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Publications

Part I of this thesis provides a general introduction as well as a review of string
compactifications in order to set the stage for the remainder of the thesis.

Part II of this thesis gives a review of asymptotic Hodge theory. It contains both
mathematical details regarding the proofs of the main theorems, as well as explicit
examples and concrete computational algorithms to compute physical observables
in the context of low-energy effective theories coming from string compactifications.
It is based, in part, on the following publication:

[1] Thomas W. Grimm, Jeroen Monnee, Damian van de Heisteeg: Bulk Recon-
struction in Moduli Space Holography, JHEP 05 (2022) 010,
[arXiv: 2103.12746]

and additionally draws upon parts of the works [2–4] listed below. This part of the
thesis also contains additional results which have not appeared elsewhere.

Part III of this thesis is devoted to the application of the mathematical machinery
described in Part II to the F-theory flux landscape. It is based on the work:

[2] Thomas W. Grimm, Jeroen Monnee: Finiteness Theorems and Counting
Conjectures for the Flux Landscape, [arXiv: 2311.09295]

Part IV of this thesis is concerned with a reformulation of some of the results
of Part II in the language of non-linear sigma-models and applications in certain
two-dimensional integrable field theories. It is based on the publications:

[3] Thomas W. Grimm, Jeroen Monnee: Deformed WZW models and Hodge
theory. Part I, JHEP 05 (2022) 103, [arXiv: 2112.00031]

[4] Thomas W. Grimm, Jeroen Monnee: Bi-Yang–Baxter models and Sl(2)-orbits,
JHEP 11 (2023) 123, [arXiv: 2212.03893]

as well as the work [1] listed above.
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Introduction

A beautiful feature of physics is that it tends to organize itself into various regimes,
each describing physical processes that occur at a particular energy/length scale
in a mutually consistent way. Perhaps even more striking is the fact that the
possible length scales range from around 1026 m (corresponding to the size of the
observable universe) to around 10−35 m (corresponding to the Planck length), thus
traversing a sheer 61 orders of magnitude! Certainly most spectacular is the fact
that observations have managed to probe physics from the largest length scales all
the way down to around 10−20 m. Ultimately, the goal of physics is to be able to
describe Nature along the entire spectrum of length scales, all the way down to
the Planck scale. As theoretical physicists, we are thus faced with the challenge of
formulating consistent laws of physics that describe Nature at energy scales which
are not yet accessible to experiments.

At first sight, it may appear that the areas of physics that focus on different length
scales are effectively independent. For example, in order to describe the macroscopic
movement of the water in the oceans it is not necessary (and completely unpractical)
to know about the detailed microscopic interactions between the zillions of water
molecules. Fortunately for us, this apparent independence is not quite true. Indeed,
it can happen that a microscopic theory leaves particular imprints at bigger length
scales which are experimentally testable, and which would be difficult to explain
from a purely macroscopic perspective. A beautiful example of this is Brownian
motion, which describes the motion of a “large” particle suspended in a medium in
terms of its collisions with a large collection of “small” particles that make up the
molecules in the surrounding gas/liquid. The combination of its initial observation
by Brown in 1827, its mathematical formulation by Bachelier in 1900, and its
physical explanation by Einstein in 1905 together served as convincing evidence for
the existence of atoms/molecules. The latter was then verified experimentally by
Perrin, confirming the atomic nature of matter and resulting in a Nobel Prize in
Physics in 1926.
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Introduction

In this thesis, the analogous microscopic theory we will be concerned with is string
theory, which is a candidate theory to describe physics at the tiniest length scales.
The fundamental constituents of the theory consist of one-dimensional relativistic
strings whose length is expected to be of the order of the Planck length.1 At these
scales effects of both quantum mechanics and gravity must be taken into account,
which is an extremely non-trivial task. Strikingly, string theory manages to capture
these effects in a unified and mathematically consistent manner, thus forming a
theory of quantum gravity.

The landscape of string theory

It is, at present, not at all clear whether string theory actually describes the Uni-
verse we find ourselves in. In light of the fact that the string scale is likely to
be inaccessible to direct experimental observation in the foreseeable future, it is
thus important to search for the imprints of string theory in low-energy effective
theories coupled to gravity. Here we are faced with the reality that, although
string theory itself is remarkably constrained (and, in the supersymmetric case,
believed to be essentially unique), it can give rise to a myriad of low-energy effective
theories: the string landscape. Different theories within the string landscape may
differ wildly in their particle spectrum and couplings, and at present there is no
clear selection principle that singles out any particular theory. On the one hand,
this may lead to the expectation that “anything goes” in string theory, and that
our Universe just happens to be described by one of these theories, leading to a
potential lack of predictive capability. On the other hand, it must be stressed that
it has proven remarkably difficult to find well-controlled string theory construc-
tions that reproduce both the correct particle spectrum of the Standard Model
as well as the correct cosmology corresponding to an expanding universe. Thus,
before attempting to make solid low-energy predictions from string theory, it is
necessary to have a deep understanding of what is and is not possible in string theory.

In this thesis, we will be concerned with addressing this question from a “top-down”
perspective. This means that we will consider a specific corner of string theory, flux
compactifications of type IIB string theory and F-theory to be precise, and study
the possible low-energy effective theories that arise in this setting. From this point
of view, the vastness of the string landscape originates from the fact that string
theory is inherently a ten-dimensional theory, rather than a four-dimensional one.
1It should be noted, however, that in the presence of (relatively) large extra dimensions, the string
length may be significantly larger than the Planck length.
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This discrepancy is not by design. Rather, it is forced upon us by the mathematical
consistency of the theory. As a result, while the ten-dimensional theory is effectively
unique, its four-dimensional low-energy effective description – obtained through
a process called compactification – depends heavily on what is going on in the
additional six internal dimensions (which are assumed to be compact and small),
for which there are typically many possibilities. For example, the number of light
particles in the low-energy effective theory is dictated by the topology of the internal
space, while features pertaining to the dynamics, such as the values of couplings
(which determine the strength of the interactions between the light particles) and
the scalar potential, depend on the geometry of the internal space. In this manner,
the problem of characterizing the imprints of string theory on low-energy effective
theories is turned into a problem of both physics and mathematics.

In full generality, this is an incredibly difficult problem to tackle, simply due to
the abundance of six-dimensional compact manifolds to use in the compactification
process. A helpful guiding principle in physics is to use symmetries to simplify a
problem. In this work, we will follow this principle and investigate those compacti-
fications which preserve a minimal amount of supersymmetry in four dimensions,
allowing for the possibility of spontaneous breaking of supersymmetry at low ener-
gies. The preservation of supersymmetry at the level of the effective theory imposes
a number of restrictions on the geometric properties of the internal space, such
that it has to be a so-called Calabi–Yau manifold. Thus, coming back to our initial
goal, we are tasked with describing the topology and geometry of Calabi–Yau
manifolds, and understanding how exactly this relates to the physical properties
of the four-dimensional low-energy effective theory. This brings us to the central
mathematical tool of this work: (asymptotic) Hodge theory.2

(Asymptotic) Hodge theory

One of the central insights of Hodge theory is that one can describe families of com-
plex algebraic varieties, of which Calabi–Yau manifolds form a particular subset, in
terms of analytic methods and differential equations. The idea is that the geometric
properties of these spaces are encoded in the way certain functions called “periods”
change as one varies in the family. This dependence is, in turn, described in terms
of a set of special differential equations that, mathematically, define a so-called
variation of Hodge structure. In physics, the parameters that parametrize this
2It should be stressed, however, that the tools we discuss in this work apply to far more general
settings than just Calabi–Yau manifolds.
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Introduction

variation correspond to scalar fields in the four-dimensional low-energy effective
theory and are referred to as moduli. Furthermore, the functional dependence of
the aforementioned periods directly determines the kinetic couplings and scalar
potential of the effective theory. Thus, it is key to understand, in as much generality
as possible, the properties of variations of Hodge structure. This is the central topic
of part II of the thesis, and forms the foundation for parts III and IV.

Following the seminal works of Cattani, Kaplan, and Schmid, who built on earlier
works of Deligne and Griffiths, there is by now an extraordinarily deep understanding
of variations of Hodge structure. Roughly speaking, this understanding comes from
studying the possible singularities of the differential equations that are satisfied
by periods, or, more precisely, the possible degenerations of Hodge structures and
the type of limiting structures they give rise to. Physically, this corresponds to
probing the features of the low-energy effective theory in asymptotic regions of the
moduli space, where the underlying Calabi–Yau manifold becomes singular, for
example due to the pinching of some cycle. Consequently, the framework in which
these matters are studied is also called asymptotic Hodge theory. It will be the
main purpose of this thesis to provide an in-depth description of this framework,
accompanied with illustrative examples, and show how it can be applied to study
the features of low-energy effective theories coming from string compactifications in
great generality. In particular, in part III of the thesis we will apply it to investigate
the finiteness and geometric structure of the landscape of type IIB/F-theory flux
compactifications.

Hodge theory and the landscape of two-dimensional integrable field theories

So far, this has been a tale of only a single type of landscape, namely that of
string theory, and how Hodge theory plays a central role in determining its features.
Now we come across another beautiful feature of physics, namely that the same
equations tend to appear in completely different contexts! In part IV of the thesis
we will encounter an instance of this phenomenon by showing that the defining
equations of variations of Hodge structure and their (asymptotic) solutions make an
appearance in certain classes of two-dimensional integrable field theories. On the
one hand, this allows us to use the results of part II of the thesis to construct very
general classes of solutions to these models. On the other hand, and perhaps more
intriguingly, this opens up a new perspective on Hodge theory, in which its essential
features are encoded in terms of an auxiliary field theory formulated on the moduli
space. Our results provide a first step in this relatively unexplored direction.

4



Part I

Preliminaries

In this part of the thesis we describe the essentials of string compactifications in
order to set the stage for the remainder of the thesis. We provide a brief overview
of the basic aspects of (perturbative) string theory, after which we focus on the
particular setting of type IIB string theory and its formulation in terms of F-theory.
Our goal is to describe how various features of the four-dimensional low-energy
effective theories that arise from (flux) compactifications of these theories are
described in terms of geometrical properties of the underlying internal geometry.
The latter will then be studied extensively in the rest of the thesis.

5





1 Essentials of string compactifications

In this chapter we will review some fundamental aspects of string theory and string
compactifications. The goal of this chapter is two-fold. First, we aim to introduce
the relevant concepts that are required to motivate and understand the rest of this
work. Second, we hope to provide the necessary context in order to understand in
which particular corner of the vast realm of string theory our work takes place.

In section 1.1 we begin with a rather general point of view on perturbative string
theory from a worldsheet perspective, emphasizing the features of string theory
which make it different from and more restrictive than quantum field theory. We
then move to the target space formulation of a very rich class of string back-
grounds known as non-linear σ-models and give an overview of the resulting five
10-dimensional superstring theories that arise in this setting, together with the
putative 11-dimensional M-theory formulation. In section 1.2 we focus on one of
these five superstring theories which will play a central role throughout this thesis:
type IIB string theory. In particular, we discuss its low-energy effective description
in terms of IIB supergravity, including localized sources such as D-branes and
O-planes. In section 1.3 we review some aspects of Calabi–Yau threefold compactifi-
cations of type IIB to four dimensions. In particular, we emphasize the dependence
of various physical quantities in the four-dimensional low-energy effective theory
on the geometric properties of the Calabi–Yau manifold. A proper understanding
of the latter naturally leads to the study of (asymptotic) Hodge theory, which
forms the central pillar of this work and will be discussed at length in part II. In
section 1.4 we discuss some basic aspects of F-theory, which provides a beautiful
framework to describe more complicated (flux) compactifications of type IIB that
include non-perturbative effects in a geometric fashion. The latter is discussed
in section 1.5, which will ultimately lead us to the landscape of four-dimensional
N = 1 type IIB/F-theory compactifications, which will play a central role in part
III of the thesis. We close this chapter with an outlook for the rest of the thesis.

7



1 Essentials of string compactifications

It must be said that this chapter is far from a comprehensive review on the incredibly
rich field of string theory. For a more in-depth and pedagogical treatment of the
matters discussed in this chapter, we refer the reader to the textbooks [5–11] as
well as the lecture notes [12–15].

1.1 Basics of string theory
One of the core principles of string theory is the idea that (spatially) extended
objects could play a crucial role in describing the fundamental constituents of
Nature. In this sense, the name “string theory” is a slight misnomer, as a typical
endeavour in the field usually involves (or even requires!) both one-dimensional
objects (strings) as well as higher-dimensional objects (membranes). Nevertheless,
as far as the current formulation of the theory is concerned, strings – as opposed to
membranes – do play a particularly special role. Indeed, it is an amazing fact that
first quantization of a string yields a discrete spectrum of states which admit an
interpretation as different particles. In contrast, first quantization of a membrane
is expected to give rise to a continuous spectrum of states. As a result, while a
classical theory of p-dimensional membranes exists for all non-negative integers
p, a complete quantum-mechanical formulation remains elusive for p > 1. At
the same time, however, even if one starts with a theory of just strings, one is
quickly confronted with the reality that one must include these higher-dimensional
membranes as well – for example to describe non-perturbative effects. For similar
reasons, a full non-perturbative description of string theory remains elusive as well.

1.1.1 Perturbative string theory (1): Worldsheet perspective

Thus, let us (for the moment) focus on the perturbative description of strings in
string theory. At its core, perturbative string theory is defined as an S-matrix
theory, which means that it consists of a set of rules to compute scattering ampli-
tudes between quantum states. Such a scattering amplitude is interpreted as the
probability amplitude for a given initial state to evolve into a (possibly different)
final state. In ordinary quantum field theory, one typically imagines this as some
initial collection of particles flying about in space – tracing out a world-line in
spacetime – and subsequently colliding with each other to produce some final
collection of particles. In a perturbative description, the possible ways in which this
process can take place are then described in terms of certain topologically distinct
one-dimensional graphs: Feynman diagrams. In string theory, the situation is very

8



1.1 Basics of string theory

Figure 1.1: A depiction of a tree-level closed string interaction, which can be interpreted
as the splitting of a single closed string into two different closed strings.

similar, but there are some important differences.

The first difference is that, because strings trace out a 2-dimensional worldsheet in
spacetime, scattering amplitudes are instead expressed in terms of two-dimensional
surfaces. There are two different kinds of string scattering processes to consider,
owing to the fact that a compact one-dimensional string can have two different
topologies: either it is a circle (closed string) or it is a compact interval (open
string). An important point, however, is that both types of scattering processes,
the interactions between strings, such as the splitting of one string into two strings
as depicted in figure 1.1, have a smooth geometrical description. This is to be
contrasted with the interactions between particles, which are “localized” at a single
vertex of a Feynman diagram. As a result, string scattering amplitudes typically
enjoy a much better behaviour in the ultraviolet regime, corresponding to small
length scales.

A second difference is that, while the possible allowed particle interactions depend
greatly on the kind of quantum field theory one is considering, the possible inter-
actions between strings are, in a sense, rather simple. Indeed, when working in
Euclidean signature, the possible geometries of string scattering diagrams are effec-
tively described by (punctured) Riemann surfaces, with boundary if one considers
open string scattering. Topologically distinct Riemann surfaces are enumerated sim-
ply in terms of the number of holes and boundaries of the worldsheet. To emphasize
this point, note that in particle physics there can already be many different kinds of
one-loop diagrams, while in string theory there is really only one diagram at each
loop order. One point of concern may be that, as quantum theory dictates, one
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1 Essentials of string compactifications

should also sum over all possible geometries, i.e. metrics, of the Riemann surfaces.
Fortunately, the “moduli spaces” of Riemann surfaces, which one can think of as
parametrizing the space of possible metrics, are very well-understood. Note that
the same cannot be said about arbitrary higher-dimensional surfaces.

A third difference concerns the choice of background. As any perturbative theory,
perturbative string theory is defined as a perturbative expansion around a given
background. In contrast to ordinary quantum field theory, there are many more
restrictions on the possible backgrounds in which a string scattering process can be
described in a quantum-mechanically consistent manner. To be precise:

String background/vacuum

A (string) background or (string) vacuum of perturbative string theory is a
modular invariant two-dimensional (super)conformal field theory of central
charge c = 26 in the bosonic case, or c = 15 in the supersymmetric case.

Classically, one can think of the choice of background CFT as determining the
dynamics of the string, which in turn affect the details of the scattering process.
Let us briefly discuss the various conditions listed above:

• Conformal invariance:
At the classical level, string theory is invariant under local diffeomorphisms
of the worldsheet coordinates, as well as local Weyl transformations of the
worldsheet metric. After gauge-fixing the metric, one is still left with an
infinite dimensional residual symmetry group: the two-dimensional conformal
transformations. Precisely because in string theory the worldsheet metric
is considered to be a dynamical field (we say that the theory is “coupled to
gravity”) these conformal transformations originate from local gauge transfor-
mations, i.e. redundancies in the description of the theory. Therefore, in string
theory it is vital that conformal symmetry remains unbroken at the quantum
level in order to avoid gauge anomalies, which is a non-trivial condition. This
is to be contrasted with theories in which the metric is non-dynamical. For
such theories, conformal invariance should be thought of as a genuine physical
symmetry which may or may not be preserved at the quantum level.

• Critical central charge:
Any two-dimensional CFT defined on a curved background suffers from the
Weyl anomaly, which is the statement that the expectation value of the trace

10



1.1 Basics of string theory

of the energy-momentum tensor satisfies

⟨Tαα ⟩ = −c
tot

12 R , (1.1)

where R denotes the two-dimensional Ricci scalar and ctot denotes the total
central charge of the CFT in question. In order for the theory to remain
conformal at the quantum level, it is necessary that ⟨Tαα ⟩ = 0. For CFT’s
defined in a fixed flat background, this is of no concern. However, in string
theory we must consider all possible backgrounds, and hence the consistency of
the theory imposes that ctot = 0. At the same time, for any string background
there is a universal part of the total CFT which is described by the ghost
fields which incorporate the gauge-fixing of the local diffeomorphism and
Weyl symmetries via the Faddeev–Popov method. Taking into account their
contribution to the total central charge, one finds that

bosonic : ctot = c− 26 , supersymmetric : ctot = c− 15 , (1.2)

thus the vanishing of the Weyl anomaly fixes the central charge of the back-
ground CFT to be 26 in the bosonic case, and 15 in the supersymmetric
case.

• Modular invariance:
The string perturbation series (which will be discussed in a moment) involves
the integration of CFT correlators over the moduli space of various Riemann
surfaces, in particular the torus. It is thus a necessary consistency condition
that these correlators behave properly under the group SL(2,Z) of large
diffeomorphisms of the torus. More precisely, the statement is that the torus
partition function must be invariant under modular transformations. If this
is not the case, then equivalent descriptions of the torus would give rise to
different values for the partition function. Modular invariance places very
strong restrictions on the spectrum of the CFT. Furthermore, it can be
shown that to establish modular invariance of the full all-loop string partition
function it suffices to check this up to two loops. This is to be contrasted
with ordinary quantum field theory, in which it typically suffices to check for
the presence of anomalies at one loop.

It is important to stress that, despite the stringent consistency conditions mentioned
above, there is currently no complete classification of the set of all possible string
backgrounds. Moreover, there is also no clear selection principle which favours one
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1 Essentials of string compactifications

choice of string background over another, and it is not at all obvious whether string
theory in its current form is secretly background-independent, or what this would
even mean. For completeness, let us mention that there is an attempt at such a
manifestly background-independent formulation known as string field theory, but
we will not make use of this perspective in this thesis.

The string perturbation series

For each choice of string background, the equation that defines perturbative string
theory in that background is given by a formal power series, referred to as the string
perturbation series, in which one sums certain correlators of the two-dimensional
background CFT over all possible Riemann surfaces, as mentioned earlier. Schemat-
ically, the string perturbation series thus takes the form

probability amplitude =
∑
g,b

g−χ
s

∫
moduli space of Σg,b

correlators on Σg,b , (1.3)

where Σg,b denotes a punctured Riemann surface of genus with g handles and b

boundaries. The contributions from topologically distinct worldsheets are weighted
by a dimensionless expansion parameter gs, referred to as the string coupling, and
the exponent is given by the Euler character

χ = 2− 2g − b , (1.4)

of Σg,b. Finally, the number of punctures is simply given by the total number of
ingoing and outgoing strings. To close this part of the discussion, let us again
emphasize one more crucial difference between quantum field theory and perturba-
tive string theory. Namely, for the former the perturbative computation in terms
of Feynman diagrams is mostly a practical tool to approximate some observables
which, in principle, have a non-perturbative description. In contrast, at present
string theory does not have a fully non-perturbative formulation.

1.1.2 Perturbative string theory (2): Target space perspective
As we have stressed above, in principle any CFT with the right properties serves
as a valid string background. In this work, we will focus our attention on a broad
class of string backgrounds: (non-linear) σ-models.

Non-linear σ-models focus on a geometrical description of strings moving inside
spacetime and are, in a sense, the most natural generalization of how particles are
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1.1 Basics of string theory

described in ordinary quantum field theory. The embedding of the string worldsheet
is specified by a set of D worldsheet scalars

Xµ : Σ→MD , µ = 1, . . . ,D , (1.5)

which are maps from a given two-dimensional Riemann surface to a D-dimensional
target space MD. In superstring theory, one additionally considers a collection of
worldsheet fermions ψµ which correspond to the superpartners of the scalars Xµ.
For simplicity, we will restrict our discussion to the bosonic case, deferring the
description of superstrings to the next section.

The Polyakov action

Classically, the dynamics of the string are described by the Polyakov action:

Polyakov action

S = 1
2πα′

∫
Σ
Gµν dXµ ∧ ⋆dXν +Bµν dXµ ∧ dXν + α′ΦR ⋆ 1 , (1.6)

where ⋆ and R denote the Hodge star and two-dimensional Ricci scalar on
Σ, respectively. Additionally, α′ is a parameter of mass dimension [α′] = −2
and thus defines a length scale

ℓs = 2π
√
α′ , (1.7)

known as the string length. The factor T = 1
2πα′ can be interpreted as the

tension of the string.

Note:
If the string worldsheet Σ has a boundary, i.e. for open strings, there is an
additional piece

1
2πα′

∫
∂Σ
AµdXµ .

The fields Gµν , Bµν , and Φ that appear in the Polyakov action have the inter-
pretation of a metric, anti-symmetric 2-form and scalar on the target space M ,
respectively. In the case of open strings, the field Aµ carries the interpretation of a
gauge boson. From the worldsheet point of view, these fields are instead interpreted
as coupling constants which, generically, will run with the energy scale. In order for
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1 Essentials of string compactifications

the theory defined by (1.6) to define a CFT, the β-functions of these couplings must
vanish, so that the theory is scale-invariant. To first order in α′, the β-functions
are given by the following expressions1

βµν(G) = α′
(
Rµν + 2∇µ∇νΦ− 1

4HµλκH
λκ

ν

)
+O((α′)2) ,

βµν(B) = α′
(
−1

2∇
λHλµν + (∇λΦ)Hλµν

)
+O((α′)2) ,

β(Φ) = D − 26
6 − α′

(
1
2∇

2Φ +∇µΦ∇µΦ− 1
24HµνλH

µνλ

)
+O((α′)2) ,

where H3 = dB2 is the field-strength of the 2-form B2.

An exact background

Clearly, there are many possible configurations which can lead to βµν(G) =
βµν(B) = β(Φ) = 0. The simplest solution is to set

Gµν = ηµν , B2 = 0 , Φ = Φ0 , D = 26 , (1.8)

where ηµν denotes the flat Minkowski metric and Φ0 is a constant. Classically,
this particular solution describes the propagation of a bosonic string in a flat
26-dimensional target space (with vanishing B2). Furthermore, the on-shell value
of the dilaton determines the value of the string coupling to be

gs = eΦ0 , (1.9)

due to the fact that the two-dimensional Einstein–Hilbert term in (1.6) is topological
and precisely integrates to the Euler characteristic of the string worldsheet.

In fact, one can verify that this is an exact background of string theory, which means,
in particular, that it has vanishing β-functions to all orders in α′. Furthermore, one
can show that the resulting CFT indeed has central charge equal to 26, and that it
has a modular invariant partition function.

More general backgrounds

Clearly, the simple background discussed above leaves much to be desired when it
comes to describing a phenomenologically reasonable model. A more interesting
1For simplicity, we neglect the contributions coming from the open string gauge field Aµ.
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1.1 Basics of string theory

background arises if one allows the metric Gµν to be more general, while keeping
H3 = 0 and Φ constant, in which case the β-equations reduce to2

D = 26 , Rµν = 0 . (1.10)

Again, one finds that the target space must be 26-dimensional, with a metric that
is Ricci-flat, which means that it satisfies Einstein’s equations in the absence of
additional sources of stress-energy. It is a remarkable property of string theory that
one of the massless quantum excitations of the closed string is, to leading order in
α′ described by the laws of general relativity! Still, we will see in section 1.2 that
we will have to consider even more general backgrounds and include configurations
for which H3 is non-zero.

String backgrounds

From this point onwards, we will take the phrase “string theory” to mean
critical string theory, i.e. string theory in the background of a non-linear
σ-model whose target space has dimension 26 in the bosonic case, or 10
in the supersymmetric case. In particular, we will restrict to this class of
backgrounds for the remainder of this work.

Low-energy effective description

There is another way to interpret the vanishing of the β-functions. Namely, one can
regard them as equations of motion for the target space fields Gµν , B2 and Φ. It is
then a natural question to find an action principle whose extremization reproduces
these equations of motion. That action is given by

S = 1
2κ2

∫
M26

e−2Φ
(
R ⋆ 1 + 4 dΦ ∧ ⋆dΦ− 1

2H3 ∧ ⋆H3

)
, (1.11)

where we stress that the integration is now performed over the target space M26

and we have specialized to the critical dimension D = 26.

The action (1.11) is referred to as the low-energy effective action of critical bosonic
string theory. The reason for this is that it should be viewed as an effective field
theory that describes the massless excitations of the string, which is valid at length
2Another possibility is that Φ depends linearly on one of the Xµ as Φ = QX. In this case, there
exists a CFT description which is valid to all orders of α′, known as the linear dilaton CFT,
which has central charge c = D + 6α′Q2.
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1 Essentials of string compactifications

scales much greater than the string length ℓs. In other words, the action (1.11) is
precisely such that it reproduces the low-energy limit of string scattering amplitudes
at leading order in the string-coupling gs.

1.1.3 The 5 critical superstring theories

There are a number of issues with the bosonic string. Most notably, the ground state
of the bosonic string is tachyonic, which signals that the theory has been formulated
around an unstable vacuum. Another problem is that the spectrum of the bosonic
string does not contain any fermionic excitations, which are clearly necessary in
order to describe matter. Both of these issues are addressed by adding additional
fermionic fields ψµ to the worldsheet action in a supersymmetric fashion. It should
be noted, however, that it is not strictly necessary to work with a spacetime super-
symmetric theory, as happens for example for the SO(16)× SO(16) heterotic string
(though this theory does again suffer from tachyonic instabilities). Nevertheless,
the presence of supersymmetry typically leads to additional simplifications which
allow for more precise computations, for example through non-renormalization
theorems, as well as better control regarding the stability of certain solutions. For
these reasons, we will restrict our attention to supersymmetric string theories.

In contrast to the bosonic case, there are multiple possible superstring theories
that can be constructed in this way. To be precise, there are five critical string
theories which have spacetime supersymmetry. Throughout most of this work we
will focus our attention on one of these theories: the type IIB superstring. However,
for completeness we summarize below the main features of the other theories as
well.

• Type IIA / IIB:
The type II theories are characterized by the fact that they have extended
supersymmetry in spacetime, having 32 supercharges. At the technical level,
the difference between the two theories arises from the different choices of
GSO projection3. As a result, the two theories differ in their spectrum and
spacetime supercharges. Indeed, type IIA string theory has target space
N = (1, 1) supersymmetry and is non-chiral, while type IIB string theory
has target space N = (2, 0) supersymmetry and is chiral. The low-energy

3Actually, there are two more possibilities, which lead to the non-supersymmetric type 0A/0B
string.
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1.1 Basics of string theory

description of the type II superstring theories is given by the two corresponding
10-dimensional N = 2 supergravity theories.

• Type I:
The type I string theory is a chiral theory of unoriented strings, and has
N = 1 supersymmetry. It can be thought of as an orientifold of type IIB
string theory, in which certain left-moving and right-moving excitations of the
string are identified under reflection with respect to an (9 + 1)-dimensional
orientifold plane or O9-plane. Cancellation of the R-R tadpole (see also section
1.2.4) then requires the presence of an additional 32 coincident D9-branes,
leading to an SO(32) gauge group on the worldvolume of the brane stack.
At low energies, the theory is described by type I supergravity coupled to
10-dimensional N = 1 supersymmetric Yang–Mills theory with SO(32) gauge
group.

• Heterotic E8 × E8 / SO(32):
The two heterotic theories are both theories of only closed strings, having
N = 1 supersymmetry. They are constructed by combining the right-moving
sector of closed superstrings together with the left-moving sector of the
bosonic string. Roughly speaking, one interprets the 16 additional left-moving
bosons as parameters of a compactified 16-dimensional torus with radius√
α′. Modular invariance and anomaly cancellation then greatly restrict the

part of the spectrum coming from these additional states. In particular, the
massless states must correspond to gauge bosons of either an E8 × E8 or an
SO(32) gauge group. Similarly to the type I string, the low-energy description
of the heterotic string theories is given by type I supergravity coupled to
10-dimensional supersymmetric Yang–Mills theory with the corresponding
gauge group.

1.1.4 M-theory

In contrast to the five supersymmetric (perturbative) string theories which were
discussed in the previous section, M-theory is instead supposed to be a theory of
membranes. It is an attempt at a more fundamental, non-perturbative framework in
which the five superstring theories are unified into a single 11-dimensional description
[16]. While, at present, a complete formulation of the theory is still lacking, many
important features of M-theory, and its relation to the other superstring theories,
can be understood through its low-energy effective description. This corresponds
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to the unique 11-dimensional supergravity theory, for which the bosonic part of the
action is given by

SM = 1
2κ2

11

∫
M11

R ⋆ 1− 1
2G4 ∧ ⋆G4 −

1
6C3 ∧G4 ∧G4 , (1.12)

where G4 = dC3 is the field-strength of a 3-form C3, which is sourced through
M2-branes and M5-branes. For example, there is by now a large collection of
evidence that the strong-coupling limit gs →∞ of type IIA should be described as
M-theory compactified on a circle of radius gsℓs/2π, in which the D0-branes of type
IIA arise as Kaluza–Klein modes. Note that this relation fixes the 11-dimensional
Planck scale in terms of the string length ℓs and the string coupling gs. The action
(1.12) will also play an important role in the F-theory formulation of type IIB
superstring theory, to which we now turn our attention.

1.2 Type IIB at low energies
In this section we focus our attention on the low-energy effective description of type
IIB string theory from a 10-dimensional spacetime perspective. In section 1.2.1 we
first summarize the main features of the massless bosonic excitations of the closed
type IIB string, as well as their effective description in terms of the 10-dimensional
N = 2 type IIB supergravity theory. Subsequently, in section 1.2.2 we consider
a broad class of classical solutions in the absence of localized sources and recover
the Maldacena–Nuñez no-go theorem. This particular class of solutions will play
an important role in section 1.3. Then, in section 1.2.3, we discuss some essential
non-perturbative objects – D-branes and O-planes – which play an important role in
the effective description of the massless excitations of the open string. Additionally,
the inclusion of these localized sources is crucial in order to evade the Maldacena–
Nuñez no-go theorem and leads to a phenomenologically much more appealing class
of solutions. These will play a vital role in section 1.5 as well as part III of the
thesis, where we discuss flux compactification of type IIB/F-theory. Importantly,
the inclusion of such objects leads to additional consistency conditions through the
requirement of the cancellation of the R-R tadpoles, which are discussed in section
1.2.4.
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1.2 Type IIB at low energies

1.2.1 Type IIB supergravity
As discussed in section 1.1.2, in the low-energy description of a string we focus
on an effective description of its massless degrees of freedom. Of course, this is a
drastic simplification of the full theory, as we are restricting ourselves to only a
small part of the full spectrum of string excitations. Nevertheless, such a description
is expected to provide a good approximation at length scales which are much longer
than the string length ℓs or, equivalently, at energy scales which are much below
the mass of the higher excited states.

The massless spectrum of type IIB

Let us first consider the massless states of the closed string. In the NS-NS sector,
one finds the fields

NS-NS : GMN , B2 , Φ , (1.13)

which already appeared in our discussion of the bosonic string. For the superstring,
there are additional massless bosonic states in the R-R sector, which are given by
p-form gauge fields

R-R : Cp , p = 0, 2, 4 . (1.14)

For completeness, we should mention that there are also massless fermionic states
coming from the NS-R and R-NS sectors, but we will not explicitly consider those.
For each of the gauge fields we introduce the usual field strengths

H3 = dB2 , Fp+1 = dCp , (1.15)

which are referred to as fluxes.

The low-energy effective action of type IIB (1): democratic formulation

In the following, we will introduce two equivalent low-energy effective action princi-
ples that describe the dynamics of the massless excitations of the closed type IIB
string.

A first elegant way to write down the low-energy effective action is to use the
so-called democratic formulation in which one doubles the number of degrees of
freedom in the R-R sector by also including higher p-forms C6 and C8, together with
their corresponding field strengths, which are Hodge dual to C2 and C0, respectively.
In order to recover the original number of degrees of freedom, one subsequently
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imposes a number of duality conditions which will be written down shortly. It will
be convenient to define the following generalized field strengths

F̂p+1 = dCp −H3 ∧ Cp−2 . (1.16)

In terms of these generalized field strengths, the 10-dimensional low-energy effective
action of type IIB is given as follows.

10D low-energy effective action of type IIB (democratic formulation)

SIIB = SNS-NS + SR-R , (1.17)

where

SNS-NS = 2π
ℓ8
s

∫
M10

e−2Φ
(
R ⋆ 1 + 4 dΦ ∧ ⋆dΦ− 1

2H3 ∧ ⋆H3

)
(1.18)

SR-R = 2π
ℓ8
s

∫
M10

−1
4

∑
p=1,3,5,7,9

F̂p ∧ ⋆ F̂p , (1.19)

Note:
In order to reproduce the correct equations of motion as well as to recover
the original number of degrees of freedom, one must additionally impose the
duality conditions

F̂p = ⋆ F̂10−p . (1.20)

The actions (1.18) and (1.19) respectively describe the NS-NS sector and the R-R
sector. Note that the action SNS-NS is exactly the same as we found for the bosonic
string in equation (1.11). Finally, let us also remark that for p = 5 the duality
conditions (1.20) imply that the 5-form flux is self-dual.

The low-energy effective action of type IIB (2): SL(2,Z)-invariant formulation

There is a second formulation for the low-energy effective action of type IIB in
which a particular SL(2,Z)-symmetry becomes manifest. In this formulation we do
not include the dual p-form fields C6 and C8. In order to write down the action,
we first introduce the following combinations

τ = C0 + ie−Φ , G3 = F3 − τH3 , F̃5 = F5 −
1
2C2 ∧H3 + 1

2B2 ∧ F3 , (1.21)
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1.2 Type IIB at low energies

where the complex field τ is commonly referred to as the axio-dilaton. After
performing a Weyl rescaling of the metric to pass to the Einstein frame the low-
energy effective action for type IIB string theory can be organized as follows.4

10D low-energy effective action of type IIB (SL(2,Z)-invariant formulation)

SIIB = Skinetic + SCS , (1.23)

where

Skinetic = 2π
ℓ8
s

∫
M10

R ⋆ 1− 1
2

dτ ∧ ⋆dτ̄
(Im τ)2 −

1
2
G3 ∧ ⋆ Ḡ3

Im τ
− 1

4 F̃5 ∧ ⋆ F̃5 , (1.24)

SCS = 2π
ℓ8
s

∫
M10

1
4i
C4 ∧G3 ∧ Ḡ3

Im τ
, (1.25)

Note:
In order to reproduce the correct equations of motion as well as to recover
the original number of degrees of freedom, one must additionally impose the
duality condition

F̃5 = ⋆ F̃5 . (1.26)

The action (1.23) is manifestly invariant under the following SL(2,R) transformation(
a b

c d

)
∈ SL(2,R) : τ 7→ aτ + b

cτ + d
, G3 7→

G3

cτ + d
, (1.27)

which is broken to the discrete group SL(2,Z) at the quantum level due to charge
quantization of the fluxes. This underlying symmetry signals the presence of
an underlying elliptic curve of which τ is the modular parameter, which will be
discussed in more detail in section 1.4, where we discuss the F-theory description
of type IIB.

1.2.2 Classical solutions without localized sources
In order to obtain a candidate string background (at least to first order in α′) it
is necessary to obtain a solution to the classical equations of motion induced by
4To be precise, the relation between the string-frame metric and Einstein-frame metric is given by

G
(string-frame)
MN = eΦ/2G

(Einstein-frame)
MN . (1.22)
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the low-energy effective action (1.23). For the moment we will consider a class of
solutions that arises in the absence of localized sources. The more general case will
be discussed in section 1.5.

Assumptions

As our starting point, we make three simplifying assumptions.

1. Warped compactification ansatz:
We assume the 10-dimensional target space to admit a (warped) product
structure

M10 = M4 ×AM6 , (1.28)

where M4 is the (3 + 1)-dimensional spacetime and is referred to as the
external space, while M6 is assumed to be a compact 6-dimensional manifold
and is referred to as the internal space. We also assume that M4 is maximally
symmetric, so that it corresponds to four-dimensional de Sitter, Minkowski
or anti de Sitter space.

2. 4D Poincaré invariance:
We assume that the solution preserves four-dimensional Poincaré invariance.
This has a number of implications:

• Denoting by xµ, µ = 0, . . . , 3 and ym, m = 1, . . . , 6 two sets of local
coordinates on M4 and M6, respectively, the most general ansatz for the
metric that is compatible with the (warped) product structure (1.28) is
given by

ds2
10 = e2A(y)g̃(4)

µν dxµ ⊗ dxν + e−2A(y)g̃(6)
mndym ⊗ dyn , (1.29)

where A(y) is referred to as the warp factor. We stress that the warp
factor can only depend on the internal coordinates in order to respect
four-dimensional Poincaré invariance in the external space.

• The self-dual 5-form flux F̃5 must be of the form

F̃5 = (1 + ⋆) dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (1.30)

where α = α(y) is an arbitrary function of the internal coordinates and
we have the self-duality property (1.26) manifest.

• The 3-form flux G3 can only have internal components.
• The axio-dilaton τ = τ(y) can only depend on the internal coordinates.
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3. No localized sources:
We assume that there are no localized sources for the fluxes.

To summarize, we consider warped compactifications of type IIB supergravity down
to four dimensions that preserve Poincaré invariance, in the absence of localized
sources. Although this appears to be a relatively large class of potential solutions
(note that we have not imposed any supersymmetry conditions), it turns out
that the actual solutions satisfying these assumptions are rather limited. To see
this explicitly, one considers the (µν) components of the (trace-reversed) Einstein
equations for the metric ansatz (1.29). Subsequently taking the trace yields

∆̃(6)e
4A = e−2AR̃(4) + e2A

2 Im τ
|G3|2 + e−6A [(∂α)2 + (∂e4A)2] , (1.31)

where R̃(4) denotes the Ricci scalar of the metric g̃(4)
µν . Notably, for Minkowski and

de Sitter space this quantity is non-negative. Therefore, since the left-hand side
of (1.31) integrates to zero on the compact internal space M6, one arrives at the
following conclusion.

Maldacena–Nuñez no-go theorem [17]

Under the stated assumptions, the only solutions to the type IIB supergravity
equations of motion are anti-de Sitter and Minkowski space. Furthermore,
in the latter case the F3, H3 and F5 fluxes must have vanishing expectation
value, and the warp factor must be constant.

From this point onwards, we only consider the Minkowski background. In this case
the remaining equations of motion drastically simplify to

d ⋆ dτ = 1
2

dτ ∧ ⋆dτ̄
τ − τ̄

, RMN = 1
2
∂Mτ ∂N τ̄

(Im τ)2 . (1.32)

A particularly simple solution is thus obtained by setting the axio-dilaton τ to be
constant, in which case we are left with the condition that the internal space is
Ricci-flat. The four-dimensional low-energy effective description of such solutions
will be discussed in section 1.3. More general solutions with a non-trivial profile
for the axio-dilaton will instead be discussed in section 1.4 and form the basis for
introducing the framework of F-theory.
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1 Essentials of string compactifications

1.2.3 Localized sources: D-branes and O-planes
As a result of the Maldacena–Nuñez no-go theorem, we conclude that, in order
to consider more general compactifications that involve non-zero fluxes and/or
non-trivial warpings, it is necessary to include localized sources which contribute to
the energy-momentum tensor in a suitable fashion. Luckily, string theory naturally
hosts a large collection of such localized objects with both positive and negative
tension: D-branes and O-planes. Additionally, one of the great insights of the
second superstring revolution is that these objects carry R-R charge, which means
that they are sources for the various p-form fields Cp. As a result of these features,
D-branes and O-planes play a central role in the study of the string landscape.

D-branes

At the most basic level, p-branes correspond to extended (p+1)-dimensional surfaces
inside the target spacetime. There is a particular subset of those branes called Dp-
branes, to which the endpoints of fundamental open strings can attach themselves.
Such Dp-branes are special, because their properties are dictated by the excitations
and interactions of the open strings that are attached to them. For example, by
computing the one-loop annulus diagram of an open string stretched between two
D-branes, one finds that the physical tension τDp of a Dp-brane is given by

τDp = TDp

gs
= 1
gs

2π
ℓp+1
s

. (1.33)

Note, in particular, that in the limit of small string-coupling gs ≪ 1, the physical
tension of a Dp-brane becomes very large and thus the brane is effectively a rigid
object. Therefore, in perturbative string theory, it is the strings which comprise the
fundamental degrees of freedom of the theory, while D-branes should be regarded
as non-perturbative solitonic objects. At the same time, one also sees that in the
strong-coupling regime gs ≫ 1 it becomes essential to include D-branes as the
fundamental degrees of freedom.

One of the great insights in the study of D-branes is that the open string excitations
can be described in terms of the dynamics of the brane itself. Said differently,
while the actions (1.17) and (1.23) provide a low-energy effective description of the
massless closed string excitations, one can describe the dynamics of the massless
open string excitations in terms of an action on the worldvolume of the D-brane. To
leading order in the string coupling, this action consists of the following two terms

SDp = SDp,DBI + SDp,CS . (1.34)
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1.2 Type IIB at low energies

The first term corresponds to the Dirac–Born–Infeld (DBI) action, which describes
the coupling of the massless open string fields to the massless closed string fields
in the NS-NS sector. For a single Dp-brane, the bosonic part of the DBI action is
given (in string frame) as follows.

Dirac–Born–Infeld (DBI) action Dp-brane

SDp,DBI = −TDp

∫
Dp
dp+1ξ e−Φ

√
−det (Gαβ + 2πα′Fαβ) . (1.35)

The string-frame tension TDp was introduced in equation (1.33), the integral
is taken over the (p+ 1)-dimensional worldvolume of the Dp-brane, with local
coordinates ξα for α = 0, . . . , p, and we have introduced the notation

2πα′F2 = B2 + 2πα′F2 , (1.36)

for the gauge-invariant combination of the Kalb–Ramond two-form field B2

and the field strength F2 = dA1 of the open string gauge field A1.

Assuming a constant dilaton and vanishing worldvolume flux F2, the DBI-action
is simply proportional to the volume of the Dp-brane, measured in terms of the
metric induced by Gαβ . If the worldvolume flux F2 is non-trivial, then to first
order in α′ this is described by a U(1) gauge-theory on the brane.

The second term in (1.34) corresponds to the Chern–Simons action for a Dp-brane,
which describes the coupling of the massless open string fields to the massless closed
string fields in the R-R sector, namely the p-form gauge fields Cp.

Chern–Simons (CS) action Dp-brane

SDp,CS = TDp

∫
Dp

ch
(
−iℓ2

sF2
)
∧

√
Â(ℓ2

sRT )
Â(ℓ2

sRN )
∧
⊕
q

Cq . (1.37)

Here ch(F ) denotes the Chern character

ch(F ) =
∞∑
n=0

chn(F ) , chn(F ) = 1
n!Tr

[(
iF

2π

)n]
. (1.38)

Furthermore, RT and RN respectively denote the curvature 2-forms on the
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1 Essentials of string compactifications

tangent bundle and normal bundle of the brane worldvolume, and Â(R)
denotes the A-roof genus

Â(R) = 1− p1(R)
24 + · · · = 1 + 1

24
Tr (R ∧R)

8π2 + · · · . (1.39)

It is important to stress that the CS action (1.37) involves a (formal) sum over all
gauge fields Cq. Effectively, this means that in a non-trivial background a Dp-brane
not only couples to Cp+1, but possibly also to other Cq with q < p. Indeed, by
expanding the action (1.37), one finds that the following terms arise:

SDp,CS = TDp

∫
Dp
Cp+1 (1.40)

+TD(p−2)

∫
Dp
Cp−1 ∧ ch1 (−iF2) (1.41)

−TD(p−4)

∫
Dp
Cp−3 ∧

[
ch2(F2) + p1(RT )− p1(RN )

48

]
+ · · · , (1.42)

where we leave out higher-order terms as they will not play an important role. Let
us briefly comment on the interpretation of these first three terms.

• Interpretation of (1.40):
This term simply states that a Dp-brane is a source for Cp+1.

• Interpretation of (1.41):
This term implies that if a Dp brane wraps a 2-cycle in the internal space
which carries a U(1)-bundle with a non-trivial first Chern class, then (from
the four-dimensional perspective) this is interpreted as a contribution to the
effective D(p− 2) brane charge.

• Interpretation of (1.42):
This term consists of two qualitatively different contributions. The first
contribution implies that if a non-trivial instanton configuration is excited on
a 4-cycle that is wrapped by the Dp-brane, then this provides exactly one unit
of negative D(p− 4)-brane charge. Additionally, from the second contribution
one sees that if the wrapped 4-cycle has a non-trivial first Pontryagin class p1,
then there is also a curvature-induced D(p− 4)-brane charge. For example,
wrapping a Dp-brane on a K3 surface also yields exactly one unit of negative
D(p− 4)-brane charge.
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1.2 Type IIB at low energies

O-planes

Just like a Dp-brane, an Op-plane corresponds to an extended (p+ 1)-dimensional
surface inside the target spacetime. However, in constrast to Dp-branes, Op-planes
correspond to the fixed loci of certain involutive actions on the target space. As a
result, they are not dynamical objects (in particular, they do not host a gauge theory
on their worldvolume). Nevertheless, they turn out to have a (negative) tension,
which means that they couple to gravity and thus backreact on the geometry, and
they additionally turn out to be a source for the R-R fields Cp. The action for
Op-planes is very similar to that of Dp-branes, again consisting of two terms

SOp = SOp,DBI + SOp,CS . (1.43)

Let us discuss these two terms in turn. The first term again corresponds to a
DBI-like action

Dirac–Born–Infeld (DBI) action Op-plane

SOp,DBI = −TOp

∫
Op
dp+1ξ e−Φ

√
−det (Gαβ) . (1.44)

Here the integral is taken over the (p+ 1)-dimensional worldvolume of the
Op-plane, and the tension TOp of an Op plane is related to that of a Dp-brane
by

TOp = −2p−5TDp . (1.45)

In particular, O-planes have a negative tension.

Note, however, that the action (1.44) does not include the worldvolume flux F2

hence an O-plane indeed does not host a gauge-theory on its worldvolume.

The CS action for an Op-plane also takes a form similar to that of a Dp-brane.

Chern–Simons (CS) action Op-plane

SOp,CS = TOp

∫
Op

√
L(ℓ2

sRT /4)
L(ℓ2

sRN/4) ∧
⊕
q

Cq . (1.46)

Here the integral is taken over the (p+ 1)-dimensional worldvolume of the Op-
plane, RT and RN respectively denote the curvature 2-forms on the tangent
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1 Essentials of string compactifications

bundle and normal bundle of the Op-plane worldvolume, and L(R) denotes
the Hirzebruch L-polynomial

L(R) = 1− 1
48π2 Tr (R ∧R) + · · · , (1.47)

where the dots denote higher orders in the curvature.

Just like for a Dp-brane, one finds that an Op-plane is not just a source for Cp+1,
but can also give rise to effective lower-dimensional R-R charges by including the
α′ corrections to the Chern–Simons action. Explicitly expanding the action (1.46)
and using the relation (1.45) one finds

SOp,CS = −2p−5TDp

∫
Op
Cp+1 (1.48)

−2p−6TD(p−4)

∫
Op
Cp−3 ∧

p1(RT )− p1(RN )
48 + · · · , (1.49)

where we have again left out the higher-order terms. The interpretation of the first
correction is similar to the curvature correction for Dp-branes, though it comes
with a slightly different prefactor. Importantly, note that there is no term involving
Cp−1 (as there was for a Dp-brane) due to the fact that O-planes do not couple to
the worldvolume flux F2. As an example, while a D5-brane can induce an effective
D3-brane charge, an O5-plane cannot.

1.2.4 Tadpole cancellation conditions
Combining the results of the previous two subsections, we conclude that the full
low-energy effective action of type IIB string theory is really given by a combination

SIIB+sources = SIIB + Ssources , (1.50)

where SIIB is given by (1.17) and describes the massless excitations of the closed
string, while Ssources describes the massless excitations of the open string through
the combined backreaction of various D-branes and O-planes given by the actions
(1.34) and (1.43). One point which deserves further attention is how the inclusion
of the Chern–Simons terms for the D-branes and O-planes affects the equations
of motion of the R-R p-form fields Cp. To be a bit more general, we consider
compactifications down to d dimensions and write

M10 = M10−d ×Md , (1.51)

28



1.2 Type IIB at low energies

withMd the d-dimensional internal compact space. Furthermore, in order to preserve
Poincaré invariance we assume all Dp-branes and Op-planes to be spacetime-filling
with respect to the (10− d)-dimensional external space (when d+ p ≥ 9). Then
the equations of motion of Cp+1 take the form

d ⋆ dCp+1 + non-localized + ℓ7−p
s

∑
i

Q(i)
p PD[Γ(i)

d+p−9] = 0 , (1.52)

where the non-localized contribution refers to any additional terms which arise from
the variation of the closed-string effective action, while the remaining terms arise
from D-branes and/or O-planes which wrap an internal (d+ p− 9)-cycle Γ(i)

d+p−9

and thereby induce an effective Dp-brane charge Q(i)
p , as explained in the previous

section. For example, a D3-brane induces Q3 = +1 while an O3-plane induces
Q3 = − 1

4 . Furthermore, PD[Γ(i)
d+p−9] denotes the Poincaré dual of Γ(i)

d+p−9 with
respect to the internal d-dimensional manifold, which yields a (9− p)-form.

The importance of (1.52) is it can lead to global restrictions upon integrating
the equation over the space transverse to the cycles Γ(i)

d+p−9. This is similar in
spirit to how we arrived at the Maldacena–Nuñez no-go theorem in section 1.2.2.
Indeed, if the space one is integrating over is compact, then by Stokes’ theorem the
contribution coming from the exact form d⋆dCp+1 will vanish. One is then typically
left with a global constraint on the charges Q(i)

p and possibly the fluxes coming
from the non-localized term. Such relations are referred to as tadpole cancellation
conditions. In this way, one finds (in the context of type IIB compactifications)
tadpole cancellation conditions for D3/D5/D7/D9-branes. In the most general
setting one should take into account the presence of all possible branes and orientifold
planes, see for example [18] for a detailed overview. However, in this thesis we
choose to make the following simplification.

D-branes and O-planes

From this point onwards, we will only consider type IIB compactifications
which include D3/D7-branes and O3/O7-planes, unless stated otherwise.

D3 tadpole cancellation

Let us consider the case d = 6 and p = 3, for which the transverse space is the whole
6-dimensional internal space M6. For simplicity, we only include the contribution
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1 Essentials of string compactifications

coming from spacetime filling D3-branes and O3-planes. Then one finds

2π
ℓ8
s

∫
M6

1
2
(
d ⋆ F̃5 + F3 ∧H3

)
+ 2π
ℓ4
s

(
ND3 −

1
4NO3

)
= 0 , (1.53)

where we have used (1.45) for p = 3 and we denote by ND3 and NO3 the total
number of D3-branes and O3-planes, respectively. Using the fact that M6 is compact,
Stokes’ theorem implies that the contribution from F̃5 will vanish, and hence one is
left with the following.

D3 tadpole cancellation condition

ND3 + 1
2ℓ4
s

∫
M6

F3 ∧H3 = 1
4NO3 . (1.54)

Note:
There can be additional contributions to (1.54) coming from D5/D7/D9-
branes and non-trivial configurations of the worldvolume flux F2 on the
branes cf. (1.37), as well as from O7-planes cf. (1.46). For simplicity of
exposition these have not been included explicitly.

Intuitively, this relation states that the positive contributions to the D3-charge
(corresponding to the left-hand side) must match the negative contributions to the
D3-charge (corresponding to the right-hand side), such that the net charge is equal
to zero, as it must be on a compact space. Let us also recall that in string theory
(as opposed to just supergravity) fluxes have to satisfy the following quantization
condition.

Dirac quantization

1
ℓps

∫
Γp+1

Fp+1 ∈ Z , (1.55)

for any (p+ 1)-cycle Γp+1.

Note:
In particular, this implies that a p-form flux Fp has to be an element of the
integer cohomology group Hp(M6,Z) of the compact internal space.
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1.3 Type IIB Calabi–Yau compactifications

D7 tadpole cancellation

For completeness, let us also record the D7 tadpole cancellation condition, which is
given by (here we again take d = 6)

D7 tadpole cancellation condition

∑
D7a

ND7a
PD [ΓD7a

] = 4
∑
O7b

PD [ΓO7b
] . (1.56)

Here have included the possibility that there are multiple stacks (labeled by
the index a) of ND7a D7-branes wrapping internal 4-cycles ΓD7a , as well as
multiple O7-planes (labeled by the index b) wrapping various internal 4-cycles
ΓO7b

.

Note:
There can be additional contributions to (1.56) coming from D9-branes with
a non-trivial worldvolume flux F2 cf. (1.37).

As an example, if one considers a single O7-plane, then in order for the D7 tadpole
cancellation condition to be satisfied, one has to include exactly 4 D7-branes in the
same homology class.

1.3 Type IIB Calabi–Yau compactifications
In section 1.2.2 we have found that compactifications of type IIB supergravity
down to four dimensions in the absence of localized sources are relatively simple to
describe, in particular they involve a Ricci-flat internal space (assuming a constant
axio-dilaton). In this section, we present an alternative point of view on such
solutions by first performing the dimensional reduction of the ten-dimensional type
IIB supergravity action and subsequently studying the resulting four-dimensional
effective theory. For simplicity we focus on compactifications that preserve some
amount of supersymmetry. In section 1.3.1, we present a brief motivation and
explanation for how the process of Kaluza–Klein compactification yields an effective
four-dimensional description of the theory. Additionally, we recall the supersym-
metry conditions which ultimately require the internal space to be a Calabi–Yau
manifold. In section 1.3.2 we discuss how this typically gives rise to families of
solutions due to the fact that the Calabi–Yau manifold can vary in moduli. Finally,
in section 1.3.3 we present the important features of the resulting four-dimensional
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1 Essentials of string compactifications

N = 2 supergravity theory that arises from performing the compactification. We
pay special attention to how the geometry of the internal Calabi–Yau manifold
dictates the physical couplings of the effective theory, as this will play a central
role in the remainder of the thesis.

1.3.1 Motivation
It is time to address the elephant in the room: we have been considering string
backgrounds which involve a ten-dimensional target space, while our world certainly
appears to be only four-dimensional! From an abstract point of view, this is not
as big of a deal as it may seem. Indeed, one could take the stance that the actual
CFT defining the string background in consideration really consists of two pieces,
one describing the propagation of a string in some four-dimensional target space
which we identify with the physical spacetime in which we live, while the other is
some compact CFT that happens to have a geometric description.

It would, however, be more natural if the additional internal dimensions do in
fact correspond to real, physical dimensions. In that case, in order not to be in
tension with observations, one would have to conclude that the typical size of the
extra dimensions is too small to be accessible to current-age measurements. This
is admittedly a large assumption to make, but it also comes with some practical
benefits. Indeed, if the size of the internal manifold is small compared to the
length scales we would like to describe, it is not necessary to take into account
the full ten-dimensional description of the theory. Instead, it suffices to use a
four-dimensional effective description, which we briefly describe in the following.

Dimensional reduction

Whenever a given field ϕ(x, y) has a momentum component along the internal
directions, this is perceived from the four-dimensional point of view as an effective
mass term. In the case of a free scalar field, this can be seen explicitly by writing
its equation of motion as

∆(10)ϕ = ∆(4)ϕ+ ∆(6)ϕ = 0 . (1.57)

Indeed, decomposing ϕ(x, y) in terms of eigenmodes of the six-dimensional Laplacian
∆(6), which amounts to a Fourier decomposition into different momentum modes

ϕ(x, y) =
∑
k

ϕk(x)uk(y) , ∆(6)uk = k2uk , (1.58)
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1.3 Type IIB Calabi–Yau compactifications

one finds that each of the momentum modes or Kaluza–Klein (KK) modes ϕk(x)
satisfies the equation (

∆(4) + k2)ϕk(x) = 0 , (1.59)

such that the eigenvalue k acts as an effective mass term for the four-dimensional
field ϕk(x). Explicit computation of the eigenvalues of the six-dimensional Laplacian
can be very involved, as this requires detailed knowledge of the internal metric.
A rough estimate of the typical mass scale of the Kaluza–Klein modes is that it
scales inversely with the size of the internal manifold, and is hence large in the
regime where the internal dimensions are small. For example, in the case of a
one-dimensional reduction on a circle of radius R, the mass scale is given by

mKK,n = n

R
, n ∈ N . (1.60)

Therefore, if we are considering energy scales much below this typical mass scale,
it suffices to consider those field configurations which do not have any internal
momentum. In other words, this corresponds to considering those configurations
which are the zero-modes of the six-dimensional Laplacian. This can equivalently
be captured in the dimensional reduction of the higher-dimensional action

S =
∫
M10

dϕ ∧ ⋆dϕ =
∫
M4

dϕ0 ∧ ⋆dϕ0 + · · · , (1.61)

which follows from inserting the decomposition (1.58) into the ten-dimensional action
and performing the integration over the internal manifold M6 using the orthogonality
of the eigenfunctions uk(y) and neglecting the massive higher-momentum modes
which are contained in the dots. The leading term in (1.61) is what is meant by
the four-dimensional low energy effective action. To summarize:

Dimensional reduction

The dimensional reduction of a D-dimensional theory of a field ϕ(x, y) over a
d-dimensional compact space is a (D − d)-dimensional effective theory that
describes those configurations which are associated with (internal) harmonic
fields:

∆(d)ϕ = 0 . (1.62)

Physically, these configurations are the ones which have no internal momentum
and thus remain massless in the (D − d)-dimensional effective theory.
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1 Essentials of string compactifications

Above we have exemplified the idea of dimensional reduction in the case of a scalar
field, but the same logic also applies to higher tensor fields such as the various
p-form fields of type IIB supergravity, as we will see shortly.

Supersymmetry conditions

At this point, one may be tempted to simply apply the above recipe to the ten-
dimensional type IIB supergravity action in order to obtain an effective four-
dimensional description. However, without making some additional assumptions
it is unfeasible to do this in practice. For completely general backgrounds it is
very difficult to say anything about the solutions to the Laplace equation (for
higher-forms at least) and thus it is not even clear how many degrees of freedom
the lower-dimensional effective theory will contain. Additionally, while the starting
point of type IIB supergravity has a great deal of supersymmetry (32 supercharges),
a generic configuration will typically break supersymmetry and thus the resulting
theory can be rather wild.

One guiding principle which allows one to keep a handle on things is to impose
that the resulting theory does preserve some amount of supersymmetry. To be
precise, we will consider compactifications down to four dimensions in which 1

4 of
the supercharges is preserved (leaving 8 residual supercharges in total), which thus
give rise to four-dimensional N = 2 supergravity theories. While such theories
have too much supersymmetry to be phenomenologically viable, they will serve
as an important first step. Indeed, the motivation for considering supersymmetric
solutions is analogous to the reason we study superstrings. Namely, such solutions
typically give rise to stable configurations, which are furthermore amenable to
concrete computations due to their restricted nature. At the same time, there are
well-controlled scenarios in which supersymmetry is further broken upon inclusion
of non-zero fluxes, as will be discussed in part III of the thesis. The resulting
four-dimensional N = 1 theories provide an excellent arena to study potentially
interesting phenomenological implications of string theory.

The following is a well-known result which relies on a detailed analysis of the
supersymmetry transformations of type IIB supergravity:
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1.3 Type IIB Calabi–Yau compactifications

Supersymmetric compactifications of type IIB

Consider warped compactifications of type IIB supergravity on

M10 = M4 ×M6 , (1.63)

with metric

ds2
10 = e2A(y)gµν dxµ ⊗ dxν + gmn dym ⊗ dyn , (1.64)

where gµν is maximally symmetric, i.e. either de Sitter, Minkowski or anti-
de Sitter. Then in the absence of fluxes this compactification preserves
supersymmetry if and only if the following conditions are satisfied

• A(y) is constant,

• M4 is Minkowski,

• M6 has holonomy contained in SU(3) .

If the holonomy group is exactly SU(3), then indeed 1
4 of the supercharges is

preserved. If the holonomy group reduces even further, then more supersymmetry
is preserved. Manifolds with SU(3) holonomy are known as Calabi–Yau manifolds.
Thus, the only possible supersymmetry-preserving solutions (in the absence of
fluxes) consist of an unwarped external Minkowski spacetime together with an
internal compact Calabi–Yau threefold. It should be noted that the celebrated
theorem of Yau ensures that Calabi–Yau manifolds admit a Ricci-flat metric, so that
the conditions coming from supersymmetry are compatible with the supergravity
equations of motion if one furthermore takes the axio-dilaton to be constant cf. (1.32).
Indeed, note that the resulting solution is a special case of the one discussed in
section 1.2.2.

1.3.2 Moduli spaces of Calabi–Yau manifolds

Before moving toward the four-dimensional effective theory that results from com-
pactifying type IIB on a Calabi–Yau threefold, let us first discuss a very important
point. Namely, from the 10-dimensional point of view, in principle any choice
of Calabi–Yau threefold will provide a valid solution to the equations of motion.
Typically, Calabi–Yau manifolds come in families, meaning that they can depend on
additional parameters which will be referred to as moduli. In the four-dimensional
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effective theory, such parameters will correspond to massless scalar fields. The
fact that they are massless is roughly due to the fact that there is no energetic
obstruction to deforming shape and size of the underlying Calabi–Yau manifold.
The following discussion closely follows [19] as well as the lecture notes [20,21].

One way to see how such additional moduli can arise is by noting that there may
exist small deformations of the metric g 7→ g + δg which preserve the Ricci-flatness
condition. There are two possible types of such deformations, corresponding to the
two different index structures:

δg = δgij dyi ⊗ dyj + δgiȷ̄ dyi ⊗ dyȷ̄ + complex conjugate . (1.65)

The deformations corresponding to δgij (and its complex conjugate) are referred to
as complex structure deformations, while those corresponding to δgiȷ̄ are referred to
as Kähler deformations. Let us discuss these in turn. For simplicity, we restrict to
the case of Calabi–Yau threefolds, which will be denoted by Y3, but the statements
naturally generalize to arbitrary Calabi–Yau manifolds.

Complex structure deformations

The condition that the deformation induced by δgαβ (and its complex conjugate)
preserves the Ricci-flatness is very restrictive. To be precise, it is equivalent to the
statement that the following (2, 1)-form

Ω β̄
γδ δgᾱβ̄ dyγ ∧ dyδ ∧ dȳᾱ , (1.66)

is harmonic. Here Ω = Ωαβγdyα ∧ dyβ ∧ dyγ denotes the (up to scaling) unique
(3, 0)-form on the Calabi–Yau threefold. Roughly speaking, one can think of the
harmonicity condition as the generalization of the arguments given for the scalar
field ϕ(x, y) in previous section to the metric. One of the crucial properties of
compact Calabi–Yau manifolds (or, more generally, compact Kähler manifolds)
is that harmonic (2, 1)-forms are in one-to-one correspondence with cohomology
classes in the Dolbeault cohomology group H2,1(Y3). As a result, the number of
independent complex structure deformations is determined by the Hodge number
h2,1 = dimH2,1(Y3), which is a topological quantity. Correspondingly, the h2,1

complex parameters which parameterize these deformations are referred to as
complex structure moduli, and will be denoted by zi, for i = 1, . . . , h2,1. To be
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1.3 Type IIB Calabi–Yau compactifications

precise, the relation between δgαβ and zi is given by

δgαβ = i

h2,1∑
i=1

z̄i(x)

(b̄i)αγ̄δ̄ Ωγ̄δ̄β
||Ω||2

 , ||Ω||2 = 1
3!ΩαβγΩ̄αβγ , (1.67)

where bi is a basis of harmonic (2, 1)-forms. Note that because the metric defor-
mations δgαβ are non-Hermitian (with respect to the original complex structure),
one can alternatively interpret these deformations as deformations of the complex
structure of the Calabi–Yau threefold, hence the name.

A theorem of Bogomolov–Tian–Todorov [22–24] ensures that the infinitesimal
deformations considered above can be integrated to finite deformations – it is said
that the deformation space is unobstructed. This gives rise to a complex structure
moduli space Mcs of complex dimension h2,1 in which the complex structure moduli
take value. In fact, the complex structure moduli space carries the structure of a
Kähler manifold, which implies that it admits a metric Gcs

iȷ̄ which is locally expressed
in terms of a Kähler potential

Gcs
iȷ̄ = ∂i∂ȷ̄K

cs , Kcs = − log
[
i

∫
Y3

Ω ∧ Ω̄
]
, (1.68)

where the derivatives are taken with respect to the complex structure moduli.

Kähler deformations

The deformations parametrized by δgαβ̄ correspond to deformations of the Kähler
class

J = igαβ̄ dyα ∧ dȳβ̄ , (1.69)

of the Calabi–Yau manifold, which is a harmonic (1, 1)-form. Similarly to the
complex structure deformations, the Kähler deformations can thus be parametrized
by h1,1 = dimH1,1(Y3) real parameters vA, for A = 1, . . . , h1,1, whose relation to
δgαβ̄ is given by

δgαβ̄ = i
h1,1∑
A=1

vA(ωA)αβ̄ , (1.70)

where ωA is a basis of harmonic (1, 1)-forms.

As for the complex structure deformations, the Kähler deformations can be inte-
grated to finite deformations, giving rise to the Kähler moduli space Mks(Y3) of
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real dimension h1,1. Typically, one considers the complexification of the Kähler
moduli space by defining the complexified Kähler moduli

TA = bA + ivA , (1.71)

where bA label the components of B2 in the basis ωA. The advantage of this
complexification is that the resulting complexified Kähler moduli space becomes
itself a Kähler manifold, just like the complex structure moduli space, with a Kähler
metric given by

GAB̄ = ∂A∂̄B̄K
ks , Kks = − log

[
KABCvAvBvC

]
= − log [6VY3 ] , (1.72)

where
KABC =

∫
Y3

ωA ∧ ωB ∧ ωC , (1.73)

denote the triple-intersection numbers of the Calabi–Yau threefold and VY3 denotes
its volume.

1.3.3 D = 4, N = 2 SUGRA from type IIB

We are now ready to discuss the dimensional reduction of type IIB supergravity on
Calabi–Yau threefolds. We summarize the essential features that will be relevant for
us, and refer the reader to [19,25–27] for more extensive reviews. The main strategy
will be to decompose all the supergravity fields in terms of the appropriate harmonic
forms on the Calabi–Yau threefold. Below we first introduce some convenient bases
for the various cohomology groups. For the convenience of the reader, we have
summarized the various restrictions on the Hodge numbers of a Calabi–Yau threefold,
summarized in the Hodge diamond in figure 1.2.

Cohomology bases

We have already introduced the basis ωA of harmonic (1, 1)-forms. In a similar
fashion, we denote by ω̃A the dual basis of harmonic (2, 2)-forms, which can be
chosen such that ∫

Y3

ωA ∧ ω̃B = δBA . (1.74)

Furthermore, while we have already introduced the basis bi of harmonic (2, 1)-
forms, we will also need a basis of the full middle cohomology group H3(Y3), which
additionally contains the two harmonic (3, 0) and (0, 3) forms. In the following, it
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1

1

h2,1

h1,1

h1,1
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1

1

Figure 1.2: Hodge diamond of a Calabi–Yau threefold.

will be useful to employ the standard symplectic basis αI , βI , for I = 0, . . . , h2,1,
defined by the relations ∫

Y3

αI ∧ βJ = δJI , (1.75)

with all other pairings vanishing.

Decomposition of 10-dimensional supergravity fields

In order to perform the compactification, it is necessary to expand the various
10-dimensional supergravity fields according to the factorization M10 = M4 × Y3.
In terms of the various bases described above, the most general decomposition in
terms of harmonic forms is given by5

Φ(x, y) = Φ(x) ,
B2(x, y) = B2(x) + bA(x)ωA(y)
C0(x, y) = C0(x) , (1.76)
C2(x, y) = C2(x) + cA(x)ωA(y) ,
C4(x, y) = V I(x) ∧ αI(y) + ρA(x)ω̃A(y) ,

where Φ(x), C0(x), bA(x), cA(x), ρA(x) are spacetime scalars, V I(x) are spacetime
1-forms and B2(x) is a spacetime 2-form. For future reference, let us note that
these resulting 4-dimensional fields can be collected into supergravity multiplets as
summarized in table 1.1.
5Here we have already used the self-duality of C4 to simplify its decomposition.
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Gravity multiplet: g
(4)
µν , V 0

Vector multiplets: V i, zi i = 1, . . . , h2,1

Hypermultiplets: TA, bA, cA, ρA A = 1, . . . , h1,1

Tensor multiplet: B2, C2,Φ, C0

Table 1.1: Overview of the various four-dimensional N = 2supergravity multiplets that
arise from compactification of type IIB supergravity on a Calabi–Yau threefold.

Four-dimensional supergravity action

For the remainder of this section, we will restrict our attention to the gravity
multiplet and the vector multiplets. By inserting the expansions (1.76) into the
low-energy effective action of type IIB, doing the integration over the internal
Calabi–Yau threefold, and performing an appropriate Weyl rescaling of the metric
to pass to the Einstein frame, one finds the action of four-dimensional N = 2
(ungauged) supergravity:

D = 4, N = 2 SUGRA from type IIB/CY3 (gravity+vector multiplets)

S
(4)
IIB =

∫ 1
2R ⋆ 1−Gcs

iȷ̄ dzi ∧ ⋆dz̄ȷ̄ + 1
4IIJF

I ∧ ⋆F J − 1
4RIJF

I ∧F J . (1.77)

Here R denotes the four-dimensional Ricci-scalar and Gcs
iȷ̄ is the metric (1.68)

on the complex structure moduli space parametrized by the complex scalar
fields zi. Furthermore, we have denoted by F I = dV I the field strengths of
the U(1) gauge fields.

The gauge-kinetic coupling matrices appearing in (1.77) can be recovered from the
internal geometry by the following formula∫

Y3

(
α

β

)
∧ ⋆
(
α β

)
=
(
−I −RI−1R −RI−1

−I−1R −I−1

)
. (1.78)

Notably, this means that the gauge-kinetic couplings are effectively determined
by the Hodge inner product on the Calabi–Yau threefold. As a result, all of the
couplings Giȷ̄, IIJ ,RIJ appearing in the four-dimensional effective action are a
function of the complex structure moduli. Therefore, in order to understand the
generic features of four-dimensional effective actions that originate from a UV
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1.3 Type IIB Calabi–Yau compactifications

complete theory of quantum gravity such as type IIB string theory, it is vital get a
handle on this moduli dependence.

Periods

In order to make the moduli dependence of the various supergravity couplings
more manifest, it is useful to introduce the notion of periods. Given an integral
basis γI ∈ H3(Y3,Z), the periods of the holomorphic 3-form Ω are a collection of
functions ΠI which are defined by

Ω = ΠIγI , ΠI =
∫

PD[γI ]
Ω =

∫
Y3

Ω ∧ γI . (1.79)

In particular, the periods ΠI(z) carry all the dependence on the complex structure
moduli. In terms of the periods, the Kähler potential for the complex structure
moduli can be written as

Kcs = − log
[
iΠI(z)SIJ Π̄J(z̄)

]
, (1.80)

where we have introduced the intersection form

SIJ =
∫
Y3

γI ∧ γJ . (1.81)

Thus, through the relation (1.68), once the periods ΠI(z) are known it is straight-
forward to compute the metric Gcs

iȷ̄ that describes the kinetic coupling between the
various complex structure moduli. Furthermore, assuming that the periods are
expressed in a symplectic basis, such that

Π =
(
XI

−FI

)
, S =

(
0 +I
−I 0

)
, (1.82)

the gauge-kinetic coupling matrices RIJ and IIJ can be expressed as

NIJ = RIJ + i IIJ , NIJ =
(
FI , DiFI

) (
XJ , DiXJ

)−1
, (1.83)

where Di denotes the standard Kähler–Weyl covariant derivative.
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1.4 Basics of F-theory
In the previous section we have focused on compactifications of type IIB supergravity
on relatively simple backgrounds. In particular, we have neglected the contributions
from fluxes and localized sources. In this section we introduce the basics of
F-theory [28], which is a framework which naturally incorporates the effects of
D7-branes and a varying axio-dilaton in a geometric way. Additionally, it will serve
as the basis for our discussion in section 1.5, where we also include the effects from
D3-branes and non-trivial 3-form fluxes. For further details and references we refer
the reader to [29–31].

1.4.1 Motivation

Type IIB with varying axio-dilaton

Let us recall that, in the absence of fluxes and localized sources, the equations of
motion of type IIB supergravity reduce to

d ⋆ dτ = 1
2

dτ ∧ ⋆dτ̄
τ − τ̄

, RMN = 1
2
∂Mτ ∂N τ̄

(Im τ)2 . (1.84)

In section 1.3 we have focused on the case where the axio-dilaton is constant, and
the internal manifold is Ricci-flat. However, when the axio-dilaton is not constant,
one finds that the internal manifold is no longer Ricci-flat. Rather, it will have
positive Ricci curvature.

In the presence of a D7-brane, one expects that the axio-dilaton will develop
a non-trivial profile in the directions perpendicular to the D7-brane. Locally,
the transverse directions can be parametrized by a complex coordinate z and its
conjugate z̄, chosen such that the location of the D7-brane is at z = 0. Taking
τ = τ(z, z̄) and considering a region away from the D7-brane, one finds that the
equations of motion for the axio-dilaton reduce to

∂∂̄τ − 2∂τ ∂̄τ
τ − τ̄

= 0 , (1.85)

where the derivatives are taken with respect to z and z̄. Clearly, any holomorphic
function ∂̄τ = 0 will satisfy (1.85). Furthermore, it turns out that such solutions
are supersymmetric (to be precise, they preserve 16 supercharges). Additionally,
inserting a general holomorphic solution into Einstein’s equations, one finds that
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1.4 Basics of F-theory

the Ricci-curvature is given by

Rzz̄ = −1
2∂∂̄ log Im τ = 1

2∂∂̄Φ . (1.86)

Note that the internal metric is Kähler.

D7-brane backreaction

In order to give a more precise expression for τ(z) near the D7-brane, we recall
that the Bianchi identity for the field-strength F9 implies the following relation∫

S1
⋆F9 =

∫
S1

dC0 = 1 , (1.87)

where S1 is a circle that winds around the location z = 0 of the D7-brane once. As a
result, one sees that the presence of a D7-brane induces a monodromy transformation
τ 7→ τ + 1 upon encircling the point z = 0. Combined with the fact that τ should
depend holomorphically on z, this implies that locally τ takes the following form

τ(z) = τ0 + 1
2πi log z + · · · , (1.88)

where the dots denote regular terms in z. Alternatively, one can also arrive at this
result by noting that the inclusion of the D7-brane leads to the Poisson equation
with a non-trivial source term: ∂∂̄τ = −δ2(z).

Note, in particular, that near the D7-brane the axio-dilaton diverges to i∞, such
that the effective string coupling gs goes to zero. In other words, near the D7-brane
one expects that the perturbative type IIB description in terms of fundamental
strings is valid. However, due to the logarithmic dependence, far away from the
brane there will be regions where the effective string-coupling is no longer small,
and it is necessary to go to a different duality frame of type IIB in order to recover
the appropriate light degrees of freedom.6 One purpose of F-theory is to provide a
unifying framework in which these effects can be formulated in purely geometric
terms, thus providing a possible non-perturbative description of type IIB string
theory.

6This can be made more precise by explicity computing the backreaction of the D7-brane on
the metric. One finds that, at large distances from the D7-brane, the metric develops a conical
singularity due to the appearance of a deficit angle.
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1.4.2 Geometric perspective (1): Elliptic fibrations

There are two complementary perspectives one can take on F-theory, both of which
will be useful to discuss to some extent. Both perspectives are built on the idea
that the axio-dilaton τ of type IIB should be viewed as the modular parameter
of an auxiliary torus/elliptic curve. One motivation for this is that the action of
the SL(2,Z) symmetry on τ , which is a symmetry of the type IIB supergravity
action, exactly corresponds to the action of the modular group on the torus. In the
following, we will describe how this idea can be made more precise.

Weierstrass model

An elliptic curve Eτ with complex structure parameter τ can be realized as a
hypersurface in weighted projective space P2,3,1 with homogeneous coordinates
[x : y : z] by the Weierstrass equation

Eτ : P ≡ y2 − x3 − fxz4 − gz6 = 0 , (1.89)

for some constants f, g ∈ C which are given in terms of τ by the expressions

f(τ) = −41/3g2(τ) , g(τ) = −4g3(τ) , (1.90)

where gi(τ) is the i-th Eisenstein series. Such a realization of an elliptic curve is
referred to as a Weierstrass model. Conversely, given a Weierstrass model one can
recover its complex structure parameter τ via the relations

j(τ) = 41728f3

∆ , ∆ = 4f3 + 27g2 , (1.91)

where j(τ) is the Jacobi j-function which enjoys the expansion

j(τ) = e−2πiτ + 744 + 196884e2πiτ + · · · . (1.92)

The significance of the discriminant ∆ is that it indicates when the elliptic curve
develops a singularity. To be precise, the hypersurface defined by the Weierstrass
equation is singular when P = dP = 0, which corresponds precisely to the vanishing
of the discriminant ∆. At the same time, combining the relations (1.91) and (1.92)
one finds that this corresponds to τ → i∞, for which indeed one finds that the
torus pinches and thus develops a singularity.
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Elliptic fibrations and singular fibres

The Weierstrass model provides a very useful way to describe the situation where
the axio-dilaton varies over the internal space. Indeed, this can be accomplished by
promoting the coordinates [x : y : z] as well as the constants f, g in the Weierstrass
model to sections of a fibration over some base space. In other words, we view the
complex three-dimensional internal space on which type IIB is compactified as the
base B3 of a torus fibration

Eτ → Y4 → B3 , (1.93)

for some complex four-dimensional space Y4. It turns out that the combination of
supersymmetry preservation and Einstein’s equations leads to some remarkable
restrictions on the possible fibrations:

• B3 is Kähler,

• τ varies holomorphically,

• Y4 is a Calabi–Yau fourfold.

Let us briefly comment on the last point, which can be roughly understood as
follows. Since τ varies holomorphically one can describe the elliptic fibration (1.93)
in terms of a holomorphic line bundle L over the base B3, whose first Chern class
c1(L) is given by the curvature of the connection 1-form i

2
(
∂̄Φ− ∂Φ

)
, see [32] for

a more in-depth discussion. Recalling Einstein’s equation (1.86), this can be shown
to be equivalent to the relation

c1(B3) = c1(L) , (1.94)

where c1(B3) is the first Chern class of the tangent bundle of B3, which is nothing
but the Ricci 2-form. Finally, using standard results in algebraic geometry, one
finds that

c1(Y4) = c1(B3)− c1(L) = 0 , (1.95)

so that the first Chern class of Y4 vanishes, hence Y4 is Calabi–Yau! Roughly
speaking, the positive curvature of the base manifold has been cancelled by the
negative curvature of the additional torus. The fact that the geometrization of
the axio-dilaton of type IIB allows us to remain within the realm of Calabi–Yau
compactifications is one of the great advantages of the F-theory framework.

Furthermore, recalling that the vanishing of the discriminant ∆ in (1.91) corre-
sponds locally to sending τ → i∞ one sees that the co-dimension one loci in the
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base B3 over which the elliptic fibre is singular correspond exactly to the locations
of D7-branes in the type IIB language. To be precise, one actually finds more
general types of 7-branes, depending on how exactly the elliptic fibre degenerates.
Roughly speaking, if the degeneration is due to the shrinking of the A-cycle of the
torus, the resulting brane will be the standard D7-brane. However, more generally
the degeneration may be due to a linear combination pA+ qB of the A-cycle and
B-cycle that shrinks. The resulting 7-brane is called a (p, q) 7-brane. Correspondly,
the open strings whose endpoints lie on such (p, q) 7-branes are called (p, q)-strings,
and can roughly be thought of as bound states of p F1-strings and q D1-branes. Of
course, these different types of branes and strings in principle exist within the type
IIB picture, as they are related through the SL(2,Z)-duality. However, F-theory
provides a beautiful geometrization of these various objects through the different
types of degenerations of the elliptic fibration.

As a final comment, let us remark that a more general study of the possible
degenerations, in particular including effects from shrinking 2-cycles, gives rise
to an incredibly rich framework to describe the emergence of non-abelian gauge
symmetries. Although this will not play a role in this thesis, it is important to
stress this point in view of the phenomenological viability of F-theory. Indeed,
following the Kodaira classification of singular fibres in elliptic surfaces, one for
example finds that exceptional gauge groups E6, E7, E8 can be realized as enhanced
gauge symmetries in F-theory, leading to the possibility of GUT models. We refer
the reader to [30,31] for further details and references.

1.4.3 Geometric perspective (2): F-/M-theory duality

Although the perspective taken in the previous subsection provides a natural
motivation for studying F-theory, a more useful approach for the purpose of this
thesis is a dual description in terms of M-theory. Let us recall the low-energy
effective description of M-theory in terms of 11-dimensional supergravity

11D M-theory effective action

SM = 2π
ℓ9
M

∫
M11

R ⋆ 1− 1
2G4 ∧ ⋆G4 −

1
6C3 ∧G4 ∧G4 + ℓ6

M C3 ∧ I8 . (1.96)
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Here we have included a topological higher-curvature correction

I8 = 1
(2π)4

(
1

192trR4 − 1
768

(
trR2)2

)
= 1

192
(
p1(R)2 − 4p2(R)

)
. (1.97)

Furthermore, the 11-dimensional Planck length ℓM is related to the string
length ℓs via

2πℓM = g1/3
s ℓs . (1.98)

Regarding the higher-curvature correction, let us remark that from the type IIA
perspective this correction can be obtained by computing the one-loop scattering
amplitude of four gravitons and the Kalb–Ramond field B2, while from the heterotic
E8 × E8 perspective it is required for anomaly cancellation [8].

M-theory / type IIB duality

As a first step, let us briefly sketch the duality between M-theory and type IIB
string theory. Our starting point is to compactify M-theory on a 2-torus, which is
parametrized by two circles S1

RA
× S1

RB
with radii RA and RB, respectively. The

duality then consists of two steps:

• Step 1: Reduce M-theory on S1
RA

M-theory compactified on a small circle gives type IIA string theory in the
weak-coupling regime. To be precise, the relation between the circle radius
and the string-coupling is given by

RA =
√
α′gs,IIA , (1.99)

and we are considering the regime where RA, and hence gs,IIA is small.

• Step 2: T-duality along S1
RB

It is well-known that type IIA string theory and type IIB string theory are
T-dual to each other. To be precise, this means that type IIA string theory
compactified on a circle S1

RB
is dual to type IIB string theory compactified

on a circle S1
α′/RB

. For our purpose, it will be most important to keep track
of the relation between the type IIA string coupling gs,IIA and the type IIB
string coupling gs,IIB, which is given by

gs,IIB =
√
α′

RB
gs,IIA . (1.100)
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Combining the two steps described above, we arrive at the following relation between
M-theory and type IIB string theory:

M-theory / type IIB duality

M-theory / S1
RA
× S1

RB
←→ Type IIB / S1

α′/RB
. (1.101)

Furthermore, combining equations (1.99) and (1.100), one finds that the type
IIB string coupling is given by the ratio

gs,IIB = RA
RB

. (1.102)

The F-theory limit

In order to recover the full 10-dimensional formulation of type IIB, one would like
to take the limit in which RB → 0, such that the circle direction on the type IIB
side is decompactified. To be precise, one should take the limit in which the volume
of the 2-torus

V = RARB , (1.103)

goes to zero while the ratio RA/RB stays finite, such that there is a well-defined
value for the IIB string coupling (1.100). In fact, note that the inverse ratio of
the circle radii exactly corresponds to the imaginary part of the complex structure
parameter τ of the two-torus, such that one can make the identification

Im τ = RB
RA

= g−1
s,IIB . (1.104)

In other words, we arrive at the following relation

F-theory / type IIB duality (trivial fibration)

M-theory /Eτ
∣∣∣
Vol(Eτ )→0

←→ Type IIB , (1.105)

where the type IIB string coupling is determined by the relation (1.104).

More generally, one can proceed along exactly the same lines and consider M-theory
compactified on an elliptic fibration

Eτ → Yn+1 → Bn , (1.106)
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over some base space Bn. Recall that supersymmetric configurations correspond
to the case where Yn+1 is Calabi–Yau and Bn is Kähler. Then the more general
relation becomes

F-theory / type IIB duality (non-trivial fibration)

M-theory / Yn+1

∣∣∣
Vol(Eτ )→0

←→ Type IIB /Bn , (1.107)

where the type IIB string coupling is again determined by the relation (1.104),
which now varies over the base space Bn.

Note:
The resulting theory on the left-hand side of this relation could be viewed as
the definition of F-theory.

The M-theory perspective on F-theory is especially beautiful, as it suggests that the
elliptic curve should really be thought of as being part of the (external!) geometry,
as opposed to being some abstract book-keeping device to describe the axio-dilaton.
Furthermore, M-theory provides a useful framework in which to describe the various
other fluxes and branes that are present in type IIB, as we will discuss now.

1.4.4 Fluxes, branes and the tadpole cancellation condition
In order to make the duality between M-/F-theory and type IIB more precise, one
should also describe how the various fluxes and branes on the two sides are related.
Here we will briefly recall the standard dictionary, and refer the reader to [29] for a
more in-depth discussion.

Branes

In 11-dimensional supergravity, there is only a single p-form field C3, which is
electrically sourced by M2-branes. The action of an M2-brane takes a form which
is very similar to that of a Dp-brane

SM2 = 2π
ℓ3
M

∫
M2

d3ξ
√
−det (Gαβ) + 2π

ℓ3
M

∫
M2

C3 , (1.108)

where the first term is again a DBI-like term which is simply the worldvolume of
the M2-brane, and the second term describes the coupling to C3. Naturally, there
is also a corresponding action for the dual M5-branes, which provide a magnetic
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source for C3.

M2-branes and M5-branes can have different interpretations from the type IIB
perspective, depending on which (if any) of the cycles of the elliptic fibre are
wrapped.

• M2-brane:
– If the M2-brane is spacetime-filling, it gives rise to a spacetime filling

D3-brane.7

– If the M2-brane wraps p times around S1
A and q times around S1

B , this
gives rise to a (p, q)-string, which was discussed earlier in section 1.4.2.
Two notable cases are

∗ (p, q) = (1, 0): F1-string,
∗ (p, q) = (0, 1): D1-brane,

where by the F1-string we mean the fundamental type IIB superstring.

• M5-brane:
For an M5-brane the possible configurations are simply the magnetic duals of
the ones described above. Let us go through them for completeness:

– If the M5-brane wraps p times around S1
A and q times around S1

B , this
gives rise to a so-called (p, q) 5-brane. Again, two notable cases

∗ (p, q) = (1, 0): D5-brane,
∗ (p, q) = (0, 1): NS5-brane,

where we recall that a D5-brane is the magnetic dual of a D1-brane and
an NS5-brane is the magnetic dual of an F1-string.

– If the M5-brane wraps the two-cycle S1
A × S1

B this corresponds to a
D3-brane.

In table 1.2 we have summarized the various possibilities discussed above.

The tadpole cancellation condition revisited

Just like we found in section 1.2.4, the inclusion of a non-zero G4 flux and/or
M2-branes will lead to a non-trivial global constraint when the internal space is
compact. To be precise, the corresponding M2 tadpole cancellation condition reads

7Here spacetime-filling is meant in the M-theory sense, namely that the M2-brane is completely
in the R1,2 direction.
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Wrapped cycle IIB interpretation
S1
A F1-string

M2-brane S1
B D1-brane

p times around S1
A and q times around S1

B (p, q)-string
S1
A D5-brane

M5-brane S1
B NS5-brane

S1
A × S1

B D3-brane

Table 1.2: Summary of how the various branes in type IIB arise from different wrappings
of the M2/M5-branes in M-theory.

M2 tadpole cancellation condition

NM2 + 1
2ℓ6
M

∫
Y4

G4 ∧G4 = χ(Y4)
24 , (1.109)

where NM2 is the number of spacetime-filling M2-branes, and χ(Y4) denotes
the Euler character of the Calabi–Yau fourfold Y4.

The term on the right-hand side of (1.109) exactly arises from integrating the
contribution of the topological higher-curvature correction I8 to the Bianchi identity
of C3. To see how this relates to the D3 tadpole cancellation condition in the type
IIB setting, one decomposes the G4 flux in terms of 3-form fluxes along the two
legs of the elliptic fibre as

G4 = ℓ3
M

ℓ2
s

(F3 ∧ dx+H3 ∧ dy) , (1.110)

which results in the familiar condition (after performing the integral over the elliptic
curve)

ND3 + 1
2ℓ4
s

∫
B3

F3 ∧H3 = χ(Y4)
24 . (1.111)

Comparing this with the D3 tadpole cancellation condition found in equation (1.54),
one sees that the contributions coming from the D7-branes and O7-planes have
been geometrized into the Euler characteristic of the Calabi–Yau fourfold. It should
be noted, however, that it is not necessarily the case that χ(Y4) > 0.8 In this way,
we find another manifestation of the fact that the F-theory language provides a
8As a simple counter-example, one may consider a T 8/Z2 × Z2 orbifold, which has χ

24 = −8, see
also [33].

51



1 Essentials of string compactifications

beautiful description of many different aspects of type IIB string theory.

As a side remark, let us also mention that in M-theory the M2 tadpole cancellation
condition also places non-trivial restrictions on the allowed Calabi–Yau fourfolds
one may consider, at least in the presence of M2-branes and/or non-trivial G4

flux. This is because the left-hand side of (1.109) is clearly an integer, while the
right-hand side might not be. In contrast, in F-theory this turns out to be of no
concern. This is because elliptically fibered Calabi-Yau fourfolds (with a section)
automatically have an Euler characteristic χ(Y4) that is divisible by 72, see e.g. [33].
In fact, if Y4 is non-singular, then one can write the Euler characteristic purely in
terms of objects pertaining to the base B3 as

χ(Y4) = 72
∫
B3

1
2c1c2 + 15c3

1 , (1.112)

where ci = ci(B3) are the i-th Chern classes of B3. The first term in (1.112) can be
shown to correspond to the D3-brane charge induced by spacetime-filling D7-branes
through anomaly in-flow arguments [34,35], while the second term roughly arises
from 7-branes wrapped on the intersections of the irreducible components of the
discriminant locus of the Weierstrass model.

1.5 Type IIB / F-theory flux compactifications

In the previous section we have argued that the F-theory perspective is useful (and
arguably necessary) to describe configurations with 7-branes and a non-trivial profile
for the axio-dilaton. In this section, we additionally include the effects of non-trivial
three-form fluxes in type IIB, or alternatively four-form fluxes in M-/F-theory, to
study the landscape of four-dimensional low-energy effective theories coming from
type IIB/F-theory flux compactification. In section 1.5.1 we first reconsider the
10-dimensional type IIB point of view and explain how the inclusion of appropriate
local sources allows us to evade the Maldacena–Nuñez no-go theorem disucssed
in section 1.2. The resulting class of solutions was found by Giddings–Kachru–
Polchinski [36] and will be referred to as the GKP solution. In section 1.5.2 we
briefly review the dual M-theory solution found by Becker–Becker [37]. Finally,
in subsection 1.5.3 we describe the four-dimensional low-energy effective N = 1
supergravity theory that results from compactifying the latter on a Calabi–Yau
fourfold and subsequently taking the F-theory limit.
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1.5 Type IIB / F-theory flux compactifications

1.5.1 The GKP solution
In the following we review the analysis of [36], to which we refer the reader for
additional details. In the presence of local sources, the right-hand side of equation
(1.31) receives additional corrections coming from the associated energy-momentum
tensor. To be precise, the correction is given by

ℓ8
s

8π e
2A ×

(
Tmm − Tµµ

)loc
, T loc

MN = −2√
−g

δSloc

δgMN
, (1.113)

where Sloc is the action of the localized sources. Importantly, if the term in brackets
is negative, it is possibly to evade the argument that lead to the Maldacena–Nuñez
no-go theorem. For spacetime-filling Dp-branes/Op-planes wrapping a (p− 3)-cycle
Γp−3, the contribution to the energy-momentum tensor comes from their DBI
action. For the sake of exposition, let us assume for the moment that the dilaton is
constant, and that there are no worldvolume fluxes on the brane. Then to leading
order in α′ one readily finds(

Tmm − Tµµ
)Dp/Op = (7− p)TDp/Opδ

(9−p)(Γp−3) , (1.114)

where δ(9−p)(Γp−3) denotes the (9 − p)-dimensional δ-function localized on the
cycle Γp−3.9 In particular, note that e.g. for O3-planes their contribution is indeed
negative!

In turns out that, even with the additional complication of having included localized
sources, one can still combine the various equations motion in such a way that
an elegant class of solutions presents itself. Indeed, consider the modified Bianchi
identity for the five-form flux cf. (1.52)

d ⋆ F̃5 + F3 ∧H3 + ℓ4
s

∑
i

Q
(i)
3 PD[Γ(i)

0 ] = 0 , (1.116)

which now includes the local D3 charge density coming from all localized sources
such as D3-branes and O3-planes, as well as possibly wrapped D5/D7-branes and
O7-planes. Then combining this together with the relation (1.31) including the
9Since the equations of motion (1.31) were written in Einstein-frame, the tension Tp we are
referring to here corresponds to the Einstein-frame tension, as opposed to the string-frame
tension that appears in the DBI actions (1.35) and (1.44). The relation between the two is given
by

T
(string-frame)
p = eΦ(p−3)/4T

(Einstein-frame)
p . (1.115)

53



1 Essentials of string compactifications

correction (1.113), one can arrive at the following condition

∆̃(6)
(
e4A − α

)
= e2A

Im τ
|iG3 − ⋆G3|2 + e−6A ∣∣∂(e4A − α)

∣∣2
+ 2κ2e2A

[
1
4
(
Tmm − Tµµ

)loc − TD3ρ
loc
3

]
, (1.117)

where ρloc
3 is given by

ρloc
3 =

∑
i

Q
(i)
3 δ(6)(Γ(i)

0 ) . (1.118)

The central insight of GKP is that many of the local sources in string theory satisfy
the condition 1

4
(
Tmm − Tµµ

)loc − TD3ρ
loc
3 ≥ 0 . (1.119)

As a result, one can again conclude that the left-hand side in (1.117) is positive, so
that upon integrating the equation over the compact internal space one concludes
that all individual terms must vanish.

Indeed, as an important example, the condition (1.119) is satisfied (in fact, satu-
rated) by D3-branes and O3-planes, while it is violated by O5-planes. It is also
saturated by wrapped D7-branes, though this requires taking into account α′ cor-
rections to the DBI action, since at tree level a D7-brane does not contribute to
the energy-momentum tensor cf. (1.114).

To summarize the above considerations, we are led to the following class of solutions
to the IIB supergravity equations of motion in the presence of localized sources.

The GKP solution [36]

In the presence of localized sources that satisfy the condition

1
4
(
Tmm − Tµµ

)loc − TD3ρ
loc
3 ≥ 0 . (1.120)

all warped compactifications of type IIB supergravity down to R1,3 that pre-
serve 4-dimensional Poincaré invariance must satisfy the following conditions:

• G3 is imaginary self-dual (ISD): ⋆G3 = iG3,

• α = e4A,

• The bound (1.120) is saturated.
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1.5 Type IIB / F-theory flux compactifications

Note:
Examples of localized sources which saturate the bound (1.120) are D3-branes,
O3-planes as well as wrapped D7-branes.

It remains to discuss the dynamics of the axio-dilaton and the internal metric.
Allowing for the presence of 7-branes, we again take the F-theory perspective
cf. section 1.4 corresponding to the case in which the axio-dilaton varies holomorphi-
cally over a complex three-dimensional internal space B3, described by an elliptic
fibration Y4 → B3. Then it turns out that the remaining equations of motion for
the internal metric are simply

R̃mn̄ = ∂m∂̄n̄Φ , (1.121)

such that the metric g̃(6)
mn is Kähler in complete analogy to the discussion in section

1.4. In particular, we conclude that the total space Y4 is still a Calabi–Yau fourfold
up to the overall warp factor (it is said to be conformally Calabi–Yau).

1.5.2 M-theory on Calabi–Yau fourfolds
Let us now discuss the dual M-theory formulation of the type IIB GKP solution.
Thus, we consider warped compactifications of M-theory down to R1,2 preserv-
ing Poincaré invariance. We again make the most general ansatz for the metric
compatible with these conditions

ds2
11 = ∆(y)−1η(4)

µν dxµ ⊗ dxν + ∆(y)1/2g̃(8)
mn dym ⊗ dyn , (1.122)

where we have now employed a new notation for the warp factor ∆(y) to distinguish
it from the one used in the type IIB compactifications, and we stress that now the
internal manifold is eight-dimensional. Furthermore, Poincaré invariance imposes
the following decomposition of the four-form flux

G4 = df ∧ dx0 ∧ dx1 ∧ dx2 + Ĝ4 , (1.123)

where f = f(y) is an arbitrary function of the internal coordinates and Ĝ4 is a
purely internal four-form. The equations of motion of the four-form flux yield

d ⋆ G4 + 1
2G4 ∧G4 + ℓ6

MI8 = 0 , (1.124)

whose integration over the compact eight-dimensional internal space recovers the
M2 tadpole cancellation condition (1.109) (in the absence of M2-branes).
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1 Essentials of string compactifications

In [37,38] the resulting equations of motion were analyzed under the assumption
that the eight-dimensional metric g(8)

mn is Kähler by performing a large-volume
expansion.10 Roughly speaking, this means that one performs an expansion in
ℓM/v

1/8, where v denotes the volume of the eight-dimensional internal space. In
other words, one assumes that the typical size of the compactification manifold is
large compared to the eleven-dimensional Planck scale. Here we will not repeat the
derivation, but simply state the following result.

M-theory on a Kähler four-fold

At leading order in the large-volume expansion and in the absence of M2-
branes, the solutions to the equations of motion and Bianchi identity for
M-theory compactified on a Kähler four-fold Y4 have to satisfy the following
conditions:

1. The function f(y) appearing in (1.123) is constant, so that G4 only has
an internal component. In particular, we may write

G4 = Ĝ4 , (1.125)

and will thus suppress the hat in the following.

2. The flux G4 (which, by the previous point, is purely internal) has to be
self-dual and satisfy the M2 tadpole cancellation condition:

G4 = ⋆̃ G4 ,
1

2ℓ6
M

∫
Y4

G4 ∧G4 = χ(Y4)
24 . (1.126)

3. The metric g̃(8)
mn is Ricci-flat and thus describes a Calabi–Yau fourfold,

which will be denoted by Y4.

At the next to leading order the external component of G4 need not vanish, and
will be related to the warp factor in a similar fashion as in the GKP solution.
Furthermore, at the next to leading order the metric will no longer be Ricci flat.
Rather strikingly, It turns out that Einstein’s equations are of such a nature that
the solution can still be described by a Calabi–Yau manifold (though equipped with
a metric that is not Ricci-flat). This solution is especially nice since supersymmetry
10It is important to note that this analysis requires the inclusion of two additional R4 corrections

to the 11-dimensional supergravity action, besides the topological correction (1.97). See [38] for
further details.
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1.5 Type IIB / F-theory flux compactifications

will thus preserved by the background metric, though it can be broken by the fluxes,
as we will discuss in the next section.

1.5.3 D = 4, N = 1 SUGRA from F-theory

To close this section, let us discuss the four-dimensional effective description of
F-theory compactified on an elliptically fibered Calabi–Yau fourfold. This proceeds
in two steps. First, one performs the dimensional reduction of M-theory on the
Calabi–Yau fourfold Y4, see [39], which is computationally similar to the dimensional
reduction of type IIB supergravity on a Calabi–Yau threefold, which was discussed
in section 1.3. The resulting theory will again be some supergravity theory which,
in particular, contains a number of scalar fields corresponding to the complex struc-
ture and Kähler deformations of the fourfold. In the orientifold or weak-coupling
limit, the complex structure deformations of Y4 collectively describe the complex
structure deformations of the Calabi-Yau threefold Y3 that is a double cover of
B3, as well as the deformations of the D7-branes and the type IIB axio-dilaton
τ . Subsequently, one has to lift the resulting three-dimensional theory to four
dimensions by performing the F-theory limit in which the volume of the elliptic
fiber goes to zero. This is a rather delicate procedure, as it involves a careful
analysis of the full KK-tower associated to the decompactified circle. Here we will
not discuss this analysis in detail, but rather refer the reader to [40].

The resulting action describes a theory of four-dimensional N = 1 supergravity
which will contain various multiplets coming from the reduction of the M-theory
flux as well as the moduli of the Calabi–Yau fourfold, just like we found in the
reduction of type IIB supergravity. In the following, we will focus our attention on
the h3,1(Y4) chiral multiplets coming from the complex structure deformations of
the Calabi–Yau fourfold.

Four-dimensional effective action of F-theory on a Calabi–Yau fourfold

S
(4)
F =

∫ 1
2R ⋆ 1−Gcs

iȷ̄ dzi ∧ ⋆dz̄ȷ̄ − V (z,G4) ⋆ 1 , (1.127)

Here zi, for i = 1, . . . , h3,1, denote the complex structure moduli of Y4, and
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the scalar potential V (z,G4) is given by

V (z,G4) = 1
V2
b

∫
Y4

G4 ∧ ⋆G4 −G4 ∧G4 , (1.128)

and Vb denotes the volume of the base B3. We stress that the appearance of
the internal Hodge star induces the dependence of the scalar potential on the
complex structure moduli.a

aIn the preceeding section the metric on Y4 was denoted with a tilde, which we now suppress
for notational clarity.

Importantly, comparing the above result with the four-dimensional N = 2 effective
action that we found in section 1.3, we see that the inclusion of a non-trivial flux G4

induces a scalar potential for the complex structure moduli. Crucially, the potential
acts as an effective mass term for these moduli and thus (generically) prescribes a
fixed vacuum expectation value for them. In other words, the inclusion of fluxes
allows us to stabilize the moduli. Below we discuss the precise vacuum conditions
in more detail.

Moduli stabilization: Hodge theory formulation

The scalar potential (1.128) is positive semi-definite and attains a global minimum
whenever the four-form flux is self-dual, i.e.

G4 = ⋆G4 . (1.129)

Note that this agrees with the 11-dimensional analysis (1.126), which was reviewed in
the previous section. Note also that a self-dual vacuum corresponds to a Minkowski
vacuum, since V = 0, in agreement with the fact that, to leading order in the
large-volume expansion, the warp factor was found to be constant.

Since the fluxes should be viewed as elements of the integral cohomology H4(Y4,Z),
one should regard the condition G4 = ⋆G4 as a condition in cohomology.11 To
11To be precise, the quantization condition of the G4 flux is actually shifted and reads

G4 −
p1(Y4)

4
∈ H4(Y4,Z) ,

where p1(Y4) denotes the first Pontryagin class of Y4 [41]. This shift will not be relevant in this
thesis, so we will assume for notational simplicity that G4 itself is integral.
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1.5 Type IIB / F-theory flux compactifications

elucidate the self-duality condition (1.129), we recall that the middle cohomology
of Y4 admits a Hodge decomposition

H4 (Y4,C) = H4,0 ⊕H3,1 ⊕H2,2 ⊕H1,3 ⊕H0,4 , (1.130)

into harmonic (p, q)-forms. One can show that the self-duality condition (1.129)
implies that G4 has no (3, 1) component. In other words, G4 has a decomposition
(recall that G4 is real)

G4 = (G4)4,0 + (G4)2,2 + (G4)0,4
. (1.131)

The self-duality condition therefore comprises h3,1 complex equations for the h3,1

complex structure moduli and hence one expects that a generic choice of G4

stabilizes all moduli. It is, however, not at all obvious whether this holds true if
G4 is constrained by the tadpole cancellation condition (1.126). In fact, it was
recently suggested that indeed this naive expectation may fail when h3,1 becomes
sufficiently large [42], leading to the so-called tadpole conjecture. See also [43–51]
for related works. We will return to this point in chapter 5.

Hodge vacua

A self-dual vacuum will be referred to as a Hodge vacuum if, in addition, G4 only
has a (2,2)-component and is primitive. The latter means that

J ∧G4 = 0 , (1.132)

where J denotes the Kähler (1, 1)-form on Y4. In mathematics, cohomology classes
of this type are referred to as Hodge classes. As will be elaborated upon in chapter
5, such classes play a very special role in Hodge theory.

Moduli stabilization: superpotential formulation

Let us briefly describe how the above results fit inside the general formulation of
four-dimensional N = 1 supergravity theories. For any four-dimensional N = 1
supergravity theory, the F-term contribution to the scalar potential can be written
as

V = eK
(
GIJ̄DIWDJW − 3|W |2

)
, DIW = (∂I + ∂IK)W , (1.133)

where K is a Kähler potential that determines a Kähler metric GIJ̄ and W is
the holomorphic superpotential. In the context of F-theory compactifications, the
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indices I, J̄ in (1.133) run over both the complex structure moduli and the Kähler
moduli. To clarify the relation between the scalar potentials (1.128) and (1.133)
we need to specify the Kähler potential and superpotential.

• Kähler potential:
The Kähler potential K is given by

K = −2 logVb − log
∫
Y4

Ω ∧ Ω . (1.134)

The first term is the tree-level Kähler potential for the complex coordinates
TA that depend on the Kähler moduli.12 The second term is the Kähler
potential for the complex structure moduli, depending on the holomorphic
(4, 0)-form Ω(z). The tree-level Kähler potential enjoys the no-scale property

Gαβ̄∂αK∂βK = 3 . (1.135)

It is important to stress, however, that K receives both perturbative correc-
tions, coming e.g. from α′ corrections to the ten-dimensional IIB supergravity
action, as well as non-perturbative corrections coming from worldsheet instan-
tons. These corrections will generically break the no-scale structure (1.135)
of the Kähler potential.

• Superpotential:
The superpotential W is given by the Gukov–Vafa–Witten superpotential
Wflux [39, 52], where

Wflux(z) =
∫
Y4

G4 ∧ Ω(z) . (1.136)

In contrast to the Kähler potential K, the superpotential W is perturbatively
exact and only receives non-perturbative corrections coming e.g. from Eu-
clidean D3-brane instantons and gaugino condensation. Note that, since our
discussion is restricted to the perturbative level, W does not depend on the
Kähler moduli. In particular, we have

DαWflux = (∂αK)Wflux , (1.137)

where again α runs over the complex coordinates involving the Kähler moduli.
12To avoid potential confusion, these are not quite the same as the complexified Kähler moduli of

type IIB, which were considered in subsection 1.3.2.
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Hodge decomposition of G4 superpotential
Hodge vacuum (2, 2) DiWflux = Wflux = 0

self-dual vacuum (4, 0) + (2, 2) + (0, 4) DiWflux = 0 ,Wflux ̸= 0

Table 1.3: Overview of the conditions for a Hodge/self-dual flux vacuum in terms of the
Hodge decomposition of G4, see (1.130), and the flux-induced superpotential Wflux.

Combining the no-scale condition (1.135) together with the simplification (1.137),
the scalar potential reduces to

V = eKGiȷ̄DiWfluxDjWflux , (1.138)

where i, ȷ̄ run over the complex structure moduli only. In particular, note that the
−3|W |2 term has dropped out. As a result, the scalar potential (1.138) is positive
semi-definite and can be seen to be equivalent to (1.128).

In the superpotential formulation, the global minima are given by those configu-
rations for which DiWflux = 0. Again, one sees that this comprises h3,1 complex
equations for the h3,1 complex structure moduli. Using the properties of the Kähler
covariant derivatives, this is seen to be equivalent to the condition that G4 has no
(3, 1) nor (1, 3) component in the Hodge decomposition (1.130). If G4 is primitive,
as we will assume throughout this work, this is in turn equivalent to the self-duality
condition (1.129). If additionally Wflux = 0 then G4 also has no (4, 0) and (0, 4)
components, so G4 is purely of type (2, 2). In particular, in this case the vacuum
corresponds to a Hodge vacuum. This is summarized in table 1.3.

1.6 Summary and outlook
In this final section we briefly summarize the important observations made in this
chapter in light of the remainder of the thesis. This will, in particular, motivate
much of the discussion in part II, where we discuss the framework of asymptotic
Hodge theory. A central lesson that follows from sections 1.3 and 1.5 is that the
features of four-dimensional effective theories that arise from dimensional reduction
of type IIB/M/F-theory are far from generic, but are rather inherited from the
geometric properties of the internal space. In well-controlled settings, where one
considers compactifications on (conformal) Calabi–Yau manifolds, these geometric
properties are captured in terms of Hodge-theoretic objects. To reiterate, we have
encountered the following objects:
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• Field space metric Gcs
iȷ̄ :

The Weil–Petersson metric on the complex structure moduli space of a Calabi–
Yau D-fold is given by

Gcs
iȷ̄ = ∂i∂ȷ̄K

cs , Kcs = − log
[
i−D

∫
YD

Ω ∧ Ω̄
]
, (1.139)

which is expressed in terms of the periods of the holomorphic (D, 0)-form Ω.
Recalling that the action of the Hodge star operator on Ω is ⋆Ω = iDΩ, one
can equivalently express the Kähler potential as a Hodge norm

Kcs = − log
[∫

YD

Ω ∧ ⋆ Ω̄
]
. (1.140)

• Gauge-kinetic coupling matrices IIJ and RIJ :
The gauge-kinetic coupling matrices IIJ and RIJ that describe the quadratic
terms of the U(1)-gauge fields that appear in the four-dimensional low-energy
effective action of type IIB are given in terms of a Hodge norm as∫

Y3

(
α

β

)
∧ ⋆
(
α β

)
=
(
−I −RI−1R −RI−1

−I−1R −I−1

)
. (1.141)

• Flux scalar potential V :
In the four-dimensional low-energy effective theory obtained from F-theory
flux compactification, the scalar potential induced by the G4-flux is given by

V (z,G4) = 1
V2
b

∫
Y4

G4 ∧ ⋆G4 −G4 ∧G4 , (1.142)

in which again all the dependence on the complex structure moduli is captured
by the Hodge star operator on the internal manifold.

Therefore, in order to properly describe those four-dimensional effective theories
that can arise from string compactifications, it is necessary to have a deep under-
standing, both conceptually and computationally, of these Hodge-theoretic objects.
Furthermore, it would be desirable to do so in full generality, i.e. without restricting
to a particular choice of the underlying Calabi–Yau geometry. This is exactly what
will be done in part II of the thesis, by employing the powerful tools of asymptotic
Hodge theory. Furthermore, in part III of the thesis we will put these tools to
work by studying the flux scalar potential (1.142) and its critical points in detail.
Finally, in part IV we will discuss a different application in the context of integrable
field theories, for which a more detailed motivation will be provided at the start of
chapter 6.
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Part II

Asymptotic Hodge Theory

This part of the thesis is devoted to describing the main mathematical framework
which is employed in our work, namely asymptotic Hodge theory. The purpose of
this part is two-fold. First, it serves as an introduction to this fascinating field of
mathematics, providing a balance between a formal and a practical point of view.
Second, it works towards two of the most foundational results in this field: the
nilpotent orbit theorem and the Sl(2)-orbit theorem.

Chapter 2 begins with a general introduction to Hodge theory, starting from the
perspective of period integrals of Calabi–Yau manifolds. It then works towards to
the more abstract formulation in terms of variations of Hodge structure and ends
with a description in terms of the period map.

Chapter 3 is the first of two chapters devoted to the study of degenerations of Hodge
structures. The main purpose of this chapter is to introduce a progressive approxima-
tion scheme with which the asymptotic behaviour of a variation of Hodge structure
can be analysed to various degrees of precision. On the formal side, it covers key
concepts such as mixed Hodge structures, the Hodge–Deligne splitting and the
emergence of commuting sl(2,R) symmetries near the boundary of the moduli space.

Chapter 4 is the second of two chapters devoted to the study of degenerations
of Hodge structures. The central result of this chapter is a concrete algorithmic
description of the “bulk reconstruction procedure” that was first described in the
seminal work of Cattani, Kaplan, and Schmid, which constitutes the main content
of the author’s first publication [1].
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2 Hodge Theory

In this chapter we introduce the basics of Hodge theory from three complementary
perspectives – period integrals, abstract variations of Hodge structure, and the
period mapping. In section 2.1 we start with the most hands-on point of view,
namely period integrals, and illustrate the typical strategy to compute them in
simple but explicit examples of Calabi–Yau manifolds. The same examples will be
used in the subsequent chapters and will serve as a useful guide to pass between the
abstract formalism and concrete realizations in string compactifications. In section
2.2, we introduce the more general framework of variations of Hodge structure.
This will be done in two steps: we first introduce the main definitions for a fixed
Hodge structure and then describe the generalization to Hodge structures which
vary over some parameter space. The latter case is of particular importance in
the context of string compactifications. Finally, in section 2.3 we present the most
formal formulation in terms of the so-called period map. For introductory texts,
we refer the reader to the books [53,54].

2.1 Perspective (1): Periods

2.1.1 Preliminaries
In the general context of algebraic geometry, periods correspond to numbers which
arise as integrals of rational functions over certain domains [55]. Every algebraic
number is a period, while not all transcendental numbers are periods. For example,
while the number π can be obtained as a period via

π =
∫ 1

0

4
x2 + 1 dx , (2.1)

it is currently not known whether e or 1
π are periods. In fact, in contrast to the

set of all transcendental numbers, the set of all periods is countable. One of the
deep problems in number theory/algebraic geometry is to find an algorithm which
determines whether a given (transcendental) number is equal to a period.
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For our purposes, an especially interesting situation arises when the function or
differential form one is integrating depends on an additional set of parameters. In
this case, the resulting period is not just a fixed number, but rather a function of
said parameters. Typically, such periods satisfy a set of linear differential equations
with algebraic coefficients, called the Picard–Fuchs equations. This leads to an
intricate interplay between the study of periods and the theory of linear differential
equations.

In Calabi–Yau compactifications

In the particular context of Calabi–Yau compactifications, the term “periods”
typically refers to the integrals of the holomorphic top-form over a basis of integral
homology cycles. To be precise, let YD be a Calabi–Yau D-fold with holomorphic
(D, 0)-form Ω, and let γI ∈ HD (YD,Z) be an integral homology basis. Then the
periods of Ω are given by

ΠI =
∫
γI

Ω . (2.2)

As we have seen in subsection 1.3.2, in string compactifications one typically con-
siders not just a fixed Calabi–Yau background, but rather a family of Calabi–Yau
manifolds varying in moduli. As a result, the periods ΠI become holomorphic
functions of the complex structure moduli of the Calabi–Yau manifold. When
working with a concrete family of Calabi–Yau manifolds, it is usually not so difficult
to write down an expression for the holomorphic top-form. For example, whenever
the Calabi–Yau is defined as some hypersurface within an ambient projective/toric
variety, Ω can be straightforwardly related to the defining equations of the hypersur-
face. However, explicit computation of the integrals (2.2) can be very complicated.
Instead, the typical strategy to compute them is to construct the aforementioned
set of Picard–Fuchs differential equations that the periods should satisfy. These
equations originate from the fact that the set

{Ω, ∂Ω, . . . , ∂D+1Ω} , (2.3)

where ∂ denotes the partial derivative with respect to a complex structure modulus,
must be linearly dependent in cohomology. Hence, there must exist some linear
combination of Ω and its derivatives which is exact. After integration this yields a
linear differential equation of order D+ 1 for the periods. While we will not employ
it in this work, let us mention that there exists a systematic way to perform this
procedure in practice known as Dwork–Griffiths reduction [56–58], see also [59, 60]
for reviews as well as some concrete computer implementations. We also refer the
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reader to [61, 62] for applications in the context of toric geometry and complete
intersection Calabi–Yau manifolds, as well as mirror symmetry [63].

In the remainder of this section, we provide some examples to illustrate the abstract
statements made above and hint toward further features which will be discussed
in due time. The examples are chosen such that they are simple enough to admit
explicit computations, while at the same time rich enough to illustrate some generic
features of Calabi–Yau periods. As such, the same examples will be used in later
chapters of the thesis as well. For simplicity, we restrict here to periods which only
depend on one parameter. Later in the thesis we will also provide examples with
multiple parameters.

2.1.2 Example: The elliptic curve
2.1.2.1 The flat torus

As our first example, let us discuss the (unique) Calabi–Yau 1-fold: the torus T 2.
The simplest representation of the torus is a quotient of C by a lattice:

T 2 = C/(Z + τZ) , Im τ > 0 , (2.4)

where the quotient is taken with respect to the equivalence relation

z ∼ z + n+mτ , z ∈ C , m, n ∈ Z . (2.5)

The parameter τ denotes the complex structure modulus of the torus and takes
values in the complex upper half-plane H. However, some values of τ may give
rise to equivalent tori. To be precise, the complex structure moduli space M
parametrizing inequivalent complex structures on T 2 is given by the quotient space

M = PSL(2,Z)\H , (2.6)

where the modular group PSL(2,Z) = SL(2,Z)/Z2 acts on the upper half-plane H
as (

a b

c d

)
· τ = aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z) . (2.7)

Periods

The holomorphic (1, 0)-form is simply given by

Ω = dz . (2.8)
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In the standard homology basis of T 2, corresponding to an “A-cycle” and a “B-
cycle”, each parametrizing one of the circles of the torus, the periods of Ω can be
collected in terms of the following period vector

Π =
(

1
τ

)
. (2.9)

Let us remark that, in the limit τ → i∞, the torus pinches and becomes a singular
manifold. This is an example of a large complex structure (LCS) point. The
singular behaviour is also reflected in the period vector.

2.1.2.2 An elliptic curve as a cubic in P2

An alternative representation of the torus, which will serve as a useful warm-
up for the more complicated Calabi–Yau threefold example, is as a codimension
one hypersurface in the complex projective space P2. Introducing homogeneous
coordinates [x0 : x1 : x2] ∈ P2, we consider the family of complex one-dimensional
surfaces defined by the equation

Eψ : P = x3
0 + x3

1 + x3
2 − 3ψ x0x1x2 = 0 , (2.10)

parametrized by ψ ∈ P1. The surface Eψ is singular precisely when ψ3 = 1, for
which P = dP = 0 at the point [1 : 1 : 1], or in the limit |ψ| → ∞.

Periods

Typically, the holomorphic form on the Calabi–Yau can be straightforwardly ob-
tained from the defining polynomial(s). Indeed, in a patch where x0 = 1 the
holomorphic (1, 0)-form can be written as

Ω = − 3ψ
2πi

dx1

∂P/∂x2
= − 3ψ

(2πi)2

∫ dx1 ∧ dx2

P
, (2.11)

where in the second step we have rewritten the expression for Ω in terms of a residue
integral, and we have chosen a particular normalization for future convenience.

The fundamental period ϖ0 is obtained by integrating Ω over a product of sufficiently
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small loops encircling the points xi = 0. A short computation yields

ϖ0 =
∫

Ω = − 3ψ
(2πi)2

∫ dx1 ∧ dx2

P

= 1
(2πi)2

∞∑
n=0

∫
dx1

x1
∧ dx2

x2

[
1 + x3

1 + x3
2

3ψx1x2

]n
=

∞∑
n=0

(3n)!
(n!)3 (3ψ)−3n

= 2F1

[{
1
3 ,

2
3 , 1
}
,

1
ψ3

]
,

which satisfies the Picard–Fuchs equation[
θ2 − µz

(
θ + 1

3

)(
θ + 2

3

)]
ϖ0 = 0 , µz = ψ−3 , µ = 33 , (2.12)

where θ = z d
dz . With the Picard–Fuchs operator at hand, it is straightforward to

find the other period ϖ1, which is again given by a hypergeometric function

ϖ1 = 2F1

[{
1
3 ,

2
3 , 1
}
, 1− µz

]
. (2.13)

In the standard homology basis, the period vector (after appropriate normalization)
is then given by the same expression (2.9) we found earlier

Π =
(

1
τ(ψ)

)
, (2.14)

where now the complex structure parameter τ(ψ) is given in terms of ψ as

τ(ψ) = i√
3

2F1
[{ 1

3 ,
2
3 , 1
}
, 1− µz

]
2F1

[{ 1
3 ,

2
3 , 1
}
, µz
] = log z

2πi +O(z) . (2.15)

Note that the limit |ψ| → ∞ (or z → 0) corresponds to the limit where τ → i∞,
which is the large complex structure point. On the other hand, in the limit ψ3 → 1
(or z → µ−1) one finds that τ(ψ) approaches zero along the imaginary axis. Using
the S-duality transformation

S : τ 7→ −1
τ
, (2.16)

to map τ(ψ) back into the fundamental domain, one sees that the limit is S-dual to
the LCS point.
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2.1.3 Example: The mirror bicubic in P5[3, 3]

Let us now turn to an example of a Calabi–Yau threefold or, rather, a one-parameter
family Xψ of such manifolds: the mirror bicubic [64]. It is defined as the zero-locus
of the following two polynomials

P1 = x3
0 + x3

1 + x3
2 − 3ψ x3x4x5 , P2 = x3

3 + x3
4 + x3

5 − 3ψ x0x1x2 , (2.17)

inside the weighted projective space P5[3, 3]. One can see that Xψ develops a
singularity at ψ6 = 1, at ψ = 0 and in the limit |ψ| → ∞. The moduli space can
thus be thought of as a thrice-punctured Riemann sphere.

Periods

In complete analogy to the previous example, the holomorphic (3, 0)-form can be
expressed in terms of a residue integral involving the two defining polynomials
P1 and P2. Its periods were originally computed in [65]. The expression for the
fundamental period follows from a calculation that is analogous to the the we
performed in the previous example:

ϖ0 = 1
(2πi)6

∫
(3ψ)2 dx0 ∧ · · · ∧ dx5

P1P2

= 1
(2πi)6

∫
(3ψ)2 dx0 ∧ · · · ∧ dx5

x0 · · ·x5

∑
k=0

[
x3

0 + x3
1 + x3

2
]k

(3ψx3x4x5)k
∑
l=0

[
x3

3 + x3
4 + x3

5
]l

(3ψx0x1x2)k

=
∞∑
n=0

((3n)!)2

(n!)6 zn , z = (3ψ)−6 ,

= 4F3

(
1
3 ,

1
3 ,

2
3 ,

2
3 ; 1, 1, 1;µz

)
, µ = 36 .

The fundamental period satisfies the Picard–Fuchs equation[
θ4 − µz (θ + a1) (θ + a2) (θ + a3) (θ + a4)

]
ϖ0 = 0 , (2.18)

where θ = z d
dz and

(a1, a2, a3, a4) =
(

1
3 ,

1
3 ,

2
3 ,

2
3

)
. (2.19)

The remaining periods can be computed by finding the general solution to the
Picard–Fuchs equation (2.18), and can be expressed in terms of Meijer-G functions.
Note that the singularities of the Calabi–Yau are again reflected in the singularities
of the Picard–Fuchs equation, which has 3 regular singular points at z = 0, 1/µ,∞.
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Let us also mention that this example falls into a class of similar Calabi–Yau
threefold examples whose periods are all described by Picard–Fuchs equations of the
form (2.18), and thus have a similar singularity structure. This will be discussed in
more detail in chapter 3.

2.2 Perspective (2): Hodge structures

For a given family of Calabi–Yau manifolds, if one manages to determine the
Picard–Fuchs operator, analytical and numerical methods provide powerful tools
to compute periods and thus analyze the behaviour of physical observables such
as the Kähler potential and gauge couplings across the moduli space. However, as
the set of all possible, say, Calabi–Yau manifolds is vast (possibly infinite), such
techniques may not be suitable to make statements about the general structure
of such observables, or may run into computational difficulties for complicated
Calabi–Yau manifolds with many moduli. In addition, it is important to stress that
the periods alone may not contain all the necessary information. Indeed, while it is
true that

Ω ∈ HD,0 (YD,C) , ∂iΩ ∈ HD,0 (YD,C)⊕HD−1,1 (YD,C) , etcetera , (2.20)

it is not true that the derivatives of Ω necessarily span the full cohomology
HD (YD,C). For Calabi–Yau D-folds with D ≤ 3 one can in fact recover the
full cohomology, while for D ≥ 4 one only recovers the so-called “horizontal” part
of the cohomology. Therefore, this issue is of particular relevance in the setting of
F-theory on a Calabi–Yau fourfold.

In this section we will introduce a framework which instead focuses on the abstract
properties of the Hodge structure on the middle cohomology HD(YD,C), in par-
ticular how it varies under changes of the complex structure moduli: variations of
Hodge structure.

2.2.1 Hodge structures (1): Basics

We start by introducing the machinery to describe a fixed Hodge structure, i.e.
without any additional moduli dependence. There are three useful and equivalent
descriptions of a Hodge structure, which we now discuss in turn. The starting
ingredient is a free abelian group of finite rank HZ, whose associated real vector
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space will be denoted by HR := HZ ⊗ R. We will similarly write HC := HZ ⊗ C for
its complexification. Lastly, D denotes a fixed integer.

Description 1: Hodge decomposition

Definition: Hodge structure

A Hodge structure of weight D on HZ is a decomposition of its complexifica-
tion HC into D + 1 complex subspaces

HC = HD,0 ⊕ · · · ⊕H0,D =
⊕

p+q=D
Hp,q , (2.21)

satisfying Hp,q = Hq,p with respect to complex conjugation.

The real dimensions of the Hp,q spaces will be denoted by hp,q and will be
referred to as the Hodge numbers.

A very important class of examples is provided by the Dolbeault cohomology of
a compact Kähler manifold X. This applies in particular to arbitrary smooth
complex projective varieties. Indeed, each cohomology group Hk(X,C) admits a
Hodge structure of weight k given by the decomposition of harmonic k-forms into
(p, q)-forms, having p holomorphic components and q anti-holomorphic components.
We will sometimes refer to such Hodge structures as “geometrical” or “coming
from geometry”. Of course, the case where X is a compact Calabi–Yau D-fold is of
course a special case within this class of examples.

Description 2: Hodge filtration

Definition: Hodge filtration

A Hodge filtration is a decreasing filtration of vector spaces

0 ⊆ FD ⊆ FD−1 ⊆ · · · ⊆ F 0 = HC , (2.22)

such that HC = F p ⊕ FD+1−p.

The real dimensions of the F p spaces will be denoted by fp.
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One can pass between the two formulations by using the relations

Hp,q = F p ∩ F q , F p =
D⊕
k=p

Hk,D−k . (2.23)

Description 3: Charge operator

It will often be convenient to describe the decomposition (2.21) in terms of an
operator Q that acts on HC, which we will refer to as the charge operator. In this
formulation, the Hp,q are defined as the eigenspaces of Q as follows

Qv = 1
2(p− q)v , v ∈ Hp,q , p+ q = D , (2.24)

such that Hp,q is spanned by vectors with eigenvalue 1
2 (p− q). In particular, this

implies that the adjoint action of Q has an integer spectrum. Such an operator
is also called a grading operator. We will refer to the eigenvectors of Q as charge
eigenstates, and to its eigenvalues as charges. The possible charges range from
D/2 to −D/2, with eigenspaces corresponding to HD,0 and H0,D, respectively.
Furthermore, the property Hp,q = Hq,p implies that Q = −Q, so that Q is a
purely imaginary operator. Regarding the Hodge filtration, one sees that each F p

is spanned by states whose charge is greater or equal to p−D/2. Throughout the
text, we will often switch between the description of the Hodge structure in terms
of the decomposition, the filtration and the charge operator.

Polarization

Throughout this work we will only consider so-called polarized Hodge structures.
This means that HZ is endowed with a (−1)D-symmetric bilinear form

(·, ·) : HZ ×HZ → Z , (2.25)

satisfying the following Hodge–Riemann bilinear relations with respect to the Hodge
decomposition1

(i) : (Hp,q, Hr,s) = 0 , unless (p, q) = (s, r) , (2.26)
(ii) : ip−q (v, v̄) > 0 , for v ∈ Hp,q and v ̸= 0 . (2.27)

1For simplicity of notation, we will employ the same notation for the complexification of the
pairing (·, ·).
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We will often refer to (·, ·) as the intersection form. The first condition can
equivalently be expressed in terms of the Hodge filtration as

(i) :
(
F p, FD+1−p) = 0 . (2.28)

Finally, in terms of the charge operator, the first condition simply states that the
pairing between two charge eigenstates vanishes unless their charges add to zero.

In the geometrical setting, a polarized Hodge structure is provided by restricting to
the primitive part of the Dolbeault cohomology. To be precise, let X be a compact
Kähler manifold of dimension 2n. Then for each 0 ≤ k ≤ 2n, the pairing on the
cohomology group Hk(X,C) is given by

(v, w) = (−1)k(k−1)/2
∫
X

Jn−k ∧ v ∧ w , (2.29)

where J denotes the Kähler (1, 1)-form on X. For the particular types of string
compactifications that will be considered in this work, let us remark that the middle
cohomology of a Calabi–Yau threefold is automatically primitive, while in the
fourfold case the primitivity condition amounts to the constraint that J ∧ v = 0.

Weil operator

Next, we introduce one of the central objects of this thesis: the Weil operator. It
will be denoted by C, and is defined to act on the various components of the Hodge
decomposition as

Cv = ip−qv , v ∈ Hp,q . (2.30)

In the geometric setting, the Weil operator exactly corresponds to the action of the
Hodge star operator ⋆ on the middle cohomology. In general, the Weil operator
satisfies C2 = (−1)D, hence its eigenvalues are ±1 when D is even, and ±i when D
is odd. Correspondingly, we employ the following terminology for its eigenvectors:

• (anti) self-dual: Cv = ±v ,

• imaginary (anti) self-dual: Cv = ±iv.

Note also that the Weil operator and the charge operator are straightforwardly
related by

C = (−1)Q . (2.31)

It is important to stress, however, that the Weil operator itself does not suffice to
describe the full Hodge decomposition. Instead, the main relevance of the Weil
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operator is that it induces a natural inner product on HC that is compatible with
the Hodge decomposition. Indeed, as a result of the second polarization condition,
one finds that

⟨v, w⟩ := (v, Cw̄) , ||v||2 := ⟨v, v⟩ , (2.32)

respectively define an inner product and a norm on HC. Furthermore, as a con-
sequence of the first polarization condition, the Hodge decomposition (2.21) is
orthogonal with respect to this Hodge inner product.

Symmetry groups/algebras

Let us write GR for the real automorphism group of the pairing (·, ·), and denote
its algebra by gR. This means that

g ∈ GR : (gv, gw) = (v, w) , (2.33)
X ∈ gR : (Xv,w) + (v,Xw) = 0 , (2.34)

for all v, w ∈ HR. The complexification of GR and gR will be denoted by GC and
gC, respectively. Since (·, ·) is assumed to be either symmetric or skew-symmetric,
one finds

GR =
{

Sp(2m,R) , D odd,
SO(r, s) , D even,

, GC =
{

Sp(2m,C) , D odd,
SO(2m) , D even,

, (2.35)

where
2m =

∑
p

hp,D−p = dimHR , (2.36)

and
r =

∑
p even

hp,D−p , s =
∑
p odd

hp,D−p , r + s = 2m. (2.37)

Similarly, we introduce K as the group of real transformations that preserve the
inner product ⟨·, ·⟩ and denote its algebra by k. In other words, K consists of unitary
operators with respect to the given inner product. In particular, this implies that
K is a maximal compact subgroup of GR and is given by

K =
{

U(m) , D odd,
SO(2m) ∩ (O(r)×O(s)) , D even.

(2.38)

Furthermore, from their definition it is clear that C ∈ K and Q ∈ ik (recall that Q
is purely imaginary). Lastly, let us note that the quotient G/K of a semisimple Lie
group G by its maximal compact subgroup K always yields a symmetric space.
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Adjoint operation

Finally, we introduce the notation

g† := Cḡ−1C−1 , X† := −CX̄C−1 , (2.39)

to denote the adjoint of g ∈ GC, respectively X ∈ gC, with respect to the Hodge
inner product ⟨·, ·⟩, such that the relation

⟨v, gw⟩ = ⟨g†v, w⟩ , (2.40)

holds. Note, in particular, that the subgroup K consisting of unitary operators is
thus generated by elements g ∈ GR satisfying

gg† = 1 . (2.41)

Let us also note that this is equivalent to the condition that g commutes with the
Weil operator C.

2.2.2 Hodge structures (2): Variations of Hodge structure
We speak of a variation of Hodge structure when the decomposition (2.21) varies
over some parameter space M in a particular way which will be specified in a
moment. For example, in the F-theory setting the parameter space M corresponds
to the complex structure moduli space of the underlying Calabi–Yau fourfold. Since
a variation of the complex structure changes the notion of what we call holomorphic
and anti-holomorphic, this induces a variation of the decomposition (2.21). The
properties of a variation of Hodge structure are neatly encoded in terms of the
Hodge filtration. Indeed, given a set of local coordinates zi on M, the filtration
must satisfy the following conditions

Griffiths transversality : ∂

∂zi
F p ⊆ F p−1 , (2.42)

holomorphicity : ∂

∂z̄i
F p ⊆ F p . (2.43)

The former condition implies that when taking a holomorphic derivative of a vector
in F p, the resulting vector ends up at most one step down in the filtration. The
latter condition means that the Hodge filtration varies holomorphically as a function
of the moduli. This is in contrast with the Hodge decomposition Hp,q, for which
only HD,0 varies holomorphically while the rest of the components do not. These
two conditions are motivated by the Hodge decomposition of the primitive middle
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de Rham cohomology of a Kähler manifold, or more generally of algebraic families
of algebraic varieties, for which they were shown to hold by Griffiths [66,67]. Any
family of polarized Hodge structures satisfying (2.42) and (2.43) is referred to as
a variation of polarized Hodge structure [68]. It should be stressed that such
variations of polarized Hodge structure need not have a geometric origin in the
form of Kähler manifolds (or algebraic varieties) and can be studied at an abstract
level.

Abstracting slighty, one should think of a variation of Hodge structure as being
defined in terms of the Hodge bundle

E →M , (2.44)

The fibres of the bundle (2.44) are the vector space HC, and the fibration encodes
the variation of the (p, q)-decomposition of HC as one moves in the base space M.
Locally, one may think of points in E as a pair (zi, v), with zi ∈M and v ∈ HC.

2.3 Perspective (3): The period map

In the preceding section we have first introduced the notion of a fixed polarized
Hodge structure on a given vector space, and then generalized this to a family of
polarized Hodge structures varying over some parameter space. It is then natural to
organize all the different polarized Hodge structures one can put on a given vector
space into a so-called classifying space. Subsequently, one may then view a given
variation of Hodge structure as one particular embedding inside this classifying
space. This results in a slightly more geometric way to think about Hodge structures,
which will play a crucial role in IV of this thesis.

2.3.1 The classifying space of Hodge structures

For a fixed HZ, weight D, and bilinear pairing (·, ·) one may consider the set of all
polarized Hodge structures of weight D on HZ of fixed type, meaning that we fix the
Hodge numbers hp,q. The resulting set is denoted by D and is commonly referred
to as the period domain. Concretely, it consists of all possible Hodge filtrations
F p, whose dimensions are fixed in terms of the Hodge numbers, which additionally
satisfy the polarization conditions. Without going into too much detail, it can be
realized as an open, complex subvariety of a product of Grassmannians, see for
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example [69,70] for further details.

For our purposes, a more concrete description of D can be given as follows. The
idea is to first consider some reference Hodge structure Hp,q

ref and to realize that, for
any other decomposition Hp,q, there always exist a real operator h ∈ GR such that2

Hp,q = h ·Hp,q
ref . (2.45)

In other words, the group GR acts transitively on D. Note, however, that (2.45)
only defines h up to local right multiplication by group elements that leave Hp,q

ref
invariant. Concretely, we introduce the subgroup

V = {g ∈ GR : gHp,q
ref = Hp,q

ref , ∀p, q} , (2.46)

which is the stabilizer of all the Hp,q
ref spaces. Equivalently, V is generated by

operators which commute with the charge operator Qref , which implies that V is
contained in K. Explicitly, one finds

V =
{∏

p≤l U(hp,D−p) , D = 2l + 1 ,
SO(hl,l)×

∏
p<l U(hp,D−p) , D = 2l .

(2.47)

In short, we have argued that the period domain can also be represented as a
homogeneous space

D ∼= GR/V . (2.48)

Monodromy

A central concept, which will play a crucial role in chapters 3 and 4, is that of
monodromy. This is based on the fact that, in practice, the parameter space M is
not simply-connected. Indeed, a typical local model forM is a product of punctured
disks, in which the puncture corresponds to a value of the parameters where the
Hodge structure degenerates. As a result, it may happen that, as one considers the
parallel transport of some reference Hodge structure along a path which encirlces a
singularity, the Hodge structure transforms non-trivially. Due to the properties of
variations of Hodge structure, the transformation only depends on the homotopy
class of the path in question.3 The corresponding transformation is captured by a
representation of the fundamental group

ρ : π1 (M)→ GZ , (2.49)

whose image will be denoted by Γ, and is referred to as the monodromy group.
2Note that h is a real operator by virtue of the property Hp,q = Hq,p.
3To be precise, this uses fact that the so-called Gauss–Manin connection is flat.
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The period map and its lift

The upshot of the above discussion is that every point z ∈M determines a polarized
Hodge structure of weight D, i.e. a point in the period domain D, up to monodromy.
In other words, all the information about a given variation of Hodge structure can
alternatively be described in terms of a map

Φ : M→ Γ\D ∼= Γ\GR/V , (2.50)

which is known as the period map. It assigns to each point in the parameter
space M an element in the double coset space Γ\GR/V , which in turn provides
an equivalence class of Hodge structures via (2.45), all of which are related by a
monodromy transformation. In practice, it is useful to lift the period map to the
universal covering space of M, which will be denoted by M̃. This results in a lift
of the period map

Φ̃ : M̃ → D , (2.51)

which transforms as
Φ̃(γ · t) = ρ(γ) · Φ̃(t) , (2.52)

for γ ∈ π1(M), where we recall that ρ is the representation of the fundamental
group, see (2.49), and we have introduced local coordinates ti on M̃ .

2.3.2 Horizontality of the period mapping
The conditions (2.42)–(2.43) that define how a Hodge structure is allowed to vary
over the parameter spaceM impose a set of differential equations on the period map.
Concretely, they imply that Φ is holomorphic, and that its differential takes values
in only a restricted part of the tangent bundle, namely the so-called horizontal
tangent bundle. The purpose of this section is to rephrase these somewhat abstract
conditions into concrete differential equations satisfied by a GR-valued field. To this
end, let us again consider a fixed reference Hodge structure Hp,q

ref , and parametrize
a given variation of Hodge structure as

F p = h · F pref , (2.53)

where we use the formulation in terms of Hodge filtrations for future convenience.
We stress that the filtration F p can vary over the parameter space M, and this
dependence is fully captured in the group-valued field h. At each point t ∈ M̃
one may think of h(t, t̄) as a choice of representative for the equivalence class Φ̃(t)
inside GR. The fact that this is well-defined, i.e. independent of the choice of
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representative, is then reflected in the fact that the equations that h satisfies enjoy
a gauge symmetry.

The conditions (2.42) and (2.43) can now be written as differential equations for h as
follows. To simplify the notation, we restrict to the case whereM is one-dimensional.
The generalization to higher-dimensional moduli spaces is straightforward. Then
the conditions (2.42) and (2.43) read

(h−1∂h)F pref ⊆ F
p−1
ref , (h−1∂̄h)F pref ⊆ F

p
ref , (2.54)

where now the derivatives are taken with respect to the covering space coordinate
t. These equations are still somewhat difficult to work with, as they are vector
space equations. Therefore, we use the characterization of the Hodge structure
in terms of eigenspaces of the reference charge operator Qref . Recall that F pref is
spanned by states with charge greater or equal to p − D/2. Therefore, the first
condition in (2.54) states that the operator h−1∂h can lower the charge of a state
by at most one, while h−1∂̄h may not lower the charge at all. To describe this more
quantitatively, one introduces the charge-decomposition of an operator O ∈ gC as4

O =
∑
q

Oq , (2.55)

where the charge modes Oq are defined via

[Qref ,Oq] = qOq , q = −D, . . . ,D . (2.56)

Clearly then, the action of Oq on a charge eigenstate raises its charge by q. For
convenience, we also introduce the notation

B = h−1dh , B = h−1∂h , B̄ = h−1∂̄h , (2.57)

Then the statement that B lowers the charge by at most one and B̄ may not lower
the charge at all translates to

Bq = 0 , q < −1 , B̄q = 0 , q < 0 . (2.58)

By taking the complex conjugate of (2.58) and recalling that Q̄ref = −Qref , we
arrive at a similar condition

B̄q = 0 , q > 1 , Bq = 0 , q > 0 . (2.59)

Finally, combining (2.58) and (2.59) one obtains the following condition.

4Since Q is not a real operator, this decomposition necessarily requires one to move to the
complexification gC of g.
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The horizontality condition

B−q = 0 = B̄q , unless q = 0 or q = 1 . (2.60)

In summary, we have rephrased the condition (2.54) into the statement that only
components of B and B̄ with a particular charge can be non-zero. We will refer to
(2.60) as the horizontality condition.

At first sight, it appears that the non-zero components of B and B̄ remain unre-
stricted by the horizontality condition. This is, however, not the case. Indeed, note
that B and B̄ satisfy the following no-curvature condition

∂B̄ − ∂̄B + [B, B̄] = 0 , (2.61)

as is apparent from their definition. Then by projecting (2.61) onto its various
charge components and using (2.60) one obtains a set of differential equations that
constrain the various components of B and B̄ as follows

charge +1 : ∂B̄+1 + [B0, B̄+1] = 0 , (2.62)
charge 0 : ∂B̄0 − ∂̄B0 + [B−1, B̄+1] = 0 , (2.63)
charge −1 : ∂̄B−1 + [B̄0, B−1] = 0 . (2.64)

In appendix 2.A we will show how one can relate the above equations to the well-
known set of Nahm’s equations, which will be of central importance in chapters 3
and 4.

The charge operator revisited

Before closing this section, it is worthwhile to rephrase the description of a variation
of Hodge structure yet again, which will be useful in part IV. Recall that the Hodge
structure Hp,q

ref can be encoded as the eigenspaces of the reference charge operator
Qref . Naturally, one can also encode the full variation of Hodge structure Hp,q(z, z̄)
via a coordinate-dependent charge operator Q, which is naturally related to Qref

via
Q(t, t̄) = hQrefh

−1 , (2.65)

as can be inferred from (2.45). We will sometimes refer to Q(t, t̄) as the ‘bulk
charge operator’. Of course, the coordinate-dependence of Q(t, t̄) is restricted by
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the horizontality condition, which can be translated into the following condition5

horizontality condition : [Q, ∂Q] = −∂Q , [Q, ∂̄Q] = ∂̄Q . (2.66)

This concludes the discussion on variations of Hodge structures and the period
mapping. In short, we have shown that the data of a variation of Hodge structure can
be equivalently formulated in terms of the period mapping h, satisfying the condition
(2.60), which furthermore restricts the non-zero components charge components
of B and B̄ with respect to Qref to satisfy (2.62)-(2.64). Alternatively, it can be
captured by a purely imaginary grading operator Q(t, t̄) that respects the condition
(2.66).

Appendices

2.A Horizontality and Nahm’s equations
In this section we provide some additional details regarding the horizontality
conditions of the period map, recall equations (2.42)–(2.43), or equivalently (2.54)
or (2.60). In subsection 2.A.1 we write down an equivalent formulation of these
conditions in terms of a set of commutation relations, which will be of use in
part II and part IV of the thesis. Subsequently, in subsection (2.A.2) we uncover
a well-known set of equations called Nahm’s equations from the horizontality
conditions, after imposing a certain periodicity condition. We describe various
useful formulations of Nahm’s equations, as well as a geometric action principle
from which they can be recovered as the equations of motion. The latter will play
an especially important role in part IV of the thesis.

2.A.1 Rewriting the horizontality condition
Recall from (2.54) and (2.60) that the horizontality condition of the period map
imposes that

B = B0 +B−1 , B̄ = B̄0 + B̄+1 , (2.67)

where the subscript denotes the charge with respect to a chosen reference charge
operator Qref , and B = h−1∂h.
5To derive this, one simply evaluates ∂Q = ∂(hQrefh

−1) = h[h−1∂h, Qref ]h−1 = hB−1h−1 and
then computes the commutator with Q, where in the last equality we have used the horizontality
condition (2.60).
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A gauge-fixing condition

It is important to recall that the period map enjoys a gauge symmetry

h 7→ hg , g ∈ V , (2.68)

where we recall that V is the stabilizer of the reference Hodge structure, which is
generated by operators which commute with Qref . In order to gauge-fix the above
gauge symmetry, we proceed as follows. First, it will be convenient to work in real
coordinates t = x+ iy, such that

B = 1
2(Bx −By) , B̄ = 1

2(Bx + iBy) . (2.69)

See also subsection 3.2.2 in the next chapter for a more detailed discussion on the
choice of local coordinates. Next, we consider an infinitesmial gauge transformation
generated by

g = eξ , ξ = ξ0 , (2.70)

for which we find

(By)0 7→ (By)0 + [(By)0 , ξ0] + ∂yξ0 +O
(
ξ2

0
)
. (2.71)

In particular, by an appropriate choice of ξ we may choose to work in a gauge in
which (By)0 = 0, or equivalently B0 = B̄0. Note that this does not fully fix the
gauge freedom, since it only restricts the y-dependence of ξ. The x-dependence will
be fixed in the next subsection.

Rewriting the horizontality condition

Having chosen a convenient gauge, we will now show how the horizontality conditions
(2.67) can be rephrased as a simple set of commutation relations involving the
reference charge operator Qref . To this end, we perform the following computation.

[Qref , Bx] (a)= [Qref , B + B̄]
(b)= [Qref , 2B0 + B̄+1 +B−1]
= B̄+1 −B−1

=
(
B0 + B̄+1

)
− (B0 −B−1)

(c)= B̄ −B
(d)= iBy ,
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where in steps (a) and (d) we have employed the relation (2.69) between the complex
and real variables, and in steps (b) and (c) we have used the horizontality conditions
(2.67). In a similar fashion, one may compute the following commutator

[Qref , By] = −i[Qref , B̄ −B]
= −i[Qref , B0 + B̄+1 −B0 −B−1]
= −i

(
B̄+1 +B−1

)
= − i2

[(
−2B0 + B̄+1 +B−1

)
+
(
2B0 + B̄+1 +B−1

)]
(a)= −1

2

[(
B + B̄

)† +
(
B + B̄

)]
= − i2

[
B†
x +Bx

]
,

where in step (a) we have used the definition of the adjoint (2.39), which acts on a
charge eigenstate as

(B−q)† = −(−1)adQref B̄q = (−1)1+qB̄q . (2.72)

In summary, we have shown that the horizontality conditions can be rephrased in
terms of the following commutation relations with respect to a chosen reference
charge operator.

Horizontality conditions (commutator version)

[Qref , h
−1∂xh] = ih−1∂yh , (2.73)

[Qref , h
−1∂yh] = − i2

[(
h−1∂xh

)† + h−1∂xh
]
. (2.74)

Note:
The relations (2.73)–(2.74) will sometimes be referred to as the Q-constraint.

The reader is invited to check that, conversely, the commutation relations (2.73)–
(2.74) imply the horizontality conditions (2.67), so that the two sets of equations
are equivalent.

84



2.A Horizontality and Nahm’s equations

2.A.2 Nahm’s equations and an action principle

The equations (2.73) and (2.74) thus comprise all the constraints coming from the
horizontality of the period map. In the following, we will show how, under a certain
simplifying assumption, these equations give rise to the so-called Nahm’s equations.
The latter will be of great relevance in chapter 4.

Derivation of Nahm’s equations

The following discussion can be viewed as an alternative derivation of Lemma 9.8
of [69]. The central idea will be to combine the horizontality conditions together
with the flatness condition of the Maurer–Cartan form B, which reads

∂xBy − ∂yBx + [Bx, By] = 0 . (2.75)

Additionally, we will make one simplifying assumption regarding the x-dependence
of the period map.

Assumption

From this point onwards, we will assume that

∂xBx = ∂xBy = 0 . (2.76)

Note:
This assumption will be satisfied in our cases of interest, namely when the
period map h satisfies

h(x, y) = exN h̃(y) , (2.77)

with N and h̃(y) independent of x. As will be explained in chapter 3, the
period map will take the form (2.77) whenever one is working in the so-called
nilpotent orbit approximation.

Note that, in order for our initial gauge-fixing to be compatible with this assumption,
we must have ∂xξ = 0. In particular, after imposing this condition there is no
residual gauge symmetry.

As a result of the assumption (2.76), the flatness condition simplifies to

∂yBx = [Bx, By] . (2.78)
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In particular, together with the fact that ∂xBx = 0, this completely fixes the
coordinate dependence of Bx in terms of By. Since we also assume ∂xBy = 0, it
remains to find an equation which fixes ∂yBy. This is done as follows.

−i∂yBy
(a)= [Qref , ∂yBx]
(b)= [Qref , [Bx, By]]
(c)= −[Bx, [By, Qref ]]− [By, [Qref , Bx]]
(d)= i

2 [Bx, Bx +B†
x]− i[By, By]

= i

2 [Bx, B†
x] ,

where in steps (a) and (d) we have employed the Q-constraint (2.73)–(2.74), in step
(b) we have used the simplified flatness condition, and in step (c) we have used the
Jacobi identity. For completeness, let us also remark that

∂yB
†
x = [Bx, By]† = −[B†

x, By] ,

where we have used the fact that B†
y = By. In summary, we find the following set

of commutation relations.

∂yB
†
x = −[B†

x, By] , ∂yBy = 1
2[B†

x, Bx] , ∂yBx = [Bx, By] . (2.79)

It is important to remark that the equations (2.79) still involve the reference charge
operator through the dagger †. Alternatively, one can view B†

x as an independent
field, so that effectively (2.79) can be viewed as a set of three coupled differential
equations for three different fields. For future reference, it will be useful to introduce
the following notation

N+(y) :=
(
h−1∂xh

)† = B†
x , (2.80)

N 0(y) := −2h−1∂yh = −2By , (2.81)
N−(y) := h−1∂xh = Bx . (2.82)

In terms of these fields (2.79) can be written as follows.

Nahm’s equations

∂yN± = ±1
2 [N±,N 0] , ∂yN 0 = −[N+,N−] . (2.83)
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The equations (2.83) are known as Nahm’s equations [71]. These equations will
play an important role in the context of asymptotic Hodge theory, as will be ex-
plained in chapters 3 and 4. Let us already mention an important result due to
Hitchin [72], namely that the solutions to Nahm’s equations naturally give rise to
an sl(2,R)-triple at the poles of N •(y).

For later convenience, let us also record the form of the Q-constraint in terms of
the fields N •(y).

Q-constraint

[Qref ,N±] = − i2N
0 , [Qref ,N 0] = i

(
N+ +N−) (2.84)

Complex version

The above discussion has been formulated purely in terms of real operators. For
future reference, it will also be convenient to describe the conditions (2.84) and
(2.83) in terms of a set of three complex fields {L+1,L0,L−1} which are defined by

L±1 := 1
2
(
N+ +N− ∓ iN 0) , (2.85)

L0 := i
(
N− −N+) . (2.86)

In terms of these fields, Nahm’s equations (2.83) take the very similar form

∂yL±1 = ±1
2 [L±1,L0] , ∂yL0 = −[L+1,L−1] , (2.87)

while the Q-constraint (2.84) can elegantly be written as

[Qref ,Lq] = qLq , q = +1, 0,−1 . (2.88)

In other words, the fields Lq are precisely eigenvectors of charge q under the adjoint
action of the reference charge operator Qref . In particular, note that L0 commutes
with Qref .

An action principle for Nahm’s equations

A real one-dimensional action principle associated to Nahm’s equations was already
described some time ago in [71]. In [73], see also [74,75], this action principle was
generalized to a real two-dimensional action principle, which can be interpreted as
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a non-linear σ-model from a worldsheet to the Lie group GR. The action reads as
follows.

Action principle for Nahm’s equations

SNahm[h] = 1
4

∫
M

Tr
∣∣∣h−1dh+

(
h−1dh

)†
∣∣∣2 , (2.89)

where we have employed the notation |A|2 = A ∧ ⋆A. Furthermore, we recall
that

h :M→ GR , (2.90)

describes (a lift of) the period map describing a variation of Hodge structure
over a complex one-dimensional base space M, and † denotes the adjoint
with respect to an arbitrary reference charge operator, recall equation (2.39).

Let us point out that this action has two sets of symmetries, which we will discuss
in turn.

• Global gL symmetry:
Firstly, we see that (2.89) has a global invariance under left-multiplication
h(σ) → gLh(σ) with gL ∈ GR. This global symmetry yields a conserved
current of the form

JL = ⋆ h
[
h−1dh+

(
h−1dh

)† ]
h−1 , dJL = 0 . (2.91)

• Local gR symmetry:
Secondly, one checks that (2.89) has a local invariance under right-multiplication
h(σ)→ h(σ)gR(σ), with g†

R(σ) = g−1
R (σ). The presence of this gauge symme-

try shows that the action (2.89) actually describes fields in a coset G/K, where
we recall that K is the subgroup of elements gR that satisfy the unitarity
condition g†

R = g−1
R with respect to the inner product induced by the choice

of reference Hodge structure.

Let us now turn to the derivation of the equations of motion induced by the action
(2.89). Considering the variation under h 7→ h+ δh, we find

δSNahm
(a)=
∫

M
Tr
{
δ(h−1dh) ∧ ⋆

(
h−1dh+

(
h−1dh

)†
)}

(b)=
∫

M
Tr
{(
−[h−1δh, h−1dh] + d

(
h−1δh

))
∧ ⋆
(
h−1dh+

(
h−1dh

)†
)}

(c)= −
∫

M
Tr
{
h−1δh

(
[h−1dh ∧, ⋆

(
h−1dh

)†] + d ⋆
(
h−1dh+

(
h−1dh

)†
))}

,
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where in step (a) we used the fact that Tr(AB†) = Tr(A†B) which follows from the
cyclicity of the trace and the definition of the adjoint (2.39), in step (b) we used
the relation

δ
(
h−1dh

)
= −[h−1δh, h−1dh] + d

(
h−1δh

)
, (2.92)

and in step (c) we performed an integration by parts and again used the cyclicity
of the trace to write Tr([A,B]C) = Tr(A[B,C]). Note also that [A ∧, ⋆A] = 0 by
symmetry. Setting δSNahm = 0 we thus obtain the equation of motion

d ⋆
(
h−1dh+

(
h−1dh

)†
)

+
[
h−1dh ∧, ⋆

(
h−1dh

)†
]

= 0 , (2.93)

which is in fact equivalent to the conservation of the current JL. To recover Nahm’s
equations, we recall that

h−1dh = N−(y) dx− 1
2N

0(y) dy , (2.94)(
h−1dh

)† = N+(y) dx− 1
2N

0(y) dy , (2.95)

where we have imposed the additional condition that the fields N • are independent
of x. Inserting these relations into (2.93) we find6

0 = d ⋆
(
h−1dh+

(
h−1dh

)†
)

+
[
h−1dh ∧, ⋆

(
h−1dh

)†
]

= d
(
(N+ +N−) dy +N 0 dx

)
+
[
N− dx− 1

2N
0 dy ∧, N+ dx− 1

2N
0 dy

]
,

= −
(
∂yN 0 + [N+,N−]

)
dx ∧ dy .

As desired, we obtain the equation on the right-hand side of (2.83). As already
mentioned above, the remainder of Nahm’s equations immediately follow from
the flatness of the Maurer–Cartan form h−1dh. Thus, we conclude that the
dynamics encoded in the action principle (2.89) indeed correspond precisely to
Nahm’s equations, under the additional assumption that the x-dependence is trivial.

There is another characterization of Nahm’s equations in terms of an action principle
which will be relevant in part IV of the thesis. In order to write it down, let us
recall the definition of the bulk Weil operator

g := C = hCrefh
−1 . (2.96)

6We are using conventions in which ⋆dx = dy and ⋆dy = −dx.
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In terms of g, one can equivalently write (2.89) as7

SNahm[g] = 1
4

∫
M

Tr
∣∣g−1dg

∣∣2 , (2.97)

which is nothing but the standard action for the so-called principal chiral model.
One may verify that the corresponding equations of motion read

d ⋆
(
g−1dg

)
= 0 , (2.98)

and are indeed equivalent to (2.93). Rather interestingly, the description of Nahm’s
equations takes an especially simple form in terms of the bulk Weil operator g, in
contrast to the period map h. Note also that from the point of view of the Weil
operator the symmetry properties are especially apparent, since (2.96) is manifestly
invariant under local right-multiplication h 7→ hgR with gR ∈ K. These matters
will be revisited in part IV of the thesis.

7To see this, one simply computes

g−1dg = −h

(
h−1dh +

(
h−1dh

)†
)

h−1 .

90



3 Asymptotic Hodge Theory I: Bulk to
Boundary

This chapter is the first of two chapters on asymptotic Hodge theory. From a
practical point of view, asymptotic Hodge theory provides a set of tools to find
approximate expressions for a general variation of Hodge structure which are valid
close to certain asymptotic regions in the moduli space. In section 3.1 we give some
general motivation for why this is an interesting regime to study. Then, in section
3.2, we introduce the first big theorem of asymptotic Hodge theory: the nilpotent or-
bit theorem. This theorem gives a first characterization of the universal behaviour of
a variation of Hodge structure near the boundary of the moduli space. Subsequently,
this leads to the first approximation of a variation of Hodge structure: the nilpotent
orbit approximation. In order to obtain finer information about how the underlying
Hodge structure degenerates, we introduce the notion of mixed Hodge structures in
section 3.3. The relation between nilpotent orbits and mixed Hodge structures lies
at the heart of the second big theorem of asymptotic Hodge theory: the Sl(2)-orbit
theorem. In section 3.4 we explain this relation first in the case of a one-parameter
variation of Hodge structure, and defer the general discussion to section 3.5. Sub-
sequently, this will give rise to the second approximation of a variation of Hodge
structure: the Sl(2)-orbit approximation. We will discuss how this approximation
can be used to obtain general asymptotic expressions for various physical couplings
such as the Kähler potential and the Hodge norm. Finally, appendix 3.A contains
some additional discussion on the proof of the nilpotent orbit theorem, and ap-
pendix 3.B contains a number examples which will be referred to in the next chapter.

Regarding the literature, most of the results discussed in this chapter can be
found in the seminal works of Schmid [69] and Cattani, Kaplan, and Schmid [70].
Furthermore, we refer the reader to [76, 77] for complementary perspectives as well
as additional applications and worked out examples.
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3.1 Motivation
Recall that our interest in Hodge theory is motivated by the fact that physical
couplings appearing in four-dimensional effective theories coming from string theory
typically depend on Hodge-theoretic objects. For example, the Kähler potential,
gauge-kinetic couplings matrices, and the scalar potential depend on the complex
structure moduli through the Hodge star operator on the relevant Calabi–Yau
manifold.

From a physical point of view, the purpose of asymptotic Hodge theory is to study
the moduli-dependence of these various couplings in certain asymptotic regimes
of the complex structure moduli space, in which we are close to loci where the
underlying geometry degenerates. From a mathematical point of view, this cor-
responds to the study of degenerations of Hodge structure. Indeed, typically the
limits we are interested in are of such a nature that the underlying geometry of the
Calabi–Yau manifold becomes singular, such that its middle cohomology no longer
admits a Hodge structure. Instead, it admits a so-called mixed Hodge structure,
whose details in turn encode precisely the asymptotic behaviour of the physical
couplings.

Below we give three motivations for why these asymptotic limits are of interest to
us from a physical point of view.

Motivation (1): Computability vs. generality

When given an explicit Calabi–Yau geometry, there are plenty of analytic techniques
available in order to compute the periods to a high degree of accuracy, and thus
obtain detailed expressions for the physical couplings one is interested in. However,
given that already the number of different Calabi–Yau threefolds is very large, it
is unfeasible to expect to be able to extract general results from an example-by-
example analysis of this kind. Instead, one could ask whether there are certain
features of periods/variations of Hodge structure that are universal and can thus
be used to make general statements about the physical couplings. It turns out
that this is exactly what happens in the asymptotic regime of the moduli space.
This is captured by the two foundational theorems of asymptotic Hodge theory:
the nilpotent orbit theorem and the Sl(2)-orbit theorem. Roughly speaking, the
former states that any variation of Hodge structure takes a universal form as one
approaches the boundary of the moduli space, while the latter gives a more detailed
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characterization of this asymptotic behaviour in terms of so-called limiting mixed
Hodge structures. The latter effectively carry all the information about how the
Hodge structure degenerates in a given limit. It will be the purpose of this chapter
to explain these statements in detail and illustrate how these powerful theorems
can be used to make very general statements about the asymptotic form of physical
couplings such as the Kähler potential and the Hodge norm.

Motivation (2): The Swampland program

One area of research in which the above mentality has featured prominently over
the last years is the so-called Swampland program [78,79], see [15,80–83] for reviews.
In its most ambitious form, the goal of this program is to identify properties of
low-energy effective theories coupled to gravity that must be satisfied in order for
the theory to admit a UV completion. A typical strategy to identify candidate
properties is to investigate a particular corner of the string landscape, for example
the set of four-dimensional N = 2 supergravity theories coming from type IIB
compactifications on Calabi–Yau threefolds, and search for patterns within this
class of theories. If sufficient evidence is found that a particular pattern is present in
multiple different corners of the string landscape, this is formulated into a Swamp-
land conjecture.1 Over the years, this has lead to a large collection of interrelated
conjectures which are believed to capture deep properties of low-energy descriptions
of quantum gravity.

For our purposes, an important feature of many of the Swampland conjectures is that
they deal with moduli spaces of effective theories and, notably, their asymptotics.
An important example of this is the Swampland distance conjecture [79], which
dictates the behaviour of the low-energy effective theory upon traversing a large
distance inside the moduli space. More precisely, it states that (1) any moduli
space of a low-energy effective theory coupled to gravity admits an infinite distance
limit, and (2) whenever one approaches such an infinite distance limit an infinite
tower of states in the original UV theory becomes light. The latter effectively
signals a breakdown of the effective theory. Importantly, in the context of type IIB
compactifications, these infinite distance points are examples of loci in the complex
structure moduli space where the Hodge structure degenerates. Thus, in order to
investigate the Swampland distance conjecture in this corner of the string landscape,
1Another strategy is take a more bottom-up approach using ingredients that are certainly part
of any theory of quantum gravity, such as black holes, in order to provide evidence which is
independent of string theory.
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it is necessary to have detailed knowledge about the asymptotic behaviour of the
metric on the moduli space, as well as the degeneration of the underlying geometry
(as this dictates the nature of light tower of states). Asymptotic Hodge theory
provides a valuable tool to achieve this, as was pioneered in the works [84, 85].
Since then, asymptotic Hodge theory has been applied to study numerous other
Swampland conjectures as well, see for example [86–98]. For more complete lists of
references to works on the various Swampland conjectures we refer the reader to
the aforementioned reviews.

Motivation (3): Going beyond the large complex structure lamppost

There is one particular limit in the complex structure moduli space which has
received an enormous amount of attention: the large complex structure point. For
simplicity, let us for the moment specify to the setting of Calabi–Yau threefolds.
Then this region can be identified with the large volume regime in the Kähler
moduli space of the mirror Calabi–Yau threefold. In this regime the period vector
take the well-known form

Π =
(

1, ti, 1
6Kijkt

itjtk + iχζ(3)
8π3 ,−1

2Kijkt
jtk
)
, (3.1)

plus exponentially suppressed terms. Here Kijk and χ respectively denote the
triple-intersection numbers and the Euler characteristic of the mirror Calabi–Yau
threefold. Importantly, in order to write down an approximate expression for the
period vector one only needs to know the topological data of the mirror manifold,
without having to go through the Picard–Fuchs equations. At the same time,
computing the exponential corrections is also of great interest. This is because these
corrections correspond to instanton corrections of type IIA string theory coming
from genus zero worldsheets that wrap certain two-cycles in the mirror Calabi–Yau
threefold. In other words, through mirror symmetry one can compute quantum
corrections on the type IIA side by computing classical periods on the type IIB
side. As a result of these considerations, much of the physics literature has been
focused on this particular regime, leading to the “large complex structure lamppost”.

It must be stressed, however, that there are many other kinds of asymptotic limits
in the complex structure moduli space, in which the behaviour of the physical
couplings is different than in the large complex structure regime. It is thus vital to
build lampposts around other asymptotic boundary as well. Fortunately, asymptotic
Hodge theory exactly provides us with the necessary ingredients to do so.
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3.2 The nilpotent orbit theorem

3.2 The nilpotent orbit theorem

Before delving into a detailed description of the abstract features of asymptotic
Hodge theory, let us first illustrate what is meant by the “asymptotic” behaviour
of periods, by returning to the example of the mirror bicubic. This will serve
as a motivation for one of the big theorems of asymptotic Hodge theory, the
nilpotent orbit theorem, and at the same time will be used to exemplify some of
the constructions used in asymptotic Hodge theory in appendix 3.B.

3.2.1 Example: The mirror bicubic revisited

Recall that the periods of the mirror bicubic are governed by a Picard–Fuchs
equation of hypergeometric form:

[
θ4 − µz (θ + a1) (θ + a2) (θ + a3) (θ + a4)

]
ϖ = 0 , (3.2)

for a certain choice of a1, a2, a3, a4, which we leave arbitrary for now. The differential
equation (3.2) has three regular singularities at z = 0, 1/µ,∞. Our goal is to analyse
the local solutions around each of these singularities. For differential equations of
Fuchsian type, such as (3.2), there is a standard procedure to obtain a power series
solution around a given singularity, known as the Frobenius method. It proceeds as
follows. First, around a given singularity, say z = 0, one makes the Frobenius series
ansatz

ϖ = zα
∞∑
n=0

cnz
n , (3.3)

for some α ∈ C which is to be determined. Plugging the ansatz into the differential
equation and considering the leading order term in z yields an equation for α known
as the indicial equation. Its roots are referred to as indices or local exponents,
and will be denoted by αi. For roots with multiplicity one it simply remains to
determine the power series coefficients cn by recursion. If, however, a root has
multiplicity greater than one, the additional linearly independent solutions are
obtained by appending a logarithmic term:

ωi = ωj
log z
2πi + zαi

∞∑
n=0

ci,nz
n , (3.4)
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for αi = αj . For the fourth-order equation (3.2), this procedure will yield in total
four linearly independent solutions. Together, they can be collected into a vector

ϖ =


ϖ0

ϖ1

ϖ2

ϖ3

 , (3.5)

which gives the periods of the holomorphic 3-form Ω in some possibly complex basis
of H3(X3,3,C). Typically, the resulting period vector is not single-valued and should
be analytically continued along closed paths that encircle the singularities. This
is described via the representation of the fundamental group, i.e. the monodromy
group. In the following, we will exemplify these matters for each of the three
singularities z = 0, 1/µ,∞ of (3.2).

Solutions around z = 0

Around z = 0 the indicial equation reads

α4 = 0 , (3.6)

which has a single root α = 0 of order four. Hence the Frobenius method tells us
that the fundamental system is given by

ϖ0 = f0 , (3.7)

ϖ1 = f0
log z
2πi + f1 , (3.8)

ϖ2 = 1
2f0

(
log z
2πi

)2
+ f1

log z
2πi + f2 , (3.9)

ϖ3 = −1
6f0

(
log z
2πi

)3
− 1

2f1

(
log z
2πi

)2
− f2

log z
2πi + f3 , (3.10)

for some some holomorphic power series f0, f1, f2, f3, where we have chosen a
particularly convenient normalization to facilitate comparison with later results.
Assembling these solutions into a vector as in (3.5), the resulting period vector
undergoes a monodromy

ϖ(ze2πi) = Tϖ(z) , T = eN , N =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 −1 0

 . (3.11)
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In particular, one finds that T is maximally unipotent, hence the point z = 0
corresponds to a point of maximal unipotent monodromy, and is therefore referred
to as a MUM point. Furthermore, the period vector can be nicely written as

ϖ = exp
[

log z
2πi N

]
·


f0

f1

f2

f3

 , (3.12)

such that all of the singular behaviour of the period vector around z = 0 is captured
by an exponential factor acting on a holomorphic vector.

Solutions around z = 1/µ

Changing variables such that the point z = 1/µ is centered around zero and
accordingly transforming the Picard–Fuchs operator, one finds that the indicial
equation around this singularity becomes

α(α− 1)(α− 2)(α− 3 + a1 + a2 + a3 + a4) = 0 . (3.13)

Therefore, the roots are α = 0, 1, 1, 2, so the Frobenius method tells us that the
fundamental system is given by

ϖ0 = zf0 , (3.14)
ϖ1 = f1 , (3.15)
ϖ2 = z2f2 , (3.16)

ϖ3 = −zf0
log z
2πi + zf3 , (3.17)

for some holomorphic power series f0, f1, f2, f3. Here we have chosen a particular
ordering of the fundamental system, as well as some conventional minus signs, in
order to facilitate comparison with later results. Assembling these solutions into a
vector as in (3.5), the resulting period vector undergoes a monodromy

ϖ(ze2πi) = Tϖ(z) , T = eN , N =


0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0

 . (3.18)
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The monodromy is again unipotent. As in the previous case, the period vector can
be nicely written as

ϖ = exp
[

log z
2πi N

]
·


zf0

f1

z2f2

zf3

 , (3.19)

such that again all of the singular behaviour of the period vector is captured by an
exponential factor acting on a holomorphic vector.

Solutions around z = ∞

Let us now turn to the last singular point, which has an additional feature which
did not appear in the previous two cases. Changing variables such that the point
z → ∞ is centered around zero and accordingly transforming the Picard–Fuchs
operator, one finds that the indicial equation around this singularity becomes

(α− a1)(α− a2)(α− a3)(α− a4) = 0 . (3.20)

Therefore, the roots are α = a1, a2, a3, a4. Recall that for the case of the mirror
bicubic the indices are fractional and given by (2.19). In particular, there are two
pairs of equal roots, so the Frobenius method tells us that the fundamental system
is given by

ϖ0 = z1/3f0 , (3.21)
ϖ1 = z2/3f1 , (3.22)

ϖ2 = z1/3f0
log z
2πi + z1/3f2 , (3.23)

ϖ3 = z2/3f1
log z
2πi + z2/3f3 , (3.24)

where we have again chosen a particularly convenient ordering. Assembling these
solutions into a vector as in (3.5), the resulting period vector undergoes a monodromy

ϖ(ze2πi) = Tϖ(z) , (3.25)

which is not unipotent, but rather decomposes as T = Tss · Tu into a semi-simple
part of finite order

Tss =


e

2πi
3 0 0 0

0 e
4πi

3 0 0
0 0 e

2πi
3 0

0 0 0 e
4πi

3

 , T 3
ss = I , (3.26)
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and a unipotent part

Tu = eN , N =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 . (3.27)

It is said that the monodromy is quasi-unipotent. One can choose to simplify the
expressions by performing the coordinate redefinition z 7→ z3, which removes the
semi-simple part of the monodromy and transforms the unipotent part by N 7→ 3N .
After doing so, the period vector can again be written as

ϖ = exp
[

3 log z
2πi N

]
·


zf0

z2f1

zf2

z2f3

 , (3.28)

Once again, the structure of the periods around the singularity z → ∞ is very
similar to the other singularities, which hints towards the fact that this may be a
general feature. The fact that this is indeed the case is the result of the celebrated
nilpotent orbit theorem, which discuss in detail in a moment.

Some closing remarks

The strategy that is outlined above is applicable to study the periods of a wide
range of Calabi–Yau manifolds. In this regard, a convenient notation that is often
used to summarize the singularity structure of a given Fuchsian equation is the
so-called Riemann symbol, which takes the form

P



0 1/µ ∞
0 0 a1

0 1 a2

0 1 a3

0 2 a4


, (3.29)

for the example of the mirror bicubic, as well as for the other 13 hypergeometric
models. Around each singularity, it collects the roots of the corresponding indicial
equation and hence the local exponents for the periods as well as the logarithmic
structure. Naturally, for more complicated Picard–Fuchs systems there may be
more than three singularities, leading to further columns in the Riemann symbol.
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Additionally, considering Calabi–Yau threefolds with more than one complex struc-
ture modulus, or moving to higher-dimensional Calabi–Yau manifolds generically
increases the order of the Picard–Fuchs differential operator, and hence introduces
additional rows in the Riemann symbol.

For any one-dimensional limit in the complex structure moduli space of a Calabi–
Yau threefold, the type of singularity can be classified in terms of the local exponents
as follows. There are four types of singularities:

• MUM point: a1 = a2 = a3 = a4.

• K-point: a1 = a2 and a3 = a4.

• Conifold point: a2 = a3, but a1 ̸= a4.

• F-point: all exponents are rational and a1 ̸= a2 ̸= a3 ̸= a4.

It is for this reason that we chose to focus on the case of the mirror bicubic X3,3,
as this particular example exhibits the (for our purposes) three most interesting
singularities. The F-point, which does not arise for the mirror bicubic, is a point
which only has a finite order monodromy, which can always be removed by a
coordinate redefinition.

A priori, it is not at all obvious that these four singularity types exhaust all
possibilities. For example, it turns out that the case a1 = a2 = a3 ̸= a4 cannot
occur. This becomes even more non-trivial when the periods depend on multiple
complex structure moduli, such that the types of singularites will additionally
depend on the order of limits that is taken. The fact that these are indeed the only
possibilities will become apparent once we have introduced the notion of mixed
Hodge structures. However, before we can do so we must first discuss one of the
central results in asymptotic Hodge theory.

3.2.2 The nilpotent orbit theorem

One of the key lessons from the previous section is that the local behaviour of
the period vector around a singularity is characterized in terms of its monodromy,
through a factor e log z

2πi N acting on some holomorphic vector. The purpose of this
subsection is to state a result, known as the nilpotent orbit theorem, which effec-
tively implies that this behaviour holds generally for any variation of polarized
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Hodge structure.

Let us consider an abstract variation of polarized Hodge structure over some
parameter space M, which we will assume to be quasi-projective, having singular
divisors which are at worst normal crossings. This is indeed the case for the
complex structure moduli space of Calabi–Yau manifolds, after possibly performing
a resolution of the singularities [99,100]. The fact thatM is quasi-projective means
that its closure M can be embedded in a complex projective space. The central
goal of this section is to understand the behaviour of a variation of Hodge structure
near the singular region M/M, which will also be referred to as the “asymptotic
regime”. Since we are interested in a local description of M in this asymptotic
regime, we may assume that M is given by the direct product of r punctured
disks ∆∗ and m− r disks ∆, where m denotes the complex dimension of M and r
denotes the number of coordinates that approach the boundary. We choose local
coordinates zi on the punctured disks such that the punctures are located at zi = 0
for i = 1 . . . , r, corresponding to the locations of singular divisors in the moduli
space. Furthermore, we introduce local coordinates ζi for i = r + 1, . . . ,m on the
remaining filled disks. In other words, we consider the period map

Φ : (∆∗)r ×∆m−r → Γ\D , (3.30)

where we recall that D ∼= GR/V denotes the period domain, which parametrizes
the space of all polarized Hodge structures. We denote by

ti = xi + iyi = 1
2πi log zi , (3.31)

the coordinates on the universal covering space of (∆∗)r. The ti coordinates each
take value in the complex upper half-plane H, and the singularities are located
at Im ti → ∞. The reals and imaginary parts of ti are referred to as axions
and saxions, respectively. Note that, due to the periodic nature of the axionic
coordinates, a choice of fundamental domain for the xi is the bounded interval [0, 1].
The two descriptions of the near-boundary regime of M and its universal cover
M̃ are illustrated in figure 3.1 in the case of a single complex structure modulus.
Correspondingly, the period map (3.30) lifts to a map

Φ̃ : Hr ×∆m−r → D , (3.32)

whose transformation under the monodromy group will be described in a moment.
In the remainder of our discussion, we will assume without loss of generality that
m = r, meaning that all moduli are taken towards the boundary.
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z → 0

y → ∞
(a) (b)

Figure 3.1: Two local descriptions of the near-boundary regime of the moduli space M.
Figure (a): Poincaré disc with the singularity located at z = 0. Figure (b): upper
half-plane, with the singularity located at y → ∞.

Monodromy

Of vital importance is the local monodromy behaviour of the variation of Hodge
structure when encircling the singularity. As discussed in section 2.3.1, the parallel
transport of a Hodge structure along a path which encircles a given singularity only
depends on the homotopy class of the path. Therefore, it suffices to consider the
transformations zi 7→ zie2πi or equivalently ti 7→ ti + 1 and to ask how the Hodge
filtration transforms under this map. This yields m monodromy operators Ti ∈ Γ,
which determine the transformation of the period map as

Φ̃(ti + 1) = Ti ◦ Φ̃(ti) . (3.33)

To be more concrete, by the action of Ti on a given filtration we simply mean the
action of Ti, as a matrix, on the vectors that span that filtration. One of the central
results, originally due to Borel, is the following (see e.g. Lemma 4.5 of [69]).

Quasi-unipotent monodromy

The monodromy operators Ti are quasi-unipotent.

This means that for each Ti there exist non-negative integers ki, li such that(
T ki
i − I

)li+1
= 0 . (3.34)

Equivalently, this means that the eigenvalues of the monodromy operators
are roots of unity.
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This is exactly what we observed when we studied the monodromy transformations
of the periods of the mirror bicubic in section 3.2.1. Practically, it means that
the local exponents of the periods can be at worst rational. Furthermore, as was
exemplified by the K-point of the mirror bicubic, one can always perform the
coordinate redefinition zi 7→ zki

i to remove the finite order semi-simple piece of each
monodromy operator Ti. For the remainder of this work, we will always assume
that this has been done.2 Therefore, each monodromy operator will be taken to be
unipotent and hence of the form

Ti = eNi , [Ni, Nj ] = 0 , (3.35)

where Ni ∈ gR are commuting nilpotent operators, whose nilpotency degree lies
between 0 and the weight D of the Hodge structure. They will be referred to as
the log-monodromy matrices. The fact that they commute originates from the fact
the singular divisors are at worst normal crossings.

The nilpotent orbit theorem

From the preceding discussions of (asymptotic) Hodge theory, we would like to
highlight two important features of the Hodge filtration F p. Namely, (1) it is holo-
morphic, recall equation (2.43), and (2) it undergoes a monodromy transformation
when encircling a singularity in the moduli space, recall equation (3.33). Intuitively,
the simplest types of Hodge filtrations that exhibit these features are of the form

F pnil = exp
[
m∑
i=1

tiNi

]
F p(m) , (3.36)

where F p(m) is some moduli-independent filtration. The transversality condition
(2.42) then simply translates into the statement that all the log-monodromy matrices
satisfy the condition

NiF
p
(m) ⊂ F

p−1
(m) , (3.37)

Hodge filtrations of the form (3.36), with the log-monodromy matrices satisfying
(3.37), are referred to as nilpotent orbits, since they correspond to the orbit of some
fixed filtration under the action of the nilpotent operators Ni.

2It should be noted, however, that the semi-simple part of the monodromy actually contains a
great deal of information regarding the integral structure of the variation of Hodge structure
in question. In particular, by removing this piece via a coordinate redefinition, some of this
information may be lost. We refer the reader to [101] for a more in-depth discussion on these
matters.
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This brings us to one of the two central theorems in asymptotic Hodge theory: the
nilpotent orbit theorem. It is originally due to Schmid [69] and was later refined by
Cattani, Kaplan, and Schmid in [70]. Below we state a somewhat informal version
of the theorem.

Nilpotent orbit theorem

For Im ti sufficiently large, for i = 1 . . . , r, any polarized variation of Hodge
structure F p(t) can be approximated as

F p(t, ζ) = exp
[

r∑
i=1

tiNi

](
F p(r)(ζ) +O

(
e2πiti

))
, (3.38)

for some limiting filtration F p(r) which is independent of ti. The leading term
in (3.38) is referred to as the nilpotent orbit approximation of the full Hodge
structure. Furthermore, the log-monodromy matrices satisfy

NiF
p
(r) ⊂ F

p−1
(r) . (3.39)

Here we recall that ζi denote the “spectator moduli”, i.e. the moduli which
are not sent to the boundary of the moduli space. Importantly, the filtration
F p(m) can still depend on these moduli. For our purposes, however, we are
typically interested in the limit where all the moduli are sent to the boundary,
hence we will not explicitly take into account the dependence on the spectator
moduli and effectively set r = m.

In other words, the nilpotent orbit theorem states that any polarized Hodge filtration
asymptotes to a nilpotent orbit as one approaches a singularity in the moduli
space. Furthermore, the sub-leading corrections are exponentially suppressed in the
covering space coordinate ti. In appendix 3.A we have provided some additional
background regarding the proof of the nilpotent orbit theorem.

The limiting filtration F p
(m)

The filtration F p(m) is commonly referred to as the limiting filtration. In general, it
can be obtained from the full filtration F p by the following limit procedure

F p(m) = lim
ti→i∞

e−tiNiF p . (3.40)
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It is crucial to stress that, generically, the limiting filtration F p(m) does not define a
polarized Hodge filtration. In other words, the degeneration is too severe for the
limit to still admit a Hodge structure. More geometrically, this means that the
value of the period map Φ(z) at the singular locus lies outside of the period domain
D. Instead, the limiting filtration is said to define a mixed Hodge structure. The
purpose of the next sections is to explain what this means, and how this indicates
a deeper structure through the emergence of multiple sl(2,R) symmetries as one
approaches the boundary of the moduli space.

3.3 Mixed Hodge structures
The nilpotent orbit theorem suggests that the degeneration of the variation of
Hodge structure is captured by two ingredients: the log-monodromy matrices Ni
and the limiting filtration F p(m). A crucial result is that these two ingredients
together define a so-called mixed Hodge structure. In this section, we will give a
basic introduction to mixed Hodge structures without making any reference to an
underlying variation of Hodge structure. In the next section we will then explain
how exactly the log-monodromy matrices and the limiting filtration make up a
mixed Hodge structure.

In order to explain the notion of a mixed Hodge structure, we must first discuss
the concept of a weight filtration.

Definition: weight filtration

For any nilpotent endomorphism N of HR, the weight filtration Wℓ of weight
D associated to N is the unique increasing filtration of vector spaces

W−1 := 0 ⊂W0 ⊂ · · · ⊂W2D−1 ⊂W2D = HC , (3.41)

such that the following two conditions are satisfied:

1. NWℓ ⊂Wℓ−2 for all ℓ.

2. N j : GrD+j → GrD−j is a linear isomorphism, where

Grℓ := Wℓ/Wℓ−1 , (3.42)

are the so-called graded spaces.
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Note that this definition makes sense for any nilpotent endomorphism N , it does
not necessarily have to be associated to some monodromy transformation. The first
condition simply states that the action of N moves one downwards in the weight
filtration. The second condition can be interpreted as providing an interpolation
between the “upper half” and the “lower half” of the weight filtration, as is illus-
trated below.

Practically, when given an explicit nilpotent endomorphism N , one may use the
following formula to compute the various constituents of the weight filtration

Wℓ+D =
∑

j≥max(−1,ℓ)

kerN j+1 ∩ imN j−ℓ . (3.43)

To emphasize the dependence on N , we will sometimes also write Wℓ(N) for the
weight filtration associated to N .

Mixed Hodge structures

Recall that a (pure) Hodge structure is described in terms of a single decreasing
filtration F p satisfying a number of conditions. Instead, a mixed Hodge structure
will be described in terms of a suitable combination of the weight filtration and
another filtration which together give rise to a pure Hodge structure. The precise
definition is as follows.

Definition: mixed Hodge structure (MHS)

A mixed Hodge structure on HR is given by a tuple (W,F ) consisting of
a weight filtration Wℓ defined over R, as described above, together with a
decreasing filtration

0 ⊂ FD ⊂ · · · ⊂ F 0 = HC , (3.44)

such that the filtration

(F p ∩Wℓ) / (F p ∩Wℓ−1) , (3.45)

defines a Hodge structure of weight ℓ on each graded space Grℓ.

When the weight filtration is induced by a nilpotent operator N , the filtration
F p must satisfy the following compatibility condition

NF p ⊂ F p−1 . (3.46)
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Just like a Hodge structure, a general mixed Hodge structure need not come with
the notion of a polarization. However, when a limiting mixed Hodge structure
comes from a variation of polarized Hodge structure (as will be explained in the
next section), this polarization naturally carries over.

Polarized mixed Hodge structures

Recall that in the geometric case one needs to restrict to the primitive cohomology
in order for the variation of Hodge structure to be polarized. Similarly, there is
a notion of primitivity in the context of mixed Hodge structures. Indeed, the
corresponding primitive subspaces Pℓ of Grℓ are defined by

PD+ℓ = ker
(
N ℓ+1 : GrD+ℓ → GrD−ℓ−2

)
. (3.47)

Naturally, the Hodge structure on the graded pieces descends to the primitive
subspaces, and so we write

Pℓ =
⊕
p+q=ℓ

P p,qℓ , ℓ ≥ D . (3.48)

for the corresponding Hodge decomposition. We then say that the mixed Hodge
structure (W,F ) is polarized if the Hodge structure (3.48) on each PD+ℓ is polarized
with respect to the bilinear form

(
· , N ℓ ·

)
. To be explicit, this means in particular

that the following positivity condition is satisfied

v ∈ P p,qD+ℓ : ip−q (v,N ℓv̄
)
> 0 . (3.49)

From this point onwards, we will always assume a mixed Hodge structure to be
polarized in this sense.

Deligne splitting

Unfortunately, the above characterization of a mixed Hodge structure is not the
most illuminating, nor is it particularly easy to work with. Luckily, there is a clever
way of repackaging the data of a mixed Hodge structure which is both easier to
handle, and additionally reveals a hidden symmetry. First, we introduce the notion
of a splitting.
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Definition: splitting of a MHS

A splitting of a mixed Hodge structure (W,F ) is a bigrading

HC =
⊕
p,q

Ip,q , (3.50)

in terms of complex vector spaces Ip,q, such that

Wℓ =
⊕
p+q=ℓ

Ip,q , F p =
⊕
s

⊕
r≥p

Ir,s . (3.51)

Furthermore, the dimensions of the various components of the bigrading are
denoted as

ip,q = dimCI
p,q . (3.52)

One can conveniently package the information in such a splitting using the so-called
Hodge–Deligne diamond. This is a diagram in which the various Ip,q spaces are
depicted in a square as in figure 3.2. In such a Hodge–Deligne diamond, a dot
signifies that the corresponding vector space is non-trivial. Using the relations
(3.51), one readily sees that the spaces Wℓ correspond to the first ℓ horizontal
rows of the Hodge–Deligne diamond when counting from below, while the spaces
F p correspond to the firstD+1−p diagonal columns when counting from the top-left.

The reason for introducing this additional notion of a splitting is that there is a
one-to-one correspondence between mixed Hodge structures and those splittings
which satisfy the following relation with respect to complex conjugation

Ip,q = Iq,p mod
⊕

r<q,s<p

Ir,s . (3.53)

In words, this means that the spaces Ip,q and Iq,p are related to each other by com-
plex conjugation, modulo elements which are positioned lower in the splitting. The
property (3.53) is illustrated in figure 3.3. Given a mixed Hodge structure (W,F ),
there is a unique splitting associated to it that satisfies (3.53) and, importantly, it
can be written down explicitly.
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Gr0

Gr1

Gr2

Gr3

Gr4

Gr5

Gr6

Gr7

Gr8

W1

W2

W3

F 3 F 2

I0,1I1,0

I1,1

I2,1 I1,2

I3,1 I2,2 I1,3

I3,2 I2,3

I3,3

N

Figure 3.2: Example of a Hodge–Deligne diamond for a splitting associated to a weight
D = 4 mixed Hodge structure. Here we have also indicated the various components of the
filtrations Wℓ and F p via the relation (3.51), as well as the graded spaces via the relation
(3.57). Furthermore, the action of N is indicated by the red arrow and follows from the
relation (3.55).

Deligne splitting

For a given mixed Hodge structure (W,F ), the unique splitting Ip,q of (W,F )
that satisfies (3.53) is given by the formula

Ip,q = F p ∩Wp+q ∩
(
F̄ q ∩Wp+q +

∑
j≥1

F̄ q−j ∩Wp+q−j−1

)
, (3.54)

and is referred to as the Deligne splitting.

Let us now discuss some additional properties of the Deligne splitting which greatly
constrain the different number of possible Hodge–Deligne diamonds one can write
down. First, using the fact that NWℓ ⊂Wℓ−2 and NF p ⊂ F p−1, together with the
explicit relation (3.54), it follows that

NIp,q ⊂ Ip−1,q−1 . (3.55)
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Figure 3.3: The property (3.53) is exemplified for a weight D = 4 mixed Hodge structure.
We have highlighted the spaces I3,2 and I3,2 = I2,3 mod

(
I0,2 ⊕ I1,1 ⊕ I1,2), where the

latter is obtained by reflecting I3,2 in the vertical axis and modding out the lower spaces.

In other words, in the Hodge–Deligne diamond the nilpotent operator N sends an
element in a given horizontal row exactly two rows downwards, while staying in the
same vertical column. This is illustrated in figure 3.2. Second, one can show that
the following relations must hold:

ip,q = iq,p = iD−q,D−p , ip−1,q−1 ≤ ip,q , for p+ q < D. (3.56)

The first relation simply states that the Hodge–Deligne diamond must be symmetric
under reflections about the vertical and horizontal axes, while the second relation
gives a constraint on the dimensions of the Ip,q spaces which lie strictly below the
central horizontal row.

Finally, let us note that the graded spaces and their primitive parts can be recovered
from the Deligne splitting using the following relation

Grℓ =
⊕
p+q=ℓ

Ip,q , P p,qD+ℓ = Ip,q ∩ kerN ℓ+1 . (3.57)

In terms of the Hodge–Deligne diamond, the graded spaces Grℓ therefore correspond
to the ℓ-th horizontal row when counting from below. It is important to stress
that due to the conjugation property (3.53) of the Deligne splitting, the decomposi-
tion (3.57) generically does not define a Hodge decomposition, as opposed to the
decomposition induced by (3.45). There is, however, a special case in which the
decomposition (3.57) does define a Hodge structure, namely when the conjugation
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property (3.53) happens to simplify to

Ip,q = Iq,p , (3.58)

without the need for the additional lower-lying elements. If a splitting satisfies
this condition it is said to be R-split. In this case, the formula (3.54) simplifies
drastically to

Ip,qR-split = F p ∩ F̄ q ∩Wp+q . (3.59)

The phase operator

A crucial insight is that, even if a given Deligne splitting is not R-split, one
can always perform a GC basis transformation which effectively makes it R-split.
Furthermore, this transformation turns out to be rather restricted. To be precise,
one can show that there always exists a real operator δ ∈ gR called the phase
operator (in the physics literature), such that the filtration

F̃ p := e−iδF p , (3.60)

together with the original weight filtration Wℓ defines another (polarized) mixed
Hodge structure (W, F̃ ) whose associated Deligne splitting Ĩp,q is R-split. Further-
more, δ commutes with all the morphisms of the mixed Hodge structure and thus,
in particular, commutes with the nilpotent operator:

[δ,N ] = 0 . (3.61)

Note that, because of the relation (3.61), the new Deligne splitting is again compat-
ible with the nilpotent operator, in the sense that NĨp,q ⊂ Ĩp−1,q−1. Additionally,
the phase operator enjoys a decomposition

δ =
∑
p,q≥1

δ−p,−q , δ−p,−qI
r,s ⊂ Ir−p,s−q , (3.62)

where we stress the restriction to p, q ≥ 1 in the summation, which originates from
the fact that δ is constructed in such a way that it ‘fixes’ the bad behaviour of the
old Ip,q under complex conjugation, which only involves lower-positioned elements.

Importantly, let us mention that δ can always be determined algorithmically, as
is explained and exemplified in detail in [77]. For our purposes, we will typically
work in the opposite direction. Namely, we start from a given R-split mixed Hodge
structure, and then simply construct the most general phase operator δ that satisfies
the above conditions. This will be exemplified in appendix 3.B.

111



3 Asymptotic Hodge Theory I: Bulk to Boundary

An emergent sl(2,R)-symmetry

Earlier it was mentioned that the formulation in terms of the Deligne splitting
reveals a hidden symmetry, let us discuss this now. The crucial observation is
that to each R-split mixed Hodge structure Ĩp,q one can naturally associate a real
sl(2,R)-triple in the following way. First, one can define a weight operator N0 ∈ gR
by demanding that it satisfies

N0v = (p+ q −D)v , v ∈ Ĩp,q. (3.63)

Note that precisely because Ĩp,q is R-split, this definition is well-behaved under
complex conjugation and thus defines a real operator N0. Furthermore, using the
fact that NĨp,q ⊂ Ĩp−1,q−1, one immediately sees that

[N0, N ] = −2N , (3.64)

from which one may recognize N as a lowering operator. From here on, one can
find a unique corresponding raising operator N+ by imposing the remaining sl(2,R)
commutation relations

[N0, N+] = 2N+ , [N+, N ] = N0 . (3.65)

As a result, many of the properties of R-split mixed Hodge structures can be
understood in terms of the representation theory of certain sl(2,R)-triples.

The ζ-operator

There is one final operator we need to introduce which is of a more technical nature.
As will be explained in the next section, in the general case of an m-parameter
variation of Hodge structure, one generically finds multiple sl(2,R)-triples which can
be made to commute by performing another basis transformation to transform from
the R-split mixed Hodge structure Ĩp,q to the so-called sl(2)-split mixed Hodge
structure Îp,q. Concretely, we perform another rotation

F̂ p := eζF̃ p = eζe−iδF p , (3.66)

where ζ ∈ gR is fixed uniquely in terms of δ. At this point we choose to not yet
give the precise relation in the most general case, which will be deferred to section
4.1.3. Nevertheless, for practical purposes it is useful to record the precise relation
in the case of a mixed Hodge structure of weight 3 (or less), which is relevant in
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3.4 The Sl(2)-orbit theorem (1): single-variable

the setting of Calabi–Yau threefolds3

ζ−1,−2 = − i2δ−1,−2 ,

ζ−1,−3 = −3i
4 δ−1,−3 ,

ζ−2,−3 = −3i
8 δ−2,−3 −

1
8 [δ−1,−1, δ−1,−2] ,

ζ−3,−3 = −1
8 [δ−1,−1, δ−2,−2] . (3.67)

Here we stress that ζp,q denote the (p, q) components of ζ with respect to the R-split
mixed Hodge structure Ĩp,q. All other components that are not listed are either
vanishing or related via complex conjugation as ζp,q = ζq,p.

3.4 The Sl(2)-orbit theorem (1): single-variable
Having discussed some general aspects of mixed Hodge structures, let us now return
to the problem at hand and explain why this mathematical machinery is useful in
the study of asymptotic Hodge theory. Recall that, according to the nilpotent orbit
theorem, the asymptotic behaviour of any variation of polarized Hodge structure is
effectively characterized in terms of a set of log-monodromy matrices Ni, together
with the limiting filtration F p(m). The central point is that this data in turn defines
a mixed Hodge structure. Consequently, the type of mixed Hodge structure that
arises in a given asymptotic limit contains a lot of information about how the Hodge
structure is degenerating in that limit. More practically, the type of mixed Hodge
structure will dictate the asymptotic form of e.g. the Kähler potential and the Hodge
star operator. In this section, we will discuss this in detail in the one-parameter
case. The general case will be discussed in the next section.

3.4.1 Perspective (1): Limiting mixed Hodge structures
Consider a one-parameter variation of Hodge structure which, by the nilpotent
orbit theorem, is well-approximated by a nilpotent orbit of the form

F p(t) ≈ F pnil(t) = etNF p0 , (3.68)

in the regime where Im t ≫ 1. Note that we have adjusted our notation slightly
by denoting the limiting filtration by F p0 . The central result is the following (see
Theorem 6.16 in [69])
3Note that while the individual components of ζ need not be real, the sum is real.
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3 Asymptotic Hodge Theory I: Bulk to Boundary

Limiting mixed Hodge structure (LMHS)

The pair (W (N), F0) forms a mixed Hodge structure, which will be referred
to as the limiting mixed Hodge structure associated to the limit y →∞.

The weight filtration W (N) is typically referred to as the monodromy weight
filtration associated to the limit y →∞.

Thus, the data of a one-parameter nilpotent orbit naturally induces a limiting mixed
Hodge structure (W,F0), which can in turn be equivalently described in terms
of the associated Deligne splitting Ip,q via (3.54). Importantly, since the Hodge
numbers of F p0 are the same as those of F p, one finds the additional condition

hp,D−p =
D∑
q=0

ip,q , (3.69)

which relates the ip,q to the Hodge numbers of the original pure Hodge structure. In
special cases, for example when the underlying geometry is a Calabi–Yau manifold,
this can lead to a considerable reduction on the possible Hodge–Deligne diamonds.

Intermezzo: Hodge–Deligne diamonds for Calabi–Yau manifolds

Recall that a central property of a Calabi–Yau D-fold YD is that hD,0 = h0,D = 1.
As a result of the condition (3.69), together with the symmetries of the Hodge–
Deligne diamond (3.56), one finds that

iD,d = id,D = i0,D−d = iD−d,0 = 1 , (3.70)

for some integer 0 ≤ d ≤ D, while all other spaces lying on the outer edge of
the Hodge–Deligne diamond are empty. This suggests a natural classification of
Hodge–Deligne diamonds for Calabi–Yau manifolds, where different singularity
types are distinguished by the value of the integer d. For example, in the case of
Calabi–Yau threefolds, this results in four types labeled as

Type I : d = 0 ,
Type II : d = 1 ,
Type III : d = 2 ,
Type IV : d = 3 .
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3.4 The Sl(2)-orbit theorem (1): single-variable

Similarly, for Calabi–Yau fourfolds there is the additional Type V singularity. It
is important to stress, however, that the integer d does not fully fix the allowed
Hodge–Deligne diamond, as we still have a lot of freedom in the inner part of the
diamond. For example, in the case of Calabi–Yau threefold, we still need to specify
the dimensions i1,1, i1,2, i2,1, i2,2. Due to the symmetry property (3.56) only two
of these are independent. Furthermore, the relation (3.69) imposes an additional
restriction on the sum of all the ip,q, such that we are left with only one free
parameter. Conventionally, we choose the free parameter to be i2,2 and attach it as
a subscript to the type labeling, writing

Ii2,2 , IIi2,2 , IIIi2,2 , IVi2,2 . (3.71)

By taking into account the bounds on the possible values of i2,2 arising from the
constraint (3.69) one finds in total 4h2,1 possible Hodge–Deligne diamonds associ-
ated to limiting mixed Hodge structures of Calabi–Yau threefolds (one of which,
namely I0, is a trivial mixed Hodge structure), see also [85] as well as [87] for an
extension of this discussion to the Calabi–Yau fourfold case. In appendix 3.B we
will return to the above classification in detail for the case h2,1 = 1.

To close this intermezzo, let us also remark that, in addition to the allowed
Hodge–Deligne diamonds, one can also classify the (conjugacy classes of) associated
nilpotent endomorphism N in terms of signed Young diagrams [102,103]. This is
useful for practical purposes as it allows one to construct the most general form of
N , as well as the intersection form, from a set of simple building blocks or “normal
forms”. We refer the reader to [77,84] for more details and illustrative examples.

The Sl(2)-orbit

Let us now leave the above intermezzo behind and return to the general setting.
Generically, the Deligne splitting Ip,q that arises from a limiting mixed Hodge
structure associated to a nilpotent orbit need not be R-split. Following the discussion
in section 3.3, we can always perform a rotation

F̂ p0 := eζe−iδF p0 , (3.72)

using the phase operator δ and the associated operator ζ, such that (W, F̂0) defines
an R-split limiting mixed Hodge structure. We denote the corresponding Deligne
splitting by Îp,q. Importantly, due to the fact that the latter is R-split, we may
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3 Asymptotic Hodge Theory I: Bulk to Boundary

introduce the canonical grading operator N0 by4

N0v = (p+ q −D)v , v ∈ Îp,q . (3.74)

A natural question is whether this new mixed Hodge structure (W, F̂0) can itself
be interpreted as the limiting filtration of some other nilpotent orbit. Indeed, one
might write down the following candidate filtration

F̂ pnil(t) := etN F̂ p0 . (3.75)

As it turns out, this indeed defines a nilpotent orbit. Furthermore, it is very closely
related to the original nilpotent orbit we started with. To be precise, one has the
following result (see Lemma 3.12 of [70]).

Sl(2)-orbit approximation

For Im t > 0, the filtration F̂ pnil(t) defines a nilpotent orbit (in particular, it
defines a variation of polarized Hodge structure). Furthermore, it agrees with
the original nilpotent orbit F pnil(t) to first order in the regime y ≫ 1, so that

F pnil(t) ≈ F̂
p
nil(t) . (3.76)

Note:
The filtration F̂ pnil(t) is typically referred to as the Sl(2)-orbit approximation
of F pnil(t).

Let us explain where the terminology “Sl(2)-orbit approximation” comes from. This
relies on the following crucial identity

eiyN F̂ p0 = y− 1
2N

0
F p∞ , (3.77)

where we have introduced a fixed filtration

F p∞ := eiN F̂ p0 . (3.78)

The relation (3.77) simply follows from the sl(2,R) commutation relations and the
fact that N0 preserves the filtration F̂ p0 . This identity will feature prominently in
4Note that this grading operator is defined with respect to the sl(2)-split Deligne splitting Îp,q,
as opposed to the R-split Deligne splitting Ĩp,q that was used in section (3.3). The two are
straightforwardly related by

N0
Îp,q = eζN0

Ĩp,q e−ζ . (3.73)
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the multi-parameter case as well, as will be discussed in the next section. As an
immediate consequence of the identity, we find that

F̂ pnil(t) =
[
exNy− 1

2N
0
]
F p∞ , (3.79)

A point which is worth emphasizing is that F p∞ is in fact a (polarized) Hodge
filtration! This is to be contrasted with the limiting filtrations F p0 and F̂ p0 , which
are generically not Hodge filtrations. The rough intuition for why this is the case
is that F p∞ corresponds to evaluating the nilpotent orbit F̂ pnil(t) at the point t = i.
The Hodge structure defined by F p∞ will be referred to as the boundary Hodge
structure. This terminology is somewhat misleading, as it is not the case that F∞

naturally lies on the boundary of the period domain. Rather, one should think of it
as a Hodge structure which can naturally be associated to the limit y → ∞ and
from which the original nilpotent orbit can be approximated.

Indeed, the main point is that the relation (3.79) tells us that one can view F̂ pnil(t)
as the orbit of the boundary Hodge structure F p∞ under the action of an element in
SL(2,R). Furthermore, since the filtration F̂ pnil(t) agrees with F pnil(t) to first order
in the regime y ≫ 1, this justifies the name “Sl(2)-orbit approximation”. For this
reason, we will usually write

F pSl(2)(t) := F̂ pnil(t) . (3.80)

3.4.2 Perspective (2): Approximating the period map
Let us place the above observation in the context of section 2.3, in which we discussed
the notion of the period map. Recall that, since the group GR acts transitively on
the period domain, one can always find a GR-valued map that interpolates between
a given “reference Hodge structure” and any other Hodge structure. The above
discussion indicates that, near a given boundary in the moduli space, there is a
natural choice for such a reference Hodge structure, namely the boundary Hodge
structure F p∞. Indeed, let us consider the period map h(x, y) which satisfies the
relation5

F p = h(x, y)F p∞ . (3.81)
Then our preceding analysis shows that, to first order in 1/y, the full period map
can be approximated by

h(x, y) ≈ hSl(2)(x, y) := exNy− 1
2N

0
, (3.82)

5To be precise, we are choosing a representative in the equivalence class [h] ∈ G/V , c.f. the
discussion in section 2.3.

117



3 Asymptotic Hodge Theory I: Bulk to Boundary

which satisfies
F pSl(2) = hSl(2)(x, y)F p∞ . (3.83)

As a consistency check, one can in fact show that hSl(2) itself satisfies Nahm’s
equations (2.83). Recall that the latter comprise part of the horizontality conditions
of the full period map. To see this, let us first recall that the grading operator N0

and the nilpotent endomorphism N can be completed into a real sl(2)-triple

{N+, N0, N−} , N− := N . (3.84)

Then one readily computes

N 0 = −2h−1∂yh = N0

y
+O(y−3/2) , (3.85)

N− = h−1∂xh = N−

y
+O(y−3/2) , (3.86)

where the higher-order terms correspond to corrections that go beyond the Sl(2)-
orbit approximation. Comparing to (2.83) and recalling the sl(2) commutation
relations, we see that Nahm’s equations are solved (to leading order in 1/y) when
additionally setting

N+ =
(
h−1∂xh

)† = N+

y
+O(y−3/2) , (3.87)

where the dagger is taken with respect to the boundary charge operator Q∞

c.f. (2.39). Recall that the latter gives an alternative characterization of the
boundary Hodge structure via

Q∞v = 1
2(p− q)v , v ∈ Hp,q

∞ , (3.88)

with Hp,q
∞ the Hodge decomposition induced by F p∞.

Horizontal sl(2)-triple

It is important to stress, however, that Nahm’s equations (2.83) comprise a part
of the horizontality conditions of the period map, but are not equivalent to it.
Indeed, the complete horizontality conditions are instead captured in terms of the
Q-constraint (2.84). Evaluating this constraint in the Sl(2)-orbit approximation,
one finds that the sl(2) triple must satisfy an additional set of commutation relations
with respect to the boundary charge operator.
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Horizontal sl(2,R)-triple

The sl(2)-triple must satisfy the following commutation relations

[Q∞, N
0] = i

(
N+ +N−) , [Q∞, N

±] = − i2N
0 . (3.89)

Such an sl(2)-triple is said to be horizontal with respect to Q∞. Furthermore,
one readily checks that the commutation relations (3.89) imply that(

N0)† = N0 ,
(
N−)† = N+ . (3.90)

Alternatively, a horizontal sl(2)-triple is also said to be Hodge at F p∞.

Beyond the Sl(2)-orbit approximation

Let us look ahead slightly and briefly discuss a central result of asymptotic Hodge
theory, which will be covered at length in chapter 4. Following the above logic,
there should also exist a map hnil(x, y) which includes the polynomial corrections
that have been neglected in the Sl(2)-orbit approximation, and interpolates between
the boundary Hodge structure and the nilpotent orbit approximation. In other
words, it should satisfy

F pnil = hnil(x, y)F p∞ . (3.91)

The resulting map hnil is then referred to as the nilpotent orbit approximation of
the period map. The main question, then, is whether one can actually compute
hnil(x, y). Strikingly, this can indeed be done in a completely algorithmic way
following the seminal work of Cattani, Kaplan, and Schmid [70]. Describing the
mechanism of this algorithm is the main purpose of chapter 4. However, let us
already state the general form of the result, to give an idea. One finds that hnil

takes the form
hnil(x, y) = exNg(y)y− 1

2N
0
, (3.92)

where g(y) admits an infinite series expansion

g(y) = 1 + g1

y
+ g2

y2 + · · · , (3.93)

which can be calculated explicitly from the data

{Q∞, N
+, N−, N0, δ} , (3.94)
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eiyNF0 F0 δ

eiyN F̂0 F̂0 N•

Q∞ F∞

y→∞

eζe−iδ

y→∞

g(y)

y− 1
2 N0

hnil(y)

eiN

W (N)

W (N)

Figure 3.4: An overview of the various maps and filtrations that have been discussed in
this section. In red the boundary data (3.94) is highlighted.

which will be termed the boundary data. Furthermore, the coefficients gi appearing
in the expansion will satisfy some rather stringent conditions, which play a crucial
role in the finiteness results that will be discussed in chapter 5. Note that indeed in
the limit where y ≫ 1 the leading behaviour of hnil is precisely captured by hSl(2).

Summary: successive approximations

Let us briefly summarize the current state of affairs, see also figure 3.4 for an
overview of the relations between the various spaces we have been considering. We
started off with a completely general one-parameter variation of Hodge structure,
which is parametrized by a Hodge filtration F p(t). From there, we have found that,
for large Im t one can make two successive approximations:

Successive approximations of variations of Hodge structure

• Approximation (1): Nilpotent orbit
In the first approximation, we write

F p(t) ≈ F pnil(t) = etNF p0 = hnil(x, y)F p∞ , (3.95)

in which exponential corrections of the form e−2πy are ignored.
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• Approximation (2): Sl(2)-orbit
In the second approximation, we write

F pnil(t) ≈ F
p
Sl(2)(t) =

[
exNy− 1

2N
0
]
F p∞ = hSl(2)(x, y)F p∞ , (3.96)

in which additionally polynomial corrections of the form 1/y are ignored.
In particular, this is a courser approximation than the nilpotent orbit
approximation.

Note:
The regime in which the nilpotent orbit approximation is a good approxima-
tion, i.e. e−2πy ≪ 1, is referred to as the asymptotic regime.

Similarly, the regime in which the Sl(2)-orbit approximation is a good ap-
proximation, i.e. 1/y ≪ 1, is referred to as the strict asymptotic regime.

3.4.3 Sl(2)-orbit approximation of physical couplings
After this rather long discussion on purely mathematical matters, let us return to
more physical questions. As we will illustrate, the Sl(2)-orbit approximation is an
incredibly useful tool to describe the leading behaviour of physical couplings that
appear in the four-dimensional effective N = 2 compactifications of type IIB, as
well as the scalar potential of four-dimesional effective N = 1 compactifications of
F-theory. Let us explain this in some detail.

Approximating Hodge norms

First, we introduce some additional notation. To each of the Hodge structures F p,
F pnil, F

p
Sl(2) and F∞ we may associate respective Weil operators C, Cnil, CSl(2) and

C∞, which in turn induce various Hodge norms || · ||, || · ||nil, || · ||Sl(2) and || · ||∞.
Then one of the central results of asymptotic Hodge theory is that for any vector
v ∈ HC one has [69,70]

||v||2 ∼ ||v||2Sl(2) . (3.97)

Here the symbol ∼ has a specific meaning, namely that the two norms above are
mutually bounded. Concretely, this means that, in a region where y > γ, there exist
positive constants α, β such that

α||v||2Sl(2) ≤ ||v||
2 ≤ β||v||2Sl(2) . (3.98)
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The constants α, β may depend on γ, but are independent of the choice of v. In
particular, as long as one is concerned with the approximate scaling behaviour of
the full Hodge norm || · ||, one actually infer this from the Sl(2)-orbit approximation.
Importantly, the latter is very straightforward to evaluate. Indeed, one has

||v||2Sl(2) =
(
v, CSl(2)v̄

)
=
(
v,
[
exNy− 1

2N
0
]
C∞

[
exNy− 1

2

]−1
v̄

)
=
([
exNy− 1

2N
0
]−1

v, C∞

[
exNy− 1

2N
0
]−1

v̄

)
=
(
y

1
2N

0
v̂, C∞y

1
2N

0 ¯̂v
)

= ||y 1
2N

0
v̂||2∞

where in the second step we have used the relation (3.79), in the third step we have
used the invariance of the pairing (gv, gw) = (v, w) for g ∈ GR, and in the final step
we have simply employed the definition of || · ||∞. Furthermore, we have introduced
the axion-dependent vector

v̂ := e−xNv . (3.99)

Since the axions are always bounded, they do not play an important role in the
leading order behaviour of the Hodge norm as y →∞, which is what we are con-
sidering at the moment. However, it should be noted that as soon as one includes
higher-order corrections, one should take the axions into account.

As a final step, we employ the decomposition of v̂ into eigenvectors of N0 by writing

v̂ =
∑
ℓ

v̂ℓ , N0v̂ℓ = ℓv̂ℓ . (3.100)

Using the fact that this eigenspace decomposition is orthogonal with respect to the
boundary Hodge norm || · ||∞6, one arrives at the following

6To see this, note that

ℓ′⟨vℓ, v′
ℓ′ ⟩ = ⟨vℓ, N0v′

ℓ′ ⟩ =
〈(

N0
)†

vℓ, v′
ℓ′

〉
= ⟨N0vℓ, v′

ℓ′ ⟩ = ℓ⟨vℓ, v′
ℓ′ ⟩ , (3.101)

so that ℓ = ℓ′. Here we have used the fact that
(

N0
)†

= N0, which follows from the horizontality
conditions (3.89).
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Sl(2)-orbit approximation of the Hodge norm (one-parameter)

||v||2 ∼ ||v||2Sl(2) =
∑
ℓ

yℓ||v̂ℓ||2∞ . (3.102)

The growth theorem is a beautiful example of the importance of the underlying
sl(2)-symmetry of limiting mixed Hodge structures. Simply put, it implies that the
Hodge norm of a vector v grows/shrinks as y → ∞ according to the value of its
weights with respect to the sl(2) grading operator.

Approximating the Kähler potential

As an application of the above results, let us compute the Sl(2)-orbit approximation
of the Kähler potential

Kcs = − log
[
i−D

∫
YD

Ω ∧ Ω̄
]
, (3.103)

where we have generalized the expression (1.68) to Calabi–Yau D-folds, and we recall
that Ω denotes the holomorphic (D, 0)-form. There are two important observations
to make regarding the latter. First, since Ω ∈ HD,0 and thus Ω̄ ∈ H0,D, the Weil
operator acts on the latter as CΩ̄ = i−DΩ̄. Therefore, we can write the Kähler
potential as a Hodge norm

Kcs = − log ||Ω||2 . (3.104)

In order to infer the scaling of ||Ω||2, we need to know more about its maximal
sl(2)-weight. This can be related to the type of limiting mixed Hodge structure as
follows. First, recall that to leading order in 1/y, we may approximate

F p(t) = etN F̂ p0 + · · · , (3.105)

with the dots denoting higher-order terms. Since Ω ∈ HD,0, we have that Ω ∈ FD.
In particular, we may write

Ω = etN â0 + · · · , (3.106)

for some â0 ∈ F̂D0 . Importantly, since F̂D0 is one-dimensional in the Calabi–Yau
setting, we have that ã0 ∈ ÎD,d, for some d = 0, . . . ,D. Recall that the integer d
determines the principal type of the limiting mixed Hodge structure following the
discussion around (3.71). In particular, â0 has sl(2)-weight equal to d. One can
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then make the following computation

y
1
2N

0
Ω̂ = y

1
2N

0
eiyN â0 + · · ·

=
d∑
k=0

(iy)k
k! y

1
2N

0
Nkâ0

=
d∑
k=0

(iy)k
k! y

1
2 (d−2k)Nkâ0

= y
d
2 eiN â0 ,

where in the third step we have used the fact that, since â0 ∈ ID,d, the combination
Nkâ0 has weight d− 2k. As a result, we find

||Ω||2 ∼ ||y 1
2N

0
Ω̂||2∞ ∼ yd ||Ω∞||2∞ , Ω∞ := eiN â0 ∈ FD∞ . (3.107)

To conclude, we find the following result:

Sl(2)-orbit approximation of the Kähler potential (one-parameter)

Kcs ∼ − log
[
yd||Ω∞||2∞

]
∼ −d log y . (3.108)

It is important to stress that the above result is only meaningful when d ̸= 0. In
other words, for a type I1 singularity (recall that we are in the one-parameter
setting, so i2,2 = 1) the Sl(2)-orbit approximation does not suffice to describe the
leading behaviour of the Kähler potential. Instead, it is then necessary to include
corrections coming from the nilpotent orbit expansion of the period map.

If d ̸= 0, we can also infer the approximate form of the Weil–Petersson metric on
the complex structure moduli space from the Kähler potential and find

ds2
WP =

[
d+O(y−1)

] dx2 + dy2

y2 , (3.109)

which, to leading order in y−1, corresponds to the usual Poincaré metric on the
complex upper half-plane.
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3.5 The Sl(2)-orbit theorem (2): multi-variable

In this section we generalize the results of the previous section to an m-parameter
variation of Hodge structure. On the one hand, the general case is considerably more
involved. This can be traced back to the fact that in the presence of multiple moduli
one finds different limiting mixed Hodge structures depending on the hierarchy
between the saxions as one approaches a given boundary in the moduli space. On
the other hand, the actual results follow quite naturally from the one-parameter
case due to a beautiful inductive structure that was discovered by Cattani, Deligne,
and Kaplan in [70]. We hope to illustrate the central ideas behind the construction,
but defer the reader to the original paper for some of the more delicate details.

3.5.1 A web of limiting mixed Hodge structures

Let us consider an m-parameter variation of polarized Hodge structure F p, which
can be approximately described, in the regime where y1, . . . , ym ≫ 1, by a nilpotent
orbit

F p ≈ F pnil = exp
[
i

m∑
i=1

yiNi

]
F p(m) , (3.110)

for some limiting filtration F p(m). For simplicity we have set all the axions xi = 0,
as they can always be recovered using the monodromy factor. For a first reading,
the reader may find it helpful to set m = 2 in the discussion below and follow along
with the various steps of the construction using figure 3.5.

As a first thought, one might try to associate some limiting mixed Hodge structure
to the limit where one of the saxions, say y1, approaches the boundary. However,
it is not at all obvious this might be done. Instead, it is more natural to choose
a clever parametrization such that we can view the m-parameter nilpotent orbit
(3.110) as an effective one-parameter nilpotent orbit, such that we can apply the
results of the previous section. The way to do this is to perform the following clever
rewriting

exp
[
i

m∑
i=1

yiNi

]
F p(m) = exp

[
iym

(
m−1∑
i=1

yi
ym

Ni +Nm

)]
F p(m) . (3.111)

Indeed, for fixed values of the ratios y1
ym
, . . . , ym−1

ym
the right-hand side can be viewed
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as a one-parameter nilpotent orbit, in which

y = ym , N =
m−1∑
i=1

yi
ym

Ni +Nm , F p0 = F p(m) , (3.112)

following the notation in the previous section. Importantly, we thus find a limiting
mixed Hodge structure associated to the limit ym → ∞. Following the logic
described in the one-parameter case, the corresponding weight filtration would be
given by

W

(
m−1∑
i=1

yi
ym

Ni +Nm

)
. (3.113)

The fact that the ratios y1
ym
, . . . , ym−1

ym
appear in the weight filtration may seem

problematic. Fortunately, weight filtrations associated to sums of nilpotent endo-
morphisms have a very useful property which takes care of this. Namely, it turns
out that

W (λ1N1 + · · ·+ λiNi) = W (N1 + · · ·+Ni) , (3.114)

for any 1 ≤ i ≤ m, as long as the coefficients λi are all strictly positive, so λi > 0
for all i, see Theorem 3.3 of [104]. Introducing the short-hand

N(i) := N1 + · · ·+Ni , (3.115)

and noting that all the ratios y1
ym
, . . . , ym−1

ym
are indeed positive, we thus conclude

the following.

Limiting mixed Hodge structure associated to ym → ∞

The pair (W (N(m)), F(m)) forms a limiting mixed Hodge structure associated
to the limit ym →∞.

Note:
We will typically denote the monodromy weight filtration W (N(m)) as W (m).

More informally, one sees that actually the limit we are considering corresponds
to sending y1, . . . , ym → ∞. In other words, the limiting mixed Hodge structure
(W (m), F(m)) captures the behaviour of the variation of Hodge structure at the
intersection of the singular divisors z1 = . . . = zm = 0.
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3.5 The Sl(2)-orbit theorem (2): multi-variable

Continuing as in the one-parameter case, we may equivalently describe the limiting
mixed Hodge structure (W (m), F(m)) using the associated Deligne splitting Ip,q(m),
which we may as usual rotate to the sl(2)-split version via the relation

F̂ p(m) := eζme−iδmF p(m) , (3.116)

using the corresponding phase operator δm and the induced operator ζm. Again,
we may construct the sl(2)-grading operator associated to the sl(2)-split Deligne
splitting Îp,q(m) via

N0
(m)v = (p+ q −D)v , v ∈ Îp,q(m) . (3.117)

Then by exactly the same logic as in the one-parameter case, one can construct a
one-parameter nilpotent orbit whose limiting mixed Hodge structure is exactly the
rotated filtration F̂ p(m).

A first approximation at ym ≫ 1

For ym > 0 and fixed values of y1
ym
, . . . , y1

ym
> 0, the filtration

exp
[
i

(
m∑
i=1

yiNi

)]
F̂ p(m) = exp

[
iym

(
m−1∑
i=1

yi
ym

Ni +Nm

)]
F̂ p(m) ,

defines a one-parameter nilpotent orbit (in particular, it defines a variation of
polarized Hodge structure). Furthermore, it agrees with the original nilpotent
orbit F pnil to first order in the regime ym ≫ 1, so that

F pnil = gm(ym) exp
[
i

(
m∑
i=1

yiNi

)]
F̂ p(m) , (3.118)

where gm(ym) enjoys an expansion

gm(ym) = 1 + gm,1
ym

+ · · · . (3.119)

As in the one-parameter case, the rotated filtration F̂ p(m) satisfies the following
crucial identity

exp
[
i

(
m∑
i=1

yiNi

)]
F̂ p(m) = y

− 1
2N

0
(m)

m exp
[
i

(
m−1∑
i=1

yi
ym

Ni

)]
F p(m−1) , (3.120)

where on the right-hand side we have introduced the filtration

F p(m−1) = eiNm F̂ p(m) . (3.121)
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To make the comparison absolutely clear, note that this is completely identical to
the discussion in the one-parameter case, where now the “boundary Hodge structure”
is given by

“F p∞” = exp
[
i

(
m−1∑
i=1

yi
ym

Ni

)]
F p(m−1) . (3.122)

The important difference from the one-parameter case is that in the multi-parameter
case this “boundary Hodge structure”, instead of being a fixed Hodge structure,
now corresponds to an (m − 1)-parameter nilpotent orbit, since it still depends
on the ratios y1

ym
, . . . , ym−1

ym
! As the reader may already anticipate, this is rather

indicative of an inductive procedure. We return to this point in a moment.

Inserting the identity (3.120) into (3.118), we can thus rewrite the original nilpotent
orbit as

exp
[
i

m∑
i=1

yiNi

]
F p(m) = hnil,m(ym) exp

[
i

(
m−1∑
i=1

yi
ym

Ni

)]
F p(m−1) , (3.123)

where hnil,m is exactly the nilpotent orbit approximation of the period map which
interpolates between “boundary Hodge structure” (3.122) and the original nilpotent
orbit. In particular, following the discussion in the one-parameter case, it enjoys an
expansion of the form

hm(ym) = gm(ym)y− 1
2N

0
(m)

m =
(

1 + gm,1
ym

+ · · ·
)
y

− 1
2N

0
(m)

m , (3.124)

which, to leading order in 1/ym, can be approximated by the Sl(2)-orbit y− 1
2N

0
(m)

m .

Let us pause to reflect on what we have just accomplished, as it is the central
point of the multi-parameter discussion. First, we started off with an m-parameter
nilpotent orbit as given in (3.110) and found a clever way to extract a limiting mixed
Hodge structure from the limit ym →∞. Then, using the general properties of this
limiting mixed Hodge structure, which we discussed at length in the one-parameter
version, we arrived at the expression (3.123). Rather strikingly, the right-hand side
of this expression takes the form of an (m− 1)-parameter nilpotent orbit, namely

exp
[
i

(
m−1∑
i=1

yi
ym

Ni

)]
F p(m−1) , (3.125)

up to the additional factor of hm(ym). This suggests an iterative process in which
we inductively apply the above procedure to obtain additional limiting mixed Hodge
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e
iy2
(

y1
y2
N1+N2

)
F p(2) F p(2)

e
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)
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eζ2e−iδ2

y2→∞ ,
y1
y2

fixed

e
i( y1

y2
N1+N2)

g2
(
y2; y1

y2

)
h2
(
y2; y1

y2

)
y

− 1
2 N0

(2)
2

Figure 3.5: A flowchart depicting the first step of the inductive procedure in the case where
m = 2.

structures. In figure 3.5 we give an overview of the relations between the various
spaces in this first part of the inductive procedure.

More limiting mixed Hodge structures

Let us briefly describe the next step in the inductive analysis, so that the general
pattern will become clear. We perform a similar trick as before, now applied to the
(m− 1)-parameter nilpotent orbit, by writing

exp
[
i

(
m−1∑
i=1

yi
ym

Ni

)]
F p(m−1) = exp

[
i
ym−1

ym

(
m−2∑
i=1

yi
ym−1

Ni +Nm−1

)]
F p(m−1) .

(3.126)
For a fixed value of the ratios y1

ym−1
, . . . , ym−2

ym−1
, the right-hand side can again be

interpreted as a one-parameter nilpotent orbit, in which

y = ym−1

ym
, N =

m−2∑
i=1

yi
ym−1

+Nm−1 , F p0 = F p(m−1) . (3.127)

Repeating the above analysis, this gives rise to a limiting mixed Hodge structure
(W (m−1), F(m−1)) associated to the limit where ym−1

ym
→ ∞. Note, in particular,

that this means we are considering a limit within the regime where ym−1 ≫ ym.
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3 Asymptotic Hodge Theory I: Bulk to Boundary

Intuitively, one can think of this limiting mixed Hodge structure as being associated
to the intersection of the divisors z1 = . . . = zm−1 = 0.

At this point, the general pattern should be quite apparent, and thus we summarize
below the general result.

Multiple limiting mixed Hodge structures

Consider an m-parameter nilpotent orbit

F pnil(t) = exp
[
m∑
i=1

tiNi

]
F p(m) . (3.128)

Then one can inductively associate to this nilpotent orbit a collection of limit-
ing mixed Hodge structures (W (k), F(k)), for k = m, . . . , 1, each corresponding
to the limit where

yk
yk+1

→∞ , ym+1 := 1 .

At each step, the weight filtration is given by

W (k) = W (N(k)) = W (N1 + · · ·+Nk) , (3.129)

and the limiting filtration is inductively defined by

F p(k−1) = eiNk F̂ p(k) , F̂ p(k) = eζke−iδkF p(k) . (3.130)

Note:
In the final step k = 1, one arrives at the filtration

F p∞ := F p(0) , (3.131)

which is in fact a Hodge filtration, as in the one-parameter case. The resulting
Hodge structure is again referred to as the boundary Hodge structure.

Growth sectors, enhancement chains and even more limiting mixed Hodge
structures

It is important to stress that, in the preceding inductive procedure, we have made
a particular choice in the ordering of the coordinates. For example, in the very
first step of the argument, we first chose to view the m-parameter nilpotent orbit
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as a one-parameter nilpotent orbit in the variable ym, while keeping the ratios
y1
ym
, . . . , ym−1

ym
fixed. In the next step, we chose to view the (m − 1)-parameter

nilpotent orbit as a one-parameter nilpotent orbit in the variable ym−1, and so on.
Because of this, the resulting expansions for the period maps hnil,i become power
series in inverse powers of yi

yi+1
, which will only be sensible in the region where

yi

yi+1
> 1. To formalize this, we introduce the notion of a growth sector

R12···m =
{
ti = xi + iyi | ym,

ym−1

ym
, . . . ,

y1

y2
> 1 , |xi| < 1

}
. (3.132)

Note that this is the same as working in a regime where y1 > y2 > . . . > ym.
If one additionally chooses to work within the courser Sl(2)-orbit approximation
by dropping all sub-leading polynomial corrections, one can only expect this to
be a good approximation for yi

yi+1
≫ 1, and hence one may need to work with a

refinement of the growth sector.

As a result of the above discussion, the recursive construction gives rise to a so-called
enhancement chain of limiting mixed Hodge structures within each growth sector,
which is typically denoted by a sequence

Type A1
y1→∞−−−−→ · · · y

m→∞−−−−−→ Type A(m) , (3.133)

where the type A(i) singularity denotes the limiting mixed Hodge structure associ-
ated to the limit where y1, . . . , yi →∞ within the hierarchy y1 > . . . > yi. It turns
out that there are a number of restrictions on the allowed enhancement chains,
whose origin can be roughly understood as follows. On the one hand, one can
associate a limiting mixed Hodge structure Ip,q(2) to the limit y1, y2 →∞ as we have
described above. On the other hand, one can also view the enhancement of a type
A(1) singularity to a type A(2) singularity in terms of the primitive subspaces of Ip,q(1) .
Each of these defines a Hodge structure which itself degenerates in the limit y2 →∞,
thus giving rise to a bunch of smaller limiting mixed Hodge structures. It is then a
non-trivial consistency condition that these smaller limiting mixed Hodge structures
(together with their descendants) can be combined into Ip,q(2) . This may not always
be possible, essentially due to non-trivial constraints coming from the polarization
conditions. An example of the kind of restriction one finds on the enhancement
chain is that the singularity type can never decrease across the chain, so that a type
II singularity can never enhance to a type I singularity. Effectively, this is saying
that the singularity can only become “worse” across the chain. Interestingly, it turns
out that the enhancement rules are not transitive. For example, while the enhance-
ment II0 → II1 → IV2 is allowed, the enhancement II0 → IV2 is not [105]. For a
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z1 = 0

z2 = 0

∆1

∆2

∆12
T1

Figure 3.6: A local patch in Mcs containing two divisors ∆1 and ∆2 which intersect at a
point ∆12. In red, a monodromy transformation T1 around ∆1 is depicted.

more detailed discussion on the various rules, we refer the reader to [85], see also [77].

An important takeaway of the above discussion is that one can also choose to work in
different growth sectors, which amounts to performing the same inductive argument
as we gave before, but with a different ordering of the coordinates. Crucially, this
is necessary if one wants to understand the complete singularity structure. As a
simple example, if one considers a 2-parameter variation of Hodge structure and
takes the two possible orderings of the coordinates into account, this gives rise to
three limiting mixed Hodge structures, corresponding to the two divisors z1 = 0
and z2 = 0, and their intersection z1 = z2 = 0, see also figure 3.6 for a pictorial
description. The resulting set of limiting mixed Hodge structures is typically written
as a so-called 2-cube ⟨A1|A(2)|A2⟩. Alternatively, one could also describe this in
terms of two different enhancement chains, namely

Type I0
y1→∞−−−−→ Type A1

y2→∞−−−−→ Type A(2) , (3.134)

or
Type I0

y2→∞−−−−→ Type A2
y1→∞−−−−→ Type A(2) . (3.135)
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3.5.2 The Sl(2)-orbit approximation
By inductive application of the relation (3.123), we find that the original nilpotent
orbit can be written succinctly as

F pnil = hnil(y1, . . . , ym)F p∞ , (3.136)

where

hnil =
1∏

i=m
hnil,i =

1∏
i=m

gnil,i ·
(

yi
yi+1

)− 1
2N

0
(i)

, (3.137)

and each individual gnil,i enjoys an expansion

gi = 1 + gi,1

(
yi
yi+1

)−1
+ · · · =

∞∑
ki=0

gi,ki

(
yi
yi+1

)−ki

. (3.138)

In other words, we have managed to show that the full nilpotent orbit can be
recovered from the boundary Hodge structure F p∞ through a recursive application
of maps hnil,i, which can be computed explicitly (as will be explained in the next
chapter). Furthermore, in a regime where all the ratios satisfy yi

yi+1
≫ 1, one may

neglect the subleading corrections in the hnil,i, which gives rise to the Sl(2)-orbit
approximation in the m-parameter case.

Sl(2)-orbit approximation (multi-variable case)

To leading order in the inverse ratios
(

yi

yi+1

)−1
, the Sl(2)-orbit approximation

F pSl(2) :=
[
m∏
i=1

(
yi
yi+1

)− 1
2N

0
(i)
]
F p∞ , (3.139)

agrees with the original nilpotent orbit F pnil. Note that we have set the axions
xi = 0 for simplicity.

Correspondingly, we will denote by

hSl(2) :=
m∏
i=1

(
yi
yi+1

)− 1
2N

0
(i)

, (3.140)

the Sl(2)-orbit approximation of the period map, such that

F pSl(2) = hSl(2) F
p
∞ . (3.141)
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3.5.3 Commuting sl(2)-triples and the boundary data
Commuting sl(2)-triples

So far we have mostly been concerned with the grading operators N0
(i) that can be

associated to the limiting mixed Hodge structures (W (i), F̂(i)). From the general
discussion in section 3.3, we know, however, that these grading operators, together
with the relevant nilpotent endomorphism, can be completed into real sl(2)-triples.
Let us now discuss in more detail how this happens in the m-parameter case.

To simplify the notation, let us first consider the case where m = 2, corresponding
to the 2-parameter case. For concreteness, let us recall that the complete nilpotent
orbit can be written as

F pnil = hnil,2 · hnil,1F
p
∞ . (3.142)

Let us now first consider the limiting mixed Hodge structure (W (1), F̂(1)), for which
the nilpotent endomorphism is simply the first log-monodromy matrix

N = N1 . (3.143)

Naturally, together with the grading operator N0
(1), this can be completed to a real

sl(2)-triple
{N+

(1), N
0
(1), N

−
(1)} , N−

(1) := N1 . (3.144)

Furthermore, the resulting sl(2)-triple is horizontal with respect to the boundary
Hodge structure F p∞. This is exactly as in the one-parameter case. Things are
slightly different, however, when considering the limiting mixed Hodge structure
(W (2), F̂(2)), for which the nilpotent endomorphism is given by

N = y1

y2
N1 +N2 . (3.145)

It is certainly true that this operator acts as a lowering operator with respect
to N0

(2), and in principle this can be completed uniquely with a raising operator.
However, the resulting sl(2)-triple would be horizontal with respect to the Hodge
structure

hnil,1F
p
∞ , (3.146)

as opposed to F p∞. This is precisely because the above Hodge structure is what plays
the role of the “boundary Hodge structure” in this step of the recursive argument,
as explained earlier. In order to construct a sl(2)-triple which is horizontal with
respect to F p∞, one just needs to “transport” the triple induced by the lowering
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operator (3.145) using the (inverse) adjoint action of hnil,1. In other words, one
should instead consider

h−1
nil,1

(
y1

y2
N1 +N2

)
hnil,1 , and h−1

nil,1N
0
(2)hnil,1 . (3.147)

Fortunately, one can actually compute what these objects should be, using the
horizontality properties of the period map hnil,1. The computation is rather involved
and is presented in Lemma 4.37 of [70]. Here we simply state the result:

h−1
nil,1

(
y1

y2
N1 +N2

)
hnil,1 = N1 + (N2)0 , (3.148)

h−1
nil,1N

0
(2)hnil,1 = N0

(2) (3.149)

where (N2)0 is the component of N2 that commutes with the grading operator N0
(1).

In particular, note that N0
(2) commutes with hnil,1, so that it is unchanged under

this “transportation”. In summary, we arrive at the following result.

Horizontal sl(2)-triples (m = 2)

The operators

N0
(2) , and N−

(2) := N1 + (N2)0 ,

can be completed into a real sl(2)-triple, which is furthermore horizontal
with respect to the boundary Hodge structure F p∞. In particular, the raising
operator can either be computed by solving the sl(2) commutation relations,
or it can alternatively be computed via the relation

N+
(2) =

(
N−

(2)

)†
, (3.150)

where the dagger is taken with respect to the boundary Hodge inner product
⟨·, ·⟩∞, c.f. (2.39).

Together with the triple (3.144) associated to the first limiting mixed Hodge
structure, we thus find two separate real sl(2)-triples which are both horizontal
with respect to the boundary Hodge structure. Having illustrated the logic in the
two-parameter case, let us simply state how this generalizes to the m-parameter
case.
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Commuting horizontal sl(2)-triples

For each i = 1, . . . ,m, define

• Lowering operators:

N−
(i) := N1 + (N2)0 + · · ·+ (Ni)0 , (3.151)

where (Ni)0 is the component of Ni that commutes with the first (i− 1)
grading operators N0

(1), . . . , N
0
(i−1).

• Raising operators:
N+

(i) :=
(
N−

(i)

)†
, (3.152)

where again the dagger is taken with respect to the boundary Hodge
inner product.

Then N−
(i) agrees with the “transportation” of the relevant nilpotent endor-

morphism to F p∞, i.e.

Ad [hnil,i−1 · · ·hnil,1]−1

(
i∑

k=1

yk
yi
Nk

)
= N−

(i) , (3.153)

and furthermore the triples

{N+
(i), N

0
(i), N

−
(i)} , (3.154)

all define real sl(2)-triples, which are horizontal with respect to the boundary
Hodge structure F p∞.

Furthermore, putting

N•
i := N•

(i) −N
•
(i−1) , • = +, 0,− , (3.155)

the triples
{N+

i , N
0
i , N

−
i } , (3.156)

form a set of commuting sl(2)-triples, which are again horizontal with respect
to the boundary Hodge structure F p∞.

136



3.5 The Sl(2)-orbit theorem (2): multi-variable

Boundary data

Over the course of this section, we have encountered a number of objects which
are naturally associated to a given boundary of the moduli space (within a chosen
growth sector). As in the one-parameter case, we will refer to these objects as
the boundary data. As will be explained in chapter 4, this data in fact suffices to
recover the full nilpotent orbit approximation near the boundary in question. This
equivalence between nilpotent orbits and their associated boundary structure is
the most striking consequence of the Sl(2)-orbit theorem of Cattani, Kaplan, and
Schmid. Thus, in preparation for the next chapter, let us briefly summarize the
essential properties of the boundary data.

Boundary data

• Boundary charge operator: Q∞

The eigenspace decomposition of the boundary charge operator encodes
the boundary Hodge structure F p∞ in terms of which the Sl(2)-orbit
approximation F pSl(2) and nilpotent orbit approximation F pnil can be
reconstructed.

• Commuting horizontal real sl(2)-triples: {N+
i , N0

i , N−
i }

For i, j = 1, . . . ,m these real sl(2)-triples satisfy the commutation
relations

[N0
i , N

±
j ] = ±2N±

i δij , [N+
i , N

−
j ] = N0δij , (3.157)

as well as the horizontality conditions

[Q∞, N
±
j ] = − i2N

0
j , [Q∞, N

0
j ] = i

(
N+
j +N−

j

)
. (3.158)

• Phase operators: δi

The phase operators encode how the various limiting mixed Hodge
structures (W (i), F(i)) are rotated into their R-split and sl(2)-split coun-
terparts. As will be explained in chapter 4, they effectively encode the
corrections to the Sl(2)-orbit approximation which are required in order
to recover the full nilpotent orbit approximation.
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3.5.4 Sl(2)-orbit approximation of physical couplings

In this section we perform a similar analysis to the one in section 3.4.3, and compute
the Sl(2)-orbit approximation of the Hodge norm and the Kähler potential, but
now in the general m-parameter case.

Approximating the Hodge norm

As in the one-parameter case, the full Hodge norm and the Sl(2) Hodge norm are
mutually bounded [69,70]

||v||2 ∼ ||v||2Sl(2) , (3.159)

within the chosen growth sector. To compute the Sl(2)-approximation of the Hodge
norm, we perform a similar computation as in the one-variable case by writing

||v||2Sl(2) =
(
v, CSl(2)v̄

)
(a)=
(
v, hSl(2)C∞h

−1
Sl(2)v̄

)
(b)=
(
h−1

Sl(2)v, C∞h
−1
Sl(2)v̄

)
(c)= ||h−1

Sl(2)v||
2
∞

where step (a) we have used the definition of CSl(2), in the step (b) we have used
the invariance of the pairing (gv, gw) = (v, w) for g ∈ GR, and in the step (c) we
have simply employed the definition of || · ||∞. Next, we perform the decomposition
of a given vector v in terms of eigenvectors with respect to the commuting grading
operators N0

(i), i.e.

v =
∑
ℓ

vℓ , ℓ = (ℓ1, . . . , ℓm) , [N0
(i), vℓ] = ℓi vℓ . (3.160)

Recalling the general form of the Sl(2)-orbit approximation of the period map
(3.140) and reintroducing the axion-dependence, one finds

h−1
Sl(2)vℓ =

[
m∏
i=1

(
yi
yi+1

) 1
2 ℓi
]
v̂ℓ , v̂ := exp

[
−

m∑
i=1

xiNi

]
· v , (3.161)

Finally, using the fact that the eigenspace decomposition is orthogonal with respect
to the boundary Hodge norm || · ||∞, one arrives at the following result.
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Sl(2)-orbit approximation of the Hodge norm (m-parameter)

||v||2 ∼ ||v||2Sl(2) =
∑
ℓ

[
m∏
i=1

(
yi
yi+1

)ℓi
]
||v̂ℓ||2∞ . (3.162)

Again, we see that the underlying sl(2)-symmetry of limiting mixed Hodge structures
is crucial in determining the asymptotic behaviour of the Hodge norm. There is,
however, an important aspect of the general m-parameter case which did not play a
role in the one-parameter case. Namely, it is not at all obvious from (3.162) which
component vℓ actually determines the leading growth of the Hodge norm. This is
because, even though one might be working within a growth sector where y1 > y2

(putting m = 2 for the moment), it is not necessarily the case that also y1
y2
> y2,

for example. Hence it is not clear whether the component v(1,0) or the component
v(0,1) determines the leading growth. This will depend on the particular subregion
of the growth sector one is considering. This subtlety will play an important role in
chapter 5.

Approximating the Kähler potential

Recall that for Calabi–Yau D-folds the Kähler potential can be written as

e−Kcs
= ||Ω||2 ∼ ||Ω||2Sl(2) = ||h−1

Sl(2)Ω||
2
∞ . (3.163)

To compute the right-hand side, we recall that within the Sl(2)-orbit approximation
one can write

Ω = exp
[
m∑
i=1

xiNi

]
· exp

[
i

m∑
i=1

yiN−
i

]
â0 + · · · , (3.164)

for some â0 ∈ F̂(m), with the dots denoting subleading corrections. Recall that
the position of â0 along the various Deligne splittings Îp,q(i) dictates the principal
types the limiting mixed Hodge structures appearing in the enhancement chain.
To be explicit, we denote by di the highest weight of â0 with respect to N0

(i), or
equivalently di − di−1 denotes the highest weight with respect to N0

i , where d0 ≡ 0.
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Then one can do the following computation.

h−1
Sl(2)Ω = h−1

Sl(2)exp
[
m∑
i=1

xiNi

]
· exp

[
i

m∑
i=1

yiN−
i

]
F̂(m) + · · · ,

=
m∏
i=1

y
1
2N

0
i

i

∞∑
k=0

(iyi)k
k!

(
N−
i

)k
â0

(a)=
m∏
i=1

y
1
2 (di−di−1)
i

∞∑
k=0

(i)k
k!
(
N−
i

)k
â0

=
[
m∏
i=1

y
1
2 (di−di−1)
i

]
ei(N

−
1 +···+N−

m)â0

(b)=
[
m∏
i=1

y
1
2 (di−di−1)
i

]
Ω∞ ,

where in the step (a) we have used the fact that
(
N−
i

)k
â0 has highest weight

di − di−1 − 2k with respect to N0
i and in step (b) we have used the relation

e
iN−

(m) F̂(m) = F∞ . (3.165)

As a result, we find the following.

Sl(2)-orbit approximation of the Kähler potential (m-parameter)

Kcs
Sl(2) = − log

[(
y1

y2

)d1

· · ·
(
ym−1

ym

)dm−1

ydm
m ||Ω∞||2∞

]
, (3.166)

= −
m∑
i=1

(di − di−1) log yi + constant . (3.167)

As in the one-parameter case, it is important to stress that the above result only
gives rise to a well-defined positive-definite metric if (di − di−1) is never equal
to zero. This means that the singularity type must strictly increase along the
enhancement chain. Clearly, as soon as one is considering a limit which involves
more than D + 1 moduli, this requirement cannot be satisfied, since there are at
most D + 1 singularity types for a Calabi–Yau D-fold. In other words, in many
cases the approximation (3.166) does not suffice to properly describe the leading
behaviour of the Kähler potential, and hence one is forced to include corrections
coming from the more general nilpotent orbit expansion of the period map.
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Appendices

3.A On the proof of the nilpotent orbit theorem
In this section we discuss some aspects of the proof of the nilpotent orbit theorem,
following the original work of Schmid [69]. Most notably, our goal is to give an idea
of the important steps involved in showing the quasi-unipotency of the monodromy
operators, and how properties such as the horizontality of the period map play a
central role in this regard. To this end, let us briefly recall the characterization of a
one-parameter variation of Hodge structure on a punctured disk through the period
map

Φ : ∆∗ → Γ\D , (3.168)
with D = GR/V the period domain, see also the discussion in section 2.3.

Uniform boundedness

The first step of the proof involves translating the horizontality property of the
period map Φ into a certain distance-decreasing property. This relies on the
following result.

Lemma 3.16 of [69]

There exists a GR-invariant Hermitian metric on D whose holomorphic sec-
tional curvatures in the directions of the horizontal tangent bundle on D are
negative and bounded away from zero.

Informally, this lemma states that the period domain D is a hyperbolic manifold (i.e.
having strictly negative curvature) but only in the horizontal directions. However,
the period map is itself a horizontal map, meaning that its differential maps exactly
into the horizontal tangent bundle. Thus, for all matters pertaining to the period
mapping, one can think of D as being a hyperbolic manifold.

This observation allows one to use some results in hyperbolic complex analysis, which
is the study of holomorphic mappings into negatively curved complex manifolds.
Let f : ∆→M be such a mapping, then f satisfies two very useful properties [106].

• Property (1):
f∗(ds2

M ) defines a (pseudo)-distance

f∗(ds2
M ) = h(z, z̄) dz dz̄ . (3.169)
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3 Asymptotic Hodge Theory I: Bulk to Boundary

on ∆ with (after suitable normalization) curvature

K(h) = − 1
2h∂∂̄ log h ≤ −1 . (3.170)

• Property (2): (Ahlfors’ lemma)
The function h(z, z̄) satisfies

h(z, z̄) ≤ 1
(1− |z|2)2 , (3.171)

i.e. it is bounded by the Poincaré metric on the unit disk.

The first property simply states that the pull-back of a negatively curved metric by
a holomorphic map gives again a negatively curved metric. The second statement
furthermore bounds the latter in terms of the Poincaré metric.

Applied to the (lifting of the) period mapping, combined with Lemma 3.16 of [69]
stated above, this yields the following corollary.

Corollary 3.17 of [69]

The (lifting of the) period map

Φ̃ : H→ D ,

which maps the upper half-plane into D, is uniformly bounded with respect
to the Poincaré metric on H and any GR-invariant Hermitian metric on D.

After a suitable normalization, uniform boundedness simply means that Φ̃ is
distance-decreasing, i.e.

d(Φ̃(t1), Φ̃(t2)) ≤ dPoincare(t1, t2) , (3.172)

for any GR-invariant metric d on D. This property of the period map is absolutely
central to the proof of the nilpotent orbit theorem. Note that it relies on both the
holomorphicity and horizontality of the period map.

Quasi-unipotent monodromy

As a first application of the uniform boundedness of the period map, we show how it
is used to prove the fact that the local monodromy is quasi-unipotent. Let γ ∈ GZ

be such that
Φ̃(t+ 1) = γ ◦ Φ̃(t) , (3.173)
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then we aim to show that the eigenvalues of γ are roots of unity. We follow the
proof of Lemma 4.5 in [69], which is originally due to Borel.

First, we consider the following sequence of points

tn = n · i , n ∈ N , (3.174)

which progressively moves upwards in the complex upper half-plane. With respect
to the Poincaré metric, the distance between the points tn and tn + 1 is given by7

dPoincare(tn, tn + 1) = 1
n
. (3.176)

On the other hand, letting gn ∈ GR such that Φ̃(tn) ∈ D ∼= GR/V corresponds to
the coset gnV , we have

d(Φ̃(tn), Φ̃(tn + 1)) (3.173)= d(Φ̃(tn), γ ◦ Φ̃(tn)) GR-invariance= d
(
eV, g−1

n γgnV
)
,

Then, by virtue of the uniform boundedness property (3.172), we find

d
(
eV, g−1

n γgnV
)
≤ 1
n
. (3.177)

This implies that the sequence g−1
n γgn accumulates in V , as n → ∞. Since V is

compact, this implies that the eigenvalues of λ have modulus one.

To conclude that the eigenvalues are in fact roots of unity, we apply the following
argument due to Kronecker. Since γ ∈ GZ, clearly also γm ∈ GZ for any positive
integer m ∈ N. Denote the eigenvalues of γ by λ1, . . . , λr, all of which have modulus
one by the preceding argument, such that the characteristic polynomial of γm reads

pm(x) = (x− λm1 ) · · · (x− λmr ) . (3.178)

Since γm ∈ GZ, each pm is in fact a monic polynomial with integer coefficients.
Furthermore, the coefficient of xk in pm is bounded by

(
r
k

)
, since |λmi | = 1. Note that

this bound is independent of m. In particular, in the infinite sequence of polynomials
{pm} only contains finitely many different polynomials. This means that there
7Recall that on the upper half-plane, we have

ds2
Poincare =

dx2 + dy2

y2 , t = x + iy . (3.175)
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3 Asymptotic Hodge Theory I: Bulk to Boundary

exist integers k, l such that pk = pl, for which the lists of roots {λk1 , . . . , λkr} and
{λl1, . . . , λlr} must be related by a permutation. By iterating this process, this
permutation must eventually be the trivial permutation8, so that

λsi = 1 , (3.180)

for some integer s. This proves that all λi are roots of unity, hence γ is quasi-
unipotent.

Rest of the proof

While we will not explain the remaining steps in the proof of the nilpotent orbit
theorem in detail, let us briefly describe how the quasi-unipotency of the monodromy
together with the uniform boundedness property of the period map play a central
role. To this end, let us write

Φ̃(t) = etN Ψ̃(t) , (3.181)

where we have factored out the monodromy operator, which can be taken to be
unipotent. The goal, then, is to show that

hM

(
Ψ̃∗

(
∂

∂t

)
, Ψ̃∗

(
∂

∂t

))1/2
≤ Ce−ϵ Im t , (3.182)

for some suitably defined metric hM and constants C, ϵ, see [69, (8.22)]. If this is
achieved, then it follows that Ψ̃ is regular as Im t→∞ and thus drops to a map
Ψ that extends over the puncture of the disk at z = 0. Furthermore, thanks to
the exponential suppression one then finds that the distance between the original
period map and the nilpotent orbit e log z

2πi NΨ(0) is exponentially small.

In order to achieve the bound (3.182), one first writes

Ψ̃∗

(
∂

∂t

)
= l
(
e−tN)

∗

(
Φ̃
(
∂

∂t

)
−N

(
Φ̃(t)

))
, (3.183)

where l denotes left-multiplication. The intuition, then, is that the first term on the
right-hand side of (3.183) is bounded by a polynomial in t due to the nilpotency
of N , while it turns out that the second term can be argued to be exponentially
small thanks to the uniform boundedness of Φ̃ and the general properties of certain
periodic holomorphic functions that are bounded on a strip [69, Lemma (8.17)].
8One way to see this is to write

λk1
i1

= λk2
i2

= λk3
i3

= · · · . (3.179)
Since there are only finitely many possible lower indices is, it must be that at some point
λk1

i1
= λks

i1
.
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3.B Examples: one-parameter families of Calabi–Yau
threefolds

In this section we exemplify some of the abstract constructions appearing in the
study of mixed Hodge structures. A natural class of examples to consider are those
limiting mixed Hodge structures that arise in one-parameter families of Calabi–Yau
threefolds, having Hodge numbers h3,0 = h2,1 = 1. In this case, we would have

dimRHR = 4 , D = 3 , GR = Sp(4,R) , (3.184)

In other words, we will be considering polarized mixed Hodge structures of weight
three on a four-dimensional vector space. Using the fact that h3,0 = h2,1 = 1,
together with the various relations (3.56) and (3.69), one quickly finds that there
are only three possible non-trivial Hodge–Deligne diamonds, which are depicted in
figure 3.7. In principle, there is a fourth possibility, corresponding to the type I0

singularity, which will have trivial unipotent monodromy, so that N = 0. For our
purposes, this is not an interesting case to consider. Below we discuss the three
non-trivial cases in some detail. For each of the examples, we describe the most
general R-split mixed Hodge structure, and its associated sl(2,R)-triple. We also
write down the most general phase operator. Importantly, we will see that these
three cases exactly cover the three types of asymptotic behaviours for the periods
of the mirror bicubic, which was discussed in section 3.2.1. Our discussion largely
follows [101] and also uses the same conventions. Further computational details
can be found there.

(a) Type I1. (b) Type II0. (c) Type IV1.

Figure 3.7: The three non-trivial weight D = 3 limiting mixed Hodge structures with
h3,0 = h2,1 = 1. Here all dots represent one-dimensional vector spaces.
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3.B.1 Type I1

Geometrically, the type I1 singularity will correspond to a type of conifold singularity,
in which a three-cycle shrinks to zero size. One can represent the three-cycle as a
three-sphere S3 that is quotiented by a finite discrete group of order k.

Monodromy weight basis, pairing and log-monodromy

Without loss of generality, we choose to work in a basis in which

e4 ∈W2 , e3, e2 ∈W3 , e1 ∈W4 , (3.185)

where ei denotes the standard i-th unit basis vector. With respect to this basis,
one finds the following:

• The polarization form can be chosen to be represented by the matrix

S =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (3.186)

such that ⟨e1, e4⟩ = ⟨e2, e3⟩ = 1, with all other pairings vanishing.

• The most general log-monodromy matrix that preserves the above pairing, sat-
isfies the polarization conditions and additionally acts on the weight filtration
as NWℓ ⊂Wℓ−2 is given by

N =


0 0 0 0
0 0 0 0
0 0 0 0
−k 0 0 0

 , (3.187)

with k ∈ N strictly positive. It turns out that k corresponds precisely to the
order of the discrete group that quotients the S3, as mentioned earlier.

R-split MHS

After imposing the transversality constraints (3.55) and possibly performing a
coordinate shift, the most general R-split type I1 mixed Hodge structure is given by

Ĩ2,2 = span [(1, γ, δ, 0)] ,

Ĩ3,0 = span [(0, 1, τ, δ − γτ)] , Ĩ0,3 = Ĩ3,0 , (3.188)
Ĩ1,1 = span [(0, 0, 0, 1)] ,
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for some parameters τ = τ1 + iτ2 ∈ C with τ2 > 0, and γ, δ ∈ R. Let us briefly
comment on these parameters.

• Rigid period: τ = τ1 + iτ2

The parameter τ , taking values in the complex upper half-plane τ2 > 0, carries
the interpretation of a rigid period that is associated with the degenerating
geometry. In fact, one can show that a certain subgroup SL(2,Z) ⊂ Sp(4,Z)
of the integral transformations that preserve the weight filtration acts on τ as
the modular group.

• Extension data: γ, δ

The parameters γ, δ are referred to as extension data, and play an important
role in the integral structure of the limiting mixed Hodge structure. One can
show that there exists another subgroup of Sp(4,Z) which acts as a shift on
these parameters:

γ 7→ γ + b1 , δ 7→ δ + b2 , b1, b2 ∈ Z . (3.189)

This may be used to restrict γ, δ to the internal [0, 1).

sl(2,R)-triple

In order to present sl(2,R)-triple associated to the above R-split mixed Hodge
structure in a transparent form, let us introduce the following Sp(4,R)-valued
matrix

Λ =


1 0 0 0
γ 1 0 0
δ 0 1 0
0 δ −γ 1

 ·

−1 0 0 0
0 0 − 1√

τ2
0

0 √
τ2 − τ1√

τ2
0

0 0 0 −1

 ·


1√
k

0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
k

 , (3.190)

which will carry all the dependence on the rigid period and the extension data and
acts as a rotation from the integer basis to the Hodge basis. In terms of this matrix,
the sl(2,R)-triple is given by

{
N+, N0, N−} = Λ




0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 ,


0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0


Λ−1 ,

(3.191)
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where N− = N . This induces a decomposition of the four-dimensional underlying
vector space into irreducible representations of sl(2,R) as

4 = 1⊕ 2⊕ 1 , (3.192)

which could already be anticipated based on the associated Hodge–Deligne diamond
in figure 3.7a.

Phase operator

It turns out that for the type I1 mixed Hodge structure described above, the possible
phase operators which could make it non R-split are very limited. In fact, imposing
the conditions (3.61) and (3.62) one is left with only one possibility, namely that it
is proportional to the log-monodromy matrix, so that

δ = Λ


0 0 0 0
0 0 0 0
0 0 0 0
−c 0 0 0

Λ−1 , (3.193)

for some constant c ∈ R, where we have chosen the sign for future convenience.
Note that the rotation by δ only affects Î2,2 and transforms it to

I2,2 = eiδ Ĩ2,2 = span [(1, γ, δ,−ic)] , (3.194)

which is indeed manifestly no longer R-split. Furthermore, the component that
breaks the R-split property is indeed given by the lower-lying piece I1,1 in accor-
dance with the generalized conjugation property (3.53). Notably, if the mixed
Hodge structure arises as the limiting mixed Hodge structure associated to some
nilpotent orbit, one can effectively set c = 0 by performing a coordinate shift
t 7→ t+ ic. In other words, one may assume without loss of generality that the type
I1 limiting mixed Hodge structure is R-split.

Finally, since the phase operator is proportional to N , one immediately concludes
that

δ = δ−1,−1 , (3.195)
with respect to the decomposition (3.62). In particular, using the relations (3.67),
one finds that

ζ = 0 , (3.196)
for the type I1 singularity. In other words, the R-split mixed Hodge structure Ĩp,q
is automatically sl(2)-split.
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Boundary charge operator

The final ingredient of the boundary data is the boundary charge operator, which
encodes the boundary Hodge structure given by

F p∞ = eiN F̂ p0 , (3.197)

and can be straightforwardly computed using the relation (3.51) between the Deligne
splitting and the corresponding limiting filtration. The resulting charge operator is
given by

Q∞ = Λ


0 0 0 i

2
0 0 − 3i

2 0
0 3i

2 0 0
− i

2 0 0 0

Λ−1 . (3.198)

3.B.2 Type II0

Geometrically, the type II0 singularity corresponds to a K-point. When such a
point is realized by a Tyurin degeneration [107] it can be thought of as arising
from the intersection of two threefolds in a K3 surface. In the one-modulus case
this K3 surface is rigid, and its geometrical properties such as its intersection form
and its (rigid) period will appear in the limiting mixed Hodge structure via the
log-monodromy matrix.

Monodromy weight basis, pairing and log-monodromy

Without loss of generality, we choose to work in a basis in which

e3, e4 ∈W2 , e1, e2 ∈W4 , (3.199)

where again ei denotes the standard i-th unit basis vector. With respect to this
basis, one finds the following:

• There are effectively two choices for the polarization form, which amount
to a different ordering of the basis of W2. In the following we follow the
conventions of [101] and choose it to be represented by the matrix

S =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , (3.200)

such that ⟨e1, e3⟩ = ⟨e2, e4⟩ = 1, with all other pairings vanishing.
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• The most general log-monodromy matrix that preserves the above pairing, sat-
isfies the polarization conditions and additionally acts on the weight filtration
as NWℓ ⊂Wℓ−2 is given by

N =


0 0 0 0
0 0 0 0
a b 0 0
b c 0 0

 , a, b, c ∈ Z , ac− b2 > 0 . (3.201)

R-split MHS

Imposing the transversality constraints and possibly performing a coordinate redefi-
nition, the most general R-split type II0 mixed Hodge structure can be taken to
be

Ĩ3,1 = span [(1, τ, δ + γτ, γ)] , Ĩ2,0 = span [(0, 0,−τ, 1)] ,

with the remaining spaces determined by complex conjugation. Here γ, δ ∈ R are
arbitrary parameters and

τ = −b± i
√
d

c
, d = ac− b2 > 0 , (3.202)

where the sign can be chosen such that Im τ > 0. For definiteness, we will assume
that c > 0 such that we take the plus sign. Correspondingly, in order to have d > 0
we must then also take a > 0. The parameters γ, δ again play the role of extension
data, as for the I1 singularity (see [101] for a more in-depth discussion), while the
parameter τ corresponds to the rigid period of the K3.

sl(2,R)-triple

In order to present sl(2,R)-triple associated to the above R-split mixed Hodge
structure in a transparent form, let us introduce the following Sp(4,R)-valued
matrix

Λ =


1 0 0 0
0 1 0 0
δ γ 1 0
γ 0 0 1

 ·

− b√

ad
1√
a

0 0√
a
d 0 0 0

0 0 0
√
a

0 0
√

d
a

b√
a

 , (3.203)

which will carry all the dependence on the rigid period and the extension data and
acts as a rotation from the integer basis to the Hodge basis. In terms of this matrix,
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the sl(2,R)-triple associated to the type II0 singularity is given as follows:

{N+, N0, N−} = Λ




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


Λ−1 .

(3.204)
This induces a decomposition of the four-dimensional underlying vector space into
irreducible representations of sl(2,R) as

4 = 2⊕ 2 , (3.205)

which could already be anticipated based on the associated Hodge–Deligne diamond
in figure 3.7b.

Phase operator

It turns out that also for the type II0 mixed Hodge structure described above, the
possible phase operators which could make it non R-split are very limited. In fact,
imposing the conditions (3.61) and (3.62) one is again left with only one possibility,
namely that it is proportional to the log-monodromy matrix, so that

δ = Λ


0 0 0 0
0 0 0 0
−α 0 0 0
0 −α 0 0

Λ−1 , α ∈ R . (3.206)

for some constant α ∈ R, where we have chosen the sign for future convenience.

Finally, since the phase operator is proportional to N , one immediately concludes
that

δ = δ−1,−1 , (3.207)

with respect to the decomposition (3.62). In particular, using the relations (3.67),
one finds that

ζ = 0 , (3.208)

for the type II0 singularity. In other words, the R-split mixed Hodge structure Ĩp,q
is automatically sl(2)-split.
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Boundary charge operator

Finally, the boundary charge operator associated to the type II0 singularity is given
by

Q∞ = Λ


0 i − i

2 0
−i 0 0 − i

2
i
2 0 0 i

0 i
2 −i 0

Λ−1 . (3.209)

3.B.3 Type IV1

Geometrically, the type IV1 singularity corresponds to the large complex structure
point or MUM point of a one-parameter family of Calabi–Yau manifolds. On
the mirror side, this corresponds to sending the volume of the mirror manifold to
infinity.

Monodromy weight basis, pairing and log-monodromy

Without loss of generality, we choose to work in a basis in which

e4 ∈W0 , e3 ∈W2 , e2 ∈W4 , e1 ∈W6 , (3.210)

where again ei denotes the standard i-th unit basis vector. With respect to this
basis, one finds the following:

• The polarization form can be chosen to be represented by the matrix

S =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (3.211)

such that ⟨e1, e4⟩ = ⟨e2, e3⟩ = 1, with all other pairings vanishing.

• The most general log-monodromy matrix that preserves the above pairing, sat-
isfies the polarization conditions and additionally acts on the weight filtration
as NWℓ ⊂Wℓ−2 is given by

N =


0 0 0 0
a 0 0 0
e b 0 0
f e −a 0

 , (3.212)
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3.B Examples: one-parameter families of Calabi–Yau threefolds

with
a, b ∈ Z , e− ab/2 ∈ Z , f − a2b/6 ∈ Z , (3.213)

and additionally a ̸= 0 and b > 0.

R-split MHS

Imposing the transversality constraints and possibly performing a coordinate redefi-
nition, the most general R-split type IV1 mixed Hodge structure can be taken to
be

Ĩ3,3 = span
[(

1, 0, f2a, γ
)]

,

Ĩ2,2 = span
[(

0, 1, e
a
,
f

2a

)]
,

Ĩ1,1 = span [(0, 0, 1, 0)] ,
Ĩ0,0 = span [(0, 0, 0, 1)] ,

where γ is an arbitrary parameter. In section 4.2 we will recall how the parameters
a, b, e, f and γ relate to topological properties of the mirror Calabi–Yau threefold.

sl(2,R)-triple

In order to present sl(2,R)-triple associated to the above R-split mixed Hodge
structure in a transparent form, let us introduce the following Sp(4,R)-valued
matrix

Λ =


1 0 0 0
0 1 0 0
f
2a

e
a 1 0

γ f
2a 0 1

 ·


1
a

√
b

0 0 0
0 1√

b
0 0

0 0
√
b 0

0 0 0 a
√
b

 . (3.214)

In terms of this matrix, the sl(2,R)-triple associated to the type IV1 singularity is
given by

{N+, N0, N−} = Λ




0 3 0 0
0 0 4 0
0 0 0 −3
0 0 0 0

 ,


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 ,


0 0 0 0
1 0 0 0
0 1 0 0
0 0 −1 0


Λ−1 .

(3.215)
This induces a decomposition of the four-dimensional underlying vector space into
irreducible representations of sl(2,R) as

4 = 4 , (3.216)
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3 Asymptotic Hodge Theory I: Bulk to Boundary

which could already be anticipated based on the associated Hodge–Deligne diamond
in figure 3.7c.

Phase operator

It turns out that also the type IV1 mixed Hodge structure described above, the
set of possible phase operators is richer than for the type I1 and II0 singularities.
Indeed, one finds that the most general phase operator is given by

δ = δ−1,−1 + δ−3,−3 , (3.217)

where δ−1,−1 is again proportional to the log-monodromy matrix N , while δ−3,−3

is given by

δ−3,−3 = Λ


0 0 0 0
0 0 0 0
0 0 0 0
χ 0 0 0

Λ−1 , (3.218)

for some arbitrary parameter χ ∈ R. Note that actually δ−3,−3 commutes with Λ.
Notably, one cannot remove the δ−3,−3 piece by a coordinate shift, hence the most
general type IV1 limiting mixed Hodge structure is not necessarily R-split. Using
the relations (3.67), one does find that again

ζ = 0 . (3.219)

Boundary charge operator

Finally, the boundary charge operator associated to the type IV1 singularity is
given by

Q∞ = Λ


0 − 3i

2 0 0
i
2 0 −2i 0
0 i

2 0 3i
2

0 0 − i
2 0

Λ−1 . (3.220)
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4 Asymptotic Hodge Theory II: Boundary to
Bulk

This chapter is based on: Thomas W. Grimm, Jeroen Monnee, Damian
van de Heisteeg: Bulk Reconstruction in Moduli Space Holography,
JHEP 05 (2022) 010, [arXiv: 2103.12746]

This is the second of two chapters dedicated to asymptotic Hodge theory. In the
previous chapter we have seen that to each enhancement chain of singularities in
the moduli space one can associate a collection of boundary data consisting of

{Q∞, N
•
i , δi} , i = 1, . . . ,m , (4.1)

where we recall that Q∞ denotes the boundary charge operator, which encodes the
boundary Hodge structure F∞, N•

i denotes a set of m commuting real sl(2)-triples
which are horizontal with respect to Q∞, and δi denotes the phase operator associ-
ated to the i-th limiting mixed Hodge structure. Furthermore, we have seen that,
given this data, one can immediately write down the Sl(2)-orbit approximation
of the period map hSl(2) which determines the leading order behaviour of various
physical couplings in the chosen growth sector. In a sense, on can think of these
results as comprising the first part of the celebrated Sl(2)-orbit theorem of Cattani,
Kaplan, and Schmid [70].

In this chapter, we will explain how the same set of boundary data in fact completely
fixes the nilpotent orbit approximation hnil of the period map as well, through a very
intricate recursive procedure which will be referred to as a bulk reconstruction.1
One can think of this as comprising the second part of the Sl(2)-orbit theorem. In
essence, this chapter explains the core mechanisms behind the proof of this part of
1The name is inspired by a similar procedure in the context of the AdS/CFT correspondence, in
which one aims to represent bulk fields purely in terms of CFT operators, see for example [108].
In fact, this similarity lead to a proposal for a notion of “moduli space holography” in [73], which
will be discussed in more detail in chapter 6
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4 Asymptotic Hodge Theory II: Boundary to Bulk

the theorem. Furthermore, we aim to provide a clear and concrete algorithm which
can be used to actually compute hnil, and illustrate the procedure in a collection of
examples. To this end, we first give a detailed explanation of the one-parameter
bulk reconstruction procedure in section 4.1. To exemplify the construction, we
explicitly perform the bulk reconstruction procedure for all singularity types that
can arise for one-parameter families of Calabi–Yau threefolds in section 4.2, building
on the same examples discussed in appendix 3.B. In section 4.3 we discuss how the
general m-parameter bulk reconstruction procedure can in fact be seen as an induc-
tive application of the one-parameter result, following the discussion in chapter 3,
and illustrate the construction for the two-parameter type ⟨I1|IV2|IV1⟩ singularity.
We additionally discuss some of the important properties of the nilpotent orbit
expansion that result from the general construction, which will play a central role
in chapter 5. Furthermore, in section 4.4 we briefly explain how this can be used to
compute asymptotic expansions of Hodge inner products, and as an application we
compute corrections to the central charge of certain BPS states that arise in the
context of type IIB string theory.

Before we delve into the details of the bulk reconstruction procedure, we would
like to make one important comment regarding a difference in the conventions used
in this chapter versus the conventions used in the work [1] in which some of the
computations were originally performed.

Conventions: the ζ-operator

In the original work [1] the one-parameter bulk reconstruction procedure
was performed with respect to the R-split limiting mixed Hodge structure as
opposed to the sl(2)-split limiting mixed Hodge structure which we will use
in this chapter. As a result, the expressions for the boundary data differ by a
factor of Ad eζ , which appears explicitly in the expression for the period map
in [1], while it does not appear in the discussion below.
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4.1 Bulk reconstruction: single-variable

4.1 Bulk reconstruction: single-variable
One of the important statements announced in section 3.4 is that any one-parameter
nilpotent orbit can be parametrized as

F pnil = etNF p0 = hnil(x, y)F p∞ , (4.2)

where we recall that F p∞ denotes the boundary Hodge structure defined by (3.131)
and hnil(x, y) is the nilpotent orbit expansion of the period map. In this section,
we show that indeed hnil(x, y) enjoys an expansion

hnil(x, y) = exN
(

1 + g1

y
+ g2

y2 + · · ·
)
y− 1

2N
0
, (4.3)

and provide an explicit algorithm to compute the coefficients gi in terms of the
boundary data (3.94) associated to the singularity in question, following the seminal
work of Cattani, Kaplan, and Schmid [70].

From a practical point of view, we are interested in determining solutions to the
horizontality conditions (2.54) under the assumption that the period map satisfies

h(x+ c, y) = ecNh(x, y) , (4.4)

which is the case in the nilpotent orbit approximation. The strategy will consist of
three steps, which we briefly outline below.

• Step 1:
First, we recall that from hnil one can define three real operators N 0(y),N±(y)
that satisfy Nahm’s equations (2.83). As the first step, we show in section
4.1.2 that after combining N 0(y),N±(y) in a clever way one can translate
Nahm’s equations into an intricate set of recursion relations, which we refer
to as the CKS recursion.

• Step 2:
In the second step, we explain how the boundary data, namely the sl(2)-triple
and the phase operator δ, provide the initial conditions of the recursion. At
this point also the remaining conditions coming from the Q-constraint (2.84)
play an essential role. This recursion relation can then be solved, which yields
a unique solution for N 0(y),N±(y).

• Step 3:
Having found a solution for N 0(y),N±(y) we will then describe in section
4.1.3 how this leads to a solution for hnil(x, y).
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4 Asymptotic Hodge Theory II: Boundary to Bulk

4.1.1 Preliminaries

Rotating to the complex algebra

In a similar fashion as was done in appendix 2.A, the real sl(2)-triple generated by
N• ∈ gR gives rise to a complex sl(2)-triple generated by L• ∈ gC via the Cayley
transform

L• = ρN•ρ−1 , (4.5)

where
ρ = exp

[ iπ
4
(
N+ +N−)] = exp

[ iπ
4 (L1 + L−1)

]
. (4.6)

The fact that the real sl(2)-triple is horizontal with respect to the boundary charge
operator Q∞, recall the relations (3.89), can then be phrased in terms of the
following commutation relations with respect to the complex sl(2)-triple

[Q∞, Lq] = qLq , q = 1, 0,−1 . (4.7)

A crucial observation is that L0 commutes with Q∞, which allows us to find a
common eigenbasis for the two operators. For this reason we will mostly work with
the complex algebra. There is, of course, one more operator which commutes with
both L0 and Q∞, namely the Casimir operator L2. It is given by

L2 = 2L1L−1 + 2L−1L1 + (L0)2 . (4.8)

Let us note that there is another way of interpreting the operators Lq, Q∞. In fact,
we see that Q̂ ≡ Q∞ − 1

2L0 commutes with all Lq and hence we have the algebra

sl(2,R)⊕ u(1) : Lq, Q̂ . (4.9)

in this work we prefer to work with the charge operator Q∞ instead of Q̂, but note
that Q̂ does appear naturally in the bulk reconstruction in e.g. (4.23).

Various eigenspace decompositions

Since much of our discussion revolves around solving operator equations, it will be
extremely useful to split the space of operators using the eigenvalues of L2, L0 and
Q∞. Concretely, given any operator O ∈ gC we may decompose it as

O =
∑

0≤d≤D

∑
−d≤s≤d

∑
−D≤q≤D

O(d,s)
q , (4.10)
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4.1 Bulk reconstruction: single-variable

with

(adL)2O(d,s)
q = d(d+ 2)O(d,s)

q ,[
L0,O(d,s)

q

]
= sO(d,s)

q , (4.11)[
Q∞,O(d,s)

q

]
= qO(d,s)

q ,

where we have used the shorthand notation (adL)2 to denote replacing each left-
multiplication in (4.8) with an adjoint action, i.e. we have set

(adL)2O := 2
[
L1,
[
L−1,O

]]
+ 2
[
L−1,

[
L1,O

]]
+
[
L0,
[
L0,O

]]
. (4.12)

We call d, s and q the highest weight, weight and charge of the operator, respectively.
In the following, it is sometimes not necessary to perform all three decompositions
(4.11). We will then employ the notation

O(l)
q ≡

∑
d∈Z
O(d,l)
q , O(d,l) ≡

∑
q∈Z
O(d,l)
q , O[d] ≡

∑
q,l∈Z

O(d,l)
q , (4.13)

when we do not perform the highest weight decomposition, the charge decomposi-
tion, or only perform the highest weight decomposition, respectively.

Note that in the case we do not perform a charge decomposition, one could also
have chosen to perform the highest weight and weight decomposition with respect
to the real sl(2)-algebra. These two decompositions are related precisely by ρ

introduced in (4.6). In other words, if O is an operator with weight s under N0,
then Ô = ρOρ−1 is an operator with weight s under L0, and similarly for the
highest weight. In the following we will add a hat to an operator if it is obtained
via the transformation with ρ. This is particularly relevant if O is a real operator.
Such operators are naturally decomposed with respect to the real sl(2)-algebra but
cannot be an eigenoperator under Q∞, unless they are uncharged.

The phase operator

Lastly, let us recall the important properties of the phase operator δ ∈ gR, as it is an
essential part of the boundary data and determines crucially the complexity of the
associated nilpotent orbit expansion. In accordance with the notation introduced
above, we use δ to define

δ̂ = ρδρ−1 , (4.14)

which is thus an element of gC. In terms of δ̂ the properties of the phase operator,
recall the discussion in section 3.3, can be formulated as follows.

159



4 Asymptotic Hodge Theory II: Boundary to Bulk

• Property 1:
Firstly, it has to commute with L−1, so that

[L−1, δ̂] = 0 . (4.15)

In other words, each component of δ̂ in an irreducible representation of the
complex sl(2)-triple should be a lowest-weight state, since its weight cannot
be lowered further due to (4.15).

• Property 2:
Secondly, its components must all have weight less than or equal to −2, and
charge less than or equal to −1. In other words, it admits an expansion

δ̂ =
∑
s≤−2

∑
q≤−1

δ̂(s)
q . (4.16)

The first property (4.15) is simply the complex analogue of (3.61), while the second
property (4.16) is equivalent to the condition (3.62). Regarding the latter, one has
the dictionary

δ̂(s)
q ↔ δs−q,q , (4.17)

where we recall that δp,q denote the components of δ with respect to the Deligne
splitting c.f. (3.62). It will turn out that the various (s, q)-components of δ̂ will enter
into the bulk reconstruction separately, so that it is of utmost importance to have
control over these various components. This highlights one of the computational
advantages of working in the complex algebra. Indeed, if instead one would work
purely in the real algebra, one would have to keep track of the various (p, q)-
components of δ with respect to the Deligne splitting, which cannot be described
nicely in terms of eigenspaces of some auxiliary operator.

4.1.2 The CKS Recursion
Having discussed some basic properties of the boundary data, let us now turn to
the equations we would like to solve, which we recall here for convenience

∂yN± = ± 1
2 [N±,N 0] , ∂yN 0 = −[N+,N−] , (4.18)[

Q∞,N 0] = i(N+ +N−) ,
[
Q∞,N±] = − i

2N
0 , (4.19)

as already given in (2.84) and (2.83). Note that we have made a particular choice
for the reference charge operator Qref , namely

Qref = Q∞ , (4.20)
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4.1 Bulk reconstruction: single-variable

in order to match with (4.2). In the following we will solve these equations for
N 0,N± and identify solutions that match the boundary data.

Rotating to the complex algebra

As advocated in [73] it will be convenient to the transform the N 0,N± with the
operator ρ defined in (4.6), which was already employed in (4.5) to transform from
the real sl(2,R)-triple {N+, N0, N−} to the complex sl(2,C)-triple {L1, L0, L−1}.
This transformation allows us to work in the complex algebra gC, which is necessary
to discuss eigenoperators under Q∞ as alluded to at the beginning of this section.
Concretely, we define operators

L• = ρN •ρ−1 , (4.21)

where again • stands for either 0, +, or −. In terms of these operators Nahm’s
equations take the form

∂yL± = ±1
2 [L±,L0], ∂yL0 = −[L+,L−] . (4.22)

Moreover, the Q-constraint (4.19) becomes[
2Q∞ − L0,L0] = 2i(L+ + L−) + i

[
L1,L0]− i[L−1,L0] ,[

2Q∞ − L0,L±] = −iL0 + i
[
L1,L±]− i[L−1,L±] . (4.23)

Note that this Q-constraint does not appear in this form in [70]. However, as was
shown in [73], and will be recalled in appendix 4.A, this approach allows us to more
easily impose it on the solution.

Setting up the CKS recursion

We now discuss the general procedure to solve (4.22) under the constraint (4.23).
Let us recall that the L• are operators which act on the finite-dimensional vector
space HC and may therefore be represented by matrices. Alternatively, one may
pick a basis of gC and represent each L• as a vector with respect to this basis. The
main strategy of CKS is to solve Nahm’s equations by combining the L• into a
single vector Φ as

Φ =

L+

L0

L−

 . (4.24)
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4 Asymptotic Hodge Theory II: Boundary to Bulk

We note that Φ can either be viewed as a 3-vector with matrices as entries, or as a
(3× dim g)-component vector. The former interpretation will be most useful for
formal manipulations, whereas the latter will be more practical to use in concrete
examples, as we will see in section 4.2. The reason for introducing Φ is that one can
construct another sl(2)-triple that acts on it, which allows one to perform further
decompositions besides the ones for the separate L•. We will introduce this triple
shortly. First, in order to write down Nahm’s equations in terms of Φ, we introduce
a bilinear B acting on two vectors Φ and Φ̃ as2

B(Φ, Φ̃) = 1
4

 [L0, L̃+]− [L+, L̃0]
2[L+, L̃−]− 2[L−, L̃+]

[L−, L̃0]− [L0, L̃−]

 . (4.25)

Note that B(Φ, Φ̃) is symmetric under exchanging Φ and Φ̃, hence for Φ = Φ̃ this
takes the simple form

B(Φ,Φ) = 1
2

 [L0,L+]
2[L+,L−]
[L−,L0]

 . (4.26)

We readily see that (4.22) can then be written as
dΦ
dy

= −B (Φ,Φ) . (4.27)

To turn the differential equation (4.27) into an algebraic recursion relation we now
perform a series expansion of Φ around y →∞. In order to match the solution to
the boundary data, we impose that the leading behaviour of Φ is given by

Φ = y−1

L+1

L0

L−1

+O(y−3/2) . (4.28)

In other words, the leading behaviour of Φ is given precisely by the sl(2)-triple
(L0, L±1) of the boundary data. Recall from the discussion in section 3.4 that
this simply corresponds to the statement that the Sl(2)-orbit approximation hSl(2)
dictates the leading order behaviour of the period map. To parametrize possible
sub-leading terms in Φ, we make the ansatz

Φ =
∑
n≥0

Φny−1−n/2 =
∑
n≥0

L+
n

L0
n

L−
n

 y−1−n/2, Φ0 :=

L+1

L0

L−1

 . (4.29)

2In [70] the notation Q is used for the bilinear B, whose expressions differ by a choice of basis.
Our basis is the same as in [109].
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4.1 Bulk reconstruction: single-variable

In terms of the Φn, (4.27) reduces to the following recursion relation.

The CKS recursion

(n+ 2)Φn − 4B(Φ0,Φn) = 2
∑

0<k<n
B(Φk,Φn−k) . (4.30)

Simplifying the CKS recursion

In principle, the relation (4.30) allows one to determine the Φn in terms of the
previous Φk, k < n. However, the expression for B(Φ0,Φn) will generically be very
complex. In order to simplify this, we proceed in two steps. First, we make use of
the highest weight decomposition (4.10) to decompose the operators L•

n as

L•
n =

∑
d≥0

(L•
n)[d] , (4.31)

where each (L•
n)[d] is an operator of highest weight d in the notation introduced in

(4.13). Note that in the discussion of the recursion relations it will not be necessary
to perform the weight or charge decomposition. Using this decomposition we have
split the various components of Φn into different pieces, which can be collected into

Φdn =

(L+
n )[d]

(L0
n)[d]

(L−
n )[d]

 . (4.32)

We can, however, perform a further decomposition of the full Φdn by diagonalizing
the operator B(Φ0, ·) which appears in (4.30). This will lead to a great simplification
of the recursion. For convenience, let us abbreviate B0 := B(Φ0, ·). To be explicit,
using (4.25) this operator can be written as

B0 = 1
4

 adL0 − adL1 0
−2 adL−1 0 2 adL1

0 adL−1 − adL0

 . (4.33)

To evaluate the action of B0 on Φ we use the interpretation of Φ as a 3-vector
consisting of matrices {L+,L0,L−} on which (L0, L±1) can act via the adjoint
action. In other words

B0(Φ) = 1
4

 [L0,L+]− [L1,L0]
2[L1,L−]− 2[L−1,L+]

[L−1,L0]− [L0,L−]

 . (4.34)

163



4 Asymptotic Hodge Theory II: Boundary to Bulk

Our next goal will be to find a split of Φ which diagonalizes B0 and hence lets us
evaluate the second term in (4.30). The remarkable idea of CKS is to introduce
yet another sl(2)-decomposition, which now acts on the 3-vectors Φd

n. This new
decomposition allows us to split

Φdn =
∑

ϵ=−1,0,1
Φd,ϵn . (4.35)

We stress that this is not the (d, s)-decomposition introduced in (4.13) for which
the indices were written with brackets. The second eigenvalue ϵ arises from an
sl(2)-triple (Λ0,Λ±) which acts on Φ by also mixing the 3-vector components L•.
This sl(2)-triple is given by

Λ+ =

adL+ 0 0
2 adL+ 0
0 −1 adL+

 ,

Λ0 =

adL0 − 2 0 0
0 adL0 0
0 0 adL0 + 2

 ,

Λ− =

adL− 1 0
0 adL− −2
0 0 adL−

 .

(4.36)

By slight abuse of notation the integer entries are proportional to identity matrices.3
The label ϵ appearing in (4.35) is then related to the eigenvalue under the Casimir
Λ2 via

Λ2 = 2Λ+Λ− + 2Λ−Λ+ + (Λ0)2 : Λ2Φd,ϵ = (d+ 2ϵ)(d+ 2ϵ+ 2)Φd,ϵ . (4.38)

In other words, for a given d, each Φd splits into three components Φd,ϵ, which
have highest weight d + 2ϵ with respect to the Casimir Λ2. Using (4.36) it is

3To elaborate, the 3 × 3 matrices(
0 0 0
2 0 0
0 −1 0

)
,

(
−2 0 0
0 0 0
0 0 2

)
,

(
0 1 0
0 0 −2
0 0 0

)
. (4.37)

also form an sl(2)-triple (more precisely, they correspond to the co-adjoint representation).
The sl(2)-triple (Λ+, Λ0, Λ−) is then obtained by taking the tensor product between the above
generators and the sl(2)-triple (L1, L0, L−1).
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straightforward to compute Λ2 explicitly as

Λ2 =

(adL)2 + 8− 4 adL0 4 adL+ 0
8 adL− (adL)2 + 8 −8 adL+

0 −4 adL− (adL)2 + 8 + 4 adL0

 . (4.39)

We can now compare this expression with the expression (4.33) for B0 and observe
that the Casimir can also be written as

Λ2 =
(
(adL)2 + 8

)
I3×3 − 16B0 . (4.40)

In other words, we see that the components Φd,ϵ
n are also eigenvectors of B0. In

fact, we evaluate
−4B0(Φd,ϵn ) = {ϵ(1 + d+ ϵ)− 2}Φd,ϵn . (4.41)

Returning to the recursion relation (4.30), we see that for such eigenvectors it
simplifies to the following.

The CKS recursion(
n+ ϵ(1 + d+ ϵ)

)
Φd,ϵn = 2

∑
0<k<n

B(Φk,Φn−k)d,ϵ . (4.42)

The recursion (4.42) is the master equation that encodes the constraints on the
coefficients Φd,ϵn for any solution Φ of (4.27).

Input data

Let us make some further remarks regarding the structure of the CKS recursion. To
begin with, we note that the representation theory of sl(2) implies that the number
of linearly independent operators with a given d and ϵ is equal to d+ 2ϵ+ 1. This
implies, in particular, that Φ1,−1

1 = 0. Furthermore, for n = 1 the right-hand side
of (4.42) vanishes and we conclude that also Φd,ϵ

1 = 0 for (d, ϵ) ̸= (1,−1). Taken
together, we thus find that

Φ1 = 0 . (4.43)

Applying this result to the expansion (4.29) of Φ this means that the term propor-
tional to y−3/2 vanishes and the first sub-leading term is of order y−2. Inspecting
the recursion (4.42) we see that for n > 1 the Φd,ϵn can be obtained recursively by
computing the action of B on Φk and Φn−k, k < n, and projecting the result onto
its d, ϵ components. The only Φd,ϵn which are not determined recusively from (4.42)
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4 Asymptotic Hodge Theory II: Boundary to Bulk

are those with highest weight d = n. It is easy to check that Φn,−1
n actually does

not appear on the left-hand side, since its pre-factor vanishes for this component.
To obtain the constraints on Φn,1

n and Φn,0
n one has to use the properties of B to

realize that the right-hand side in (4.42) vanishes and therefore implies that4

Φn,1n = Φn,0n = 0 . (4.44)

In conclusion, we find that we need to supply

input data : Φn,−1
n (4.45)

for the recursion. Recalling that there are maximally d+ 2ϵ+ 1 independent Φd,ϵn ,
we conclude that there are generically n− 1 linearly independent Φn,−1

n that need
to be given.

We will now discuss a way to encode the input data Φn,−1
n in an efficient way, which

makes the n− 1 linearly independent degrees of freedom manifest. Furthermore,
note that we have so far only discussed the differential constraint (4.22) and it
remains to impose (4.23) on any solution. In the following we will evaluate the
conditions (4.23) imposes on the input data Φn,−1

n . From (4.41) we know that
4B0(Φn,−1

n ) = (n+ 2)Φn,−1
n . As we will recall in appendix 4.A this equation can be

solved by the following ansatz [70].

Input data ansatz for the CKS recursion

Φn,−1
n =

∑
1≤s,q≤n−1

an,sq

 − 1
n−s (ad L1)s+1

2 (ad L1)s

(n− s+ 1) (ad L1)s−1

 η̂
(−n)
−q , (4.46)

where η̂ ∈ gC has to obey

η̂ =
∑
s≤−2

∑
q≤−1

η̂(s)
q , [L−1, η̂] = 0 . (4.47)

Note that Φ is a 3-vector made out of operators L•, which themselves stem from
real operators N • ∈ gR by transformation with ρ as given in (4.21). This implies
4To be precise, one uses the fact that for two operators S and T , one has that B(Sd,ϵ, T d′,ϵ′ )d′′,ϵ′′ =
0 unless the following three conditions hold: (1) 0 ≤ d′′ ≤ d + d′, (2) d′′ ≡ d + d′ mod 2, and (3)
0 ≤ d′′ + 2ϵ′′ ≤ d + d′ + 2ϵ + 2ϵ′. These properties can be derived from the specific expression for
B and its behaviour with respect to the underlying sl(2)-structure. We refer the reader to [70]
for more details.
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4.1 Bulk reconstruction: single-variable

that also η̂ can be obtained from a real operator η = ρ−1η̂ρ ∈ gR. We also see
in (4.46) that there are indeed n− 1 linearly independent contributions to Φn,−1

n ,
which correspond to the various charge components of the operator η̂. The operator
η̂ now encodes the input data of the recursion relation. It is important to stress,
however, that the condition 4B0(Φn,−1

n ) = (n+2)Φn,−1
n does not yet fix the complex

coefficients an,sq . In order to fix these coefficients we now impose the Q-constraint
on the entries of Φn,−1

n . A direct computation, which can be found in appendix 4.A,
reveals that

an,sq = is−1 (n− s)!
n! bs−1

q−1,n−q−1 , (4.48)

where the coefficients bsp,q are defined by

(1− x)p(1 + x)q =
p+q∑
s=0

bsp,qx
s , p, q ≥ 0 . (4.49)

To summarize, we have reduced Nahm’s equations to a set of recursion relations
(4.42) for the components Φd,ϵn which encode the full Φ defined in (4.24). The initial
conditions are determined by the boundary data η̂ and the sl(2)-triple via (4.46).
In order to show this we have imposed the Q-constraint (4.23) on Φn,−1

n . Using the
recursion relations (4.42) this ensures that the full solution obeys this constraint.
We next discuss how one can relate a solution Φ back to period map hnil and how
η̂ is determined in terms of the phase operator δ which was part of the boundary
data.

4.1.3 Recovering the period map and a matching condition
In this section we will show how a solution for Φ can be used to obtain a solution
for hnil. Furthermore, we will see how a single matching condition (4.68) allows
us to fix the input data η̂ for the CKS recursion in terms of the boundary data.
Additionally, this matching condition will also clarify the role played by the operator
ζ that was introduced in 3.66 to perform the rotation to the sl(2)-split Deligne
splitting and, in particular, how exactly it is fixed in terms of the phase operator δ.

Recall that the vector Φ contains L0 as one its components. Furthermore, we recall
the relations

−2h−1∂yh = N 0 , N 0 = ρ−1L0ρ . (4.50)

In essence, we need to solve this equation to fix the y-dependence in hnil(x, y) for a
given L0. Note that if h were simply a number, one could write this relation as
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4 Asymptotic Hodge Theory II: Boundary to Bulk

−2∂y log(h) = N 0 and solve it straightforwardly. However, because h is matrix-
valued one needs to do a bit more work. First, in anticipation of the result (4.3),
let us write

g(y) = e−xNhnil(x, y)y 1
2N

0
. (4.51)

Clearly, the resulting function is x-independent. Recalling that

N 0(y) = N0

y
+O(y−2) , (4.52)

one sees that the factor y 1
2N

0 in the definition of g(y) ensures that the leading
N0-term in N 0 drops when computing g−1∂yg. In other words, we find that
g−1∂yg = O(y−2). Secondly, since Φ is described in terms of the complex algebra,
it also convenient to introduce a rotated version of g(y) using ρ

ĝ(y) = ρg(y)ρ−1 . (4.53)

By combining (4.50), (4.51) and (4.53), together with the fact that Ad y 1
2N

0 =
y

1
2 adN0 one can obtain the following relation between ĝ and L0

ĝ−1∂y ĝ =
∑
n≥2

Bny
−n , (4.54)

where the Bn ∈ gC are comprised of particular (d, s)-components of the L0
n as

follows
Bn = −1

2
∑

s≤n−2

∑
d≤2n−2−s

(
L0

2n−2−s
)(d,s)

. (4.55)

Note that we did not yet solve the differential equation (4.54), but have merely
identified how the solution for Φ contributes to it through the Bn. We are now in a
position to solve it, by again performing a series expansion of ĝ around y →∞ and
writing

ĝ(y) =
∑
k≥0

ĝk
yk

, ĝ0 = 1 . (4.56)

Inserting this ansatz into (4.54) we find

∂y ĝ = ĝ(y)
∑
n≥2

Bny
−n =

∑
m≥0

∑
n≥2

ĝmBny
−m−n =

∑
k≥1

[ k∑
j=1

ĝk−jBj+1

]
y−k−1,

(4.57)
where in the last line we have changed summation variables. Comparing this result
with the series expansion of ∂y ĝ we find the following general solution.
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4.1 Bulk reconstruction: single-variable

Recursive solution for ĝk

ĝk = Pk(B2, ..., Bk+1) , (4.58)

where the Pk are iteratively defined non-commutative polynomials

P0 = 1 , Pk = −1
k

k∑
j=1

Pk−jBj+1 , (4.59)

and we recall that Bn is defined in equation (4.55).

We see that each ĝk is recursively given in terms of the ĝk−j and Bj+1. Of course,
solving this recursion may still be very complicated, but we will show that it can be
done in our examples. It is also interesting to note that while the Bn are elements
of the algebra, the ĝk are, generically, not. Indeed, the algebra is closed under
the commutator, but (4.58), (4.59) contains only the product of matrices. As a
result the full function ĝ(y) is also not an algebra element. Taking these findings
together and rotating back to the real algebra, we thus arrive at the nilpotent orbit
expansion of the period map

hnil(x, y) = exN
−
(

1 + g1

y
+ g2

y2 + . . .
)
y− 1

2N
0
. (4.60)

Furthermore, one finds that the coefficients in this expansion satisfy

(adN−)n+1gn = 0 , (gn)(l)
q = 0 , l ≥ n . (4.61)

Note that these conditions arise a as a very non-trivial consequence of this iterative
process and the fact that the Bi are determined by the CKS recursion and are part
of the famous Sl(2)-orbit theorem [70].

A matching condition

It remains to show how the input data η is fixed in terms of the boundary data. To
this end, we recall that g(y) can be interpreted as the interpolation between the
Sl(2)-orbit approximation and the nilpotent orbit approximation. At the level of
Hodge filtrations, this is captured by the relation

eiyNF0 = g(y)eiyN F̂0 . (4.62)

Moving a factor of eiyN to the right-hand side and recalling the relation between
F0 and the sl(2)-split F̂0, one can write this as

eiδe−ζF̂0 =
[
e−iy adNg(y)

]
F̂0 . (4.63)
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4 Asymptotic Hodge Theory II: Boundary to Bulk

The relation (4.63) will serve as a matching condition between the coefficients gk,
and thus the input data η, and the phase operator δ. To see this, we compute

e−iy adNg(y) =
∞∑

k,l=0

(−i)k
k! yk−l (adN)k gl (4.64)

=
∞∑
k=0

∞∑
l=k

(−i)k
k! yk−l (adN)k gl (4.65)

=
∞∑
k=0

(−i)k
k! (adN)k gk +O(y−1) , (4.66)

where in the second step we used the relation (4.61), which implies that (recall that
N = N−)

(adN)k gl = 0 , k ≥ l , (4.67)

and in the third step we have simply extracted the leading term in y−1. Since
the matching condition (4.63) relation should hold for all values of y, it should in
particular hold in the limit y →∞. Taking this limit we may drop the sub-leading
terms in (4.66) and thus we are left with the following constraint.

The matching condition

eiδe−ζ =
∞∑
k=0

(−i)k
k! (adN)k gk . (4.68)

Note:
Since N is nilpotent, the right-hand side of (4.68) only contains finitely many
non-zero terms. To be precise, if d is the largest integer such that Nd ̸= 0,
then (adN)2d+1 = 0 and hence only the terms involving g0, . . . , g2d appear
in the matching condition. In particular, for a variation of Hodge structure
of weight D, at most g0, . . . , g2D can appear.

Naturally, one can also rotate the matching condition (4.68) to the complex algebra,
in which case it reads

eiδ̂e−ζ̂ =
∞∑
k=0

(−i)k
k! (adL−1)k ĝk . (4.69)
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4.1 Bulk reconstruction: single-variable

To see that this condition fixes ĝk, ζ̂ uniquely, we first note that

Ck+1(η) ≡ (−i)k
k! (adL−1)kBk+1 = i

∑
l≥k+1

∑
q≥1

bk−1
q−1,l−q−1η̂

(−l)
−q , (4.70)

as can be shown by using (4.55), (4.46), (4.61) and (4.47). Applying the properties
(4.61) of ĝk in the recursive solution (4.58) with (4.59) we find that (4.69) can be
written as

e−iδ̂ = e−ζ̂
(

1 +
∑
k≥1

Pk(C2, ..., Ck+1)
)
. (4.71)

Note that the right-hand side only depends on ζ̂ and η̂, while the left-hand side
only depends on δ̂. Recalling that δ̂, η̂, ζ̂ stem from the real counterparts δ, η, ζ we
realize that (4.71) gives a complex matrix equation determining two real unknowns
η and ζ. As an illustrative example, for D = 3 one finds the following relation
between ζ̂ and δ̂

ζ̂
(−3)
−1 = − i2 δ̂

(−3)
−1 , ζ̂

(−4)
−1 = −3i

4 δ̂
(−4)
−1 ,

ζ̂
(−5)
−2 = −3i

8 δ̂
(−5)
−2 − 1

8

[
δ̂

(−2)
−1 , δ̂

(−3)
−1

]
, ζ̂

(−6)
−3 = −1

8

[
δ̂

(−2)
−1 , δ̂

(−4)
−2

]
, (4.72)

with all other components either equal to zero or related to the listed component
by complex conjugation.5 After rotating back to the real algebra using ρ, these
conditions are equivalent to (3.67). Similarly, the components of η are fixed by

η̂
(−2)
−1 = −δ̂(−2)

−1 , η̂
(−3)
−1 = −δ̂(−3)

−1 ,

η̂
(−4)
−1 = −3

4 δ̂
(−4)
−1 , η̂

(−4)
−2 = −3

2 δ̂
(−4)
−2 , (4.73)

η̂
(−5)
−2 = −3

2 δ̂
(−5)
−2 + i

2

[
δ̂

(−2)
−1 , δ̂

(−3)
−1

]
, η̂

(−6)
−3 = −15

8 δ̂
(−6)
−3 − 5i

4

[
δ̂

(−3)
−1 , δ̂

(−3)
−2

]
.

For further details on how to derive these relations we refer the reader to [73] as
well as [77]. In particular, in the latter reference one can also find the generalization
of these relations to the weight D = 4 case.

5To be precise, one has
ζ̂

(s)
q =

(
ζ̂

)s

q−s
,

and similarly for δ̂ and η̂.
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4 Asymptotic Hodge Theory II: Boundary to Bulk

Summary

To close our general discussion on the one-parameter bulk reconstruction procedure,
we provide below a short summary of the various steps one has to take in order to
explicitly compute the nilpotent orbit expansion from a given set of boundary data.

The bulk reconstruction algorithm

• Step 1:
Using the boundary charge operator Q∞ and the complex grading oper-
ator L0, perform the charge and weight decomposition of the (rotated)
phase operator

δ̂ =
∑

−D≤q≤−1

∑
−2D≤s≤−2

δ̂(s)
q , (4.74)

and use the relation (4.69) to determine η̂ and ζ̂. For the case D = 3
one may directly use the result (4.73) and (4.72). For explicit relations
in the D = 4 case we refer the reader to [77].

• Step 2:
Use the relation (4.46) to write down the most general collection of
input data

Φ2,−1
2 , . . . ,Φ2D,−1

2D , (4.75)

for the CKS recursion in terms of the components of η̂ computed in
step 1. Note that this step will involve the raising operator L1.

• Step 3:
Insert the input data into the CKS recursion (4.42) and compute the
various (d, ϵ) components of Φn to any desired order in n.

• Step 4:
Finally, using the relations (4.29), (4.55) and (4.58)–(4.59) one can iter-
atively compute the coefficients ĝk to any desired order. After rotating
back to the real algebra, one obtains the nilpotent orbit expansion to
the period map from (4.60).
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4.2 Examples: One-parameter families of Calabi–Yau threefolds

4.2 Examples: One-parameter families of Calabi–Yau
threefolds

In this section we explicitly work out the bulk reconstruction procedure for all
singularity types arising in one-parameter weight D = 3 models. In particular,
this covers all possible singular limits in the complex structure moduli space of
any one-parameter family of Calabi–Yau threefolds. Recall that there are three
such limits, namely type I1, II0, and IV1, for which the most general form of the
boundary data has been constructed in appendix 3.B. In the following, we will first
discuss the type I1 and II0 limits, as they are very similar in nature and relatively
simple due to the restricted form of the phase operator. Subsequently, we will
discuss the type IV1 limit, for which the bulk reconstruction will be significantly
more non-trivial.

4.2.1 Type I1 and II0

Recall from our discussion in appendix 3.B that for both the type I1 and the type
II0 singularity the only possibility for the phase operator is that it is proportional
to the lowering operator. In particular, after rotating to the complex basis we have

δ̂ = δ̂
(−2)
−1 = −cL−1 , (4.76)

for some constant c. Furthermore, we also argued that, in principle, one can
effectively set c = 0 by performing a coordinate shift y 7→ y+ c. In the following, we
will not perform this coordinate shift, but rather go through the bulk reconstruction
procedure and show that indeed one recovers the same result. Thus, let us follows
the steps outline in the bulk reconstruction algorithm.

Step 1:

We begin by determining the initial data of our recursion, which is fixed by the
operator η̂. This operator can be expressed in terms of the phase operator δ̂ by
using (4.73) as

η̂ = η̂
(−2)
−1 = −δ̂(−2)

−1 = cL−1 . (4.77)

Step 2:

The initial data can then be computed from η̂ by using (4.46). This gives us just
Φ2,−1

2 as input for the recursion, since η̂ only has a component with weight n = 2.
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4 Asymptotic Hodge Theory II: Boundary to Bulk

Furthermore the sums over the weights s and charges q only run over a single term,
hence

Φ2,−1
2 =

(L+
2 )[2]

(L0
2)[2]

(L−
2 )[2]

 = c

 L1

L0

L−1

 = cΦ0 . (4.78)

where in the last equality we noticed that the initial data of the recursion is simply
proportional to the leading term Φ0 = (L1, L0, L−1) of the expansion (4.29).

Step 3:

In order to perform the CKS recursion we then need to evaluate the bilinear B
defined in (4.25) for this initial data. For our initial data it is interesting to point
out that in general

B(Φ0 , Φ0) = Φ0 . (4.79)

This implies that each subsequent term Φn in the CKS recursion will be proportional
to Φ0. Furthermore, from the structure of the recursion relation (4.42) we find at
odd orders that Φ2n+1 = 0. Let us therefore make the ansatz

Φ2,−1
2n = cnΦ0 , (4.80)

for some coefficients cn with c0 = 1 and c1 = c. By plugging our ansatz into (4.42)
we then obtain the recursion relation

(2n− 2)cn = 2
∑

0<k<n
ckcn−k, n > 1 . (4.81)

One can easily verify that under the specified initial conditions this recursion is
solved by

cn = cn . (4.82)

Hence the full solution to the recursion relation is given by

Φ2n = cnΦ0, or

L
+
2n

L0
2n

L−
2n

 = cn

 L1

L0

L−1

 . (4.83)

We see that the result for the I1 and II0 boundaries is remarkably simple. From the
observation that the phase operator can be expressed in terms of the lowering oper-
ator as δ̂ = −cL−1 we have been able to solve the recursion completely algebraically.
In particular we did not need to perform the highest-weight decompositions with

174



4.2 Examples: One-parameter families of Calabi–Yau threefolds

respect to the Casimir operators L2 and Λ2 explicitly. In anticipation of next
example, let us already note that for the type IV1 boundary we do have to make
use of this sl(2)-machinery, and hence the bulk reconstruction will be considerably
more involved.

Step 4:

Despite the apparent simplicity of the Φ2n given in (4.83), there are still some
non-trivial steps to perform in order to complete the bulk reconstruction of hnil(x, y),
to which we now turn our attention. Following the procedure laid out in section
4.1.3 we first write down the middle component L0

2n of Φ2n as

(L0
2n)(2,0) = cnL0 . (4.84)

By using (4.55) to compute the coefficients Bn we then find that the sum only runs
over a single term, yielding

Bn = −1
2L

0
2n−2 = −1

2c
n−1L0 . (4.85)

In turn these coefficients can be used to recursively determine the ĝk by using
(4.59). Plugging our expression for the Bn into this recursion relation we obtain

−kĝk = −1
2

k∑
j=1

ĝk−jc
jL0 . (4.86)

with the initial condition ĝ0 = 1. In order to solve this recursion it is convenient to
rotate back to the real basis via the transformation matrix (4.6). This is helpful
because, in this basis, we simply need to work with a diagonal matrix N0 instead of
L0, and consequently the terms gk are diagonal as well. It is at this point that we
will make use of the explicit expressions for L0 at the type I1 and II0 boundaries.
To exemplify the computation, let us focus on the type I1 boundary. The analysis
for the type II0 is very similar. Recall from the analysis in appendix 3.B that the
grading operator N0 of the type I1 boundary is given by

N0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 , (4.87)

up to a basis rotation with the matrix Λ introduced in (3.190), which we suppress
for notational clarity. To solve the recursion (4.86) we make the ansatz

gk = ck diag
(
g+
k 0, 0, g−

k

)
, (4.88)
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where g±
k are arbitrary coefficients with g±

1 = 1 for which we want to solve the
recursion. By using this ansatz we find that (4.86) reduces to two decoupled
recursion relations

2k g±
k = ±

k∑
j=1

g±
k−j . (4.89)

Combining the equations at levels k and k + 1 one can rewrite these equations as

g±
k+1 = (2k ± 1)

2(k + 1)g
±
k , (4.90)

which are solved by

g+
k = 1

2
Γ(k + 1/2)

Γ(3/2)Γ(k + 1) , g−
k = −1

2
Γ(k − 1/2)

Γ(1/2)Γ(k + 1) , (4.91)

where Γ(n+ 1) = n! denotes the gamma function. Putting everything together, one
finds

gk = −1
2
ck

k!


−Γ(k+1/2)

Γ(3/2) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Γ(k−1/2)

Γ(1/2)

 , k ≥ 1 . (4.92)

As a consistency check, one can verify that this solution to the CKS recursion
indeed satisfies the matching condition given in (4.68). Resumming the series in
y−k for the matrix-valued function g(y) we find

g(y) =
∑
k≥0

gky
−k =


√

y
y−c 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
y−c
y

 . (4.93)

By multiplying with exN from the left and y−N0/2 from the right we obtain final
result for the nilpotent orbit approximation of the period map

hnil(x, y) =


1√
y−c 0 0 0
0 1 0 0
0 0 1 0

− x√
y−c 0 0 √

y − c

 = exN (y − c)− 1
2N

0
. (4.94)
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As anticipated, we find that for the type I1 boundary the nilpotent orbit expansion
of the period map is identical to the Sl(2)-orbit approximation up to the coordinate
shift y 7→ y + c. This agrees with the fact that the same coordinate shift can be
used to effectively set the component of the phase operator δ along N− to zero.

Reconstructing the period vector for type I1

From the nilpotent orbit approximation of the period map, we can immediately
recover the full nilpotent orbit approximation of the underlying variation of Hodge
structure via the relation

F pnil = hnil F
p
∞ . (4.95)

Using this relation and the explicit form of the boundary Hodge structure as encoded
in Q∞, one can show that

Fnil(t) = etN


0 1 0 0
1 0 0 0
i 0 0 1
0 ic 1 0

 , (4.96)

Here the above matrix notation for the Hodge filtration means that F pnil is spanned
by the first 4− p columns of the matrix. Furthermore, this Hodge filtration can be
equivalently described in terms of the following period vector

Πnil = etN




0
1
i

0

+A1e
2πit


1
0
0

ic+ 1
2πi

+A2
1e

4πit


0
1
−i
0


 , (4.97)

where we have performed an additional Kähler–Weyl transformation in order
to simplify the most general form of the period vector. Importantly, in order
for Πnil and its derivatives to fully span F pnil(t) it is necessary to include the
exponential corrections parametrized by the non-zero coefficient A1 ∈ C, whose
value is model-dependent. In [110] these exponential corrections have been dubbed
essential instantons. It is rather striking that, through the bulk reconstruction
procedure, the boundary data associated to a given limit is rich enough to encode
instanton corrections to the period vector. For completeness, let us also record the
period vector after including the additional rotation matrix (3.190) to include the
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dependence on the rigid period τ and the extension data γ, δ

Πnil = etN




0
1
τ

δ − γτ

+B1e
2πit


1
γ

δ

ick + k
2πi

+B2
1e

4πit


0
1
τ̄

δ − γτ̄


 , (4.98)

where B1 = −A1√
k

.

Reconstructing the period vector for type II0

We stress that the final steps in the above analysis can be performed in a very
similar fashion for the type II0 boundary, which will lead to the following result for
the nilpotent orbit approximation of the period map (see [1] for more details)

hnil(x, y) =
√

1
y − α


1 0 0 0
0 1 0 0
x 0 y − α 0
0 x 0 y − α

 = exN (y − α)− 1
2N

0
, (4.99)

where we have relabelled the coefficient c to α in order to better match with the
conventions used in appendix 3.B, recall equation (3.206) for the phase operator in
particular. Again, we see that the nilpotent orbit expansion is equivalent to the
Sl(2)-orbit expansion, up to a coordinate shift. As for the type I1 singularity, one
can immediately infer the full nilpotent orbit approximation of the Hodge filtration
to be

Fnil(t) = etN


1 0 0 0
−i 0 1 0
−iα 1 0 0
−α −i −iα 1

 , (4.100)

Furthermore, this Hodge filtration can be recovered from the period vector

Πnil = etN




1
−i
−iα
−α

+A1e
2πit


1
i

−iα+ i
π

α− 1
π


 , (4.101)

where we have again performed an additional Kähler–Weyl transformation to
simplify the expression. Importantly, we observe that also for the type II0 one can
infer the presence of an instanton correction to the period vector, parametrized by
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the non-zero coefficient A1 ∈ C. Using the transformation (3.203) one may also
include the dependence of Πnil on the extension data, though we will refrain from
presenting the result here.

4.2.2 Type IV1

In this section we study our final example, the type IV1 boundary. This case
will be considerably more involved, owing to the fact that the phase operator δ is
no longer proportional to N−. Nevertheless we will obtain exact results for both
Φ = (L+,L0,L−) and the nilpotent orbit approximation of the period map. This
demonstrates the power of the CKS recursion, which provides us with a general
formalism to perform this bulk reconstruction.

Recall that the general for of the type IV1 boundary data was constructed in
appendix 3.B, see equations (3.215), (3.217)–(3.218), and (3.220). However, in this
section we will change conventions slightly in order to stay closer to the results of
the work [1], in which this computation was first performed. The two conventions
are related by a non-symplectic basis transformation

ΛIV1 convention =


1 0 0 0
0 1 0 0
0 0 1

2 0
0 0 0 − 1

6

 . (4.102)

To be explicit, let us write down the full set of boundary data after changing to
these new conventions. The real sl(2)-triple is given by

{N+, N0, N−} =




0 3 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 ,


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 ,


0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0


 , (4.103)

and the boundary charge operator and phase operator are given by

Q∞ =


0 − 3i

2 0 0
i
2 0 −i 0
0 i 0 − i

2
0 0 3i

2 0

 , δ =


0 0 0 0
0 0 0 0
0 0 0 0
χ 0 0 0

 , (4.104)

where we have suppressed the additional basis transformation (3.214) for notational
clarity. Furthermore, we have not included the component in δ proportional to

179



4 Asymptotic Hodge Theory II: Boundary to Bulk

the lowering operator N−, recall equation (3.217), since this can be set to zero by
a coordinate shift, as we have explicitly demonstrated in the previous examples.
Since δ = δ−3,−3, we see that after rotating to the complex basis, we have

δ̂ = δ̂
(−6)
−3 . (4.105)

Step 1:

Given this boundary data, we now turn to the CKS recursion in order to perform the
bulk reconstruction. Again we start by determining the initial data of this recursion,
for which we need to compute η̂ from the phase operator δ̂. Since δ̂ = δ̂

(−6)
−3 with

respect to the gradings induced by L0 and Q∞ we find using (4.73) that

η̂ = η̂
(−6)
−3 = −15

8 δ̂
(−6)
−3 . (4.106)

Step 2:

The input data for the recursion relation can now be computed from η̂. Since
η̂ = η̂

(−6)
−3 we see that the only terms in (4.46) that contribute have n = 6 and

q = 3, and therefore the only input is Φ6,−1
6 . Note however, that in contrast to the

type I1 and type II0 boundaries, the sum over weights now runs over 1 ≤ s ≤ 5,
hence we expect Φ6,−1

6 = ((L+
6 )[6], (L0

6)[6], (L−
6 )[6]) to be significantly more complex.

Explicitly, we find

(
L+

6
)[6] = χ

8


−3i 6 0 0

2 9i −6 0
0 −6 −9i 2
0 0 6 3i

 ,

(
L0

6
)[6] = χ

2


0 −3i 0 0
i 0 3i 0
0 −3i 0 −i
0 0 3i 0

 , (4.107)

(
L−

6
)[6] = χ

8


3i 6 0 0
2 −9i −6 0
0 −6 9i 2
0 0 6 −3i

 .
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Step 3:

As the reader may verify, computing commutators for the action of the bilinear B
defined in (4.25) on Φ6,−1

6 , given the above expressions, is not very enlightening. At
this point, it will be more convenient to leverage the interpretation of g as a vector
space and choose a convenient basis in terms of which the action of B is easier to
handle. Recall that g is 10-dimensional, with three of the generators given by the
sl(2)-triple, which form an irreducible representation of highest weight d = 2. The
remaining seven generators form an irreducible representation of highest weight
d = 6 and can also be constructed explicitly using the sl(2)-triple. In other words,
we have the decomposition

10 = 3⊕ 7 . (4.108)

The basis we take for the irreducible representation of highest weight d = 6 is
constructed out of its highest weight state (L1)3 via

T2k = ink
6

(
(adL−1)k

k! + (adL−1)6−k

(6− k)!

)
(L1)3 (k = 0, 1, 2, 3) ,

T2k+1 = nk
6

(
(adL−1)k

k! − (adL−1)6−k

(6− k)!

)
(L1)3 (k = 0, 1, 2) ,

(4.109)

where for briefness we defined the coefficients

nk = ik

√
1
2

6!
k!(6− k)! ×

{
1 for k = 0, 1, 2,
1/
√

2 for k = 3.
(4.110)

Our basis is completed by fixing a basis for the irreducible representation of highest
weight d = 2, which we span by

T7 = 1
2
√

5
(
L1 + L−1

)
, T8 = i

2
√

5
(
L1 − L−1

)
, T9 = 1

2
√

5
L0 . (4.111)

We have included these normalization factors such that the Ta form an orthonormal
basis, in the sense that

Tr(TaTb) = δab . (4.112)

This allows one to easily switch between expressing elements of g as 4× 4 matrices
or as 10-component vectors. Furthermore, the adjoint action of the sl(2,C)-triple
(adL1, adL0, adL−1) can now be realized by 10× 10 matrix multiplication, whose
explicit expressions can be found in appendix B of [1]. In the Ta basis we can write
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the initial data of the CKS recursion (4.107) as(
L+

6
)[6] = χ

8

√
15
2
(
i
√

15T1 −
√

15T2 − 3iT5 + T6
)
,(

L0
6
)[6] = χ

4
√

15
(
−
√

5T3 +
√

3T7
)
,

(
L−

6
)[6] = χ

8

√
15
2
(
− i
√

15T1 −
√

15T2 + 3iT5 + T6
)
.

(4.113)

The next step of the CKS recursion is to combine the data (L+
n , L

0
n, L

−
n ) at each

step into 30-component vectors Φn. A natural sl(2)-triple (Λ+,Λ0,Λ−) that acts on
these vectors is then constructed in (4.36). We can use its Casimir Λ2 to decompose
the 30-dimensional vector space further based on the highest weight d + 2ϵ. By
construction the highest weights of our input data Φ6,−1

6 under L2 and Λ2 are d = 6
and ϵ = −1, hence let us put

Φ6,−1
6 = −8i

√
2
15 χ e

6,−1 . (4.114)

The crucial observation is that there exist three more vectors e6,1, e2,1 and e2,−1

on which the action of the bilinear B closes. Together these are given by

e6,1 =

−4
√

15T0 + 3i
√

15T1 + 12T4 − 3i T5

6i
√

10T2 − 6i
√

6T6

4
√

15T0 + 3i
√

15T1 − 12T4 − 3i T5


e6,−1 =


√

15T0 + i
√

15T1 − 3T4 − i T5

2i
√

10T2 − 2i
√

6T6

−
√

15T0 + i
√

15T1 + 3T4 − i T5

 , (4.115)

e2,1 =
√

5

 2i T7 + T8

2T9

−2i T7 + T8

 , e2,−1 =
√

5

−i T7 + T8

2T9

i T7 + T8

 .

We can then write our ansatz for Φ6n as6

Φ6n = (an+ bn)e6,1 + (−3an+ 4bn)e6,−1 + (cn+dn)e2,1 + (2cn−dn)e2,−1 , (4.116)

with the initial data of the recursion given by

a1 = iχ

56

√
15
2 , b1 = − iχ56

√
15
2 , c1 = 0 , d1 = 0 . (4.117)

6For convenience we chose to rotate the coefficients appearing with the vectors e6,1, e6,−1, e2,1

and e2,−1 such that the 30-component Φ6n does not have multiple an, bn, cn, dn in its entries.
This makes it easier to find the solution to the coupled system of recursion relations later.
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For arbitrary coefficients an, bn, cn, dn it can be verified that B(Φ6k,Φ6(n−k)) is
again spanned by the vectors e6,1, e6,−1, e2,1 and e2,−1, so the action of the bilinear
B is indeed closed on this subspace. This is a huge simplification, since there
are now only four components of Φ that enter the recursion relation instead of
thirty. It should be noted, however, that B still acts very non-trivially on these
four components. For example, in the basis (e6,1, e6,−1, e2,1, e2,−1) one finds that
B(e6,−1, ·) acts as

B(e6,−1, ·) = − i

14


− i

√
30

7
8
7 i
√

6
5

24
5 0

2
7 i
√

2
15

12
7 i
√

6
5 − 32

15 − 112
15

− 3
14

8
7 0 0

0 2 0 0

 . (4.118)

Indeed, we see that the coefficients an, bn, cn, dn all become intertwined, and already
at the next step Φ12 each of them is non-vanishing. The recursion relation 4.42
therefore reduces to a system of four coupled recursion relations, which have been
given in (4.196) for completeness. For illustrative purposes we also listed the
coefficients that follow from iterating the recursion for the first couple of steps of
the recursion in table 4.1.

Looking at the data listed in table 4.1 one realizes that we are dealing with quite
non-trivial series of coefficients. From the recursion relations (4.196) we could
have expected such complications to arise, since we need to solve a coupled system
where we sum over all previous terms 0 < k < n. Nevertheless we can present an
exact solution to these recursions, where the coefficients an and dn are given by
relatively simple power series, while bn and cn involve the hypergeometric function
2F1(µ1, µ2; ν1; z). To be precise, the coefficients are given by

an = i

7

√
3
10

(χ
4

)n (
1− 3(−1)n2n−2) ,

bn = − i

28

√
3
10

(χ
4

)n (
2
√

3− 3(−1)n2n − 2n+2
( 1

2
n+ 1

)
2F1
(
1, n+ 1

2;n+ 2;−2
))
,

cn = −1
5

(χ
4

)n (√
3 + (−1)n2n − 2n+1

( 1
2

n+ 1

)
2F1
(
1, n+ 1

2;n+ 2;−2
))
,

dn = 1
5

(χ
4

)n (
1 + (−1)n2n−1) . (4.119)

By resumming the series expansion in y−1−3n for (L+(y),L0(y),L−(y)) we obtain
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128i
√

10
3 ×

(
4
χ

)n
an 28i

√
10
3 ×

(
8
χ

)n
bn 5

(
8
χ

)n
cn 15

(
4
χ

)n
dn

-45 20 0 0

36 -36 -22 9

-126 224 48 -9

198 -724 -278 27

-450 3216 952 -45

846 -12168 -4156 99

-1746 49920 16000 -189

3438 -196788 -65446 387

-6930 791792 259464 -765

13806 -3154456 -1044212 1539

Table 4.1: Values obtained for the coefficients an, bn, cn, dn by iterating the recursion rela-
tion for the first 10 steps, where we included overall normalization factors for convenience.

the functions

a(y) = i

7

√
3
10
χ

4 ×
χ+ 20y3

y (4y3 − χ) (χ+ 2y3) ,

b(y) = − i

28

√
3
10 ×

√
F (y)

y (4y3 − χ) (χ+ 2y3) , (4.120)

c(y) = 1
3y + 28i

3

√
2
15b(y)

+
√
F (y)

(
F (y)−

(
χ+ 8y3) (χ3 + 72χ2y3 + 96χy6 + 128y9))

12χy (4y3 − χ) (χ+ 2y3) (−χ3 + 48χ2y3 + 96χy6 + 640y9) ,

d(y) = 3χ2

10y (4y3 − χ) (χ+ 2y3) .

where for convenience we defined

F (y) = χ4+288χ2y6+16χ3y3+128χy9−8
√

2y3/2 (χ− 4y3)2 (
χ+ 2y3)3/2+512y12 .

(4.121)
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Step 4:

Next, we determine the polynomials gk from the L0
6n components of Φ6n. For this

recursion we first have to determine the coefficients Bk from (4.55). From (4.115)
we see that L0

6n is spanned by the generators T2, T6 and T9, which means we only
have to consider the weights s = 4, 0,−4. Therefore we can express the coefficients
Bk as

B3k = −1
2
(
L0

6k−6
)6,4

, k ≥ 1 , (4.122)

B3k+1 = −1
2
(
L0

6k
)2,0 − 1

2
(
L0

6k
)6,0

, k ≥ 1 , (4.123)

B3k+2 = −1
2
(
L0

6k+6
)6,−4

, k ≥ 0 . (4.124)

By inserting our expression (4.116) for L0
6k we find

B3k = 7
√

5
2 bk−1

(
i T2 − T3

)
,

B3k+1 = −7i
√

6 bk T6 + 3
√

5 ck T9 ,

B3k+2 = 7
√

5
2 bk+1

(
i T2 + T3

)
.

(4.125)

The coefficients gk are determined by the recursion relation (4.59). As an alternative
approach, we want to mention that one can also compute L0(y) from the coefficients
bn, cn, and then solve the differential equation (4.54) for ĝ(y) with boundary
condition ĝ(0) = 1. The first approach gets rather complicated since ĝk is no longer
Lie algebra-valued. This means it no longer suffices to work with the basis Ta, but
instead we have to write out the matrices explicitly. Either way we can present an
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exact solution for this recursion, which is given by

g3k = α3k


1 + 3βk 0 0 0

0 3 + γk 0 0
0 0 3 + δk 0
0 0 0 9(1−2k)εk+6k+1

2k(3/2−k)

 ,

g3k+1 = α3k+3


0 0 0 0
0 0 0 0

δk+1 − 1 0 0 0
0 9(1+2k)2εk+(6k+7)(8k2+2k−5)

(k+1)(4k2−1) 0 0

 ,

g3k+2 = α3k


0 0 3βk − 3 0
0 0 0 γk − 1
0 0 0 0
0 0 0 0

 ,

(4.126)

where for brevity we defined

α3k = (−χ)k
k!

4−1−k√π
Γ(1/2− k) , (4.127)

and denoted the generalized hypergeometric functions pFq(µ1, . . . , µp; ν1, . . . νq; z)
by the coefficients7

βk = 2F1
(1

2 ,−k; 1
2 − k;−2

)
,

γk = 2F1
(
− 1

2 ,−k; 1
2 − k;−2

)
,

δk = 3F2
(
− 1

2 ,
5
6 ,−k;−1

6 ,
1
2 − k;−2

)
,

εk = 2F1
(1

2 , 1− k; 1
2 − k;−2

)
.

(4.128)

Note that we have chosen to rotate back to the real basis by gk = ρ−1ĝkρ.

By resumming the coefficients gk as a series expansion in y−k one recovers the
matrix-valued function g(y). From there, one obtains the following expression for

7Note that the coefficient δk should not be confused with the phase operator δ.
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the nilpotent orbit approximation of the period map

hnil(y) = α(y)


1 + 3β(y)−1 0 3β(y)−1 − 3 0

0 3y + yβ(y) 0 yβ(y)− y
γ(y)
α(y) − 4y2 0 γ(y)

α(y) 0
0 3χ− 3y3 + 3y3β(y) 0 y3 − χ+ 3y3β(y)

 ,

(4.129)
where we have suppressed the overall axion-dependent factor exN . Furthermore,
for convenience we have defined the functions8

α(y) = 1
2
√

4y3 − χ
, β(y) =

√
1 + χ

2y3 , (4.130)

γ(y) =
√

2 y3 − χ+ 3y3β(y)

2y5/2
√

χ(2y3−χ)
y6 + 8

. (4.131)

Note that, in contrast to the I1 and II0 boundaries, the parameter χ that entered
through the phase operator δ cannot be removed by some coordinate redefinition
here.

Reconstructing the period vector for type IV1

Lastly, let us also present the result for the nilpotent orbit approximation of the
Hodge filtration. Rather strikingly, one finds the following exact result

Fnil(t) = etN


1 0 0 0
0 1 0 0
0 0 1 0
iχ 0 0 0

 , (4.132)

where by exact we of course mean up to exponential corrections. It is an extremely
non-trivial consistency check that all the sub-leading terms in the complicated
expression for hnil(x, y) obtained in (4.129) are exactly such that the final result
is precisely the expected expression for the nilpotent orbit approximation of the
Hodge filtration. Furthermore, let us also record the period vector which gives
rise to the above Hodge filtration. At this point, we choose to rotate back to the
conventions used in appendix 3.B using the transformation (4.109). Additionally,
8Note that the function α(y) corresponds to the series α(y) = y−3/2

∑
k

α3ky−3k for the coeffi-
cients defined in (4.127).
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we also use the transformation (3.214) to include the dependence on the various
quantities that determine the integral structure. The result is given by

Πnil(t) = etN


1
0
f
2a

γ − i
6a

2bχ

 =


1
at

1
2abt

2 + et+ f
2a

− 1
6a

2bt3 + γ − i
6a

2bχ

 . (4.133)

In particular, after making the identifications

a = 1 , b = κ e = σ f = − c2

12 , γ = 0 , χ 7→ −3χζ(3)
8π3κ

, (4.134)

we find that the period vector takes the form

Πnil(t) =


1
t

κ
2 t

2 + σt− c2
24

−κ6 t
3 − c2

24 t+ χζ(3)
2(2πi)3

 , (4.135)

which is the well-known asymptotic form of the period vector near the LCS point,
expressed in terms of the topological data of the mirror Calabi–Yau threefold, recall
(3.1). Let us in particular emphasize the appearance of the term involving the Euler
characteristic, as the latter arises as an (α′)3 correction which can alternatively be
derived through a four-loop computation in the worldsheet theory [63,111,112]. It
is rather remarkable that, through the bulk reconstruction procedure, the boundary
data (in particular the phase operator) is rich enough to contain such information.

4.3 Bulk reconstruction: multi-variable

Having discussed the bulk reconstruction procedure in the one-parameter case, let
us now return to the general m-parameter case, for which we have seen that

Fnil = exp
[
m∑
i=1

xiNi

]
· hnil(y1, . . . , ym) · F∞ , (4.136)

with the map hnil(y1, . . . , ym) depending only on the saxions. Our goal will be to
completely determine hnil(y1, . . . , ym) by a multi-parameter generalization of the
bulk reconstruction procedure discussed in section 4.1.
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Iterating the one-parameter bulk reconstruction procedure

The crucial observation of Cattani, Kaplan, and Schmid [70], which was already
discussed in chapter 3, is that one can effectively perform the one-parameter bulk
reconstruction in a clever iterative way in order to obtain the m-parameter result.
Indeed, recall from our discussion in section 3.5 that one can recursively define
one-parameter period maps hnil,r, for r = 1, . . . ,m, by the relation

exp
[
i

(
r∑
i=1

yi
yr+1

Ni

)]
F p(r) = hnil,r exp

[
i

(
r−1∑
i=1

yi
yr
Ni

)]
F p(r−1) , (4.137)

with ym+1 ≡ 1. In particular, writing

hnil,(r) = hnil,r · · ·hnil,1 , (4.138)

we see that (4.137) can be written as

exp
[
i

(
r∑
i=1

yi
yr+1

Ni

)]
F p(r) = hnil,r

[
hnil,(r−1)F

p
∞
]
. (4.139)

In other words, if hnil,(r−1) has been determined, one can compute hnil,r by per-
forming the one-parameter bulk reconstruction outlined in section 4.1, using as
“boundary data”

{Ad(hnil,(r−1))Q∞,Ad(hnil,(r−1))N•
(r), δr} , (4.140)

where we emphasize that one should “translate” the boundary charge operator Q∞

and the sl(2,R)-triple N•
(r) using the map hnil,(r−1) c.f. (4.139), while for the phase

operator one can simply use δr. Furthermore, we recall the result (see Lemma 4.37
of [70])

[N0
(j), hnil,i] = 0 , ∀i ≤ j , (4.141)

which implies that Ad(hnil,(r−1))N0
(r) = N0

(r). In other words, the grading operator
is not affected by the translation. As a result, we immediately find that each hnil,i

takes the form

hnil,i = gi ·
(

yi
yi+1

)− 1
2N

0
(i)

, gi = 1 +
∞∑
ki=1

gi,ki

(
yi
yi+1

)−ki

. (4.142)

In particular, each hi admits a series expansion in yi/yi+1, with the expansion
coefficients gi,ki

being determined by the CKS recursion. In the one-parameter
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case, we have seen that they can be expressed as moduli-independent universal
Lie polynomials involving certain projections of the (single) phase operator δ and
raising operator N+ onto specific eigenspaces of the grading operators N0 and Q∞.
All of this remains true in the multi-parameter case, except for the fact that the
expressions will now become moduli-dependent, due to the factors of Ad(hnil,(r−1))
appearing in (4.140). Specifically, one has

gi,ki
= gi,ki

(
yi−1

yi
, . . . ,

y1

y2

)
. (4.143)

In other words, for i > 1, each gi,ki
is a function of all the previous yj , with j ≤ i.

More precisely, each gi,ki
itself admits a power series expansion in yi−1/yi, . . . , y1/y2.

The final result for the map hnil(y1, . . . , ym) is simply given by

hnil(y1, . . . , ym) = hnil,(m) = hnil,m · · ·hnil,1 , (4.144)

and should therefore be seen as a very non-trivial collection of nested power series.

A useful rewriting

Let us present a useful rewriting of the map hnil(y1, . . . , ym). In fact, for our
purposes it will be more important to consider the form of the inverse operator
h−1

nil , which admits a similar expansion

h−1
nil = h−1

nil,1 · · ·h
−1
nil,m , (4.145)

where

h−1
nil,i =

(
yi
yi+1

) 1
2N

0
(i)
[ ∞∑
ki=0

(
yi
yi+1

)−ki

fi,ki

]
, fi,0 ≡ 1 . (4.146)

Of course, the expansion coefficients fi,ki
can be straightforwardly related to the

gi,ki
via an order-by-order inversion. For practical purposes, it will be useful to

commute the factor left of the square brackets (4.146) to the right by employing
the weight-decomposition

fi,ki =
∑
si

fsi

i,ki
, [N0

(j), f
si

i,ki
] = sji f

si

i,ki
, si =

(
s1
i , . . . , s

m
i

)
, (4.147)

of the fi,ki coefficients, with respect to the real garding operators N0
(j). This yields

the following expression

h−1
nil =

∞∑
k1,...,km=0

∑
s1,...,sm

m∏
i=1

( yi
yi+1

)−ki+ 1
2 s

(m)
i

fs
i

i,ki

h−1
Sl(2) , (4.148)

190



4.3 Bulk reconstruction: multi-variable

where we introduced the notation

s
(m)
i = sii + · · ·+ smi , (4.149)

and identified

h−1
Sl(2) = e(y) =

m∏
i=1

(
yi
yi+1

) 1
2N

0
(i)

, (4.150)

which corresponds to the Sl(2)-orbit approximation of the inverse period map. It is
usually denoted by e(y) and we will use this notation as well.

Properties of fi,ki

We end our discussion by stating two important properties of the expansion functions
fi,ki

. Both of these properties will feature prominently in the finiteness proof of self-
dual vacua, as will be explained in section 5.2.2. Recalling the notation introduced
in (4.147), the properties are as follows.

• Property 1: weight restrictions
The first property is a restriction on the possible weight of the expansion
coefficients, namely

fs
i

i,ki
= 0 , if sii > ki − 1 or sij ̸= 0 for j > i , (4.151)

which immediately follows from the property (4.61) that we derived in the
one-parameter bulk reconstruction procedure. In words, this means that the
last non-trivial weight of each fi,ki

is given by sii, and that the value of this
weight is restricted by the order ki at which this coefficient appears in the
expansion. In particular, this implies that the second sum in (4.148) only
runs over sii ≤ ki − 1.

• Property 2: scaling
While the first property (4.151) restricts the possible weights of the expansion
functions, the second property gives a bound on the scaling of the expansion
functions in terms of their weights

fs
i

i,ki
≺

i−1∏
j=1

(
yj
yj+1

)−si
j

, 2 ≤ i ≤ m. (4.152)

Note that in the case i = 1 the coefficients are simply constant matrices,
hence this constraint is only relevant for i ≥ 2. Here the notation ≺ means
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the following: for two functions f, g we write f ≺ g when f is bounded by a
constant multiple of g. The relation (4.152) effectively describes the scaling
of the various fi,ki

corrections in terms of their sl(2)-weights.

We would like to mention that, to our knowledge, the bound (4.152) has not been
written down explicitly before, although it does follow directly from the proof of
the Sl(2)-orbit theorem of [70]. We have therefore presented a proof of (4.152) in
Appendix 4.C. In simple terms, one needs to use the details of how the expansion
coefficients are derived from the boundary data and, in particular, use some of the
restrictions on the sl(2)-weights of the phase operators δi.

4.3.1 Example: type ⟨I1|IV2|IV1⟩

To exemplify the multi-parameter bulk reconstruction procedure, let us consider
a two-parameter type ⟨I1|IV2|IV1⟩ singularity. Geometrically, such a singularity
corresponds to a large complex structure point that is obtained by intersecting
a conifold singularity with a type IV1 singularity, and is part of a larger class of
so-called coni-LCS boundaries. Let us also remark that such boundaries have been
used to construct models with small flux superpotentials, see e.g. [113, 114]. In the
following we will build on the computations performed in [110], see also [77], and
we will follow the same conventions.

Boundary data for I1 → IV2 enhancement

In the following we list the boundary data that is associated to the type I1 → IV2

enhancement, corresponding to the growth sector y1 > y2. We refer the reader
to [77,110] for more details on how this boundary data can be obtained. The two
commuting real sl(2)-triples are collected in table 4.2. Furthermore, after possibly
performing a shift of the coordinates, the most general phase operators are given
by9

δ(1) = 0 , δ(2) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
δ2 δ1 0 0 0 0
δ1 0 0 0 0 0
0 0 0 0 0 0


. (4.153)

9For the particular example at hand, these expressions are valid for both the I1 → IV2 and the
IV1 → IV2 enhancements.
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+ 0 −

N•
1



0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0



N•
2



0 0 3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −3 0 0





3 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −3 0 0
0 0 0 0 0 0
0 0 0 0 0 −1





0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 1 0 0 0



Table 4.2: The two commuting real sl(2)-triples associated to a I1 → IV2 enhancement

Finally, the boundary charge operator is given by

Q(0) =



0 0 − 3i
2 0 0 0

0 0 0 0 i
2 0

i
2 0 0 0 0 −2i
0 0 0 0 0 − i

2
0 − i

2 0 0 0 0
0 0 i

2
3i
2 0 0


. (4.154)

Bulk Reconstruction: Step 1

Let us perform the bulk reconstruction procedure associated to the enhancement
chain I1 → IV2, corresponding to the sector in which y1 > y2. For the first step
of the bulk reconstruction, we are to use the boundary data {N+

(1), N
0
(1), N

−
(1)} as

well as δ(1). Since the phase operator δ(1) vanishes, the bulk reconstruction for the
coordinate y1

y2
is trivial, i.e. we find

hnil,1

(
y1

y2

)
=
(
y1

y2

)− 1
2N

0
(1)

. (4.155)
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Bulk Reconstruction: Step 2

Next, we perform the bulk reconstruction for the y2 coordinate. As discussed before,
we are to use the data h1{N+

(2), N
0
(2), N

−
(2)}h

−1
1 as well as Q(1) = h1Q∞h

−1
1 and δ(2),

where we recall that
N•

(2) = N•
1 +N•

2 . (4.156)

To be explicit, one finds

Q(1)

(
y1

y2

)
=



0 0 − 3i
2 0 0 0

0 0 0 0 i
2
y2
y1

0
i
2 0 0 0 0 −2i
0 0 0 0 0 − i

2
0 − i

2
y1
y2

0 0 0 0
0 0 i

2
3i
2 0 0


, (4.157)

and

h1N
+
(2)h

−1
1 =



0 0 3 0 0 0
0 0 0 0 −y2

y1
0

0 0 0 0 0 4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −3 0 0


, (4.158)

h1N
−
(2)h

−1
1 =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 −y1

y2
0 0 0 0

0 0 1 0 0 0


, (4.159)

while h1N
0
(2)h

−1
1 is simply equal to N0

(2). Note also that through the relation

h1N
−
(2)h

−1
1 = y1

y2
N1 +N2 , (4.160)

one can immediately read off the log-monodromy matrices associated to this singular-
ity. From here, computing the expansion of the map hnil,2

(
y2; y1

y2

)
is straightforward

and follows from simply applying the CKS recursion to the above data. However, in
contrast to the one-parameter examples discussed before, we have not attempted to
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4.3 Bulk reconstruction: multi-variable

algebraically solve the resulting recursion relations. Nevertheless, one can straight-
forwardly compute the expansion to any (realistic) desired order. To give an idea
of the result, we give the expansion of the full period map to first order in δ1, δ2

hnil = hSl(2) +



3δ2
8y9/2

2

3δ1
4y1/2

1 y3
2

0 0 0 9δ2
4y9/2

2
3δ1

8y1y
3/2
2

0 0 0 0 3δ1
4y1y

3/2
2

0 0 − 9δ2
8y7/2

2

9δ2
4y7/2

2

3δ1
4y1/2

1 y2
2

0
0 0 15δ2

16y3/2
2

− 3δ2
8y3/2

2
− 3δ1

8y1/2
1

0
0 0 9δ1

8y3/2
2

− 3δ1
4y3/2

2
0 0

15δ2
16y5/2

2

9δ1
8y1/2

1 y2
0 0 0 9δ2

8y5/2
2


, (4.161)

where hSl(2) denotes the Sl(2)-orbit approximation of the period map.

Reconstructing the period vector for type ⟨I1|IV2|IV1⟩

As a very non-trivial check, we have verified that the expression (4.161) correctly
yields the expected result for the nilpotent orbit approximation of the Hodge
filtration, namely

Fnil(t1, t2) =



1 0 0 0 0 0
0 1 0 0 0 0
t2 0 1 0 0 0

− 1
6 t

3
2 + iδ2 iδ1 − 1

2 t
2
2 −t2 0 1

iδ1 −t1 0 0 1 0
1
2 t

2
2 0 t2 1 0 0


, (4.162)

where we have reinstated the axion-dependence using the monodromy matrices.
We have checked that the above relation remains satisfied up to O

(
δ4

1
)

and O
(
δ3

2
)
.

This gives us good confidence that we have performed the two-parameter bulk
reconstruction procedure correctly. Finally, the most general asymptotic form of
the period vector that gives rise to this Hodge filtration is given by

Πnil(t1, t2) = et1N1+t2N2





1
0
0
iδ2

iδ1

0


+A1e

2πit1



0
1
0
iδ1

1
2πi
0


+A2

1e
4πit1



0
0
0
1

4πi
0
0




,

195



4 Asymptotic Hodge Theory II: Boundary to Bulk

for some non-zero A1 ∈ C. Here we again note the appearance of essential instan-
tons, whose presence is expected due to the underlying type I1 singularity. As the
reader may verify, the result we find agrees with the results of [110], though they
are obtained through different methods.

To close the discussion on this example, let us note that one can similarly perform
the bulk reconstruction procedure for the IV1 → IV2 enhancement, corresponding
to the sector in which y2 > y1. As another non-trivial consistency check, one finds
the exact same expression (4.161) for the nilpotent orbit expansion of the period
map. This is as expected, since the nilpotent orbit approximation does not rely on
any hierarchy between the saxions.

4.4 Application: Asymptotic Hodge inner products
With the result (4.148) for the nilpotent orbit approximation of the period map at
hand, it is possible to evaluate Hodge inner products in great generality. Indeed,
given two elements v, w ∈ H, the nilpotent orbit approximation of their Hodge
inner product can be expressed as

⟨v, w⟩nil = ⟨h−1
nil v, h

−1
nilw⟩∞ . (4.163)

In particular, all the moduli-dependence of the Hodge inner product is captured
by the factors of h−1. In general, the expressions that result from inserting (4.148)
can become rather involved, in particular due to the fact that many cross-terms
can emerge.

Central charge of D3-particles

There is at least one case, however, in which the resulting expressions simplify
nicely. This is the case where one is considering generic Hodge inner products
between the period vector Π, or equivalently the (D, 0)-form Ω, and an element of
a definite sl(2)-weight, denoted by q in the following. This is of particular relevance
when studying BPS states that arise from D3-branes wrapping a particular class
of three-cycles in a Calabi–Yau threefold, in the context of type IIB string theory
compactifications. Indeed, for a given BPS state, parametrized by a charge vector
q ∈ H3(Y3,Z), its mass is given by

|Z| = |⟨q,Ω⟩|
||Ω|| , (4.164)
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where Z denotes the central charge of the BPS state, and Ω the holomorphic
(3, 0)-form on Y3. Let us evaluate (4.164) in the nilpotent orbit approximation.
First, since Ω ∈ H3,0, we may apply the relation (4.136) and write

h−1
nil Ω = f · Ω∞ , (4.165)

for some moduli-independent element Ω∞ ∈ H3,0
∞ (suppressing the axions for

simplicity). Since (4.136) is a vector-space identity, there is of course the freedom
of an overall (possibly moduli-dependent) scaling, which we parametrize by the
function f . Importantly, in the expression (4.164) for the central charge, this overall
factor will drop out. Indeed, one finds

|Z| = |⟨h
−1
nil q, h

−1
nil Ω⟩∞|

||h−1
nil Ω||∞

= |⟨h
−1
nil q,Ω∞⟩∞|
||Ω∞||∞

. (4.166)

Assuming then, for simplicity, that q has a definite sl(2) weight given by ℓ, and
applying the result (4.148) one finds (in the nilpotent orbit approximation)

|Z| =
m∏
i=1

(
yi
yi+1

) 1
2 ℓi ∣∣∣ ∞∑

k1,...,km=0

∑
s1,...,sm

 m∏
i=1

(
yi
yi+1

)−ki+ 1
2 s

(m)
i


⟨fs1

1,k1
· · · fsm

m,km
q,Ω∞⟩∞

||Ω∞||∞

∣∣∣ (4.167)

Note that the overall prefactor in (4.167) comes from evaluating the action of h−1
Sl(2)

on the weight-eigenvector q. Focusing for the moment on the leading term in
(4.167), one may write

|Z| =
m∏
i=1

(
yi
yi+1

) 1
2 ℓi

·
∣∣∣∣ ⟨q,Ω∞⟩∞
||Ω∞||∞

+ corrections
∣∣∣∣ . (4.168)

In particular, the asymptotic behaviour of the mass of the BPS state, given by |Z|,
is determined by weight of the charge vector q. This first-order expression has been
used in [91], see also [92], to compute the charge-to-mass ratio for this class of BPS
states, under the assumption that the pairing ⟨q,Ω∞⟩∞ is non-vanishing. Physically,
this assumption can be interpreted as the statement that the asymptotic coupling
of the BPS state to the graviphoton is non-zero. However, if the pairing ⟨q,Ω∞⟩∞
does vanish, then it becomes necessary to consider the correction terms coming
from the nilpotent orbit expansion in order to properly characterize the scaling of
the mass. Notably, depending on the choice of q, as well as the type of boundary
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4 Asymptotic Hodge Theory II: Boundary to Bulk

that one is expanding around, it may happen that a state which naively appears
to become massive in fact becomes massless as one approaches the boundary. It
would be interesting to generalize the analysis of [91] to include the sub-leading
corrections using the multi-variable bulk reconstruction procedure.

4.4.1 Example: type ⟨I1|IV2|IV1⟩

Let us briefly illustrate the above results by revisiting the two-parameter type
⟨I1|IV2|IV1⟩ singularity discussed in section 4.3.1. For definiteness, we work within
the region y1 > y2, but the same results will hold for the region y2 > y1.

Choosing a charge vector

Let us first choose an appropriate charge vector q for which we will compute the
charge-to-mass ratio. Due to the singularity structure, the weights of Ω∞ are given
schematically by

Ω∞ = |0, 3⟩+ |0, 1⟩+ |0,−1⟩+ |0,−3⟩ . (4.169)

In other words, Ω∞ always has N0
(1) weight equal to 0, while its N0

(2) weights range
over −3,−1, 1, 3, in accordance with the fact that this is a I → IV enhancement.
To obtain a non-trivial result, we would like to choose a charge vector such that

⟨q,Ω∞⟩∞ = 0 . (4.170)

By checking which possible states are present in the current setup, one finds that
there are two possibilities for q, namely

q+ = |1, 1⟩ , q− = | − 1,−1⟩ . (4.171)

Explicitly, these states are respectively given by

q+ =



0
1
0
0
0
0


, q− =



0
0
0
0
1
0


, Π∞ =



−2
0
−2i
− i

3
0
1


, (4.172)

where we have included the matrix representation Π∞ for the boundary (3, 0)-form.
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The charge-to-mass ratio

Using the nilpotent orbit expansion of the period map (4.161), one can straight-
forwardly compute the nilpotent orbit approximation of the Weil operator via the
relation

Cnil = hnilC∞h
−1
nil . (4.173)

For transparency, we present the expression for Cnil to first order in δ1 and δ2

Cnil =



0 0 27δ2
4y4

2
− 6
y3

2
− 9δ2

2y6
2
− 3δ1
y1y3

2
0

0 0 3δ1
2y1y2

− 3δ1
y1y3

2
− 1
y1

0
9δ2
4y2

2

3δ1
y2

2
0 0 0 − 2

y2
+ 9δ2

2y4
2

y3
2
6 −

δ2
8 − δ1

2 0 0 0 − 9δ2
4y2

2

− δ1
2 y1 0 0 0 − 3δ1

y2
2

0 0 y2
2 + 9δ2

8y2
2

− 27δ2
4y4

2
− 3δ1

2y1y2
0


. (4.174)

Using this expression, as well as the expression for the holomorphic (3, 0)-form, one
can immediately compute to charge-to-mass ratio for the two BPS states described
by the charge vectors q±. We find10

(
Q
M

)−1
= ⟨q|Ω⟩
||q|| ||Ω|| =

{√
3δ2
2 (y1y

3
2)−1 + · · · , q = q+ ,

0 , q = q− .
(4.175)

In other words, we find that for q+, the charge-to-mass ratio diverges polynomially
as

q+ : Q
M
∼
√
y1y3

2 , (4.176)

while for q− it turns out that the charge-to-mass ratio vanishes to polynomial order.
In particular, in order to properly describe its scaling, it is necessary to include the
essential instanton corrections to the period vector, as described in (4.3.1). After
including these corrections, one finds

q− : Q
M
∼

√
y3

2
y1
e2πy1 , (4.177)

which diverges polynomially in y2 and exponentially in y1.

10Recall that the mass M is given in terms of the central charge (4.164) via M = |Z|.
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Appendices

4.A Computations on the Q-constraint and the CKS
input data

In this section some properties of the input data Φn,−1
n are discussed in terms

of the boundary data. We first explain how the Q-constraint can be written in
terms of the complex algebra and the boundary charge operator Q∞. The resulting
constraint is then used to fix the coefficients of the input data. We also show that
the expression (4.46) for the input data indeed has the desired properties, i.e. it
has (d, ϵ) = (n,−1).

4.A.1 Rewriting the Q-constraint
We recall the Q-constraint, as given in (2.84)

[Q∞,N 0] = i
(
N+ +N−) , [Q,N±] = − i2N

0 . (4.178)

Let us first write the above equations in the complex algebra by recalling (4.21)

[ρQ∞ρ
−1,L0] = i

(
L+ + L−) , [ρQ∞ρ

−1,L±] = − i2L0 . (4.179)

By using (4.6) and the commutation relations betweenQ∞ and the Lα, one computes

ρQ∞ρ
−1 = e

iπ
4 ad(L1+L−1)Q∞

= Q∞ +
∞∑
n=1

4n−1
[

(iπ/4)2n

(2n)! 2L0 −
(iπ/4)2n−1

(2n− 1)! (L1 − L−1)
]

= Q∞ −
1
2L0 −

i

2L1 + i

2L−1 . (4.180)

Inserting this result in (4.179) then immediately yields the Q-constraint as presented
in (4.23)

[2Q∞ − L0,L0] = 2i(L+ + L−) + i[L1,L0]− i[L−1,L0] , (4.181)
[2Q∞ − L0,L±] = −iL0 + i[L1,L±]− i[L−1,L±] . (4.182)
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4.A.2 Imposing the Q-constraint on the CKS input data
We recall that the input data for the CKS recursion is given by vectors Φn,−1

n which
have d = n and ϵ = −1. In the main text the following expression for the input
data Φn,−1

n was given in terms of the boundary data

Φn,−1
n =

∑
1≤s,q≤n−1

an,sq

 − 1
n−s (ad L1)s+1

2 (ad L1)s

(n− s+ 1) (ad L1)s−1

 η̂
(−n)
−q . (4.183)

In this section we will show that indeed this Φn,−1
n has eigenvalue ϵ = −1. By the

characterization (4.41) of the eigenvalue ϵ, it suffices to show that

4B0(Φn,−1
n ) = (n+ 2)Φn,−1

n , (4.184)

where

4B0 =

 adL0 − adL1 0
−2 adL−1 0 2 adL1

0 adL1 − adL0

 . (4.185)

Inserting the expression for Φn,−1
n into the above equation, we obtain

4B0(Φn,−1
n ) =

∑
s,q

an,sq

 − 1
n−s adL0(adL1)s+1 − 2(adL1)s+1

2
n−s adL−1(adL1)s+1 + 2(n− s+ 1)(adL1)s

2 adL−1(adL1)s − (n− s+ 1) adL0(adL1)s−1

 η̂
(−n)
−q .

Next, we use the Jacobi identity and the sl(2)-algebra to write

adL0(adL1)s = (adL1)s(adL0 + 2s) , (4.186)
adL−1(adL1)s = s(adL1)s−1(− adL0 − s+ 1) + (adL1)s adL−1 . (4.187)

Recalling that η̂(−n)
−q satisfies

[L−1, η̂
(−n)
−q ] = 0, [L0, η̂

(−n)
−q ] = −n η̂(−n)

−q , (4.188)

it follows that

adL0(adL1)sη̂(−n)
−q = (2s− n)(adL1)sη̂(−n)

−q , (4.189)

adL−1(adL1)sη̂(−n)
−q = s(n− s+ 1)(adL1)s−1η̂

(−n)
−q . (4.190)

Using these two results, one may simplify

4B0(Φn,−1
n ) = (n+ 2)

∑
s,q

an,sq

 − 1
n−s (adL1)s+1

2(adL1)s
(n− s+ 1)(adL1)s−1

 η̂
(−n)
−q = (n+ 2)Φn,−1

n .
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We conclude that the input data indeed has ϵ = −1. Note that this derivation is
valid for any choice of an,sq . To fix the an,sq , we evaluate the Q-constraint at level n
and insert the expression for Φn,−1

n . We follow the computation in [73]. Using the
fact that

[2Q∞ − L0, (adL1)sη̂(−n)
−q ] = (n− 2q)(adL1)sη̂(−n)

−q , (4.191)

and as well as the previous relations we find that (4.181) reduces to

0 =
∑

1≤s,q≤n−1

(
i(n− 2q)an,sq + n− s

n− s+ 1a
n,s−1
q − s(n− s)an,s+1

q

)
(adL1)sη̂(−n)

−q ,

where in the second line we collected terms according to their power in adL1. Since
this relation must hold for every s separately, we find

i(n− 2q)an,sq + n− s
n− s+ 1a

n,s−1
q − s(n− s)an,s+1

q = 0 , an,1q = 1
n
. (4.192)

The particular normalization is due to the fact that one should recover η̂ from the
L−
n as follows:11

η̂ =
∑
n≥2

∑
q≥1

(L−
n )(n,−n)

−q =
∑
n≥2

∑
q≥1

nan,1q η̂
(−n)
−q . (4.193)

In [73] it was stated that (4.192) together with the reality condition an,sq = an,sn−q
has a unique solution given by

an,sq = is−1 (n− s)!
n! bs−1

q−1,n−q−1 , (4.194)

where the coefficients bkp,q are determined by

(1− x)p(1 + x)q =
p+q∑
k=0

bkp,qx
k . (4.195)

11The component of L−
n which has weight −n corresponds to the s = 1 part of the sum.
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4.B Expressions for the bulk reconstruction of IV1

boundaries
In this appendix we collect some relevant expressions for the bulk reconstruction of
the IV1 boundary that complements the derivation in section 4.2.2. In particular,
we consider the recursion relation (4.30) for Φn = (L+,L0,L−) for IV1 boundaries.
By using ansatz (4.116) we find that the CKS recursion reduces to a system of four
coupled recursion relations for the coefficients an, bn, cn and dn, given by

an + bn = 2
6n+ 8

∑
0<k<n

[
an−k

(
9ck + 14i

√
6
5bk
)

+ 3bn−k

(28i
3

√
2
15bk + 4ck + dk

)]
,

3an − 4bn = 2
6n− 6

∑
0<k<n

[
12bn−k

(
7i
√

2
15bk + 3ck − dk

)
− 4an−k

(
9ck + 14i

√
6
5bk
)]
,

cn + dn = 2
6n+ 4

∑
0<k<n

1
30

[
90(ck + dk)cn−k − 1568bk(3an−k + bn−k)

]
,

2cn − dn = 2
6n− 2

∑
0<k<n

[784
15 bn−k(bk − 6ak) + 3cn−k(2dk − cn−k)

]
. (4.196)

Let us remind the reader that these coupled recursion relations are solved by (4.119).

4.C Properties of fi,ki

In this section we elaborate on the properties of the expansion functions fi,ki

appearing in the nilpotent orbit expansion, see for example equation (4.148). We
focus on the property

fs
i

i,ki
≺

i−1∏
j=1

(
yj
yj+1

)−si
j

, 2 ≤ i ≤ m, (4.197)

see also equation (4.152) and the surrounding discussion. We present the proof of
(4.197) for the case m = 2 to give the general idea. For arbitrary m, the argument
will be very similar but becomes more cumbersome to write down. Setting m = 2,
we need to show that

f
(s2

1,s
2
2)

2,k2
≺
(
y1

y2

)−s2
1

. (4.198)

It suffices to consider the case s2
1 > 0, since it is certainly the case that f2,k2 ≺ 1. It

follows from the general mechanism of the multi-variable bulk reconstruction that
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f2 is a Lie polynomial of the form

f2

(
y1

y2

)
= P

(
Ad
(
h1

(
y1

y2

))
N+

(2), δ(2)

)
. (4.199)

Importantly, the y1/y2-dependence of f2 is due entirely to h1N
+
(2)h

−1
1 . It is therefore

crucial to understand the scaling of this object. To this end, we recall that, according
to the Sl(2)-orbit theorem, we have the relation (see Lemma 4.37 of [70])

h1N
−
(2)h

−1
1 = y1

y2
N1 +N2 . (4.200)

In particular, this implies that N−
(2) can only have weights 0 and −2 with respect

to N0
(1). Therefore, since N0

(2) has weight 0 with respect to N0
(1) (the two commute)

it must be that N+
(2) has weights 0 and +2 with respect to N0

(1). In other words,
we have the decomposition

h1N
+
(2)h

−1
1 =

(
y1

y2

)−1 (
N+

(2)

)(2,2)
+
(
N+

(2)

)(0,2)
+ subleading terms . (4.201)

Note that the subleading terms can also only have weights (2, 2) and (0, 2). To
continue the proof, we recall that the phase operator δ(2) satisfies

δ(2) =
∑
s̃2

1

∑
s̃2

2≤−2

δ
(s̃2

1,s̃
2
2)

(2) [N−
(1), δ(2)] = [N−

(2), δ(2)] = 0 . (4.202)

In words, δ(2) is a lowest-weight operator, with weight s̃2
2 at most −2. By the

enhancement rules for limiting mixed Hodge structures, see e.g. [85], this implies
that also s̃2

1 ≤ 0. Importantly, since δ(2) is lowest weight, we have that

ad
(
h1N

+
(2)h

−1
1

)s
δ

(s̃2
1,s̃

2
2)

(2) = 0 , (4.203)

whenever s > min(s̃2
1, s̃

2
2). The argument now proceeds as follows. In order for

f2 to have a component with positive weight s2
1, this can only happen due to

ad
(
N+

(2)

)(2,2)
acting on δ(2), thereby raising the N0

(1) weight by two. However,
this goes at the expense of an additional factor (y1/y2)−1. Moreover, since δ(2) is
of lowest weight, the most conservative way to get an s2

1 component is by acting

exactly s2
1 times with ad

(
N+

(2)

)(2,2)
on the −s2

1 component of δ(2) (if it is present).

This therefore comes with an additional factor of (y1/y2)−s2
1 . This concludes the

proof of property (4.197) for the case m = 2.
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Part III

Applications in the String Landscape

In this part of the thesis we apply the machinery of asymptotic Hodge theory to
study the landscape of four-dimensional effective theories arising from type F-theory
compactifications on Calabi–Yau fourfolds. In particular, in chapter 5 we revisit
known results on the finiteness of self-dual flux vacua and show how the multi-
variable Sl(2)-orbit theorem, together with the multi-variable bulk reconstruction
procedure discussed in chapter 4, provides a complimentary perspective on this
matter. Additionally, we motivate and formulate a set of three conjectures which
are meant to address finer features of the flux landscape, based on expectations
coming from Hodge theory and recent results on tame/o-minimal geometry. These
conjectures greatly constrain the enumeration of certain classes of self-dual flux
vacua, as well as the dimensionality and geometric complexity of the vacuum locus.
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5 Finiteness Theorems and Counting
Conjectures for the Flux Landscape

This chapter is based on: Thomas W. Grimm, Jeroen Monnee:
Finiteness Theorems and Counting Conjectures for the Flux Landscape,
[arXiv: 2311.09295]

String theory is known to have a plethora of solutions around which effectively four-
dimensional quantum field theories coupled to classical gravity can be determined.
The space of such lower-dimensional effective theories is often referred to as the
string theory landscape. With this understanding, one might then inquire which of
these theories can possibly describe our Universe. On a more basic level one might
wonder if the number of such theories, after appropriately identifying equivalent
theories, is at all finite. If this is not the case, one should seriously question the
predictive capabilities of string theory. These issues were addressed at length in the
seminal works of Douglas et al. [115–118], which led to the general expectation that
the string landscape is, in an appropriate sense, finite. This expectation is further
corroborated by efforts in the swampland program [96, 119], which aims to identify
the fundamental properties an effective theory coupled to gravity should satisfy
in order to admit a UV-completion, see [81, 82] for reviews. Concurrently, there
have been some major developments in the fields of algebraic geometry and logic
that have lifted this expectation to the level of a mathematical theorem, at least
in specific settings. The aim of this chapter is to provide a collection of finiteness
results, coming from the fields of Hodge theory and tame geometry, in a way that
is hopefully accessible to physicists. In particular, we hope to clarify what has/has
not been shown and to give some insights and new perspectives on the various
proofs. We then draw from this knowledge to put forward a number of structural
conjectures about the landscape.

To prove something about the whole string landscape is a daunting task. Therefore,
we will focus our attention on a particular corner of the string landscape, namely
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5 Finiteness Theorems and Counting Conjectures for the Flux Landscape

those four-dimensional low-energy effective theories that arise from flux compactifi-
cations of type IIB/F-theory [36, 40, 120, 121], see [29, 122, 123] for reviews. The
essential features of this setting have also been introduced and summarized in chap-
ter 1. Indeed, recall that these compactifications, viewed from the dual M-theory
perspective [37], are specified by a family of Calabi–Yau fourfolds varying in moduli,
together with a background flux G4. The moduli are generically stabilized at the
critical points of the scalar potential induced by the flux, leading to a typically
large landscape of flux vacua. Such vacua are of great phenomenological interest, as
they feature spontaneous supersymmetry breaking down to N = 1 or even N = 0,
and may eventually lead to de Sitter solutions [124,125] with a small cosmological
constant [113,114,126–130]. A crucial point is that the flux has to satisfy a number
of consistency conditions, as the effective theory originates from a UV complete
theory of quantum gravity. These conditions include a quantization condition and
the tadpole cancellation condition. Consequently, the central question is whether
there exists only a finite number of fluxes and associated critical points that simul-
taneously satisfy these consistency conditions. To be clear, we will consider the
issue of finiteness within a given family of Calabi–Yau fourfolds, varying in moduli.
In particular, we will not address whether there exist only finitely many distinct
topological classes of Calabi–Yau fourfolds, which is an interesting question on its
own.

In the context of IIB/F-theory flux compactification, initial evidence for this sug-
gested finiteness was presented in the works [116–118], which where later formalized
in the mathematical works [131–133]. The underlying approach in these studies
involved approximating the total number or index of flux vacua by integrating a
suitable distribution of flux vacua over the moduli space, and showing that the latter
is finite [134–136]. From this distribution one could also obtain rough estimates for
the total number of flux vacua, leading to the infamous number 10500. However, one
critical limitation in their analysis was the relaxation of the quantization condition
on the flux. Indeed, in order to give a complete proof of the finiteness of flux vacua,
one expects that the quantization condition is crucial.

In the mathematics literature, a number of precise finiteness results have been es-
tablished, which we will review in section 5.1. Recalling the terminology introduced
in section 1.5.3, we start by considering Hodge vacua, or vacua with Wflux = 0.
From a Hodge-theoretic point of view, such vacua correspond to so-called “Hodge
classes”. One of the major milestones of Hodge theory is a theorem of Cattani,
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Deligne, and Kaplan which states that the locus of Hodge classes is a countable
union of algebraic varieties [137]. Interestingly, the same result can also be derived
by assuming the Hodge conjecture to be true. For this reason, the result of Cat-
tani, Deligne, and Kaplan is often viewed as the strongest evidence for the Hodge
conjecture. Furthermore, if the flux satisfies the tadpole cancellation condition,
meaning it has a bounded self-intersection, then the locus is in fact a finite union of
algebraic varieties. In particular, its number of connected components, which counts
the number of Hodge vacua with possibly flat directions, is finite. Subsequently,
we will discuss the more general class of self-dual flux vacua, for which initial
finiteness results were presented in [138], see also [73], for the case of a single
complex structure modulus. In these works a detailed description of the Hodge
norm of the G4 flux was obtained by employing the one-variable Sl(2)-orbit theorem
of Cattani, Kaplan and Schmid [70], which has been discussed at length in chapters
3 and 4. The finiteness of self-dual vacua in the general multi-variable case was
proven recently in [139], see also [96]. In contrast to the one-variable case, the proof
of the multi-variable case is much more involved and relied heavily on recent ad-
vances in the field of tame geometry, such as the definability of the period map [140].

In section 5.2 we will discuss the main technical result of this chapter. Namely, we
provide another perspective on the finiteness of self-dual vacua in the multi-variable
case, without relying on methods from tame geometry. Instead, we generalize
the analysis performed in [73, 138] by considering the Sl(2)-orbit theorem in its
full multi-variable glory, utilizing the machinery outlined in chapters 3 and 4. In
particular, we prove the finiteness of self-dual flux vacua within the nilpotent orbit
approximation. This provides a good intuition for why finiteness is likely to persist,
even when there are multiple moduli at play.

Finally, in section 5.3 we turn to our attention to some exciting speculations
and future prospects regarding more detailed features of the locus of flux vacua,
i.e. beyond just its finiteness. In particular, we outline a set of three concrete
mathematical conjectures which may be addressed in the near future by combining
techniques from asymptotic Hodge theory, (sharply) o-minimal geometry and the
theory of unlikely intersections. The first two conjectures concern the enumeration
of flux vacua, in particular Hodge vacua, as well as a candidate notion of geometric
complexity, as developed by Binyamini and Novikov in [141], for the locus of self-
dual flux vacua. The third conjecture is a modified version of the tadpole conjecture
of [42], adapted to the special class of Hodge vacua and is instead concerned with
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5 Finiteness Theorems and Counting Conjectures for the Flux Landscape

the dimensionality of the vacuum locus. In other words, it is related to the existence
of a flat direction in the scalar potential. For related work on the tadpole conjecture,
we refer the reader to [43–51].

5.1 Finiteness of flux vacua

In section 1.5.3 we have reviewed the conditions on the four-form flux G4 and
the complex structure moduli zi that determine the locus of self-dual flux vacua.
In the remainder of this work, we will be interested in gaining a more detailed
understanding of what this locus looks like. In particular, our aim is to ascertain
whether it consists of a finite number of points (or, more precisely, a finite number
of connected components). The purpose of this section is two-fold. First, we provide
a general discussion to emphasize the main non-trivial aspects of the problem,
illustrated with a simple example of a rigid Y3 × T 2 compactification. Second,
we formulate the problem within the broader framework of Hodge theory and
present a number of exact finiteness theorems that have been established in the
literature. The subsequent sections will delve into a more detailed examination of
these theorems and their proofs.

5.1.1 Why finiteness is non-trivial

Infinite tails of vacua?

First, let us emphasize again that we are investigating the finiteness of vacua within
a fixed topological class of Calabi–Yau fourfolds, but varying in complex structure
moduli. In this setting, we recall from section 1.5.3 that a self-dual flux vacuum
consists of a pair (zi, G4), where zi are the complex structure moduli and G4 is the
four-form flux, satisfying the following three conditions.

Self-dual flux vacuum

G4 ∈ H4 (Y4,Z) , G4 = ⋆G4 ,

∫
Y4

G4 ∧G4 ≤ L . (5.1)

Here we recall that ⋆ denotes the Hodge star operator on the Calabi–Yau
fourfold Y4, which is to be evaluated at zi, and L is some positive integer
that reflects the tadpole bound.
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5.1 Finiteness of flux vacua

Note that, for some choices of the flux, it may happen that not all zi are stabilized,
meaning that the scalar potential has flat directions, in which case we count each
connected component of the higher-dimensional vacuum locus as a single vacuum.
The question, then, is how many solutions to (5.1) exist as one varies over all
possible choices of G4. Naively, it appears that G4 varies over an infinite lattice.
However, upon combining the self-duality condition and the tadpole condition, one
finds the relation ∫

Y4

G4 ∧ ⋆G4 ≤ L , (5.2)

which involves the Hodge norm of G4. Hence, at a non-singular point in the moduli
space, the left-hand side of (5.2) is a manifestly positive-definite quadratic form in
the fluxes. Therefore, at a fixed point zi the constraint (5.2) restricts the fluxes
to lie in the interior of some ellipsoid inside the flux lattice, whose exact shape
depends on the chosen value of the moduli. Clearly such a region contains only
finitely many discrete lattice points and hence finitely many self-dual flux vacua.
Furthermore, this remains true as long as one varies the moduli zi over a compact
subset of the moduli space.

However, it is not at all obvious what happens as the moduli vary over an unbounded
set, as is typically the case in the context of Calabi–Yau compactifications. In other
words, one might find an accumulation of vacua as one approaches a boundary
of the moduli space. Along such limits the Hodge star operator may degenerate,
causing some directions of the ellipsoid to become arbitrarily large and thus include
arbitrarily many lattice points. In order to address the fate of these potentially
infinite tails of vacua, one has to deal with the following two major roadblocks:

• Roadblock (1): Hodge star behaviour
It is necessary to understand all possible ways in which the Hodge star can
degenerate as one approaches an arbitrary boundary in the moduli space of
any Calabi–Yau fourfold, in particular with an arbitrary number of moduli.

• Roadblock (2): Path-dependence
When there are multiple moduli at play, the degeneration of the Hodge star
is highly dependent on how one approaches a given boundary in the moduli
space.

Fortunately, the possible degenerations of the Hodge star are well-studied in the
field of asymptotic Hodge theory, as we have reviewed in detail in chapters 3 and 4.
Consequently, the results of these chapters will play a major role in the following.
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Re τ
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Figure 5.1: A geometric depiction of the tadpole bound (5.5) for the two-torus. Left: a
fundamental domain for the Teichmüller parameter τ . Right: the corresponding region
inside the flux lattice where the tadpole bound is satisfied. For simplicity, we have
considered a point with Re τ = 0.

The issue of path-dependence is, however, a bit more subtle. For Hodge vacua this
issue can in fact be dealt with using just Hodge theoretic techniques. Essentially,
one applies a clever inductive reasoning to range over all possible hierarchies between
the moduli. In section 5.2 we employ a new strategy to tackle this issue, which
is valid within the nilpotent orbit approximation. However, in order to address
the fate of self-dual vacua in full generality, i.e. including exponential corrections
to the nilpotent orbit approximation, these techniques are likely to be insufficient.
Recently, these issues were overcome by incorporating deep results in o-minimal
geometry on the tameness of Hodge theory [139,140].

Example: Rigid Y3 × T 2

So far our discussion has been rather abstract. In order to illustrate some of the
points we have made above, let us consider a simple example. The point of the exam-
ple will be to highlight the possible presence of infinite tails of vacua and to give an
idea why such tails nevertheless cannot appear. However, we stress that, due to its
simplicity, the example will not give an adequate indication for the complexity of the
general problem. In particular, the issue of path-dependence will not play a role here.

We take Y4 to be a direct product

Y4 = Y3 × T 2 , (5.3)

212



5.1 Finiteness of flux vacua

with Y3 a rigid Calabi–Yau threefold (i.e. having no moduli) and T 2 a two-torus,
whose complex structure modulus will be denoted by τ , with Im τ > 0. We consider
a one-form flux on the torus

v ∈ H1(T 2,Z[i]) , v =
(
v1

v2

)
, (5.4)

where v1, v2 ∈ Z[i] are Gaussian integers. The vector representation of v is taken
with respect to the standard basis of 1-cycles on the torus, in terms of which the
period vector is given simply by (1, τ). Then one readily computes

||v||2 =
∫
T 2
v ∧ ⋆ v̄ = |v1|2 Im τ + |v2 − v1Re τ |2

Im τ
. (5.5)

As expected, for a fixed value of τ a region inside the flux lattice of bounded
||v|| corresponds to the interior of an ellipsoid. Furthermore, the semi-major and
semi-minor axes of the ellipsoid scale as Im τ and 1/Im τ , respectively. The situation
is illustrated in figure 5.1.1 Indeed, as one approaches the weak-coupling point
Im τ →∞, corresponding to the boundary of the moduli space, one of the axes of
the ellipsoid blows up, while the other shrinks. Therefore, by letting Im τ become
arbitrarily large, it appears that one can reach an infinite amount of different fluxes
and thus an infinite number of vacua.

The crucial point, however, is that when Im τ becomes too large, it becomes
impossible to satisfy both the self-duality condition and the tadpole condition. This
can be seen as follows. Since the fluxes are quantized, the quantity |v1| cannot
become arbitrarily small. Therefore, as Im τ increases, at some point one must set
v1 = 0 in order to satisfy the tadpole bound ||v||2 < L. At this point, one is left
with

||v||2 = |v2|2

Im τ
. (5.6)

It appears that |v2| can become arbitrarily large, without ||v|| exceeding the tadpole
bound. However, at this point we should recall the self-duality condition2, which
can be solved explicitly to give

v1 = v2

τ̄
. (5.8)

1It should be noted that not necessarily all fluxes choices depicted in figure 5.1 satisfy the vacuum
conditions.

2To be precise, the analogous condition is that v is imaginary anti self-dual, i.e.

⋆ v = −iv . (5.7)
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Figure 5.2: The same setup is depicted as in figure 5.1, but now Im τ has exceeded the
value of L, shown with the red dashed line. Correspondingly, there are no non-trivial
self-dual fluxes beyond this point.

Indeed, one immediately sees that if v1 = 0, then the only solution to the self-duality
condition is that also v2 = 0. In other words, beyond some critical value of Im τ ,
the only possible vacuum is the trivial one, hence no infinite tails of vacua can
occur. Furthermore, the critical value is around Im τ = L. The situation is depicted
in figure 5.2.

5.1.2 Finiteness theorems: global
Having discussed some general features of the problem of finiteness, let us now turn
to a concrete description of the known results. This will first be done from a global
point of view, meaning we focus on properties such as algebraicity and definability.
We introduce the locus of Hodge classes and the locus of self-dual classes using
the language of variations of Hodge structures. We briefly recall the important
definitions, but refer the reader to [85,142] for a more detailed introduction.

Locus of Hodge classes

Recall from the discussion in section 1.5.3 that a self-dual flux vacuum is called a
Hodge vacuum if the flux G4 only has a (2,2)-component. In other words,

G4 ∈ H4(Y4,Z) ∩H2,2 . (5.9)

Classes of this type are so special that they have a name: they are referred to
as Hodge classes. More generally, given a variation of Hodge structure of even
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5.1 Finiteness of flux vacua

weight 2k, a Hodge class is an integral class of type (k, k). In view of the tadpole
condition, it is natural to consider the subset of Hodge classes whose self-intersection
is bounded, for which we introduce the notation

HZ(L) := {v ∈ HZ : (v, v) ≤ L} . (5.10)

The set of all Hodge classes with self-intersection bounded by L then defines
the following subspace of the Hodge bundle E (recall equation (2.44) and the
surrounding discussion).

The locus of Hodge classes

EHodge(L) = {(zi, v) ∈ E | v ∈ HZ(L) ∩Hk,k} , D = 2k . (5.11)

We will refer to EHodge(L) as the locus of (bounded) Hodge classes. The
full locus of Hodge classes is then the countable union of EHodge(L) over all
integers L and is denoted simply by EHodge.

It is relatively easy to see that EHodge defines a complex-analytic subspace of E.
There are two ways to see this:

• Superpotential:
In the F-theory setting, a Hodge vacuum is alternatively defined by the
equations ∂iW = W = 0, which are holomorphic in the complex structure
moduli.

• Hodge filtration:
More generally, it follows from the relation (2.23) that

HZ ∩Hk,k = HZ ∩ F k . (5.12)

Note that the reality condition is crucial here. By definition of a variation of
Hodge structure, the filtration F p depends holomorphically on the moduli,
recall the condition (2.43).

The fact that the locus of Hodge classes is complex-analytic is already quite special,
as this property is not retained for generic self-dual vacua, as will be explained
later. At the same time, due to the additional condition W = 0, the locus is defined
by h3,1 + 1 generically independent equations, hence one expects solutions to be
relatively rare. Said differently, in order for a vacuum to exist, something special
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must occur in order for some of the equations to become dependent. The special
thing that needs to happen is captured by the following striking theorem of Cattani,
Deligne and Kaplan.

Theorem 5.1.1 (Cattani, Deligne, Kaplan [137]).

EHodge(L) is an algebraic variety, finite over M.

By the phrase ‘finite overM’ it is meant that restriction of the projection p : E →M
to EHodge(L) has finite fibers. In other words, for each z ∈ M the fiber over
z consists of finitely many points. Furthermore, the algebraicity of EHodge(L)
means that it can each be represented by a finite set of algebraic equations in E,
i.e. polynomials in the moduli and the fluxes. In other words, it is of the form

Pi(x1, . . . , xk) = 0 , (5.13)

for some polynomials Pi. It should be stressed that this is truly remarkable, as
the superpotential W itself is typically a complicated transcendental function in
the moduli. Nevertheless, the locus where ∂iW = W = 0 enjoys a comparatively
simple description. This can be made very explicit in concrete examples, and we
refer the reader to the work [143] where this is investigated in detail.

For the purpose of the present work, the crucial observation is that the algebraicity
of EHodge(L) automatically implies the finiteness of Hodge vacua. Indeed, it is
clear that the zero-set of a finite collection of polynomials has only finitely many
connected components. This should be contrasted with the full locus of Hodge
classes EHodge, which is only a countable union of algebraic varieties and hence does
not have such a finiteness property.3 In this regard, it is interesting to point out
that when the variation of Hodge structure under consideration comes from a family
of smooth projective varieties, the same conclusion follows from the famous Hodge
conjecture. However, the Hodge conjecture does not predict the stronger statement
that EHodge(L) is algebraic. In other words, it does not predict the finiteness of
Hodge vacua. It is therefore rather curious that the string-theoretic setting imposes
the additional crucial constraint, namely the tadpole condition, to exactly ensure
finiteness.

For the interested reader, let us give a very rough idea of how one would approach
a proof Theorem 5.1.1, following the original work of Cattani, Deligne, and Kaplan.
3See however [144] for recent refinements of this statement.
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In particular, we focus on how one would reduce this to a local statement, which will
then be discussed in more detail in section 5.1.3 and appendix 5.C. The reduction is
performed by employing a comparison theorem which connects algebraic geometry
and analytic geometry known as Chow’s theorem, which states that any closed
analytic subspace of a complex projective space is algebraic.4 Very roughly, this
means that if some closed analytic subspace is well-behaved enough in the asymp-
totics, then it is in fact algebraic. Indeed, we have seen that the Hodge locus is
complex-analytic on M. Furthermore, it is well-known that M is quasi-projective,
so that its closure can be embedded in a complex projective space [99]. The strategy,
then, is to show that the closure of the Hodge locus in M is analytic as well and to
then apply Chow’s theorem to establish the desired algebraicity. Hence, one reduces
the question to a study of the Hodge locus locally at the divisor M\M, which
brings one into the realm of degenerations of Hodge structures and asymptotic
Hodge theory. Physically, this means one is studying the structure of Hodge vacua
as one approaches the boundary of the moduli space, which, following our initial
discussion in section 5.1.1, is exactly the question we are interested in.

Finally, let us mention a generalization of Theorem 5.1.1 by Schnell, who introduced
the “extended locus of Hodge classes” [145]. The rough goal was construct a natural
compactification of the Hodge locus to also incorporate so-called “limit Hodge
classes”. These are, as the name suggests, integral classes that become Hodge in an
appropriate limit and should therefore lie on the boundary of the Hodge locus.

Locus of self-dual classes

As soon as one moves towards generic self-dual flux vacua, the situation becomes
more complicated. Indeed, since the G4 flux is now allowed to have also (4, 0) and
(0, 4) components, it no longer corresponds to a Hodge class. In a similar fashion
as before, let us introduce the following notation for the locus of self-dual classes.

The locus of self-dual classes

Eself-dual(L) = {(zi, v) ∈ E : v ∈ HZ(L), C(z)v = v} . (5.14)

4This now falls within the broader domain of so-called GAGA results, which encompasses various
types of comparison results between algebraic and analytic geometry in terms of comparisons of
categories of sheaves. Here GAGA stands for Géometrie Algébrique et Géométrie Analytique.
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Here we recall that C(z) denotes the Weil operator defined by the relation
(2.30).

In contrast to the locus of Hodge classes, the locus of self-dual classes is a priori
only a real-analytic subspace of E. Again, one can see this by noting that a generic
self-dual vacuum is defined by the equation DiWflux = 0, which now involves the
real Kähler potential K. Nevertheless, in analogy with the algebraicity of the locus
of bounded Hodge classes, it was shown in [139] that the locus of bounded self-dual
classes has a lot more structure than one might at first expect, as captured in the
following result.

Theorem 5.1.2 (Bakker, Grimm, Schnell, Tsimerman [139]).

The set Eself-dual(L) is a definable in the o-minimal structure Ran,exp. Fur-
thermore, it is a closed, real-analytic subspace of E, finite over M.

Let us briefly elaborate on the phrase ‘definable in the o-minimal structure Ran,exp’.
For a more detailed explanation we refer the reader to [96]. Roughly, this means that
the locus of bounded self-dual classes can be described by a finite set of polynomial
equations and inequalities that involve not only the moduli and fluxes, but also
any restricted analytic function and real exponential function of the moduli. More
precisely, the o-minimal structure Ran,exp is generated (through finite products,
unions, intersections and projections) by sets of the form

P (x1, . . . , xk, f1, . . . , fm, e
x1 , . . . , exk ) = 0 , (5.15)

where the fi are restricted analytic functions and P is a polynomial.

Importantly for our purposes, the fact that the locus of bounded self-dual classes is
definable implies that it also has an inherent finiteness property, which we briefly
explain in three steps.

1. The fact that the restriction of p : E →M to Eself-dual(L) has finite fibers
means that for each point z ∈M, its preimage under this map consists of a
finite number of points. In other words, for fixed z the size of the fiber p−1(z)
is bounded. This is, of course, not enough to prove finiteness completely, since
z itself ranges over an infinite set.

2. Due to the special properties of definable functions, one can show that in
fact the size of the fiber is uniformly bounded. Hence, there exists an integer
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Nmax such that
|p−1(z)| ≤ Nmax , (5.16)

for all z ∈M.

3. Finally, one can show that since the map p is itself definable, the set

{z ∈M : |p−1(z)| ≤ Nmax} , (5.17)

is definable as well. In particular, it cannot contain infinitely many discrete
points.

As a final remark, let us mention that Theorem 5.1.2 actually implies Theorem
5.1.1, namely that the locus of bounded Hodge classes is algebraic. This was shown
in [140] by Bakker, Klingler and Tsimerman using the so-called definable Chow
theorem of Peterzil and Starchenko [146]. The latter is an alternative version of
Chow’s theorem adapted to the setting of o-minimal geometry and roughly states
that a complex-analytic set which is also definable is in fact algebraic. Recalling
that the locus of Hodge classes is clearly complex-analytic, one recovers Theorem
5.1.1.

5.1.3 Finiteness theorems: local
In this section we discuss some local manifestations of the finiteness theorems
presented in section 5.1.2. Arguably, when it comes to developing further intuition
for the finiteness of vacua, the local analysis is more illuminating. Indeed, in section
5.1.1 it was argued that, as far as finiteness is concerned, the main question is
whether it is possible for vacua to accumulate near the boundaries of the moduli
space. Furthermore, in section 5.1.2 we gave a rough idea of how the proof of the
theorem of Cattani, Deligne, and Kaplan heavily relies on a local analysis near the
boundaries of the moduli space. This brings us into the realm of asymptotic Hodge
theory.

Finiteness of Hodge classes

We can now formulate local versions of the finiteness theorems discussed in section
5.1.2. In this section, we focus on the case of Hodge vacua. Our goal is to consider
a sequence of such vacua that approaches the boundary of M and ask whether this
sequence can take on infinitely many values. To this end, we state the following
result.
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Theorem 5.1.3 ( [137, Theorem 3.3]).

Let ti(n) ∈ Hm be a sequence of points such that xi(n) is bounded and
yi(n)→∞ as n→∞. Suppose furthermore that

v(n) ∈ HZ(L) ∩Hk,k , D = 2k ,

is a sequence of integral bounded Hodge classes. Then v(n) can only take on
finitely many values.

Here we stress that the Hodge decomposition Hk,k is itself a function of the moduli.
However, in order not to clutter the notation we will often omit this dependence.
The upshot of Theorem 5.1.3 is that it is indeed impossible to have an accumulation
of Hodge vacua near the boundary of M. In appendix 5.C we will describe the
proof of Theorem 5.1.3 in some detail.

Finiteness of self-dual classes

Finally, let us come to the finiteness of self-dual vacua. In contrast to Theorem
5.1.3, there has not yet appeared a fully general directly local proof for the finiteness
of self-dual flux vacua. Nevertheless, the following statement clearly follows as a
corollary of the global statement given in Theorem 5.1.2.

Corollary 5.1.1.

Let ti(n) ∈ Hm be a sequence of points such that xi(n) is bounded and
yi(n)→∞ as n→∞. Suppose furthermore that v(n) ∈ HZ(L) is a sequence
of integral fluxes with bounded self-intersection, such that

C(t(n))v(n) = v(n) , (5.18)

for all n. Then v(n) can only take on finitely many values.

An independent proof of Corollary 5.1.1 was given in [73, 138] for the case of a
single variable using methods from asymptotic Hodge theory. In section 5.2 we will
extend these methods to the multi-variable setting in order to give some intuition
for the finiteness of self-dual vacua in the general case, without using results from
o-minimality. To be precise, we will provide a proof within the nilpotent orbit
approximation. To be absolutely clear, we will prove the following
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Theorem 5.1.4.

Let ti(n) ∈ Hm be a sequence of points such that xi(n) is bounded and
yi(n)→∞ as n→∞. Suppose furthermore that v(n) ∈ HZ(L) is a sequence
of integral fluxes with bounded self-intersection, such that

Cnil(t(n))v(n) = v(n) , (5.19)

for all n. Then v(n) can only take on finitely many values.

In particular, note the replacement of the general Weil operator C by its nilpotent
orbit approximation Cnil. Of course, this will, therefore, not quite constitute a full
independent proof of Corollary 5.1.1. Nevertheless, the discussion will provide some
valuable intuition for the asymptotic behaviour of vacua.

5.1.4 Summary

We close this section by providing the reader with an overview of the various
theorems we have discussed, see figure 5.3. Let us also highlight the variety of
strategies that are employed in the proofs of these various theorems. For Hodge
vacua, both in the single-variable and multi-variable case, the proof relies heavily on
the machinery of mixed Hodge structures, as is explained in appendix 5.C. Instead,
our analysis of the self-dual vacua in the nilpotent orbit approximation makes use
of the asymptotic expansion of the Weil operator, as is described in chapters 3 and
4 and 5.2. Finally, for the general proof of the finiteness of self-dual flux vacua the
recent advances in o-minimal geometry have played an essential role.

5.2 The asymptotic self-dual locus

In section 5.1 we have presented a number of finiteness theorems for both Hodge
vacua and self-dual vacua, from both a global and a local perspective. The aim
of this section is to apply the machinery of asymptotic Hodge theory to prove
Theorem 5.1.4, and address the finiteness of self-dual vacua in the nilpotent orbit
approximation. Before discussing the general proof, we first restrict to a simple
one-variable setting in section 5.2.1 in order to exemplify some important features
of the vacuum locus. In section 5.2.2, we present the full proof of Theorem 5.1.4.
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self-dual,
multi-variable [139]

Hodge,
multi-variable [137]

appendix 5.C.2

self-dual,
multi-variable

(nilpotent orbit approx.)
section 5.2

self-dual,
single-variable [73, 138]

Hodge,
single-variable [137]

appendix 5.C.1

Web of Finiteness Theorems

Figure 5.3: An overview of the various finiteness theorems discussed in this work, including
the implications between them.

5.2.1 Example: one-variable Sl(2)-orbit
Before delving into the detailed proof of the finiteness result, let us first consider
a very simple case in which there is just a single modulus, so m = 1, and all the
expansion coefficients (except the leading ones) in the nilpotent orbit expansion
(4.148) vanish. Effectively, this case will correspond to a generalization of the
example discussed in section 5.1.1, though written in more abstract language.
Mathematically, the stated assumptions imply that the variation of Hodge structure
under consideration is given by a one-variable Sl(2)-orbit

F p = exNy− 1
2N

0
F p∞ . (5.20)

We would like to investigate the set of points in the moduli space where a given
v ∈ HZ is self-dual and v has a bounded Hodge norm, as imposed by the tad-
pole condition. In this simple setting, it is straightforward to evaluate these two
conditions explicitly.

Tadpole constraint

The Hodge norm of v is given by

||v||2 =
∑
ℓ

yℓ ||v̂ℓ||2∞ , v̂ = e−xNv , (5.21)
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where we have performed the usual weight-decomposition of v̂ with respect to N0.
We are interested in the properties of vacua close to the boundary, i.e. for large
values of the saxion y. Clearly, for sufficiently large y, it is necessary to impose that
v̂ℓ = 0 for all ℓ > 0, in order for ||v||2 to not exceed the tadpole bound. In other
words, beyond some critical value of y, the flux is only allowed to have non-positive
weights with respect to the sl(2) grading operator N0.

Self-duality condition

Using the fact that C∞ interchanges the +ℓ and −ℓ eigenspaces of N0, it is
straightforward to see that the self-duality condition, projected onto a weight ℓ
component, can be written as

y
1
2 ℓv̂ℓ = y− 1

2 ℓC∞v̂−ℓ . (5.22)

In particular, whenever v̂ℓ = 0 for ℓ > 0 the self-duality condition imposes that
additionally v̂ℓ = 0 for ℓ < 0 (note that C∞ is invertible). Therefore, for sufficiently
large y it must be that v̂ only has an ℓ = 0 component, so v̂ = v̂0. In particular,
the tadpole condition reduces to

||v̂0||2∞ ≤ L . (5.23)

Recalling the fact that v̂ = e−xNv, that the axion x is bounded and that the flux v
is integral, it is clear that there are only finitely many choices of v which satisfy
the tadpole condition. Hence, there are finitely many vacua.

The vacuum locus

It is important to stress that for this simple example the only possible vacua close
to the boundary have an unstabilized saxion. Indeed, since v̂ only has an ℓ = 0
component, the self-duality condition (5.22) simply becomes

v =
(
exNC∞e

−xN) v , (5.24)

in which the saxion does not appear. Furthermore, one can make the following case
distinction

1. Nv = 0: In this case the self-duality condition reduces further to v = C∞v

and also the axion is unstabilized. The resulting vacuum locus is illustrated
in figure 5.4a. In fact, it turns out that in this case v actually corresponds to
a Hodge class, as is explained in Appendix 5.C.
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(a) Nv = 0 (b) Nv ̸= 0

Figure 5.4: Schematic illustration of the distribution of self-dual vacua near a punctured
disk (shown in red). Close enough to the singularity, dictated by the tadpole bound
(indicated by the black dashed line), either (a) both axion and saxion are unstabilized, or
(b) only the axion is stabilized, the latter case corresponding to a radial ray.

2. Nv ̸= 0: In this case a choice of v uniquely fixes a value for the axion x. The
vacuum locus therefore corresponds to a single angular ray in the disk. This
is illustrated in figure 5.4b.

The general lesson of this simple one-variable example is the following: as one
approaches the boundary of the moduli space, one is more and more restricted
in the allowed fluxes, i.e. the allowed sl(2) components of the fluxes, that can
possibly satisfy the self-duality condition and the tadpole constraint. Eventually,
the restrictions become so severe that one can directly show that there are only
finitely many possibilities. As will be explained in the next section, a similar
phenomenon happens in the multi-variable case. However, the restrictions on the
fluxes become dependent on the sector of the moduli space in which the vacua are
located.
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5.2.2 Proof: finiteness of self-dual vacua

For ease of reference, we repeat the exact theorem we aim to prove.

Theorem 5.2.4.

Let ti(n) ∈ Hm be a sequence of points such that xi(n) is bounded and
yi(n)→∞ as n→∞. Suppose furthermore that v(n) ∈ HZ(L) is a sequence
of integral fluxes with bounded self-intersection, such that

Cnil(t(n))v(n) = v(n) , (5.25)

for all n. Then v(n) can only take on finitely many values.

We emphasize again that our proof is restricted to the case where the variation of
Hodge structure under consideration is described by a nilpotent orbit. In the one-
variable case it is relatively straightforward to reduce to this case from the general
setting of an arbitrary variation of Hodge structure by including an appropriate
exponentially small correction term to the flux sequence v(n) [138]. However, in
the multi-variable case it is not clear whether a similar strategy can be applied.

In the following, we will often omit the argument in y(n) and simply write y, to
avoid cluttering the notation. As has been described a few times already, combining
the self-duality condition with the tadpole bound on the self-intersection of v(n)
gives the following bound on the Hodge norm

||v(n)||2 ≤ L . (5.26)

The strategy of the proof will be to show that in fact v(n) is bounded with respect
to the boundary Hodge norm || · ||∞. Then the desired finiteness follows from the
fact that v(n) is integral. We will divide the proof in several steps.

Step 1: Boundedness of Sl(2)-norm

For the first step of the proof, we would like to translate the bound (5.26) into
a more detailed statement on the various sl(2)-components of v(n). Indeed, the
fact that the Hodge norm of v(n) is bounded implies that also its Sl(2)-norm is
bounded. This is reasonable, since one can view the latter as providing the leading
approximation to the full Hodge norm. Recalling the result (3.162), the crucial
point is that the latter is also straightforward to evaluate explicitly and allows one
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to obtain the following bound (after possibly enlarging L)

∑
ℓ

[
m∏
i=1

(
yi
yi+1

)ℓi
]
||v̂ℓ(n)||2∞ ≤ L , (5.27)

where we have introduced the notation

v̂(n) = exp
[
−

m∑
i=1

xiNi

]
v(n) , (5.28)

and we recall that the v̂ℓ(n) denote the weight-components of v̂(n), as defined in
(3.160). Since the left-hand side of (5.27) consists of a sum of positive terms, this
bound in fact applies for each ℓ separately. Because of this it will be natural to
prove boundedness of each individual v̂ℓ component. In other words, we have the
following

Goal: Show that ||v̂ℓ(n)||∞ is bounded, for each ℓ. (5.29)

Since the axions are assumed to take values on a bounded interval, this immediately
implies that also each ||vℓ(n)||∞ is bounded.

In the one-variable case (m = 1) the relation (5.27) yields a natural separation of
weight-components into the classes ℓ < 0, ℓ = 0, ℓ > 0, corresponding to fluxes
whose Hodge norm tends to zero, stays constant, or grows as one approaches the
boundary of the moduli space. In fact, this is the strategy that was used in [73,138]
to prove finiteness for the one-variable case. However, in the multi-variable case
such a separation is not available, as the scaling of the various terms in (5.27)
highly depends on the exact hierarchy between y1, . . . , ym, which in turn is highly
path-dependent. For example, even though we do assume that y1 > y2 > · · · > ym,
recall the growth sector (3.132), it is not necessarily the case that also y1 > y2

2 .
Indeed, this is one of the main difficulties that were mentioned in section 5.1.1. In
order to tackle the multi-variable case, we proceed in a different way by introducing
a finite partition of the moduli space Hm into subsectors on which the scaling
behaviour of the various ℓ-components is under control. Subsequently, the proof
will proceed by considering the different types of subsectors individually.

Step 2: Reduction to subsectors

The key insight is to use the quantization of the fluxes, together with tadpole bound
as formulated in (5.27), to construct the desired partition of the moduli space. First,
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we note that since the flux v(n) is integral, there exists a constant λ > 0 such that

||v̂ℓ(n)||2∞ > λ , (5.30)

for all n, whenever v̂ℓ(n) is non-zero. In practice, one can construct λ from the
smallest eigenvalue of the boundary Hodge norm, and furthermore take 0 < λ ≤ 1.5
In order to illustrate this rather abstract statement, we have included some basic
examples of boundary Hodge norms in Appendix 5.B, for which one can write down
the constant λ explicitly.

We now combine the relation (5.30) together with the tadpole bound to define the
desired partition of the moduli space into sectors. For each ℓ, we define a sector in
Hm by

Rheavy
ℓ =

{
(y1, . . . , ym) :

m∏
i=1

(
yi
yi+1

)ℓi

>
L

λ

}
, (5.31)

and we define another sector Rlight
ℓ as the complement of Rheavy

ℓ . In other words,
for each choice of ℓ, we split up the moduli space into two disjoint pieces. See figure
5.5 for an illustration of these sectors in the case of two moduli. The motivation
for this definition is as follows. Clearly, if the sequence y(n) lies entirely inside the
region Rheavy

ℓ and also vℓ(n) is non-zero, for some fixed ℓ, then

∑
ℓ′

[
m∏
i=1

(
yi
yi+1

)ℓ′
i

]
||v̂ℓ′(n)||2∞ ≥

m∏
i=1

(
yi
yi+1

)ℓi

||v̂ℓ(n)||2∞ >
L

λ
λ = L , (5.32)

which is in contradiction with the bound (5.27). In other words, inside the region
Rheavy
ℓ , the weight-ℓ component of v(n) would have a Hodge norm that exceeds the

tadpole bound. By passing to a subsequence, we may therefore assume that the
sequence y(n) lies entirely inside the region Rlight

ℓ .

We now come to the central point of the proof. Since we may assume that y(n) lies
entirely inside Rlight

ℓ , we have the upper bound
m∏
i=1

(
yi
yi+1

)ℓi

≤ L

λ
. (5.33)

However, since there appears to be no obvious lower bound, the scaling factor that
accompanies each ||v̂ℓ(n)||2∞ in (5.27) could become arbitrarily small. As a result,
5The reason is that, in general, the eigenvalues of the boundary Hodge norm come in pairs
(λi, λ−1

i ), with each λi > 0.
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Figure 5.5: Depiction of the subsectors Rlight
ℓ (in blue) and Rheavy

ℓ (in orange), in terms of
the disk coordinates. Here we chose the weight vector to be ℓ = (−2, −1) and took L

λ
= 2.

Note that the growth sector (3.132) translates to the region |z1| < |z2|.

it appears that some v̂ℓ(n) can be made arbitrarily large, without exceeding the
tadpole bound. Note that this is very similar in spirit to the toy example discussed
in section 5.1.1, as well as the example discussed in section 5.2.1. Of course, the
missing ingredient that we have not yet exploited is the self-duality condition. To
this end, it will be useful to make a further case distinction:

a.) y(n) ∈ Rlight
−ℓ .

b.) y(n) ∈ Rheavy
−ℓ .

Clearly this covers all possible cases. The motivation for this additional case
distinction is that, in order to address the fate of a v̂ℓ component, it is actually
necessary to consider the v̂−ℓ component as well. This is because these two
components are related via the self-duality condition. The first case is easy hence
we will discuss it first.

Step 3a: Case y(n) ∈ Rlight
−ℓ

Since y(n) ∈ Rlight
−ℓ we have that

m∏
i=1

(
yi
yi+1

)−ℓi

≤ L

λ
or, equivalently

m∏
i=1

(
yi
yi+1

)ℓi

≥ λ

L
. (5.34)

228



5.2 The asymptotic self-dual locus

In other words, inside the region Rlight
−ℓ we do get a lower bound on the scaling

factors. In turn, this provides an upper bound on ||v̂ℓ(n)||2∞, as is seen explicitly as
follows

L ≥
∑
ℓ′

m∏
i=1

(
yi
yi+1

)ℓ′
i

||v̂ℓ′(n)||2∞ ≥
m∏
i=1

(
yi
yi+1

)ℓi

||v̂ℓ(n)||2∞ ≥
λ

L
||vℓ(n)||2∞ . (5.35)

Hence, one finds the upper bound

||v̂ℓ(n)||2∞ ≤
L2

λ
. (5.36)

Therefore, within the region Rlight
−ℓ , we immediately obtain the desired bound on

the boundary Hodge norm of v̂ℓ(n), in terms of an ‘effective tadpole bound’ given
by the combination L2/λ. We stress that this bound depends on both the original
tadpole bound L, as well as the constant λ introduced in (5.30), where the latter
reflects the quantization condition of the fluxes and depends on the properties of the
boundary Hodge structure. It is also important to note that, in the derivation of
the bound (5.36) it has not been necessary to use the self-duality condition. Indeed,
in this particular case the resulting finiteness of the fluxes should not be viewed as
a property of only the vacuum locus. In particular, it is not obvious whether one
could use the refined tadpole bound L2/λ to obtain an accurate estimate for the
number of flux vacua in this region of the moduli space.

Step 3b: Case y(n) ∈ Rheavy
−ℓ

This case is more involved and comprises the most difficult part of the whole proof.
This is because in this case there is no obvious lower bound for the scaling factor.
Instead, the only information at our disposal is that y(n) lies inside Rheavy

−ℓ , which
implies that v−ℓ(n) = 0 by the reasoning in step 2. The strategy will be to combine
this fact together with an explicit evaluation of the self-duality condition using
the nilpotent orbit expansion (4.148). Indeed, recalling the definition of the map
h(y1, . . . , ym), and using the fact that the boundary Weil operator C∞ exchanges
the +ℓ and −ℓ eigenspaces, the self-duality condition (5.25) can be written as(

h−1v̂(n)
)
ℓ

= C∞
(
h−1v̂(n)

)
−ℓ , (5.37)

The strategy, then, will be to first evaluate
(
h−1v̂(n)

)
−ℓ explicitly to derive its

scaling with the moduli and then use the relation (5.37) to infer information about(
h−1v̂(n)

)
ℓ

and subsequently v̂ℓ(n) itself. To proceed, we therefore apply the result
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for h−1 stated in equation (4.148) to find

(
h−1v̂(n)

)
−ℓ =

∞∑
k1,...,km=0

∑
s1,...,sm

m∏
i=1

( yi
yi+1

)−ki+ 1
2 s

(m)
i

fs
i

i,ki

 (e(y)v̂(n))−ℓ−s(m) .

(5.38)
where we recall the notation

s(m) =
(
s

(m)
1 , . . . , s(m)

m

)
, s

(m)
i = sii + · · ·+ smi , (5.39)

and note that the second sum in (5.38) runs over all possible values of the m weight
vectors sj . Due to the particular weight properties of the expansion coefficients fi,ki ,
the sum only runs over sii ≤ ki − 1 and sij = 0 for j > i. The leading contribution
to (5.38) is given by the k1, . . . , km = 0 term, and is proportional to v̂(n)−ℓ. The
crucial point is that, because we are considering the case where y(n) ∈ Rheavy

−ℓ ,
this leading contribution vanishes. In other words, in order to properly assess the
scaling of

(
h−1v̂(n)

)
−ℓ it is necessary to understand the scaling of the correction

coefficients fi,ki
. In particular, we will make use of the result (4.152).

We now come to the main technical computation, namely the estimation of the
scaling of the term in brackets in (5.38). To this end we make two additional
observations.

• Observation (1):
First, note that(

yi
yi+1

)−ki+ 1
2 s

i
i

≺
(

yi
yi+1

)− 1
2 s

i
i

·


(

yi

yi+1

)−1
, ki ̸= 0 ,

1 , ki = 0 .
(5.40)

This follows from the fact that for ki ̸= 0, there is the restriction sii ≤ ki − 1,
while for ki = 0 one automatically has sii = 0.

• Observation (2):
Second, we note that v̂−ℓ−s(m)(n) is only non-zero if the sequence y(n) lies in
Rlight

−ℓ−s(m) , or, in other words, when the factor

m∏
i=1

( yi
yi+1

)−
(
ℓi+s(m)

i

)
is bounded by a constant. In particular, we may apply this to all the terms
appearing in (5.38).
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Now suppose, for the moment, that all ki are non-zero, then combining these
observations with the bounds stated in (4.152), we find the following estimate

m∏
i=1

( yi
yi+1

)−ki+ 1
2 s

(m)
i

fs
i

i,ki


(a)
≺

m∏
i=1

( yi
yi+1

)−1− 1
2 s

i
i+ 1

2 (si+1
i

+···+sm
i ) i−1∏

j=1

(
yj
yj+1

)−si
j


(b)=

m∏
i=1

( yi
yi+1

)−1− 1
2 s

(m)
i


(c)=

m∏
i=1

[(
yi
yi+1

) 1
2 ℓi
]
·
m∏
i=1

( yi
yi+1

)− 1
2

(
ℓi+s(m)

i

)
︸ ︷︷ ︸

≺1

·
m∏
i=1

[(
yi
yi+1

)−1
]

(d)
≺

m∏
i=1

[(
yi
yi+1

) 1
2 ℓi
]
· y−1

1 .

To be clear, in step (a) we used (4.152) and applied the first observation, in step (b)
we simply collected all the terms, in step (c) we expanded the product to uncover
the middle term and in step (d) we applied the second observation stating that the
middle term is bounded.

If, in contrast, ki = 0 for some i, the only difference is that the corresponding factor
of (yi/yi+1)−1 will not be present, see again the first observation. For example, if
k1 = 0 but all other ki are non-zero, one will instead get

k1 = 0 :
m∏
i=1

( yi
yi+1

)−ki+ 1
2 s

(m)
i

fs
i

i,ki

 ≺ m∏
i=1

[(
yi
yi+1

) 1
2 ℓi
]
· y−1

2 . (5.41)

In particular, the factor of y−1
1 is now replaced by a factor of y−1

2 . A similar thing
happens when multiple ki’s are equal to zero. The important point is that one
always ends up with some rational factor which goes to zero as all yi → ∞.6 It
remains to consider the term in which all ki are zero. However, as said before, this
leading term vanishes since we have assumed y(n) ∈ Rheavy

−ℓ . To summarize, we
6Here it is important to recall that sequence y(n) is restricted to lie inside the growth sector
(3.132).
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have argued that

||(h−1v̂(n))−ℓ||∞ ≺
m∏
i=1

[(
yi
yi+1

) 1
2 ℓi
]
· α(y1, . . . , ym) , (5.42)

where α(y1. . . . , ym) is a rational function of y1, . . . , ym that goes to zero as n→∞.
To complete the argument, we now apply the duality condition (5.37) to find

||(h−1v̂(n))ℓ||∞ ≺
m∏
i=1

[(
yi
yi+1

) 1
2 ℓi
]
· α(y1, . . . , ym) , (5.43)

Moving the term in square brackets to the left-hand side and noting that e(y)h−1 ∼ 1,
we find the result

||vℓ(n)||∞ ≺ α(y1, . . . , ym) , (5.44)

where we have again used the fact that the axions xi(n) are bounded to remove the
hat. In particular, we have shown that the sequence vℓ(n) is bounded with respect
to the boundary Hodge norm. In fact, since v(n) is integral, it cannot become
arbitrarily small, hence after some finite n we must in fact have that vℓ(n) = 0.

Step 4: Finishing the proof

Let us collect the results so far. For a fixed ℓ, we have effectively shown that

• y(n) ∈ Rheavy
ℓ : vℓ(n) = 0.

• y(n) ∈ Rlight
ℓ ∩Rlight

−ℓ : ||v±ℓ(n)||∞ is bounded. More precisely,

||v̂±ℓ(n)||2∞ ≤
L2

λ
. (5.45)

• y(n) ∈ Rlight
ℓ ∩Rheavy

−ℓ : v−ℓ(n) = 0. Furthermore, there exists an n′ such that
for all n > n′ we have that vℓ(n) vanishes.

This covers all possibilities. Therefore, the sequence vℓ(n) is bounded with respect
to the boundary Hodge norm in all sectors. Furthermore, for n sufficiently large,
the only way in which it can attain non-zero values is if y(n) ∈ Rlight

ℓ ∩Rlight
−ℓ . One

may now simply apply this argument for all possible values of ℓ, by considering
subsequences y(n) lying in all possible intersections of subsectors. For example, one
might start with the weight ℓ = (−2,−1) and consider the three spaces

Rlight
(−2,−1) ∩R

heavy
(2,1) , Rlight

(−2,−1) ∩R
light
(2,1) , Rheavy

(−2,−1) , (5.46)
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Figure 5.6: Depiction of the nine disjoint subsectors that arise from taking intersections
between Rlight

ℓ and Rheavy
ℓ for various values of ℓ. Again we have taken L

λ
= 2. Note that

some of the possible intersections, such as the one in red, cover only a region near small
values of |z1| and |z2|, and are therefore not visible due to the limited resolution.

which exactly cover the three cases listed above. Then one considers the same
three spaces but for ℓ = (−3,−2), and constructs all nine pairwise intersections
between these spaces. This is illustrated in figure 5.6. One then continues this
process ranging over the total number # of possible values of ℓ, yielding at most
3# disjoint sectors.7 Importantly, this procedure always results in a finite partition.
Therefore, it suffices to consider a finite number of subsequences of y(n), each lying
in a fixed intersection. In this way we conclude that ||vℓ(n)||∞ is bounded for all ℓ
throughout all sectors. Combining this with the fact that v(n) is integral completes
the proof.

5.3 Conjectures about the flux landscape
In the preceding sections we have focused our attention on relatively rudimentary
properties of the flux landscape, in particular with regards to its finiteness. In this
section we would like to point out some additional questions that could feasibly be
addressed in the near-future, whose answers would further elucidate more precise
features of the flux landscape, and formulate them into precise mathematical
conjectures. These conjectures would pose interesting challenges which can likely
7Note that some intersections may be empty.
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be tackled by the application and development of techniques in asymptotic Hodge
theory and o-minimality.

5.3.1 Recounting flux vacua
Having established that the number of self-dual flux vacua is finite, a natural
follow-up question would be: how many are there? The early works of Douglas et
al. [116,117] suggest that such numbers could be very large, giving rough estimates
of the order 10500 to 10272,000, see also [147]. At the same time, it has also been
pointed out that these analyses have their shortcomings. In particular, it is pos-
sible that the smearing approximation used to effectively ignore the quantization
condition significantly affects the precise counting of vacua. It is a challenging task
to establish robust mathematical counting results.

One might ask if this problem becomes attainable for the case of Hodge vacua. Here
one faces the fact that the approximations of [116,117] are likely even less reliable.
As discussed also in section 5.1.2, a Hodge vacuum is expected to be relatively rare.
The main reason for this is the fact that a Hodge vacuum has to satisfy h3,1 + 1
equations for only h3,1 variables, hence the system is overdetermined. Importantly,
after solving the DiWflux = 0 equations for the complex structure moduli in terms
of the fluxes and inserting the result into the remaining Wflux = 0 equation, one is
left with a highly transcendental equation for the fluxes. This transcendentality
originates from the fact that the flux-induced superpotential is expressed in terms
of the periods of the Calabi–Yau fourfold. The crucial point is that, due to the
quantization condition, this highly transcendental equation needs to be solved over
the integers, hence its solutions are expected to be rare. Indeed, in the context of
o-minimal geometry, some intuition for this is provided by the celebrated counting
theorem of Pila and Wilkie [148]. Very roughly speaking, the Pila–Wilkie theorem
states that there are very few rational points on the transcendental part of a
definable set. More precisely, the number of such points grows slower than any
positive power of their multiplicative height.8,9

Based on the above considerations, one would expect that for those variations of
polarized Hodge structure which are “sufficiently transcendental” (dictated by a
property called the “level” [144]), the number of connected components in the locus
8For an integral flux v = (v1, . . . , vk) ∈ HZ, its multiplicative height is simply max|vi|.
9In [149] this theorem was applied to provide bounds on the number of lattice points in the fibers
of definable families.
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of Hodge classes with a fixed self-intersection L should grow sub-polynomially in
L. In particular, this would imply that the number of Wflux = 0 vacua in F-theory
grows much slower than expected. However, it was recently shown in an explicit
example investigated in [143] that this conclusion is not quite correct, but for a
very interesting reason. Namely, it can happen that a collection of Hodge classes
actually lies on a higher-dimensional locus where additional Hodge tensors appear,
see appendix 5.A for a basic introduction to Hodge tensors. The important point
is that, because of the presence of these additional Hodge tensors, the restriction
of the variation of Hodge structure to this higher-dimensional locus typically has
a reduced level and thus becomes “less transcendental”, such that the original
logic based on the Pila–Wilkie counting theorem may not apply. As discussed
in [143] this reduction in transcendentality on these loci indicates the presence of
an underlying symmetry in the compactification manifold. In order to take into
account these subtle matters, we therefore propose the following refined version of
the counting conjecture.

Conjecture 5.3.1. Counting of Hodge vacua

Consider a variation of polarized Hodge structure E → M of even weight
D = 2k. Fix a positive integer L and consider the locus of Hodge classes with
a fixed self-intersection L,

ÊHodge(L) = {(zi, v) ∈ E : v ∈ Hk,k ∩HZ , (v, v) = L} . (5.47)

Furthermore, denote by Êiso
Hodge(L) the subset of points (zi, v) ∈ ÊHodge(L)

for which zi are isolated points in the locus of Hodge tensors, see appendix 5.A.

We claim that if the level of the variation of Hodge structure is at least 3,
then the number points in Êiso

Hodge(L) grows sub-polynomially in L. More
precisely, for every ϵ > 0 there exists a C > 0, such that

#Êiso
Hodge(L) < CLϵ , (5.48)

where #Êiso
Hodge(L) is the number points in Êiso

Hodge(L) and C is independent
of L.

Some remarks are in order. First, we note that in [144] a related conjecture has
been proposed. The latter states that, under similar conditions, the number of
points in Êiso

Hodge is in fact finite, without fixing the self-intersection. It is important
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to stress that while a similar statement for higher-dimensional loci has, rather
strikingly, been proven in [144], the statement for isolated points, which is the case
of interest for us, is still a wide open problem.

Second, let us briefly elaborate on the notion of the ‘level’ of a variation of Hodge
structure. The precise definition is somewhat technical and is explained in [144].
Roughly speaking, it is related to the length of the Hodge filtration and serves as a
measure of its ‘complexity’. However, it should not be confused with the weight
D of the Hodge structure. For example, while the Hodge structure on the middle
cohomology of a K3 surface is of weight D = 2, its level is in fact equal to one. As
another example, while one generically expects that the middle cohomology of a
Calabi–Yau fourfold has level equal to four, one can show that for special cases such
as Y3 × T 2 or K3 × K3 the level is again equal to one. In particular, Conjecture
5.3.1 does not apply to these cases.

To elaborate on this point, consider the weak-coupling limit corresponding to type
IIB orientifold compactifications, in which case one effectively reduces to a direct
product Y4 = Y3 × T 2 and hence the level reduces to one. In this setting, known
scans of vacua in one-parameter and two-parameter Calabi–Yau manifolds, defined
as hypersurfaces in weighted projective space, indicate that the number of vacua
with Wflux = 0 in fact scales polynomially in L [150–152]. This is confirmed by the
recent work [153] in which a complete counting of vacua, including Wflux = 0 vacua,
was performed for the mirror octic. To be clear, this is not in contradiction with
Conjecture 5.3.1, due to the reduction in the level in the weak coupling limit. We
believe, however, that this counting is actually not representative for the number
of exact Hodge vacua in the non-perturbative setting of F-theory. Indeed, the
observed polynomial scaling in the type IIB setting should be viewed as an artifact
of truncating the axio-dilaton dependence to the polynomial, i.e. algebraic, level.
To emphasize this point, recall that the axio-dilaton τ can trivially be solved for in
terms of the F3 and H3 fluxes as

τ̄ =
∫

Ω ∧ F3∫
Ω ∧H3

. (5.49)

In contrast, as soon as one includes exponential corrections in τ it is clear that this
is no longer so straightforward and we expect that the transcendental nature of the
equations greatly restricts the number exact Hodge vacua.10 Put shortly, one should
10Of course, there can also be perturbative corrections which break the simple relation (5.49), but

these do not affect the transcendentality of the equations.
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perform the counting of Wflux = 0 vacua in the full F-theory setting, which, in
particular, requires a non-trivial elliptic fibration. Mathematically, this is captured
by the condition that the level of the variation of Hodge structure should be at least
three. A further motivation for this comes from the recent work [144], in which it was
shown that, when the level is at least three, the locus of Hodge classes corresponds
to an atypical intersection, reflecting the fact that it is expected to occur only rarely.

Finally, let us mention some recent developments in mathematics concerning the
issues of algebraicity and transcendentality in a Hodge-theoretic context. From
a more number-theoretic point of view, a Hodge vacuum effectively requires that
some of the h3,1 + 1 equations are no longer algebraically independent. It is a
long-standing question when there exist algebraic relations among transcendental
numbers, which lies at the heart of the Schanuel conjecture. More concretely, given
a collection of complex numbers α1, . . . , αn which are algebraically independent over
Q, the Schanuel conjecture gives a bound on the number of algebraic relations among
the numbers α1, . . . , αn, e

α1 , . . . , eαn . A functional analogue of this question, where
one is considering algebraic relations between f1(x), . . . , fn(x), ef1(x), . . . , efn(x),
is addressed by the Ax–Schanuel theorem [154], which has also been generalized
for certain transcendental functions besides the exponential function. Recently,
techniques from o-minimal geometry and the theory of atypical/unlikely intersections
have lead to great developments in this field as well as a proof of the Ax–Schanuel
conjecture in the Hodge-theoretic setting [155, 156]. Very roughly speaking, the
latter relates the appearance of an atypical intersection, meaning the existence of
additional algebraic relations among e.g. the periods, to a reduction of the so-called
Mumford–Tate group. In a similar spirit, the recent work [144] has elucidated
further properties of the Hodge locus using the theory of unlikely intersections. It
would be very interesting to further investigate these techniques in the context of
F-theory flux compactifications and ascertain whether they could lead to improved
quantitative results on the counting of Hodge vacua and possibly prove or disprove
Conjecture 5.3.1. Whether these techniques could also be applied to study self-dual
vacua is not so clear.

5.3.2 Complexity of the flux landscape

Another exciting avenue to explore with regards to the counting of flux vacua is
using a certain notion of complexity that has recently been developed in the context
of sharp o-minimality, which moreover may be applicable to study both Hodge
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vacua and self-dual vacua. The basic idea of sharp o-minimality, introduced by
Binyamini and Novikov [141, 157], is to endow definable sets, and thereby definable
functions, with some additional positive integers (F,D), called the “format” F and
“degree” D , that reflect the inherent geometric complexity of that set/function.
This is in analogy with the degree of a polynomial, which clearly gives the number
of zeroes of said polynomial over the complex numbers, but can also be used to
give bounds on the number of its zeroes over the real numbers.11 Roughly speaking
sharply o-minimal structure are defined in such a way that the functions arising in
these structures have similar bounds on their number of zeros [157]. Recently, the
concept of sharp o-minimality has been explored in a variety of quantum mechanical
systems in order to assign a well-defined notion of complexity to various physical
observables [159], see also [96,160,161]. It is natural to ask if a similar strategy can
be applied to assign a complexity to e.g. the F-theory flux scalar potential, which
may then provide a new method of estimating the number of flux vacua. In this
regard, we propose the following

Conjecture 5.3.2. Complexity of self-dual flux vacua

We conjecture that the locus of self-dual flux vacua is definable in a sharply
o-minimal structure. Furthermore, we expect that its associated sharp com-
plexity (F,D) depends on the tadpole bound L and the number of moduli
h3,1 in the following way:

D = poly(L) , F = O(h3,1) . (5.50)

Our expectation for the scaling of D and F is rather conservative, and is motivated
by the form of the Ashok–Douglas index density [116,117]. Indeed, the latter grows
as Lh3,1 , while generically the number of zeroes of functions that are definable in
a sharply o-minimal structure depends polynomially on D and exponentially on
F . Since the sharp complexity (F,D) only gives upper bounds on the number of
such zeroes, it could also be the case that already for self-dual vacua, the scaling is
in fact more restricted. Certainly, this is expected for the special class of Hodge
vacua, as captured by Conjecture 5.3.1.

Nevertheless, we stress that the statement of Conjecture 5.3.2 is highly non-trivial.
Indeed, while Theorem 5.1.2 establishes that the locus of self-dual flux vacua is
definable in the o-minimal structure Ran,exp, it has been shown that this structure
11More generally, this falls under Khovanskii’s theory of fewnomials [158].
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is not sharply o-minimal. Roughly speaking, a generic restricted analytic function
does not have a well-defined notion of complexity, because one has too much freedom
in specifying the coefficients in its series expansion. Nevertheless, it is currently
conjectured [141], that period integrals are in fact definable in a sharply o-minimal
structure, meaning that they actually live in a much smaller o-minimal structure
than Ran,exp. This would, in particular, imply a positive answer to the first part of
Conjecture 5.3.2. Lastly, let us mention the recent work [162] in which a proof was
given for Wilkie’s conjecture [148] when restricting to certain sharply o-minimal
structures. Together with Conjecture 5.3.2, the latter suggests that the scaling
in Conjecture 5.3.1 may be even more restricted by replacing the sub-polynomial
scaling with a logarithmic scaling in L. It would be very interesting to investigate
this further.

5.3.3 A generalized tadpole conjecture for the Hodge locus
In the previous points we have focused on counting the number of flux vacua or,
more precisely, the number of connected components of the vacuum locus. A related
question concerns the dimension of the various connected components, in particular
whether it can be zero. In other words, one might ask whether all complex structure
moduli can always be stabilized for a suitable choice of flux. When one is only
solving the vacuum conditions, it is reasonable to expect that this can indeed be
achieved, since one imposes at least h3,1 complex conditions for the same number
of complex variables. However, it is not obvious whether this can be done whilst
also imposing the tadpole condition. Indeed, the tadpole conjecture postulates
that one cannot stabilize a large number of complex structure moduli within the
tadpole bound, i.e. when h3,1 is much larger than all other Hodge numbers [42].
More concretely, it states that for large h3,1 and all moduli stabilized, one has

1
2

∫
Y4

G4 ∧G4 > αh3,1 , (5.51)

with α > 1/3. Recalling that χ(Y4)
24 ∼ 1

4h
3,1, this implies that for large h3,1 the

tadpole grows too quickly to be contained within the tadpole bound. We refer the
reader to [43–51] for related works on the tadpole conjecture.

Let us attempt to formulate a version of the tadpole conjecture in a more mathe-
matical fashion. Let v ∈ HZ be an integral class, playing the role of the flux, and
denote by

(v, v) = L , (5.52)
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its self-intersection. The spirit of the tadpole conjecture is that when the flux
v defines a vacuum in which all moduli are stabilized, one necessarily has L >

O(1) · dimM, where we recall thatM denotes the complex structure moduli space.
Conversely, if dimM > O(1) · L, then it must be that not all moduli are stabilized.
The latter statement can be formalized as follows. Generically, the vacuum locus
consists of several connected components, each having a well-defined notion of
dimension.12 For the locus of Hodge classes this is immediately clear, since it is
algebraic. For the locus of self-dual classes this follows from its definability in
an o-minimal structure, since a natural notion of dimension is provided by the
cell decomposition [164]. Within this locus, some components may correspond to
points, having dimension zero, while other components may correspond to higher-
dimensional loci, having strictly positive dimension. The statement that not all
moduli are stabilized then means that all components of the vacuum locus of with
a fixed self-intersection L have strictly positive dimension. For the class of Hodge
vacua, such a special feature of the vacuum locus appears to be more plausible.
Thus we are lead to the following

Conjecture 5.3.3. Generalized tadpole conjecture

Consider a variation of polarized Hodge structure E → M of even weight
D = 2k. Fix a positive integer L and recall the notation

EHodge(L) = {(zi, v) ∈ E : v ∈ Hk,k ∩HZ , (v, v) ≤ L} , (5.53)

for the locus of Hodge classes with self-intersection bounded by L. We
conjecture that for certain positive constants C1, C2, which are independent
of L and dimM (but may depend on other details of the variation of Hodge
structure, such as the weight D), the following holds: if

dimM > C1 and dimM > C2 · L , (5.54)

then every connected component of EHodge(L) has strictly positive dimension.a
Furthermore, when the variation of Hodge structure comes from the middle
cohomology of a family of Calabi–Yau fourfolds, we expect that the constant
C2 is of order one.
aNote that since L ≥ 1 for non-trivial fluxes, the two conditions in (5.54) reduce to a single
condition whenever C2 ≥ C1.

12See also [163] for a related discussion.
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v2

v1

HZ HZ

M

Figure 5.7: Schematic illustration of the Hodge bundle, in which the flux lattice HZ is
fibered over the moduli space M. In blue and in red we have depicted two components of
the vacuum locus with different dimensionality, corresponding to two choices of flux v1

and v2, respectively.

On the one hand, the statement of Conjecture 5.3.3 is more general than the original
tadpole conjecture of [42], as it is formulated for a general variation of Hodge struc-
ture. On the other hand, it should be emphasized that, in the specific setting of
Calabi–Yau fourfold compactifications, the statement of Conjecture 5.3.3 is weaker
than the original tadpole conjecture, for a number of reasons. Firstly, Conjecture
5.3.3 is formulated for Hodge vacua only, corresponding to vacua with Wflux = 0,
while the original tadpole conjecture applies to all self-dual vacua. Additionally, in
the formulation of Conjecture 5.3.3 there is no restriction on how many moduli are
left unstabilized, as long as there is at least one. Finally, the exact values of the
constants C1 and C2 are left undetermined. Especially for the physical application
of studying the landscape of fully stabilized Hodge vacua, it is of utmost importance
to quantify the exact values of C1, C2.

In figure 5.7 we have illustrated two possible components of the locus of Hodge
classes to exemplify the statement of Conjecture 5.3.3, for the case of a two-
dimensional flux lattice HZ and a real two-dimensional moduli space M, so that
dimE = 4. Suppose that v1 is a choice of flux with sufficiently small tadpole L1 so
that Conjecture 5.3.3 applies. Then the vacuum locus corresponding to v1 inside
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the full Hodge bundle may, for example, be a one-dimensional curve. Thus, this
component of EHodge(L1) has positive dimension. If instead v2 is another choice of
flux, with tadpole L2, for which the corresponding vacuum is simply a point, then
L2 must be sufficiently large, in particular L2 > L1. Note that it could additionally
happen that this point lies on the component of the vacuum locus corresponding
to v1, as indicated in figure 5.7. In order to disentangle the two components, one
should always consider the vacuum locus within the full Hodge bundle. To conclude,
we believe a positive or negative answer to Conjecture 5.3.3 would be an important
step towards proving or disproving the tadpole conjecture. Although the conjecture
remains rather speculative, it is conceivable that at least for Hodge classes a definite
answer can be given in the near future.

Appendices

5.A Basics of Hodge tensors

In this section we introduce some basic concepts regarding so-called Hodge tensors,
as well as the corresponding locus of Hodge tensors, see e.g. [165,166] for further
details and references. We recall that these notions play an important role in the
formulation of conjecture 5.3.1.

Let HZ be a free abelian group of finite rank, and suppose that

HC =
⊕

p+q=D
Hp,q , (5.55)

is a Hodge structure of weight D on HZ. There are three basic operations one can
perform to construct new Hodge structures from (5.55).

• Direct sum:
Given two Hodge structures (HZ, H

p,q) and (H ′
Z, H

′p,q) of the same weight
D, the direct sum of the two lattices

HZ ⊕H ′
Z , (5.56)

carries a Hodge structure of weight D given by

(H ⊕H ′)p,q := Hp,q ⊕H ′p,q , p+ q = D . (5.57)
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• Dual:
The dual lattice

H∨
Z := Hom (HZ,Z) , (5.58)

consisting of homomorphisms from the lattice HZ to Z, carries a Hodge
structure of weight −D given by

(H∨)p,q :=
(
H−p,−q)∨ = Hom

(
H−p,−q,C

)
, p+ q = −D . (5.59)

• Tensor product:
Given two Hodge structures (HZ, H

p,q) and (H ′
Z, H

′p,q) of weights D and D′,
respectively, the tensor product

HZ ⊗H ′
Z , (5.60)

naturally carries a Hodge structure of weight D +D′ given by

(H ⊗H ′)p
′′,q′′

=
⊕

p+p′=p′′

q+q′=q′′

Hp,q ⊗H ′p′,q′
, p′′ + q′′ = D +D′ . (5.61)

Combining the last two operations one finds that the space

H⊗a ⊗ (H∨)⊗b := HZ ⊗ · · · ⊗HZ︸ ︷︷ ︸
a copies

⊗H∨
Z ⊗ · · · ⊗H∨

Z︸ ︷︷ ︸
b copies

of (a, b)-tensors on HZ carries a Hodge structure of weight (a − b)D. Note that
different values of a, b can give rise to a Hodge structure of the same weight. In
particular, for each k ∈ Z, we can apply the first operation and collect all these
Hodge structures into one direct sum⊕

a,b∈N
a−b=k

H⊗a ⊗ (H∨)⊗b
, (5.62)

which carries a Hodge structure of weight kD. Finally, one can consider the formal
direct product of all these Hodge structures by summing over k, which results in
the space

H⊗ :=
∞⊕

k=−∞

⊕
a,b∈N
a−b=k

H⊗a ⊗ (H∨)⊗b
. (5.63)

Finally, we come to central object we wish to study.
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Definition: Hodge tensor

A Hodge tensor is a Hodge class in H⊗. More precisely, a type (p, p) Hodge
tensor is a Hodge class in the component of H⊗ that carries a Hodge structure
of weight 2p, i.e. in the component⊕

a,b∈N
(a−b)D=2p

H⊗a ⊗ (H∨)⊗b
. (5.64)

Examples

• Type
(

D
2 , D

2

)
Hodge tensors

In the following we assume that D is even. Setting p = D/2 in (5.64) and
working through the definitions, we are searching for (p, p) classes in⊕

a,b∈N
a−b=1

H⊗a ⊗ (H∨)⊗b = H ⊕ [H ⊗H ⊗H∨]⊕ · · · . (5.65)

Focusing on the first term on the right-hand side, we see that an example of
a
(
D
2 ,

D
2
)

tensor is simply a Hodge class in the original Hodge structure Hp,q.
However, the notion of a

(
D
2 ,

D
2
)

tensor is more general, as it can also arise
from the other summands. As an example, one can also construct a (p, p)
tensor via

[H ⊗H ⊗H∨]p,p =
[
Hp+1,p−1 ⊗Hp−2,p+2 ⊗ (H∨)−p+1,−p−1

]
⊕ · · · , (5.66)

where we have just chosen one of the terms that could appear to illustrate
the resulting structure.

• Type (0,0) Hodge tensors
Another illuminating example is given by considering type (0, 0) Hodge tensors.
Setting p = 0 in (5.64) and working through the definitions, we are searching
for (0, 0) classes in⊕

a,b∈N
a−b=0

H⊗a ⊗ (H∨)⊗b = [H ⊗H∨]⊕ [H ⊗H ⊗H∨ ⊗H∨]⊕ · · · . (5.67)
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Let us focus on the first term, for which we find

(H ⊗H∨)0,0 =
⊕

p+p∨=0
q+q∨=0

Hp,q ⊗ (H∨)p
∨,q∨

, (5.68)

=
⊕
p,q

Hp,q ⊗ (Hp,q)∨
, (5.69)

∼=
⊕
p,q

End (Hp,q, Hp,q) . (5.70)

In other words, such a type (0, 0) Hodge tensor can be interpreted as an
endomorphism of the various Hp,q spaces, i.e. a map which preserves the
original Hodge structure we started with.

The locus of Hodge tensors

The above considerations naturally generalize to the setting of variations of Hodge
structure, where the Hodge decomposition varies over a moduli space M. Recall
that, given an integral class v ∈ HZ, it is a non-trivial condition on the moduli
whether v is a Hodge class (which may or may not have a solution). Similarly, one
might ask which points in the moduli space admit Hodge tensors. To be precise, one
should consider the locus of points z ∈M for which the Hodge structure admits
more Hodge tensors than the general fibre, see for example [165] for further details.
This locus will be referred to as the locus of Hodge tensors. Note that, by the first
example discussed above, the locus of Hodge tensors contains the locus of Hodge
classes, recall also (5.11).

5.B Examples of boundary Hodge norms
In this section we present two examples of boundary Hodge norms. For simplicity,
we restrict to the case of Calabi–Yau threefolds having a single complex structure
modulus, and consider the large complex structure point and the conifold point,
which have been discussed in appendix 3.B based on the results of [101], to which
we refer the reader for further details.

Type IV1: LCS point

Using the result for the boundary charge operator Q∞ for the type IV1 singularity,
see equation (3.220), one immediately finds that the boundary Hodge inner product
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can be represented by the matrix

S · C∞ =


2ĉ2

2
κ + κ

6 − 2ĉ2σ
κ − 2ĉ2

κ 0
− 2ĉ2σ

κ
12ĉ2

2+κ2+4σ2

2κ
2σ
κ − 6ĉ2

κ

− 2ĉ2
κ

2σ
κ

2
κ 0

0 − 6ĉ2
κ 0 6

κ

 , ĉ2 = c2

24 , (5.71)

where we have made the identification (4.134). Here we recall that S denotes the
symplectic pairing and C∞ is the Weil operator associated to the boundary Hodge
structure. It is instructive to compute the boundary Hodge norm of the various
weight-components of an integral flux. Let G3 = (g1, g2, g3, g4) ∈ HZ. Since we are
working in an integral basis, this means that g1, . . . , g4 ∈ Z. For the IV1 singularity,
the only possible weights are ℓ = 3, 1,−1,−3. By projecting G3 on the various
weight eigenspaces of N0, recall equation (3.215), one straightforwardly computes

||(G3)3||2∞ = κ

6 g
2
1 , (5.72)

||(G3)1||2∞ = κ

2 g
2
2 , (5.73)

||(G3)−1||2∞ = 2
κ

(ĉ2g1 − g3 + σg2)2
, (5.74)

||(G3)−3||2∞ = 6
κ

(ĉ2g2 − g4)2
. (5.75)

One sees that, for example, the boundary Hodge norm of a non-zero (G3)3 is
bounded from below by κ/6. On the other hand, for the ℓ = −1,−3 components
the exact bound will depend on the values of the coefficients c2 and σ.

Type I1: conifold point

As for the case of the LCS point, one can write down the boundary Hodge norm
associated to the type I1 limiting mixed Hodge structure using the result (3.198).
This yields

S · C∞ =


|τ |2

τ2
+ δ2

k
δτ1−γ|τ |2

τ2
− δ
k − τ1

τ2
− γδ

k
δτ1−γ|τ |2

τ2

γ2|τ |2+δ2+kτ2−2γδτ1
τ2

0 γτ1−δ
τ2

− δ
k 0 1

k
γ
k

− τ1
τ2
− γδ

k
γτ1−δ
τ2

γ
k

1
τ2

+ γ2

k

 (5.76)

Let G3 = (g1, g2, g3, g4) ∈ HZ again be an integral flux, with g1, . . . , g4 ∈ Z. For the
I1 singularity, the only possible weights are ℓ = 1, 0,−1. By projecting G3 on the
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various weight eigenspaces of N0, recall (3.191), one straightforwardly computes

||(G3)1||2∞ = kg2
2 , (5.77)

||(G3)0||2∞ = 1
τ2
|g4 − δg2 − (g1 − γg2)τ |2 , (5.78)

||(G3)−1||2∞ = 1
k

(g3 + γg4 − δg1)2 (5.79)

For example, we see that if the ℓ = 1 component of G3 is non-zero, then its boundary
Hodge norm is bounded by k (since g2

2 ≥ 1). For the other components the exact
bound will depend on the details of the geometry, namely the values of γ, δ, τ . To
avoid possible confusion, we stress that for example

(G3)−1 = (0, 0, g3 + γg4 − δg1, 0) , (5.80)

so that indeed ||(G3)−1||∞ = 0 if and only if (G3)−1 = 0.

5.C Finiteness of Hodge vacua
In this section we will describe the proof of Theorem 5.1.3 in some detail. In
contrast to the proof of Theorem 5.1.4, which relied heavily on the nilpotent orbit
expansion, the proof discussed here relies more on understanding in which space a
sequence of Hodge classes ends up when approaching the boundary. Hence, we let(

ti(n), v(n)
)
∈ Hm ×HZ(L) , (5.81)

be a sequence of points such that Re ti(n) is bounded and Im ti(n)→∞ as n→∞.
Furthermore, we assume that

v(n) ∈ Hk,k , D = 2k , (5.82)

is a sequence of Hodge classes. Our goal is to show that v(n) can only take on
finitely many values. To this end, it suffices to show that there exists a constant
subsequence of v(n). For this reason, we may and will freely pass to a subsequence
of v(n) whenever possible, without changing the notation to avoid unnecessary
cluttering. To ease the reader into the proof, we start by considering the simpler
one-variable case (m = 1). Afterward, we explain how one may inductively apply
the one-variable result to obtain the general result.
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5.C.1 One variable
The proof will be divided into five main steps.

Step 1: Incorporating exponential corrections

It will be helpful to effectively reduce the problem to the case where the variation
of Hodge structure in question is a nilpotent orbit. This can be done as follows. As
explained in [137,145], one may assume, without loss of generality, that the flux is
parametrized as

v(n) = vnil(n) + vinst(n) , (5.83)

where vnil(n) ∈ F knil is a sequence of Hodge classes with respect to a nilpotent orbit
Fnil, while vinst(n) is a series of exponentially small corrections, satisfying

||vinst(n)||∞
||v(n)||∞

∼ e−αy(n) , (5.84)

for some constant α.

Step 2: Boundedness and sl(2)-weights

The start of the proof is identical to the discussion in section 5.2.2. Indeed, we recall
the important result that the self-duality condition and the tadpole cancellation
condition together imply that the Hodge norm ||v(n)|| is bounded. Consequently,
the relation

lim
n→∞

e(n)F p(t(n)) = F p∞ , (5.85)

implies that also the boundary Hodge norm ||e(n)v(n)||∞ is bounded. In the
one-variable case, this means that∑

ℓ

yℓ ||v̂ℓ(n)||2∞ < L , v̂(n) = e−x(n)Nv(n) . (5.86)

As discussed in section 5.2.1, this implies that v̂(n), for n sufficiently large, can
only have non-zero weight components for ℓ ≤ 0. This means that, after passing
to a subsequence, the sequence v̂(n) lies inside the W2k component of the weight
filtration induced by the single monodromy operator N via (3.43). Additionally,
note that the ℓ = 0 component v̂0(n) can only take finitely many values, due to the
quantization condition. Therefore, after passing to another subsequence, we may
write

v̂(n) ≡ v̂0 modW2k−1 , (5.87)
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where v̂0 is a constant. Intuitively, one can think of the v̂0 component of v̂(n) as the
part of v̂(n) that remains in the limit n→∞. The next step of the proof amounts
to showing that this component is rather restricted, owing to the fact that v̂(n) is
a sequence of Hodge classes.

Step 3: Show that Nv̂0 = 0

For the moment, let us denote

w = lim
n→∞

e(n)v(n) = lim
n→∞

e(n)vnil(n) , (5.88)

where the second relation follows from the fact that the contribution from vinst(n)
is sub-leading. Recalling the relation (5.85) and using the fact that vnil(n) ∈ F knil,
one finds that w ∈ F k∞. At the same time, since v(n) ∈W2k and v(n) is real, the
same is true for w. This is because e(n) is a real operator that does not change the
weights. In other words, we have

w ∈ F k∞ ∩W2k ∩HR . (5.89)

Such elements are very restricted, as captured by the following

Lemma 5.C.1 ( [137, Lemma 4.4]). If w ∈ F k∞∩W2k(N)∩HR, then N0w = Nw = 0.

Proof. We follow the proof of Schnell, see Lemma 12.4 of [145]. We proceed in two
steps:

1. First, we show that Nw = 0. Since N acts on the weight filtration as
NW2k ⊆ W2k−2 and F∞ = eiN F̃ , with F̃ the limiting filtration, one finds
that

e−iNw ∈ F̃ k ∩W2k(N) . (5.90)

In particular, it follows that both w and Nw lie inside F̃ k ∩W2k(N). At
the same time, however, noting that NF̃ k ⊆ F̃ k−1, it follows that Nw ∈
F̃ k−1 ∩W2k−2(N). Combining these results, together with the fact that w
and N are real, gives the condition

Nw ∈ F̃ k ∩W2k−2(N) ∩HR . (5.91)

Using the fact that (W, F̃ ) defines a mixed Hodge structure, the space on
the right-hand side is empty, hence Nw = 0. To give some feeling for this
property, we have illustrated the relevant spaces in the case of a weight D = 4
limiting mixed Hodge structure (so k = 2) in figure 5.8.
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2. Next, we show that N0w = 0. This follows straightforwardly from the fact
that

W2k ∩ F̃ k ∩ F̃ k = Ĩk,k , (5.92)

where Ĩk,k denotes the (k, k)-component of the Deligne splitting associated
to the R-split mixed Hodge structure (W, F̃ ), recall the discussion in section
(3.3). In particular, using the earlier result that Nw = 0, one finds that
w ∈ Ĩk,k. Using the fact that N0 acts on Ĩp,q as multiplication by p+ q −D
the result follows.

W2

F̃ 2 Ĩ2,2

Nw

Figure 5.8: Arrangement of the Deligne splitting Ĩp,q for a weight four limiting mixed
Hodge structure (W, F̃ ). In blue: F̃ 2 component of the limiting Hodge filtration. In
orange: W2 component of the weight filtration. In red: the potential location of Nw, with
the arrow denoting the action of the log-monodromy matrix N . Since complex conjugation
acts on the Deligne splitting as reflection in the vertical axis, the vector Nw cannot be
real unless it is zero. Following the proof of Lemma 5.C.1, the only possible location for w

is in the space Ĩ2,2.

As a result of Lemma 5.C.1, we find that

N0w = 0 , Nw = 0 . (5.93)

One can summarize this result in the statement that w should be a singlet under
the sl(2) action. Returning to our original sequence v̂(n), recall equation (5.87),
and projecting the congruence

e(n)v̂(n) ≡ v̂0 modW2k−1 (5.94)
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to the eigenspace E0, one finds that indeed w = v̂0 and hence Nv̂0 = 0. Additionally,
as mentioned in the proof of Lemma 5.C.1, the limiting element v̂0 lies inside the
space Ĩk,k. In other words, it lies exactly in the center of the Deligne diamond.

Step 4: Show that Nv̂(n) = 0

Having shown that Nv̂0 = 0, the next step is to show that in fact this relation
applies to the whole sequence v̂(n), after passing to a subsequence. Indeed, since
Nv̂0 = 0 and NW2k−1 ⊆W2k−3, it follows that

Nv̂(n) ∈W2k−3 . (5.95)

Now, let us write

e(n)Nv̂(n) = e(n)Nv̂nil(n) + e(n)Nv̂inst(n) . (5.96)

Our goal will be to first show that both terms on the right-hand side are in fact
exponentially small. Indeed, suppose not, then the ratio

||e(n)Nv̂inst(n)||∞
||e(n)v̂(n)||∞

(5.97)

would go to zero as n→∞. Consequently, one would find that

lim
n→∞

e(n)Nv̂(n)
||e(n)Nv̂(n)||∞

= lim
n→∞

e(n)Nv̂nil(n)
||e(n)Nv̂nil(n)||∞

, (5.98)

and furthermore the resulting limit would give a unit vector in the space NF k∞ ∩
W2k−3 ∩HR. To see the latter, one uses the fact that e(n)N = y(n)−1Ne(n) to
swap the order of e(n) and N (note that these are vector space identities, so an
overall rescaling is irrelevant) and again applies the relation (5.85). The important
observation is that NF k∞∩W2k−3∩HR = {0}, due to the fact that (W,F∞) defines a
mixed Hodge structure (recall also that NF k∞ ⊆ F k−1

∞ ). This is again illustrated in
figure 5.9 for the case D = 4, or k = 2. We have therefore arrived at a contradiction
and must conclude that in fact ||e(n)v̂(n)||∞ is bounded by a constant multiple
of ||e(n)Nv̂inst(n)||∞, in particular it is exponentially small. Since e(n) grows at
most polynomially, we conclude that Nv̂(n) itself becomes exponentially small as
n→∞. Since v̂(n) is quantized, this means that for sufficiently large n, we must
have Nv̂(n) = 0, as desired.
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W1

F 1
∞

e(n)Nv̂nil(n)

Figure 5.9: Arrangement of the Deligne splitting Ip,q for a weight four limiting mixed
Hodge structure (W, F∞). In blue: F 1

∞ component of the boundary Hodge filtration. In
orange: W1 component of the weight filtration. In red: the potential location of the limit
of the sequence e(n)Nv̂nil(n) as n → ∞. Since complex conjugation acts on the Deligne
splitting as reflection in the vertical axis, the vector e(n)Nv̂nil(n) cannot be real unless it
is zero.

Step 5: v(n) is bounded

Since Nv̂(n) = 0, it immediately follows that also Nv(n) = 0. This is a huge
simplification, because it effectively allows us to remove the moduli-dependence
from the problem. Indeed, recall that the original nilpotent orbit is of the form

F pnil(t) = et(n)NF p0 . (5.99)

Now choose some fixed t∗ with imaginary part large enough, and note that

v(n) = et∗N−t(n)Nv(n) ∈ F knil(t∗) . (5.100)

In particular, due to the tadpole condition, v(n) is bounded in Hodge norm with
respect to the fixed filtration F knil(t∗). Together with the quantization condition
this implies that v(n) can take on only finitely many values. This finishes the proof
in the one-variable case.

5.C.2 Multiple variables
In this section we present the general multi-variable proof of finiteness of Hodge
classes, based on the original work of Cattani, Deligne, and Kaplan [137]. We also
draw heavily from the formulation of the proof in [145]. The proof is based on an
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inductive application of the one-variable result discussed in the previous section.
To start, we set up the induction and briefly describe in which stage of the proof
the induction step is used.

Step 0: Setting up the induction

The major complicating factor of the multi-variable proof is the fact that there
are many possible hierarchies between the saxions yi that become large as one
approaches a boundary of the moduli space. The strategy of [137] is to inductively
iterate over all such possible hierarchies. Indeed, it is argued that, after passing to
a subsequence, one can always parametrize the sequence of saxions as

yk(n) = i

d∑
l=1

Akl λl(n) + bk(n) , (5.101)

where the Akl are real and non-negative constants, comprising the entries of an
m× d matrix, and b(n) ∈ Rm is a bounded sequence. Furthermore, the sequence
λ(n) ∈ Rd has the property that

λk(n)
λk+1(n) →∞ , as n→∞ , (5.102)

for all 1 ≤ k ≤ d, where we put λd+1(m) = 1. Next, we note that (5.101) leads to
the following relation

i

m∑
j=1

yj(n)Ni = i

d∑
k=1

λk(n)Mk +
m∑
j=1

bj(n)Nj , (5.103)

where the new monodromy matrices Mk are related to the original ones by Mk =
AkjNj . Effectively, the integer 1 ≤ d ≤ m parametrizes the number of different
hierarchies between the saxions. Consequently, the proof will proceed by induction
on d. To be precise, we will show that the sequence v(n) has a constant subsequence,
which we denote by v, such that

Mkv = 0 , 1 ≤ k ≤ d . (5.104)

Finally, to avoid cluttering the notation, we will set the axions xi to zero for
the rest of the proof. As in the one-variable case, the axion-dependence can be
straightforwardly incorporated using the monodromy matrices.
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Step 1: Incorporating exponential corrections

As in the one-variable case, it will be useful to write

v(n) = vnil(n) + vinst(n) , (5.105)

where vnil ∈ F knil is a sequence of Hodge classes with respect to a nilpotent orbit
Fnil, and the sequence vinst(n) satisfies

||vinst(n)||∞
||v(n)||∞

∼ e−α sup(yi) , (5.106)

for some constant α.

Step 2: Boundedness and sl(2)-weights

Again, as in the one-variable case, the starting point of the proof is the statement
that the Hodge norm ||v(n)|| is bounded, and therefore the boundary Hodge norm
||e(n)v(n)||∞ is bounded. In the one-variable case, one could immediately conclude
from the latter that v(n) lies inside W2k, meaning that it only has weight components
ℓ ≤ 0. In the multi-variable case, it similarly turns out to be true that v(n) lies
inside W (1)

2k , meaning that its weight-components with respect to the first sl(2)
grading operator N0

(1) must have ℓ1 ≤ 0. However, the proof of this statement is
significantly more involved. Below we present the general idea in a number of steps,
but refer the reader to [137] for the details of some of the statements.

1. Suppose v(n) ∈W (1)
D+ℓ1

and define H̃C = Gr(1)
D+ℓ1

, which supports a polarized
variation of Hodge structure of weight D + ℓ1. Denote by ṽ(n) the projection
of v(n) onto H̃C. Suppose that ℓ1 ≥ 1, then one can show that

||ẽ(n)ṽ(n)||2∞ ≤ λ1(n)−ℓ1 ||e(n)v(n)||2∞ ≤ λ2(n)−ℓ1 ||e(n)v(n)||2∞ , (5.107)

where similarly ẽ(n) denotes the projection of the operator e(n) onto H̃C.
Intuitively, the first relation in (5.107) holds because the projection removes
the λ1(n) dependence, while the second relation follows from the fact that
λ1(n) > λ2(n).

2. As a result of (5.107) and the fact that ||e(n)v(n)||∞ is bounded, it follows
that the expression

λ2(n)ℓ1 ||ẽ(n)ṽ(n)||2∞ (5.108)

must be bounded as well. We will now argue that the highest weights of ṽ(n)
satisfy

ℓi = 0 , i > 1 . (5.109)
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This can be seen as follows. Since the unit vector

ẽ(n)ṽ(n)
||ẽ(n)ṽ(n)||∞

(5.110)

converges to an element in W (2)
D+ℓ2

∩F k∞∩HR and (W (2), F∞) defines a mixed
Hodge structure, one has that ℓ2 ≥ 0. Now one can once more project ṽ(n)
onto the graded space Gr(2)

D+ℓ2
, which carries a polarized variation of Hodge

structure of weight D+ ℓ2. Denoting this projection by ṽ(n)′ and noting that

λ3(n)ℓ2 ||ẽ(n)′ṽ(n)′||2∞ ≤ λ2(n)ℓ2 ||ẽ(n)′ṽ(n)′||2∞ (5.111)
≤ λ2(n)ℓ1 ||ẽ(n)ṽ(n)||2∞ (5.112)
≤ ||e(n)v(n)||2∞ , (5.113)

one concludes that λ3(n)ℓ2 ||ẽ(n)′ṽ(n)′||2∞ is bounded. Proceeding by induction,
it follows that ℓ3 = . . . = ℓd = 0. But then

λ2(n)ℓ1 ||ẽ(n)ṽ(n)||2∞ ≥ λ2(n)ℓ2 ||ṽ(n)(ℓ2,0,...,0)||2∞ , (5.114)

and boundedness of the left-hand side implies that ℓ2 ≤ 0, hence ℓ2 = 0.

3. Returning to the sequence v(n), and applying (5.109), one finds that

||e(n)v(n)||2∞ ≥ ||e(n)v(n)(ℓ1,...,ℓd)||2∞ =
(
λ1(n)
λ2(n)

)ℓ1

||v(n)(ℓ1,0,...,0)||2∞ .

(5.115)
This is in contradiction with the fact that ||e(n)v(n)||2∞ must remain bounded,
hence the assumption that ℓ1 ≥ 1 is false. Therefore, we conclude that ℓ1 ≤ 0.

Step 3: Restricting the limit of v(n)

The idea is now to apply the induction hypothesis to projection ṽ(n) of v(n) onto
H̃C = Gr(1)

D , which again supports a variation of Hodge structure of weight D. This
effectively projects the relation (5.101) to

ỹk(n) =
d∑
l=2

Aklλ̃l(n) + b̃(n) . (5.116)

This expansion is very similar to (5.101), but with d−1 terms instead of d. Therefore,
after passing to a subsequence, the induction step implies that ṽ(n) has a constant
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value h̃ ∈ H̃Z and that M̃kh̃ = 0 for k = 2, . . . , d. Lifting this result back to the
sequence v(n), we may write

v(n) ≡ v0 modW (1)
D−1 , (5.117)

where
v0 =

∑
ℓ2,...,ℓd≤0

v(n)(0,ℓ2,...,ℓd) (5.118)

is a constant sequence that projects to h̃. The strategy is now similar to the
one-variable case, where we have shown that v0 is annihilated by the monodromy
operator. In the multi-variable case, the result is not quite as strong, because the
element v0 contains multiple sl(2)-components. Indeed, we will instead show that
M1v

(0,...,0)
0 = 0. To this end, let us again introduce the limiting vector

w := lim
n→∞

e(n)v(n) ∈ F k∞ ∩W
(1)
2k−1 ∩HR . (5.119)

Applying the result of Lemma 5.C.1, one finds

N0
1w = M1w = 0 . (5.120)

Projecting the congruence

e(n)v(n) ≡ e(m)v0 modW (1)
2k−1 , (5.121)

to the weight ℓ1 = 0 eigenspace of N0
(1), we get that indeed w = v

(0,...,0)
0 and hence

M1v
(0,...,0)
0 = 0 as desired.

Step 4: Showing that M1v(n) = 0

Having shown that M1v
(0,...,0)
0 = 0, we next show that in fact M1v(n) = 0, after

passing to a subsequence. The argumentation is again analogous to the one-variable
case. However, it is important to note that now it is not immediately obvious
whether M1v0 = 0. So far we have only shown this for the v(0,...,0)

0 component. As
a result, the analysis needs to be slightly modified, but is very similar in spirit. Let
us again write

e(n)M1v(n) = e(n)M1vnil(n) + e(n)M1vinst(n) , (5.122)

and suppose that the ratio

||e(n)M1vinst(n)||∞
||e(n)M1v(n)||∞

(5.123)
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F 1
∞

W
(1)
2

u

Figure 5.10: Arrangement of the Deligne splitting Ĩp,q
(1) associated to the mixed Hodge

structure (W (1), F̃∞). In blue: F̃ 1
(1) component of the F̃ p

(1) filtration. In orange: W
(1)
1

component of the weight filtration W
(1)
ℓ . The only possible location for the limiting vector

u = limn→∞ u(n) is also indicated. Note that indeed u necessarily has weight ℓ1 = −2.

goes to zero as n→∞. Consequently, one would find that

u(n) := e(n)M1v(n)
||e(n)M1v(n)||∞

∈W (1)
2k−2 ∩HR (5.124)

defines a sequence of unit vectors (note the appearance of W (1)
2k−2 as opposed

to W2k−3 in the one-variable case!), which would converge to a unit vector u ∈
F k−1

∞ ∩W (1)
2k−2 ∩ HR. Because the index on the weight filtration is increased by

one compared to the one-variable case, it is no longer the case that this space is
immediately trivial. It is, however, very restricted. Indeed, another application of
Lemma 5.C.1 gives that u necessarily has weight ℓ1 = −2. This is illustrated in
figure 5.10 for the case D = 4.

At the same time, we may recall that v(n) ≡ v0 modW (1)
2k−1, hence by projecting

onto the ℓ1 = −2 component, we have

u = e(n)M1v0

||e(n)M1v(n)||∞
∈W (1)

2k−2 ∩ · · · ∩W
(d)
2k−2 . (5.125)

Hence, we find that
u ∈ F k∞ ∩W

(i)
2k−2 ∩HR , (5.126)

for every i = 1, . . . , d. Yet another application of Lemma 5.C.1 implies that u
necessarily has weights ℓi = −2 for all i = 1, . . . , d. However, recalling that M1
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lowers all the weights by exactly −2, it must be that

u(m)(−2,...,−2) = e(n)M1v
(0,...,0)
0

||e(n)M1v(n)||∞
= 0 . (5.127)

Hence, this is in contradiction to the fact that u is a unit vector. Consequently,
it must be the case that ||e(n)M1v(n)||∞ is bounded by a constant multiple of
||e(n)M1vinst(n)||∞. In particular, the former is also exponentially small. Since
e(n) grows at most polynomially, this implies that M1v(n) is exponentially small.
Due to the quantization condition, we may therefore assume that M1v(n) = 0 after
passing to a subsequence.

Step 5: Finishing the proof

Having argued that M1v(n) = 0 the final step of the proof proceeds in the same
spirit as the one-variable case. Indeed, in the one-variable case this relation allowed
us to completely remove the moduli dependence of the problem. In the multi-
variable case, it instead allows us to remove one of the moduli from the problem.
Indeed, since the sequence of filtrations

e−iλ1(n)M1F pnil (5.128)

no longer depends on λ1(n), we have effectively reduced the value of d to d− 1. By
induction, we may pass to a subsequence of v(n) which is constant and lies in the
kernel of M2 . . . ,Md. Since we already have M1v(n) = 0 we have indeed shown
that Mkv = 0 for all 1 ≤ k ≤ d. Finally, when d = 1 one may simply apply the
one-variable proof. This concludes the proof of the multi-variable case.
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Part IV

Applications in Integrable Systems

In this part of the thesis we describe how the tools of (asymptotic) Hodge theory
also find applications in the context of integrable systems. More precisely, we
will be concerned with the classical dynamics of two classes of two-dimensional
integrable non-linear σ-models, and argue for an intricate underlying connection
to the defining equations of variations of Hodge structure and their asymptotic
behaviour.

In chapter 6 we provide some general motivation for studying this connection,
which will also apply to the subsequent chapter, and show how the horizontality
conditions of the period map can be formulated in terms of the equations of
motion of the λ-deformed gauged Wess–Zumino–Witten model. Physically, this
can be understood as a reformulation of the mathematics of variations of Hodge
structures in terms of the classical dynamics of a string which propagates on the
corresponding classifying space.

In chapter 7 we instead use results from asymptotic Hodge theory, in particular the
Sl(2)-orbit theorem, to generalize known results on classical solutions of another
class of integrable models. More precisely, we consider the so-called critical bi-
Yang–Baxter model and show that the asymptotic form of the Weil operator, as
described by an Sl(2)-orbit, provides a solution for any target space group that
admits a horizontal sl(2)-triple.
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6 Hodge theory and λ-deformed WZW
models

This chapter is based on: Thomas W. Grimm, Jeroen Monnee:
Deformed WZW models and Hodge theory. Part I, JHEP 05 (2022) 103,
[arXiv: 2112.00031]

In this chapter we discuss a connection between the abstract mathematical machin-
ery of (asymptotic) Hodge theory , discussed in part II, and the intriguing landscape
of integrable non-linear σ-models. As we have already seen in chapter 1, integrable
non-linear σ-models have played a major role across numerous branches of physics,
ranging from string theory to condensed matter physics. Such models possess a large
amount of symmetries and are constrained to the extent that they are often solvable,
for example, via the Bethe ansatz. Nevertheless, despite these constraints there
has emerged a vast and intricate network of different integrable models, many of
which are obtained by suitably deforming known models such as the Wess-Zumino-
Witten (WZW) model and its gauged extension [167–172], as well as the principal
chiral model. At the same time, it has recently been suggested to study non-linear
σ-models in the context of string moduli spaces [1, 73], see also [75] for related
ideas. These works propose to use an auxiliary field theory on the moduli space to
provide a physical reformulation of the intricate mathematical structures that arise,
as described by (asymptotic) Hodge theory. The purpose of this chapter, as well as
the next chapter, is to further develop a possible relationship between integrable
models and the physics of string compactifications via variations of Hodge structures.

In section 6.1 we discuss some of the initial motivation for studying this connection.
Then, in section 6.2 we present a basic review of the class of integrable models
we will consider in this chapter: the gauged WZW model and its λ-deformation.
Finally, in section 6.3 the connection between the λ-deformed G/G model and
the notion of a variation of Hodge structure is made precise, by showing that the
Weil operator of a variation of Hodge structure realizes a particular solution to the
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6 Hodge theory and λ-deformed WZW models

equations of motion of the λ-deformed G/G model. We also make some additional
comments regarding integrability and provide an in-depth analysis of more general
solutions at the end of the section. Finally, there are three appendices which contain
some computational details.

6.1 Motivation
It was suggested in [1, 73,75] that one might be able to describe the properties of
a variation of Hodge structure, in particular the horizontality of the period map,
in terms of an auxiliary field theory that is defined on the moduli space. In other
words, in this field theory the spacetime of the model is identified with the field
space of the effective theory obtained from string compactification. Let us elaborate
on this.

An action principle for horizontality

In the following we restrict to one-parameter variations of Hodge structure. Let
us recall some results from appendix 2.A.2, where it was argued, based on earlier
results of [71] and [73,75], that one can encode Nahm’s equations (2.83) in terms
of the following action principle for the period map h.

SNahm[h] = 1
4

∫
M

Tr
∣∣∣h−1dh+

(
h−1dh

)†
∣∣∣2 , (6.1)

Indeed, by computing the variation of SNahm[h] with respect to h, one readily shows
that the resulting equations of motion are equivalent to Nahm’s equations (2.83),
as done explicitly in appendix 2.A.2. However, there are two shortcomings with
this particular approach.

• Shortcoming (1): Nilpotent orbit approximation
First, one only recovers Nahm’s equations from the action (6.1) if one addi-
tionally imposes the condition that ∂x(h−1∂xh) = ∂x(h−1∂yh) = 0, which, in
particular, is satisfied in the nilpotent orbit approximation but may not be
satisfied beyond this approximation.

• Shortcoming (2): Nahm’s equations vs. horizontality
Secondly, while Nahm’s equations play an essential role in describing the
asymptotic form of the period map, as discussed at length in chapter 4, they
do not comprise the full set of constraints coming from the horizontality of
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the period map. Thus, the action (6.1) does not properly describe the full
dynamics of the period map.

The upshot is that it would be desirable to formulate an action principle which
encodes the full horizontality conditions of the period map, which moreover does not
rely on the nilpotent orbit approximation. There still remains much to understand
about the precise formulation of the associated non-linear σ-model. For example,
restricting to two-dimensional field spaces, one might expect the model to be among
the plethora of two-dimensional integrable field theories that have been studied
extensively over the last decennia. This expectation stems from the well-known
results of [173], in which it is shown that the defining equations of variations
of Hodge structure can be written in the form of tt∗ equations, highlighting an
underlying integrable structure. It is the main purpose of this chapter to identify
the appropriate field theory as an integrable deformation of the gauged WZW
model known as the λ-deformation. This results in the exciting possibility to use
techniques of integrability to study the field spaces of string compactifications
and, conversely, to use existing methods of Hodge theory and the study of period
mappings to obtain explicit solutions to integrable field theories.

Moduli space holography

Another intriguing motivation for studying the aforementioned auxiliary field theory
on the moduli space is to better understand a proposed principle of moduli space
holography [73]. Originally, this proposed principle is built on the expectation
– a variant of the Swampland distance conjecture [79] – that along any infinite
distance limit in the moduli space a global symmetry arises [174, 175], whose
presence dictates much of the asymptotic structure of the physical couplings of
the effective theory, see for example [73,84–86,89,176]. The latter mechanism has
been illustrated explicitly in the bulk reconstruction procedure discussed in chapter
4. It has furthermore been suggested that the abstract boundary data coming
from asymptotic Hodge theory should be described by an actual theory living on
the boundary of the moduli space. It is then an interesting question whether this
notion of holography can be understood in terms of more conventional approaches
to holography, and what exactly this boundary theory should be. That this may be
the case is further corroborated by the observation that the physical metric on the
moduli space, i.e. the Weil–Petersson metric, always asymptotes to the Poincaré
metric near any infinite distance boundary [177]. The latter can be understood
as a patch of Euclidean AdS2, whose isometry algebra is intricately related to the
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6 Hodge theory and λ-deformed WZW models

emergent sl(2,R)-symmetry present in asymptotic Hodge theory.1 The conventional
wisdom of the AdS/CFT correspondence then suggests that the boundary sl(2,R)
should be understood as a global symmetry of some putative boundary theory. Let
us also remark that the existence of such a boundary theory matches well with the
result of [93,178,179]. The results of this chapter should be viewed as a first step
towards making these matters more precise, by focussing first on an appropriate
formulation of the bulk theory. Indeed, while we will succeed in writing down a
non-linear σ-model which correctly encodes the full dynamics of the period map, it
remains to find an appropriate coupling of this theory to gravity, such that also the
physical metric on the moduli space is realized dynamically, as well as its associated
boundary theory.

6.2 λ-deformed WZW models
Let us now turn to a description of the model we will consider in the remainder
of this section, which arises as a certain integrable deformation of the gauged
WZW model. From a more string-theoretic perspective, one of the motivations
for studying integrable deformations of two-dimensional σ-models has been to find
a worldsheet action principle that describes the q-deformation of the S-matrix of
the AdS5 × S5 superstring [180–182]. Such deformations are of interest, since they
reduce the amount of supersymmetry while retaining integrability, allowing for a
more general study of the AdS/CFT correspondence beyond N = 4 SYM [183–185],
see also [186] for an elaborate list of references. Nevertheless, even in the bosonic
setting integrable deformations of two-dimensional σ-models have received much
attention [187–199] and a vast web of connections and dualities between them has
been uncovered over the years [200–204], see also [205–207] for recent reviews.

The precise deformations we will consider in this work are the so-called λ-deformations,
first discovered by Sfetsos in [191] for the principal chiral model and WZW model,
and later generalized to symmetric and semi-symmetric spaces in [192,193]. In their
simplest form, one can view these as a one-parameter family of integrable σ-models
that interpolate between the WZW model and the non-Abelian T-dual of the
principal chiral model. Also the λ-deformations have seen considerable development
and generalizations to e.g. multi-parameter/asymmetric deformations [208–211].
Additionally, recently great progress has been made on formulating integrable
1It should be noted that this sl(2,R) also arises at finite distance boundaries, as long as the
monodromy has a non-trivial unipotent part.
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λ-deformations on worldsheets with boundaries and studying D-brane configura-
tions, see e.g. [212–216]. However, for the purpose of this work we will restrict
our attention to the so-called λ-deformed G/G model, which corresponds to the
λ-deformation of the fully gauged WZW model. Its field content consists of a
group-valued field and a gauge field. By appropriately identifying these fields with
the moduli-dependent charge operator Q(t, t̄) c.f. equation (2.65), we show that
the resulting equations of motion precisely describe a variation of Hodge structure.
Conversely, this implies that any one-parameter variation of Hodge structure yields
a solution to the λ-deformed G/G model. We begin in section 6.2.1 with a standard
review on the WZW model and the G/G model. The λ-deformation of the latter is
then discussed in section 6.2.2, where a detailed analysis of the resulting equations
of motion is given. The important equations that will be used in subsequent sections
are (6.20), (6.21) and (6.24), together with (6.25).

6.2.1 Gauged WZW models

We start by reviewing classical aspects of the WZW model and its gauged extension,
mostly to set the notation and fix our conventions. For an in-depth discussion on
WZW models, also beyond the classical description, we refer the reader to e.g. [217].

The WZW action

A WZW model is a non-linear σ-model defined on a two-dimensional worldsheet Σ
with a Lie group G as target space, which we assume to be semi-simple. It describes
the dynamics of a group-valued field

g : Σ→ G , (6.2)

whose action is given by the sum of the principal chiral model and the celebrated
Wess-Zumino action [167–169]

SWZW[g] = k

8π

∫
Σ

Tr
(
g−1dg ∧ ⋆ g−1dg

)
+ k

12πi

∫
Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
.

(6.3)
Here ⋆ denotes the Hodge star on Σ and the second term features an integration of
a suitable extension of g over a three-manifold whose boundary is the worldsheet Σ.
Furthermore, Tr denotes any non-degenerate Ad-invariant bilinear form on the Lie
algebra g of G. Finally, the constant k is referred to as the level of the model. It
is restricted to take integer values when G is compact so that the path integral is
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well-defined. In the current work however, k will not play an important role as we
are merely concerned with classical features.

The gauged WZW model

By virtue of the trace, the action (6.3) enjoys a global G×G symmetry

g 7→ gL · g · g−1
R , (gL, gR) ∈ G×G . (6.4)

One may now proceed to define a gauged WZW model by gauging a particular
subgroup of this global symmetry, as reviewed in e.g. [218]. In the current work,
we will consider the vector gauged WZW model in which the diagonal subgroup of
G×G is gauged, corresponding to the transformation g 7→ hgh−1, for h ∈ G. The
resulting action is most conveniently written down using local coordinates x, y on
Σ, which we take have Euclidean signature, and passing to complex coordinates t, t̄
via t = x+ iy. Furthermore, by a suitable conformal transformation the metric on
Σ can be taken to be the flat metric, i.e.

ds2 = dx2 + dy2 = dtdt̄ . (6.5)

Finally, the gauge field will be denoted by

A = Adt+ Ādt̄ , (6.6)

and its components A, Ā are fields on Σ taking values in g. Then the action of the
vector gauged WZW model reads2 [170–172]

SG/G[g,A] = SWZW[g] + k

π

∫
Σ
d2t Tr

(
A∂̄gg−1 − Āg−1∂g −AgĀg−1 +AĀ

)
.

(6.7)
Indeed, one may verify that (6.7) is invariant under the gauge transformation

g 7→ hgh−1 , A 7→ h (d + A)h−1 , h ∈ G . (6.8)

Since the resulting action is gauge-invariant under conjugation by the full group G,
this model is also referred to as the G/G model.

2Here d2t = i
2 dt ∧ dt̄ = dx ∧ dy and furthermore ∂ = ∂t, ∂̄ = ∂t̄.
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Equations of motion

For completeness and later reference, we record the equations of motion

δĀ : g−1Dg = 0 , (6.9)
δA : D̄gg−1 = 0 , (6.10)
δg : F − D̄(g−1Dg) = 0 , (6.11)

which are obtained from the variation of (6.7) w.r.t. the various fields. Here D, D̄
denote the covariant derivatives, defined by

D = ∂ + [A,−] , D̄ = ∂̄ + [Ā,−] , (6.12)

and F denotes the field-strength, which is given by

F = ∂Ā− ∂̄A+ [A, Ā] . (6.13)

An important property of the G/G model is the on-shell vanishing of the field
strength, which is easily seen by combining (6.9) and (6.11). As a result, the gauge
field is (locally) pure-gauge and hence it does not contain any physical degrees of
freedom. As will become apparent, this is no longer true for the λ-deformed G/G

model.

6.2.2 λ-deformations

Let us now introduce the λ-deformed G/G model, following the discussion in [192].
This model was first described by Sfetsos in [191] as an interpolation between the
exact CFT WZW model and the non-Abelian T-dual of the principal chiral model.
It can be constructed by employing a particular gauging of the combined action for
the gauged principal chiral model and the gauged WZW model. For the purpose of
this work we are mostly interested in the final result of this procedure, and refer
the interested reader to [191,192] for more details on the construction of the model
itself. The action that describes the λ-deformed G/G model is that of the G/G
model plus an additional deformation term and reads as follows.

λ-deformed G/G model

Sλ[g,A] = SG/G[g,A] + k

π

∫
d2t Tr

(
γAĀ

)
, , (6.14)
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where the γ is an arbitrary deformation parameter. A standard convention is
to introduce another parameter λ via the relation

γ = λ−1 − 1 . (6.15)

Clearly, for γ = 0 (or, equivalently, λ = 1) one recovers the ordinary G/G-
model, while for γ → ∞ (or, equivalently, λ = 0) one recovers the WZW
model when integrating out the gauge field.a

aTo recover the non-Abelian T-dual of the principal chiral model, one should combine the
limit λ → 1 with the limit k → ∞ in a particular way, see [191].

Some remarks are in order. To begin with, we stress that due to the deformation
term in (6.14) the action Sλ is no longer gauge invariant. As a result, the field A
should no longer be interpreted as a gauge field, but rather as simply a constraint.
However, we will still informally refer to A as the gauge field. Secondly, it should be
noted that while the λ-deformed G/G model is still conformal at the classical level,
this is no longer true at the quantum level, in contrast to the G/G model. This can
be seen, for example, by analyzing the running of the coupling γ, whose β-function
turns out to be non-trivial [219–221]. Nevertheless, the λ-deformed G/G model
retains some remarkable properties such as (strong) integrability [191,192,222] and
renormalizability [223]. As a last remark, let us note that the action (6.14) also
enjoys a discrete Z2 symmetry [224–226]

λ 7→ λ−1 , k 7→ −k , g 7→ g−1 , A 7→ g(∂ +A)g−1 , Ā 7→ λ−1Ā , (6.16)

which will be relevant in section 6.3. Physically, this symmetry can be viewed as
a duality between a strong coupling regime (λ → ∞) and a perturbative regime
(λ→ 0).

Equations of motion

Let us now turn to the equations of motion of (6.14), which are modified slightly
compared to those of the G/G model due to the deformation term. The equations
of motion of A and Ā are given by

δĀ : g−1Dg = γA , (6.17)
δA : D̄gg−1 = −γĀ , (6.18)
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while equation of motion of g remains unchanged, but we record it here for conve-
nience

δg : F − D̄(g−1Dg) = 0 ⇐⇒ F −D(D̄gg−1) = 0 , (6.19)

where the equivalence of the two expressions can easily be verified.3 Our goal will
be to simplify the above equations as much as possible. First, we note that (6.17)
and (6.18) may be written as

δĀ : A = 1
λ−1 − Adg−1

g−1∂g , (6.20)

δA : Ā = 1
1− λ−1 Adg−1

g−1∂̄g . (6.21)

To be clear, the fraction in (6.20) denotes the inverse of the linear operator
λ−1 −Adg−1 , and similarly in (6.21). While not immediately apparent, this form
of the equations of motion will be extremely useful later on.

Next, we consider the equation of motion of g. By inserting (6.17) into the left-hand
side of (6.19) and (6.18) into the right-hand side of (6.19) one finds two equations

F − γD̄A = 0 ⇐⇒ λ∂Ā− ∂̄A+ [A, Ā] = 0 , (6.22)
F + γDĀ = 0 ⇐⇒ ∂Ā− λ∂̄A+ [A, Ā] = 0 . (6.23)

When λ = 1 (or γ = 0, i.e. no deformation) the equations (6.22) and (6.23) coincide
and one recovers the vanishing of the field-strength of the G/G model. However,
for λ ̸= 1 (which we will henceforth assume) the field-strength need not vanish and
the two equations are independent. By adding or subtracting the two equations
appropriately one may rewrite them as follows

δg : ∂Ā+ ∂̄A = 0 , ∂Ā = µ[A, Ā] , µ = − 1
1 + λ

, (6.24)

where we also assume λ ̸= −1. Passing to differential form notation, the equation
on the left-hand side states that the one-form ⋆A is closed. In the remainder of
this work, we will assume the worldsheet Σ to be simply-connected by passing to
the universal covering space. As a result, the one-form ⋆A is also exact, so that A
must be of the form

A = ⋆ dU , (6.25)
3This can be seen, for example, by writing the left-hand side as [∂ + A + g−1Dg, ∂̄ + Ā] = 0 and
then conjugating this expression with g.
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for some Lie-algebra valued function U . While not crucial, this observation will
prove useful in section 6.3, where it will facilitate a natural ansatz for the gauge
field.

Generalizations

We close this section by pointing out some possible generalizations of the (compar-
atively) simple λ-deformation we have considered that have been studied in the
literature. One possibility is to consider λ-deformations of the G/G model which do
retain some of the gauge symmetry. These were first constructed for the SU(2)/U(1)
coset CFT in [191], and were later generalized to symmetric spaces G/H in [192]
and then applied to study the AdS5 × S5 superstring in [193]. Here the restriction
to (semi)-symmetric spaces is crucial in order to retain properties such as (strong)
integrability and renormalizability. Along a different vein, one may also consider
deformations of multiple WZW models at different levels [210], as well as multi-
parameter deformations [208] and asymmetric deformations [209,211]. For a recent
overview of deformed σ-models that have arisen over the years and a discussion on
their integrable structure, one may also consult e.g. [205]. Finally, in recent years
great progress has been made on formulating integrable λ-deformations on world-
sheets with boundaries and studying D-brane configurations, see e.g. [212, 215,216].

6.3 Strings on classifying spaces

In section 6.2 we have introduced the λ-deformed G/G model, a particular σ-model
for a group-valued field g and gauge field A. This model describes the classical
propagation of a string on a group manifold, in the presence of particular background
fields. At the same time, we recall from the discussion in section 2.3 that a variation
of Hodge structure can be described in terms of a period map which takes values
in the classifying space D, which can be realized as a quotient space G/V . A
natural step, then, is to consider the motion of the string on the classifying space,
as dictated by the equations of motion of the λ-deformed G/G model, and ask
whether this describes a variation of Hodge structures. In other words, whether
its dynamics are described by the horizontality of the period map. The purpose
of this section is to study precisely this question. Indeed, our main result is that
for a suitable choice of gauge field and λ, the equations of motion of the string
indeed describe a variation of Hodge structure. Conversely, this implies that any
one-parameter variation of Hodge structure provides a solution to the λ-deformed
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G/G model. Along the way we will also identify a more general set of solutions,
which satisfy a generalized set of Nahm’s equations.

The VHS ansatz

We recall the properties of the bulk charge operator Q(t, t̄), introduced at the end
of section 2.3. It is a grading element of a semisimple Lie algebra gC, meaning
that it is a semisimple operator that acts on gC via the adjoint action by integer
eigenvalues, see e.g. [105]. Furthermore, it must satisfy Q ∈ ig. Whenever such a Q
is available, one can consider the following ansatz for the fields of the λ-deformed
G/G model.

The VHS ansatz

g = eiβQ , U = α iQ , (6.26)

for some and non-zero parameters α, β ∈ C.

The precise result of this section, then, is that for a suitable choice of α, β, this
provides a solution to the equations of motion of the λ-deformed G/G model if
and only if Q satisfies the horizontality condition (2.66). Note moreover that one
can consider this ansatz without reference to Hodge theory as the above conditions
merely pertain to the algebra gC, although there is a natural correspondence be-
tween a Qref with the above properties and a Hodge structure [227].

Of course, the ansatz (6.26) is motivated by the idea of considering strings on clas-
sifying spaces of Hodge structures. Indeed, we have argued that Q itself contains
all the information necessary to describe a VHS. Therefore the ansatz (6.26) is
quite natural, as it is the most general ansatz one can make using only Q as input.
It should be mentioned that if one desires the fields g and U to be real (which
is required for the action (6.14) to be real) one must restrict these parameters to
α, β ∈ R. However, we will not make this restriction and leave the parameters arbi-
trary for now. In fact, it will turn out to be crucial to allow α to take complex values.

To interpret this ansatz from a physical perspective, we recall the passage of an
action of the type we consider (6.14) to a more traditional σ-model action. One
writes

g−1dg = TAe
A
µdXµ , (6.27)
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where the TA denote a set of generators of the Lie algebra g and eAµ the left-
invariant vielbein on G, which map the tangent bundle TG to g. Finally, Xµ

denote a set of local coordinates on G. One can then show that the action of the
λ-deformed G/G model, evaluated on the constraints (6.20),(6.21), can be written
as [215]

Sλ[g] = 1
4πα′

∫
Σ
Gµν dXµ ∧ ⋆dXν − Bµν dXµ ∧ dXν , (6.28)

with α′ = 2 and

ds2 = k eAµe
B
νTr

(
TA ·

(
Og−1 +Og − 1

)
TB
)

dXµ ⊗ dXν , (6.29)
B = BWZW + k eAµe

B
νTr

(
TA ·

(
Og−1 −Og

)
TB
)

dXµ ∧ dXν . (6.30)

Here BWZW is such that locally dBWZW = − 2k
3 g

−1dg ∧ g−1dg ∧ g−1dg and we have
used the short-hand Og = (1− λAdg)−1. Note that Og → 1 for λ→ 0, from which
one readily sees that the above σ-model reduces to that of the ordinary WZW
model in this limit.

Clearly, equation (6.28) describes the propagation of a classical string in a back-
ground metric Gµν and Bµν field, with the Xµ describing the embedding of the
worldsheet, recall also our discussion in section 1.1. Moreover, inserting the ansatz
(6.26) into (6.27) one sees that the bulk charge operator Q plays the role of the
coordinates Xµ. In other words, the ansatz (6.26) simply proposes that the moduli
dependence of the Hodge structure is described by the embedding of the string
worldsheet in the classifying space. However, in order for the motion of the string
to correctly yield a variation of Hodge structures one must consider a particular
value of λ, which amounts to a specific choice of the background fields. It is the
purpose of the rest of this section to make this statement precise, by evaluating the
equations of motion on the ansatz (6.26) and analysing the possible solutions.

6.3.1 The VHS solution

While we have formulated the ansatz (6.26) in terms of the bulk charge operator
Q, it will be convenient to rephrase it in terms of the period map h and the
reference charge operator Qref , by recalling that Q = hQrefh

−1. First, for notational
convenience, let us introduce the parameter

z = eiβ , (6.31)
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such that g = zQ. Then one may compute

g−1dg = hz−Qrefh−1dhzQrefh−1 − dhh−1 (6.32)
= h

(
z−adQref B−B

)
h−1 (6.33)

=
∑
q ̸=0

(z−q − 1)hBqh
−1 (6.34)

where we recall B = h−1dh and in the last line we have decomposed B into its
charge-modes with respect to Qref as in (2.56). Similarly, we compute

A = ⋆d(hQrefh
−1) (6.35)

= −iα ⋆ h[Qref , h
−1dh]h−1 (6.36)

= −iα
∑
q ̸=0

q ⋆ hBqh
−1 . (6.37)

Together, these two identities provide us with the following dictionary

g−1dg = −
∑
q ̸=0

(1− z−q)hBqh
−1 , (6.38)

A = −iα
∑
q ̸=0

q ⋆ hBqh
−1 , (6.39)

which will be very useful in evaluating the equations of motion. The formulation in
terms of charge modes w.r.t. Qref is especially helpful combined with the observation
that

Adg = hzadQrefh−1, (6.40)

which acts as multiplication by zq on hBqh
−1.

The strategy in the remainder of this work is to use the dictionary (6.38) and (6.39)
to translate the equations of motion of the λ-deformed G/G model into statements
about the charge-modes of B. The goal, then, is to show that these statements
imply the horizontality condition (2.60), so that any solution to the equations of
motion describes a variation of Hodge structures. However, it will turn out that this
only happens for a particular value of z, namely z = −1 (or equivalently β = π).
This is not unexpected, since in that case g = (−1)Q, i.e. it is precisely given by
the Weil operator, previously denoted by C. Therefore, in the following we will
first analyse this solution, dubbed the ‘VHS solution’. For completeness, we also
present a more general analysis (i.e. for all values of z) in the next section.
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Equations of motion of A and Ā

For z = −1, equation (6.38) simplifies to

g−1dg = −2
∑
q odd

hBqh
−1 , (6.41)

and furthermore Adg acts as multiplication by minus one on Bq, for q odd. With
these observations at hand one can easily evaluate (6.17) and (6.18) to find

δĀ : α
∑
q ̸=0

qBq = − 2λ
1 + λ

∑
q odd

Bq , (6.42)

δA : α
∑
q ̸=0

qB̄q = + 2λ
1 + λ

∑
q odd

B̄q . (6.43)

These equations are best understood by projecting them onto a specific charge-mode,
which we denote by q. Then one finds

q non-zero and even : Bq = B̄q = 0 , (6.44)
q odd : b(q)B̄q = b(q)B−q = 0 , (6.45)

where we have introduced the function

b(q) = αq − 2λ
1 + λ

. (6.46)

The upshot of this is the following. First, B cannot contain any non-zero even
charge-modes. Second, it can only contain an odd charge-mode q if b(q) = 0.
Furthermore, since b(q) is linear in q, if b(qi) = 0 for two distinct odd qi, i = 1, 2,
then it must be that α = λ = 0. In that case the ansatz for the gauge field becomes
trivial, hence we exclude this solution. Therefore b(q) = 0 for at most one odd q.
In short, we have shown that B must be of the form

B = B0 +B−q , B̄ = B̄0 + B̄q , (6.47)

for some odd q, and furthermore the parameters α, λ are restricted by

αq = 2λ
1 + λ

, (6.48)

so that indeed b(q) = 0. This is then the most general solution to the equations
of motion of A and Ā, for the ansatz (6.26) when imposing β = π or z = −1. As
promised, (6.47) is precisely the desired horizontality condition (2.60). To make
the match precise, one should also fix α to be 2λ/(1 + λ), which effectively enforces
q = 1.
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Equation of motion of g

While the equations of motion of A and Ā restrict the possible charge-modes in B

and B̄, as just discussed, the equation of motion of B will determine the remaining
dynamics and fix the value of λ uniquely. Of course, as already described in section
2.3, once the horizontality condition is satisfied one can use the Bianchi identity to
determine the dynamics completely, which resulted in Nahm’s equations. Here we
will show that the equations of motion of g essentially reduce to the same equations.

First, using (6.47), one sees that the gauge field simplifies to

A = −αq hB−qh
−1 , Ā = −αq hB̄qh−1 . (6.49)

Inserting these expressions into the equation of motion of g (6.24) yields the following
equation

δg : ∂B̄q + [B0, B̄q] + (1 + qαµ)[B−q, B̄q] = 0 . (6.50)

Again, this equation is best understood by considering its various charge components.
In particular, the first two terms have charge q, while the last term has charge zero.
In other words, it reduces to the following two equations

charge q : ∂B̄q + [B0, B̄q] = 0 , (6.51)
charge 0 : (1 + qαµ)[B−q, B̄q] = 0 . (6.52)

Naturally, by taking the complex conjugate of the first equation, one may equiva-
lently derive

charge −q : ∂̄B−q + [B̄0, B−q] = 0 . (6.53)

As expected, the equation of motion of g has reduced to the same equations that
follow from the Bianchi identity, i.e. Nahm’s equations (2.62) and (2.64), together
with an additional constraint on the parameters, namely 1 + qαµ = 0. Combined
with the constraint (6.48) this results in a unique solution (up to a sign) for α and
λ, given by

qα = 1 + λ , λ = ±i. (6.54)

Furthermore, one can show that these two solutions are precisely related via the
Z2-symmetry (6.16).

To close this discussion, we stress that we have not actually solved the equations of
motion in full, but have merely rewritten them into the horizontality condition and
Nahm’s equations. However, as described at length in chapters 3 and 4, the powerful
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formalism of asymptotic Hodge theory allows one to find the proper solutions to
these equations for a particular set of boundary conditions.

Integrability and the on-shell action

Now that we have identified for which ansatz the equations of motion of the λ-
deformed G/G model reduce to the horizontality condition, let us return to some
properties of the σ-model. Firstly, as mentioned before, this model is integrable,
i.e. it has a Lax connection

∇ = d + L (ζ) , (6.55)

with L (ζ) given by (for notational clarity we use ± to denote the (anti)-holomorphic
components of the one-form L and A)

L±(ζ) = 2
1∓ ζ

A±

1 + λ
. (6.56)

Concretely, this means that the curvature of the connection ∇ vanishes if and only
if A± satisfy (6.22) and (6.23), for every value of the spectral parameter ζ ∈ CP1.
It is natural, then, to evaluate (6.56) on the VHS solution to find an expression for
L (ζ) in terms of B and B̄. The result of this computation is the following

L±(ζ) = − 2
1∓ ζ h (B±)±q h

−1 , (6.57)

where we have used (6.54), for arbitrary q. To elucidate this expression, we perform
a gauge transformation by the period mapping itself, i.e.

L±(ζ)→ L h−1

± (ζ) = h−1L±(ζ)h+ h−1∂±h , (6.58)

which yields
L h−1

± (ζ) = (B±)0 + ζ ± 1
ζ ∓ 1(B±)±q . (6.59)

Interestingly, (6.59) is precisely the Lax connection of the G/K principal chiral
model [192], where we remind the reader that in the current setting K is generated
by all operators of even charge. In other words, when the horizontality condition
is satisfied, the remaining dynamics of the period mapping are described by the
integrable G/K principal chiral model. This is not surprising and has long been
known from the perspective of tt∗-geometry [74,173] and was more recently noted
by [75] and [73], see also the last paragraph of appendix 2.A.2.
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To further elucidate the relation to these previous works, it is instructive to compute
the on-shell action (i.e. by imposing (6.20) and (6.21)) and rephrasing the result in
terms of B and B̄. The result of this computation is (see appendix 6.C for details)

Sλ[g] = ±2k
πi

∫
Σ
d2tTr

(
B−1B̄+1

)
, (6.60)

where we have put q = 1 for simplicity and have suppressed the Wess–Zumino
term. Apart from the imaginary prefactor, this agrees precisely with the actions put
forward in [75] and [1,73]. Therefore, the formulation in terms of the λ-deformed
G/G model can be seen as a generalization of these earlier works, which reduces to
them when A and Ā are on-shell, i.e. when the horizontality condition is satisfied.

As a final remark, we comment on the imaginary prefactor in (6.60), which is a result
of the fact that both α and λ are complex. Interestingly, a similar situation arises
in the study of a duality between λ-deformations and so-called η-deformations [200],
where we remark that also in our setting |λ| = 1, as is required for this duality
to apply. In fact, a more general analysis of the equations of motion shows that
whenever |z| = 1 also |λ| = 1, as is discussed in the next section. It would
be interesting to understand this duality from the perspective of variations of
Hodge structures, which may provide new insights into the structure of classifying
spaces. Some initial results in this direction are discussed in chapter 7, see also the
thesis [228].

6.3.2 General analysis of the equations of motion

In the following, we relax the assumption that z = −1 and go through the same
analysis as before, which now becomes considerably more involved. In particular,
it becomes possible for B and B̄ to have more than one charge-mode, hence this
solution will not satisfy the horizontality condition. Nevertheless, it turns out that
this solution is still rather constrained, with its various charge-modes independently
satisfying a variant of Nahm’s equations.
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Equations of motion of A and Ā

We recall the relations (6.38) and (6.39) and insert them into the equations of
motion of A and Ā, see (6.17) and (6.18). Then one finds

δĀ : α
∑
q ̸=0

qBq = −
∑
q ̸=0

1− z−q

λ−1 − z−qBq , (6.61)

δA : α
∑
q ̸=0

qB̄q = +
∑
q ̸=0

1− z−q

1− λ−1z−q B̄q . (6.62)

Note that for z = −1 this indeed reduces to (6.42) and (6.43). Since both equations
should hold for each q separately, this yields the following constraints

b(q)B−q = 0 , b(q)B̄q = 0 , q ̸= 0 , (6.63)

where we have defined the function

b(q) = αq − 1− zq
λ−1 − zq

. (6.64)

By a slight abuse of notation we use the same symbol b(q) as in section 6.3.1, but
of course the two agree for z = −1. However, the important observation is that for
z ̸= −1, one can actually solve b(q) = 0 simultaneously for multiple values of q.

Let us therefore denote by q = (q1, . . . , qn) a collection of distinct non-zero charges
qi for which b(qi) = 0. Clearly, (6.63) implies that B̄q = B−q = 0 for all q ̸∈ q.
Therefore, to understand which combinations of charge-modes in B and B̄ are
allowed, one should study the zeroes of b(q). At this point, it is convenient to
distinguish the trivial solutions to b(q) = 0, corresponding to α = 0 and λ = 1, or
α = 0 and zq = 1. Furthermore, as alluded to in section 6.2, we also assume λ ̸= −1
and similarly refer to this as a trivial solution. In the following, whenever we speak
of a solution, it is implicitly implied to be non-trivial.

Below one finds a number of properties of b(q) that will be useful in the remainder
of this section. The first property is obvious, whereas the latter properties are
elaborated upon in appendix 6.A.

• Property (1):
If q is such that both b(q) = 0 and b(−q) = 0, then this immediately implies
that λ = −1.
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• Property (2):
For q1, q2 distinct, with b(q1) = b(q2) = 0, the following relations hold.

(2a) : b(2q2) = 0 ⇐⇒ b(2q2 − q1) = 0 , (6.65)
(2b) : b(q1 − q2) = 0 ⇐⇒ 1 + q1αµ = 0 (6.66)
(2c) : b(q1 + q2) = 0 ⇐⇒ 1 + (q1 + q2)αµ = 0 . (6.67)

Note that property (2a) can be derived from (2b) and (2c), but we still write it down
separately for easy reference later on. Property (1) implies that it is impossible for
both b(q) and b(−q) to be zero, when restricting to non-trivial solutions. Therefore,
it is impossible to have q ∈ q and −q ∈ q. One must therefore take B and B̄ to be
of the form

B = B0 +B−q1 + · · ·B−qn
, B̄ = B̄0 + B̄q1 + · · ·+ B̄qn

, (6.68)

where qi ̸= 0 and qi ̸= ±qj for any distinct i, j. Furthermore, we remind the
reader that all these charges should satisfy b(qi) = 0. We stress that this solves the
equations of motion of A and Ā, and that all solutions respecting the ansatz (6.26)
must be of this form.

A natural question is whether there is an upper bound on n, i.e. the number of
non-zero charge components of B and B̄, above which no solutions exist. Intuitively,
this is expected since b(q1) = . . . = b(qn) = 0 constitutes n complex equations,
whereas there are only three free complex parameters α, λ, z. Naively, one therefore
expects n ≤ 3. However, property (2a) implies that the system of equations can
degenerate when q3 = 2q2 and q4 = 2q2 − q1. Hence solutions with n = 4 do exist.
In fact, a numerical scan4 indicates that for D ≤ 15 all solutions with n = 4 are
of this form. Furthermore, another numerical scan5 shows that for D ≤ 15, no
solutions with n = 5 exist. In summary, we have made the following two claims

claim (1) : For n = 4, all solutions have q = (q1, q2, 2q2, 2q2 − q1) , (6.69)
claim (2) : No solutions exist with n > 4. (6.70)

In the remainder of this work, we will assume that these two claims are true for all
D, though we stress that the claims have been verified for all D ≤ 15.

4This constitutes 11176 potential charge vectors q, of which 57 yield non-trivial solutions.
5This constitutes 48913 potential charge vectors q, of which 0 yield non-trivial solutions.
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Equation of motion of g

Let us now discuss the remaining equation of motion, which we recall for convenience

δg : ∂Ā = µ[A, Ā] , µ = − 1
1 + λ

. (6.71)

Again, our goal is to evaluate this equation on the ansatz (6.26) to translate it into
a condition on the various charge modes of B. In appendix 6.B this computation is
performed in detail, here we simply record the result (see equations (6.109) and
(6.112))

0 = q∗ (∂B̄q∗ + [B0, B̄q∗ ]
)

+
∑
q ̸=0,q∗

q(1 + (q − q∗)αµ)[Bq∗−q, B̄q] , (6.72)

0 = q∗ (∂̄Bq∗ + [B̄0, Bq∗ ]
)

+
∑
q ̸=0,q∗

(q − q∗)(1 + qαµ)[Bq∗−q, B̄q] . (6.73)

To be clear, here we have projected the resulting equations onto a general charge-
mode, denoted by q∗. In principle, these two equations are not independent as
one can derive one from the other by using the flatness of B, i.e. the fact that
∂B̄ − ∂̄B + [B, B̄] = 0. However, in practice it will be useful to use both equations
as opposed to the flatness condition. One sees that the equation of motion of g
has reduced to a set of differential equations for the various charge components
of B and B̄ that is similar to Nahm’s equations (2.62)-(2.64), but is spoiled by
the additional cross-terms appearing in the sums. We will now argue that these
additional terms take a very simple form. To do so, it is convenient to distinguish
the four types of charge-modes that can appear in (6.72) and (6.73).

Type (1): q∗ = 0

When q∗ = 0, the equations (6.72) and (6.73) simply reduce to a single equation,
namely

0 =
∑
q ̸=0

q(1 + qαµ)[B−q, B̄q] . (6.74)

Note that it is impossible for the prefactor 1+qαµ to vanish for more than one value
of q, so this yields a proper constraint on the commutators of the form [B−q, B̄q].

Type (2): q∗ ∈ q

Suppose there exists a q ∈ q such that B̄q ̸= 0 and also Bq∗−q ̸= 0. In particular,
this requires q, q− q∗ ∈ q. By property (2b), it follows that 1 + qαµ = 0. Therefore,
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if such a q exists it must be unique. In fact, there can be at most one q∗ ∈ q for
which this is the case. Finally, since q∗ ∈ q it is impossible to have −q∗ ∈ q, hence
it must be that Bq∗ = 0. As a result, equation (6.73) is automatically satisfied,
while (6.72) reduces to

∂B̄q∗ + [B0, B̄q∗ ] + [Bq∗−q, B̄q] = 0 . (6.75)

Of course, if a q with the above properties does not exist, the last term in this
expression is simply absent.

Type (3): −q∗ ∈ q

As in case (2), suppose there exists a q ∈ q such that B̄q ̸= 0 and also Bq∗−q ̸= 0,
which implies q, q − q∗ ∈ q. By property (2c), it follows that 1 + (q − q∗)αµ = 0,
hence the sum in (6.72) is zero. Furthermore, since already −q∗ ∈ q it is impossible
to have q∗ ∈ q, hence B̄q∗ = 0. In other words, in this case equation (6.72) is
automatically satisfied. Moreover, equation (6.73) reduces to

∂̄Bq∗ + [B̄0, Bq∗ ]− [Bq∗−q, B̄q] = 0 . (6.76)

Note that this is simply the complex conjugate of (6.75) with q∗ 7→ −q∗ and
q 7→ q − q∗, as expected.

Type (4): ±q∗ ̸∈ q and q∗ ̸= 0

Finally, we discuss the remaining case, which will turn out to be most complex.
First, since ±q∗ ̸∈ q and q∗ ̸= 0, it follows that B̄q∗ = 0 and Bq∗ = 0, so (6.72) and
(6.73) reduce to

0 =
∑
q ̸=0,q∗

q(1 + (q − q∗)αµ)[Bq∗−q, B̄q] , (6.77)

0 =
∑
q ̸=0,q∗

(q − q∗)(1 + qαµ)[Bq∗−q, B̄q] . (6.78)

To continue, it will be useful to introduce the ‘multiplicity’ m(q∗) of q∗, by which we
mean the number of distinct pairs qi, qj ∈ q whose difference is equal to q∗. In other
words, m(q∗) counts the number of terms appearing in the sums in (6.77) and (6.78).
It is clear that for n ≤ 3, one can have at most multiplicity two. Furthermore, if
n = 4 one may apply claim (1) to see that the only way to have m(q∗) = 3 is for q
to be of the form q = (2q, q, 4q, 3q). However, one can check that such a q cannot
yield non-trivial solutions to b(q) = 0. Therefore, since we assume n ≤ 4 following

281



6 Hodge theory and λ-deformed WZW models

claim (2), we may restrict to the cases m(q∗) = 1, 2. These will now be discussed
in turn.

Type (4a): m(q∗) = 1

Let qi, qj ∈ q and suppose that the difference q∗ = qi − qj has multiplicity one. In
the following, we again assume B̄q ̸= 0 for q = qi, qj , otherwise (6.77) and (6.78)
are trivially satisfied. Since m(q∗) = 1, they simply reduce to

(1 + qjαµ)[B−qj
, B̄qi

] = 0 , (6.79)
(1 + qiαµ)[B−qj

, B̄qi
] = 0 . (6.80)

Clearly, since qi ̸= qj this can hold only when [B−qj , B̄qi ] = 0.

Type (4b): m(q∗) = 2

Next, let qi, qj , qk, ql ∈ q such that the difference q∗ = qi − qj = qk − ql has
multiplicity two, which requires qi ̸= qk and qj ̸= ql. In the following, we again
assume B̄q ̸= 0 for q = qi, qj , qk, ql, otherwise (6.77) and (6.78) are trivially satisfied.
We turn to (6.77) and (6.78), which reduce to

B̄q∗ = 0 : qi(1 + qjαµ)[B−qj
, B̄qi

] + qk(1 + qlαµ)[B−ql
, B̄qk

] = 0 , (6.81)
Bq∗ = 0 : qj(1 + qiαµ)[B−qj , B̄qi ] + ql(1 + qkαµ)[B−ql

, B̄qk
] = 0 . (6.82)

Since both equations must hold, one may combine them succinctly as a matrix
equation

M ·

(
[B−qj

, B̄qi
]

[B−ql
, B̄qk

]

)
= 0 , M =

(
qi(1 + qjαµ) qk(1 + qlαµ)
qj(1 + qiαµ) ql(1 + qkαµ)

)
, (6.83)

with

detM = (qiql − qjqk)− [qiqjqk + qjqkql − qiqjql − qiqkql]αµ . (6.84)

Using the fact that qi − qj = qk − ql, one finds that

detM = 0 ⇐⇒ 1 + (qj + qk)αµ = 0 . (6.85)

From property (2c) it then follows that detM = 0 if and only if qj + qk ∈ q. In
particular, the equation (6.83) only has a non-trivial solution when qj + qk ∈ q. In
summary, we have shown that

[B−qj
, B̄qi

] = [B−ql
, B̄qk

] = 0 unless qj + qk ∈ q . (6.86)
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It is interesting to note that this precisely occurs in the case n = 4, for which the
charge vectors take the form (recall claim (1))

q = (q1, q2, 2q2, 2q2 − q1) . (6.87)

Indeed, one has (2q2 − q1) − (q2) = q2 − q1 and additionally 2q2 ∈ q, so that a
non-trivial solution exists.

Summary of the analysis

For the convenience of the reader, let us collect the results of this section. To
simplify the overview, we only consider the B̄ component. Statements about the B
component are naturally obtained by complex conjugation. First, by studying the
equations of motion of A and Ā, it was argued that the charge decomposition of B̄
must take the following form

B̄ = B̄0 + B̄q1 + · · ·+ B̄qn , (6.88)

where qi ̸= 0 and furthermore qi ̸= ±qj for any i ̸= j. In order to satisfy the equa-
tions of motion, the integers qi and parameters α, λ, z must be such that b(qi) = 0
for all i. Also, due to the particular structure of b(q), it appears impossible to
have n > 4 based on numerical analysis, while for n = 4 only special combinations
of charges are allowed (recall claim (1)), although we have not rigorously proven this.

Second, the dynamics of the B̄qi
modes are restricted via the equation of motion of

g. Concretely, we have found that they must satisfy

∂B̄qi
+ [B0, B̄qi

] + [Bqi−qj
, B̄qj

] = 0 . (6.89)

Additionally, there exists at most one value of qi for which there exists a qj such
that the last term is non-zero. In that case, also qj is unique. Strikingly, this means
that all the B̄qi

modes satisfy a variant of Nahm’s equations (2.62)-(2.64) apart
from possibly one of the modes, for which this one additional term appears.

Lastly, from the discussion of type (4), all the commutators of the form [B−qj , B̄qi ]
with qi ̸= qj and qi − qj ̸∈ q must in fact vanish, except when qi − qj = qk − ql, for
qi ̸= qk, and additionally qj + qk ∈ q. We stress that this conclusion only holds for
n ≤ 4. Moreover, when qi = qj corresponding to type (1), then the commutators
are restricted to satisfy

n∑
i=1

qi(1 + qiαµ)[B−qi , B̄qi ] = 0 . (6.90)
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This concludes the analysis of the equations of motion.

Properties of the solutions

We close this section with some final remarks on properties of solutions to the
equations of motion, which shed further light on the properties we encountered for
the VHS solution. To this end, it is convenient to distinguish the cases n = 1 and
n ≥ 1, with n counting the number of non-zero charge-modes of B and B̄, as in
(6.88).

Case (I): n = 1

In this case one simply has B̄ = B̄0 + B̄q, as for the VHS solution, except for generic
z the condition b(q) = 0 also allows for even values of q. In fact, one can solve the
conditions b(q) = 0 and 1 + qαµ = 0 algebraically to find

αq = 1 + λ λ = ±z−q/2 . (6.91)

Note that for z = −1 and q odd this precisely reduces to the VHS solution, as
expected. Again the two solutions we find are related via the Z2 symmetry (6.16).
The main observation we would like to make is that whenever |z| = 1, which was
required for g to be real, it must again be that also |λ| = 1.

Case (II): n ≥ 2

When n ≥ 2, one needs to solve b(q1) = · · · = b(qn) = 0. It is actually possible to
solve b(q1) = b(q2) = 0 algebraically for α and λ, with the result given by

b(q1) = b(q2) = 0 ⇐⇒ α = −F (zq1 , zq2)
F (q2, q1) , λ = F (zq1 , zq2)

F (1, 1) , (6.92)

where, for convenience, we have introduced the function

F (A,B) = Aq1(1− zq2)−Bq2(1− zq1) . (6.93)

Unfortunately, it is generically not possible to additionally solve b(q3) = 0 analyti-
cally to obtain a closed expression6 for z. Nevertheless, the above solution has a
6For the interested reader, we record the actual equation that needs to be solved:

b(−q3) = 0 ⇐⇒
∑

σ∈S3

(−1)sign σqσ(1)qσ(2)zqσ(1) (1 − zqσ(3) ) = 0 ,

which is a degree maxi,j=1,2,3(qi + qj) polynomial in z, which is furthermore fully anti-symmetric
in q1, q2, q3.
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striking feature. Namely, one can show that whenever |z| = 1 it must again be true
that |λ| = 1, as in case (I).

From the above discussion one concludes that in general

|z| = 1 =⇒ |λ| = 1 . (6.94)

As remarked earlier, this is an interesting observation when compared with the study
of a duality between λ-deformations and η-deformations [200]. For completeness,
we also remark that for this general set of solutions, the on-shell action again takes
the form (see appendix 6.C for more details)

Sλ[g] = i
∑
q ̸=0

[
f(q, arg z, arg λ)

∫
Σ
d2tTr

(
B−qB̄+q

)]
, (6.95)

where f(q, arg z, arg λ) is a real function of q and the phases of z and λ and we
have omitted the WZ-term.

Appendices

6.A Properties of b(q)
In this section we present and derive some algebraic properties of the function

b̃(q) = zq − 1− αqλ−1

1− αq . (6.96)

Note that this differs from the function b(q) in (6.63) by a factor of (1−αq)/(λ−1−zq).
However, since we assume αq ̸= 1 and λ ̸= z−q, and are only interested in the
zeroes of b(q), it suffices to consider b̃(q). This will turn out to be slightly more
convenient. As discussed in the main text, we additionally exclude the following
values of the parameters: z = 0, zq = 1, α = 0, λ = ±1.

We are interested in the case where b̃(q1) = b̃(q2) = 0 for two distinct integers q1, q2.
One can solve this algebraically to find

b̃(q1) = b̃(q2) = 0 ⇐⇒ α = −F (zq1 , zq2)
F (q2, q1) , λ = F (zq1 , zq2)

F (1, 1) , (6.97)

where, for convenience, we have introduced the function

F (A,B) = Aq1(1− zq2)−Bq2(1− zq1) . (6.98)

285



6 Hodge theory and λ-deformed WZW models

Using this result, we will now provide a proof of the properties (2b) and (2c), see
also (6.66) and (6.67).

Property (2b)

First, we prove property (2b), which states that

1 + q1αµ = 0 ⇐⇒ b(q1 − q2) = 0 , (6.99)

To this end, one computes both the left-hand side and right-hand side, with α and
λ given by (6.97). For the right-hand side, this yields

b̃(q1 − q2) = z−q2

[
zq1q2

1(1− zq2)2 − 2q1q2(1− zq2)2 + q2
2(1− zq1)(zq1 − z2q2)

]
F (2q2 − q1, q2)

(6.100)
while the left-hand side becomes

1 + q1αµ =
[
zq1q2

1(1− zq2)2 − 2q1q2(1− zq2)2 + q2
2(1− zq1)(zq1 − z2q2)

]
q2(zq1 − zq2)F (1 + zq1 , 1 + zq2) . (6.101)

Indeed, one sees that both the left-hand side and right-hand side are proportional
to the same expression (in square brackets), hence we have proven (6.99).

Property (2c)

Finally, we prove property (2c), which states that

1 + (q1 + q2)αµ = 0 ⇐⇒ b(q1 + q2) = 0 . (6.102)

To this end, one first computes the right-hand side, which yields

b̃(q1 + q2) = −q
2
1z
q1 (1− zq2)2 − q2

2z
q2 (1− zq1)2

F (q1, q2) , (6.103)

while the left-hand side is equal to

1 + (q1 + q2)αµ = q1 − q2

q1q2(zq1 − zq2) ×
q2

1z
q1 (1− zq2)2 − q2

2z
q2 (1− zq1)2

F (1 + zq1 , 1 + zq2) . (6.104)

Again, one sees that the left-hand side and right-hand side are proportional to the
same factor, hence (6.102) follows.
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6.B Equation of motion of g

In this section we present some explicit computations regarding the equation of
motion of g, i.e.

∂Ā = µ[A, Ā] . (6.105)

Using the relations (6.38) and (6.39) one readily computes

∂Ā = α
∑
q ̸=0

q h
(
∂B̄q + [h−1∂h, B̄q]

)
h−1 = α

∑
q ̸=0

q h

∂B̄q +
∑
q′

[Bq′ , B̄q]

h−1 .

(6.106)

It follows that

∂Ā = µ[A, Ā] ⇐⇒ α
∑
q ̸=0

q

∂B̄q +
∑
q′

[Bq′ , B̄q]

 = α2µ
∑
q ̸=0

∑
q′ ̸=0

qq′[Bq′ , B̄q] ,

(6.107)

⇐⇒ 0 =
∑
q ̸=0

q

∂B̄q +
∑
q′

(1− q′αµ)[Bq′ , B̄q]

 . (6.108)

Projecting the final equation onto q∗ modes and relabeling q′ → q gives

0 = q∗ (∂B̄q∗ + [B0, B̄q∗ ]
)

+
∑
q ̸=0,q∗

q(1 + (q − q∗)αµ)[Bq∗−q, B̄q] . (6.109)

Using the Bianchi identity

0 = (∂B̄ − ∂̄B + [B, B̄])q∗ (6.110)

=
(
∂B̄q∗ + [B0, B̄q∗ ]

)
−
(
∂̄Bq∗ + [B̄0, Bq∗ ]

)
+
∑
q ̸=0,q∗

[Bq∗−q, B̄q] , (6.111)

and subtracting it from (6.109) yields the similar equation

0 = q∗ (∂̄Bq∗ + [B̄0, Bq∗ ]
)

+
∑
q ̸=0,q∗

(q − q∗)(1 + qαµ)[Bq∗−q, B̄q] . (6.112)

In the main text, equations (6.109) and (6.112) are studied further.
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6 Hodge theory and λ-deformed WZW models

6.C Evaluating the on-shell action
By evaluating the action on the constraints (6.21) and (6.20) one obtains the on-shell
action

Sλ[g] = k

π

∫
Σ
d2tTr

(
g−1∂g

[
1
2 + λAdg

1− λAdg

]
g−1∂̄g

)
+ SWZ[g] . (6.113)

By recalling that
g−1∂̄g = −

∑
q ̸=0

(1− z−q)hB̄qh−1 , (6.114)

one readily sees that
λAdg

1− λAdg
g−1∂̄g = −

∑
q ̸=0

(1− z−q) λzq

λ− zq
hB̄qh

−1 . (6.115)

Furthermore, since for non-zero q, q′

Tr (Oq · Oq′) = 1
q′ Tr (Oq · [Qref ,Oq′ ]) = − 1

q′ Tr ([Qref ,Oq] · Oq′) = − q
q′ Tr (Oq · Oq′) ,

(6.116)
it follows that Tr (Oq · Oq′) is only non-zero for q′ = −q. Therefore the on-shell
action simplifies to

Sλ[g] = k

π

∑
q ̸=0

[
(1− zq)(1− z−q)

(
1
2 −

1
1− z−q/λ

)∫
Σ
d2tTr

(
B−qB̄+q

)]
+SWZ[g]

(6.117)
The term inside the integral is positive definite, while the coefficients satisfy

Re
[

1
2 −

1
1− z−q/λ

]
= 0 ⇐⇒ |λ| = |z|−q. (6.118)

In particular, when |z| = |λ| = 1 this is satisfied for all q, hence the action is purely
imaginary-valued. Concretely, introducing the angles

z = e2iθ , λ = e2iϕ , (6.119)

one finds

Sλ[g] = 2ik
π

∑
q ̸=0

[
sin2(qθ) cot(qθ + ϕ)

∫
Σ
d2tTr

(
B−qB̄+q

)]
+ SWZ[g] (6.120)

Moreover, for the VHS solution one has θ = π/2 and ϕ = ±π/4 and the summand
only runs over q = 1. In that case, the on-shell action reduces to

Sλ[g] = ∓2ik
π

∫
Σ
d2tTr

(
B−1B̄+1

)
+ SWZ[g] . (6.121)
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This chapter is based on: Thomas W. Grimm, Jeroen Monnee:
Bi-Yang–Baxter models and Sl(2)-orbits, JHEP 11 (2023) 123, [arXiv:
2212.03893]

In this chapter we will focus on another class of two-dimensional integrable non-
linear σ-models, different from the λ-deformations discussed in the previous chapter,
and show that once again one can employ the powerful tools of Hodge theory to
determine some of their classical solutions. Our findings will further strengthen the
connection between integrable models and this vast field of mathematics observed
in [3].

The class of integrable models considered in this chapter are known as bi-Yang–
Baxter models, which were introduced in [188]. To construct these models one
starts with the principal chiral model, which is a non-linear σ-model encoding
the dynamics of a field valued in a group G. The bi-Yang–Baxter model is then
defined as a two-parameter deformation that depends on a Yang–Baxter operator
R satisfying a modified classical Yang–Baxter equation. These models can be
abstractly defined for any group G when making sure that an appropriate R-matrix
is constructed, e.g. following the classical work of Drinfel’d–Jimbo [229,230], see
also [231]. Despite its general definition, the study of solutions of such models has
so far been restricted to only the simplest choices of G. In particular, the G = SU(2)
bi-Yang–Baxter model has been investigated in [232]. Our first aim is to provide a
new perspective on the classical solutions found in [232] that allows for a natural
generalization to higher-rank groups G.

Our study of solutions to the bi-Yang–Baxter model will be restricted to a special one-
parameter subspace of the two-parameter moduli space, where the symmetries of the
model enhance and additional dualities to other theories emerge [181,188,195,233].
These models will be referred to as critical bi-Yang–Baxter models following [232].
In the simplest situation, namely the critical SL(2,R) bi-Yang–Baxter model, we
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will show that the equations of motion are solved by the Weil operator C associated
to a two-torus. In analogy to the approach taken in chapter 6, it is thus key to
identify the complex structure deformation space of the two-torus, namely the
upper half-plane, with part of the two-dimensional space-time. Furthermore, it is a
general fact that the Weil operator of a two-torus obeys C2 = −1, and hence that
the solutions must be a special class of all possible solutions. Exactly these types
of solutions were called uniton solutions in the literature on integrable models and
were first considered for the SU(N) principal chiral model in [234]. We explicitly
show that the Weil operator is equivalent to a certain complex uniton solution
of the SU(2) bi-Yang–Baxter model that has been constructed in [232], see also [235].

A particular feature of the Weil operator of a two-torus is that it is exactly equal to
its Sl(2)-orbit approximation. Let us recall from chapter 3 that, roughly speaking,
this means that the Weil operator changing over space-time can be written as
an orbit of some special fixed Weil operator. The orbit is derived by picking a
distinguished element of SL(2,R) and parameterizing the transformations by this
element with a complex parameter labelling the space-time position. Due to the
result of the Sl(2)-orbit theorem, discussed in chapter 3, it is now well-known that
Sl(2)-orbits are in fact ubiquitous in the study of general variations of Hodge struc-
tures. In geometric settings, the two-dimensional space-time of the bi-Yang–Baxter
model would then be identified with the complex structure deformation space of
the underlying geometry.1 From an abstract point of view, the central ingredient
underlying an Sl(2)-orbit is a horizontal sl(2)-triple, recall equation (3.89). Given
such a horizontal sl(2)-triple, we argue that it selects a particular class of R-matrices
and we explicitly show that the associated Sl(2)-orbit approximation of the Weil
operator solves the equations of motion of the corresponding critical bi-Yang–Baxter
model. In general, the Weil operator associated to a weight D variation of Hodge
structure satisfies C2 = (−1)D. Furthermore, we argue that the resulting solution
has finite action. It can therefore be thought of as a generalization of the complex
uniton solution of the SL(2,R) model to groups of higher rank. Typical examples
are G = Sp(2n,R) and G = SO(r, s), as discussed in section 2.2, or more generally
reductive subgroups thereof [236]. For illustrative purposes, we have included an
explicit example of a solution to the critical Sp(4,R) bi-Yang–Baxter model based
on the type IV1 boundary data constructed in section 3.B.

Let us also remark that horizontal sl(2)-triples have been classified in the mathe-
1Due to the underlying complex structure it will be most natural to work in Euclidean signature.
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matics literature [105,236]. Therefore, these general mathematical results provide a
concrete classification of uniton solutions of the bi-Yang–Baxter model and further
indicates the significance of Hodge theory in the study of integrable models. In this
chapter, we do not aim to develop this latter point of view in full, but rather aim
to lay the foundations for further studying this connection.

The chapter is organized as follows. In section 7.1 we introduce the bi-Yang–Baxter
model. The action of this theory depends on the choice of an R-matrix and we
recall how the Drinfel’d–Jimbo solution for R indeed satisfies the classical modified
Yang-Baxter equation. We then discuss the SU(2) example in detail and introduce
its uniton solutions. We give a detailed account on how this solution can be
related to the Weil operator of a two-torus and point out that the solution can be
described purely in terms of a horizontal sl(2)-triple. In section 7.2 the solution is
then extended to higher-rank groups by identifying the group-valued field with the
general Sl(2)-orbit of special fixed Weil operators. We argue that the horizontal
sl(2)-triple selects a particular class of R-matrices and explicitly show that the
equations of motion of the corresponding bi-Yang–Baxter model are solved at
the critical point. We end with an illustrative example and comment on possible
generalizations of the proposed solutions. In the appendix we have included some
computational details and elaborate on some of the expressions used in the example
of section 7.2.3.

7.1 The bi-Yang–Baxter model and unitons
In this section we analyze classical aspects of the bi-Yang–Baxter model. In section
7.1.1 we introduce the model and establish our notation and conventions. Then, in
section 7.1.2, we study the SU(2) model in more detail and consider a class of finite
action solutions known as unitons. Finally, in section 7.1.3 we observe a relation
between the complex uniton solution and the Weil operator of a two-torus. This
observation will then lead us to consider more general solutions for Weil operators
of arbitrary variations of Hodge structure in section 7.2.

7.1.1 Bi-Yang–Baxter model

Let us start by introducing the basics of the bi-Yang–Baxter model. The reader
who is already familiar with the topic can safely skip this section. The model was
originally introduced by Klimčík in [188] as a two-parameter integrable deformation
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of the principal chiral model. In particular, it is a non-linear σ-model for a group-
valued field

g : Σ→ G , (7.1)

where Σ is the two-dimensional worldsheet and G is a real Lie group, whose Lie
algebra will be denoted by g. We will take the worldsheet to have Euclidean
signature, and introduce complex coordinates z, z̄ with z = x+ iy. Additionally,
we will assume g to be simple and denote by

(·, ·) : g× g→ R (7.2)

the (up to an overall scaling) unique invariant symmetric bilinear form on g.

R-matrix

The bi-Yang–Baxter model lies in the class of Yang–Baxter deformations of non-
linear σ-models, all of which involve an object called the (classical) R-matrix. It is
an endomorphism of the Lie algebra g, i.e. a linear map

R : g→ g , (7.3)

satisfying the following equation.

The modified classical Yang–Baxter equation

[RX,RY ]−R ([RX,Y ] + [X,RY ]) = −c2[X,Y ] , (7.4)

for all X,Y ∈ g. Here c2 is a real constant.

Note:
The word ‘modified’ refers to the fact that c is allowed to be non-zero. Note
that by a real rescaling of R we may restrict to the cases c ∈ {0, 1, i}.

In the following, we will additionally impose the condition that R is skew-symmetric
with respect to the chosen bilinear form on g. In other words

(RX,Y ) + (X,RY ) = 0 , ∀X,Y ∈ g . (7.5)

Such R-matrices are also referred to as Yang–Baxter operators and have been
classified in the mathematics literature [231], see also [237].
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Drinfel’d–Jimbo R-matrix

There is a standard solution to the modified classical Yang–Baxter equation, given
by the Drinfel’d–Jimbo solution [229, 230]. In order to write it down, let us first
consider the complexification gC of g and let h be a Cartan subalgebra of gC. Then
gC enjoys a root space decomposition

gC = h⊕
⊕
α

gα , (7.6)

where α ∈ h∗ runs over all the roots and each gα denotes the root space associated
to a root α. A choice of simple roots fixes a notion of positive roots, denoted by
α > 0. Let {Hµ, E±α} denote a Cartan–Weyl basis of gC, where α runs over the
positive roots. These generators satisfy the usual commutation relations

[Hµ, Hν ] = 0 , [Hµ, E±α] = ±α(Hµ)E±α . (7.7)

In terms of this basis, the Drinfel’d–Jimbo R-matrix is defined as2

RHµ = 0 , RE±α = ∓cE±α . (7.8)

One can verify by direct computation that (7.8) solves the modified classical Yang–
Baxter equation (7.4) and that it satisfies the skew-symmetry condition (7.5).
However, it is important to keep in mind that the above R-matrix is defined on the
complexified algebra gC. Depending on the choice of real form g and the constant
c, it may happen that R is not a real endomorphism of g. For further details we
refer the reader to the lecture notes [207].

Action

For a given choice of Yang–Baxter operator R, the action of the associated bi-Yang–
Baxter model is given as follows.

Bi-Yang–Baxter model

S =
∫

Σ
d2σ

(
g−1∂+g ,

1
1− ηR− ζRg g

−1∂−g

)
, (7.9)

2The overall sign of R is, of course, a matter of convention. Here we have chosen the sign to match
with [207].
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where η and ζ are two constants parametrizing the deformation, and we have
introduced the notation

Rg := Adg−1 ◦R ◦Adg . (7.10)

Clearly, for η = ζ = 0 one recovers the action of the principal chiral model, which
enjoys a global GL × GR symmetry. Keeping ζ = 0 but letting η be non-zero,
the introduction of the operator R breaks the global GR symmetry down to the
U(1)rkG

R subgroup. In this case, one retrieves the action of the (single-parameter)
Yang–Baxter model, which is also referred to as the η-model [187]. Upon letting
ζ be non-zero also the global GL symmetry is broken down to the U(1)rkG

L subgroup.

There is a special point in the parameter space where the symmetry of the bi-
Yang–Baxter model is enhanced [195]. Indeed, whenever ζ = η, which we will refer
to as the critical line following [232], one has an additional symmetry given by
g 7→ g−1. The critical bi-Yang–Baxter model will play a crucial role in this work,
as we will find a set of solutions to the model which solve the model precisely when
ζ = η. There have been a number of observations that indicate that the critical
bi-Yang–Baxter model can be related to other integrable models. For example,
the critical SU(2) bi-Yang–Baxter model is equivalent to the coset SO(4)/SO(3)
η-model [181,233]. Furthermore, at the conformal point ζ = η = i

2 the target space
geometry coincides with that of the SU(1, 1)/U(1) gauged WZW model with an
additional U(1) boson [233].

Equations of motion

In order to write down the equations of motion of the bi-Yang–Baxter model, it is
convenient to introduce the currents (we follow the conventions of [195])

J± = ∓ 1
1± ηR± ζRg j± , jµ = g−1∂µg . (7.11)

In terms of J±, the equations of motion read

∂+J− − ∂−J+ − η[J+, J−]R = 0 , (7.12)

where
[X,Y ]R := [RX,Y ] + [X,RY ] , ∀X,Y ∈ g , (7.13)
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defines a second Lie-bracket on g, by virtue of the classical Yang–Baxter equation
(7.4). It is referred to as the R-bracket and is central for the underlying Poisson-Lie
symmetry of the bi-Yang–Baxter model, see e.g. [208].

Integrability and Lax connection

It was shown by Klimčík in [195] that the bi-Yang–Baxter model is classically
integrable. Vital in this regard is the condition that R satisfies the modified
classical Yang–Baxter (7.4) equation and is anti-symmetric. The integrability
condition means that the equations of motion of the bi-Yang–Baxter model can be
reformulated as the zero-curvature condition of a Lax connection

L±(λ) =
(
η(R− i) + 2iη ± (1− η2 + ζ2)

1± λ

)
J± , (7.14)

where λ ∈ C is the spectral parameter (not to be confused with the deformation
parameter λ of chapter 6). More precisely, introducing the connection

∇± = ∂± + L±(λ) , (7.15)

the zero-curvature condition simply states that

[∇+,∇−] = 0 , (7.16)

for all λ. This is equivalent to the equations of motion (7.12) together with the
Bianchi identities for J±. The flatness of the Lax connection ensures the existence
of an infinite tower of conserved charges. The Hamiltonian integrability of the
model, i.e. the condition that all these charges in fact Poisson-commute with each
other, was established in [238].

7.1.2 SU(2) unitons

In this section, we restrict to the case where G = SU(2) and study a class of finite
action solutions to the classical theory. These solutions are referred to as unitons,
owing to the fact that they are analogous to instantons and additionally satisfy the
requirement that g2 = −1. They were originally constructed by K. Uhlenbeck as
solutions to the SU(N) principal chiral model [234], and were later extended to the
Yang–Baxter and bi-Yang–Baxter models in [232,235] for N = 2. Our discussion
closely follows the works [232,235].
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su(2) R-matrix

For su(2), the solution to the modified Yang–Baxter equation is essentially unique
and is given by the Drinfel’d–Jimbo solution discussed in the previous section. Let
us go through the construction of the R-matrix in some detail. The complexification
of su(2) is sl(2,C), which has a Cartan–Weyl basis given by

H =
(

1 0
0 −1

)
, E+ =

(
0 1
0 0

)
, E− =

(
0 0
1 0

)
, (7.17)

satisfying
[H,E±] = ±2E± . (7.18)

Using (7.8) we obtain a solution to the modified classical Yang–Baxter equation,
at the level of sl(2,C). In order to see if this descends to a real solution when
restricting to the real form su(2), let us fix a basis of su(2) as Tj = iσj , where σi
denote the Pauli matrices. Then one readily finds that R acts on this basis as

RT1 = −ic T2 , RT2 = ic T1 , RT3 = 0 . (7.19)

In particular, for R to be a real endomorphism we require c = i, in which case R
can be represented as a matrix in the Ti basis as

R =

0 −1 0
1 0 0
0 0 0

 . (7.20)

In the remainder of this section, we will implicitly use this R-matrix.

SU(2) bi-Yang–Baxter model

We will adopt the following parametrization of the SU(2) group element

g =
(

cos θ eiϕ1 i sin θ eiϕ2

i sin θ e−iϕ2 cos θ e−iϕ1

)
, θ, ϕ1 ∈ [0, π) , ϕ2 ∈ [0, 2π) . (7.21)

As a non-linear σ-model, the bi-Yang–Baxter model can be characterized by the
metric and B-field it induces on the target space. These follow from inserting the
ansatz (7.21) for g, together with the R-matrix (7.20), into the action (7.9). The
resulting metric reads

ds2 = 1
∆
[
dθ2 + cos2 θ

(
1 + (η + ζ)2 cos2 θ

)
dϕ2

1 + sin2 θ
(
1 + (η − ζ)2 sin2 θ

)
dϕ2

2
]

+ sin2(2θ)
2∆ (η − ζ)(η + ζ)dϕ1dϕ2 ,
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where we have defined

∆ = 1 + η2 + ζ2 + 2ηζ cos(2θ) . (7.22)

Moving on, the B-field is found to be pure-gauge, and is given by

B = dA , A = log ∆
4ηζ [(η − ζ)dϕ1 − (η + ζ)dϕ2] . (7.23)

The form of the metric and B-field indicate that at the points ζ = η and ζ = −η
the model simplifies significantly (for example, the metric becomes diagonal). We
recall that the point ζ = η is referred to as the critical line. In contrast, the point
ζ = −η is referred to as the co-critical line. As alluded to before, on the critical
line this simplification is due to the emergence of the Z2 symmetry g 7→ g−1. In
the parametrization (7.21) this corresponds to

ϕ1 7→ −ϕ1 , ϕ2 7→ ϕ2 + π . (7.24)

Note that for the SU(2) model in particular there is an additional Z2-symmetry
given by the transformations

θ 7→ θ + π

2 , ϕ1 ↔ ϕ2 , ζ 7→ −ζ . (7.25)

This exactly maps the critical line ζ = η to the co-critical line ζ = −η.

Real and complex unitons

The unitons are finite action solutions to the classical equations of motion of
the SU(2) bi-Yang–Baxter model, which additionally satisfy g2 = −1. In the
parametrization (7.21), this condition imposes that either θ = π

2 or ϕ1 = π
2 . We

will consider the latter case. There are two types of unitons, dubbed the real and
complex unitons. Both are determined by the choice of a holomorphic function f(z)
of the worldsheet coordinate. The expressions for ϕ1 and ϕ2 are the same for both
unitons, and are given by

ϕ1 = π

2 , ϕ2 = π + i

2 log
(
f

f̄

)
, (7.26)

while the expressions for θ differ and are respectively given by

real uniton : sin2 θ = 4|f |2
(1 + |f |2)2 + (η − ζ)2(1− |f |2)2 , (7.27)

complex uniton : θ = π

2 + i arctanh
(

1
2

(
|f |+ 1

|f |

)√
(η − ζ)2 + 1

)
. (7.28)

297



7 Bi-Yang–Baxter models and Sl(2)-orbits

The nomenclature ‘real’ vs. ‘complex’ is due to the fact that for the real uniton,
θ is manifestly real and hence the group-valued field g indeed lies in SU(2). In
contrast, for the complex uniton θ is complex-valued and hence g takes values in
the complexified group SL(2,C).3

For completeness, we also record the metric of the SU(2) bi-Yang–Baxter model
when evaluated on the real and complex unitons. Introducing polar coordinates
f = reiα and writing R = r2 one finds4

ds2 = 1
∆

(
dθ
dR

)2 (
dR2 + 4R2dα2) , (7.29)

for both unitons. We see that in the target space the uniton solutions correspond to
a squashed two-sphere inside SU(2). From here it follows from explicit integration
that the unitons have finite action and we refer the reader to [232] for further details.
One finds that the on-shell actions evaluate to (we neglect the overall factor coming
from the angular integration)

Sreal uniton = 1
2ηζ [(η + ζ) arctan(η + ζ)− (η − ζ) arctan(η − ζ)] , (7.30)

and5

Scomplex uniton = 1
2ηζ [(η + ζ) arccot(η + ζ)− (η − ζ) arccot(η − ζ)] . (7.31)

Here we have assumed the domain of integration to be the entire complex plane. In
other words, R ranges from 0 to infinity. In the next section we will encounter a
situation where f(z) instead takes values in the unit disk, in which case R ∈ [0, 1].
One can verify that this only changes the above results by a factor of 1/2.
3Note that for real x

Im arctanh x =
{

0 , |x| < 1 ,

− π
2 sign(x) , |x| > 1 .

Therefore, one finds that for the complex uniton Re θ = π, hence g in fact takes values in SU(1, 1).
See also the discussion in section 7.1.3.

4Here we have used the fact that

4R2
( dθ

dR

)2
= sin2 θ + (ζ − η)2 sin4 θ ,

which holds for both the real and complex uniton and can be verified by explicit computation.
5It should be noted that Scomplex uniton is not finite in the limit η, ζ → 0, hence this point should
be excluded.
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7.1.3 Weil operator as a complex uniton
The unitons discussed in the previous section are solutions to the SU(2) bi-Yang–
Baxter model. In this section, we will instead be concerned with the SL(2,R)
bi-Yang–Baxter model. This model has a solution which naturally arises from
the study of variations of Hodge structure, applied to the simplest example of a
torus. More precisely, the solution is given by the so-called Weil operator which,
roughly speaking, corresponds to the Hodge star when viewed as an operator on the
middle de Rham cohomology of the torus. The Weil operator is a function of the
Teichmüller parameter τ of the torus. This parameter is then reinterpreted as the
worldsheet coordinate in the bi-Yang–Baxter model. Interestingly, this solution also
satisfies g2 = −1, which suggests that it might be related to the uniton solutions.
Indeed, we show that the Weil operator can be mapped to the complex uniton, for
a particular choice of holomorphic function f(z), via a Cayley transformation.

Weil operator

Let us start by introducing the Weil operator of the torus. A convenient description
of the torus T is as a lattice

T = C/(Z + τZ) , Im τ > 0 , (7.32)

where τ is the Teichmüller parameter taking values in the complex (strict) upper
half-plane. We parametrize the torus by two periodic coordinates ξ1, ξ2 with
ξi ∼ ξi + 1. Then the metric on the torus can be written as

ds2 = |dξ1 + τ dξ2|2

Im τ
. (7.33)

Here we have normalized the metric so that the torus has unit volume. The Weil
operator is closely related to the Hodge star operator on the torus. The action of
the Hodge star on the one-forms dξ1 and dξ2 follows directly from the metric (7.33)
and is given by

⋆dξ1 = Re τ
Im τ

dξ1 + |τ |
2

Im τ
dξ2 , ⋆dξ2 = − 1

Im τ
dξ1 −

Re τ
Im τ

dξ2 . (7.34)

To obtain the Weil operator, one should view this as an action on the middle de
Rham cohomology H1(T,C) of the torus.6 Indeed, in the basis {[dξ1], [dξ2]}, where
6Recall that, as a real manifold, the torus is two-dimensional, hence its cohomology groups
Hn(T,C) run over n = 0, 1, 2. This explains the name ‘middle cohomology’ for H1(T,C).
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[ω] denotes the equivalence class of a one-form ω, the action of the Hodge star can
be represented as a matrix

C(x, y) = 1
y

(
x −1

x2 + y2 −x

)
, (7.35)

where we have set τ = x+ iy. We will refer to (7.35) as the Weil operator of the
torus. Note that it is an element of SL(2,R).

Relation to the complex uniton

An interesting property of (7.35) is that it satisfies7

C2 = −1 , (7.36)

which is shared by the unitons solutions discussed in section 7.1. In fact, we will
now argue that the Weil operator can be viewed as a complex uniton for a specific
choice of the holomorphic function f(z).

As a preliminary remark, we stress that one cannot simply compare the expressions
(7.21) and (7.35), as the two lie in different groups, namely SU(2) and SL(2,R),
respectively. There is, however, a natural two-step procedure to pass between
the two groups by combining a so-called Cayley transformation with an analytic
continuation. Let us first elaborate on the former. We introduce the matrix

ρ = 1√
2

(
1 i

i 1

)
, (7.37)

which is an element of SL(2,C). Then it is straightforward to show that the adjoint
action

Adρ : SL(2,R)→ SU(1, 1) (7.38)

is an isomorphism of real Lie groups, which is commonly referred to as a Cayley
transformation. Indeed, it provides an interpolation between the two real forms
SL(2,R) and SU(1, 1) of SL(2,C). For the second step of the proposed procedure,
one interpolates between SU(1, 1) and SU(2) via an analytic continuation. In the
parametrization (7.21) this is straightforwardly given by sending θ 7→ −iθ.

7More generally, the origin of this relation is the fact that ⋆⋆ evaluates to ±1, with the sign
determined by the degree of the differential form it acts on and the dimension of the spacetime
in question.
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We now apply the above procedure to compare the Weil operator of the torus to a
generic element in SU(2). Practically, it is easiest to take the expression in (7.21),
analytically continue it to SU(1, 1) by setting θ = iθ̃ and then apply Adρ−1 to end
up in SL(2,R). The result of this computation is

gSL(2,R) =
(

cosh θ̃ cosϕ1 − sinh θ̃ sinϕ2 − cosh θ̃ sinϕ1 − sinh θ̃ cosϕ2

cosh θ̃ sinϕ1 − sinh θ̃ cosϕ2 cosh θ̃ cosϕ1 + sinh θ̃ sinϕ2

)
, (7.39)

which is indeed an element of SL(2,R). Comparing (7.35) and (7.39) and solving
for θ̃, ϕ1, ϕ2 in terms of x, y gives

ϕ1 = π

2 , ϕ2 = π+ i

2 log
(
f

f̄

)
, θ̃ = iπ

2 +arctanh
[

1
2

(
|f |+ 1

|f |

)]
, (7.40)

where f(z) is the following holomorphic function of the complexified worldsheet
coordinates

f(z) = z − i
z + i

, z = x+ iy . (7.41)

Indeed, identifying the Teichmüller parameter τ with the worldsheet coordinate z
and recalling that θ = iθ̃, one sees that this solution is precisely of the form of a
complex uniton (7.28) with additionally ζ = η.8 The function f(z) is a special type
of Möbius transformation that conformally maps the upper half-plane to the unit
disc. Note that it is holomorphic on the upper half-plane, but has a first order pole
at z = −i. Let us thus emphasize the following important observation. One can
invert (7.41) to find

z = i
f(z) + 1
f(z)− 1 . (7.42)

In particular, if one were to start the analysis of this section with a two-torus whose
complex structure parameter τ is parametrized as (7.42), then one would obtain
exactly the solution (7.40) for an arbitrary function f(τ) that is holomorphic on the
upper half-plane. From this point of view, the origin of the family of solutions to
the critical bi-Yang–Baxter model therefore follows is naturally explained in terms
of the freedom in the choice of a holomorphic coordinate on the moduli space of the
two-torus. Furthermore, this clarifies the importance of restricting to the critical
line ζ = η. Indeed, one may verify that if one were to extend the original uniton
solution (7.27) beyond the critical line, it would lead to a non-holomorphic change
of coordinates.

8Strictly speaking, an exact match is obtained after sending θ 7→ θ + π, corresponding to C 7→ −C.
Of course, the overall sign of C is simply a convention.
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(a) η = 0.7, ζ = 0.6 (b) η = 0.7, ζ = 0.7 (c) η = 0.7, ζ = 0.8

Figure 7.1: Plot of the Lagrangian density of the SU(2) bi-Yang–Baxter model evaluated
on the complex uniton solution with f(z) = z−i

z+i
, for three values of the deformations

parameters (η, ζ). For η ̸= ζ there are two bumps, which coalesce on the critical line
η = ζ.

In figure 7.1 we have illustrated the Lagrangian density for the complex uniton
defined by the particular holomorphic function (7.41). It is interesting to contrast
this with the plots in [232], where instead a linear function f(z) = z

2 was used. In
both cases there is a clear transition at the critical point ζ = η. On the other hand,
the concentric valley structure in [232] is not present here. Rather, in our case the
density is not rotationally invariant, but only invariant under reflections x 7→ −x
and y 7→ −y. Of course, this can be explained by noting that the Lagrangian
density is a function of |f(z)|.

It is also interesting to recall the Z2-symmetry (7.25) which maps the critical line
to the co-critical line. Indeed, one finds that it acts on the Weil operator as

C(x, y) 7→ i

y

(
−1 −x
x x2 + y2

)
= C(x, y) ·

(
0 i

i 0

)
. (7.43)

Interestingly, the Z2 transformation can be described as a right-multiplication
of C(x, y) by an element in SL(2,C) (even in SU(2)). However, as a result the
transformed Weil operator is no longer real-valued. Therefore, it will define a
solution to the co-critical SL(2,C) bi-Yang–Baxter model, as can be verified by
explicit computation.

As a final comment, one can use the result (7.29), taking f(z) as above, to find
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7.1 The bi-Yang–Baxter model and unitons

that the on-shell metric is given by

ds2 = 4|dz|2
(z − z̄)2 − 4η2(1 + |z|2)2 . (7.44)

Note that in the limit η → 0 one recovers the standard metric on the Poincaré
upper half-plane.

R-matrix revisited

As a result of the identification between the Weil operator and a complex uniton, one
expects that the Weil operator provides a solution to the SL(2,R) bi-Yang–Baxter
model. To make this precise, one should also identify the appropriate R-matrix
by taking the SU(2) R-matrix in (7.20) and translating it to an endomorphism of
SL(2,R) via the Cayley transform. Explicitly, this gives9

RSL(2,R) = Adρ−1 ◦RSU(2) ◦Adρ . (7.45)

One can verify that the resulting R-matrix acts as

RSL(2,R) H = −(E+ + E−) , RSL(2,R) E± = 1
2H , (7.46)

and is manifestly real. The reader is invited to check that indeed the Weil operator
(7.40) is a solution to the critical SL(2,R) bi-Yang–Baxter model defined by the
R-matrix (7.46). One may wonder how this R-matrix differs from the Drinfeld’d–
Jimbo solution we started with. The answer is that the R-matrix (7.46) is also a
Drinfel’d–Jimbo solution, but for a different choice of Cartan generators. This will
be explained further in section 7.2.1.

An underlying Sl(2)-orbit

Let us return to the Weil operator (7.35) to elucidate a very particular underlying
structure, which may not be immediately apparent from its matrix representation.
Indeed, note that the Weil operator can be factorized in the following way

C(x, y) = h(x, y)C∞h(x, y)−1 , (7.47)

where we have introduced

h(x, y) = 1
√
y

(
1 0
x y

)
, C∞ =

(
0 1
−1 0

)
. (7.48)

9One can check that the R-matrix remains unchanged under the analytic continuation from SU(2)
to SU(1, 1).
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More abstractly, both h(x, y) and C∞ can be written in terms of sl(2,R)-valued
objects as

h(x, y) = exN
−
y− 1

2N
0
, C∞ = (−1)Q∞ , (7.49)

where we have chosen to change our notation for the sl(2,R) generators to

N± = E± , N0 = H , (7.50)

and introduced another operator

Q∞ = i

2

(
0 −1
1 0

)
, (7.51)

for which iQ∞ is valued in sl(2,R). In light of the results of chapter (3), we
immediately recognize the operator h(x, y) in (7.48) as the Sl(2)-orbit of the
period map. In other words, we indeed see that for the two-torus the Sl(2)-orbit
approximation is exact. Based on the simple form of the period vector, recall
equation (2.9), this is to be expected. Furthermore, we recognize the operator Q∞

as the corresponding boundary charge operator. Indeed, one can verify that it
satisfies the following commutation relations with the real sl(2) triple N+, N0, N−

[Q∞, N
0] = i

(
N+ +N−) , [Q∞, N

±] = − i2N
0 , (7.52)

such that, as expected, the triple is in fact a horizontal sl(2)-triple.

As a final comment, one may compare (7.52) with the R-matrix (7.46) to find that

RSL(2,R) = adiQ∞ . (7.53)

In other words, we have found that the solution we have obtained for the critical
SL(2,R) bi-Yang–Baxter model can be completely characterized by an operator
Q∞ and an sl(2,R)-triple N+, N0, N− that is horizontal with respect to Q∞. It
turns out that by studying the abstract properties of horizontal sl(2)-triples one
can greatly generalize the simple solution we have considered here to groups of
larger rank. This is the topic of the next section.
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7.2 Horizontal sl(2)-triples and generalized unitons
In the previous section we have argued that the Weil operator of the torus provides
a solution to the critical SL(2,R) bi-Yang–Baxter model. In this section we show
that this solution can be generalized to arbitrary groups as long as they admit at
least one horizontal sl(2)-triple. Given a horizontal sl(2)-triple we discuss how it
defines a particular class of R-matrices and then write down the generalized solution
in section 7.2.2. Subsequently, we explicitly show that it solves the equations of
motion of the bi-Yang–Baxter model associated to the mentioned class of R-matrices.
Finally, in section 7.2.3 we have included a very explicit example of a horizontal
sl(2)-triple in sp(4,R) and the associated Sl(2)-orbit approximation of the Weil
operator, based on the type IV1 boundary data.

7.2.1 Horizontal sl(2)-triples
R-matrix from horizontal sl(2)-triples

For completeness, let us briefly recall the abstract features of horizontal sl(2)-triples,
without making reference to a possible underlying variation of Hodge structure. To
this end, let gR be a real Lie algebra. The first important ingredient is a standard
sl(2)-triple, which is a set of three elements in gR, denoted by {N+, N0, N−},
satisfying the commutation relations

[N0, N±] = ±2N± , [N+, N−] = N0 . (7.54)

For classical Lie algebras gR, there is a classification of sl(2)-triples in gR in terms
of signed Young diagrams, see e.g. [103]. The second important ingredient is the
charge operator Q∞, which we recall should satisfy two important properties. First,
it should be purely imaginary-valued, i.e.

Q̄∞ = −Q∞ , (7.55)

where the bar denotes complex conjugation. Second, Q∞ should be a so-called
grading element. This means that the adjoint action adQ∞ has only integer eigen-
values.

Given a standard sl(2)-triple and a charge operator Q∞, we say that the triple is
horizontal (with respect to Q∞) if it satisfies the following commutation relations

[Q∞, N
0] = i

(
N+ +N−) , [Q∞, N

±] = − i2N
0 . (7.56)
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In the following, we will argue that a horizontal sl(2)-triple provides a solution
to the critical bi-Yang–Baxter model, for a particular class of R-matrices. These
R-matrices must be compatible with the sl(2)-triple in the sense that they must act
in the same way as we found in the simple example of section 7.1.3. Let us make
this more precise.

Given a charge operator Q∞ and a horizontal sl(2)-triple in a Lie algebra g, we
impose that the R-matrix acts as

RQ∞ = 0 , RN0 = −(N+ +N−) , RN± = 1
2N

0 . (7.57)

One readily checks that the modified classical Yang–Baxter equation is then satisfied
for this sl(2)-triple. In terms of the complex generators Lα defined via the Cayley
transform, recall equation (4.5), it acts as

RQ∞ = 0 , RL0 = 0 , RL±1 = ±iL±1 . (7.58)

Comparing this to (7.8), we see that this choice of R-matrix is nothing but the
Drinfel’d–Jimbo solution, where we have chosen L0 and Q∞ as the generators of
a Cartan subalgebra of sl(2,C) × u(1) and L±1 correspond to the positive and
negative roots. However, in general this does not yet specify the full R-matrix, as
its action on the remaining generators of g is not yet fixed. Indeed, if the rank of g
is greater than two, one must identify additional Cartan generators beyond L0 and
Q∞ to complete the full Drinfel’d–Jimbo solution.

7.2.2 Sl(2)-orbits and generalized unitons
In this section we will introduce a generalization of the Weil operator of the torus
discussed in section 7.1.3 using purely the data of a horizontal sl(2)-triple. Hodge-
theoretically, the operators we discuss correspond to so-called Sl(2)-orbits. In the
following, we will purely use the abstract properties of the horizontal sl(2)-triple,
without making reference to any underlying Hodge structure, to show that such
operators also solve the critical bi-Yang–Baxter model and therefore provide a
generalization of the complex unitons to groups beyond SU(2).

Sl(2)-orbits

In section 7.1.3 we highlighted a particular underlying structure in the Weil operator
of the torus in terms of two elements h(x, y) and C∞, see (7.48) and (7.49). Let us
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recall that this can be generalized straightforwardly by considering the Sl(2)-orbit
approximation of the period map

h(x, y) = exN
−
y− 1

2N
0
, C∞ = (−1)Q∞ (7.59)

and defining
g(x, y) = h(−1)Q∞h−1 . (7.60)

We will refer to (7.60) as simply the Weil operator. Note that g(x, y) satisfies a
‘twisted boundary condition’

g(x+ 1, y) = eN
−
g(x, y)e−N−

, (7.61)

which is similar to the adiabatic reduction used in [232] to reduce the SU(2)
bi-Yang–Baxter model to a model of quantum mechanics.

Generalized unitons

We now explicitly show that the Weil operator g in (7.60), together with the R-
matrix defined in (7.57) solves the equations of motion of the critical bi-Yang–Baxter
model. Here we will focus on the main steps in the calculation, and refer the reader
to appendix 7.A where further details are given. More precisely, throughout the
calculation it is necessary to know how Adh, Adh−1 and Adg act on the sl(2,R)-
triple. This can be straightforwardly computed using the commutation relations,
and the results are listed in equations (7.89)-(7.94) and (7.101)-(7.103).

To start, it will be most convenient to present the equations of motion in real
coordinates x, y in terms of which they read

∂xJy − ∂yJx − η[Jx, Jy]R = 0 , (7.62)

where we recall the R-bracket in (7.13) and denote

Jx = J+ + J− , Jy = −i (J+ − J−) , (7.63)

with J± defined in (7.11). For clarity of presentation, we will divide the main
computation into three steps.

Step 1: jµ

As a first step, let us compute the simpler objects

jµ = g−1∂µg . (7.64)
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Using (7.60) one has

jµ = h
[
(−1)adQ∞h−1∂µh− h−1∂µh

]
h−1 . (7.65)

Then, using the expression (7.59) for h, one readily computes

h−1∂xh = 1
y
N− , h−1∂yh = − 1

2yN
0 . (7.66)

Therefore, to compute jµ it remains to apply the commutation relations (7.56) and
evaluate the action of Adh. For the first step we use the relations (7.96)-(7.98) and
for the second step we use (7.89)-(7.91). The result of this computation is

jx = − 1
y2

[
N+ − xN0 − (x2 − y2)N−] , (7.67)

jy = 1
y

[
N0 + 2xN−] . (7.68)

Step 2: Jµ

To proceed, we would like to compute the currents Jµ, for which we must know the
action of R and Rg on the currents jµ. The general action of these two operators
on the sl(2)-triple follows from the definition (7.57) and the action of Adg on the
sl(2)-triple, which we record in (7.101)-(7.103). Applying this to jx and jy gives

(ηR+ ζRg) jx = η
α

y

[
N0 + 2xN−]+ ζ − η

y2

[
xN+ +

(α
2 − x

2
)
N0 + x(1 + 2α)N−

]
,

(7.69)

(ηR+ ζRg) jy = η
α

y2

[
N+ − xN0 − (x2 − y2)N−] (7.70)

+ ζ − η
y3

[
−(1 + x2)N+ + x(1 + x2)N0 + (x2 + x4 − y4)N−] .

where we have introduced

α = α(x, y) = 1 + x2 + y2

y
. (7.71)

Crucially, one sees that the result simplifies considerably when evaluated on the
critical line ζ = η and becomes

(R+Rg) jx = α(x, y)
y

[
N0 + 2xN−] , (7.72)

(R+Rg) jy = α(x, y)
y2

[
N+ − xN0 − (x2 − y2)N−] , (7.73)
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The main observation is now the following. Comparing the above result with the
expressions (7.67)-(7.68) for jx and jy, we see that

(R+Rg)jx = α(x, y) jy , (R+Rg)jy = −α(x, y) jx . (7.74)

In other words, for this particular choice of g the currents j+ and j− are eigenvectors
of R+Rg. As a result, computing Jx and Jy is straightforward and gives

Jx = β(x, y)jy , Jy = −β(x, y)jx , (7.75)

where we have introduced the function

β(x, y) = 1
i+ α(x, y)η . (7.76)

Step 3: equations of motion

For the final step, we show that (7.75) solves the equations of motion

∂xJy − ∂yJx − η[Jx, Jy]R = 0 . (7.77)

Indeed, inserting (7.75) one effectively needs to show that

β (∂xjx + ∂yjy) +
(
∂xβjx + ∂yβjy + ηβ2[jx, jy]R

)
= 0 . (7.78)

This follows from straightforwardly using the definition of β(x, y), inserting our
results for jx and jy, see (7.67)-(7.68), and evaluating the R-bracket using (7.13)
and (7.57). In fact, the two terms in brackets vanish separately. Note that for the
first term this is simply the statement that the one-form ⋆j is closed, i.e.

d ⋆ j = 0 . (7.79)

Stated differently, g also solves the principal chiral model. This is of course not
surprising if one expects the solution to hold for all values of η, since in the limit
η → 0 the critical bi-Yang–Baxter model reduces precisely to the principal chiral
model. Furthermore, it agrees with the results stated at the end of appendix 2.A.2.

Discussion

To summarize, we have shown that for any real Lie group G whose Lie algebra g

contains a horizontal sl(2)-triple, the Weil operator defined in (7.60) provides a
solution to the critical bi-Yang–Baxter model associated to the class of R-matrices
satisfying (7.57). As this constitutes the main result of this chapter, let us make
some additional comments.
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Finite action

As a first remark, we note that it is straightforward to show that our solutions have
finite action. Indeed, one finds that

Son−shell ∼
∫
d2σ β (j+, j−) , (7.80)

where we recall that β is defined by (7.76). We stress that our solution is completely
defined in terms of the horizontal sl(2)-triple and that the pairing (j+, j−) is
independent of the particular representation of the triple, except for possibly an
overall coordinate-independent factor. Therefore, it suffices to compute the on-shell
action for the fundamental representation, where it was shown that the result is
finite, as discussed in section 7.1.2.

Multiple sl(2)-triples

As a second remark, we note that it is entirely possible that g contains multiple
inequivalent (commuting) sl(2)-triples that are all horizontal with respect to the
same charge operator. Of course, one can construct a corresponding Weil operator
as in (7.60) for each of these triples and obtain multiple inequivalent solutions to
the corresponding bi-Yang–Baxter models. Interestingly, as discussed in chapter
3, in Hodge theory the presence of multiple sl(2)-triples gives rise to so-called
multi-variable Sl(2)-orbits, which take the similar form

g = h(−1)Q∞h−1 , (7.81)

but with h given by

h(x1, . . . , xn, y1, . . . , yn) =
n∏
i=1

hi(xi, yi) , hi(xi, yi) = exiN
−
i y

− 1
2N

0
i

i , (7.82)

where i enumerates the various horizontal sl(2)-triples. Of course, to view this as
a solution of the bi-Yang–Baxter models one has to view one of the coordinates
ti = xi + iyi, for a fixed i, as the worldsheet coordinate and the others as some
additional parameters. In this case one readily sees that this also defines a solution
by exactly the same arguments above, as the transformation

g 7→ a · g · a−1 , R 7→ Ada ◦R ◦Ad−1
a , a ∈ G , (7.83)

is a global symmetry of the bi-Yang–Baxter model. It would, however, also be
interesting to see if there exists a natural extension of the model to higher dimensions
for which the multi-variable Sl(2)-orbits provide a solution.
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Generalizations and relations to other integrable models

As a third remark, we would like to stress that we have shown that the Weil
operator solves the critical bi-Yang–Baxter model, i.e. when ζ = η. Additionally,
it is straightforward to check that it does not solve the non-critical model, as we
showed explicitly in section 7.1.3 for the Weil operator of the torus. However, it is
possible that by a suitable generalization of the ansatz one can also find solutions
of the non-critical model. For example, for the SU(2) model one can apply the
Z2-symmetry (7.25) to obtain instead a solution of the co-critical model and the
same can be done for the SL(2,R) model. It would therefore be interesting to
see if this symmetry, or an appropriate generalization thereof, also applies for the
bi-Yang–Baxter model based on other groups.

Another point that is worth emphasizing is the fact that the critical bi-Yang–Baxter
model is related to other integrable models. A trivial example is the limit η → 0,
for which it reduces to the principal chiral model. As mentioned earlier, since our
solution holds for any value of η, this implies that the Weil operator also solves the
principal chiral model, for which the equations of motion are simply the harmonic-
ity condition (7.79). Relations to other integrable models have been established
as well in the literature. For example, as mentioned before, the critical SU(2)
bi-Yang–Baxter model is equivalent to the coset SO(4)/SO(3) η-model [181,233].
Furthermore, at the conformal point η = i

2 it coincides with the SU(1, 1)/U(1)
gauged WZW model with an additional U(1) boson [233]. Therefore the Weil
operator (of the torus) also provides a solution to these models. There has also
been work on relating the bi-Yang–Baxter model to generalized λ-deformations via
Poisson-Lie T-duality. This was first worked out for the SU(2) model in [208] and
later proved in general in [201], see also [239–241]. Therefore, via this duality it is
reasonable to expect that our solution can be mapped to solutions of generalized
λ-deformations. This points to the striking idea that Hodge theory allows one to
construct solutions to many integrable models.

Indeed, as a last comment let us compare the results obtained in this chapter with
those of the previous chapter, which was based on the work [3]. There it was
shown that the Weil operator of an arbitrary variation of Hodge structure solves
the λ-deformed G/G model when |λ| = 1. Indeed, in [3] we considered the ansatz

g = h zQ∞h−1 , (7.84)

where h reduces to (7.59) in the Sl(2)-orbit approximation. In that case, when also
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z = −1, the expression (7.84) coincides with (7.60). Furthermore, one can easily
check that what was referred to as the ‘horizontality condition’ in [3] reduces to
the condition that the sl(2)-triple is horizontal with respect to Q∞. It would be
interesting to investigate how the relation among the solutions translates into a
relation of the underlying integrable models.

7.2.3 Example: Type IV1

The preceding discussion has been rather abstract, so let us end this section by
providing an explicit example of a horizontal sl(2)-triple in sp(4,R) and write
down the corresponding solution to the bi-Yang–Baxter model. We also end with
some speculative comments regarding possible generalizations to the nilpotent orbit
approximation discussed in chapter 3. We refer the reader to [1] for further details
on this example.

Weil operator

Using the results of appendix 3.B, where the boundary data for the type IV1

singularity was constructed, one can immediately write down the corresponding
Sl(2)-orbit approximation of the Weil operator. Explicitly, it is given by10

g(x, y) = 1
y3


−x3 3x2 −3x 1

−x2 (x2 + y2) 3x3 + 2xy2 −3x2 − y2 x

−x
(
x2 + y2)2 (

x2 + y2) (3x2 + y2) −3x3 − 2xy2 x2

−
(
x2 + y2)3 3x

(
x2 + y2)2 −3x2 (x2 + y2) x3

 . (7.85)

By our general arguments, the operator (7.85) together with the R-matrix (7.57)
provide a solution to the critical sp(4,R) bi-Yang–Baxter model, as can be verified
by explicit computation. For some further details on how we constructed a full
R-matrix for sp(4,R) we refer the reader to appendix 7.B, see in particular (7.108).

Nilpotent orbit approximation

We end this example with an observation regarding the nilpotent orbit approxi-
mation. As a rough summary, let us recall that, for general variations of Hodge
structure, the Sl(2)-orbit approximation (7.85) will only provide the first order
10Here we have suppressed the additional transformation (3.214) and we are using the conventions

of chapter 4, see section 4.2.2, in which we performed the additional basis transformation (4.102).
In particular, we have used the sl(2)-triple (4.103) and charge operator (4.104).
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approximation of the full variation of Hodge structure. To obtain a better approxi-
mation one must consider the nilpotent orbit approximation (4.3) by incorporating
an infinite tower of y−1 corrections. In section 4.2.2 this computation was done
explicitly for this particular example. The resulting Weil operator is given by (we
have set x = 0 for simplicity)

g(y)
N(y) =


0 −9y2χ 0 8y3 + χ

− 3
2y(2y3 + χ)χ 0 − (2y3+χ)(8y3+χ)

2y 0
0 y(8y6 − y3χ+ 2χ2) 0 −3y2χ

− 1
2 (2y3 + χ)(8y6 − y3χ+ 2χ2) 0 − 9

2y(2y3 + χ)χ 0

 ,
(7.86)

with
N(y) = 1

(4y3 − χ)(2y3 + χ) , (7.87)

and we recall that the parameter χ originates from the expression of the phase
operator (3.218) and, in the geometric setting, when this boundary Hodge structure
arises in the large complex structure regime of a Calabi–Yau threefold Y3, the
parameter χ is proportional to the Euler characteristic of the mirror of Y3.

The curious reader may wonder whether also the expression (7.86) solves the bi-
Yang–Baxter model, since it at least does so in the χ → 0 limit. If one naively
takes the same R matrix (7.108) as was used for the Sl(2)-orbit approximation, one
will find that it does not provide a solution. However, it is an interesting possibility
that an appropriate dependence of R on the parameter χ alleviates this issue, thus
promoting the full nilpotent orbit approximation to a solution of the associated
bi-Yang–Baxter model. If this is indeed the case, this would imply a remarkable
connection between the R matrix and the phase operator δ.

At present, there is no concrete evidence that this will indeed be the case. There
are, however, two indications. The first is that sometimes the nilpotent orbit and
Sl(2)-orbit are related in a rather simple manner. Indeed, it was found in [1] for the
type I1 and II0 boundaries, that after appropriately resumming the corrections in
the nilpotent orbit approximation, the two are related by a simple coordinate shift
y 7→ y+y0, recall also the results of section 4.2. Of course, such a shift will not spoil
the solution. The second indication is the result of chapter 6, in which it was shown
that in fact the full Weil operator (hence also the nilpotent orbit approximation)
solves the equations of motion of the λ-deformed G/G model. Therefore, there is
already an established relationship between objects appearing in Hodge theory and
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deformations of integrable non-linear σ-models. It appears plausible, then, that
this relation runs deeper and also applies to the bi-Yang–Baxter model beyond just
the Sl(2)-orbit approximation. This is, however, still rather speculative and we
hope to return to this question in future work.

Appendices

7.A Overview of Formulae
In this section we have collected some formulae that are used in the computations
of section 7.2.2.

Action of Adh and Adh−1

In the Sl(2)-orbit approximation, the period map is given by

h = exN
−
y− 1

2N
0
. (7.88)

Using the commutation relations (7.54), it follows by direct computation that

AdhN+ = 1
y
N+ − x

y
N0 − x2

y
N− , (7.89)

AdhN0 = N0 + 2xN− , (7.90)
AdhN− = yN− . (7.91)

In a similar fashion, one finds

Adh−1N+ = yN+ + xN0 − x2

y
N− , (7.92)

Adh−1N0 = N0 − 2x
y
N− , (7.93)

Adh−1N− = 1
y
N− . (7.94)

Action of (−1)ad Q∞

It will be convenient to denote

O† = −(−1)adQ∞O . (7.95)
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Then using the commutation relations (7.54) and (7.56), one finds(
N+)† = N− , (7.96)(
N0)† = N0 , (7.97)(
N−)† = N+ . (7.98)

Action of Adg

We recall that
g = h(−1)Q∞h−1 , (7.99)

so that
Adg = −Adh ◦ † ◦Adh−1 . (7.100)

In order to compute the action of Adg on the sl(2)-triple, we can use our earlier
results (7.89)-(7.94) as well as (7.96)-(7.98). Then one finds

AdgN+ = 1
y2

[
x2N+ − x(x2 + y2)N0 − (x2 + y2)2N−] , (7.101)

AdgN0 = 2
y2

[
xN+ −

(
x2 + y2

2

)
N0 − x(x2 + y2)N−

]
, (7.102)

AdgN− = − 1
y2

[
N+ − xN0 − x2N−] . (7.103)

Note that since g2 = ±1, we also have Adg = Adg−1 .

7.B R-matrix for type IV1

In this section we explicitly write down the R-matrix used in section 7.2.3, where
the type IV1 Weil operator is discussed. Recall that sp(4,R) consists of real 4× 4
matrices X satisfying

XT · S + S ·X = 0 , (7.104)

where S is a non-singular skew-symmetric matrix and T denotes the transpose. In
this particular example we have made the following (non-standard) choice

S =


0 0 0 −1
0 0 3 0
0 −3 0 0
1 0 0 0

 . (7.105)
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A basis of sp(4,R) is given by

Tk = 1
k!
(
adN+)k (N−)3

, k = 0, . . . , 6 , (7.106)

together with
T7 = N+ , T8 = N0 , T9 = N− , (7.107)

with N+, N0, N− given in (4.103). Note that this particular embedding of sl(2,R)
into sp(4,R) corresponds to the 10 = 3⊕ 7 representation.

With the charge operator Q∞ in (4.104) at hand, it is straightforward to define
an R-matrix that furthermore satisfies the condition (7.57). Indeed, one simply
demands that R commutes with Q∞ and L0 and acts as ±c on the eigenvectors of
adQ∞ with positive/negative eigenvalues, respectively. In other words, we put

RQ∞ = 0 , RL0 = 0 , ROq = c sign(q)Oq , [Q∞,Oq] = qOq .

For this particular example, these equations have a unique solution if one furthermore
demands that R is anti-symmetric with respect to the Killing form on sp(4,R),
as is required in the bi-Yang–Baxter model. Of course, the resulting solution is
essentially the Drinfel’d–Jimbo solution.11 In the basis of {Tk} it reads

R = ic



0 5
16 0 1

16 0 1
16 0 0 0 0

− 15
8 0 3

8 0 1
8 0 3

8 0 0 0
0 − 15

16 0 9
16 0 5

16 0 0 0 0
− 5

4 0 − 3
4 0 3

4 0 5
4 0 0 0

0 − 5
16 0 − 9

16 0 15
16 0 0 0 0

− 3
8 0 − 1

8 0 − 3
8 0 15

8 0 0 0
0 − 1

16 0 − 1
16 0 − 5

16 0 0 0 0
0 0 0 0 0 0 0 0 1

2 0
0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 1

2 0



. (7.108)

One may verify that (7.108) satisfies the modified classical Yang–Baxter equation
(7.4). Furthermore, one sees that when c = i the R-matrix is indeed a real
endomorphism of sp(4,R). By examining the 3× 3 block on the bottom right-hand
side, one verifies that it acts on the real sl(2)-triple as required by (7.57). In
contrast, it acts on the remaining 7× 7 block in a more complicated fashion.
11In principle, there is another Cartan generator besides Q∞, but one can check that taking this

into account does not change the solution in this case.
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Summary

In this thesis we have studied the beautiful framework of asymptotic Hodge theory,
together with various applications in the context of the string landscape and the
landscape of two-dimensional integrable field theories. We have shown how this
mathematical framework allows for a general characterization of the asymptotic
behaviour of physical couplings in low-energy effective theories that originate from
(flux) compactification of type IIB/F-theory, and applied this knowledge to inves-
tigate the finiteness and geometric structure of the flux landscape. At the same
time, we have found that the defining equations of variations of Hodge structure
also arise in the context of certain integrable field theories, which opened the way
to finding new classes of very general solutions to said models.

In part I of the thesis we have laid the groundwork by reviewing the basics of type
IIB/F-theory flux compactifications. Here we started with a general worldsheet
perspective and subsequently focussed on the broad class of supersymmetric non-
linear σ-model backgrounds, with particular emphasis on type IIB string theory.
We described its ten-dimensional low-energy effective description and emphasized
the importance of including localized sources such as branes and orientifold planes
in order to evade the Maldacena–Nuñez no-go theorem. Finally, we discussed the
compactification of type IIB on Calabi–Yau threefolds, as well as the compactifica-
tion of F-theory on elliptically fibered Calabi–Yau fourfolds, and characterized the
resulting four-dimensional low-energy effective theories in terms of the geometry of
the internal manifold. In doing so, we have found that important physical features
of the vector multiplet sector such as the field space metric, gauge-kinetic coupling
matrices and scalar potential, depend on the periods of the Calabi–Yau manifold.
These, in turn, are well-described by the machinery of (asymptotic) Hodge theory.

In part II of the thesis we have discussed the mathematical machinery of asymptotic
Hodge theory at great length. After a basic introduction to Hodge theory in chapter
2, employing perspectives of both period integrals, variations of Hodge structure,
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and finally the period map, our main goal was to describe the asymptotic behaviour
of variations of Hodge structure near singular loci in the complex structure moduli
space. To this end, we introduced a successive approximation scheme in chapter 3 by
reviewing the results of the nilpotent orbit theorem of Schmid, and the Sl(2)-orbit
theorem of Cattani, Kaplan, and Schmid. The former describes the asymptotic
form of a variation of Hodge structure up to exponential corrections, and naturally
gives rise to a set of limiting structures that can be associated to the boundary of
the moduli space: a web of limiting mixed Hodge structures. In turn, the latter
theorem highlights how these limiting structures give rise to so-called horizontal
sl(2,R)-triples that dictate the leading-order behaviour of physical couplings, when
neglecting sub-polynomial corrections within a certain hierarchy. In chapter 4 we
delved even deeper into the mechanism of the Sl(2)-orbit theorem by describing
a bulk reconstruction procedure with which the full multi-variable nilpotent orbit
approximation can be recovered recursively from a simple set of boundary data
associated to a given singularity. We carried out this procedure explicitly for all
singularity types that arise in one-dimensional complex structure moduli spaces
of Calabi–Yau threefold, and additionally worked out a two-modulus example to
illustrate how the procedure generalizes to arbitrary multi-moduli limits. As a first
application, we have shown how this allows one to compute general expansions
for Hodge inner products, going beyond the Sl(2)-orbit approximation. This is of
particular relevance when computing charge-to-mass ratios of BPS states, arising
from certain wrapped D3-branes, that have an asymptotically vanishing coupling
to the graviphoton.

In part III of the thesis we applied the aforementioned expressions for the nilpo-
tent orbit expansion of generic Hodge inner products to study the finiteness of
the F-theory flux landscape. Using the quantization of the four-form flux, the
self-duality condition, and the tadpole cancellation condition, we showed on gen-
eral grounds that, within the nilpotent orbit approximation, it is impossible to
have infinite tails of vacua that approach the boundary of the moduli space. In
this way we provide an alternative point of view on the recent finiteness results
of Bakker, Grimm, Schnell, and Tsimerman. Furthermore, motivated by recent
advances in the field of o-minimal geometry and the theory of unlikely intersections,
in the context of Hodge theory, we have proposed three conjectures which aim
to address finer features of the flux landscape. These conjectures are concerned
with the counting of vacua as well as the dimensionality of the vacuum loci, with
the latter forming a mathematically formulated version of the well-known tad-
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pole conjecture. Taken together, these conjectures severely constrain the F-theory
flux landscape, suggesting that in fact the landscape of exact and isolated vacua
could be significantly smaller than was first expected based on statistical arguments.

Finally, in part IV of the thesis we have turned our attention towards a different
landscape within the realm of physics: the landscape of two-dimensional integrable
non-linear σ-models. This was motivated by the search for an auxiliary field theory,
formulated on the complex structure moduli space, that encodes the information of
a variation of Hodge structure in a more physical fashion. Somewhat surprisingly,
we have in fact found multiple integrable field theories whose classical equations of
motion admit solutions that are built from the Weil operator associated to a variation
of Hodge structure. Notably, for the λ-deformed G/G model discussed in chapter 6
we have found that, for a suitable ansatz and value of the deformation parameter λ,
the equations of motion effectively reduce to the horizontality condition of the period
map. In contrast, for the bi-Yang–Baxter model discussed in chapter 7 we have only
managed to show that the Sl(2)-orbit approximation of the Weil operator solves
the equations of motion of said model, by making use of the abstract properties
of horizontal sl(2)-triples and identifying an appropriate R-matrix. Nevertheless,
our findings indicate a further relation between Hodge theory and integrability
beyond those observed before, which deserves further attention. This is especially
interesting in light of the proposal of moduli space holography and the possible
existence of a physical theory on the boundary of the moduli space.

Outlook

Let us conclude by highlighting some open questions which have been raised
throughout this thesis, as well as a number of future research avenues that naturally
follow from the results presented here.

Systematics of sub-leading corrections and the Swampland

Although there has been a tremendous effort in applying the results from asymp-
totic Hodge theory to test various Swampland conjectures, in the context of
four-dimensional N = 2 and N = 1 low-energy effective theories arising from
compactifications of the type II superstring theories and M-/F-theory, it is fair to
say that a large portion of the results rely on a leading-order analysis using the
Sl(2)-orbit approximation. One of the central results of this thesis is a concrete and
algorithmic procedure to compute corrections to general Hodge norms/inner prod-
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ucts, going far beyond the Sl(2)-orbit approximation. It would thus be interesting
to use our results to perform a systematic study of the effects of these sub-leading
corrections in the context of the Swampland program. For example, one could try
to classify the allowed corrections to F-theory scalar potentials, and study possible
implications for the de Sitter conjecture as well as the possibility to realize certain
cosmological scenarios such as accelerated expansion. In a similar spirit, it may
be insightful to revisit earlier works on the Swampland Distance Conjecture and
the Weak Gravity Conjecture, and extend known results beyond the Sl(2)-orbit
approximation. In this regard, we believe our novel strategy of partitioning the
boundary region of the moduli space into finitely many special subsectors in order
to control the path-dependence of Hodge norms, as introduced in part III, may
play an important role.

Moduli space holography and coupling to gravity

From a string-theoretic perspective, the main motivation for the analysis performed
in part IV of the thesis is the speculative proposal of “moduli space holography”, in
which the relevant features of a variation of Hodge structure are encoded in terms
of an auxiliary field theory on the moduli space, which is furthermore supposed to
be dual to a boundary theory that dynamically fixes the boundary data employed
in the reconstruction of the period map. While we have managed to write down
concrete physical models on the moduli space that indeed encode the properties of a
variation of Hodge structure in terms of the dynamics of a non-linear σ-model, there
are still many puzzles regarding the proposed bulk-boundary correspondence. First,
we have not yet determined what this boundary theory exactly is. In this regard,
it is probably crucial to couple the theory to gravity. For the two-dimensional
setting we considered, we recall that Einstein gravity is of topological nature.
This fact, together with the desire to fix the background metric to be the Weil–
Petersson metric, lead to the proposal of [73] to couple the action to an alternative
gravitational theory in two dimensions known as JT-gravity [242, 243]. It would
therefore be interesting to study integrable two-dimensional non-linear σ-models,
such as the λ-model and the bi-Yang–Baxter model, and their coupling to gravity,
as well as their corresponding boundary theories. Furthermore, in order to extend
these models to more general settings, another immediate question is to find a
generalization to higher-dimensional moduli spaces.
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Another question that arises is how much the concepts in Hodge theory underlie the
study of solutions to integrable non-linear σ-models in general. Indeed, it is now
clear that the Weil operator plays a special role in this regard, as it can be used
to construct solutions to the λ-deformed G/G model in general, as well as for the
critical bi-Yang–Baxter model when restricting to the Sl(2)-orbit approximation.
Clearly, it would also be desirable to ascertain whether the latter can be generalized
to the nilpotent orbit solution and beyond. It is expected that this can indeed be
done, based on the fact that these two models are dual to each other via Poisson–Lie
T-duality, although a precise mapping between the two solutions is expected to be
very involved. It is likely that this relies on a deeper understanding of a potential
relation between the R-matrix of the bi-Yang–Baxter model and the phase operator
of the boundary Hodge structure, which is an intriguing question on its own that
may shed light on the physical interpretation of the boundary data. More generally,
it would be interesting to investigate how far our proposed solutions coming from
Hodge theory extend across the duality web of integrable field theories. Of perhaps
even greater importance is to establish the exact relevance of integrability in this
regard. For example, it would be interesting to investigate the precise role of
the infinite towers of conserved charges from a Hodge-theoretic perspective, and
whether (from a string-theoretic point of view) their presence indicates a hidden
symmetry of the associated low-energy effective theory.

The structure and future of the string landscape

Lastly, let us zoom out a bit and return to the main premise of the introduction of
this thesis. The overarching purpose of our work has been to investigate certain
corners of the string landscape, focusing in particular on the possible low-energy
effective theories that can arise from string compactifications. It is rather striking
that, even within the well-controlled and well-studied setting of type IIB/F-theory
flux compactifications, it appears that the resulting mathematical structures under-
lying such theories may be more restrictive than first appreciated. Indeed, already
the (previously established) finiteness of this part of the landscape is an incredibly
non-trivial result, and now, through statements like the tadpole conjecture and
the other conjectures we have proposed in part III of this thesis, it may very well
be that the actual landscape is much smaller than expected. Clearly, one of the
most exciting avenues for further study is to ascertain whether these conjectures
are actually true. Ultimately, a possible underlying reason for all these observations
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may be the intricate interplay between the world of complicated transcendental
equations that arise from geometry, and the world of integer quantities forced upon
us by quantum mechanics.

As a last point, we would like to acknowledge and emphasize the fact that there are
many more corners of string theory to explore, ranging from non-supersymmetric
formulations of string theory to non-geometric backgrounds and beyond. At the
same time, there are many fundamental aspects of string theory itself, such as a
proper non-perturbative formulation as well as the issue of background independence,
which still remain elusive. Thus, we believe that there is still plenty of reason to
traverse the mountains and valleys of the string landscape, with an occasional dive
into the swampland, in search of treasure and uncharted territory.
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Samenvatting

In dit proefschrift hebben we het prachtige raamwerk van asymptotische Hodge-
theorie bestudeerd, tezamen met verscheidene applicaties in de context van het
snaarlandschap en het landschap van twee-dimensionale integreerbare veldentheo-
rieën. We hebben laten zien hoe dit wiskundige raamwerk een algemene karakteris-
ering mogelijk maakt van het asymptotische gedrag van fysische koppelingen in
effectieve theorieën die voortkomen uit (flux) compactificatie van type IIB/F-theorie,
en hebben deze kennis toegepast om de eindigheid en geometrische structuur van
het fluxlandschap te onderzoeken. Tegelijkertijd hebben we ontdekt dat de bepal-
ende vergelijkingen van de variaties van een Hodge-structuur ook voorkomen in
de context van bepaalde integreerbare veldentheorieën, wat de weg opende voor
het vinden van nieuwe klassen van zeer algemene oplossingen voor de genoemde
modellen.

In deel I van dit proefschrift hebben we de fundamenten gelegd door de basis-
principes van type IIB/F-theorie fluxcompactificaties samen te vatten. Hier zijn
we begonnen vanuit een algemeen perspectief van het snaarwereldvlak en hebben
we ons vervolgens geconcentreerd op de brede klasse van supersymmetrische niet-
lineaire σ-modelachtergronden, met bijzondere nadruk op type IIB-snaartheorie.
We beschreven de tiendimensionale, effectieve beschrijving van de lage energie theo-
rie en benadrukten het belang van het opnemen van gelokaliseerde bronnen zoals
branen en orientivouwvlakken (Engels: orientifold planes) om de Maldacena–Nuñez
no-go-stelling te omzeilen. Ten slotte bespraken we de compactificatie van type IIB
op Calabi–Yau-drievariëteiten, evenals de compactificatie van F-theorie op ellip-
tisch gevezelde Calabi–Yau-viervariëteiten, en karakteriseerden we de resulterende
vierdimensionale effectieve theorieën in termen van de geometrie van de interne
variëteit. Daarbij hebben we ontdekt dat belangrijke fysische kenmerken van de
vectormultipletsector, zoals de veldruimtemetriek, ijkkinetische koppelingsmatrices
en scalaire potentiaal, afhankelijk zijn van de perioden van de Calabi–Yau-variëteit.
Deze worden op hun beurt goed beschreven door de machinerie van de (asymptotis-
che) Hodge-theorie.
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Samenvatting

In deel II van dit proefschrift hebben we uitgebreid de wiskundige machinerie van
de asymptotische Hodge-theorie besproken. Na een basisintroductie tot de Hodge-
theorie in hoofdstuk 2, waarbij perspectieven van zowel periode-integralen, variaties
van Hodge-structuur, en uiteindelijk de periode-afbeelding worden gebruikt, was
ons hoofddoel om het asymptotische gedrag van variaties van Hodge-structuur
nabij singuliere locaties in de complexe structuur moduli-ruimte te beschrijven.
Hiervoor introduceerden we in hoofdstuk 3 een opeenvolging van benaderingen door
de resultaten van de nilpotente baan stelling van Schmid en de Sl(2)-baan stelling
van Cattani, Kaplan, en Schmid te bespreken. De eerste beschrijft de asymptotische
vorm van een variatie van Hodge-structuur tot op exponentiële correcties, en geeft op
natuurlijke wijze aanleiding tot een reeks limiterende structuren die kunnen worden
geassocieerd met de rand van de moduli-ruimte: een web van limiterende gemengde
Hodge-structuren. De laatste stelling laat zien hoe deze limiterende structuren op
hun beurt zogenaamde horizontale sl(2,R)-algebras voortbrengen die het leidende
gedrag van fysische koppelingen beschrijven, wanneer sub-polynomische correcties
binnen een bepaalde hiërarchie worden verwaarloosd. In hoofdstuk 4 doken we
nog dieper in het mechanisme van de Sl(2)-baan stelling door een procedure voor
bulkreconstructie te beschrijven waarmee de volledige multi-variabele nilpotente
baanbenadering recursief kan worden hersteld uit een eenvoudige set randgegevens
die geassocieerd zijn met een gegeven singulariteit. We voerden deze procedure
expliciet uit voor alle soorten singulariteiten die voorkomen in één-dimensionale
complexe structuur moduli-ruimtes van Calabi-Yau-drievariëteiten, en werkten
bovendien een voorbeeld uit met twee moduli om te illustreren hoe de procedure
generaliseert naar willekeurige multi-moduli limieten. Als eerste toepassing hebben
we laten zien hoe dit het mogelijk maakt om algemene reeksontwikkelingen voor
Hodge-inproducten te berekenen, die verder gaan dan de Sl(2)-baan benadering.
Dit is van bijzonder belang bij het berekenen van de lading-tot-massa verhoudingen
van BPS-toestanden, die voortkomen uit bepaalde gewikkelde D3-branen, die een
asymptotisch verdwijnende koppeling hebben met het gravifoton.

In deel III van het proefschrift pasten we de eerder genoemde uitdrukkingen voor de
nilpotente baanbenadering van generieke Hodge-inproducten toe om de eindigheid
van het F-theorie fluxlandschap te bestuderen. Door gebruik te maken van de
kwantisatie van de vier-vormige flux, de zelf-dualiteitsvoorwaarde en de voorwaarde
van de tadpole-annulering, toonden we op algemene gronden aan dat het binnen
de nilpotente baanbenadering onmogelijk is om oneindige reeksen van vacua te
hebben die de rand van de moduli-ruimte benaderen. Op deze manier bieden we
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een alternatief perspectief op de recente eindigheidsresultaten van Bakker, Grimm,
Schnell en Tsimerman. Verder, gemotiveerd door recente ontwikkelingen op het
gebied van o-minimale meetkunde en de theorie van onwaarschijnlijke doorsnedes,
in de context van de Hodge-theorie, hebben we drie vermoedens voorgesteld die als
doel hebben om fijnere kenmerken van het fluxlandschap te karakteriseren. Deze
vermoedens hebben betrekking op het tellen van vacua en de dimensionaliteit van
de vacuümloci, waarbij de laatste een wiskundig geformuleerde versie vormt van
het bekende tadpole-vermoeden. Samen genomen beperken deze vermoedens het
F-theorie fluxlandschap aanzienlijk, aangezien zij suggereren dat het landschap
van exacte en geïsoleerde vacua in feite aanzienlijk kleiner zou kunnen zijn dan
aanvankelijk werd verwacht op basis van statistische argumenten.

Tenslotte, in deel IV van het proefschrift hebben we onze aandacht gericht op
een ander landschap binnen het domein van de natuurkunde: het landschap van
tweedimensionale integreerbare niet-lineaire σ-modellen. Dit werd gemotiveerd
door de zoektocht naar een extra veldentheorie, geformuleerd op de complexe-
structuur moduliruimte, die de informatie van een variatie van Hodge-structuur op
een meer fysische manier codeert. Verassend genoeg hebben we in feite meerdere
integreerbare veldtheorieën gevonden waarvan de klassieke bewegingsvergelijkingen
oplossingen toelaten die zijn opgebouwd uit de Weil-operator geassocieerd met een
variatie van Hodge-structuur. Met name voor het λ-gedeformeerde G/G-model,
besproken in hoofdstuk 6, hebben we gevonden dat, voor een geschikte ansatz
en waarde van de vervormingsparameter λ, de bewegingsvergelijkingen effectief
gereduceerd kunnen worden tot de horizontaaliteitsvoorwaarde van de periode-
afbeelding. Daarentegen hebben we voor het bi-Yang–Baxter-model, besproken in
hoofdstuk 7, alleen kunnen laten zien dat de Sl(2)-baanbenadering van de Weil-
operator de bewegingsvergelijkingen van het model oplost, door gebruik te maken
van de abstracte eigenschappen van horizontale sl(2)-algebras en het identificeren
van een geschikte R-matrix. Desalniettemin duiden onze bevindingen op een diepere
relatie tussen de Hodge-theorie en integreerbaarheid dan voorheen is waargenomen,
die verdere aandacht verdient. Dit is vooral interessant in het licht van het voorstel
van moduliruimte holografie en het mogelijke bestaan van een fysische theorie op
de rand van de moduliruimte.
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