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Aims In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its mo
lecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation re
modelling within the sinus node in an animal model of HF with concurrent SND.

Methods and 
results

We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remod
elling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downre
gulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion 
channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized 
that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of 
this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the pro
teomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, 
in vivo suppression of galectin-3 in the animal model of heart failure prevented SND.

Conclusion Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in 
electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart 
failure.
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Graphical Abstract

Keywords Proteomics • Sinus node dysfunction • Heart failure • Inflammation • Galectin-3 • Multi-omics data integration

1. Introduction
Heart failure (HF) is a global health problem and one of the leading causes 
of hospitalization in USA and Europe, resulting in over 1 million admissions/ 
year as a primary diagnosis.1,2 Despite advances in therapy, sudden death is 
the principal cause of mortality in ambulatory HF patients with reduced 
ejection fraction.3 While most commonly attributed to ventricular ar
rhythmias, bradyarrhythmias are an important yet underappreciated cause, 
given to account for up to 10–30% of cardiac sudden deaths in the hos
pital.4–8 In these studies, electrocardiogram (ECG) monitoring during epi
sodes of sudden death showed that cardiac arrests were characterized not 
by tachyarrhythmia but by a terminal bradyarrhythmia. The development 
of atrioventricular block or sinus bradycardia was the strongest predictor 
of mortality.8

HF in humans and animal models results in sinus node dysfunction 
(SND) characterised by a decrease in intrinsic heart rate, increase in sino
atrial conduction time, increased incidence of sinus node exit block, in
crease in corrected sinus node recovery time (cSNRT), caudal shift of 
the leading pacemaker site, and fractionation of electrograms.9–16 SND 
can also lead to chronotropic incompetence, which is common in 
HF.17–19 As bradycardia alone can result in HF,20–24 it is likely that SND 
in HF exacerbates the underlying pathology.

SND in HF is understood to be the result of transcriptional remodelling 
of ion channels, resulting in a reduction of the corresponding ionic 
currents,10,11,25,26 alongside apoptosis and fibrosis.27–29 However there 
has been no systematic study of the protein and signalling changes that ac
company SND in HF, and importantly, no exploration of the drivers of the 
remodelling changes.

928                                                                                                                                                                                                     K. Kahnert et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/article/120/8/927/7658080 by U
trecht U

niversity O
R

IL user on 22 August 2024



To address this knowledge gap, we applied a data-driven approach to 
outline the global protein- and signalling changes of the sinus node in the 
well-characterised mouse transverse aortic constriction (TAC) model of 
HF. We report substantial remodelling of the sinus node proteome in 
HF, characterised by a widespread down-regulation of ion channels critical 
to electrical activity and a major inflammatory response with considerable 
macrophage expansion. We assessed experimentally whether inflamma
tion and SND in HF are mechanistically linked and show that activation 
of inflammation in the isolated sinus node slows pacemaking. To test if 
inhibition of the inflammatory response could present a strategy to 
prevent SND in HF, we identified a potential target from the proteomics 
data: the pro-inflammatory beta-galactoside-binding lectin, galectin-3, 
expressed and secreted by macrophages.30 We show that systemic 
inhibition of galectin-3 ameliorates SND in the animal model of HF. Our 
study reveals the protein remodelling that underlies SND in HF, provides 
proof-of-concept for inflammation as a driver and potential therapeutic 
target in SND, and suggests a pharmacological target of relevance to 
disease.

2. Methods
2.1 Animal experiments
8-week-old male C57BL/6N mice were used, and all animal studies were 
performed in accordance with the UK Scientific Procedures Act 1986 
and Directive 2010/63/EU of the European Parliament. Ethical approval 
was provided by the University of Manchester Ethics Committee. To pro
duce a model of pressure overload-induced heart failure, mice underwent 
transverse aortic constriction (HF group) or a sham operation (CTRL 
group).31 Body weight and conscious heart rate measurements were col
lected every week following surgery. At 8 weeks post-surgery, mice under
went an echocardiography assessment and an unconscious ECG was 
performed prior to termination.

2.2 Proteome and phosphoproteome 
measurements
Sinus node (SN) samples were collected from 15 mice from the HF group 
as well as from the CTRL group. Sample preparation was carried out as 
described earlier.32,33 Briefly, tissue samples were homogenized, proteins 
extracted and enzymatically digested into peptides, isobarically labelled 
using tandem mass tags (TMT) and pooled. Part of the combined sample 
was subjected to phosphopeptide enrichment, before enriched and re
maining samples were each fractionated and measured by reversed-phase 
liquid chromatography tandem mass spectrometry (LC-MS/MS) to obtain 
proteome and phosphoproteome measurements.

2.3 Data analysis and multi-modal data 
integration
After careful quality control, proteomics data were log2-tranformed, nor
malised, and missing values were imputed before performing differential 
expression analyses, functional enrichment analyses of differential 
expressed/phosphorylated proteins/phosphosites as well as a kinase- 
substrate enrichment analysis. Two single-cell/single-nucleus RNA sequen
cing data sets,32,34 were utilized to predict the cell type of origin of 
significantly differentially expressed proteins. To assess regulation of par
ticular translational value, we cross-referenced our (phospho)proteomics 
data with complementary human datasets. We intersected our data with 
heart rate-associated genes identified through a genome-wide association 
study performed on data from the UK Biobank. Furthermore, we exam
ined the interaction between these proteins and drugs associated with 
bradycardia. This was determined through analysis of reported adverse 
events associated with pharmaceutical use by consulting the FDA 
Adverse Event Reporting System (FAERS) and a drug-gene interaction 
database (DGIdb),35 and employing a multivariable logistic regression mod
el we previously developed.36

2.4 Functional evaluation of inflammation in 
SND
To confirm findings made, we performed immunolabelling and western 
blot experiments of mouse sinus node preparations from HF and CTRL 
animals, and recorded intracellular action potentials in isolated sinus nodes 
that were incubated with lipopolysaccharide (LPS) using sharp microelec
trodes. Additionally, in two independent animal cohorts, HF and CTRL an
imals were randomised into vehicle and anti-galectin-3 treatment groups. 
Animals in the anti-galectin-3 group received modified citrus pectin 
(MCP) in the drinking water. Effect of treatment was evaluated by echocar
diography as well as extracellular mapping of the electrical impulse in iso
lated sinus node preparations from both groups.

2.5 Statistical analysis of animal work
Statistical analysis was carried out using GraphPad Prism v9 (GraphPad 
Software, Inc.). If sample size was ≥8 (minimum sample size for a 
D’Agostino & Pearson test and Anderson–Darling test in GraphPad 
Prism), normal distribution of data was tested using D’Agostino & 
Pearson test, Anderson–Darling test, Shapiro–Wilk test, and 
Kolmogorov–Smirnov test. Equal variance was tested using the F-test. 
When both criteria were fulfilled, an unpaired Student’s t-test (two-sided) 
was used to test for differences between sham- and TAC-operated mice. If 
the data were normally distributed but had unequal variance an unpaired 
t-test (two-sided) with Welch’s correction was used and when the null 
hypothesis of normality was rejected or sample size was too low, the 
non-parametric Mann–Whitney U test was used. Differences between 
heart rate at different time points post-surgery were tested using a two- 
way analysis of variance (ANOVA), with a Bonferroni post hoc test. To 
test for differences between the four experimental groups in the modified 
citrus pectin (MCP) treatment experiment a two-way ANOVA with inter
action effects and Tukey’s multiple comparisons test with all six compari
sons was used. In figures, data are shown as mean ± S.E.M. A P-value of 
<0.05 was regarded as significant, with asterisks indicating significance on 
figures (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

Methods and materials of the study are provided in full in the 
supplementary material.

3. Results
3.1 Deep proteome and phosphoproteome 
profiling of the sinus node in a mouse model 
of heart failure
To investigate protein and phosphorylation remodelling characterising SND 
in HF, we pursued quantitative proteome and phosphoproteome measure
ments of sinus nodes from mice of the C57BL/6N strain subjected to TAC 
or sham surgery. The C57BL/6N strain was used because it is more suscep
tible to heart failure than the more common C57BL/6J strain.31 Eight weeks 
post-surgery, TAC-operated mice showed evidence of heart failure 
(decreased ejection fraction and fractional shortening, congestion of the 
lungs as shown by an increase in the lung weight to body weight ratio, dys
pnoea, lethargy, and >20% weight loss), hypertrophy (increased heart 
weight to tibia length ratio, left ventricular mass and interventricular septum 
thickness in diastole) and electrical remodelling (decreased heart rate and 
increased PR interval, QRS duration, and QT and corrected QT intervals) 
(Figure 1A; Supplementary material online, Figure S1). Electrophysiological 
study of the isolated sinus node showed that the sinus node of 
TAC-operated mice was dysfunctional: the spontaneous beating rate was 
slowed, and the cSNRT was increased (Figure 1B). Additionally, activation 
mapping experiments revealed that, as in humans with HF, TAC-operated 
mice presented with a caudal shift of the leading pacemaker site, slower sino
atrial conduction, and increased prevalence of fractionated electrograms as 
discussed later (Figure 5). The two groups of mice are referred to as ‘HF’ for 
the TAC-operated animals and ‘CTRL’ for the sham-operated animals.
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Figure 1 Physiological measurements, experimental workflow, and proteome and phosphoproteome measurements. (A) Physiological measurements from 
CTRL and HF mice. Left: ejection fraction (EF; ****P < 0.0001, Mann–Whitney U test); middle: heart weight/tibia length (HW/TL; ****P < 0.0001, 
Mann–Whitney U test); right: heart rate of anaesthetized animals (HR; *P < 0.05, Welch’s t-test). Mean (±S.E.M.) shown as well as the individual data points 
(n = 16/11, 15/15, 16/12). (B) Electrophysiological measurements from the isolated sinus node of CTRL and HF mice. Left, spontaneous beating rate in beats/
min (bpm; **P < 0.01, Mann–Whitney U test). Middle, corrected sinus node recovery time after stimulation at a cycle length of 125 ms (cSNRT125;                                                                                                                                                                                                             
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Eight weeks post-surgery, the sinus node was isolated (see Supplementary 
material online, Figure S2) and proteins were extracted, digested and isobari
cally labelled using tandem mass tags (TMT). Combined peptide samples for 
proteome measurements were fractionated into 38 fractions and samples 
enriched for phosphorylated peptides were fractionated into 12 fractions 
by micro-flow reverse-phase ultra-high-pressure liquid chromatography prior 
to measurement by high-resolution mass spectrometry (Figure 1C). We iden
tified 6849 proteins with highly reproducible measurements across biological 
replicates (Pearson correlation coefficients > 0.98; Supplementary material 
online, Figure S3A). From the proteome data, protein abundances of 6406 
proteins were quantified across all samples (Figure 1D; Supplementary 
material online, Table S1). Principal component analysis showed a clear dis
tinction between sinus nodes from CTRL and HF mice along the first principal 
component (Figure 1D). Gene Ontology (GO) enrichment analysis showed 
that proteins with decreased abundances in HF were predominantly involved 
in cardiac contraction and conduction (Figure 1E; Supplementary material 
online, Figure S4), whereas proteins with increased abundances pointed to 
an immune system response (Figure 1F; Supplementary material online, 
Figure S4).

From the samples enriched for phosphorylated peptides, we quantified 
6286 phosphorylation events (Figure 1G; Supplementary material online, 
Table S2). Again, intensity measurements were highly reproducible 
(Pearson correlation coefficients ≥ 0.92; Supplementary material online, 
Figure S3B) and there was almost complete overlap of sites measured across 
all samples (>99%). Principal component analysis of measured intensities for 
phosphorylated peptides also separated sinus node samples from CTRL and 
HF animals along the first component (Figure 1G). To evaluate phosphoryl
ation signalling differences between CTRL and HF animals, we first had to 
adjust for the protein remodelling between the two groups. Accordingly, 
we normalized phosphorylation abundance changes by protein abundance 
changes (see Supplementary material online, Figure S3C). After adjustment 
for protein regulation, 328 phosphorylation events were up-regulated in 
HF and 258 were down-regulated (see Supplementary material online, 
Figure S3D) reflecting substantial signalling remodelling in the sinus node. 
Functional enrichment analysis of proteins with increased phosphorylation 
levels in HF highlighted an involvement in heart contraction and conduction 
(see Supplementary material online, Figure S4). Increased phosphorylation 
on proteins involved in these processes is in contrast to the remodelling 
identified at the protein level. Thus, proteins involved in conduction and con
traction appeared as down-regulated while their phosphorylation status was 
increased. Kinase substrate enrichment analysis (KSEA),37 which estimates 
kinase activity changes based on measured changes in phosphorylation levels 
of substrates, focusing on the 222 kinases we had measured in the sinus 
node proteomes, pointed to 11 kinases with predicted increased activities 
in HF including Csnk2a1 (CK2) known to be involved in cardiac hyper
trophy,38 and Mapk14 and Mapk8 (p38-α and JNK1, respectively), stress re
sponse kinases known to participate in the pathological cardiac remodelling, 
development of HF, and arrhythmia39,40 (see Supplementary material online, 
Figure S3E). The proteome and phosphoproteome measurements docu
ment that there is substantial remodelling in the sinus node in HF. These 

datasets represent an overview of the remodelling characterizing SND in 
HF and form the foundation to identify proteins and processes involved in 
the pathological remodelling. This is pursued in the following sections.

3.2 Sinus node ion channels are 
down-regulated and coupled to heart rate 
phenotype
We first set out to identify remodelling that may explain the phenotype. 
The most prominent phenotype characteristic was bradycardia—the 
decrease in heart rate (Figure 1A). From the functional enrichment analysis, 
the remodelling underlying decreased heart rate would likely be found 
among the down-regulated proteins (Figure 1E). Differential expression 
analysis revealed 246 down-regulated sinus node proteins in HF mice 
(Figure 2A). To assess the cell types expressing the down-regulated pro
teins we intersected the protein regulation data with data from sinus 
node single-nucleus RNA sequencing (snRNAseq) experiments32 (see 
Supplementary material online, Figure S5A. This data intersection pointed 
to down-regulated proteins predominantly being expressed by sinus 
node myocytes (Figure 2B; Supplementary material online, Figure S5B). 
Evaluating the protein identities in particular pointed to ion channels, in
cluding the important pacemaker funny channels, Hcn1 and Hcn4. Ion 
channels were in general down-regulated in HF (Figure 2C). The down- 
regulation of ion channel proteins was greater than that of most other 
myocyte proteins, which suggests that the change is not merely reflecting 
a change in cell populations (see Supplementary material online, 
Figure S5C). In Figure 2C, we have illustrated the ion channel data as a pro
tein interaction network, where the colour of the inner circle reflects the 
abundance difference of the channel protein between HF and CTRL mice. 
The outer circle reflects changes in phosphorylation sites quantified for the 
channels. It appears that, while ion channel protein abundances were 
down-regulated, several key ion channels were hyperphosphorylated. 
For example, Na+ (Scn5a), Ca2+ (Cacna1c, Cacna1d, Cacna1h) and K+ 

(Kcnh2, Kcnq1) channels responsible for INa, ICa,L, ICa,T, IK,r, and IK,s.
To evaluate the functional impact of the measured ion channel protein 

changes in the sinus node in HF, we applied a computational modelling ap
proach. We used a biophysically detailed model of the mouse sinus node 
action potential: the Hu-Zhang model.42 In this, we incorporated the ob
served down-regulation of proteins responsible for the ionic currents 
If, INa, ICa,L, ICa,T, IK,r, IK,s, IK,ACh, INaK, and IGJ (Hcn1, Hcn4, Scn5a, 
Cacna1c, Cacna1d, Cacna1h, Kcnh2, Kcnq1, Kcnj3, Kcnj5, Atp1a1, 
Atp1a2, Atp1a3, Cx43) (see Supplementary material online, Figure S6). 
There were no significant changes in the proteins involved in the Ca2+ clock 
mechanism of pacemaking (Atp2a2, Ryr2, and Slc8a1), thus these proteins 
were not considered further. Simulated action potentials from sinus node 
cells corresponding to CTRL and HF conditions are shown in Figure 2D. 
The measured changes in ion channel abundances in HF mice resulted in 
a decrease in the rate of pacemaker action potentials by ∼21% (from 
364 to 286 beats/min). This compares favourably to the 20% decrease in 

Figure 1 Continued  
***P < 0.001, Mann–Whitney U test). Right, corrected sinus node recovery time after stimulation at a cycle length of 150 ms (cSNRT150; not significant, 

Mann–Whitney U test). Mean (±S.E.M.) shown as well as the individual data points (n = 7/6, 6/6, 6/6). (C ) Experimental workflow. HF was induced by 
TAC surgery and CTRL mice received a sham surgery. Eight weeks later, sinus nodes were isolated, proteins were extracted, digested, isobarically labelled 
using TMT and combined. Part of the combined sample was subjected to phosphopeptide enrichment prior to fractionation (for phosphoproteome meas
urement), part was fractionated directly (for proteome measurement) and then both were measured by LC-MS/MS. (D) Proteome measurements. Left, total 
number of proteins identified and quantified in the five CTRL and five HF samples. The number quantified in each sample is given. Right, two-dimensional 
principal component analysis of all samples showing a clear distinction between CTRL and HF samples along the first principal component. (E and F ) 
Functional enrichment analysis of significantly down-regulated proteins (E) and significantly up-regulated proteins (F ). Similar gene ontology biological process 
(GO BP) terms were grouped as indicated by the different colours in the pie chart and one representative term of each group is shown. The full lists of terms 
can be found in Supplementary material online, Figure S3. (G) Phosphoproteome measurements. Left, total number of phosphorylation events identified and 
quantified in the five CTRL and five HF samples. The number quantified in each sample is given. Right, two-dimensional principal component analysis of all 
samples showing a clear distinction between CTRL and HF samples along the first principal component.
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Figure 2 Sinus node ion channel protein expression is reduced and recapitulates reduced heart rate. (A) Differential protein expression analysis. Volcano 
plot shows log2 transformed fold change of protein abundances in HF compared to CTRL on the x-axis and −log10(t-test P-value) on the y-axis. 573 proteins 
were significantly differentially expressed; 246 proteins were reduced in HF (dark blue dots) whereas 327 proteins were increased (red dots). Proteins with 
q-value < 0.05 (i.e. 5% false discovery rate (FDR), equivalent to P < 0.019, indicated by horizontal dashed line) and absolute fold change > 1.3 (indicated by 
vertical dashed lines) were regarded as significantly differentially expressed. (B) Estimated cell type distribution of significantly down-regulated proteins in 
HF. Estimate is based on proteins with cell-type specific expression evaluated from single-nucleus RNAseq data.32 The bar chart shows a normalized count 
per cell type. (C ) Protein–protein interaction network of ion channel proteins. Nodes reflect proteins; each segment of the outer circle depicts a phosphopep
tide identified from that protein. Node colour reflects the logarithmic fold change of protein expression in HF. Colour of the outer circle segments reflects the 
logarithmic fold change of that phosphopeptide. Thickness of lines between nodes indicates interaction confidence based on STRING DB score.41
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the beating rate (from 380 to 303 beats/min) of the isolated sinus node 
from HF mice (Figure 1B). To simulate initiation and conduction of pace
maker action potentials, we constructed a one-dimensional model of the 
sinus node and surrounding atrial muscle (Figure 2E). In the sinus node seg
ment, each node (cell) was modelled by the Hu-Zhang model42 and in the 
atrial segments each node (cell) was modelled by equations from Aslanidi 
et al.43 In the control condition, the action potential was initiated in the 
centre of the sinus node and conducted to the atrial cells in both directions 
(Figure 2E). In the HF condition, although the conduction sequence was not 
changed, both the pacemaker rate and the conduction of the action poten
tial to the atrial muscle were slowed (Figure 2F and G) as observed in hu
mans with HF and in the mouse HF model. These results suggest that 
the reduction in ion channel protein abundance in HF may explain the de
creased heart rate in the animal model of HF.

3.3 Multi-modal data integration shortlists 
seven regulated proteins important for 
heart rate in humans
In the section above, we present evidence for ion channel down-regulation 
being a main contributor to the heart rate change in the animal model of 
HF. To evaluate which of the remodelled proteins in the mouse model 
are likely to also be important in humans, we intersected the measured 
proteomics data with matched, orthogonal datasets from humans. The 
aim was to identify remodelled proteins with evidence from orthogonal 
human-centric datasets to impact heart rate in humans. First, we inter
sected all regulated sinus node proteins (Figure 2A) and kinases (see 
Supplementary material online, Figure S3E) with genes significantly asso
ciated with heart rate. This was based on a genome wide association study 
(GWAS) performed on 480 000 human subjects identifying 390 loci (see 
Methods section and Supplementary material online, Table S3 for details). 
This data intersection pointed to 48 proteins with regulated abundance 
being encoded by genes in loci significantly associated with heart rate in hu
mans (Figure 3A, HR GWAS panel). Next to the human heart rate GWAS 
data, the protein abundance changes measured in this study are shown 
(Figure 3A, proteomics panel), as is information on sinus node cell-type ex
pression profile (Figure 3A, snRNAseq panel). As seen from the figure, heart 
rate associated proteins with reduced protein abundances in the HF model 
were predominantly expressed in sinus node myocytes.

We next asked if any of the 48 proteins, regulated in the mouse model of 
HF and expressed in a genetic locus associated with heart rate in humans, 
were targets of drugs reported to cause bradycardia (decreased heart 
rate) in patients. To this end, we interrogated pharmacovigilance data, focus
ing on drugs for which bradycardia has been reported as an adverse event 
and evaluated which on- and off-target proteins interact with these drugs. 
Accordingly, we queried the FDA Adverse Event Reporting System (FAERS) 
database to identify drugs that have a significantly elevated proportion of 
bradycardia adverse event reports. We employed a multivariable logistic re
gression model36 to determine which of these drugs have a significantly ele
vated odds ratio of bradycardia considering confounders such as sex, age, or 
other cardiac comorbidities. Twenty-five drugs showed a significantly in
creased odds ratio for bradycardia (Figure 3B). Subsequently, we utilized a 
drug–gene interaction database to determine protein interactors of each 
drug35 and intersected those with the 48 proteins in Figure 3A. The drugs 
with increased odds for bradycardia interact with nine of the 48 shortlisted 
proteins (Figure 3B; Supplementary material online, Table S4). We conducted 

a literature search for each drug–gene interaction to evaluate the evidence 
and classified them into three categories: strong evidence of interaction 
(22 drugs with four proteins), medium evidence of interaction (seven drugs 
with three proteins), and no evidence of interaction (two drugs with two 
proteins; Figure 3B; Supplementary material online, Table S4). The latter 
two were not considered further. Combining the outcome of the pharma
covigilance analysis with the multi-omics data intersection highlighted four 
proteins with strong evidence of drug–gene interaction, namely Hcn1, 
Hcn4, Kcnh2, and Chrm2 associated with bradycardia and three proteins 
with medium evidence of drug–gene interaction, namely Dsp, Cdh2, and 
Serpine1 associated with bradycardia (Figure 3A, FAERS + DGIdb panel).

Taken together, this analysis highlights seven proteins regulated in HF 
with SND in mice that may have a similar role in humans (Hcn1, Hcn4, 
Kcnh2, Chrm2, Dsp, Cdh2, Serpine1). Six of these proteins are either 
ion channels (Hcn1, Hcn4, and Kcnh2) or proteins directly affecting elec
trical activity (Chrm2, Dsp, and Cdh2). Three of them were already eval
uated in the computational modelling in the previous section (Hcn1, 
Hcn4, Kcnh2). All six proteins are targeted by drugs with increased odds 
for bradycardia, are predominantly expressed in sinus node myocytes eval
uated by snRNAseq data, and had decreased protein abundances in the HF 
model. We confirmed by genetic knockout experiments that these pro
teins are important for setting the heart rate (Figure 3C). We performed 
the latter evaluations in zebrafish because gene knockout experiments 
on zebrafish are rapid, and the electrophysiology of the zebrafish heart 
holds a significant similarity to that of higher mammals. We did not evaluate 
the functional consequences of eliminating Hcn1 and Hcn4, as they have 
both been investigated extensively by others and shown to significantly re
duce the heart rate44–46 In conclusion, the integration of the mouse protein 
remodelling data with complimentary human datasets once again highlights 
proteins involved in electrical activity.

3.4 Sinus node inflammation in HF is 
dominated by macrophage expansion
An important unknown is the identity of the driver of the remodelling, i.e. 
the immediate cause of SND in HF. To address this, we focused our atten
tion on the parts of the sinus node protein landscape that was up-regulated 
in HF. Functional enrichment analysis across all proteins with increased 
abundances pointed to an immune system response (Figure 1F). 
Inflammation-related proteins were significantly more abundant in HF, 
but their phosphorylation status was not changed (see Supplementary 
material online, Figure S7). Evaluation of the distribution of protein fold 
changes per cell type suggested an expansion of the macrophage popula
tion in the HF animals (see Supplementary material online, Figure S5C).

To investigate whether this is also the case for the human, post-mortem 
samples of the human sinus node were collected. The proteome of the si
nus node of human subjects with HF as the basic cause of death and human 
subjects without heart failure were compared. We evaluated the fold 
changes of macrophage proteins and found that the majority showed in
creased abundance in the sinus node of human failing vs. non-failing hearts 
(51 out of 63; Figure 4A and Supplementary material online, Table S6). The 
distribution of fold changes of macrophage proteins was significantly right- 
shifted (P = 6.64E−10; Figure 4A) indicating an increase of the macrophage 
population compared to that of other cell types. These results support ex
pansion of the macrophage population in the sinus node in the human in HF 
as observed in the mouse.

Figure 2 Continued 
(D) Simulated pacemaking action potentials in the unadjusted (black) and HF adjusted (red) conditions using the Hu-Zhang single-cell model. Graph shows the 
membrane voltage (mV) over a period of 400 ms. Inset shows the computed heart rate in the unadjusted model and HF adjusted model. (E) Simulated initiation 
and conduction of pacemaking action potentials using a one-dimensional (1D) tissue model of the sinus node and surrounding atrial muscle. Schematic diagram 
on the left illustrates the model design consisting of 3 mm atrial tissue on either side of 1.6 mm sinus node tissue. The right-hand panels show membrane 
potential (colour coded) along the length of the model over a period of 700 ms in the unadjusted model (left) and HF adjusted model (right). (F and G) 
Computed heart rate (F ) and computed sinoatrial conduction time (G) in the unadjusted model (black) and HF adjusted model (red) from the 1D tissue model.
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Figure 3 Pharmacovigilance analysis and multi-omics data integration highlights proteins linked to bradycardic phenotype in humans. (A) Proteins significantly 
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Focusing on the inflammatory response in the mouse model studied, 
we sought to couple the inflammatory response to a particular cell popu
lation. Intersecting the up-regulated proteins with a sinus node 
snRNAseq dataset suggested that the up-regulated proteins were pre
dominantly expressed by macrophages (Figure 4B, Supplementary 
material online, Figure S8A). To evaluate the inflammatory cells further, 
we utilised a scRNAseq dataset focused on immune cell populations pre
sent in the working myocardium in failing mouse hearts.34 Intersecting 
the up-regulated proteins with this dataset confirmed that macrophages 
were the predominant leucocyte population, and in particular 
Oncostatin-M positive (Osm+) M1-like macrophages as well as major 
histocompatibility complex class II positive (MHC-II+) resident macro
phages (Figure 4C, Supplementary material online, Figure S8B). Whereas 
a large body of experimental and clinical studies links inflammation to 
the pathogenesis of HF,47 such studies have not extended to the sinus 
node. To bridge this important knowledge gap, we queried the cellular 
profile involved in the immune response further. Immunolabelling for 
the pan-macrophage marker IBA-1 confirmed significantly increased 
numbers of macrophages in the sinus node in HF (Figure 4D). We tested 
whether there was altered expression of MHC-II+ and C-C chemokine 
receptor type 2 positive (CCR2+) macrophage subtypes that have 
been previously shown to be involved in remodelling following HF in
duced by TAC.48 Immunolabelling experiments showed significantly 
greater levels of both MHC-II and CCR2 in the sinus node in HF 
(Figure 4E and F ). In conclusion, our results demonstrate an immune re
sponse, and in particular an increased macrophage presence, in the sinus 
node in the mouse TAC model of HF.

3.5 Sinus node inflammation can affect 
electrical homeostasis
We sought to assess the functional significance of local inflammation and 
macrophage activation on sinus node function. To this end, sinus node pre
parations from mice were cultured in the presence of lipopolysaccharide 
(LPS), a potent stimulant of macrophages that acts via Toll-like receptor 
4.49 Sinus node preparations were incubated for 24 h in the presence or ab
sence of LPS using a previously established method.50 After incubation with 
LPS, as expected, there was evidence of a local pro-inflammatory response: 
an up-regulation of galectin-3 (Lgals3) protein, a 30 kDa β-galactoside-binding 
lectin and an inflammatory marker, as measured by western blot (Figure 5A, 
Supplementary material online, Figure S9) and an up-regulation in transcripts 
for two master pro-inflammatory cytokines, tumour necrosis factor alpha 
(Tnf) and interleukin-1 beta (Il1b), measured by qPCR (Figure 5B). As already 
shown (Figure 2A, Lgals3), in the sinus node in HF galectin-3 protein was also 
up-regulated (to 177% of CTRL); it is a challenge to detect low abundance 
cytokines by mass spectrometry and Tnf and Il1b were not detected in this 
study. After incubation with LPS, there was a down-regulation of Hcn4 tran
script (Figure 5C) as there was in the case of Hcn4 protein in the sinus node in 
HF (Figure 2A). Finally, intracellular recording of pacemaker action potentials 
by sharp microelectrodes showed that incubation with LPS resulted in a slow
ing of the intrinsic pacemaker activity of the sinus node, i.e. an increase of the 
cycle length (Figure 5D and E, Supplementary material online, Figure S9); this is 

equivalent to the decrease of the intrinsic heart rate in HF (Figure 1B). 
Spontaneous early afterdepolarisations were also observed in the sinus 
node incubated with LPS (Figure 5D). These data show that local inflammation 
in the sinus node has direct functional consequences for sinus node electrical 
activity.

3.6 Targeting pro-inflammatory galectin-3 
signalling ameliorates SND in HF
The results presented above suggest a novel mechanism linking inflamma
tion and electrical activity of the sinus node. Therefore, modulation of the 
inflammatory response may present a potential strategy to mitigate SND in 
HF. We thus evaluated all the regulated inflammatory proteins in the 
proteomics data for a potential therapeutic target and ultimately decided 
on galectin-3 (see Figure 2A). Galectin-3 is a pro-inflammatory protein 
expressed and secreted by macrophages51 and has emerged as an 
important regulator of pathophysiological remodelling in HF.52–54 We 
hypothesized that inhibition of galectin-3 may prevent or delay the onset 
of SND in HF.

To test this, we randomised CTRL and HF animals into anti-galectin-3 
treated and untreated groups. Animals in the anti-galectin-3 treated group 
received MCP, a complex water-soluble indigestible polysaccharide rich in 
β-galactose, shown to be effective in suppressing circulating and cardiac 
tissue levels of galectin-3.55 Mice in the treatment group were dosed 
starting from the day of surgery and continuing until the experimental 
endpoint (Figure 6A). We verified that treatment was effective by assessing 
sinus node protein expression levels of fumarate hydratase (see 
Supplementary material online, Figure S10), natively down-regulated by 
galectin-356 and recently used to confirm the efficacy of MCP dosing in 
drinking water.57 Immunolabelling for the pan-macrophage marker IBA-1 
demonstrated that the significant expansion of macrophages in the sinus 
nodes in HF was partly mitigated by MCP treatment (see Supplementary 
material online, Figure S11).

The heart rate, measured in vivo in conscious and unrestrained mice on 
the day of termination, demonstrated that MCP treatment blunted the heart 
rate reduction seen in the untreated HF animals (Figure 6B)—whereas there 
was a significant reduction in heart rate of HF animals receiving vehicle, this 
heart rate difference was no longer apparent between the groups receiving 
MCP treatment. This was also reflected in a reduction in heart rate differ
ence in consequence to HF for the animals receiving MCP treatment com
pared to those that received vehicle (Figure 6B, right). To evaluate intrinsic 
heart rate, high resolution unipolar multielectrode array mapping (500 μm 
interelectrode distance) of the electrical activity was carried out on the 
endocardial surface of isolated sinus node preparations from the four groups 
of animals. The intrinsic heart rate was significantly reduced consequent to 
HF in animals receiving vehicle, but this reduction was mitigated in 
MCP-treated HF animals (Figure 6C, left). Similarly, prolongation of the 
cSNRT seen in untreated HF animals was absent in HF animals receiving 
MCP (Figure 6C, right).

Analysis of activation maps demonstrated that HF hearts had an inferior 
leading pacemaker site as well as slower sinoatrial conduction than CTRL 
animals, which had a leading pacemaker site in the superior intercaval 

Figure 3 Continued 
drug–gene interaction database (DGIdb) with strong (green) or medium (yellow) evidence of drug–gene interaction. (B) Logistic regression analysis of odds 
ratios for drugs with bradycardia reported as adverse event. Black dot, intercept; grey dots, confounders; turquoise dots, significantly elevated odds ratio; pur
ple dots, non-significant odds ratios. Text colour of gene names indicates level of evidence of the interaction between drug and protein based on literature. 
Green, strong evidence; yellow, medium evidence; red, no evidence (see also Supplementary material online, Table S3). (C ) Functional evaluation of heart rate 
(in beats/min, bpm) after gene knockout in zebrafish. Movies of the cardiac cycle were acquired from 10 dpf transparent embryos, from which a signal encoding 
motion due to chamber contraction was extracted and signal peaks corresponding to individual contractions identified (exemplar, left). Boxes indicate inter- 
quartile ranges, red lines indicate medians and whiskers show most extreme data out to 1.5× inter-quartile range. Points in the boxplots correspond to in
dividual zebrafish embryos. P-values are shown (Mann–Whitney U test). Compared to control siblings (WT), knockout of Dsp, Kcnh6 (zebrafish cardiac 
functional corollary of Kcnh2) and Cdh2 led to a reduced heart rate, whereas knockout of Chrm2 lead to an increased heart rate.
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Figure 4 Linking local inflammation and macrophage expansion with SND in HF. (A) Sinus node proteome measurements from human subjects with HF as 
the cause of death (n = 4) and human subjects without HF (n = 3). Left, volcano plot shows log2 transformed fold change of sinus node protein abundance in the 
diseased vs. control condition on the x-axis and the −log10(t-test P-value) on the y-axis. Red dots indicate proteins that are predominantly expressed by macro
phages based on human and mouse snRNAseq data. 51/63 macrophage proteins showed increased abundance in human HF sinus nodes. Top right, repre
sentative H&E stain of human atrial tissue section. Sinus node outlined in red. Scale bar 2 mm. Bottom right, distribution of fold changes of macrophage 
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region near the opening of the superior vena cava and faster sinoatrial con
duction (Figure 6D; Supplementary material online, Figure S12). The 
HF-induced changes to the leading pacemaker site and sinoatrial conduc
tion were abrogated by MCP treatment (Figure 6D; Supplementary 
material online, Figure S12). Unipolar fractionated electrograms— 
indicative of structural and electrical remodelling resulting in asynchronous 
activation of myocytes58—were significantly more prevalent in untreated 
HF animals (Figure 6E). The incidence of complex fractionated electro
grams was restored to CTRL levels in the HF group receiving MCP treat
ment (Figure 6E; Supplementary material online, Figure S12). Taken 
together, these studies show that early and sustained pro-inflammatory 
galectin-3 suppression is effective in preventing SND in HF.

Galectin-3 suppression ameliorated HF in other ways as well: as expected, 
left ventricular functional parameters—ejection fraction and GLS—were sig
nificantly worse in HF in untreated animals. However, in HF, the decrease in 
ejection fraction was partially mitigated and the decrease in GLS was no long
er significant in the MCP-treated group (Figure 6F and G). MCP treatment 
altered the heart failure phenotype: in HF, whereas the left ventricle internal 
diastolic diameter and end-diastolic volume were significantly increased in 
untreated animals, these parameters were restored to control levels in 
the MCP-treated group (Figure 6H and I). Instead, in HF, MCP-treated ani
mals presented with a significant increase in the left ventricle relative wall 
thickness (Figure 6J and K). These findings indicate that MCP treatment de
layed the transition from a hypertrophic to a dilated cardiomyopathy.

Figure 4 Continued 
(B) Estimated cell type contribution for significantly up-regulated proteins in HF mice. Estimate is based on proteins with cell-type specific expression evaluated 
from single-nucleus RNAseq data from murine sinus node.32 The bar chart shows the normalized count of proteins for each cell type. (C ) Same as panel B, but 
based on scRNAseq data from Martini et al.34 (D) Immunolabelling of the pan-macrophage marker IBA-1. Left, representative immunolabelling of IBA-1 (green 
signal) and DAPI (nuclear marker; blue signal) in sinus node preparations of CTRL and HF animals. The sinus node is outlined by the white dotted lines. Scale bar, 
100 μm. Right, expression of IBA-1. The mean ± S.E.M. (as well as individual data points) percentage of IBA-1 positive pixels per sinus node tissue area in sinus 
node preparations from CTRL and HF animals is plotted (n = 10/11 sections taken at 200 µM intervals of the intercaval region from three animals per group). 
*P < 0.05 (Mann–Whitney U test). (E) Representative DAPI (nuclear stain), CCR2 and MHC-II immunolabelling (and composite image) of sinus nodes from 
sham-operated and TAC mice. Scale bar = 50 μm. (F ) Summary data derived from images such as those in the top panel showing CCR2+ and MHC-II+ im
munolabelling (plus the sum of the two) as a percentage of the DAPI signal. ∼11 slides from three mice animals per group were analysed. Means ± S.E.M. 
as well as individual data points shown. *P < 0.05, **P < 0.01 (Mann–Whitney U test, n = 10/11).
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4. Discussion
In this study, we investigated protein remodelling of the sinus node in 
an animal model of HF and concurrent SND. Our evaluation of sinus 
node protein remodelling was based on quantitative information 
from 6406 proteins. Pursuing a data-driven strategy to shortlist remod
elling of likely relevance also for SND in humans, we intersected the 
proteome remodelling data with human GWAS data on heart rate. 
This highlighted 48 proteins, several of which are well known for their 
impact on heart rate, whereas others are less studied in this context. 
For some of the less studied proteins, there is evidence from animal 
models that they may indeed influence heart rate, e.g. reduced abun
dance of Slc26a6 (responsible for an electrogenic Cl−/HCO3

− exchan
ger in the heart) causes sinus bradycardia in mice.59 To further 
prioritize among the 48 shortlisted proteins, we focused on those 
that interact with drugs with significantly elevated odds ratio of brady
cardia as a reported side effect. Of these, three proteins are ion chan
nels (Hcn1, Hcn4, and Kcnh2), a receptor (Chrm2), two intercalated 
disc proteins involved in myocyte coupling (Cdh2 and Dsp), and a 
fibroblast protein involved in the pathophysiology of fibrosis 
(Serpine1). Here, we focused on the six proteins coupled to electrical 
homeostasis. The presence of Hcn1, Hcn4, and Kcnh2 in this list is not 
a surprise: we showed that knockdown of the Kcnh2 functional corol
lary in zebrafish caused bradycardia and other independent studies 
have shown that knockout or inhibition of these channels causes a de
crease in sinus node pacemaking.44–46,60 Furthermore, all three chan
nels were included in the computer modelling that predicted sinus 
bradycardia consequent to the measured ion channel down-regulation. 
Down-regulation of ion channels in the sinus node of failing hearts is 
consistent with previous studies.11,25,26,61,62 The presence of interca
lated disc proteins (Cdh2 and Dsp) is also in line with current under
standing. The intercalated disc plays a central role in the transmission 
of force, action potential conduction and chemical communication be
tween cardiomyocytes and has been strongly implicated in HF.63

Conditional knockout of Cdh2 in mice has been reported to reduce 
heart rate and slow conduction64,65 and absence of Dsp in the sinus 
node has been shown to cause sinus pauses and dysfunction.66 We fur
ther strengthened the experimental support for both proteins: knock
down of the two proteins in zebrafish resulted in reduced heart rates. 
Down-regulation of the cardiac ACh receptor (Chrm2) in a heart fail
ure with bradycardia model is counterintuitive, as Chrm2 loss would 
be expected to increase resting heart rate, as confirmed by knockout 
in zebrafish. However, down-regulation of Chrm2 may be part of the 
decline in vagal control and concurrent elevated resting heart rates ob
served in early stages of heart failure.67 In summary, (i) the proteomics 
showing a down-regulation of proteins related to electrical activity in 
HF, (ii) the data-driven strategy to shortlist HF-remodelled proteins 
likely to impact heart rate, (iii) the effect on heart rate of knockout 
of HF-remodelled ion channels in the zebrafish, and (iv) computer 

modelling of sinus node electrical activity incorporating the observed 
down-regulation of ion channel proteins in HF shows that the remod
elling of ion channels likely underlies the SND in HF.

Utilising the information in the proteomics dataset, we addressed the 
trigger of sinus node remodelling changes in HF. We were intrigued to 
find that the predominant signal among up-regulated proteins came 
from an inflammatory response, which in particular pointed to an expan
sion of the macrophage population. We confirmed this by classical immu
nolabelling. In the working myocardium, the role of inflammation in HF 
pathogenesis is well established, and dynamic interplay between inflam
mation and fibrosis with activation of the innate and adaptive immune sys
tems has been described.47,68–71 For example, Martini et al.34 showed 
that the working myocardium in HF is characterized by recruitment of di
verse immune cell populations, notably M1-like CCR2+ Osm+ Il1b+ 

macrophage populations. Lavine et al.72 has reported that the non-failing 
mouse heart contains two resident macrophage (MHC-IIlowCCR2−, 
MHC−IIhighCCR2−) subsets and one monocyte-derived macrophage 
(MHC-IIhighCCR2+) subset and, post-injury, there is recruitment of 
MHC-IIhighCCR2+ monocyte-derived macrophages.72 Furthermore, Patel 
et al.48 have reported that, in the mouse TAC model, there is an ∼8-fold in
crease in CCR2+ macrophages, and this is responsible for adverse cardiac re
modelling and the transition to HF. In a mouse myocardial infarction model 
of HF, macrophage expansion in the non-ischaemic remote zone has been 
attributed to recruitment of monocyte-derived macrophages driven by in
creased expression of cell adhesion molecules responsible for leucocyte traf
ficking: intercellular adhesion molecule 1 (Icam1), vascular cell adhesion 
molecule 1 (Vcam1) and E- and P-selectin; their silencing in vivo curbed 
monocyte recruitment and preserved the ejection fraction.73 In the sinus 
node of the HF mice, all four identified adhesion molecules were up- 
regulated (see Supplementary material online, Figure S7C), and we observed 
increased levels of MHC-II and CCR2+ macrophages suggesting a similar 
mechanism in the sinus node.

Furthermore, we addressed the functional link between inflammation, 
specifically macrophage activation, and the electrical properties of the sinus 
node. We report that exposure of isolated sinus node preparations to LPS, 
which activates macrophages via Tlr4 signalling,49 and leads to an increase 
in protein abundance of galectin-3, results in a down-regulation of Hcn4 
and a slowing sinus node pacemaking. This is plausible—it is known that 
LPS-induced changes in pro-inflammatory cytokines result in changes in 
cardiac ion channel expression and function.74

Having observed a functional coupling between sinus node inflammation 
and electrical remodelling, the question that immediately presents is 
whether modulation of the macrophage-mediated inflammatory response 
could mitigate SND. As a first step, we adopted a loss-of-function 
approach centred on galectin-3 as it co-localises with activated macro
phages in the heart75,76and mediates pro-inflammatory and profibrotic 
processes.55,77,78 Furthermore, up-regulation of galectin-3 has been de
monstrated in failing human hearts,75 and prognostic studies show that 
an increased circulating level of galectin-3 is an independent predictor of 

Figure 6 Continued  
test); ns, not significant. The spontaneous beating rate and cSNRT in vehicle-treated CTRL and HF animals are reproduced from Figure 1B. (D) Effect of MCP 
treatment on the change in the position of the leading pacemaker site in HF. Points show the estimated position of the leading pacemaker site in vehicle-treated 
and MCP-treated CTRL and HF mice (n = 6/6/6/7). The position of the leading pacemaker site was derived from activation maps such as those shown in 
Supplementary material online, Figure S12. (E) Effect of MCP treatment on electrogram (EGM) fractionation. Top, representative EGMs illustrating a normal 
EGM and a complex fractionated EGM. A unipolar EGM recorded at a site where an activation front passes the electrode results in a biphasic deflection 
(marked by green circles). Bottom, mean ± S.E.M. (as well as individual data points) fractionation ratio given as number of normal (left) or complex fractionated 
(right) EGMs compared to the total number of EGMs in vehicle-treated and MCP-treated CTRL and HF mice (n = 6/6/6/7). **P < 0.01 (two-way ANOVA with 
Tukey’s multiple comparisons test); ns, not significant. (F ) Representative B-mode echocardiographic images taken in end diastole in parasternal long-axis view. 
Red traces indicate the endocardial border and yellow traces the epicardial border. (G–K ) Effect of MCP treatment on the changes in heart function in HF. 
Mean ± S.E.M. (as well as individual data points, n = 6/5/7/6) ejection fraction (G), global longitudinal strain (GLS, H ), left ventricle internal diastolic diameter 
(LVIDd, I ), left ventricle end-diastolic volume (J ), and left ventricle relative wall thickness (K ) are shown in untreated (control) and MCP-treated sham-operated 
and TAC mice. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (two-way ANOVA followed by Tukey’s multiple comparisons test).

Inflammation drives sinus node dysfunction in heart failure                                                                                                                                         939
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/article/120/8/927/7658080 by U
trecht U

niversity O
R

IL user on 22 August 2024

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae054#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae054#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae054#supplementary-data


adverse cardiovascular outcomes in both acute and chronic HF.79,80 Our 
finding that systemic galectin-3 inhibition in HF blunts the decrease in 
the normal heart rate in vivo, abolishes the decrease of the intrinsic heart 
rate, abolishes the increase in the sinus node recovery time, restores the 
leading pacemaker site to a superior region, and likely prevents structural 
changes that result in fractionated electrograms, establishes a direct link 
between inflammation and SND in HF. The shift of the leading pacemaker 
site in the sinus node is common and occurs in response to many interven
tions; in humans, it is referred to as the ‘wandering pacemaker’.81

Pacemaker shift is a consequence of the heterogeneity of the sinus 
node—the electrophysiology of the sinus node varies from the centre to 
the periphery of the node as well as from the superior to the inferior ex
tent of the node81 likely as a result of regional differences in ion channel 
expression and ionic current densities.81,82

Our findings of beneficial effects on sinus node function of systemic 
galectin-3 inhibition are in line with previous work showing that 
galectin-3 inhibition by systemic delivery of MCP, as performed in 
this study, suppresses inflammation and prevents structural remodel
ling in animal models of HF including myocardial infarction,57 aortic 
stenosis,83 isoproterenol-induced HF,55 obesity-related cardiomyop

athy,84 and hyperaldosteronism77; in this study, galectin-3 inhibition 
also suppressed structural remodelling (Figure 6F–K). Furthermore, 
Takemoto et al.85 demonstrated that IK,ur remodelling in a sheep mod
el of atrial fibrillation could be abrogated by treatment with galacto
mannan, which inhibits galectin-3 akin to the mode of action of 
MCP. Galectin-3 inhibition could be a potential therapy for SND in 
HF. However, further focused studies on understanding the involve
ment of macrophages and galectin-3 in nodal pathophysiology in large 
animal models of HF and in human patients are critical in determining 
potential translational value. For example, it cannot be ruled out that 
the effects of galectin-3 inhibition on the sinus node are secondary 
to the reduction in structural remodelling rather than a direct effect 
of the sinus node.

In conclusion, this study demonstrates that SND in HF is the likely con
sequence of a down-regulation of proteins involved in the electrical activity 
in the sinus node, but importantly, this study also directly links macrophage 
expansion to the molecular remodelling that underlies SND in HF. Local 
inflammation in general and galectin-3 signalling in particular present a no
vel target to treat SND in HF.

Limitations of the study are discussed in the Supplementary material.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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Translational perspective
Heart failure patients with sinus node dysfunction (SND) face an increased risk of mortality, yet the underlying molecular mechanisms are poorly 
understood. This study reveals extensive protein and phosphorylation remodelling in the sinus node in mice with heart failure and SND. We highlight 
down-regulation of specific ion channels as key contributors and utilise multi-omics data integration to pinpoint protein dysregulation likely relevant to 
SND in humans. Additionally, our data suggest inflammation as a driver of electrophysiological remodelling and identify galectin-3 as a potential thera
peutic target. These findings offer insight into the molecular basis of SND in heart failure and could facilitate the development of new therapies.
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