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Abstract

Importance. Mesenchymal stem cells (MSCs) have the capability of providing ongoing paracrine support to degenerating 
tissues. Since MSCs can be extracted from a broad range of tissues, their specific surface marker profiles and growth 
factor secretions can be different. We hypothesized that MSCs derived from different sources might also have different 
neuroprotective potential.

Objective. In this study, we extracted MSCs from rodent olfactory mucosa and compared their neuroprotective effects on 
auditory hair cell survival with MSCs extracted from rodent adipose tissue.

Methods. Organ of Corti explants were dissected from 41 cochlea and incubated with olfactory mesenchymal stem cells 
(OMSCs) and adipose mesenchymal stem cells (AMSCs). After 72 hours, Corti explants were fixed, stained, and hair cells 
counted. Growth factor concentrations were determined in the supernatant and cell lysate using Enzyme-Linked Immunosorbent 
Assay (ELISA).

Results. Co-culturing of organ of Corti explants with OMSCs resulted in a significant increase in inner and outer hair cell 
stereocilia survival, compared to control. Comparisons between both stem cell lines, showed that co-culturing with OMSCs 
resulted in superior inner and outer hair cell stereocilia survival rates over co-culturing with AMSCs. Assessment of growth 
factor secretions revealed that the OMSCs secrete significant amounts of insulin-like growth factor 1 (IGF-1). Co-culturing 
OMSCs with organ of Corti explants resulted in a 10-fold increase in IGF-1 level compared to control, and their secretion was 
2 to 3 times higher compared to the AMSCs.

Conclusions. This study has shown that OMSCs may mitigate auditory hair cell stereocilia degeneration. Their neuroprotective 
effects may, at least partially, be ascribed to their enhanced IGF-1 secretory abilities compared to AMSCs.
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Introduction

Degeneration of auditory hair cells and spiral ganglion neu-
rons (SGNs) is one of the main causes of sensorineural hearing 
loss. In particular, aging, noise exposure, and ototoxic medica-
tion lead to irreversible loss of both inner hair cell (IHC) and 
outer hair cell (OHC). Means of preserving and/or regenerat-
ing hair cells and spiral ganglion cells, if identified, would 
have significant clinical implications.

Various growth factors, like insulin-like growth factor 1 
(IGF-1), hepatocyte growth factor (HGF), and acidic fibro-
blast growth factor, have been implicated to mitigate auditory 
hair cell and synaptic ribbon degeneration,1-6 whereas brain-
derived neurotrophic factor (BDNF), neurotrophin 3, and 
glial-derived neurotrophic factor (GDNF) have been shown to 
have protective effects on SGNs.7-11 However, these neuropro-
tective effects are short-lived as local growth factor concentra-
tions decline rapidly after administration.

The paracrine effects of mesenchymal stem cells (MSCs) 
might offer a potential alternative to provide local and pro-
longed neurotrophic support to damaged and degenerating 
hair cell and SGN. Bone marrow (and adipose)-derived MSCs 
have been shown to produce neurotrophic factors (BDNF) 
and support repair of the central and peripheral nervous sys-
tem in animal models.12-14Systemic and local administration 
of bone marrow and adipose-derived MSCs to the cochlea 
have shown that these stem cells can survive in the cochlea 
and support SGN survival as well as the structures of the lat-
eral wall including the stria vascularis.14-16 In addition, peri-
lymph samples of animals treated with adipose-derived MSCs 
showed elevated levels of BDNF, GDNF, and HGF, implying 
a local neurotrophic support mechanism instigated by the 
stem cells.17,18

MSCs have also been identified in olfactory mucosa, and 
share similar differentiation properties and cell surface mark-
ers as bone marrow and adipose-derived MSCs.19,20 Since 
these olfactory mesenchymal stem cells (OMSCs) are involved 
in the ongoing neurogenesis of the olfactory neuroepithelium, 
we propose that these may be a more potent stem cell line for 
neural tissue repair than bone marrow or adipose-derived 
MSCs.14 A comparative study has demonstrated that these 
OMSCs promote myelination and secrete higher levels of spe-
cific neurotrophic factors than MSCs derived from bone mar-
row.20,21 Olfactory-derived MSCs have also been shown to 
mitigate SGN degeneration in organ of Corti cultures lesioned 
with gentamicin.22 The effects of OMSCs on auditory hair cell 
degeneration and survival is still unknown, but given their 
promising paracrine capabilities to secrete neurotrophic fac-
tors, OMSCs might have a potential rescuing effect on degen-
erating hair cells and SGNs.

The first aim of this study was to characterize and assess 
the acute neuroprotective potential of rat OMSCs on audi-
tory IHC and OHC survival using a rat cochlear explant 
culture model. Our second goal was to compare the para-
crine, protective effects of these olfactory stem cells with 
adipose MSCs.

Methods

This study was conducted in accordance with protocols com-
pliant with the Canadian Council on Animal Care and with the 
approval of the local Animal Care Committee at the University 
of British Columbia (A18-0368).

Isolating and Culturing of Rat Olfactory- and 
Adipose-Derived MSCs

The olfactory mucosa consists of a lamina propria and neuro-
epithelium.14 Although stem cell-like cells can be harvested 
from both layers, only the cells derived from the lamina pro-
pria express specific MSC markers and have the ability to dif-
ferentiate into the different specific mesenchymal cell lineages, 
that is, chondrogenic, adipogenic, and osteogenic.23

Rat OMSCs were obtained from adult rat olfactory mucosa 
located within the posterior nasal cavity immediately anterior 
to the cribriform plate. After harvesting, mucosal tissue was 
placed in a dish, and incubated for 1 hour at 37°C.24 Under a 
dissection microscope, the lamina propria was separated from 
the epithelial layer, and subsequently macerated and centri-
fuged. The cell pellet was resuspended and plated on a 6-well 
dish, pre-coated with Matrigel (ThermoFisher), and incubated 
at 37°C in a humidified 5% CO2 incubator for 48 hours.

Rat adipose mesenchymal stem cells (AMSC) were 
obtained from adult rat inguinal adipose tissue, as described 
previously.17,25

Functional differentiation of OMSCs into osteogenic, 
adipogenic, and chondrogenic lineages was assessed using a 
specific rat mesenchymal functional identification kit (R&D 
systems, SC020). After 21 days of culturing, cells were fixed, 
cryosectioned, and stained with antibodies to detect aggre-
can. Negative control cells were labeled with secondary anti-
bodies only.

Cochlear Explant Culture

Cochlear explant cultures were established from wild-type 
Long-Evans rats. Forty-one cochleae were dissected from 21 
postnatal Long-Evans pups (postnatal day 3-7). After decapi-
tation, temporal bones were surgically separated from the 
skull. After removal of the bony otic capsule, the cochlea was 
transferred to a culture dish. The spiral ligament, stria vascu-
laris, and Reissner’s membrane were carefully stripped away 
to expose the organ of Corti. After that, the specimens were 
dissected into a basal and a medial full turn section. The apical 
turn and hook region of the basal turn were discarded as they 
were often damaged during the dissection. If sections were 
affected by surgical trauma, sections were discarded.

Olfactory and adipose MSCs were seeded on a 6-well 
plate. When cells reached 90% confluency, basal and medial 
cochlear turn sections were placed in 2 of the 6 wells. An 
even number of cochlear turn sections were placed in 2 other 
wells which only contained culture medium, without any 
stem cells. This group was labeled “media only.” Two other 
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wells only contained MSCs with identical culture media and 
served as control. After 72 hours of incubation, the organ of 
Corti explants were removed for histologic processing. The 
incubation duration of 72 hours was determined based on 
observations in pilot experiments and protocols used by 
other study groups.5,26-28 The supernatant and cell lysate were 
removed and vials frozen for ELISA experiments. This 
experiment was performed in duplicate. In the first experi-
ment, experiment 1.1, 8 cochleae were processed for each  
of the 3 groups, that is, rat OMSCs (8 cochleae), rat AMSCs 
(8 cochleae), and media only (8 cochleae). An equal number 
of sections were placed in two 6-well dishes, that is, each 
well in experiment 1.1 contained sections obtained from 4 
cochleae. In the replicate experiment, experiment 1.2, a total 
of 5 cochleae were processed for each group, that is, rat 
OMSCs (5 cochleae), rat AMSCs (5 cochleae), and media 
only (5 cochleae). In all experiments, all groups contained an 
equal number of sections from the basal and middle turn to 
control for potential differences. All sections were placed in 
one 6-well dish; one 6-well dish served as control.

Cochlear sections were incubated with Phalloidin-iFluor 488 
Reagent (Abcam) for 45 minutes and mounted on slides with 
DAPI (4′,6-diamidino-2-phenylindole). Images were acquired 
using a Zeiss LSM 900 confocal laser scanning microscope. 
The number of IHCs and OHCs were manually counted per 
100 µm length along the cochlea. A cell was considered dead, 
when there was complete absence of stereocilia Stack images of 
a random sample of sixteen 100 µm sections were composed. 
Hair cells in these sections were counted by 2 blinded authors 
(E.Y. and L.V.S.) to assess inter-rater reliability.

Protein Secretions

Growth factor concentrations were determined in the superna-
tant and cell lysate using ELISA kits for GDNF, IGF-1, and 
HGF All samples were analyzed in duplicate. Absorbance at 
450 nm was determined with a U-Quant Plate Reader (Bio-Tek 
Instruments) and averaged over a total of 5 repeats.

Statistical Analyses

Statistical analyses were completed using SPSS version 22.0 
software (IBM). Group differences in the number of hair cells, 
for the groups included in the first experiment, were deter-
mined through an analysis of variance (ANOVA). Significant 
main effects (P < .05) were followed with Bonferroni post hoc 
tests. Hair cell count differences in the second experiment 
were calculated with unpaired, 2-tailed t tests. Differences in 
protein concentrations in the control wells and corresponding 
experimental wells containing cochlear explants were deter-
mined using independent samples t tests.

Results

Characterization of Rat OMSCs

Cells isolated from the rat olfactory mucosa had a fibroblas-
tic morphology, adhered to plastic and were self-renewing. 
Culturing the cells in adipogenic, chondrogenic, and osteo-
genic medium resulted in transdifferentiation of the cells  
into adipocytes, chondrocytes, and osteocytes, respectively 
(Figure 1). These results indicate that these olfactory-derived 

Figure 1. Functional differentiation of rat OMSCs (top row) and negative controls (bottom row). FABP4, osteocalcin, and aggrecan are 
stained green, nuclei are stained with DAPI (red). OMSCs, olfactory mesenchymal stem cells.
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fibroblastic cells are multipotent, similar to MSCs derived 
from bone marrow or adipose tissue.

Co-Culturing Rat OMSCs and AMSCs With 
Cochlear Explants

Hair cell counts obtained from 17 sections (2 cochleae) which 
were mounted directly after harvesting, served as controls  
at t = 0 hours (Figure 2). In this group, the average number  
of IHC per 100 µm was 9, the average number of OHCs was 
37. This is comparable to hair cell counts reported by other 
study groups.29,30 Culturing of cochlear explants for 72 hours 
in basal stem cell medium resulted in a significant loss of  
both IHC and OHC [IHC in “media only” group mean differ-
ence (MD) = 2.5, t(59) = −3.912, P < .001; OHC MD = 15.1, 
t(52) = −7.872, P < .001] (Figures 3 and 4). Co-culturing 
cochlear explants with rat OMSCs resulted in a significantly 
better IHC and OHC survival (Figures 3 and 4). Compared to 
the control “media only” group, co-culturing with OMSCs 
resulted in a 60% increased IHC survival [F(2), 22.471, 
P < .001; Bonferroni post hoc test MD = 3.7, P < .001], and a 
68% increased OHC survival [F(2), 22.632, P < .001; 
MD = 15.2, P < .001]. Total hair cell survival improved by 
66% [F(2), 30.181, P < .001; MD = 18.9, P < .0001]. When 
co-cultured with OMSCs, IHC and OHC counts were compa-
rable to counts obtained directly after harvesting [IHC: 10; 
MD = 1, t(79) = 1.674, P = .10; OHC: MD = 0, t(79) = 0.041, 
P = .967]. However, the morphology of the stereocilia was 
less well arranged and signs of degeneration of stereocilia 
bundles are readily visible (Figure 3).

Co-culturing of cochlear explants with AMSCs did not 
result in an increased survival of IHCs [F(2), 22.471, P < .001; 
Bonferroni post hoc test MD = 0.8, P = .537], but a protective 
effect was observed for the OHCs [Figure 3; F(2) 22.632, 
P < .001], when compared to the control “media only group.” 
Clear signs of degenerating stereocilia bundles were seen on 
both IHC and OHC (Figure 3). Comparing the hair cell protec-
tive effects of OMSCs and AMSCs revealed a significantly 
better hair cell protective effect of OMSCs on both IHC and 
OHC (Figure 4). Compared to co-culturing with AMSCs,  
co-culturing with OMSCs resulted in a 42% higher IHC sur-
vival rate [F(2) 22.471, P < .001, MD = 2.9, P < .001], a 21% 
improved OHC survival [F(2) 22.632, P < .001, MD = 6.4, 
P = .006], and a 24% higher total hair cell survival [F(2) 
30.181, P < .001, MD = 2.2, P < .001].

Intraclass correlation coefficients (ICCs) revealed a very 
high agreement for both IHC (ICC = 0.993) and OHC counts 
(ICC = 0.972) between all 3 independent raters.

Neurotrophic and Growth Factor Secretion by Rat 
OMSCs and AMSCs

Culturing OMSCs resulted in a basal IGF-1 secretion of 
438 pg/ml in experiment 1 and 675 pg/ml in experiment 2. 
Co-culturing OMSCs with cochlear explants resulted in 4.4- 
to 4.5-fold increase in IGF-1 concentration, compared to the 
basal IGF-1 secretion by the OMSCs (Figure 5). In the first 
experiment, IGF-1 concentration increased from a baseline 
level of 438 to 1912 pg/ml when cochlear explants were co-
cultured with OMSCs [t(3.4) = −24.174, P < .0001]. In the 

Figure 2. Temporal bone after removal of the otic capsule and lateral wall. Insert shows a confocal stack image of a medial turn cochlear 
section. Hair cells are stained with phalloidin (green) and nuclei with DAPI (blue).
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replicate experiment 2, IGF-1 concentrations reached levels 
above the upper limit of the ELISA test indicating at least a 
4.5-fold increase in IGF-1 secretion when cochlear explants 
were exposed to OMSCs [t(1.9) = −479.400, P < .0001]. 
Culturing cochlear explants in culture media, without any 
stem cells resulted in an IGF-1 concentration of 178 pg/ml 
(Figure 5, “media only”). This basal level can be contributed 
by release from the cochlear explants. If we compare this 
basal release from the cochlear explants, with the IGF-1 

concentrations when an equivalent amount of cochlear tis-
sue is co-cultured with OMSCs, we found a 10.7-fold 
increase in IGF-1 levels [t(3.2) = −28.911, P < .0001], indi-
cating active secretion of IGF-1 by the OMSCs. The concen-
tration of intracellular IGF-1, as measured within the cell 
lysate of the OMSCs in the co-culture increased 3-fold com-
pared to the baseline production of the OMSCs [experiment 
1 t(3.1) = −9.131, P = .002; experiment 2 t(1.9) = −9.694, 
P = .013].

Figure 3. Representative confocal image stacks of cochlear sections of phalloidin labeled hair cells (green) obtained from the control 
group at t = 0 and after culturing for 72 hours without stem cells (media only t = 72 hours), with rat OMSCs and AMSCs. Degeneration of 
the stereocilia of both the inner and the 3 outer hair cell rows can be seen. OMSCs, olfactory mesenchymal stem cells; AMSCs, adipose 
mesenchymal stem cells.

Figure 4. Average hair cell counts measured in 100 µm sections after culturing for 72 hours; control culture media only t = 72 hour group 
(n = 45 sections), the OMSC (n = 64 sections), and the AMSC (n = 67 sections). For reference: hair cell counts per 100 µm directly after 
harvesting at t = 0 are 9 inner hair cells, 37 outer hair cells, and 46 total hair cells (dotted gray line). OMSC, olfactory mesenchymal stem 
cell; AMSC, adipose mesenchymal stem cell; IHC, inner hair cells; OHC, outer hair cells. **P < .01, ***P < .001.
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Culturing AMSCs resulted in baseline IGF-1 secretion of 
121 pg/ml in experiment 1, and 1292 pg/ml in experiment 2. 
Co-culturing AMSCs with cochlear explants resulted in a 1.2- 
to 5.0-fold increase in IGF-1 secretion, compared to the basal 
IGF-1 secretion by the AMSCs (Figure 5). In the first experi-
ment, IGF-1 concentration increased from a baseline level of 
121 to 598 pg/ml when cochlear explants were co-cultured 
with AMSCs [t(3.1) = −9,718, P = .002]. In the replicate exper-
iment 2, IGF-1 levels increased from 1292 to 1588 pg/ml 
[t(1.8) = −6.882, P = .026]. Compared to the basal IGF-1 
release of 178 pg/ml by the cochlear explants, co-culturing 
with AMSCs resulted in 3.4-fold higher IGF-1 concentrations 
[t(3.3) = −8.351, P = .002]. In both experiments, IGF-1 secre-
tion by OMSCs was 2 to 3 times higher than the secretion by 
AMSCs [experiment 1.1 t(6) = 17.191, P < .0001; experiment 
1.2 t(2) = 42.126, P = .001].

The intracellular IGF-1 concentration in the AMSCs in the 
first experiment was twice as high when co-cultured with 
cochlear explants [t(3,2) = −7.901, P = .003] and 2.6-fold 
higher in the second experiment (Figure 6), but this was not 
significantly different, due to large variance in the intracellular 
IGF-1 concentration in the second experiment [t(1.0) = −4.081, 
P = .153].

Analysis of both supernatant and cell lysate for HGF secre-
tion demonstrated that OMSCs did not produce or secrete 
detectable amounts of HGF. Neither did the cochlear explants 
alone (data not shown). In turn, AMSCs were found to have a 
high basal HGF secretion of 7.7 ng/ml in the first experiment 

and 3.1 ng/ml in the second experiment. HGF secretion by 
AMSCs increased 1.2- to 1.5-fold in the presence of cochlear 
explants [experiment 1 t(6) = −2.993, P = .024; experiment 2 
t(2) = −9.588, P = .011]. Intracellular HGF concentrations 
were lower compared to the supernatant (experiment 1: 
5.7 ng/ml; experiment 2: 2.7 ng/ml) and only changed signifi-
cantly in the first experiment when co-cultured with cochlear 
explants [experiment 1 t(6) = −6,967, P < .001; experiment 2 
t(2) = 2.660, P = .117].

Only AMSCs were found to produce GDNF levels above 
the lowest detection threshold of 60 pg/ml (concentration range 
in supernatant: 80-101 pg/ml, and cell lysate: 69-107 pg/ml). 
Both secreted and intracellular GDNF concentrations were not 
influenced by co-culturing with cochlear explants. OMSCs did 
not produce significant amounts of GDNF, nor did the cochlear 
explants release detectable levels of GDNF (data not shown).

Discussion

Co-culturing of rat OMSCs with a rat cochlear explant miti-
gates auditory stereocilia degeneration. This effect may be 
mediated by the trophic effects of IGF-1, secreted by the 
OMSCs. The neuroprotective effects on auditory stereocilia 
survival of olfactory-derived MSCs are superior to adipose-
derived MSCs. This may, at least partially, be ascribed to the 
enhanced IGF-1 secretory abilities of OMSCs.

In this rat cochlear explant culture model, co-culturing with 
OMSCs resulted in significantly improved survival of stereocilia 

Figure 5. IGF-1 secretion by the rat OMSCs and AMSCs. IGF-1 secretion was determined by measuring the IGF-1 concentration in 
the supernatant. Filled bars denote the growth factor concentration in the wells with organ of Corti explants; open bars denote the 
concentrations in the control wells without organ of Corti explants. IGF-1, insulin-like growth factor 1; OMSCs, olfactory mesenchymal 
stem cells; AMSCs, adipose mesenchymal stem cells. *P < .05, **P < .01, ***P < .001.
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on both IHC and OHC. This protective effect was more evident 
with olfactory-derived MSCs than with adipose-derived MSCs. 
In addition, IGF-1 secretion by OMSCs was 2 to 3 times higher 
compared to the secretion by AMSCs.

MSCs are known to promote the repair of lesions in  
different regions of the central nervous system.12,14,25 Studies 
investigating the effects of MSCs in the inner ear have also 
shown that MSCs mitigate degeneration of auditory hair  
cells and SGNs,14,17,18 and promote secretion of neurotrophic 
factors such as BDNF and GDNF.17 Olfactory-derived MSCs 
are mainly found in the lamina propria and are involved in the 
ongoing neurogenesis of the olfactory neuroepithelium.14,31 
Cells obtained from this lamina propria stained positive  
for mesenchymal markers CD90, CD105, and Stro-1,19,22,23 
but also express nestin, a marker for neural stem cells.22,23 
Compared to bone marrow-derived MSCs, OMSCs derived 
from the lamina propria express more nestin and secrete the 
cytokine Cxcl12 which promotes myelination.20,21,32,33 Our 
results are in line with these reports, indicating differences in 
functional properties between different MSC lines.

IGF-1 is known to play an essential role in neurogenesis, 
but also in survival and neuroprotection.34 Within the cochlea, 
the IGF-1 receptor is found in the hair cells and supporting 
cells of the organ of Corti.35 Hayashi et al found that IGF-1 
treatment results in inhibition of hair cell apoptosis, and initi-
ates proliferation of the Hensen’s and Claudius’ cells, which 
also contribute to the maintenance of OHCs.35

The protective effects of IGF-1 on auditory hair cells have 
also been demonstrated in an animal model of noise expo-
sure. Round window application of a gelatin hydrogel-con-
taining IGF-1 before or 5 hours after noise exposure was 
found to improve hair cell survival.3,4 Local round window 
application of IGF-1 after ischemia-induced cochlear dam-
age also resulted in attenuation of hair cell damage.36 
Malgrange et al assessed the effects of various growth fac-
tors, including IGF-1, HGF, BDNF, and GDNF, on cochlear 
explant cultures. Treatment with IGF-1 resulted in OHC sur-
vival, whereas BDNF did not protect hair cells from degen-
eration.5 Growth factor concentrations in our study showed 
that the cochlear explant cultures with the highest IGF-1 lev-
els showed better stereocilia survival. In addition, there 
appears to be a quantitative effect of IGF-1 concentrations on 
stereocilia survival, that is, culture wells with OMSCs had 
the highest IGF-1 concentrations and better survival com-
pared to the wells with AMSCs which had lower IGF-1 con-
centrations and poorer survival. It seems likely that the stem 
cells, rather than the organ of Corti explants, are responsible 
for the production of the neurotrophic factors, given the ele-
vated IGF-1 concentrations found in the stem cell lysates. 
Interestingly, the relatively low intracellular IGF-1 concen-
tration in the OMSCs may indicate a rapid secretion of IGF-1 
into the supernatant. This rapid and active growth factor 
secretion supports the OMSCs’ potential to provide paracrine 
trophic support. These paracrine capacities of the OMSCs 

Figure 6. Intracellular IGF-1 concentration in rat OMSCs and AMSCs. The intracellular IGF-1 concentration was measured in the cell 
lysate of the stem cells. Filled bars denote the growth factor concentration in the wells with organ of Corti explants; open bars denote the 
concentrations in the control wells without organ of Corti explants. IGF-1, insulin-like growth factor 1; OMSCs, olfactory mesenchymal 
stem cells; AMSCs, adipose mesenchymal stem cells. *P < .05, **P < .01.
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have also been revealed by other groups, which demonstrated 
the ability of OMSCs to secrete IGF-1.37,38

Limitations

Although, it seems likely that IGF-1 is predominantly pro-
duced in the stem cells, it was beyond the scope of this study 
to exactly determine the mechanisms and pathways involved 
in the IGF-1 secretion. From our ELISA analyses, it seems 
likely that the stem cells actively produce and secrete IGF-1. 
First, IGF-1 levels are more than 10-fold higher in the wells 
with OMSCs compared to the control wells, which only con-
tain the exact same amount of cochlear tissue. Second, the 
secretion by the AMSCs is also significantly higher in the 
presence of cochlear explants, but concentrations found in the 
co-cultures with OMSCs are still 2 to 3 times higher com-
pared to the concentrations found in the co-cultures with 
AMSCs. This difference can only be explained by a superior 
IGF-1 secretion by the OMSCs. Third, intracellular stem cell 
concentrations also revealed an active production of IGF-1 in 
the cells.

In our cochlear explant model, we did not make use of ami-
noglycosides, pro-inflammatory cytokines, or mechanical 
implant insertion trauma to induce hair cell and stereocilia 
loss,39,40 since these ototoxic additives can also have undesired 
and unknown toxic effects on the stem cells. Instead, organ of 
Corti explants were cultured for 72 hours in basal media with-
out the addition of essential supplements.5,27 The stress reac-
tion caused by dissection, explanting, and consecutive 72 hour 
incubation is known to release pro-inflammatory cytokines, 
induce apoptosis, and cause hair cell degeneration, typically 
seen in the basal and middle turns after 48 hours of cultur-
ing.5,26-28 Hair cell counts, in our study, may therefore be 
higher as sometimes expected in experiments using ototoxic 
medication. However, our control group clearly indicated that 
substantial hair cell degeneration occurred after 72 hours of 
incubation, and the induced degeneration was adequate to 
study the differences between the stem cell lines on hair  
cell survival. Of particular importance is the fact that our 
experimental model was designed to only reveal differences in 
neuroprotection between the 2 stem cell lines, rather than pro-
viding accurate quantifications of neuroprotection on stereo-
cilia and hair cell survival. Future experiments should be 
focused at providing detailed quantifications on the extent of 
neuroprotection of the OMSCs in both in vitro and in vivo 
models, while controlling for the potential confounding effects 
of aminoglycosides or pro-inflammatory cytokines on both the 
organ of Corti and stem cells.

Conclusions

Olfactory-derived mesenchymal stem cells may have the 
potential to mitigate auditory stereocilia degeneration. The 
OMSCs not only have specific neurogenic characteristics, but 
they also seem to secrete high levels of the pivotal growth fac-
tor IGF-1, while preserving their MSC characteristics. These 

abilities, as well as the fact that these stem cells are relatively 
easy to harvest in humans, make the OMSCs a promising stem 
cell line for therapeutic use in neurodegeneration, including 
auditory hair cell loss.
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