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Abstract: Rationale. Object tracking has significance in many applications ranging from control of
unmanned vehicles to autonomous monitoring of specific situations and events, especially when
providing safety for patients with certain adverse conditions such as epileptic seizures. Conventional
tracking methods face many challenges, such as the need for dedicated attached devices or tags, influ-
ence by high image noise, complex object movements, and intensive computational requirements. We
have developed earlier computationally efficient algorithms for global optical flow reconstruction of
group velocities that provide means for convulsive seizure detection and have potential applications
in fall and apnea detection. Here, we address the challenge of using the same calculated group
velocities for object tracking in parallel. Methods. We propose a novel optical flow-based method
for object tracking. It utilizes real-time image sequences from the camera and directly reconstructs
global motion-group parameters of the content. These parameters can steer a rectangular region
of interest surrounding the moving object to follow the target. The method successfully applies to
multi-spectral data, further improving its effectiveness. Besides serving as a modular extension to
clinical alerting applications, the novel technique, compared with other available approaches, may
provide real-time computational advantages as well as improved stability to noisy inputs. Results.
Experimental results on simulated tests and complex real-world data demonstrate the method’s
capabilities. The proposed optical flow reconstruction can provide accurate, robust, and faster results
compared to current state-of-the-art approaches.

Keywords: object tracking; velocity flow reconstruction; target motion recognition

1. Introduction

The method presented in the current paper addresses medical applications where
the strategic goal is to provide better medical care through real-time detection, warning,
prevention, diagnosis, and treatment. The specific task is to detect seizures in people who
have epilepsy.

Epilepsy is a neurological disease whose symptoms are sudden transitions from
normal to pathological behavioral states called epileptic seizures, often accompanied by
rhythmic movements of body parts. Some of these seizures may lead to life-threatening
conditions and ultimately cause Sudden Unexplained Death in Epilepsy (SUDEP).

Therefore, medical treatment involves continuous observation of individuals for long
periods to obtain sufficient data for an adequate diagnosis and to plan therapeutic strategies.
Some people, especially those with untreatable epileptic conditions, may need long-term
care in specialist units to allow early intervention that prevents complications.

We have developed and implemented an earlier method that detects motor seizures in
real time using remote optical sensing by video camera. Human video surveillance is used
successfully for monitoring patients, but it poses certain societal burdens and costs and

Information 2024, 15, 296. https://doi.org/10.3390/info15060296 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15060296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0003-5383-3030
https://orcid.org/0000-0003-0205-585X
https://orcid.org/0000-0002-6399-3551
https://orcid.org/0000-0002-9220-9789
https://orcid.org/0000-0002-7028-7778
https://doi.org/10.3390/info15060296
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15060296?type=check_update&version=2


Information 2024, 15, 296 2 of 20

creates ethical issues related to privacy. Epilepsy patients are sick people who are often
stigmatized and sensitive to privacy issues. Therefore, it is necessary to use only remote
sensing devices (i.e., no contact with the subject) such as video cameras and automated
video processing.

The method was published [1], and its modification is currently used in medical
facilities with validated detection success. It uses a spectral modification of the classical
optical flow algorithms with an original, efficient algorithm (GLORIA) to reconstruct global
optical flow group velocities. These quantities also provide input for detecting falls and
non-obstructive apnea [2,3]. However, the technique only works in static situations, for
example, during night observations when the patient lies in bed. When the patient changes
position, for example, during daytime observation, the operator has to adjust either the
camera’s field of view with PTZ (pen-tilt zoom) or the region of interest (ROI). Here, we
address the challenge of developing and embedding patient-tracking functionality in our
system. We approach this task using the same group velocities provided by the GLORIA
algorithm. This way, we avoid introducing extra computational complexity that may
prevent the system from being used in real-time. To the best of our knowledge, this is a
novel video-tracking approach and constitutes the main contribution of this work. Below,
we acknowledge other works related to video tracking, but none of them can directly utilize
the group velocities that also provide input for our convulsive seizure detection algorithm.

Real-time automated tracking of moving objects is a technique with a wide range of
applications in various research and commercial fields [4]. Examples include self-driving
cars [5,6], automated surveillance for incident detection and criminal activity [7], traffic
flow control [8,9], interfaces for human–computer interactions and inputs [10–12], and
patient care, including intensive care unit monitoring and epileptic seizure alerts [1,13].

Generally, there are different requirements and limitations when one attempts to
track a moving object, such as noise in the video data, complex object movement, occlu-
sions, illumination changes between frames, and processing complexity. Many object-
tracking methods involve particular tracking strategies [14–17], including frame difference
methods [18], background subtraction [19], image segmentation, static and deep learn-
ing algorithms [20,21], and optic flow methods. All the methods have advantages and
disadvantages, and the choice depends on the specific task.

In the current work, we propose a method based on direct global motion parameter
reconstruction from optical camera frame sequences. As noted above, the main reason
for focusing on such a method is that it uses already calculated quantities as part of the
convulsive seizure detection system. This method avoids intensive pixel-level optic flow
calculation and thus provides computationally efficient and content-independent tracking
capabilities. Tracking methods that use the standard pixel-based optic flow reconstruc-
tion [22,23] suffer from limitations caused by relatively high computational costs and
ambiguities due to the absence of sufficient variation of the luminance in the frames. We
propose a solution to these limitations using the multi-spectral direct group parameter
reconstruction algorithm GLORIA, developed by our group and introduced in [24]. The
GLORIA algorithm offers the following advantages compared to other optic flow-based
tracking techniques: (A) It directly calculates the rates of group transformations (such
as, but not limited to, translations, rotation, dilatation, and shear) of the whole scene.
Thus, it avoids calculating the velocity vector fields for each image point, lowering com-
putational requirements. (B) Unlike the standard intensity-based algorithms, we apply
a multi-channel method directly using co-registered data from various sources, such as
multi-spectral and thermal cameras. This early fusion of sensory data features increases
accuracy and decreases possible ambiguities of the optic flow inverse problem.

Our objective for the particular application here is to track a single object that moves
within the camera’s field of view. We introduce a rectangular region of interest (ROI with
a specific size around the object we plan to track). This GLORIA method then further
accurately estimates how the object moves. Subsequently, the novel algorithm proposed
here adjusts the ROI accordingly. Using an ROI also helps reduce the size of the images
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for optical flow estimation and limits the adverse effects of any areas with high levels
of brightness change outside the ROI. It also automatically disregards movements of no
interest to us outside the specified area. In short, our approach reduces the tracking problem
to a dynamic ROI steering algorithm.

The present work is part of a more extensive study on autonomous video surveillance
of epilepsy patients. Tracking how a patient moves can further improve results related to
seizure detection from video data [1]. The proposed method, however, is not limited to
use only in health care but can successfully apply to other scenarios related to automated
remote tracking. The term “remote” here (as well as throughout the rest of this paper)
relates to “remote sensing” and is used to indicate that the optical sensor (camera) used for
object tracking is positioned remotely (i.e., not attached to the object of interest).

The rest of the paper is organized as follows. The next section introduces the proposed
original tracking method. Then, we present our results from both simulated and real-world
image sequences. We also apply the novel method to a sequence from a publicly available
dataset (LaSoT). The outcome from all the examples provides quantitative validation of the
algorithm’s effectiveness and qualitative illustrations. Finally, in the Discussion section, we
comment on the features, possible extensions, and limitations of the proposed approach
to tracking.

2. Methods
2.1. Optic Flow Reconstruction Problem

The algorithm presented in the current work uses motion information reconstructed
from the optic flow in video sequences. Optical flow reconstruction is a general technique
that enables determining the spatial velocities of a vector field from changes in luminance
spectral intensities between sequential observed scenes (frames). Here, we briefly introduce
optic flow methods, leaving the details to the dedicated literature [25–33].

We denote the pixel content in a multi-spectral image frame as Fc(x, y, t), where (x, y, t)
are the spatial coordinates and the time, and c is the spectral index, most commonly labeling
the R, G, and B channels. Assuming that all changes in the image content in time are due to
scene deformation and defining the local vector velocity (rates of deformation) vector field
as v(x, y, t), the corresponding image transformation is:

dFc

dt
= −∇Fc·v ≡ ∇vFc (1)

In Equation (1), ∇v is the vector field operator, (x, y) are the two-dimensional spa-
tial coordinates in each frame, and t is the time or frame number. The velocity field can
determine a large variety of object motion properties such as translations, rotations, dilata-
tions (expansions and contractions), etc. In the current work, however, we do not need
to calculate the velocity vector field for each point, as we can directly reconstruct global
features of the optic flow, considering only specific aggregated values associated with it.
In particular, we are interested in the global two-dimensional linear non-homogeneous
transformations consisting of translations, rotations, dilatations, and shear transformations.
Therefore, we use the Global Optical-flow Reconstruction Iterative Algorithm “GLORIA”,
which was developed previously by our group [3]. The vector field operator introduced in
Equation (1) takes the following form:

∇v ≡ v·∇ ≡ ∑
k

vk∇k; ∇kFc ≡ ∂Fc

∂xk
(2)

The Equation (2) representation can be helpful when decomposing the transformation
field v as a superposition of known transformations. If we denote the vector fields corre-
sponding to each transformation generator within a group as vu, and the corresponding
parameters as Au, then:

v ≡ ∑
u

Auvu (3)
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With Equation (3) one may define a set of differential operators for the group of
transformations that form a Lie algebra:

Gu ≡ ∑
k

vu
k∇k (4)

As a particular case, we apply Equation (4) to the group of three general linear non-
homogeneous transformations in two-dimensional images that preserve the orientation of
the axes and the ratio between their lengths:

Gtranslationx = ∇x;
Gtranslationy = ∇y;

Gdilation = x∇x + y∇y;[
Gtranslationx , Gtranslationy

]
= 0;[

Gtranslationx , Gdilation
]
= Gtranslationx ;

[
Gtranslationy , Gdilation

]
= Gtranslationy .

(5)

Here, [a, b] = ab − ba denotes the commutator between two operators. The last two
lines of Equation (5) give the commutation relations between the group generators that
form a Lie algebra.

In particular, the action of the group described by Equation (5) on the spatial coordi-
nates (x, y) is (x, y) → (

(
1 + Adilatation

)
x + Atranslationx ,

(
1 + Adilatation

)
y + Atranslationy ).

It is obvious that the above transformation preserves the aspect ratio and orientation
of the image axes. This property of the generating Lie algebra is important for the specific
target applications, as discussed in the next section.

2.2. Region of Interest (ROI) Transformations

Using GLORIA, the amplitudes Au for each of the three transformation vector fields
are the solution to the global transformation optic flow inverse problem. These amplitudes
represent the rate of each type of movement as defined by Equation (4). These amplitudes,
along with the coordinates of the initial region R1 of interest (corner and center points), can
be used to determine iteratively the coordinates of the subsequent region of interest R2.
Figure 1 illustrates the changes in ROI due to the impact of each group transformation.
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Figure 1. ROI evolution, based on the values of the global transformation parameters. The figure
shows the three elementary motions of the points of the ROI—corner points (xi, yi) for i = 1 . . . 4;
center coordinates of the ROI (xc, yc). (a) Translation along the x-axis. (b) Translation along the
y-axis. (c) Dilatation or “scaling” of the ROI.

The movement of an object can be followed using the values of the group transfor-
mations reconstructed from the GLORIA algorithm by updating the ROI after each (or a
set number of) frame(s). The general process can be summarized in the following steps:
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initial region of interest selection, calculation of global motion parameters for each two
consecutive frames, and update of the ROI’s position based on the calculation results.

The diagram presented in Figure 2 outlines the entire tracking process. A camera
is used to acquire the video feed. Objects of interest in the field of view are singled out
through ROI selection (or PTZ control of the camera). Optic flow information from their
specific movement is acquired and used to update the ROI iteratively for each subsequent
pair of video frames, realizing the tracking of a person or an object of interest. The tracking
algorithm is specifically designed to be lightweight so that it can run in parallel with
detectors in a medical (or patient monitoring) setting, such as epileptic seizure detection,
apnea detection, and more. This can be computationally efficient as such detectors also
rely on optic flow analysis. While we note that the sharing of optic flow information for
the simultaneous running of multiple patient monitoring detectors is a possible future
direction, such discussion goes beyond the scope of the present work.
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Figure 2. Diagram of the tracking process. The black boxes represent data, and the orange ones
the processing steps. The initial region of interest (RoI) is specified in the first frame by an operator.
Following the selection of center coordinates and size of the RoI, global motion parameters are
calculated for each two consecutive frames, and the RoI is updated for the next frame based on the
calculation results. The calculated optical flow group transformation rates can then be used to track a
person’s movement. This method can run in parallel, serving as a pre-processing module, to various
detectors, such as the ones enlisted in the green box.

The method in this work can be applied to any group of transformations. Our choice
here is on the two translation rates and the dilatation (a global scale factor quantity) that are
provided by the first three generators from Equation (5). We mark them as Ti

x and Ti
y for the

translations and Di for the dilatation, where i indicates which two consecutive frames were
used for the calculation. We restrict the current method to only these three transformations
because we do not intend to rotate the ROI with the tracked object nor change the ratio
between the ROI dimensions. In this way, our method is directly applicable to a situation
where pan, tilt, and zoom (PTZ) hardware actuators are affecting the camera field of view
that corresponds to the two translations (pen and tilt) and the dilatation (the zoom). Next,
we define the values that will parametrize the extent of our ROI. These values, related to
the rectangular ROI in Figure 3, are its width and length

(
L1

x, L1
y

)
.
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Figure 3. Coordinates and size of rectangular ROI. The center point of the ROI has coordinates
(xc, yc), while the corner points are marked as (xi, yi), for i = 1–4.

They relate to the corner points of the ROI by Equation (6):

L1
x = X1

2 − X1
1 = X1

4 − X1
3

L1
y = Y1

4 − Y1
2 = Y1

3 − Y1
1

(6)

The first step of our algorithm then becomes the selection of the coordinates of the
center (X1

C, Y1
C) and the width and length

(
L1

x, L1
y

)
of a region of interest R1 from the

initial frame in the video sequence or live feed.
Using the same region of interest in the next frame, we calculate the global rates of

translation
(

T1
x , T1

y

)
and the dilatation D1 by applying the GLORIA algorithm between the

two frames. The center and sizes of the subsequent region of interest R2 are then defined
by the elements of the initial frame, and the values are calculated by GLORIA according to
the following set of equations:

X2
C = X1

C + T1
x ; Y2

C = Y1
C + T1

y
L2

x = L1
x ∗

(
1 + D1); L2

y = L1
y ∗

(
1 + D1) (7)

Equation (7) allows us to track an object by adjusting the ROI containing the object
with each following frame. In particular, if a PTZ steerable camera is used, the changes in
the ROI’s center coordinates in the X and Y direction would require pan and tilt actions to
re-center the scene, and changes in the ROI’s size due to the dilatation would translate into
a zoom-in or zoom-out action. This process is repeated for all subsequent frames, updating
the ROI’s elements along the way.

2.3. Evaluation of the ROI Tracking Performance

We introduce several quantities to assess the proposed method’s accuracy and working
boundaries. The first one reflects a combination of the absolute difference between the
center coordinates of the moving

(
Ci

xTrue, Ci
yTrue

)
object and the calculated values of the

center coordinates
(

Ci
xGloria, Ci

yGloria

)
of the ROI, as well as the absolute differences between

the true Li
xTrue and calculated Li

xGloria values of the dimensions of the ROI:

∆Ci
x =

√(
Ci

xTrue − Ci
xGloria

)2; ∆Ci
y =

√(
Ci

yTrue − Ci
yGloria

)2

∆Li
x =

√(
Li

xTrue − Li
xGloria

)2; ∆Li
y =

√(
Li

yTrue − Li
yGloria

)2

∆Ci =
√

∆Ci2
x + ∆Ci

y
2; ∆Li =

√
∆Li

x
2
+ ∆Li

y
2

∆i =

√
∆Ci2 + ∆Li2

(8)



Information 2024, 15, 296 7 of 20

We use these values to determine the maximum velocities of moving objects that can
be registered with the method. They only apply when the ROI’s ground truth coordinates
and sizes are known, for example, when dealing with synthetic test data. To assess the
average deviation between the true position of the moving object and the detected one for
a given tracking sequence, we define the following quantity:

∆Cx =
1
F

(
F
∑

i=1
∆Ci

x

)
; ∆Cy =

1
F

(
F
∑

i=1
∆Ci

y

)
∆Lx =

1
F

(
F
∑

i=1
∆Li

x

)
; ∆Ly =

1
F

(
F
∑

i=1
∆Li

y

)
∆C =

1
F

(
F
∑

i=1
∆Ci

)
; ∆L =

1
F

(
F
∑

i=1
∆Li

)
∆Total =

√
∆Ly

2 + ∆Lx
2 + ∆Cx

2 + ∆Cy
2

(9)

In Equation (9), F is the total number of frames, and the values in brackets are the
summed values of Equation (8) for the corresponding number of frames. Equation (9)
represents the average values of Equation (8) for F frames. We apply the measure in
Equation (9) to explore the influence of the background image contrast on the accuracy of
our tracking algorithm. Image contrast is defined, following [34], as the root-mean-square
deviation of the pixel intensity from the mean pixel intensity for the whole frame, divided by
the mean pixel intensity for the entire frame. Each color channel has a specific background
contrast value. It can affect the optical flow reconstruction quality and, accordingly, the
quality of the ROI tracking.

Initial ROI placement also affects the accuracy of the method. To determine the optimal
size of the initial ROI, we define the ratio K between the ROI area ARoI and object area
Aobject Equation (10):

K =
Aobject

ARoI
(10)

If one wants to verify that the ROI tracks the object accurately but does not have access
to the true ROI center position dimensions (as in Equation (8)), we introduce the relative
mismatch δi:

δi =
∑k

(
Ik
i − Ik

0

)2

∑k
(

Ik
i + Ik

0
)2 ∗ 100 (11)

In Equation (11), Ii is the image in the ROI in the Ith frame, resampled to the pixel
size of the initial ROI, I0 is the initial image from the initial ROI in the first frame, i is
the index of the current frame, and k is a summation index over all the pixels of Ii and
I0. In our tests, we will show that the quantities δi and ∆i are highly correlated using two
correlation measures—the Pearson correlation coefficient and the nonlinear association
index h2, developed in [35]. This would mean one might use the relative mismatch δi to
give a qualitative measure of the accuracy of the method in real-world data where the true
positions and sizes of moving objects are unknown.

The precision value is a measure used in the literature for tracking performance
evaluation. It is defined as the ratio between the number of frames NT in which the center
location is below some threshold T and the total number of frames N f rames in the sequence:

precisionT =
NT

N f rames
(12)

Another measure is the success rate, which also considers the ROI box’s size and
compares it to ground truth. It is defined as the relative number of frames NA/N f rames
where the area of intersection between the tracked ROI with the ground truth bounding
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box divided by the area of the union between the two is larger than some threshold
A, (0 ≤ A ≤ 1)

successA =
NA

N f rames
=

1
N ∑N

i=1 fA(si), (13)

Here, si is the intersection-over-union between the tracking region of interest of the ith

frame and the ground truth region of interest. The function fA(si) is an indicator which
returns a value of “1” if si is above the current threshold A, and “0” otherwise.

We note the last two quantifiers of tracking quality, like the ones defined by
Equations (8) and (9), depend on the existence of “unequivocal” ground truth. For a gen-
eral assessment of tracking quality, the quantity introduced by Equation (11) applies to
complex objects and scenes.

3. Results
3.1. Tracking Capabilities

To show the feasibility of our method, we started by creating simple simulated test
cases with only a single moving object. Initially, we made tests of movements comprised of
only one of the primary generators in Equation (5). The test methodology goes as follows:

1. Generate an initial image, in our case, a Gaussian spot with a starting size and
coordinates on a homogenous background;

2. Specify the coordinates and size of the first region of interest, R1;
3. Transform the initial image with any number N of basic movement generators, as

described in Figure 1, to arrive at an image sequence;
4. Using the GLORIA algorithm, calculate the transformation parameters;
5. Update the ROI according to Equation (7);
6. Compare properties of regions of interest—coordinates and size.

3.2. Tests with Simulated Data

For translations in only the X or Y direction, the method proved to be very effective.
Figure 4a shows the Gaussian “blob” moving horizontally with a speed of two pixels

per frame to the right in the first row, while in the second row, the object’s velocity is one
pixel per frame, vertically. Figure 4b shows how much the calculated values deviated
from the original. Although there is some spread, the final region of interest selection uses
integer values for pixel coordinates, meaning that those computed values are rounded up.
After rounding the values calculated by GLORIA and applying Equations (8) and (11), both
∆ and δ show a positive linear correlation with a Pearson coefficient value of 1. Therefore,
the complete positive linear correlation between the two measures of tracking precision
shows that δ can be used instead of ∆ for translational motion tracking assessment.

Further, we demonstrate the usefulness of the GLORIA algorithm when estimating the
dilatational transformation rate (see Figure 5). In this test, the size of the observed object
is increased by a fixed amount with each frame. The algorithm successfully detected the
scaling of the object.

The mismatch values ∆ and δ are calculated again. However, this time, they only
exhibit a partial linear correlation. We provide their scatter plot in Figure 6.

The nonlinear association index h2 value shows that ∆ and δ have a high nonlinear
correlation. The variance of values obtained by Equation (8) can be explained by the
variance of values obtained by Equation (11) for dilatational movements.

The next step is to show the tracking capabilities of our method when multiple types
of movement are involved, as illustrated in Figure 7. We have prepared a test where both
translations and dilatation are present.

We applied both Equations (8) and (11) to this test to show that both measures are
highly correlated, and the relative mismatch δ can be used for cases where no ground
truth is available. The linear correlation between the measures ∆ and δ is much lower than
the nonlinear association index h2 which accounts for arbitrary functional relations. The
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measured h2 between the two mismatch measures ∆, and δ is 0.8103. In other words, the
variance of the values given by Equation (8) can be explained by the variance of the values
given by Equation (11), and this fact, alongside the results from Figures 4 and 6, allows
using the relative mismatch δ for real-world data.
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Figure 4. (a) Demonstration of ROI tracking in the case of translational movement. The top row
displays an example of translational movement in the x-direction. The moving object is a Gaussian
“blob” at different moments in time—frames #2, #20, and #40. Similarly, the bottom row shows the
translational movement of a Gaussian blob in the y-direction. The selected moments in time are
again at frames #2, #20, and #40. The rectangular region of interest successfully follows the moving
object in both tests. (b) Comparison between the calculated and actual values of the moving objects
depending on the current frame. Red circular markers show the actual movement values, while
green star markers show the calculated values. The maximum deviations are ±0.05 pixels per frame
change, less than 5% for the y-direction and 2.5% for the x-direction. The ROI that tracks the object is
displayed in red.
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Figure 5. Scaling of an object and its detection. (a) An object-gaussian “blob” is increasing, and the 
corresponding ROI tracks those changes. The object is displayed in specific moments in time—
frames #2, #5, and #10. (b) Comparison between the calculated and actual values of the object de-
pending on the current frame. Some differences in the range of 10% of the reconstructed parameter 
can be observed. The ROI that tracks the object is displayed in red. 
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Figure 5. Scaling of an object and its detection. (a) An object-gaussian “blob” is increasing, and the
corresponding ROI tracks those changes. The object is displayed in specific moments in time—frames
#2, #5, and #10. (b) Comparison between the calculated and actual values of the object depending
on the current frame. Some differences in the range of 10% of the reconstructed parameter can be
observed. The ROI that tracks the object is displayed in red.
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Figure 7. A test with translational and dilatational movements present. Here, the moving object is
a rectangle. It is shown in different moments in time—frames #2, #15, and #30. The object moves
simultaneously to the left and downwards while increasing in size. The tracking ROI is shown in red.

3.3. Influence of the Background

In Figure 8, we combined different types of movement and changed the scene’s
background. We tested both low-contrast and high-contrast backgrounds. Our method
works both with grayscale and RGB data.
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Figure 8. Tracking a moving object on a complex RGB background. The object is a Gaussian “blob”
shown in different moments in time—frames #2, #30, and #50. The ROI that tracks the object is
displayed in red.

3.4. Tests with Real-World Data

After the initial tests, we tried applying it to various real-world tracking scenarios,
which showed accurate tracking results as well. We started with a video sequence that
contained only one moving party to track with a relatively static background (see Figure 9).
The method successfully estimated a proper region of interest around the moving objects.
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Figure 9. Tracking in a real-world scenario. A video of a couple walking on a beach. The background
is static. The ROI tracking the moving people is shown in red.

Finally, we tested a dynamic scene (see Figure 10) with multiple moving objects and a
high-contrast background.

The results in Figure 10 show the benefits of the proposed method. It can easily
track the person in the ROI throughout the frames. Although the background is complex
and there are other moving objects, the ROI stays centered around the man and changes
size accordingly based on the distance to the camera (which can be observed in the last
presented frame). The relative mismatch δ for the video sequence in Figure 10 is shown in
Figure 11.
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Figure 10. Tracking a dancing man. Nine frames from the video are provided, with frame order from
top to bottom and from left to right. The background is dynamic, with other moving objects in the
frame. The ROI is shown in red.
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frame number.

3.5. Tests on the Public Database LaSOT

To test the performance of our method with test data provided for the evaluation of
tracking methods [20], we have applied it to a sample of image sequences from the LaSOT
dataset [36]. We provide the precision (Equation (12)) and success (Equation (13)) plots in
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Figure 12. The initial ROI for our method is the same as the RoI from the first image in the
specific LaSOT image sequence.
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Figure 12. The precision graph (left) and success graph (right) on the coin-2 image sequence from the
LaSOT dataset. The PRE value displayed in the legend in the left frame is the precision at a threshold
of 20 pixels. The SUC value in the plot legend to the right is the area under the success curve. Both
PRE = 1 and SUC = 0.935 values are very high compared to other methods tested on the LaSOT
database. Again, we note that the values in the figure are for the specific coin-2 example.

The achieved processing speeds are 14 FPS on the CPU and 63 FPS on the GPU for
an ROI with a size of 550 × 550 pix2. More information on computational time speed
is available in the following section on tracking limitations. Our method shows higher
precision and success values in this example than the dataset’s averaged performance
of any of the other tested methods [34]. This is certainly not a conclusive comparison,
but it still indicates that the proposed technique provides promising tracking abilities.
Comparisons such as these may not be adequate due to the differences in scope and
requirements specific to the relevant use cases. The intended specific application of the
current method is the real-time tracking of patients. In this context, the use of machine
learning methods can be problematic, as they require a significant amount of data for model
training. Such information is very sensitive due to ethical and privacy considerations. Our
method uses the video feed to extract relevant optic flow data (in the form of three global
motion parameters) and uses it to update the position of a region of interest. No patient
video data needs to be stored. Other differences include the contents of the public video
datasets—they are not representative of the conditions and specifics of the patient tracking
task. It is also worth noting that in the context of patient monitoring, it is beneficial for
a tracking algorithm to be parallelizable. This way, the algorithm may run smoothly
alongside detection or alarming algorithms.

3.6. Multi-Spectral vs. Mono-Spectral Results

Our method works significantly better when multi-spectral data are used. This is
a consequence of the GLORIA algorithm, which provides an early fusion of all spectral
components and reduces any contrast-related ambiguities for the group parameter recon-
struction. We have prepared an example demonstrating the importance of multi-channel
data (in our case, the use of colored image sequences). The test is presented in Figure 13.
We have prepared a moving object (circle) on a shallow contrast background image. The
moving object is not trackable in greyscale but is successfully tracked when the video has
all three color channels.



Information 2024, 15, 296 14 of 20

Information 2024, 15, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 13. On the left side: true (blue circle markers) and measured (green star markers for RGB 
data, black dot markers for greyscale (BW) data) positions of the center of the moving object. The 
current frame is displayed on the x-axis. The top graph displays the X-coordinate of the object’s 
center, while the bottom graph displays the Y-coordinate of the object’s center. The measured 
positions acquired from colored videos overlap almost entirely with the actual positions of the 
object. On the right side is a snapshot from the video of the moving circle; the background is low in 
contrast. 

3.7. Tracking Limitations 
Several limitations apply when using the method presented in the current work. One 

is the maximum speed with which an object can move and be tracked by our method. To 
find the extent of this limitation, we made numerous simulations of a moving circular spot 
on a homogenous background with varying speeds. We use Equation (8) to compare the 
method’s accuracy for varying object velocities. The means of the quantities of Equation 
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Figure 14. Analysis of variance (left) and multiple comparison tests (right) for maximum velocity 
estimation. The velocity in pixels per frame is given on the x-axis of the ANOVA graph (left). In 
contrast, the medians and variances of the absolute differences are provided on the y-axis. Outliers 
are marked with a plus sign, while the dotted lines, or whiskers, indicate the most extreme data 
points which are not outliers. The red central mark indicates the median on each box, while the 
edges are the 25th and 75th percentiles. On the multiple comparison test to the right, the blue, grey 

Figure 13. On the left side: true (blue circle markers) and measured (green star markers for RGB data,
black dot markers for greyscale (BW) data) positions of the center of the moving object. The current
frame is displayed on the x-axis. The top graph displays the X-coordinate of the object’s center, while
the bottom graph displays the Y-coordinate of the object’s center. The measured positions acquired
from colored videos overlap almost entirely with the actual positions of the object. On the right side
is a snapshot from the video of the moving circle; the background is low in contrast.

3.7. Tracking Limitations

Several limitations apply when using the method presented in the current work. One
is the maximum speed with which an object can move and be tracked by our method. To
find the extent of this limitation, we made numerous simulations of a moving circular spot
on a homogenous background with varying speeds. We use Equation (8) to compare the
method’s accuracy for varying object velocities. The means of the quantities of Equation (8)
were analyzed for movement spread out in twenty consecutive positions (frames), and a
one-way analysis of variances test can summarize the results (see Figure 14).
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Figure 14. Analysis of variance (left) and multiple comparison tests (right) for maximum velocity
estimation. The velocity in pixels per frame is given on the x-axis of the ANOVA graph (left). In
contrast, the medians and variances of the absolute differences are provided on the y-axis. Outliers
are marked with a plus sign, while the dotted lines, or whiskers, indicate the most extreme data
points which are not outliers. The red central mark indicates the median on each box, while the edges
are the 25th and 75th percentiles. On the multiple comparison test to the right, the blue, grey and red
bars represent the first velocity’s comparison interval, and the circle marker indicates the mean value.
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The tests show that the tracking method becomes less reliable for velocities over seven
pixels per frame, and some inaccuracies become apparent.

Another critical detail of our method is its applicability in real-time image sequences. It
is limited by the processing time needed to update the ROI between frames. We investigated
how fast our algorithm is on a personal computer with an Intel® Core™ i9-10909x CPU,
32 GB of RAM, and an NVIDIA® GeForce GTX1060 SUPER GPU. Results for processing
time depending on ROI size are presented in Figure 15.
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Figure 15. Analysis of CPU processing times. The y-axis shows processing times, while the x-axis
shows the size in squared pixels of the tracked ROI. Both RGB and B&W tests are shown.

The graph shows that real-time calculations between each frame can be performed
for a smaller ROI. However, our initial tests with a PTZ camera have shown that updating
the ROI between each two frames is not always necessary, leaving even more room for
real-time applications. Newer systems would also demonstrate significantly faster results.

The contrast of an image can also affect the accuracy of the presented method. We
tested our method using a moving Gaussian spot on backgrounds with different contrasts
(see Figure 16). The total error, as defined in Equation (9), is given in the title of the
background pictures.

These results show we can expect less reliable behavior when the background scene’s
contrast is more significant. The reason is that higher background contrast within the ROI
may interfere with the changes caused by the moving object and obscure the tracking.
Specific actions such as selecting a smaller initial region of interest can reduce the deviation
caused by higher contrast values.

When analyzing the effect that the initial ROI size has on the performance of the
tracking algorithm, we devised three different sets of tests. The first test involved varying
the length and width of the rectangular region for a moving circular spot on a homogenous
background. In the second test, various backgrounds were used, and the third analyzed
real-world tracking scenarios. An example test for variation of initial ROI area for a moving
object on a non-homogenous background is presented in Figure 17. We use the same
moving pattern and object as presented in Figure 8—a Gaussian blob that changes positions
in each frame. We vary the initial ROI size and record the tracking mismatch ∆i as defined
in Equation (8), and the total mismatch as defined in Equation (9).
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the backgrounds differ. The figure presents two backgrounds, where the image on the right has a
lower contrast for all three color channels than the one on the left. The contrast values are calculated
for the whole scene. The value for ∆Total as defined in Equation (9) is calculated for both cases of a
different background, and is given in the title of the background pictures.
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Figure 17. (a) Region of interest size analysis. The graph has an x-axis which shows the coordinate of
the center of the ROI in the current frame, a y-axis which shows the current ROI size, and a z-axis
shows the tracking errors ∆i. The inverted plateau shows optimal ROI sizes for the present case. The
moving pattern is again of a moving Gaussian “blob”, as is in Figure 8. (b) The graph shows the total
mismatches for all frames ∆ along the y-axis, for different values of the ratio between object area and
region of interest area—the value K along the x-axis.

An inverted plateau can be observed for certain initial ROI sizes (or ratios K between
object area and ROI area). Outside of the inverted plateau, the mismatches are increased
significantly, which shows that there is an upper and lower limit for useful ROI sizes.
For the case of non-simulated videos, we examined whether or not the object of interest
remained within the tracking area. For both simulated and real-world data tests combined,
the mean lower boundary for the area ratio K defined in Equation (10) is 69%, while the
mean upper boundary is 34%. This shows that there exists an optimal initial ROI size
range for object tracking using this method. For the proposed tracking algorithm’s future
development, additional analysis on the effect of background contrast and autonomous
initial ROI selection is underway.
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4. Summary and Discussion

We propose a novel method for object tracking. It addresses the challenge of real-time
object-tracking optic flow techniques. The method successfully applies to numerous tests
and real-world data, showing its effectiveness with various examples. An essential feature
of our approach is the reconstruction of global transformation parameters, mitigating the
computational complexity associated with most pixel-based optical flow algorithms. The
method can be helpful for virtual tracking by dynamically adjusting a region of interest in
a static wide-angle video stream and tracking with a mechanically steerable PTZ camera.
Other methods [37,38] use video data to detect specific health conditions (such as epileptic
seizures). In [37], a region of interest is drawn over a body part and the movements in that
region are analyzed. This ROI is fixed, and if the patient’s body part leaves its boundaries,
movement information will be lost. Our method can be used to update the ROI’s position
and capture all the movements of the observed body part. In [38], the whole camera scene
is used to acquire optic flow information and the recorded movements are used for seizure
detection. This method could benefit from the tracking scheme presented in this work.
Our algorithm can help by reducing computational requirements as a smaller part of the
video data is used (due to the ROI). It provides additional benefits by isolating the object of
interest (due to the ROI) and thus only relevant patient motion data are analyzed. In both
cases, the methodology discussed here can provide substantial benefits.

Remote sensing and detecting adverse and potentially dangerous events is an ever-
growing necessity. In certain situations, attached sensors are not the optimal solution, or
may not even be a possible solution. Video observation provides remote sensing func-
tionality, but in its commonly used operator-based form, it requires the constant alertness
of trained personnel. For this reason, we have established a broad program dedicated
to automated remote sensing algorithms. One of the currently operational systems is
dedicated to real-time detection of convulsive epileptic seizures. The results presented in
this work are intended for use in developing modules that deliver tracking capabilities and
operate in conjunction with existing detection and alerting facilities.

One limitation of our approach is that we have used only group transformations that
preserve the aspect ratio between the ROI axes, namely the translations and dilatations of
the video image. As explained in the Methods section, one argument for this is the potential
application of PTZ cameras. A second argument related to operator-controlled settings
is that standard fixed aspect ratio monitors render the video images. We will explore an
extended version of our ROI adaptive control paradigm in a forthcoming study.

The comparison between the performance of the proposed ROI tracking method and
that of other existing techniques for only one available data set is for reference only. We
note that our goal is to investigate the potential use of reconstructed optical flow group
velocities for autonomous ROI tracking. To the best of our knowledge, no other published
methodology provides such functionality. Even if other algorithms produce better tracking
results in particular applications or according to some specific performance criteria, imple-
menting them in our integrated system would require additional computational resources.
In our modular approach, optical flow reconstruction is performed to detect epileptic motor
fits, and applying it to other modules, such as ROI or PTZ tracking, involves minimal
added complexity. This said, the illustrative comparison suggests that the proposed tech-
nique may be generally competitive with other tracking methods, especially if the required
computational resources are considered.

Further limitations and restrictions of the method related to the velocity of the tracked
object and the initial size of the region of interest are examined and listed earlier in this
work. An open question that remains here is how to proceed if the algorithm “loses” the
object of observation. One immediate solution is to detect the situation and alert an operator
to intervene. Such an approach will, of course, undermine the autonomous operation of
the system. Another possibility we are currently investigating is to introduce a dual-ROI
concept where the algorithm keeps a broader observation margin that would allow for
mitigating some of the limitations.
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Our technique can also utilize adaptive features that provide performance reinforce-
ment on the move while operating in real time. The adaptive extension is now considered
on synthetic and real-life sequences and will be published elsewhere. Here, we note that
it does not need large sets of pre-recorded training samples, as when using conventional
learning techniques [14,20,21,39].

We would also point out that because the method proposed in our work is ROI-based,
it allows parallel proliferation for simultaneous tracking of multiple separated objects if
computational resources permit. A typical application of such a technique would be using
a wide-angle high-resolution static camera for observation of multiple targets. If, however,
the objects cross their positions in the camera’s field of view, rules of disambiguation should
apply. This extension of the methodology goes beyond the scope of this report and is a
subject of our further investigations.

As our approach uses global group transformation quantifiers, it is not critically sensi-
tive to the image spatial resolution. Therefore, any noise removal by smoothening of the
frames, for example with a Gaussian kernel, will not affect, or will even enhance, the recon-
struction quality of the group parameters. In this context, our technique potentially allows
for simple tackling of noisy inputs, for example (but restricted to) white additive noise.

Finally, we note that the method introduced in this work is intended to be incorporated
together with patient monitoring systems (such as detecting epileptic seizures, apneas, or
other adverse motor events/symptoms in patients). This will allow us to restrict the optical
flow reconstruction task to those transformations relevant to the PTZ camera control. The
technique is, however, applicable to a broader set of situations, including applications
where the camera is moving, as for example considered in [40]. In the clinical practice of
patient observation, cameras moving on rails and/or poles are available. It is, however, the
added complexity of manual control that limits their use. To achieve automated control in
real-time, a larger set of group transformations, including rotations and shear, may be used
to track and control the camera position and orientation.
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