALP have been introduced only recently, not many complete problems
on planar graphs are known, so a natural question to ask is which other problems are
XNLP-hard and XALP-hard on planar graphs.

Some of the gadgets used in our hardness reductions can be easily transformed
into unit disk graphs by replacing edges by paths composed of unit disks. Roughly
speaking, any gadget that does not have a high degree vertex (more precisely, a vertex
with at least 6 nonadjacent neighbours) can be embedded as a unit disk graph, and
this procedure does not change the treewidth. The challenge lies in replacing the
high degree vertices (e.g. the sink in the All-or-Nothing Flow proof or the edge
gadgets in the reductions from All-or-Nothing Flow).

Another direction for further research concerns the computation of tree decom-
position. Namely, tree decomposition can be computed in FPT time and polynomial
space (see e.g. [84]), and in XP time and logarithmic space [54]. However, it is not
known whether there is an algorithm that computes the tree decomposition in FPT

116

time and logarithmic space. Such an algorithm would allow us to remove the assump-
tion that we are given the tree decomposition as a part of the input.

Open problems related to Chapter 6. Chapter 6 studies theMany Visits TSP
and Connected Flow problems. Since we showed that MVTSP has a polynomial
kernel parameterized by vertex cover, it is natural to ask whether this result extends
to Connected Flow. Another possible direction for further research would be a
faster algorithm parameterized by vertex cover (or a lower bound proving that such
algorithm does not exist).

The natural parameterization by the number of demand vertices |D| could be
studied further. Since Connected Flow is NP-complete even when there are only
two demand vertices, we do not expect it to be FPT parameterized by |D|. Thus
it is natural to ask whether it is hard for some class in the W hierarchy (or even
XNLP-hard). Obtaining e�cient algorithms parameterized by |D| (in case when the
capacities are �nite) is another possible direction for further research.

In [12], the many visits multiple TSP was introduced. In this problem, we have
m salesmen visiting n cities, and each city needs to be visited the required number
of times by the salesmen. In [12], several variants of this problem have been consid-
ered and several approximation algorithms have been described. A possible direction
for further research would be to study the analogous generalization of Connected
Flow, which asks for m connected �ows satisfying the vertex demands.

117

118

Bibliography

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals
of Mathematics, pages 781�793, 2004.

[2] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data
reduction for dominating set. Journal of the ACM, 51(3):363�384, 2004.

[3] Per Alexandersson. NP-complete variants of some classical graph problems.
arXiv, abs/2001.04120, 2020.

[4] László Babai. Graph isomorphism in quasipolynomial time (extended abstract).
In Proceedings of the 48th Annual ACM Symposium on Theory of Computing
(STOC 2016), pages 684�697. ACM, 2016.

[5] Brenda S. Baker. Approximation algorithms for NP-complete problems on pla-
nar graphs. Journal of the ACM, 41(1):153�180, 1994.

[6] Manu Basavaraju, Mathew C. Francis, M.S. Ramanujan, and Saket Saurabh.
Partially polynomial kernels for set cover and test cover. SIAM Journal on
Discrete Mathematics, 30(3):1401�1423, 2016.

[7] Hannah Bast and Sabine Storandt. Frequency data compression for public
transportation network algorithms. In Proceedings of the 6th International Sym-
posium on Combinatorial Search (SOCS 2013), volume 4, pages 205�206, 2013.

[8] Hannah Bast and Sabine Storandt. Frequency-based search for public tran-
sit. In Proceedings of the 22nd ACM International Conference on Advances in
Geographic Information Systems (SIGSPATIAL 2014), pages 13�22, 2014.

[9] Richard Bellman. Dynamic programming treatment of the Travelling Salesman
Problem. Journal of the ACM, 9(1):61�63, 1962.

[10] Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman.
Treewidth governs the complexity of target set selection. Discrete Optimiza-
tion, 8(1):87�96, 2011.

[11] Kristóf Bérczi, Matthias Mnich, and Roland Vincze. A 3/2-approximation for
the metric many-visits path TSP. SIAM Journal on Discrete Mathematics,
36(4):2995�3030, 2022.

119

[12] Kristóf Bérczi, Matthias Mnich, and Roland Vincze. Approximations for many-
visits multiple Traveling Salesman Problems. Omega, 116:102816, 2023.

[13] André Berger, László Kozma, Matthias Mnich, and Roland Vincze. Time- and
space-optimal algorithm for the many-visits TSP. ACM Transactions on Algo-
rithms, 16(3):35:1�22, 2020.

[14] Sujoy Bhore, Paz Carmi, Sudeshna Kolay, and Meirav Zehavi. Parameterized
study of Steiner tree on unit disk graphs. Algorithmica, 85(1):133�152, 2023.

[15] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via
inclusion-exclusion. SIAM Journal on Computing, 39(2):546�563, 2009.

[16] Hans L. Bodlaender. A linear-time algorithm for �nding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305�1317, 1996.

[17] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1-2):1�45, 1998.

[18] Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Prob-
lems hard for treewidth but easy for stable gonality. In Proceedings of the
48th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 2022), volume 13453 of LNCS, pages 84�97. Springer, 2022.

[19] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. De-
terministic single exponential time algorithms for connectivity problems param-
eterized by treewidth. Information and Computation, 243:86�111, 2015.

[20] Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. List colouring trees in
logarithmic space. In Proceedings of the 30th Annual European Symposium on
Algorithms (ESA 2022), volume 244 of LIPIcs, pages 24:1�15. Schloss Dagstuhl
� Leibniz-Zentrum für Informatik, 2022.

[21] Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Ja�ke, and Paloma T.
Lima. XNLP-completeness for parameterized problems on graphs with a linear
structure. In Proceedings of the 17th International Symposium on Parameterized
and Exact Computation, (IPEC 2022), volume 249 of LIPIcs, pages 8:1�18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[22] Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and
Michal Pilipczuk. On the complexity of problems on tree-structured graphs.
In Proceedings of the 17th International Symposium on Parameterized and Ex-
act Computation (IPEC 2022), volume 249 of LIPIcs, pages 6:1�17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[23] Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swen-
nenhuis. Parameterized problems complete for nondeterministic FPT time and
logarithmic space. In Proceedings of the 62nd IEEE Annual Symposium on
Foundations of Computer Science (FOCS 2021), pages 193�204. IEEE Com-
puter Society, 2022.

120

[24] Hans L. Bodlaender, Daniel Lokshtanov, and Eelko Penninkx. Planar capac-
itated dominating set is W [1]-hard. In Proceedings of the 4th International
Workshop on Parameterized and Exact Computation (IWPEC 2009), volume
5917 of LNCS, pages 50�60. Springer, 2009.

[25] Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and
Erik Jan van Leeuwen. The parameterised complexity of integer multicommod-
ity �ow. In Proceedings of the 18th International Symposium on Parameterized
and Exact Computation (IPEC 2023), volume 285 of LIPIcs, pages 6:1�6:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[26] Hans L. Bodlaender, Jesper Nederlof, and Tom C. van der Zanden. Subex-
ponential time algorithms for embedding H-minor free graphs. In Proceedings
of the 43rd International Colloquium on Automata, Languages, and Program-
ming (ICALP 2016), volume 55 of LIPIcs, pages 9:1�14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[27] Christian Borgs, Jennifer Chayes, Je� Kahn, and László Lovász. Left and right
convergence of graphs with bounded degree. Random Structures and Algorithms,
42:1�28, 1 2013.

[28] Guillem Brasó and Laura Leal-Taixé. Learning a neural solver for multiple
object tracking. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR 2020), pages 6247�6257, 2020.

[29] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessan-
dro Panconesi. Motif counting beyond �ve nodes. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 12(4):1�25, 2018.

[30] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard.
Computational Geometry, 9(1-2):3�24, 1998.

[31] Karl Bringmann, László Kozma, Shay Moran, and N.S. Narayanaswamy. Hitting
set for hypergraphs of low VC-dimension. In Proceedings of the 24th Annual
European Symposium on Algorithms (ESA 2016), volume 57, page 23. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2016.

[32] Karl Bringmann and Vasileios Nakos. Top-k-convolution and the quest for near-
linear output-sensitive subset sum. In Proceedings of the 52nd Annual ACM
Symposium on Theory of Computing (STOC 2020), pages 982�995. ACM, 2020.

[33] Rowland Leonard Brooks. On colouring the nodes of a network. InMathematical
Proceedings of the Cambridge Philosophical Society, volume 37, pages 194�197.
Cambridge University Press, 1941.

[34] Leizhen Cai and Junjie Ye. Finding two edge-disjoint paths with length con-
straints. In 42nd International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG 2016), Revised Selected Papers, volume 9941 of LNCS, pages
62�73, 2016.

121

[35] Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set
covering problem. Annals of Operations Research, 98(1):353�371, 2000.

[36] Timothy M. Chan. Finding triangles and other small subgraphs in geometric
intersection graphs. In Proceedings of the 34th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2023), pages 1777�1805. SIAM, 2023.

[37] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via addi-
tive combinatorics. In Proceedings of the 47th ACM Symposium on Theory of
Computing (STOC 2015), pages 31�40. ACM, 2015.

[38] Beifang Chen and Sanming Zhou. Upper bounds for f -domination number of
graphs. Discrete Mathematics, 185(1-3):239�243, 1998.

[39] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Guten-
berg, and Sushant Sachdeva. Maximum �ow and minimum-cost �ow in almost-
linear time. In Proceedings of the 63rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2022), pages 612�623. IEEE Computer Society,
2022.

[40] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC
1971), page 151�158. ACM, 1971.

[41] Stavros S. Cosmadakis and Christos H. Papadimitriou. The Traveling Salesman
Problem with many visits to few cities. SIAM Journal on Computing, 13(1):99�
108, 1984.

[42] R. B. Crittenden and C. L. Vanden Eynden. Any n arithmetic progressions
covering the �rst 2n integers cover all integers. Proceedings of the American
Mathematical Society, 24(3):475�481, 1970.

[43] Robert Crowston, Gregory Gutin, Mark Jones, Venkatesh Raman, and Saket
Saurabh. Parameterized complexity of MaxSAT above average. Theoretical
Computer Science, 511:77�84, 2013.

[44] Marek Cygan. Deterministic parameterized connected vertex cover. In Proceed-
ings of the 13th Scandinavian Symposium on Algorithm Theory (SWAT 2012),
pages 95�106. Springer, 2012.

[45] Marek Cygan, Fedor V. Fomin, �ukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michaª Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[46] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking
via bases of perfect matchings. Journal of ACM, 65(3):12:1�12:46, 2018.

[47] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular
graphs are NP-complete. Discrete Mathematics, 30(3):289�293, 1980.

122

[48] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized
�ow via interior point algorithms. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC 2008), pages 451�460. ACM, 2008.

[49] George B. Dantzig. Application of the simplex method to a transportation
problem. Activity analysis and production and allocation, pages 359�373, 1951.

[50] Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and
Tom C. van der Zanden. A framework for Exponential-Time-Hypothesis-tight
algorithms and lower bounds in geometric intersection graphs. SIAM Journal
on Computing, 49(6):1291�1331, 2020.

[51] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC
2014), pages 624�633. ACM, 2014.

[52] Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capac-
itated domination and covering: a parameterized perspective. In Proceedings
of the 3rd International Workshop on Parameterized and Exact Computation
(IWPEC 2008), volume 5018 of LNCS, pages 78�90. Springer, 2008.

[53] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and
completeness II: On completeness for W [1]. Theoretical Computer Science,
141(1&2):109�131, 1995.

[54] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the
theorems of Bodlaender and Courcelle. In Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2010), pages 143�152.
IEEE Computer Society, 2010.

[55] Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and
circuit complexity of parameterized problems: classes and completeness. Algo-
rithmica, 71(3):661�701, 2015.

[56] Pál Erd®s. Problems and results in number theory. In Proceedings of the 9th
Manitoba Conference on Numerical Mathematics and Computing, pages 3�21,
1979.

[57] Pál Erd®s and Pál Turán. On a problem of Sidon in additive number theory,
and on some related problems. Journal of the London Mathematical Society,
s1-16(4):212�215, 1941.

[58] Hiroshi Eto, Fengrui Guo, and Eiji Miyano. Distance-independent set prob-
lems for bipartite and chordal graphs. Journal of Combinatorial Optimization,
27(1):88�99, 2014.

[59] Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polyno-
mial kernels for weighted problems. Journal of Computer and System Sciences,
84:1�10, 2017.

123

[60] John F. Fink and Michael S. Jacobson. n-Domination in graphs. In Graph
Theory with Application to Algorithms and Computer Science, pages 282�300.
John Wiley and Sons, 1985.

[61] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Al-
most optimal lower bounds for problems parameterized by clique-width. SIAM
Journal on Computing, 43(5):1541�1563, 2014.

[62] Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michaª
Pilipczuk, and Saket Saurabh. Subexponential parameterized algorithms for
planar and apex-minor-free graphs via low treewidth pattern covering. SIAM
Journal on Computing, 51(6):1866�1930, 2022.

[63] Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph
homeomorphism problem. Theoretical Computer Science, 10:111�121, 1980.

[64] András Frank and Éva Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):49�65, 1987.

[65] Michael R. Garey and David S. Johnson. Computers and intractability: a guide
to the theory of NP-completeness. W. H. Freeman, 1979.

[66] Andrew Goldberg and Robert Tarjan. Solving minimum-cost �ow problems by
successive approximation. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing (STOC 1987), pages 7�18. ACM, 1987.

[67] Andrew V. Goldberg and Satish Rao. Beyond the �ow decomposition barrier.
Journal of the ACM, 45(5):783�797, 1998.

[68] W. D. Grobman and T. W. Studwell. Data compaction and vector scan e-
beam system performance improvement using a novel algorithm for recogni-
tion of pattern step and repeats. Journal of Vacuum Science and Technology,
16(6):1803�1808, 1979.

[69] Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth
with respect to the largest grid minor size. Algorithmica, 64(3):416�453, 2012.

[70] Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth,
Micha Sharir, and Max Willert. Stabbing pairwise intersecting disks by �ve
points. Discrete Mathematics, 344(7):112403, 2021.

[71] Lenwood S. Heath. Covering a set with arithmetic progressions is NP-complete.
Information Processing Letters, 34(6):293�298, 1990.

[72] Michael Held and Richard M. Karp. A dynamic programming approach to
sequencing problems. Journal of the Society for Industrial and Applied Mathe-
matics, 10(1):196�210, 1962.

[73] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering
and packing problems in image processing and VLSI. Journal of the ACM,
32(1):130�136, 1985.

124

[74] Bob Hough. Solution of the minimum modulus problem for covering systems.
Annals of Mathematics, pages 361�382, 2015.

[75] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems
have strongly exponential complexity? Journal of Computer and System Sci-
ences, 63(4):512�530, 2001.

[76] Klaus Jansen and Petra Sche�er. Generalized coloring for tree-like graphs.
Discrete Applied Mathematics, 75(2):135�155, 1997.

[77] Frank Kammer. Determining the smallest k such that G is k-outerplanar.
In Proceedings of the 15th Annual European Symposium on Algorithms (ESA
2007), volume 4698 of LNCS, pages 359�370. Springer, 2007.

[78] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the 16th Annual ACM Symposium on Theory of Com-
puting (STOC 1984), pages 302�311. ACM, 1984.

[79] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings
of the Symposium on the Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85�103. Plenum Press, New York, 1972.

[80] Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally
parameterized d-scattered set. Discrete Applied Mathematics, 308:168�186,
2022.

[81] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS.
Springer, 1994.

[82] Donald E. Knuth. Dancing links. arXiv, abs/cs/0011047, 2000.

[83] Tuukka Korhonen. A single-exponential time 2-approximation algorithm for
treewidth. In Proceedings of the 62nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2021), pages 184�192. IEEE Computer Society,
2021.

[84] Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algo-
rithm for treewidth. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC 2023), pages 528�541. ACM, 2023.

[85] �ukasz Kowalik, Shaohua Li, Wojciech Nadara, Marcin Smulewicz, and Magnus
Wahlström. Many visits TSP revisited. In Proceedings of the 28th Annual
European Symposium on Algorithms (ESA 2020), volume 173 of LIPIcs, pages
66:1�22. Schloss Dagstuhl�Leibniz-Zentrum für Informatik, 2020.

[86] Richard E. Ladner. On the structure of polynomial time reducibility. Journal
of the ACM, 22(1):155�171, 1975.

[87] Leonid A. Levin. Universal problems of full search. Problemy Peredachi Infor-
matsii, 9(3):115�116, 1973.

125

[88] Shen Lin and Brian W. Kernighan. An e�ective heuristic algorithm for the
Traveling-Salesman Problem. Operations Research, 21:498�516, 1973.

[89] Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang.
Neural subgraph isomorphism counting. In Proceedings of the 26th ACM In-
ternational Conference on Knowledge Discovery & Data Mining (KDD 2020),
pages 1959�1969, 2020.

[90] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi.
Subexponential parameterized algorithms on disk graphs (extended abstract).
In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2022), pages 2005�2031. SIAM, 2022.

[91] Dániel Marx. On the optimality of planar and geometric approximation schemes.
In Proceedings of the 48th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2007), pages 338�348. IEEE Computer Society, 2007.

[92] Dániel Marx and Marcin Pilipczuk. Subexponential parameterized algorithms
for graphs of polynomial growth. In Proceedings of the 25th Annual European
Symposium on Algorithms (ESA 2017), volume 87 of LIPIcs, pages 59:1�15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[93] Dániel Marx and Michal Pilipczuk. Everything you always wanted to know
about the parameterized complexity of subgraph isomorphism (but were afraid
to ask). In Proceedings of the 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014), volume 25 of LIPIcs, pages 542�
553. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[94] Dániel Marx and Ildikó Schlotter. Cleaning interval graphs. Algorithmica,
65:275�316, 2013.

[95] David W. Matula. Subtree isomorphism in O(n5/2). In Annals of Discrete
Mathematics, volume 2, pages 91�106. Elsevier, 1978.

[96] Ciaran McCreesh, Patrick Prosser, and James Trimble. The Glasgow subgraph
solver: using constraint programming to tackle hard subgraph isomorphism
problem variants. In Proceedings of the 13th International Conference on Graph
Transformation (ICGT 2020), pages 316�324. Springer, 2020.

[97] Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment
graphs. Journal of Combinatorial Theory, Series B, 103(1):114�143, 2013.

[98] Marta Mesquita and Ana Paias. Set partitioning/covering-based approaches for
the integrated vehicle and crew scheduling problem. Computers & Operations
Research, 35(5):1562�1575, 2008.

[99] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-
optimal derandomization. In Proceedings of the 36th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1995), pages 182�191. IEEE Com-
puter Society, 1995.

126

[100] Jesper Nederlof. Detecting and counting small patterns in planar graphs in
subexponential parameterized time. In Proceedings of the 52nd Annual ACM
Symposium on Theory of Computing (STOC 2020), pages 1293�1306. ACM,
2020.

[101] Jaroslav Ne²et°il and Patrice Ossona De Mendez. Sparsity: graphs, structures,
and algorithms, volume 28. Springer, 2012.

[102] Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Contraction decomposition
in unit disk graphs and algorithmic applications in parameterized complexity. In
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2019), pages 1035�1054. SIAM, 2019.

[103] Pedro Paredes and Pedro Ribeiro. Rand-FaSE: fast approximate subgraph cen-
sus. Social Network Analysis and Mining, 5(1):17, 2015.

[104] Ha-Myung Park, Francesco Silvestri, U Kang, and Rasmus Pagh. MapReduce
triangle enumeration with guarantees. In Proceedings of the 23rd ACM Interna-
tional Conference on Information and Knowledge Management (CIKM 2014),
pages 1739�1748, 2014.

[105] Erwin Pesch and Fred Glover. TSP ejection chains. Discrete Applied Mathe-
matics, 76:165�181, 1997.

[106] Geevarghese Philip, M. R. Rani, and R. Subashini. On computing the Hamilto-
nian index of graphs. Theoretical Computer Science, 940(Part):149�179, 2023.

[107] Michaª Pilipczuk and Marcin Wrochna. On space e�ciency of algorithms work-
ing on structural decompositions of graphs. ACM Transactions on Computation
Theory, 9(4):18:1�18:36, 2018.

[108] Nata²a Prºulj. Biological network comparison using graphlet degree distribu-
tion. Bioinformatics, 23(2):177�183, 2007.

[109] Pedro Ribeiro, Pedro Paredes, Miguel E.P. Silva, David Aparicio, and Fernando
Silva. A survey on subgraph counting: concepts, algorithms, and applications
to network motifs and graphlets. ACM Computing Surveys, 54(2):1�36, 2021.

[110] Neil Robertson and Paul D. Seymour. Graph minors XIII. The disjoint paths
problem. Journal of Combinatorial Theory, Series B, 63(1):65�110, 1995.

[111] Barna Saha and Lise Getoor. On maximum coverage in the streaming model
& application to multi-topic blog-watch. In Proceedings of the 9th SIAM In-
ternational Conference on Data Mining (SDM 2009), pages 697�708. SIAM,
2009.

[112] Pascal Schweitzer. Problems of unknown complexity: graph isomorphism and
Ramsey theoretic numbers. PhD thesis, Universität des Saarlandes, 2009.

[113] Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for
preconditioning and solving symmetric, diagonally dominant linear systems.
SIAM Journal on Matrix Analysis and Applications, 35(3):835�885, 2014.

127

[114] Stergios Stergiou and Kostas Tsioutsiouliklis. Set cover at web scale. In Pro-
ceedings of the 21th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD 2015), pages 1125�1133, 2015.

[115] Céline Maria Francisca Swennenhuis. Fine-Grained Parameterized Complexity
of Scheduling and Sequencing Problems. PhD thesis, Eindhoven University of
Technology, 2022.

[116] Jan Arne Telle. Complexity of domination-type problems in graphs. Nordic
Journal of Computing, 1(1):157�171, 1994.

[117] Alan M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, Series 2, 45:161�228, 1939.

[118] Anthony Wren and Barbara M. Smith. Experiences with a crew scheduling
system based on set covering. In Proceedings of the 4th International Workshop
on Computer-Aided Scheduling of Public Transport (CASPT 1988), pages 104�
118. Springer, 1988.

[119] Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum indepen-
dent set. Information and Computation, 255:126�146, 2017.

[120] Zhengyi Yang, Longbin Lai, Xuemin Lin, Kongzhang Hao, and Wenjie Zhang.
HUGE: an e�cient and scalable subgraph enumeration system. In Proceedings of
the International Conference on Management of Data (SIGMOD 2021), pages
2049�2062, 2021.

[121] Meirav Zehavi, Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket
Saurabh. ETH-tight algorithms for long path and cycle on unit disk graphs.
Journal of Computational Geometry, 12(2):126�148, 2021.

128

Samenvatting

Zoals de titel van dit proefschrift suggereert, bestuderen we hoe de complexiteit
van problemen verandert als we er enkele beperkingen aan toevoegen. Om dit te
bereiken, gebruiken we het raamwerk van de geparameteriseerde complexiteit. In
tegenstelling tot klassieke complexiteit, waar we het aantal stappen dat een algo-
ritme neemt uitdrukken in termen van de invoergrootte, drukken we bij geparame-
teriseerde complexiteit het aantal stappen uit in termen van de invoergrootte en een
extra parameter. Deze parameter beschrijft meestal een eigenschap van de invoer:
bijvoorbeeld, als we een graaf als deel van de invoer hebben, kunnen we verschillende
graafparameters beschouwen, zoals de grootte van een vertex cover of de treewidth
(die meet hoe �dicht� de graaf bij een boom staat). Geparameteriseerde complexiteit
geeft ons een nauwkeuriger classi�catie van NP-moeilijke problemen. De klasse FPT
(�xed-parameter tractable) bevat problemen die we als eenvoudig beschouwen. De
W-hiërarchie beschrijft moeilijkere geparameteriseerde problemen.

In het eerste deel van dit proefschrift bestuderen we hoe het toevoegen van struc-
tuur aan de invoer problemen eenvoudiger maakt. In Hoofdstuk 3 bestuderen we
het (Counting) Subgraph Isomorphism probleem. Bij Subgraph Isomorphism
probleem krijgen we twee grafen, P en G, en wordt ons gevraagd of G een sub-
graaf heeft die isomorf is met P . Dit probleem staat bekend als W [1]-moeilijk, zelfs
wanneer P een clique is. In de telversie van dit probleem (Counting Subgraph
Isomorphism) moeten we ook het aantal subgrafen van G berekenen die isomorf zijn
met P . Om dit probleem eenvoudiger te maken, voegen we geometrische structuur
toe aan de invoer: namelijk, we beperken de invoer tot unit disk grafen (intersec-
tiegrafen van eenheidsdisks getekend in het vlak). We geven een algoritme voor het
Counting Subgraph Isomorphism op unit disk grafen, samen met een ondergrens,
die impliceert dat ons algoritme in zekere zin optimaal is. Op unit disk grafen met
begrensde ply draait het algoritme in FPT-tijd (geparameteriseerd door het aantal
knopen van P). Ons algoritme gebruikt dynamisch programmeren, waarbij we de
geometrische structuur van de invoergrafen gebruiken om het aantal tabelgegevens te
verminderen.

In Hoofdstuk 4 beschouwen we het Set Cover probleem, waarin we een verzamel-
ing U van gehele getallen krijgen, samen met een verzameling S van deelverzamelin-
gen daarvan. Ons wordt gevraagd het kleinste aantal verzamelingen in S te vinden
waarvan de vereniging gelijk is aan U . Het Set Cover probleem staat bekend als
W [2]-compleet. We bestuderen ook een andere versie van het Set Cover probleem,
genaamde Exact Cover, waarin we bovendien vereisen dat de verzamelingen in

129

de oplossing disjunct zijn. De beperking die we opleggen aan de invoer is dat elke
verzameling in S een rekenkundige rij moet vormen. We verkrijgen FPT-algoritmen
(geparameteriseerd door de oplossingsgrootte) voor deze beperkte versies van Set
Cover en Exact Cover, met behulp van een recursieve aanpak, gecombineerd met
getaltheoretische resultaten over rekenkundige rijen.

In het tweede deel van dit proefschrift is ons uitgangspunt het Flow (Stroming)
probleem. Flow kan in polynomiale tijd worden opgelost met behulp van het wel-
bekende Edmonds-Karp algoritme. Het toevoegen van twee natuurlijke beperkingen
aan de oplossing maakt dit probleem echter aanzienlijk moeilijker. In Hoofdstuk 5
beschouwen we hetAll-or-Nothing Flow probleem, waarbij we bovendien vereisen
dat elke pijl ofwel nul stroom of stroom gelijk aan zijn capaciteit heeft. We kijken naar
dit probleem op vlakke (planaire) grafen, d.w.z., grafen die getekend kunnen worden
op een vlak zonder kruisende kanten. Als parameter kijken we naar het aantal lagen
van een tekening; dit wordt de outerplanariteit genoemd. Zelfs op planaire grafen
blijkt All-or-Nothing Flow XNLP-moeilijk te zijn met de outerplanariteit als pa-
rameter. Dit impliceert dat het probleem W [t]-moeilijk is voor elke t. We gebruiken
dit probleem als uitgangspunt om XNLP-moeilijkheid te bewijzen voor verschillende
andere problemen op planaire grafen.

In Hoofdstuk 6 beginnen we bij het Min Cost Flow (Minimum Kosten Stro-
ming) probleem en voegen we een eis van samenhang toe aan de oplossing. Namelijk,
we beschouwen het Connected Flow probleem, waarin we bovendien vereisen dat
de onderliggende graaf van de stroming verbonden wordt. We tonen aan dat deze ex-
tra beperking het probleem NP-moeilijk maakt. We presenteren een FPT-algoritme
voor Connected Flow (geparameteriseerd door de vertex cover), evenals een XP-
algoritme voor de parameterisatie door treewidth.

130

Curriculum vitae

Education

2020-2024
Utrecht University

Computer Science PhD

2018-2020
Freie Universität Berlin

Mathematics MSc

2015-2018
University of Cambridge

Mathematics BSc

Selected Awards

2024
SOFSEM Best Paper Award

Joint paper with Jesper Nederlof

2018
Berlin Mathematical School Scholarship

Full scholarship for Master studies

2018
Rouse Ball Travelling Studentship in Mathematics

Support for mobility of students

2015
Trinity College Overseas Bursary Scholarship

Full scholarship for Bachelor studies

131

Parameterized Complexity
of Restricted Variants of
Some Classical Problems

Krisztina Szilágyi

Krisztina Szilágyi:
 Param

eterized Com
plexity of Restricted Variants of Som

e Classical Problem
s

	Introduction
	Algorithms and Complexity
	Thesis overview
	Adding structure to a hard problem
	Adding constraints to an easy problem

	Preliminaries
	Parameterized Complexity
	Treewidth
	Lower bounds

	Notation

	Detecting and Counting Small Patterns in Unit Disk Graphs
	Introduction
	Our techniques

	Preliminaries
	Turing Kernel
	Proof of Theorem 3.1: Algorithm
	Proof of Theorem 3.3: Bounding s
	Proof of Theorem 3.4: Lower Bound
	Conclusion

	Parameterized Algorithms for Covering by Arithmetic Progressions
	Introduction
	Preliminaries
	Algorithm for Cover by Arithmetic Progressions
	Algorithm for Exact Cover by Arithmetic Progressions
	Strong NP-hardness of Cover by Arithmetic Progressions in Zp
	Parameterization Below Guarantee
	Conclusion

	XNLP-hardness of Parameterized Problems on Planar Graphs
	Introduction
	Definitions and Notation
	Graph notions
	The classes XNLP and XALP

	Binary CSP
	XNLP-completeness for kn-grids
	XALP-completeness parameterized by outerplanarity

	Scattered Set
	All-or-Nothing Flow
	Reductions from All-or-Nothing Flow
	All-or-Nothing Flow with Small Arc Capacities
	Target Outdegree Orientation
	Capacitated (Red-Blue) Dominating Set
	Capacitated Vertex Cover
	f-Domination and k-Domination
	Target Set Selection

	Conclusion

	On the Parameterized Complexity of the Connected Flow and Many Visits TSP Problem
	Introduction
	Preliminaries
	Parameterization by Number of Demand Vertices
	Parameterization by Vertex Cover
	Enforcing edges in flow relaxation
	FPT algorithm
	Polynomial Kernel for MVTSP

	Parameterization by Treewidth
	XP algorithm for Connected Flow
	Lower bound

	Conclusion

	Conclusion
	Lege pagina
	Lege pagina

