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1. Introduction to Near-Infrared Spectroscopy 
(NIRS) 

1.1. Definition of NIRS 
Near-infrared spectroscopy (NIRS) is an optical monitoring technique that measures cerebral 
oxygenation noninvasively. This technology uses the distinctive characteristics of near-infrared 
light, specifically within the 700 to 1000 nanometer wavelength range, to noninvasively assess 
the oxygenation levels of living tissues, with a particular focus on brain tissue. The underlying 
principle of this approach is that biological tissues exhibit a degree of transparency to light in 
this wavelength spectrum. This transparency allows the near-infrared light to penetrate the 
skull, enabling the measurement of the relative amounts of oxygenated hemoglobin (O2Hb) 
and deoxygenated hemoglobin (HHb) in the tissue. This capability enables NIRS to determine 
regional oxygen saturation, thereby providing insights into the oxygenation status of brain 
tissue [1,2]. 

NIRS has emerged as a valuable instrument in both perioperative and intensive care 
environments. In these settings, the continuous monitoring of cerebral oxygenation can be 
used to steer treatment [3]. NIRS offers a direct bedside insight into the balance of oxygen 
supply and demand within the brain and other tissues, although it does not differentiate 
between venous, capillary, and arterial blood [4]. This is particularly beneficial in the neonatal 
intensive care setting, where the noninvasive application of NIRS probes can yield immediate 
readings of end-organ oxygenation status, providing an indirect assessment of organ blood 
flow [5,6]. The simplicity and ease of application of this technology make it an appealing option 
for continuous bedside monitoring [7]. 

1.2. Brief history, basic principles, and development of the 
technology 
Transillumination, the passage of light through the body, has been explored since the early 
1800s. Richard Bright, in 1831, first described transillumination of the head as a diagnostic 
technique for identifying hydrocephalus [8]. However, the history of NIRS technology dates 
back to the pioneering work of Frans Jöbsis in the 1970s [9]. Jöbsis' groundbreaking discovery 
that near-infrared light could penetrate biological tissues and that the differential absorption of 
this light by HbO2 and Hb could be measured non-invasively, paved the way for NIRS' 
application in monitoring cerebral oxygenation. The pediatric application of NIRS for monitoring 
cerebral oxygenation in sick preterm infants began in 1986 [10], marking a significant 
expansion of NIRS possibilities. A crucial milestone came in 1993 with the introduction of 
INVOS 3100® as the first FDA-approved commercial cerebral oximetry device [11]. Since then, 
NIRS has undergone significant evolution, from early devices that could only measure two 
chromophores using two wavelengths to modern systems that utilize multiple wavelengths 
[12–15]. 

NIRS is grounded in the Beer-Lambert law (BLL), which establishes a connection between 
light absorbance and tissue properties [16]. When near-infrared light is transmitted into brain 
tissue, certain chromophores, primarily oxygenated and deoxygenated hemoglobins, absorb 
a portion of this light. The BLL expresses light absorbances 𝜖 . 𝑐. 𝑙, where 𝜖 is the molar 
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extinction coefficient, 𝑙 is the optical path length, and 𝑐 is the concentration of the 
chromophores.  

However, in brain tissue, near-infrared light not only gets absorbed but also scatters. It follows 
a “banana-shaped” trajectory before reaching the receiver (see Figure 1). To account for this, 
the modified version of the BLL, known as modified BLL (MBLL) [17], includes additional terms: 
𝐺 compensating for the scatter; differential path length factor (DPF) accounting for the 
increased distance the light travels. Thus, the MBLL formula becomes 𝑂𝐷 =  𝜖 . 𝑐. 𝐷𝑃𝐹. 𝑙 +
 𝐺[17]. Here, 𝑂𝐷 =  − log10

𝐼
𝐼0
  represents the optical density (OD) of the tissue, providing a 

measure of light attenuation. In addition, 𝐼 and 𝐼0 denote the intensity of light received by the 
receiver and transmitted through the tissue, respectively. Assuming that changes in scattering 
are minor compared to changes in absorption, the 𝐺 is treated as time-invariant and is then 
neglected when assessing changes in OD. Finally, by analyzing changes in OD at two different 
wavelengths, with one above and one below the isosbestic point of 800 nm—where 
oxygenated hemoglobin and deoxygenated hemoglobin have equal absorbance (see Figure 
2)— the concentration changes in O2Hb and HHb are computed. 

 
Figure 1: Schematic depicting the operational principle of NIRS, where light penetrates the brain tissue through a 
transmitter (or optode) and is detected by a receiver (or optode) along a banana shaped pathway. The image was 
adapted with permission of J. Dudink.  
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Figure 2: Absorption by hemoglobin chromophores with respect to the near-infrared light wavelength (nm). HHb: 
deoxygenated hemoglobin. O2Hb: oxygenated hemoglobin.  

Over the decades, advancements in NIRS technology have been driven by the need to account 
for light scatter more accurately. The integration of complex algorithms to correct this 
phenomenon has enabled NIRS to provide precise measurements of chromophore 
concentration in the brain [18,19]. This capability has made NIRS an invaluable tool in both 
medical and research contexts, from monitoring neonates in intensive care units to evaluating 
cognitive functions during tasks [20]. 

Today, a range of NIRS devices is approved for clinical use, each with their specific 
configurations of emitters, wavelengths, and algorithms, providing clinicians with a spectrum 
of oxygenation values. This variety allows NIRS to be adapted to different clinical needs and 
patient populations. Research has demonstrated that different oximeters produce varying 
oxygenation values [21], but mathematical equations can translate data between devices by 
using a validation with a liquid phantom [22], ensuring consistent application of treatment 
guidelines. Despite the differences among devices, the fundamental goal of NIRS remains 
unchanged: to provide real-time evaluations of tissue oxygenation [23]. 

2. NIRS in Neonatology 

2.1. Importance and an overview of neonatal physiological 
monitoring 
During the neonatal period, especially for infants who are extremely vulnerable—such as those 
born preterm (before 37 weeks of gestation) or term but critically ill—managing the transition 
from fetal to postnatal life poses significant challenges. These infants face a heightened risk 
of adverse developmental outcomes and mortality due to potential complications including 
hemodynamic instability, hypothermia, apnea, bradycardia, and poor perfusion [24]. In this 
context, the deployment of non-invasive sensor-based technologies in the neonatal intensive 
care unit (NICU) becomes crucial. These technologies continuously monitor the vital signs of 
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these fragile infants and provide caregivers with immediate alerts for even the slightest 
indications of distress or emerging complications [25][26][27]. Additionally, they are essential 
for documenting, assessing, and managing the impact of medical interventions and therapies 
on these high-risk infants [28,29]. Furthermore, the evolution of sensor-based technologies 
tailored for NICU monitoring equipment has partly resulted from the diverse challenges 
encountered by neonatal intensive care staff, e.g., fragile skin, too many wires, and continuous 
monitoring [30–32], in dealing with conditions ranging from apnea and hypoglycemia to sepsis 
and seizures [33–35].  

To monitor the physiological status of neonates, various non-invasive sensors are used to 
measure different vital parameters, such as temperature, respiration, heart rate (HR), blood 
pressure, and pulse oximetry or peripheral oxygen saturation (SpO2) [36,37]. These 
parameters can indicate the efficiency of their respiratory and circulatory systems as well as 
signs of stress and/or pain [38]. HR, derived from the electrocardiogram (ECG), can be 
monitored using electrodes on the skin surface, while pulse oximetry can be monitored using 
optical sensors in photoplethysmography (PPG), which also determine pulse rate [39,40]. 
Respiration can be monitored using methods such as electrical strain gauges or thoracic 
impedance plethysmography, which are more reliable in minimizing motion artifacts [39]. 

Physiological monitoring serves as a responsive guard in neonatal care. Its advancements 
significantly influence clinical management, leading to improved quality of care. This, in turn, 
enhances survival rates and promotes better long-term health and neurodevelopmental 
outcomes for the youngest and most vulnerable patients. 

2.2. Applications of NIRS in neonates  
Monitoring the balance between oxygen delivery and consumption is also important in infants 
admitted to the NICU because it provides key insights into the adequacy of tissue perfusion 
and oxygenation [41]. This balance is crucial not just on a global scale but also at the regional 
level, where early changes in blood flow, oxygen consumption, and extraction rates can signal 
variations in the health status of these vulnerable patients. To detect these early changes, 
additional monitoring systems such as laser Doppler flowmetry and NIRS are indispensable 
[42–44]. They enable the assessment of peripheral perfusion and microcirculation, which are 
often evaluated through clinical parameters and blood gas analysis [24,45].  

NIRS stands out for its ability to continuously estimate regional blood flow and tissue oxygen 
saturation (StO2, TSI, rSO2, or TOI) in various organs, such as the brain, kidney, liver, and 
intestine, as well as the mixed venous StO2 in the superior vena cava [28,41]. This non-
invasive method is essential for assessing the balance between oxygen delivery and 
consumption in neonatal tissues [23,46,47], providing vital real-time information for 
comprehensive care and direct bedside interventions in NICUs, particularly for extremely and 
very preterm newborns (<32 gestational weeks) [43,48]. The SafeBoosC Phase II trial 
illustrates the potential of close monitoring of rStO2 and adherence to specific treatment 
guidelines to reduce the risks of hypo- and hyperoxia in neonates [47]. Figure 3 shows the 
normal and abnormal NIRS StO2 ranges of brain oxygenation index in neonates, offering a 
framework for evaluating and diagnosing abnormal values as described in the SafeBoosC 
Phase II study. 
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Figure 3: Normal and abnormal NIRS StO2 ranges of brain oxygenation index in neonates: evaluation and 
diagnosis of abnormal values based on the SafeBoosC Phase II study [47]. 

One of the specific applications of NIRS in neonatal studies is the assessment of cerebral 
autoregulation in preterm and term infants [49–52]. Cerebral autoregulation involves the 
brain’s ability to maintain a constant blood flow despite changes in perfusion pressure. NIRS 
allows clinicians to evaluate how well the neonate’s brain is regulating its blood flow and 
oxygenation, which is particularly important in the management of newborns with hypoxic-
ischemic encephalopathy (HIE), a condition that can lead to significant neurological damage 
[53]. NIRS can also be used to monitor the cerebral hemodynamic response to various stimuli, 
such as changes in arterial carbon dioxide, blood pressure, and oxygenation, as well as 
pharmacological agents and blood transfusions [54]. 

In the field of pediatric congenital heart disease, NIRS is increasingly used to monitor tissue 
oxygenation during and after cardiac surgeries [55]. This application of NIRS helps in 
safeguarding the brain and other vital organs during surgeries that carry a risk of impaired 
oxygen delivery.  

NIRS is also valuable during the critical transition from fetal to neonatal life, particularly in the 
immediate postnatal period [56]. Reference ranges for healthy term and late preterm infants 
have been established, aiding in the management of oxygen supply during this vital transition. 
Studies have shown that by using NIRS to guide medical support, alongside standard pulse 
oximetry, it is possible to reduce the burden of cerebral hypoxia, thus potentially improving 
neonatal outcomes [47,57,58].  

3. Understanding NIRS Data 

3.1. Types of physiological information obtainable through NIRS 
NIRS captures a spectrum of physiological information associated with the hemodynamics and 
oxygenation of both the cerebral and extracerebral regions [59,60]. In clinical contexts, NIRS 
is primarily recognized for its role in measuring the cerebral oxygenation index and neuronal 
activity through monitoring changes in O2Hb and HHb concentrations in the brain's cortex. 
Upon closer scrutiny, alterations in NIRS signals can be categorized into two compartments 
(regions): cerebral and extracerebral [61]. Cerebral changes stem from factors such as 
neuronal activity, systemic variations (e.g., changes in the cardiorespiratory system, blood 
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pressure, and autonomic nervous system activity), and vascular activity linked to vasomotion. 
In contrast, the extracerebral compartment undergoes only changes due to systemic, vascular, 
and muscular activities. Consequently, NIRS encompasses systemic physiological changes in 
both compartments, including changes in heartbeats, breathing, and blood pressure. Figure 4 
shows a sample of raw NIRS signals, i.e., ODs and concentration signals (O2Hb and HHb), 
recorded from a neonate in NICU with a high sampling rate NIRS system (Artinis Medical 
Systems B.V., Elst, the Netherlands) at 100 Hz. Notably, pulsatile fluctuations attributed to 
systematic artifacts of heartbeats are distinctly evident across all raw signals.  

 
Figure 4: A sample of raw NIRS signals, depicting (A) optical densities (ODs) at wavelengths of 760 nm and 850 
nm, along with (B) concentration signals (O2Hb and HHb), obtained from a neonate in the NICU, with a high 
sampling rate NIRS system (Artinis Medical Systems B.V., Elst, the Netherlands) sampled at 100 Hz. 

3.2. Common artifacts in NIRS data and their impact on data 
quality 
The non-neuronal or systemic physiological information from cerebral and extracerebral 
compartments in NIRS signals is considered as artifacts in studies where NIRS is used to 
measure oxygenation or neural activity [62,63]. These artifacts can distort NIRS signals and 
conceal the true hemodynamic response to a stimulus or task. Therefore, applying suitable 
methods to detect and remove these artifacts is essential for measuring oxygenation or neural 
activity with NIRS. Various techniques have been proposed in the literature to address different 
types of artifacts in NIRS data, such as incorporating short separation channels in the general 
linear model paradigm, utilizing wavelet filtering, and applying principal component analysis 
[64–68]. 

NIRS measurements often face the challenge of motion artifacts, particularly in studies 
involving infants. These artifacts arise due to relative movements between optodes and the 
scalp, commonly caused by head or facial motion [69]. Such motion disrupts optical contact, 
leading to noticeable artifacts in NIRS signals that can obscure subtle hemodynamic changes. 
Overcoming the difficulty of extracting the genuine physiological NIRS signal from motion-
contaminated data is a complex task [70]. Various post-measurement techniques exist to 
address motion artifacts, with some requiring additional movement measurements (e.g., 
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adaptive filtering) and others not necessitating them (e.g., principal component analysis, 
Kalman filtering, wavelet-based filtering, and spline interpolation) [66,71–73]. Nevertheless, 
these correction methods are not as effective as preventing motion artifacts from occurring in 
the first place. Enhancing and stabilizing the coupling between optodes and the scalp can 
significantly enhance the quality of NIRS data. 

4. Signal Quality in NIRS 

4.1. Importance of signal quality assessment in NIRS 
Assessing signal quality in NIRS is paramount for reliable data collection. NIRS signal quality 
directly impacts measurements related to hemodynamic changes and cerebral oxygenation 
levels. Factors like motion artifacts or poorly placed optodes can compromise signal quality, 
obscuring subtle physiological variations and affecting study validity [74]. In both clinical and 
research settings, it is essential to meticulously evaluate signal quality to ensure data is precise 
and reliable for drawing meaningful conclusions. This involves optimizing the placement of 
optodes on the scalp for optimal contact, both before and during recording. In neonatal 
healthcare, assessing the quality of NIRS signals is vital. Accurate monitoring of oxygenation 
levels in the neonatal brain helps in early detection of irregularities, allowing for timely 
interventions that can improve clinical outcomes. High-quality signals also enhance the 
reliability of continuous monitoring systems and reduce false alarms. 

4.2. Current methods for assessing signal quality using heartbeat 
information 
A high-quality NIRS signal is distinguished by a robust cardiac component, serving as a key 
indicator of optimal optode-scalp coupling and forming the basis for evaluating NIRS signal 
quality [75]. This is attributed to the near-infrared light's journey through both extracerebral and 
cerebral, where intrinsic and extrinsic factors influence light absorption and scattering. Intrinsic 
factors involve hemodynamics from systemic artifacts in cerebral and extracerebral 
compartments, alongside functional brain hemodynamics [59]. The heartbeat systemic 
artifacts signify sufficient light reaching the brain and predominant absorption and scattering 
from intrinsic factors. Conversely, compromised optode-scalp coupling, diminishing NIRS 
signal quality, results from extrinsic factors such as optode looseness, scalp and skull 
thickness, skin properties, and hair density/color in hair-present cases. Hence, evaluating 
signal quality involves measuring the intensity of heartbeat artifacts within the raw NIRS signals 
recorded at a high sampling rate. For instance, Figure 5 displays concentration signals (i.e., 
O2Hb and HHb) sampled at 100 Hz from two recordings, indicating stronger heartbeat artifacts 
(as quasi-periodic pulses) in one recording (Figure 5(A)), indicative of superior signal quality, 
compared to the other recording (Figure 5(B)). 
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Figure 5: An example of concentration signals (O2Hb and HHb) from two recordings, measured with a high 
sampling rate NIRS system (Artinis Medical Systems B.V., Elst, the Netherlands) sampled at 100 Hz. (A) Illustrates 
pronounced heartbeat artifacts, indicative of potentially superior signal quality. Conversely, (B) displays reduced 
heartbeat artifacts, suggesting inferior signal quality compared to (A). 

Two algorithms, the Scalp Coupling Index (SCI) [75] and PHOEBE (placing headgear optodes 
efficiently before experimentation) [74], have been proposed to assess scalp-optode coupling 
strength and the presence of a clear heartbeat in NIRS signals. The SCI, introduced by 
Pollonini et al. in 2013 [75], measures signal quality by filtering and normalizing photodetected 
(intensity) signals for each NIRS channel and computing the cross-correlation at a time lag of 
0. The resulting zero-lag cross-correlation (i.e., SCI) serves as a quantitative measure of the 
channel's signal-to-noise ratio (SNR). However, motion artifacts can introduce signal 
anomalies in the SCI, potentially falsely elevating it. In 2016, Pollonini et al. proposed spectral 
power analysis to enhance robustness against artifacts, establishing a threshold at 0.1 on the 
peak value of power [74]. This method objectively distinguishes clean from noisy optical 
channels, introducing an objective measure of SNR and real-time software for optimal scalp 
coupling adjustment, aiming to streamline pre-acquisition preparation and maximize SNR for 
functional hemodynamic mapping. 

The current signal quality algorithms [74,75] are suboptimally tailored for application to clinical 
data. Clinical data, in contrast to data recorded in controlled settings from normal subjects, 
exhibits a greater degree of variability and is less regulated [76]. Consequently, it is imperative 
for the algorithm to possess the capability to quantify or scale the signal quality in such diverse 
clinical scenarios. The existing algorithms, however, are primarily designed to make a binary 
distinction between signals of good and bad quality. This binary approach fails to account for 
the nuanced levels of signal quality that may be present in signals categorized as good. In 
challenging situations where external factors severely limit the amount of light reaching the 
brain, the best achievable signal quality will not necessarily exhibit the characteristics of a high-
quality signal obtained under less challenging circumstances. Recognizing and reporting these 
distinctions in the quality of collected data is essential for subsequent analyses and 
interpretations of the clinical NIRS data.  
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5. Vital Signs Measurement with NIRS 

5.1. HR measurement 
The raw NIRS signals, encompassing OD signals and concentrations of O2Hb and HHb, are 
often overlooked due to contamination by systemic artifacts [77]. Interestingly, these artifacts 
present an untapped potential for extracting additional physiological information. Among these 
artifacts, cardiac pulsation stands out as a prominent source of physiological information within 
NIRS signals, facilitating the extraction of HR [78]. 

In the time-domain of raw NIRS signals recorded at a high sampling rate, the pulsatile 
fluctuations reveal the cardiac physiological information (see Figure 6(A)). This cardiac 
information, when analyzed in the frequency-domain, manifests as a prominent peak within 
the subject's HR range (observed in Figure 6(B) around 2.2 Hz), representing the heartbeat as 
a quasi-periodic component. As a result, HR can be calculated from either the time or 
frequency-domain of the raw NIRS signals recorded at a high sampling rate. However, if the 
NIRS system lacks access to raw NIRS signals or if the signals are recorded at a low sampling 
rate, such as 1 Hz, which is often the case in clinical settings, then the extraction of HR from 
NIRS is not feasible. This limitation also applies when evaluating the quality of NIRS signals, 
as the intensity of heartbeats is determined (refer to section 4.2). For instance, Figure 6(C) 
displays a sample O2Hb signal recorded from a neonate at 1 Hz, lacking of HR information 
evident both in the time-domain and the frequency-domain spectrum of the signal (see Figure 
6(D)). 

 
Figure 6: Comparison of NIRS signal characteristics between O2Hb signals recorded with a NIRS system (Artinis 
Medical Systems B.V., Elst, the Netherlands) sampled at 100 Hz (top plots) and 1 Hz (bottom plots) from the same 
subject. (A) Time-domain representation of the O2Hb signal (depicted in red) sampled at 100 Hz, showcasing its 
associated heartbeat (in green) and respiratory (in purple) components derived through band-pass filtering. (B) 
Frequency-domain spectrum of the O2Hb signal in (A), highlighting a distinct peak (represented by a dashed green 
line) within the subject's HR range (approximately 2.2 Hz), along with a peak (dashed purple line) corresponding to 
the subject's respiratory rate (RR) range (around 0.3 Hz). (C) Time-domain illustration of the O2Hb signal (in red) 
sampled at 1 Hz, featuring its respiratory component (depicted in purple) isolated via band-pass filtering. (D) 
Frequency-domain spectrum of the O2Hb signal in (C), indicating a peak (dashed purple line) within the subject's 
RR range. 
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Numerous studies have affirmed the reliability of HR extracted from NIRS, comparing favorably 
with standard reference HR derived from ECG and PPG in healthy adults [79–82]. Scholkmann 
et al. [83] introduced the automatic multiscale-based peak detection (AMPD) algorithm for peak 
detection in noisy periodic and quasi-periodic signals, and Holper et al. [79] applied this 
algorithm to extract HR from NIRS data of healthy adults, demonstrating its utility in assessing 
physical stress. Additionally, Hakimi and Setarehdan [80] highlighted the superior performance 
of the AMPD algorithm in HR extraction from NIRS signals compared to existing algorithms for 
PPG. In the same study, they showcased the practicality of NIRS-derived HR in evaluating 
mental stress in healthy adults. 

Continuing the exploration of NIRS applications in different populations, the extraction of HR 
from infant NIRS presents additional challenges compared to adult NIRS, including a lower 
SNR, increased motion artifacts, and a wider physiological HR range [76]. Consequently, a 
system with a high sampling rate becomes imperative to effectively capture the nuances of 
infant HR. In response to this demand, Perdue et al. [76] introduced an algorithm tailored for 
extracting HR from NIRS signals recorded in a controlled setting from healthy infants, 
approximately 7 months old, with a sampling rate of 10 Hz. Extending this research into a 
longitudinal study, Perdue et al. [84] delved into the applicability of the extracted HR in infants 
aged 3–12 months with familial risk for autism spectrum disorder. The study aimed to observe 
HR developmental trajectories in response to speech stimuli, demonstrating the potential of 
NIRS-derived HR to offer valuable insights into the developmental aspects of infants at risk for 
autism spectrum disorder. 

The use of NIRS for HR extraction in infants presents significant advantages over traditional 
ECG and PPG methods. While all three techniques are noninvasive, NIRS, which does not 
require adhesive electrodes or tight-fitting sensors, could potentially reduce the discomfort and 
stress associated with the routine placement and removal of sensors on the delicate skin of 
newborns [80,81]. In neonates, NIRS signals on the forehead have been reported to be less 
susceptible to motion artifacts compared to peripheral PPG signals, given that hand 
movements are more common than head movements [71]. Furthermore, under stress 
conditions in adults, NIRS-derived HR has been shown to provide more information than PPG 
and ECG [71,72].  

However, there is a noticeable absence of studies evaluating the performance of the existing 
algorithms in extracting HR from NIRS data recorded in clinical settings, particularly in neonatal 
patients in the NICU. Noninvasive monitoring of vital functions is of utmost importance in very 
small and vulnerable (preterm) neonates with extremely sensitive skin. In this patient group, 
the goal is to obtain information of body functions with minimal wiring and burden on the 
patients. A neonatal NIRS system with a robust HR extraction algorithm validated in clinical 
settings would enable a complementary view of the autonomic nervous system, systemic 
circulation, and cerebral hemodynamics within a single device. 

5.2. Respiratory rate (RR) measurement 
While the majority of studies traditionally treat the systemic physiological information in NIRS 
as a source of artifacts, there is a subset of investigations highlighting the potential benefits of 
such interference in improving the precision of cerebral activity analysis. Notably, Svinkunaite 
et al. [85] demonstrated that incorporating cardiac and respiratory features extracted from the 
NIRS spectrum can enhance the accuracy of mental workload classification when combined 
with NIRS temporal analysis. Similarly, Hakimi et al. [82] showcased the synergistic 
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advantages of integrating NIRS temporal analysis with extracted HR for stress assessment, 
resulting in a notable 10% improvement in classification accuracy. 

Moving beyond considerations of HR, respiratory patterns emerge as another noticeable 
systemic physiological information in the NIRS spectrum [86]. For instance, in Figure 6(A), a 
sample O2Hb signal (depicted in red) recorded from a neonate at 100 Hz reveals its 
corresponding respiratory component, visualized as a sinusoidal pattern. This respiratory 
component is also apparent in the frequency-domain spectrum of the signal, represented by a 
peak around 0.3 Hz in Figure 6(B). Unlike HR extraction and signal quality assessment, RR 
can be derived from NIRS signals with low sampling rates depending on the subject’s 
respiratory frequency range, as illustrated in Figures 6(C) and 5(D), which exhibit a sample 
O2Hb signal sampled at 1 Hz in both time and frequency domains, respectively, from the same 
neonate. However, it's noteworthy that NIRS systems with such low sampling rates need to 
provide raw NIRS signals. 

Therefore, despite the broad applications of NIRS, there is a conspicuous lack of research 
exploring the feasibility of estimating RR from NIRS. Such an estimation could provide 
additional information that could be effectively incorporated into cerebral activity analysis in 
various contexts. The extraction of RR from NIRS is particularly beneficial for neonates 
admitted to NICUs, where respiratory distress is a prevalent cause of morbidity [82,83]. 
Furthermore, RR serves as a vital sign that is crucial for predicting early clinical deterioration 
in children [84]. The NIRS system, equipped with extracted RR, would allow for the 
simultaneous assessment of respiration and cerebral perfusion. This could provide a valuable 
tool for identifying abnormal respiratory events such as tachypnea and apnea, and for 
analyzing their impact on cerebral hemodynamics.  

6. Sleep assessment: a possibility of integrating HR 
and RR with NIRS 

The importance of sleep for the brain development of newborns is increasingly recognized 
[87–89]. It is thought that sleep disruptions during the neonatal period can have developmental 
implications [90]. Continuous monitoring of neonatal sleep in the NICU could be beneficial in 
two ways. One, neonatal sleep, which is thought to mirror normal brain maturation, could act 
as a predictive marker for future outcomes such as the severity of illness or the maturation 
state of an infant [91]. Two, if sleep is monitored in real-time, elective care could be tailored to 
sleep stages to promote optimal brain development [92,93]. 

The use of NIRS to extract HR and RR not only could simplify the collection of diverse 
physiological data with a single sensor but also could facilitate multimodal feature extraction 
for assessing sleep stages—an area still largely unexplored in infants. For instance, the Sleep 
Well Baby algorithm developed by Sentner et al. [94] incorporates HR and RR in its data 
analysis, significantly enhancing sleep stage accuracy in neonates. The multimodal approach 
with NIRS could provide a less intrusive and simpler alternative to traditional polysomnography 
[95], especially beneficial for preterm infants, by using just a single head-mounted sensor.  
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Overall aim of the thesis 

The overall aim of this thesis is to develop and refine algorithms for continuously evaluating 
signal quality and extracting RR and HR from NIRS data, with the ultimate goal of improving 
monitoring techniques for neonates in the NICU. This aim is pursued through a two-part 
investigation, starting with adult subjects in a controlled environment before transitioning to the 
more complex clinical setting of the NICU.  

The rationale for beginning the studies with healthy adults in a controlled environment before 
moving to the NICU setting is twofold: First of all, to establishing baseline algorithms and 
techniques. Working with healthy adult subjects allows us to develop, test, and refine 
algorithms for signal quality quantification and physiological measurements (RR and HR) 
without the added complexity of the neonatal physiology and the NICU environment. Healthy 
adults can offer more stable and predictable physiological signals, fewer motion artifacts due 
to less movement, and a controlled environment minimizes external variables. This phase 
ensures that the methodologies are robust and reliable. Second, once the algorithms have 
proven effective in adults, they can be adapted to the specific challenges presented by 
neonates, such as their smaller size, more delicate physiology, and the presence of disease 
or preterm birth complications. The knowledge gained from adult studies provides a foundation 
for addressing these challenges. For example, algorithms that were devised to handle motion 
artifacts in adults can be adapted to the more sensitive context of neonates, who may 
experience different types and frequencies of movement. 
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Outline of the thesis 

Part I explores the potential of continuously evaluating signal quality and extracting the RR 
from NIRS in adult subjects. Part II discusses the transition from adult to neonatal NIRS data, 
leveraging the acquired knowledge to derive HR and RR from NIRS, and conduct a sleep 
assessment study. 

Part I: physiological information in adult NIRS  

Chapter two describes an algorithm for quantifying signal quality in adult NIRS data. 

Chapter three introduces a machine learning-based algorithm for quantifying signal quality in 
adult NIRS data. 

Chapter four shows the feasibility of deriving RR from adult NIRS data during resting state. 

Chapter five describes a devised algorithm for extracting RR from adult NIRS data tainted 
with motion artifacts. 

Part II: physiological information in neonatal NIRS  

In Chapter six a literature review is provided examining early detection of abnormal brain 
oxygenation and advancements in NIRS technology. 

Chapter seven presents an algorithm for deriving HR from NIRS data collected from 
hospitalized (pre)term neonates. 

Chapter eight presents an algorithm for deriving RR from NIRS data collected from 
hospitalized (pre)term neonates. 

Chapter nine introduces a novel NIRS-based method for sleep assessment in hospitalized 
(pre)term neonates by extracting various physiological features. 
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Abstract 

We propose the Signal Quality Index (SQI) algorithm as a novel tool for quantitatively 
assessing the functional near infrared spectroscopy (fNIRS) signal quality in a numeric scale 
from 1 (very low quality) to 5 (very high quality). The algorithm comprises two preprocessing 
steps followed by three consecutive rating stages. The results on a dataset annotated by 
independent fNIRS experts showed SQI performed significantly better (p < 0.05) than 
PHOEBE (Placing Headgear Optodes Efficiently Before Experimentation) and SCI (Scalp 
Coupling Index), two existing algorithms, in both quantitatively rating and binary classifying 
the fNIRS signal quality. Employment of the proposed algorithm to estimate the signal quality 
before processing the fNIRS signals increases certainty in the interpretations.  
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1. Introduction 

Functional near-infrared spectroscopy (fNIRS) neuroimaging technique makes it possible to 
non-invasively investigate brain activity in both experimental and clinical settings [1-12]. In 
order to guarantee a reliable estimation of the functional hemodynamics in the brain cortex, 
the initial task of a researcher is to collect signals with a good quality. A poor signal quality 
may lead to wrong interpretations of the collected data and to consequent findings of false 
positives and false negatives in the analysis. False positives and false negatives in fNIRS 
functional experiments are changes in O2Hb and HHb concentrations over a certain brain 
area that can be caused by task related systemic activity and/or extracerebral hemodynamics, 
but could be mistakenly interpreted as increased neural activity (false positives) in that brain 
area, or could mask the neuronally induced hemodynamic response (false negatives) [13].  

To the best of our knowledge, there are no standardized criteria for quantitatively assessing 
fNIRS signal quality unlike, for example, in electroencephalography (EEG), where the 
impedance of the electrodes with the human scalp can be assessed to infer good scalp 
contact. These impedances are usually measured and reported, providing researchers with a 
reference metric for conducting proper set-up and contributing to a standardized assessment 
of EEG signal quality over the entire research community [14]. In the case of fNIRS, however, 
it is currently up to the researcher’s expertise and subjective judgment to deem a signal good 
enough, which makes it difficult to have reliable and reproducible studies. In addition, 
researchers new to the field of fNIRS are often faced with the issue that they lack the 
experience to judge the quality of the signals, leading to recordings of poor or inconsistent 
quality data. Therefore, it is necessary to have an objective measure that quantifies fNIRS 
signal quality independently of the researcher's experience and subjective judgment. 

A high quality fNIRS signal is characterized by the presence of a strong cardiac component, 
which is the main indicator of a good optode-scalp coupling and can be employed for the 
assessment of fNIRS signal quality. The reason behind this is that in fNIRS, emitted near 
infrared light travels through superficial and cerebral layers. When the light passes through 
these layers, intrinsic and extrinsic factors affect the absorption and scattering of the 
transmitted light. The intrinsic factors are hemodynamics caused by systemic artefacts in the 
cerebral and extracerebral compartments, as well as the functional brain hemodynamics in 
the cerebral compartment [10, 15]. The heartbeat is one of such systemic artefacts, present 
in both compartments [8,13]. Hence, its presence in fNIRS signals indicates that enough light 
has reached the brain and that most of the absorption and scattering are caused by intrinsic 
factors. This is not the case when extrinsic factors excessively limit the amount of light 
reaching the brain, causing a decrease in the optode-scalp coupling and compromising fNIRS 
signal quality. Examples of extrinsic factors are looseness of the optodes, scalp and skull 
thickness, skin properties, and hair density and color in the cases where hair is present [16].  

With the purpose of assessing the strength of the scalp-optode coupling and the presence of 
a clear heartbeat in fNIRS signals, two algorithms have been proposed for distinguishing 
between good and bad quality fNIRS signals: SCI (Scalp Coupling Index, [17]) and PHOEBE 
(Placing Headgear Optodes Efficiently Before Experimentation, [18]). SCI and PHOEBE, 
though, are not designed to discern low and high quality signals from medium quality signals. 
Instead, they are designed to binary discriminate between good and bad quality signals. Such 
a distinction is sharp and does not consider the different levels of signal quality that a good 
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quality signal may have. For challenging cases in which the amount of light reaching the brain 
is strongly limited due to unavoidable extrinsic factors, the best quality signal that can be 
achieved will not have the characteristics of a high quality signal achieved for a less 
challenging case. Being aware of these differences in the signal quality of the collected data 
and reporting them is important for subsequent analysis and interpretations. While for 
photoplethysmography (PPG), an optical modality sharing the same principles as fNIRS, 
several signal quality measures have been proposed [19, 20], for fNIRS no efforts have been 
conducted so far to rate fNIRS signal quality in more than two levels. Here, we propose an 
algorithm for quantitatively rating the fNIRS signal quality based on the strength of the optodes 
coupling with the scalp, providing the fNIRS research community with an objective estimate 
of fNIRS signal quality and eliminating the researchers’ subjective bias. In this study, the 
proposed Signal Quality Index (SQI) algorithm is compared with the SCI and PHOEBE 
algorithms in quantitative rating as well as binary classification of the fNIRS signal quality. 

2. Materials and methods 

2.1. Data collection and annotation 
We assembled two sets of data from previously recorded, unpublished data: a training dataset, 
to develop and fit the parameters of the algorithm; and a validation dataset, to provide an 
unbiased evaluation of the performance of the algorithm on an unseen set of data. 

2.1.1. Training dataset 
The training dataset used in this study consisted of fNIRS recordings of adult healthy 
volunteers collected with the following devices using OxySoft software (Artinis Medical 
Systems B.V., Elst, The Netherlands): OctaMon, Brite 23, Brite 24, and OxyMon (all by Artinis 
Medical Systems B.V., Elst, The Netherlands). The transmitters for all of these devices emit 
light at two different wavelengths in the near infrared spectrum. This dataset consisted of 158 
10-second signal segments of optical densities and HHb and O2Hb concentration changes, 
which were sampled at 50 Hz. The dataset contains two optical density signals per signal 
segment, corresponding to the two wavelengths used by each device. The data was collected 
from 14 participants. The signal segments were sampled from arbitrary channels of the 
dataset. Source detector distances ranged from 3 to 3.5 cm, and the brain areas measured 
were prefrontal cortex, temporal cortex and parietal cortex.  

Seven independent fNIRS experts (annotators A-G) working at Artinis Medical Systems B.V. 
rated all 158 signal segments on the presence of motion artefacts and overall signal quality. 
Presence of motion artefacts was assessed as a “Yes/No” question. Signal quality was rated 
on an ordinal scale ranging from 1 (very low quality) to 5 (very high quality). We chose these 
5 levels of quality because it is the scale most often used by fNIRS experts working at Artinis 
Medical Systems B.V. (the annotators) for discriminating between different levels of fNIRS 
signal quality. For each signal segment, both the changes in optical densities and the 
corresponding changes in O2Hb and HHb concentrations were shown to the annotator. The 
signal segments were presented to the annotators in randomized order. Figure 1 and Figure 
2 show, respectively, an example of a signal segment rated as having very low and very high 
signal quality by all annotators.  
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Figure 1: A sample signal segment having a very low quality. This signal segment was rated as having very low 
quality by all annotators in the training phase. (A) Orange and black curves represent the detrended optical density 
signals for the wavelengths 850 and 760 nm, respectively. (B) Red and blue curves represent the detrended 
changes in O2Hb and HHb concentrations, respectively. 

 
Figure 2: A sample signal segment having a very high quality. This signal segment was rated as having very high 
quality by all annotators in the training phase. (A) Orange and black curves represent the detrended optical density 
signals for the wavelengths 846 and 757 nm, respectively. (B) Red and blue curves represent the detrended 
changes in O2Hb and HHb concentrations, respectively. 

Signal segments containing motion artefacts according to at least half of the annotators were 
excluded, leaving a total of 123 signal segments. The resulting dataset includes a similar 
number of signal segments for each of the five different signal quality levels. Figure 3 shows 
the ratings given by the annotators for each of the 123 signal segments. Generally, very low 
(1) and very high (5) rated signal segments received similar ratings across annotators, while 
there was less agreement across the annotators ratings for signal segments that were rated 
from low (2) to high quality (4). We used the mean annotators rating as the reference rating 
for the quality of the fNIRS signal segments in the training phase (see section 2.3.1).     
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Figure 3: The ratings given by the annotators for each of the signal segments included in the training dataset.  The 
x-axis represents the mean annotators rating for each of the signal segments from very low to very high signal 
quality. The y-axis shows the ratings of the seven annotators A-G. The colorbar on the right represents the ordinal 
rating scale considered by the annotators: 1 (Very Low), 2 (Low), 3 (Medium), 4 (High), and 5 (Very High). The 
signal segments were sorted in ascending order based on their mean annotators rating. 

2.1.2. Validation dataset 
For the validation phase, a new set of data was assembled, which comprised fNIRS recordings 
of adult healthy volunteers collected with the same devices as the training dataset, using 
OxySoft software (Artinis Medical Systems B.V., Elst, The Netherlands): OctaMon, Brite 23, 
Brite 24, and OxyMon (all by Artinis Medical Systems B.V., Elst, The Netherlands). This 
dataset consisted of 40 10-second signal segments of optical densities, which were sampled 
at 50 Hz (as the data in the training dataset). The data was collected from 4 participants, 3 of 
which were also included in the training dataset. The signal segments were sampled from 
arbitrary channels of the dataset. Source detector distances ranged from 3 to 3.5 cm, and the 
brain areas measured were prefrontal cortex, temporal cortex and parietal cortex.    

The validation dataset was rated by the same annotators as in the training dataset, and two 
additional fNIRS experts working at Artinis Medical Systems B.V., each with more than 10 
years of experience in the field of fNIRS. The validation set was free of motion artefacts, and 
hence the annotators were only asked to rate the signal quality on an ordinal scale ranging 
from 1 (very low quality) to 5 (very high quality). For the rating, the signal segments were 
presented to the annotators in the same manner as was done for the training dataset. Figure 
4 shows the ratings given by the annotators for each of the 40 signal segments. Although 
there was less agreement between the annotators ratings for the signal segments that were 
annotated as having low (2) and medium (3) quality; very low (1), high (4), and very high (5) 
rated signal segments received similar ratings across annotators. The mean of the annotators 
ratings was considered as the reference rating for the quality of the fNIRS signal segments in 
the validation phase (see section 2.3.2).  
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Figure 4: The ratings given by the annotators for each of the signal segments included in the validation dataset. 
The x-axis represents the mean annotators rating for each of the signal segments from very low to very high signal 
quality. The y-axis shows the ratings of the nine annotators: the seven annotators that rated the training dataset 
(A-G) and the two additional annotators I-H. The colorbar on the right represents the ordinal rating scale considered 
by the annotators: 1 (Very Low), 2 (Low), 3 (Medium), 4 (High), and 5 (Very High). The signal segments were 
sorted in ascending order based on their mean annotators ratings. 

2.2. SQI algorithm workflow 
The here developed Signal Quality Index (SQI) algorithm comprises two preprocessing steps 
(see section 2.2.1) followed by three consecutive rating stages: 1) identifying very low quality 
signals, 2) identifying very high quality signals and 3) signal quality rating. Rating stage one 
and two hereby serve as heuristics to identify signal segments with clear characteristics of 
very low quality signals or very high quality signals, respectively, early on. In the third stage, 
a signal segment could still be rated as having very low or very high quality, but could also 
receive a rating in between.   

The workflow of the SQI algorithm per signal segment is as follows (see Figure 5). After signal 
preprocessing (see section 2.2.1), the signal segment enters rating stage one (for more 
details, see Materials and Methods, section Rating stage one: identifying very low quality 
signals), where it is identified as a very low quality signal or otherwise enters rating stage two. 
If the signal segment is identified as a very low quality signal in rating stage one, it is rated 
with the lowest rating (i.e. 1) and does not go through the subsequent stages of the algorithm. 
Similarly, in rating stage two (for more details, see Materials and Methods, section Rating 
stage two: identifying very high quality signals) the signal segment is identified as a very high 
quality signal or not. If the signal segment is identified as a very high quality signal, it is rated 
with the highest rating (i.e. 5) and does not enter the signal quality rating stage. If instead the 
signal segment is not identified as a very high quality signal in rating stage two, then it enters 
the signal quality rating stage. In this third stage (for more details, see Materials and Methods, 
section Rating stage three: signal quality rating), a rating between 1 (very low quality) and 5 
(very high quality) is assigned to the signal segment.  
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Figure 5: Flowchart of the rating process implemented by the SQI algorithm. The SQI algorithm comprises two 
preprocessing steps followed by three consecutive rating stages: 1) identifying very low quality signals, 2) 
identifying very high quality signals, and 3) signal quality rating. A 10-second signal segment is input into the 
algorithm in the form of raw optical densities and HHb and O2Hb concentration changes. After signal preprocessing 
(see section 2.2.1 for details), the signal segment enters rating stage one, in which it is evaluated by three 
consecutive features (see Materials and Methods, section Rating stage one: identifying very low quality signals): 
absolute light intensity (abbreviated as intensity) assesses whether the intensity of the measured light is within a 
certain range, standard deviation of the ODs per wavelength (std_ODs) detects whether one or both optical density 
signal segments are flat, and ratio of oxygenated and deoxygenated hemoglobin summation (sumHb_ratio) 
assesses the difference in amplitude between O2Hb and HHb. If any of these features exceeds the thresholds for 
the signal segment, it is identified as a very low quality signal, obtaining the lowest rating (i.e. 1), and does not go 
through the subsequent stages of the algorithm. Otherwise, it enters rating stage two. In this stage, the feature 
standard deviation of the difference between optical density signals autocorrelation (acorrDiff_ODs) evaluates 
whether the two optical densities in the signal segment have similar amplitude and shape. If the value obtained for 
this feature is lower than the threshold, the signal segment is identified as a very high quality signal, it is rated with 
the highest rating (i.e. 5), and does not enter the signal quality rating stage. Otherwise, it enters the signal quality 
rating stage. In this stage, the signal segment is evaluated by the feature logarithm of the ratio between the standard 
deviation of O2Hb and HHb (logStdHb). This feature characterizes the relative presence of the heartbeat in O2Hb 
and HHb signals. The raw value obtained for this feature is then converted to assign a rating between 1 (very low 
quality) and 5 (very high quality). 
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2.2.1. Preprocessing  
First, the received light intensities digitized with 16-bit resolution were converted to optical 
densities (OD). The optical densities were then converted into oxygenated hemoglobin (O2Hb) 
and deoxygenated hemoglobin (HHb) changes in concentration by applying the modified 
Beer-Lambert law [21]. In the following, we processed the OD values as well as O2Hb and 
HHb, as each of them was required for different features. Two preprocessing steps were 
applied to ODs, O2Hb and HHb. Firstly, HHb, O2Hb and OD signal segments were detrended 
by subtracting the least-squares fit of a straight line to the data. Secondly, these signal 
segments were band-pass filtered using a zero-phase forward Hamming-windowed sinc FIR 
filter of order 208 with cutoff frequencies (-6 dB) of 0.4 Hz and 3 Hz. The transition width of 
the filter was of 0.8 Hz, with a passband between 0.8-2.6 Hz, and a stopband (-53 dB) between 
3.4 - 25 Hz. The filter order was estimated based on the normalized transition width for the 
Hamming window [22]. This band-pass filter was implemented using 
ft_preproc_bandpassfilter function in the FieldTrip toolbox [23], commit 62c9a0d on master 
branch. In order to avoid edge artefacts, prior to filtering, the signal segments were zero-
padded with a sample length corresponding to two seconds of data both in the beginning and 
end of the signal segment. 

2.2.2. SQI features 

2.2.2.1. Rating stage one: identifying very low quality signals 
We used three different features for assessing whether a signal segment is identified as a very 
low quality signal in this stage:  

 Absolute light intensity (abbreviated as intensity): this feature represents the intensity 
of the measured light, which should be within a certain range in order to guarantee a 
linear response from the system and a sufficient signal-to-noise ratio. Bright ambient 
light, low pigmentation in skin and hair, or lack of hair can saturate the detector, while 
too little or no light could indicate that there is too much light absorption, e.g. by hair 
between the scalp and the optodes. We use a thresholding of the raw light intensity, 
as has previously been used in [16, 24]. Lower (too much light) and upper thresholds 
(too little light) were respectively set to 0.04 OD and 2.5 OD. If the signal segment 
exceeded these thresholds, it was identified as a very low quality signal.   

 Standard deviation of the ODs per wavelength (std_ODs): this feature detects whether 
one or both optical density signal segments are flat, and thus have a standard deviation 
of zero, indicating a poor coupling with the scalp. This feature was calculated as the 
standard deviation of the optical density over the whole 10-second length of the signal 
segment. If the signal segment obtained a value of zero for either wavelength, it was 
identified as a very low quality signal. The feature std_ODs was constrained to be 
equal to zero rather than being evaluated by a higher threshold, because empirical 
evaluation showed that values different than zero were not discriminative. 

 Ratio of oxygenated and deoxygenated hemoglobin summation (sumHb_ratio): high 
quality fNIRS signals are characterized by a clear heartbeat for O2Hb signals, with a 
smaller and attenuated one for HHb signals (see Figure 2). This difference makes the 
sum of the absolute values of the O2Hb signals greater than that of the HHb signals. 
In contrast, for very low quality fNIRS signals, the opposite happens. Feature 
sumHb_ratio, considers this difference by computing the ratio between the sum over 
samples of the absolute value of O2Hb and the sum over samples of the absolute 
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value of HHb for the 10-second signal segment (Eq. (1), where |x| represents the 
absolute value of x). Low values for this feature indicate very low signal quality due to 
the prominence of HHb signal amplitude over that of O2Hb. The threshold for this 
feature was empirically derived from the training dataset and set to 1.95. If the signal 
segment obtained a value lower than this threshold, it was identified as a very low 
quality signal. 

𝑠𝑢𝑚𝐻𝑏_𝑟𝑎𝑡𝑖𝑜 =  ∑|𝑂2𝐻𝑏|/|𝐻𝐻𝑏| (1) 

2.2.2.2. Rating stage two: identifying very high quality signals 
In this stage, we used one feature for assessing whether a signal segment is identified as a 
very high quality signal: 

 Standard deviation of the difference between optical density signals autocorrelation 
(acorrDiff_ODs): for very high quality signals, the autocorrelation for the two optical 
densities of a signal segment have similar amplitude and shape. Hence, the standard 
deviation of the difference between them is low. This feature was calculated by Eq. 
(2), where OD1acorr and OD2acorr are the autocorrelations of the optical densities 
measured for each wavelength, and std() is the standard deviation.  

𝑎𝑐𝑜𝑟𝑟𝐷𝑖𝑓𝑓_𝑂𝐷𝑠 = 𝑠𝑡𝑑(𝑂𝐷1𝑎𝑐𝑜𝑟𝑟 − 𝑂𝐷2𝑎𝑐𝑜𝑟𝑟) (2) 

A threshold of 0.025 was used, as empirically derived from the training dataset. If the 
signal segment obtained a value below this threshold, it was identified as a very high 
quality signal.  

2.2.2.3. Rating stage three: signal quality rating 
In this stage, we used one feature for rating the signal segment between 1 (very low quality) 
and 5 (very high quality). 

 Logarithm of the ratio between the standard deviation of O2Hb and HHb (logStdHb): 
the natural logarithm of the ratio of the standard deviation of the 10-second O2Hb and 
HHb time series was computed by Eq. (3). Its output value was used to quantitatively 
rate the quality of the signal segment in an adimensional magnitude. High quality 
fNIRS signals are characterized by a strong clear heartbeat as the strongest signal 
component. For high quality signals, the magnitude of the heartbeat is higher in the 
O2Hb signal than in HHb. Therefore, the standard deviation of O2Hb is higher than the 
standard deviation of HHb for high quality fNIRS signals. Consequently, the higher the 
signal quality, the higher the ratio between them, which adopts an exponential trend. 
This trend is made linear by means of the natural logarithm implemented in this feature. 

𝑙𝑜𝑔𝑆𝑡𝑑𝐻𝑏 = 𝑙𝑛 (𝑠𝑡𝑑 (
𝑂2𝐻𝑏
𝐻𝐻𝑏 )) (3) 

2.3. Performance assessment 
We assessed the performance of the SQI algorithm in two different phases: training phase 
and validation phase. All computation and analysis in this study were done using MATLAB 
R2019b (MathWorks, Natick, Massachusetts), on an ASUS workstation with Intel Core-i7-
8565U @ 1.99 GHz CPU and 16 GB RAM. 
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2.3.1. Training phase 
First, we assessed the correctness of each of the features of the SQI algorithm on the training 
dataset. Next, we assessed the performance of the SQI algorithm with respect to the mean 
annotators rating. 

2.3.1.1. Features correctness assessment 
In order to assess and compare the correctness of the different features included in rating 
stage one (identifying very low quality signals) and rating stage two (identifying very high 
quality signals) of the algorithm on the training dataset, we computed the following quantitative 
metrics: precision in correct identifications, number of signal segments identified as very low 
quality signals (for features in rating stage one) and number of signal segments identified as 
very high quality signals (for the feature in rating stage two), correct and incorrect decisions. 
For rating stage one of the algorithm, the identified signal segments for which the mean 
annotators ratings were below or equal to 2 (low quality) were classified as correct decisions, 
and otherwise classified as incorrect decisions. Similarly, for rating stage two of the algorithm, 
the identified signal segments for which the mean annotators ratings were above or equal to 
4 (high quality) were classified as correct decisions, and otherwise classified as incorrect 
decisions. 

For evaluating the correctness of the rating feature logStdHb in the third stage of the algorithm, 
we used Pearson’s correlation coefficient between the raw feature values and the mean 
annotators ratings for all 123 signal segments in the training dataset. To test for the 
significance of the correlation, we considered a significance level ɑ=5% and computed the p-
value using a Student’s t distribution as implemented in Matlab's corr function. We applied the 
Benjamini-Hochberg method [25] to correct for multiple comparisons. 

2.3.1.2. Algorithm performance assessment 
We assessed the performance of the SQI algorithm in 1) quantitative rating the signal quality, 
2) binary classification of the signal quality (good or bad signal quality). We compared the 
performance of the SQI algorithm with the performance of two existing algorithms used for 
binary assessing fNIRS signal quality: SCI [17] and PHOEBE [18]. 

SCI quantifies the similarity of the cardiac component in both optical densities to determine 
the strength of the coupling between the scalp and the optodes. The algorithm computes the 
zero-lag cross-correlation between both optical density signal segments as a quantitative 
measure of the signal-to-noise ratio of the signal segment [17]. According to the original 
implementation of the SCI algorithm, signal segments with a zero-lag cross-correlation value 
above 0.75 are considered high quality signals. The PHOEBE algorithm evaluates the 
similarity of both optical density signal segments by means of the SCI metric, as well as the 
spectral power of their cross-correlation to determine the strength of the cardiac component. 
According to the original implementation of the PHOEBE algorithm, signal segments with a 
spectral value above 0.1 are considered high quality signals. Both SCI and PHOEBE were 
computed as implemented by the main author of the original papers [26]. 

2.3.1.2.1. Quantitative rating performance 

A regression analysis was performed to obtain the linear models that convert the raw values 
of the rating feature in the signal quality rating stage of SQI to the 1 - 5 scale that the annotators 
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used for rating. The linear model was built by computing a least squares regression between 
the mean annotators ratings and the raw values of the rating feature logStdHb on the training 
data to obtain the slope and intercept. This regression was carried out only on the signal 
segments that were not identified in rating stage one or two, and that hence entered rating 
stage three in the SQI algorithm workflow. The slope and intercept were then used to convert 
the raw value of the rating feature logStdHb to a rating on the 1-5 scale. In order to compare 
the performance of SCI and PHOEBE with the proposed algorithm, the raw values of the rating 
features used in SCI and PHOEBE were also converted into a 1-5 scale in the same manner. 
In this conversion, we considered the zero-lag cross-correlation between the two optical 
density signals and the peak spectral power of the cross-correlation as the rating features 
used in SCI and PHOEBE, respectively (see Materials and Methods, section Algorithm 
performance assessment). The ratings obtained for each of the algorithms in a 1-5 scale will 
be hereon referred to as estimated ratings. 

Moreover, Bland Altman limits of agreement (BLA) [27] were computed between the mean 
annotators ratings and the estimated ratings introduced in this section for each of the 
evaluated algorithms SQI, SCI, and PHOEBE. Bland Altman limits of agreement were 
computed by calculating 1.96 times the standard deviation of the error, representing the range 
in which 95% of the differences between the mean annotators ratings and estimated ratings 
fell. Three quantitative measures were calculated to further compare the performance of the 
evaluated algorithms: mean of error (ME), standard deviation of error (StdE), and coefficient 
of determination (r2) assessed by Pearson’s correlation coefficient. To test for the significance 
of the correlation, we considered a significance level ɑ=5% and computed the p-value using 
a Student’s t distribution as implemented in Matlab's corr function. In addition to the three 
quantitative measures, the computation time using our reference implementation in MATLAB 
R2019b (MathWorks, Natick, Massachusetts) for a single signal segment was measured five 
times and then averaged to compare the time required for each of the algorithms to obtain the 
estimated rating. 

2.3.1.2.2. Binary classification performance 

To conduct a binary classification for the proposed SQI algorithm, signal segments identified 
in rating stage one (identifying very low quality signals) were classified as “bad quality” signals; 
while those identified in rating stage two (identifying very high quality signals) were classified 
as “good quality” signals. For the signal segments that entered rating stage three, a threshold 
for the raw value of the feature logStdHb was empirically derived on the training dataset. This 
threshold value was set to 1.478. Signal segments with a value equal or higher than this 
threshold were classified as “good quality” signals. They were otherwise classified as “bad 
quality” signals. For SCI and PHOEBE, we used the thresholds proposed in the original papers 
(see [17, 18]): a zero-lag cross-correlation value of 0.75 and a peak spectral power of 0.1. For 
both algorithms, signal segments with values equal or higher than the considered thresholds 
were classified as “good quality” signals. They were otherwise classified as “bad quality” 
signals. 

To assess the binary classification performance of the algorithms, the mean annotators ratings 
were binarized by thresholding at a value of 3.5. Signal segments rated lower than this 
threshold were labeled as “bad quality” signals, while those rated equal to or higher than this 
threshold were labeled as “good quality” signals. Accuracy, sensitivity, specificity, precision, 
and F1-Score were computed as performance measures in the binary classification of the 
signal quality. We applied McNemar’s binomial test [28] with a significance level ɑ=5% to 
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assess whether the classification accuracies obtained for the different algorithms were 
significantly different from each other. We applied the Benjamini-Hochberg method [25] to 
correct for multiple comparisons. 

2.3.2. Validation phase 
In the validation phase, the performance of the SQI algorithm was assessed in the validation 
dataset in the same manner as performance was assessed in the training dataset. For the 
quantitative rating, this assessment included computing the estimated ratings of the SCI and 
PHOEBE algorithms for the validation dataset to allow a comparison with their performance. 
For this, the feature values of SCI and PHOEBE were converted to a continuous scale from 1 
(very low quality) to 5 (very high quality) using the linear models fitted in the training phase 
(see Materials and Methods, section Quantitative rating performance). For the binary 
classification, we proceeded as explained in Materials and Methods, section Binary 
classification performance. 

3. Result 

3.1. Training phase 
3.1.1. Features correctness assessment 
The here proposed fNIRS signal quality algorithm, SQI, assesses the quality of fNIRS signal 
segments in three consecutive rating stages: 1) identifying very low quality signals, 2) 
identifying very high quality signals and 3) signal quality rating (see section 2.2 for more 
details). Here, we assess the correctness of these features.  

In rating stage one (identifying very low quality signals), the algorithm identifies very low quality 
signal segments based on three features: the absolute light intensity (abbreviated as 
intensity), the standard deviation of the ODs per wavelength (std_ODs), and the ratio of 
oxygenated and deoxygenated hemoglobin summation (sumHb_ratio). For each of these 
features, we applied an empirically derived threshold to identify signal segments having very 
low quality. Figure 6 shows the identification of each signal segment by these features. Each 
signal segment identified as a very low quality signal had a mean annotators rating indicating 
a low or very low signal quality. This means none of these features incorrectly identified 
medium, high, or very high quality signal segments as very low quality signals. Although the 
feature std_ODs correctly identified signal segments with very low quality, its identification 
completely coincided with the identification of the features intensity and sumHb_ratio. 
Moreover, the number of identified signal segments is lower than that of the other two features 
in this stage. Nonetheless, we decided to include this feature in the algorithm because of two 
reasons. Firstly, it is an intuitive feature that identifies signal segments having at least one 
optical density signal as a flatline, which is a clear sign of a very low quality signal. Secondly, 
it potentially avoids misclassification of signal segments in subsequent stages of the algorithm 
(see Appendix 1 for more details). 

In rating stage two (identifying very high quality signals), the algorithm identifies very high 
quality signal segments based on one feature: the standard deviation of the difference 
between optical density signals autocorrelation (acorrDiff_ODs). We applied an empirically 
derived threshold to identify signal segments with clear characteristics of very high quality 
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signals. Figure 6 shows the output of the feature acorrDiff_ODs and its threshold. Note that 
we show all 123 signal segments, although the signal segments identified as very low quality 
signals in rating stage one would not enter rating stage two in the SQI algorithm. The figure 
shows that most of the signal segments identified as very high quality signals had mean 
annotators ratings of 4 (high quality) or higher. However, some medium quality signal 
segments as well as one very low quality signal segment were incorrectly identified as very 
high quality signals in this stage. As can be seen in Figure 6, this very low quality signal 
segment was identified as a very low quality signal by feature sumHb_ratio in rating stage 
one. This means that in the SQI algorithm workflow, it would not enter rating stage two and 
would hence not be incorrectly classified by the algorithm.  

 
Figure 6: Signal segments identified during rating stage one (identifying very low quality signals) and two 
(identifying very high quality signals) of the SQI algorithm. The y-axis shows the three features included in rating 
stage one at the top, and the feature included in rating stage two at the bottom. The features in rating stage one 
are: the absolute light intensity (abbreviated as intensity), the standard deviation of the ODs per wavelength 
(std_ODs), and the ratio of oxygenated and deoxygenated hemoglobin summation (sumHb_ratio). The feature in 
rating stage two is the standard deviation of the difference between optical density signals autocorrelation 
(acorrDiff_ODs). The x-axis represents the mean annotators rating for each of the 123 signal segments. The signal 
segments were sorted in ascending order based on their mean annotators ratings. Cells in the plot filled with a 
speckle pattern represent the signal segments that were identified as either very low or very high quality signals in 
the respective rating stage by the feature. Cells left blank represent the signal segments that were not identified by 
the features in rating stage one and two. 

Quantitative metrics evaluating the correctness of the features in rating stage one and two are 
reported in Table 1 (for more details, see Materials and Methods, section Features correctness 
assessment). Regarding the features included in rating stage one, the features intensity and 
sumHb_ratio identified a greater number of signal segments as very low quality signals than 
the feature std_ODs. Both features achieved a high precision in the identification (both above 
94%). The feature std_ODs identified less signal segments as having very low quality than the 
other two features, though with 100% precision. In rating stage two, feature acorrDiff_ODs 
identified 37 signal segments as very high quality signals with a precision of 83.78%.  

In rating stage three (signal quality rating), using the feature logStdHb (the logarithm of the 
ratio between the standard deviation of O2Hb and HHb), the SQI algorithm rates the signal 
quality for those signal segments which have not been identified in rating stage one and two. 
Figure 7 shows a scatter plot of this feature for all 123 signal segments, revealing a significant 
positive linear relationship (r2 = 0.79, p-value < 0.05) between the raw values of the feature 
logStdHb and their mean annotators ratings. Signal segments that were identified by features 
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in rating stage one and two are shown in red (very low quality) and blue (very high quality), 
respectively. 

Table 1: Quantitative metrics for correctness assessment of the proposed features identifying very low (intensity, 
std_ODs, and sumHb_ratio) and very high (acorrDiff_ODs) quality signal segments in rating stage one and two of 
the SQI algorithm, respectively. 

Feature Precision (%) Number of identified 
signal segments a 

Number of correct 
decisions 

Number of incorrect 
decisions 

intensity 96.67 30 29 1 

std_ODs 100 2 2 0 

sumHb_ratio 94.44 36 34 2 

acorrDiff_ODs 83.78 37 31 6 
a Number of signal segments identified as very low quality signals (for features in rating stage one) and number of signal segments 
identified as very high quality signals (for the feature in rating stage two). 

 
Figure 7: Scatter plot of the feature logStdHb in rating stage three (signal quality rating) of the SQI algorithm. Raw 
values (y-axis) obtained for the feature logStdHb (logarithm of the ratio between the standard deviation of O2Hb 
and HHb) with respect to the mean annotators ratings (x-axis) for each of the signal segments are depicted. Each 
dot represents one of the 123 signal segments included in the training dataset. Red dots represent signal segments 
that were identified as very low quality signals in rating stage one. Blue dots represent signal segments that were 
identified as very high quality signals in rating stage two. Black dots represent signal segments that were not 
identified as very low or very high quality signals in rating stage one and two and consequently entered rating stage 
three. The gray line represents the regression line obtained between the raw values for the feature logStdHb and 
the mean annotators ratings. 

3.1.2. Algorithm performance assessment 

3.1.2.1. Quantitative rating performance 
The raw values of the rating features were converted to a continuous scale from 1 to 5 (for 
more details, see Materials and Methods, section Quantitative rating performance) in order to 
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evaluate the performance of SQI, SCI and PHOEBE algorithms in quantitatively rating fNIRS 
signal quality. We refer to these as estimated ratings.  

Figure 8 illustrates the scatter plots comparing the estimated ratings with the mean annotators 
ratings for SQI, SCI and PHOEBE algorithms. The proposed algorithm exhibits a better fit to 
the mean annotators ratings than PHOEBE and SCI, although a significant positive correlation 
can be observed for the three algorithms (p < 0.05). While SQI explains 88% (p-value < 0.05) 
of the variance, PHOEBE and SCI explain 52% and 58% (p-value < 0.05) of the variance, 
respectively. Data points in the scatter plots for the PHOEBE and SCI algorithms are more 
sparsely distributed around the y=x line than for SQI. This is reflected by the higher Bland 
Altman limits of agreement obtained for PHOEBE (BLA=1.99) and SCI (BLA=1.92) with 
respect to SQI (BLA=1.16). Quantitative measures showing the similarity between the mean 
annotators ratings and estimated ratings for each of the algorithms are reported in Table 2. 
SQI had a lower standard deviation of error than SCI and PHOEBE. The mean of error of all 
considered algorithms was below 0.07. The computation time took the longest (53.11 ms) for 
the SQI algorithm, whereas for SCI and PHOEBE this time was approximately 20% and 60% 
of the SQI computation time, respectively.  

 
Figure 8: Scatter plots for the estimated rating after the regression to a 1-5 continuous scale. The scatter plots 
show the estimated ratings (y axis) for each of the signal segments with respect to the mean annotators ratings (x 
axis). Each dot represents one of the 123 signal segments included in the training dataset. The full and dashed 
lines are, respectively, the y=x line and the Bland Altman limits of agreement. From left to right, the figure shows 
the scatter plots for: SQI (A), SCI (B) and PHOEBE (C). 

Table 2: Quantitative measures for comparing the performance of the considered algorithms in quantitatively rating 
the fNIRS signal quality on the training dataset.   

Method ME a StdE b r2 p-value of 
correlation c 

Computation Time 

d (ms) 

SCI 0.06 0.98 0.58 <0.01 10.77 

PHOEBE -0.004 1.01 0.52 <0.01 31.42 

SQI 0.04 0.59 0.88 <0.01 53.11 
a Mean of error. 
b Standard deviation of error. 
c P-values were corrected for multiple comparisons applying the Benjamini-Hochberg method. 
d The computation time was calculated for a single signal segment using our reference implementation in MATLAB R2019b 
(MathWorks, Natick, Massachusetts) without considering the time to compute the linear regression. 

3.1.2.2. Binary classification performance 
We compared the binary classification performance of the three considered algorithms in 
classifying the signal segments into “bad quality” and “good quality” signals. To assign these 
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binary labels to the training dataset, the mean annotators ratings were thresholded using a 
threshold value of 3.5. The binary classification of fNIRS signal quality performed by the 
considered algorithms was conducted as explained in Materials and Methods, section Binary 
classification performance. 

The binary classification performance results on the training dataset are reported in Table 3. 
The SQI, PHOEBE and SCI algorithms performed with an accuracy equal or higher than 65%, 
which is above chance level (50%). All three algorithms showed a high specificity and 
precision (above 92%), with SCI obtaining the highest for both measures. SQI showed the 
highest sensitivity (sensitivity = 92.86%) of all three algorithms, with PHOEBE and SCI 
showing a high (sensitivity = 78.57%) and low (sensitivity = 38.57%) sensitivity, respectively. 
The results of the statistical comparison of the binary performance of all algorithms against 
each other (see Table 4) exhibit that all three algorithms performed significantly differently 
from each other. 

Table 3: Performance measures for comparing the performance of the considered algorithms in binary 
classification of the fNIRS signal quality on the training dataset. 

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) 

SCI 65.04 38.57 100 100 55.67 

PHOEBE 84.55 78.57 92.45 93.22 85.27 

SQI 92.68 92.86 92.45 94.20 93.53 

Table 4: Z-scores and p-values calculated by applying McNemar’s binomial test to compare the classification 
accuracies between each pair of algorithms with respect to the binarized mean annotators ratings on the training 
dataset. P-values were corrected for multiple comparisons applying the Benjamini-Hochberg method. 

 SCI PHOEBE SQI 

SCI - z(123) = -4.15, 
p < 0.01 

z(123) = -5.21, 
p < 0.01 

PHOEBE z(123) = -4.15, p < 0.01 - 
z(123) = -1.82, 

p < 0.05 

SQI 
z(123) = -5.21, 

p < 0.01 
z(123) = -1.82, 

p < 0.05 
- 

3.2. Validation phase 
We further assessed the performance of the SQI algorithm on the validation dataset in i) 
quantitative rating fNIRS signal quality and ii) binary classification of fNIRS signal quality. In 
both cases, we compared its performance with the performance of SCI and PHOEBE 
algorithms. 

3.2.1. Quantitative rating performance 
For all three algorithms, the raw values of the rating features were converted to the continuous 
scale from 1 to 5 (estimated rating) by using the linear models fitted on the training dataset. 
Quantitative measures showing the similarity between the mean annotators ratings and the 
estimated ratings for each of the algorithms are reported in Table 5. These results are 
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consistent with the results obtained for the training dataset. While SQI explained 85% (p-value 
< 0.05) of the variance, PHOEBE and SCI only explained 43% and 65% (p-value < 0.05), 
respectively. In addition, SQI showed a lower standard deviation of error than both SCI and 
PHOEBE algorithms. The mean of error (ME) for SQI was lower than 0.1 and was the lowest 
of all three algorithms. 

Table 5: Quantitative measures for comparing the performance of the considered algorithms in quantitatively rating 
the fNIRS signal quality on the validation dataset.   

Method ME a StdE b r2 
p-value of 

correlation c 

SCI -0.15 0.80 0.65 <0.01 

PHOEBE 0.44 1.01 0.43 <0.01 

SQI -0.09 0.60 0.85 <0.01 
a Mean of error. 
b Standard deviation of error. 
c P-values were corrected for multiple comparisons applying the Benjamini-Hochberg method. 

3.2.2. Binary classification performance 
We compared the binary classification performance of the three considered algorithms on the 
validation dataset in classifying the signal segments into “bad quality” and “good quality” 
signals. We binarized the output of the three considered algorithms as well as the mean 
annotators ratings as detailed in Materials and Methods, section Binary classification 
performance. The threshold used for the logStdHb feature in rating stage three of the SQI 
algorithm was the same as empirically derived in the training phase. The thresholds used for 
PHOEBE and SCI were those suggested in the original papers (see [17, 18]). The binary 
classification performance results are reported in Table 6. All considered algorithms performed 
with an accuracy equal or higher than 65%, which is above chance level (50%). However, the 
accuracy for the SQI algorithm (accuracy = 95%) was 30% higher than SCI (accuracy = 65%) 
and 20% higher than PHOEBE (accuracy = 75%). Although both PHOEBE and SCI obtained 
a 100% for both specificity and precision, they obtained low sensitivity values: 39.13% SCI 
and 56.52% PHOEBE. This shows that, despite correctly classifying all good quality signals, 
they did not perform well at classifying bad quality signals. This is reflected in the lower 
accuracy and F1-score obtained for both algorithms compared to SQI. Conversely, the SQI 
algorithm showed high values for the three metrics (specificity = 94.12%, precision = 95.65%, 
sensitivity = 95.65%).  

Table 6: Performance measures for comparing the performance of the considered algorithms in binary 
classification of the fNIRS signal quality on the validation dataset. 

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) 

SCI 65 39.13 100 100 56.25 

PHOEBE 75 56.52 100 100 72.22 

SQI 95 95.65 94.12 95.65 95.65 
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We conducted a binomial test to determine whether the differences in performance of the 
considered algorithms were significant. The results for this test are reported in Table 7. The 
SQI algorithm performed significantly differently (p-value < 0.05) from SCI and PHOEBE at 
binary classifying fNIRS signals quality, while SCI and PHOEBE did not perform significantly 
differently from each other. Furthermore, since 3 out of the total of 4 participants included in 
the validation dataset were also common to the training dataset (see section 2.1.2), in 
Appendix 2 we analyzed whether they introduced any bias in the classification. 

Table 7: Z-scores and p-values calculated by applying McNemar’s binomial test to compare the classification 
accuracies between each pair of algorithms with respect to the binarized mean annotators ratings on the validation 
dataset. P-values were corrected for multiple comparisons applying the Benjamini-Hochberg method. 

 SCI PHOEBE SQI 

SCI - 
z(40) = -1.53, 

p > 0.05 
z(40) = -2.76, 

p < 0.01 

PHOEBE 
z(40) = -1.53, 

p > 0.05 
- 

z(40) = -1.99, 
p < 0.05 

SQI z(40) = -2.76, 
p < 0.01 

z(40) = -1.99, 
p < 0.05 

- 

 

4. Discussion 

In this study, we developed a novel algorithm, Signal Quality Index (SQI), capable of 
quantitatively assessing the quality of fNIRS signals in a numeric scale from 1 (very low 
quality) to 5 (very high quality). To the best of our knowledge, the SQI algorithm is the first 
algorithm to quantitatively rate fNIRS signal quality in more than two quality levels. Current 
existing algorithms, like SCI [17] and PHOEBE [18], offer only a sharp distinction between two 
quality levels of good and bad signal quality. We found that, despite higher computation time, 
the SQI algorithm showed a significantly better performance (p < 0.05) in quantitatively rating 
the fNIRS signal quality than PHOEBE and SCI (see Tables 2 and 5). SQI numerically showed 
a greater positive correlation (r2 = 0.85, p < 0.05) between the estimated ratings and the mean 
annotators ratings than PHOEBE (r2 = 0.43, p < 0.05) and SCI (r2 = 0.65, p < 0.05). 
Furthermore, we found that SQI showed a significantly better performance in binary 
classification of the fNIRS signal quality (p < 0.05) than PHOEBE and SCI, in terms of 
accuracy, sensitivity, and F1-score (see Tables 3 and 6). 

The novelty of the here developed SQI algorithm is that, rather than using a single metric for 
directly rating the signal quality as SCI does, or a combination of two metrics as done by the 
PHOEBE algorithm, the SQI algorithm is composed of three different rating stages: identifying 
very low quality signals (rating stage one), identifying very high quality signals (rating stage 
two), signal quality rating (rating stage three). Each of these stages includes one or more 
features, which were selected in order to translate current heuristics in visual assessment of 
fNIRS signal quality into a numeric rating. The performance of the features in rating stage one 
and two on the training dataset (see Table 1) showed that they are well suited for identifying 
very low and very high quality signals with high precision (>80%). The performance results of 
the feature logStdHb in rating stage three demonstrated that it is well suitable for fNIRS signal 
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quality rating. This claim is supported by the significant positive linear relationship (r2 = 0.79, 
p-value < 0.05) observed between the raw values of this feature and the mean annotators 
ratings (See Figure 7). Furthermore, including rating stage one and two in the algorithm 
improves its performance, since the features in these stages identify very low and very high 
quality signal segments that would otherwise be incorrectly rated by the feature logStdHb in 
rating stage three. This shows the efficacy of including three rating stages in the SQI algorithm 
workflow, outperforming the state-of-the-art algorithms SCI and PHOEBE.  

In this study, the SCI and PHOEBE algorithms used for comparison were implemented as 
done by their authors (see [26]). We used the thresholds proposed in the original papers [17, 
18] for binary classification. Though beyond the scope of this study, these thresholds could be 
optimized on the training dataset to improve their performance. Further studies could be 
conducted to evaluate the performance sensitivity of the SQI, SCI, and PHOEBE algorithms 
to different thresholds.  

Binary approaches for signal quality assessment, such as SCI and PHOEBE, provide a sharp 
distinction between “bad” and “good” quality signals. Conversely, three or more levels of signal 
quality rating allow for the discrimination of “bad” and “good” quality signals into different levels 
of quality. In some experiments, recording “good” quality signals is very hard to achieve, e.g. 
when the signals are recorded from subjects or brain areas with a high density of dark hair. In 
such cases, although the signal might show a weak pulsatile heartbeat component because 
a great part of the transmitted light is absorbed by hair, the quality of such signal segments 
might still be considered sufficient for certain types of analysis. In a binary approach, these 
signal segments would either be classified as “bad” or “good” quality signals, depending on 
the sensitivity of the classifier. In a three or more levels signal quality approach, however, an 
intermediate quality rating for such signal segments allows the researcher to decide whether 
the achieved level of quality is sufficient for the analysis. Furthermore, the five-level scale 
provided in the SQI algorithm makes it possible to decrease the resolution of rating to either 
a three-level scale or a binary one, which is not possible for the other way around. Therefore, 
depending on the type of analysis that is to be conducted, the researcher can convert this five-
level scale to fewer levels. 

Although the results we obtained for the SQI algorithm are promising for both offline and online 
applications, further improvements are possible. We did not include a stage identifying and 
rating signal segments affected by motion, since it was beyond the scope of this study. 
Therefore, in the current work, the analysis of the algorithm performance was limited to data 
free of motion artifacts. However, motion artifacts are an important source of noise in fNIRS 
signals. These artifacts, often caused by head and body movements, are unavoidable 
especially in challenging subject groups like infants and in rehabilitation research and sport 
science, which often deal with subjects in motion [29-32]. Subject movement causes motion 
between the optodes and the scalp, leading to rapid shifts in the optical coupling. These rapid 
shifts take the form of transient spikes in fNIRS signals, and have a scale and frequency 
composition that are distinct from the background fNIRS signal [32].  

The features included in the SQI algorithm use heuristics about meaningful physiological 
components and characteristics of fNIRS signals, therefore the presence of motion artifacts 
might affect the performance of the algorithm. We included a section in Appendix 3 where we 
compared the performance of the considered algorithms on a motion-corrupted dataset. We 
found that none of the algorithms performed well in quantitatively rating fNIRS signal quality. 
Therefore, to improve the performance of the SQI algorithm in the presence of motion, future 
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research should consider the effects of motion on fNIRS signal quality and include a stage for 
motion artefact recognition [29, 33].  

In addition, both the training and validation of the SQI algorithm were conducted in a set of 
data collected from healthy young adults. Because functional and systemic-related 
hemodynamics depend on age [34, 35], further studies could be conducted to assess the SQI 
algorithm in a more extensive dataset, comprising data from infants and elderly people as well 
as from subjects with cardiac abnormalities. 

In this study, we introduced an algorithm, SQI, which is capable of quantitatively rating and 
binary classifying fNIRS signal quality and outperforms current state-of-the-art algorithms. It 
can be used as an offline tool for identifying and rejecting channels and trials with a poor signal 
quality, as well as for online assessment of fNIRS signal quality during set-up and data 
acquisition. The SQI algorithm was designed to run over 10-second sliding windows. When 
applying the algorithm to either offline or online data, the user can compute the SQI values for 
every 10 seconds of data. This allows for an estimation of the varying signal quality of long 
recordings over time, making it possible to drop trials with poor signal quality rather than the 
channels themselves. We believe that the widespread use of this algorithm for reporting signal 
quality ratings for each of the measured channels would ensure that experiments are carried 
out in proper conditions for collecting actual hemodynamic information and reducing artefacts. 
Therefore, whether a novice or an experienced researcher conducts an experiment would no 
longer be an issue for guaranteeing the collection of good quality fNIRS data. The source code 
for the SQI algorithm is available at https://github.com/Artinis-Medical-Systems-B-
V/SignalQualityIndex. The algorithm will be implemented in Artinis’ fNIRS software OxySoft 
3.3. 

5. Conclusion 

In this study we have developed an algorithm, signal quality index (SQI), to quantitatively 
assess NIRS signal quality in a numeric scale from 1 (very low quality) to 5 (very high quality). 
The results demonstrate the adequacy of the proposed algorithm for both binary and 
quantitatively rating the NIRS signal quality. The SQI algorithm performed better than SCI and 
PHOEBE, existing algorithms in the literature. The promising results obtained in this study 
suggest that the SQI algorithm could be exploited in different applications: from offline use 
after recording the signals to online use during recording or optodes setup. 

Appendix 1 

Although the feature std_ODs correctly identified signal segments with very low quality, its 
identification completely coincided with the identification of the features intensity and 
sumHb_ratio. Moreover, the number of identified signal segments is very low compared with 
the number of signal segments identified by the other two features in this stage. Nonetheless, 
we decided to include this feature in the algorithm because of two reasons. Firstly, it is an 
intuitive feature that identifies signal segments having at least one optical density (OD) signal 
as a flatline, which is a clear sign of a very low quality signal. Secondly, it potentially avoids 
misclassification of signal segments in subsequent stages of the algorithm. 
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Misclassification of such signal segments could arise in cases where the amplitude of the 
flatline OD signal is within the permitted range for feature intensity in rating stage one. The 
signal segment would not be rated by this feature as a very low quality signal and would then 
be evaluated by feature sumHb_ratio. This feature could fail at identifying the signal segment 
as a very low quality signal because of using concentration changes in O2Hb (∆[O2Hb]) and 
HHb (∆[HHb]) signals, obtained from OD signals by means of the Modified Beer-Lambert Law 
(Eq. (4)). For illustrative purposes, we replaced in Eq. (4) the values for the molar extinction 
coefficients of each chromophore for two sample wavelengths used by the devices (1 =850 
nm, 2=760 nm), the source detector distance (d = 3 cm), and the differential pathlength factor 
(DPF = 6). This is simplified in Eq. (5). The resulting HHb and O2Hb signals are a linear 
combination of both OD signals, as shown in Eq. (6) and (7), respectively. 

[ ∆[𝐻𝐻𝑏]∆[𝑂2𝐻𝑏]
] = (𝑑)−1 [

𝜀𝐻𝐻𝑏,𝜆1 𝜀𝑂2𝐻𝑏,𝜆1
𝜀𝐻𝐻𝑏,𝜆2 𝜀𝑂2𝐻𝑏,𝜆2

]
−1

[∆𝑂𝐷(∆𝑡, 𝜆1)/𝐷𝑃𝐹(𝜆1)∆𝑂𝐷(∆𝑡, 𝜆2)/𝐷𝑃𝐹(𝜆2)
] (4) 

[ ∆[𝐻𝐻𝑏]∆[𝑂2𝐻𝑏]
] = [−23.2 44

63.6 −29.9] [
∆𝑂𝐷(∆𝑡, 𝜆1)
∆𝑂𝐷(∆𝑡, 𝜆2)

] (5) 

∆[𝐻𝐻𝑏] = −23.2 × ∆𝑂𝐷(∆𝑡, 𝜆1) + 44 × ∆𝑂𝐷(∆𝑡, 𝜆2) (6) 

∆[𝑂2𝐻𝑏] = 63.6 × ∆𝑂𝐷(∆𝑡, 𝜆1) − 29.9 × ∆𝑂𝐷(∆𝑡, 𝜆2) (7) 

Feature sumHb_ratio of rating stage one considers a scale ratio between HHb and O2Hb 
signals. If one of the OD signals is a flat line of constant amplitude, i.e. it has a zero standard 
deviation, the resulting O2Hb and HHb signals will be a factor of the OD signal having a non-
zero standard deviation plus a constant value introduced by the OD signal with a zero standard 
deviation (see Eq. (6)). This constant value is removed from the O2Hb and HHb signals in the 
preprocessing stage. Depending on which of the OD signals is a flat line, the ratio between 
the filtered O2Hb and HHb signals will be either greater or lower than one. In the case in which 
this ratio is lower than one, the signal segment will be correctly identified as a very low quality 
signal by feature sumHb_ratio. In the opposite case, however, it would enter subsequent 
stages of the algorithm, which could result in its misclassification. Therefore, considering that 
the computation time of the standard deviation is low, including the feature std_ODs is 
necessary to guarantee a better performance of the SQI algorithm. 

In the present study, the two signal segments having a standard deviation of zero were 
correctly identified as very low quality signals by feature intensity, because they had null 
amplitudes. They were also correctly identified by the feature sumHb_ratio, because they are 
examples of the case where the ratio between O2Hb and HHb signals is lower than one. 
However, as explained above, this is not necessarily always the case.  

Appendix 2 

We checked whether the three participants common to the training and validation datasets 
introduced any bias in the classification. In order to do so, we split the validation dataset into 
two sets: one with only the common participants (set A) and the other with only the additional 
participant not present in the training dataset (set B). We compared the binary classification 
performance of the algorithms for each of these sets (see Table 8). We found that the 
performances of the algorithms were consistent for both sets of data and thus conclude that 
there was no bias in the classification.  
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Table 8: Accuracy for comparing the performance of the considered algorithms in binary classification of the fNIRS 
signal quality on two sets of the validation dataset: one with the participants common to both training and validation 
datasets (set A) and the other with only the additional participant not present in the training dataset (set B). 

Method Accuracy (%) for set A Accuracy (%) for set B 

SCI 63.3 70 

PHOEBE 76 70 

SQI 96.7 90 

 

Appendix 3 

We further assessed the performance of the SQI algorithm on a validation dataset 
contaminated with motion artifacts, in both quantitatively rating and binary classifying fNIRS 
signal quality. We compared the performance of the SQI algorithm with the performance of 
SCI and PHOEBE. The dataset used comprised 35 10-second signal segments, which had 
been excluded in the training phase as signal segments containing motion (see section 2.1.1). 
Figure 9 shows one of the signal segments rated as having motion artifacts by all annotators 
in the training phase.  

 
Figure 9: A sample signal segment contaminated with motion artifacts. This signal segment was rated as 
containing motion artifacts by all annotators in the training phase. (A) Orange and black curves represent the 
detrended optical density signals for the wavelengths 846 and 757 nm, respectively. (B) Red and blue curves 
represent the detrended changes in O2Hb and HHb concentrations, respectively. 

A3.1. Quantitative rating performance 
For each of the three algorithms, estimated ratings in the 1-5 scale were obtained for the 
motion corrupted validation dataset by applying the linear models fitted on the training dataset 
(see Materials and Methods, section Quantitative rating performance). Quantitative measures 
showing the similarity between the mean annotators ratings and the estimated ratings are 
reported in Table 9. While PHOEBE explained 31% (p-value < 0.01) of the variance, SQI and 
SCI explained 20% and 11% (p-value < 0.05) of the variance, respectively. SCI and PHOEBE 
had a lower standard deviation of error than SQI. The mean of error of all considered 
algorithms was below 0.9, and was higher for SCI than for SQI and PHOEBE.  
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Table 9: Quantitative measures for comparing the performance of the considered algorithms in quantitatively rating 
the fNIRS signal quality on the motion-corrupted validation dataset.   

Method ME a StdE b r2 
p-value of 

correlation c 

SCI 0.87 1.06 0.11 <0.05 

PHOEBE -0.18 0.91 0.31 <0.01 

SQI 0.03 1.39 0.20 <0.01 
a Mean of error. 
b Standard deviation of error. 
c P-values were corrected for multiple comparisons applying the Benjamini-Hochberg method. 

A3.2. Binary classification performance 
For the three considered algorithms, we compared the binary classification performance on 
the motion corrupted validation dataset as explained in Materials and Methods, section Binary 
classification performance. The binary classification performance results are reported in Table 
10. Both SQI and PHOEBE algorithms performed with an accuracy higher than chance level 
(50%), while SCI performance was below chance level. Although SCI showed the highest 
specificity and precision (100%), its sensitivity and F1-score were very low, and were the 
lowest of the three algorithms.  

Table 10: Performance measures for comparing the performance of the considered algorithms in binary 
classification of the fNIRS signal quality on the motion-corrupted validation dataset. 

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) 

SCI 28.57 7.41 100 100 13.79 

PHOEBE 80 92.59 37.50 83.33 87.72 

SQI 65.71 74.07 37.50 80 76.92 

The results of the statistical comparison of the binary performance of all algorithms against 
each other are reported in Table 11. These results show that SQI and PHOEBE did not 
perform significantly differently from each other (p-value > 0.05).  However, both algorithms 
performed significantly differently (p-value < 0.01) from SCI at binary classifying fNIRS signals 
quality.  
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Table 11: Z-scores and p-values calculated by applying McNemar’s binomial test to compare the classification 
accuracies between each pair of algorithms with respect to the binarized mean annotators ratings on the motion-
corrupted validation dataset. P-values were corrected for multiple comparisons applying the Benjamini-Hochberg 
method. 

 SCI PHOEBE SQI 

SCI - 
z(35) = -2.94, 

p < 0.01 
z(35) = -2.33, 

p < 0.01 

PHOEBE 
z(35) = -2.94, 

p < 0.01 
- 

z(35) = -1.47, 
p > 0.05 

SQI z(35) = -2.33, 
p < 0.01 

z(35) = -1.47, 
p > 0.05 

- 
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Abstract 

Cortical hemodynamics are reliably estimated using functional near infrared spectroscopy 
(fNIRS) when the recorded signals have sufficient quality. A poor signal quality leads to false 
findings in the analysis. It is therefore important to assess the fNIRS signal quality prior to 
signal analysis. In this study, we developed a machine learning-based algorithm that 
quantitatively rates the fNIRS signal quality in a numeric scale from 1 (very low quality) to 5 
(very high quality). The algorithm consists of three main stages: 1) preprocessing, 2) feature 
extraction, where 14 morphological and temporal features are extracted, 3) regression, where 
the signal quality is estimated using a Gaussian SVM regressor. The performance of the 
proposed algorithm was validated on a manually annotated fNIRS dataset and was compared 
with the performance of the state-of-the-art algorithms SCI (Scalp Coupling Index), PHOEBE 
(Placing Headgear Optodes Efficiently Before Experimentation), and SQI (Signal Quality 
Index). The results showed our proposed algorithm performed significantly better (p-value < 
0.05) than SCI, PHOEBE, and SQI in both quantitatively rating (r2 = 0.76) and binary rating 
(accuracy = 90%) fNIRS signal quality. The use of this algorithm for fNIRS signal quality 
assessment can help increase the reliability of statistical analyses and reduce 
misinterpretations. 
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1. Introduction 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that 
monitors changes in brain hemodynamics (blood perfusion) and oxygenation [1–7]. fNIRS is 
commonly used to investigate brain activity not only in experimental conditions, but also in 
clinical settings, in which monitoring cerebral oxygenation can contribute to the identification 
of deficits in cerebral oxygenation [8]. However, brain monitoring can be highly compromised 
if low quality signals are collected, leading to misinterpretations and false findings in the 
analysis [9]. Therefore, it is essential to assess fNIRS signal quality prior to signal analysis. 

To assess fNIRS signal quality, the presence of a strong cardiac component is often used as 
the main indicator of a good optode-scalp coupling [10–12]. A good optode-scalp coupling 
guarantees that near infrared light travels through both cerebral and extracerebral 
compartments. For reaching cerebral compartments, the distance between near-infrared 
transmitter and receiver has to be sufficient (~3 cm). Part of the light is absorbed by the 
hemoglobin chromophores in the tissue, while another part of the light is backscattered and 
measured by the receivers. The received light (fNIRS signals) contains functional and 
systemic hemodynamic information from both cerebral and extracerebral compartments. 
Among the systemic hemodynamic information, the most prominent component is the 
heartbeat, which manifests itself as a pulsatile component in the fNIRS signals. Therefore, 
heartbeat presence in the fNIRS signals indicates that optodes are well coupled to the scalp 
and that enough light has reached the brain and backscattered to the receiver. The more 
visible this pulsatile component is in the signal, the better the optode-scalp coupling and, 
hence, the signal quality. Extrinsic factors, such as loose connection between the optodes and 
the skin, hair or scalp properties can diminish this coupling [13], limiting the light pathway and 
thus reducing the quality of the fNIRS signals.  

Three algorithms based on morphological characteristics of good quality signals have 
previously been proposed for fNIRS signal quality assessment:  SCI (Scalp Coupling Index 
[10]), PHOEBE (Placing Headgear Optodes Efficiently Before Experimentation [11]), and SQI 
(Signal Quality Index [12]). SCI and PHOEBE were designed to binarily discriminate between 
good and bad quality signals. However, a binary classification is not always desirable as it 
provides only two quality levels and may not accurately reflect the different levels of a good 
quality signal. In challenging cases where light absorption in the brain is hindered due to 
extrinsic factors, very high quality signals are difficult to achieve. In these cases, signals having 
a quality level on the edge of the binary decision boundary can still contain functional 
information and be sufficient for certain types of analyses. A quantitative signal quality rating, 
therefore, provides more insight about different quality levels, which is beneficial for 
subsequent analyses and interpretations.  

In a previous study [12], we proposed the signal quality index (SQI) algorithm to address this 
issue by providing a quantitative rating of 5 levels. We showed that SQI performed significantly 
better than SCI and PHOEBE in both binary classifying and quantitatively rating fNIRS signal 
quality. This algorithm was based on fNIRS experts' heuristics used in the visual quality 
assessment of fNIRS signal quality. We hypothesize that a better performance could be 
achieved by using a machine learning approach and incorporating more features. This 
approach allows us to leverage both human expertise and the mathematical capabilities of 
machine learning algorithms.  
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In this study we introduce a novel algorithm for fNIRS signal quality assessment, based on 
machine learning: Machine Learning Based Signal Quality Index (MLSQI). MLSQI is capable 
of assessing the fNIRS signal quality of 4-second signal segments, providing a quantitative 
rating on a scale from 1 (very low signal quality) to 5 (very high signal quality). MLSQI 
considers different morphological and temporal features in the fNIRS signals to determine the 
strength of the optodes coupling with the scalp, providing the fNIRS research community with 
an objective estimate of fNIRS signal quality and eliminating the researchers’ subjective bias. 
We compare the performance of our proposed MLSQI algorithm with that of the currently 
existing algorithms, SCI, PHOEBE and SQI. We show that MLSQI outperforms these 
algorithms in quantitatively rating as well as in binary classifying the fNIRS signal quality.  

2. Materials and methods 

2.1. Data collection and annotation 
We assembled two sets of data from previous recordings: a training dataset, to develop and 
fit the parameters of the algorithm; a validation dataset, to provide an unbiased evaluation of 
the performance of the algorithm on an unseen set of data. 

2.1.1. Training dataset 
The training dataset consisted of 4-second signal segments extracted from the motion-free 
training dataset used in Sappia, Hakimi et al. [12]. These data consisted of fNIRS recordings 
of healthy adult volunteers collected with the following devices: OctaMon, Brite 23, Brite 24, 
and OxyMon (all by Artinis Medical Systems B.V., Elst, The Netherlands). Originally, the 
dataset comprised 123 10-second signal segments of optical densities measured at two 
different wavelengths and concentration changes in oxygenated hemoglobin (O2Hb) and 
deoxygenated hemoglobin (HHb), sampled at 50 Hz. The dataset was annotated by seven 
independent fNIRS experts working at Artinis Medical Systems B.V., who rated all 123 10-
second signal segments on an ordinal scale ranging from 1 (very low quality) to 5 (very high 
quality). The 4-second signal segments used in this study were obtained by taking the initial 
and last 4 seconds of each 10-second signal segment, resulting in a total of 246 4-second 
signal segments. For each of these 4-second signal segments, the annotators ratings of the 
corresponding 10-second signal segment were used. 

2.1.2. Validation dataset 
The validation dataset consisted of 4-second signal segments extracted from the validation 
dataset used in Sappia, Hakimi et al. [12], as well as from a new set of data assembled from 
previously recorded, unpublished data. The 4-second signal segments corresponding to the 
validation dataset used in Sappia, Hakimi et al. [12] were extracted in the same way as for the 
training dataset. The resulting validation dataset used in this study consisted of fNIRS 
recordings of healthy adult volunteers collected with the following devices: OctaMon, Brite 23, 
Brite 24, and OxyMon (all by Artinis Medical Systems B.V., Elst, The Netherlands). It 
comprised 123 4-second signal segments of optical densities measured at two different 
wavelengths, as well as HHb and O2Hb concentration changes. All signals were sampled at 
50 Hz. Nine independent fNIRS experts working at Artinis Medical Systems B.V. rated the 
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signal quality of the signal segments on an ordinal scale ranging from 1 (very low quality) to 5 
(very high quality).  

2.2. Algorithm description 
The MLSQI algorithm consists of three stages. In the first stage (preprocessing), the 
segmented light intensities are converted to optical densities (ODs) and concentration 
changes in O2Hb and HHb, which is followed by two preprocessing steps. In the second stage 
(feature extraction), 14 morphological and temporal features are extracted from the 
preprocessed ODs, O2Hb, and HHb signal segments. In the third stage (regression), an SVM 
regressor model is trained based on the extracted 14 features, giving as output a quantitative 
signal quality rating. 

2.2.1. Preprocessing 
First, the received light intensities digitized with 16-bit resolution and segmented in 4-second 
windows were converted to optical densities (OD). We then converted the optical densities 
into O2Hb and HHb signals by applying the modified Beer-Lambert law [14]. Next, we applied 
two preprocessing steps to OD, O2Hb, and HHb signal segments. In the first step, we 
detrended the OD, O2Hb, and HHb signal segments by subtracting the least-squares fit of a 
straight line to the data. In the second step, we applied a band-pass filter on these signal 
segments using a zero-phase forward Hamming-windowed sinc FIR filter of order 208 with 
cutoff frequencies (−6 dB) of 0.4 Hz and 3 Hz. The transition width of the filter was of 0.8 Hz, 
with a passband between 0.8 - 2.6 Hz, and a stopband (−53 dB) between 3.4 - 25 Hz. The 
filter order was estimated based on the normalized transition width for the Hamming window 
[15]. This band-pass filter was implemented using the ft_preproc_bandpassfilter function in 
the FieldTrip toolbox [16], commit 62c9a0d on master branch. To avoid edge artefacts, prior 
to filtering, the signal segments were zero-padded with a sample length corresponding to two 
seconds of data both in the beginning and end of the signal segment. 

2.2.2. Feature extraction 
We extracted 14 morphological and temporal features based on the cardiac component 
present in fNIRS signals. The cardiac component manifests in fNIRS signals in the shape of 
semi-periodic pulses, of frequency within the heart rate range. The optical density signals OD1 
(OD measured for the longer wavelength) and OD2 (OD measured for the shorter wavelength) 
capture this rhythmicity (see Figure 1). Hence, for high quality fNIRS signals, both OD1 and 
OD2 signals have similar shapes but with different amplitudes. Therefore, the normalized 
cross-correlation between the optical densities (OD_corr) from high quality fNIRS signals 
results in a damped sinusoidal signal, symmetrical around the y-axis (see Figure 1 (E)). The 
peaks of this normalized cross correlation signal correspond to the lags where the pulses of 
the shifted OD signal align with those of the fixed one. The troughs correspond to the lags 
where the peaks of one OD signal align with the troughs of the other. We extracted 12 features 
(A0 - LT2, see below) from the normalized cross correlation signal (OD_corr), which represent 
the pulsatility of the signal (see Figure 2). We used the OD_corr signal from zero-lag onwards 
to extract these features. Two additional features were also extracted: one from the OD signals 
(sumOD_ratio) and the other from the O2Hb and HHb signals (Hb_corr). The extracted 
features are described in Table 1. 
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Table 1: The 14 features extracted in the feature extraction stage of the MLSQI algorithm from the normalized 
cross correlation (OD_corr), optical densities, and O2Hb and HHb signals.    

Feature Description 

A0 Amplitude of OD_corr at lag zero 
P1 Amplitude of the first peak in OD_corr signal 
LP1 Lag of the first peak in OD_corr signal 
P2 Amplitude of the second peak in OD_corr signal 
LP2 Lag of the second peak in OD_corr signal 
P3 Amplitude of the third peak in OD_corr signal 
LP3 Lag of the third peak in OD_corr signal 
T1 Amplitude of the trough between the first and second peaks in OD_corr signal 
LT1 Lag of the trough between the first and second peaks in OD_corr signal 
T2 Amplitude of the trough between the second and third peaks in OD_corr signal 
LT2 Lag of the trough between the second and third peaks in OD_corr signal 

hr 

This feature considers the heart rate information in OD_corr signal. To compute this feature, 
we first obtained the lag intervals between the second and first peaks (LP2 - LP1) and 
between the third and second peaks (LP3 - LP2) and converted them to frequency in Hertz 
by inverting them. Then, we computed the estimated heart rate in beats per minute (BPM) by 
taking the mean of both frequencies multiplied by 60. 

sumOD_ratio 

This feature considers the difference in scale between both optical density signals. To 
compute this feature, the ratio between the sum over samples of the absolute value of OD1 
(optical density for the longer wavelength) and the sum over samples of the absolute value 
of OD2 (optical density for the shorter wavelength) was taken: 𝑠𝑢𝑚𝑂𝐷_𝑟𝑎𝑡𝑖𝑜 =
 ∑|𝑂𝐷1| / ∑|𝑂𝐷2|, where |x| represents the absolute value of x. 

Hb_corr Pearson correlation coefficient between the O2Hb and HHb signals 
 

 
Figure 1: Two sample signal segments, one having a very high quality (left column) and the other having a very 
low quality (right column), according to the ratings of all annotators. (A, B) Red and blue curves represent the 
detrended changes in O2Hb and HHb concentrations, respectively. (C, D) Orange and black curves represent the 
detrended optical density signals for the longer and shorter wavelengths, respectively. (E, F) These curves 
represent the cross-correlation signals calculated between the detrended optical density signals. 
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Figure 2: Cross correlation (OD_corr) between the detrended optical density signals, and 11 of the 12 features 
extracted from it. Feature A0 corresponds to the amplitude of OD_corr at lag zero. Features P1, P2, and P3 
correspond to the amplitude of the first, second, and third peaks in the OD_corr signal, respectively; while features 
LP1, LP2, and LP3 correspond to the lags of the first, second, and third peaks in the OD_corr signal, respectively. 
Analogously, features T1, T2, and T3 correspond to the amplitude of the first, second, and third troughs in the 
OD_corr signal, respectively; while features LT1, LT2, and LT3 correspond to the lags of the first, second, and third 
troughs in the OD_corr signal, respectively. 

2.2.3. Regression 
After feature extraction, we trained a gaussian SVM regressor on the training dataset to 
estimate fNIRS signal quality, giving a quantitative signal quality rating between 1 (very low 
signal quality) and 5 (very high signal quality) as output. We used MATLAB’s fitrsvm function 
to build and train the model, with parameter box constraint 𝐶 = 0.7413, epsilon margin 𝜀 =
0.0741, and kernel scale 𝑘 = 3.7. All features were standardized to have zero mean and unit 
variance.  

2.3. Performance assessment 
We assessed the performance of the MLSQI algorithm in: 1) quantitatively rating the signal 
quality between 1 (very low signal quality) and 5 (very high signal quality); 2) binary classifying 
the signal quality (good or bad signal quality). We compared its performance with the 
performance of three existing fNIRS signal quality algorithms: SCI, PHOEBE, and SQI. All 
computation and analysis in this study were done using MATLAB R2019b (MathWorks, Natick, 
Massachusetts), on an ASUS workstation with Intel Core-i7-8565U @ 1.99 GHz CPU and 16 
GB RAM. 

SCI quantifies the similarity of the cardiac component in both optical densities to determine 
the strength of the coupling between the scalp and the optodes. The algorithm computes the 
zero-lag cross-correlation between both optical density signal segments as a quantitative 
measure of the signal-to-noise ratio of the signal segment. According to the original 
implementation of the SCI algorithm [10], signal segments with a zero-lag cross-correlation 
value above 0.75 are considered good quality signals, and all other signal segments are 
considered bad quality signals. The PHOEBE algorithm evaluates the similarity of both optical 
density signal segments by means of the SCI metric, as well as the spectral power of their 
cross-correlation to determine the strength of the cardiac component. According to the original 
implementation of the PHOEBE algorithm [11], signal segments with a zero-lag cross-
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correlation value above 0.75 as well as a spectral value above 0.1 are considered good quality 
signals, otherwise they are considered bad quality signal segments. Both SCI and PHOEBE 
algorithms were designed for binary classifying fNIRS signal quality into good and bad quality 
signals. The SQI algorithm, in turn, is capable of quantitatively assessing the quality of fNIRS 
signals on a numeric scale from 1 (very low quality) to 5 (very high quality). It is composed of 
three different rating stages: identifying very low quality signals, identifying very high quality 
signals, and signal quality rating. Each of these stages includes one or more features that 
translate heuristics obtained by visual assessment of fNIRS signal quality into a numeric 
rating. All three algorithms were computed as implemented by the authors of the original 
papers [10–12]. 

2.3.1. Quantitative rating performance 
To assess the performance of the MLSQI algorithm in quantitatively rating fNIRS signal 
quality, we compared the ratings obtained for the algorithm in the 1-5 scale and contrasted 
them with the mean annotators’ ratings. We compared its performance with that of the SCI, 
PHOEBE, and SQI algorithms. These three algorithms were compared in a similar way as 
described in Sappia, Hakimi et al. [12]. The linear model for each of the algorithms was built 
on the training dataset used in this study, by computing a least squares regression between 
the mean annotators’ ratings and the raw values of the rating feature. The ratings obtained for 
each of the algorithms in a 1-5 scale will be hereon referred to as estimated ratings. 

Bland Altman limits of agreement (BLA [17]) were computed between the mean annotators 
ratings and the estimated ratings derived from the three algorithms: SCI, PHOEBE, SQI, and 
MLSQI. Bland Altman limits of agreement were computed by calculating 1.96 times the 
standard deviation of the error, representing the range in which 95% of the differences 
between the mean annotators ratings and estimated ratings fell. Three quantitative measures 
were calculated to further compare the performance of the evaluated algorithms: mean of error 
(ME), standard deviation of error (StdE), and coefficient of determination (r2) assessed by 
Pearson’s correlation coefficient. To test for the significance of the correlation, we applied a 
significance level α=5% and computed the p-value using a Student’s t-distribution as 
implemented in Matlab's corr function. In addition to the three quantitative measures, the 
computation time using our reference implementation in MATLAB R2019b (MathWorks, 
Natick, Massachusetts) for a single signal segment was measured five times and then 
averaged to compare the time required for each of the algorithms to obtain the estimated 
rating. 

2.3.2. Binary classification performance 
To conduct binary classification for the proposed MLSQI algorithm, we thresholded the 
quantitative ratings at a value of 3.5 (see Sappia, Hakimi et al. [12]). Signal segments with a 
value equal or higher than this threshold was classified as “good quality” signals. They were 
otherwise classified as “bad quality” signals. The same threshold was applied to the 
annotators ratings in order to obtain the reference binary ratings. For SCI, PHOEBE, and SQI, 
we used the thresholds proposed in the original papers [10–12]: a zero-lag cross-correlation 
value of 0.75 for the SCI algorithm, a peak spectral power of 0.1 for the PHOEBE algorithm, 
and a threshold of 1.478 for the rating feature in the signal quality rating stage for the SQI 
algorithm. For these algorithms, signal segments with values equal or higher than the 
considered thresholds were classified as “good quality” signals. They were otherwise 
classified as “bad quality” signals. 
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Accuracy, sensitivity, specificity, precision, and F1-Score were computed as performance 
measures in the binary classification of the signal quality. We applied McNemar’s binomial 
test [18] with a significance level α=5% to assess whether the classification accuracies 
obtained for the different algorithms were significantly different from each other. We applied 
the Benjamini-Hochberg method [19] to correct for multiple comparisons. 

3. Results 

3.1. Quantitative rating performance 
Figure 3 illustrates the scatter plots for SCI, PHOEBE, SQI and MLSQI algorithms, comparing 
their ratings with the mean annotators’ ratings. MLSQI shows a better fit to the mean 
annotators’ ratings than SCI, PHOEBE, and SQI, although a significant positive correlation 
can be observed for all algorithms (all p < 0.01). MLSQI explains a higher percentage of 
variance, with a value of 76% in contrast to 45% for SCI, 40% for PHOEBE, and 70% for SQI. 
Data points in the scatter plots for the SCI, PHOEBE and SQI algorithms are more sparsely 
distributed around the y = x line than for MLSQI. This is reflected by the higher Bland Altman 
limits of agreement obtained for SCI (BLA=1.80), PHOEBE (BLA=1.92), and SQI (BLA=1.61) 
with respect to MLSQI (BLA=1.20). Quantitative measures showing the similarity between the 
mean annotators’ ratings and estimated ratings for each of the algorithms are reported in Table 
2. MLSQI showed a lower standard deviation of error (0.61) than SCI (0.92), PHOEBE (0.98), 
and SQI (0.82). The absolute mean of error of all considered algorithms was below 0.5, with 
PHOEBE obtaining the lowest value (0.08). The computation time took the longest (107 ms) 
for the MLSQI algorithm, approximately ten, five, and two times as much as for the SCI, 
PHOEBE, and SQI algorithms, respectively. 

 

Figure 3: Scatter plots for the estimated ratings in the 1-5 continuous scale. The scatter plots show the estimated 
ratings (y axis) for each of the signal segments with respect to the mean annotators’ ratings (x axis). Each dot 
represents a single signal segment in the validation dataset. The full gray and black lines represent the y=x line 
and mean of error, respectively. The dashed lines represent the Bland Altman limit of agreements. The figure 
shows the scatter plots for: SCI (A), PHOEBE (B), SQI (C), and MLSQI (D). 
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Table 2: Quantitative measures for comparing the performance of the considered algorithms in quantitatively rating 
fNIRS signal quality on the validation dataset.   

Method ME a StdE b r2 p-value of 
correlation c 

Computation 
Time d (ms) 

SCI -0.14 0.92 0.45 <0.01 9.58 

PHOEBE 0.08 0.98 0.40 <0.01 20.63 

SQI -0.43 0.82 0.70 <0.01 49.72 

MLSQI -0.28 0.61 0.76 <0.01 107.21 
a Mean of error. 
b Standard deviation of error. 
c P-values were corrected for multiple comparisons applying the Benjamini-Hochberg method [19]. 
d The computation time was calculated for a single signal segment using our reference implementation in MATLAB R2019b 
(MathWorks, Natick, Massachusetts) without considering the time for the training of the model. 

3.2. Binary classification performance 
We compared the performance of the four considered algorithms on the validation dataset in 
binary classifying the signal segments into “bad quality” and “good quality” signals. We 
binarized the outputs of the algorithms as well as the mean annotators ratings, as detailed in 
Materials and Methods (section 2.3.2). The binary classification performance results are 
reported in Table 3.  All considered algorithms performed significantly differently from each 
other in binary classifying fNIRS signal quality. All considered algorithms performed with an 
accuracy higher than chance level (50%). The accuracy for the MLSQI algorithm 
(accuracy = 90.2%) was approximately 30% higher (p-value < 0.01) than SCI 
(accuracy = 58.5%), 25% higher (p-value < 0.01) than PHOEBE (accuracy = 64.2%) and 5% 
higher (p-value < 0.05) than SQI (accuracy = 85.4%). Although both PHOEBE and SCI 
obtained values higher than or equal to 95% for both specificity and precision, they obtained 
low sensitivity values: 27.5% for SCI and 37.7% for PHOEBE. This shows that, despite 
correctly classifying the majority of good quality signals, they did not perform well at classifying 
bad quality signals. This is reflected in the lower accuracy and F1-score obtained for both 
algorithms compared to MLSQI and SQI. Conversely, both MLSQI and SQI algorithms showed 
high values for the three metrics, with MLSQI obtaining the highest. The results of McNemar’s 
binomial test, conducted to test the significance of the performance difference between the 
algorithms, are reported in Table 4. All considered algorithms performed significantly 
differently (p-value < 0.05) from each other at binary classifying fNIRS signal quality.  

Table 3: Performance measures for comparing the performance of the considered algorithms in binary 
classification of fNIRS signal quality on the validation dataset. 

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) 

SCI 58.5 27.5 98.2 95 42.7 

PHOEBE 64.2 37.7 98.2 96.3 54.2 

SQI 85.4 95.7 72.2 81.5 88 

MLSQI 90.2 100 77.8 85.2 92 
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Table 4: Z-scores and p-values calculated by applying McNemar’s binomial test to compare the classification 
accuracies between each pair of algorithms with respect to the binarized mean annotators ratings on the validation 
dataset. P-values were corrected for multiple comparisons applying the Benjamini-Hochberg method. 

 SCI PHOEBE SQI MLSQI 

SCI - z(123) = -2.35, 
p < 0.01 

z(123) = -3.98, 
p < 0.01 

z(123) = -4.65, 
p < 0.01 

PHOEBE z(123) = -2.35, 
p < 0.01 - z(123) = -3.27, 

p < 0.01 
z(123) = -4.05, 

p < 0.01 

SQI z(123) = -3.98, 
p < 0.01 

z(123) = -3.27, 
p < 0.01 - z(123) = -1.76, 

p < 0.05 

MLSQI z(123) = -4.65, 
p < 0.01 

z(123) = -4.05, 
p < 0.01 

z(123) = -1.76, 
p < 0.05 - 

4. Discussion 

In this study, we showed the performance of our proposed machine learning based algorithm, 
MLSQI, for quantitatively rating fNIRS signal quality on a continuous scale from 1 (very low 
signal quality) to 5 (very high signal quality). The proposed algorithm relies on 14 temporal 
and morphological features extracted from the fNIRS signals, which are fed into a medium 
gaussian SVM regressor to provide a quantitative rating. We compared its performance with 
three state-of-the-art algorithms for fNIRS signal quality assessment: SCI, PHOEBE and SQI. 
We found that MLSQI significantly (p < 0.05) outperformed all three algorithms in both 
quantitatively and binary rating fNIRS signal quality. In quantitative rating (see Table 2), 
MLSQI explained a higher percentage of variance (r2 = 0.76, p < 0.01) than SQI (r2 = 0.70, p 
< 0.01), SCI (r2 = 0.45, p < 0.01), and PHOEBE (r2 = 0.40, p < 0.01). In binary rating (see 
Tables 3 and 4), MLSQI performed significantly better (p < 0.05) than SQI, SCI, and PHOEBE, 
in terms of accuracy (90.2%), sensitivity (100%), and F1-score (92%). 

Different features extracted from fNIRS signals have been previously introduced for translating 
current heuristics in the visual assessment of fNIRS signal quality [10–12]. The morphological 
and temporal characteristics of the cardiac pulses in fNIRS signals provide useful information 
about their quality level. Whereas the ideal scenario would be to summarize this information 
in only one metric, as proposed by Pollonini et al. [10] for the SCI algorithm, extraction of 
different features for determining the quality of the signals has shown to improve the 
performance of the algorithms [11,12]. In this study, we extracted 14 features from fNIRS 
signals. These features reflect the strength of the cardiac pulses in the fNIRS signals and their 
stability in the short time window we considered (4 seconds). Our results showed that the 
combination of this greater number of features with a machine learning algorithm significantly 
outperforms algorithms which are based on fewer features.  

In a previous study [12], we proposed the SQI algorithm for quantitatively rating the fNIRS 
signal quality of 10-second signal segments. In some cases, however, it is desirable to assess 
the quality of shorter signal segments in order to provide faster feedback. Therefore, in this 
study we proposed the MLSQI algorithm, which estimates the signal quality of 4-second signal 
segments. However, the computation time for the MLSQI algorithm (107 ms) is approximately 
twice as long as for the SQI algorithm (50 ms) because MLSQI extracts and uses more 
features than SQI. As a consequence, this higher computation time makes MLSQI less 



Chapter 3                                                                                                    

 

 64 

 

suitable than SQI in applications where computation time is critical. It is worth mentioning that 
the computation time of MLSQI was estimated based on an unoptimized MATLAB 
implementation, which is considerably slower than an optimized implementation in a modern 
programming language. Furthermore, computation of many segments can be done 
independently from each other, for example by implementing the algorithm in a parallel 
computing system. 

The MLSQI algorithm showed promising results for both offline and online implementations, 
but further validation is required using more extensive datasets. The datasets used in this 
study only included data from healthy young adults. However, fNIRS brain monitoring is also 
important in clinical applications such as the identification of cerebral ischemia [20], the study 
of atypical development on executive and language dysfunctions, and prognosis of 
neurodevelopmental disorders including autism and attention‐deficit hyperactivity disorder 
[21–24]. Therefore, a dataset comprising signals from infants and older adults as well as from 
subjects with brain abnormalities is needed for further validation.  

In addition, all algorithms evaluated in this study focus solely on long channel fNIRS signals 
(~ 3 - 3.5 cm source-detector separation). However, the use of short channels (~1.5 cm 
source-detector separation) is becoming increasingly popular in fNIRS experiments [25–28] 
and, to the best of our knowledge, no quality measures are currently available for them. 
Therefore, fNIRS signal quality measures should be further developed and validated in sets 
of data comprising both short and long channels. Furthermore, in the present study, we trained 
and evaluated the algorithm in signals free of motion. Further work should be conducted 
regarding motion recognition, since the main applicability of the proposed algorithm is for 
online use, and it might misperform in the presence of motion artifacts. 

Moreover, further studies should be conducted on a dataset where signal segments are rated 
individually. Part of the 4-second signal segments in the training and validation datasets were 
extracted from 10-second signal segments included in a previously published set of data. We 
assigned the same ratings given to each 10-second signal segment to the two corresponding 
4-second signal segments we extracted from it. We assumed that the quality does not greatly 
vary in the short 10-second time window. However, slight variations could occur in this period 
and, therefore, evaluating this algorithm on a set of data where signal segments are rated 
individually would provide more accurate results.  

This study focused on the development of the MLSQI algorithm, which quantitatively rates 
fNIRS signal quality for 4-second signal segments, and outperformed current state-of-the-art 
algorithms: SCI, PHOEBE, and SQI. This algorithm not only helps in properly setting up fNIRS 
optodes prior to conducting experiments in online applications, but it can also be used for 
assessing fNIRS signal quality in offline applications. The widespread use of such an objective 
fNIRS quality assessment algorithm will contribute to eliminating researchers’ subjective bias 
and to collecting good quality data. This will reduce misinterpretations and false findings in the 
analysis of fNIRS signals.  
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Abstract 

Respiration is recognized as a systematic physiological interference in functional near-infrared 
spectroscopy (fNIRS). However, it remains unanswered as to whether it is possible to estimate 
the respiratory rate (RR) from such interference. Undoubtedly, RR estimation from fNIRS can 
provide complementary information that can be used alongside the cerebral activity analysis, 
e.g., sport studies. Thus, the objective of this paper is to propose a method for RR estimation 
from fNIRS. Our primary presumption is that changes in the baseline wander of oxygenated 
hemoglobin concentration (O2Hb) signal are related to RR. fNIRS and respiratory signals were 
concurrently collected from subjects during controlled breathing tasks at a constant rate from 
0.1 Hz to 0.4 Hz. Firstly, the signal quality index algorithm is employed to select the best O2Hb 
signal, and then a band-pass filter with cut-off frequencies from 0.05 to 2 Hz is used to remove 
very low- and high-frequency artifacts. Secondly, troughs of the filtered O2Hb signal are 
localized for synthesizing the baseline wander (S1) using cubic spline interpolation. Finally, 
the fast Fourier transform of the S1 signal is computed, and its dominant frequency is 
considered as RR. In this paper, two different datasets were employed, where the first one 
was used for the parameter adjustment of the proposed method, and the second one was 
solely used for testing. The low mean absolute error between the reference and estimated 
RRs for the first and second datasets (2.6 and 1.3 breaths per minute, respectively) indicates 
the feasibility of the proposed method for RR estimation from fNIRS. This paper provides a 
novel view on the respiration interference as a source of complementary information in fNIRS. 
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1. Introduction 

Over the last 20 years, functional near-infrared spectroscopy (fNIRS) has arisen as an 
effective optical neuroimaging modality for measuring oxygenated (O2Hb) and deoxygenated 
(HHb) hemoglobin concentrations, associated with the neuronal activity [1,2]. Compared to 
other neuroimaging techniques such as electroencephalography (EEG) and functional 
magnetic resonance imaging (fMRI), fNIRS provides better spatial and temporal resolutions, 
respectively [3,4]. Thus, a wide range of studies in different cognitive tasks and clinical settings 
have employed fNIRS, e.g., [5–8]. 

Beside the EEG, due to its portable and non-invasive nature, fNIRS has been also used for 
outdoor applications [9]. In particular, the emergence of lightweight low-channel fNIRS 
equipment has provided a new possibility for non-laborious investigations, e.g., sport studies 
[10–13]. Nevertheless, the susceptibility of fNIRS to artifacts that are stemmed from various 
sources causes a great challenge for the accurate analysis of brain activity [14]. 

Generally, artifacts in fNIRS are classified into two categories: external and physiological 
interference [15,16]. The most prominent example of the former is motion artifacts, manifested 
by abrupt changes in the signal [17,18]. The latter is the interference originated from 
physiological systemic activities such as heart rate, blood pressure, Mayer waves, and 
respiration [19]. 

Nevertheless, despite a majority of studies that have considered physiological interference as 
source of artifacts in fNIRS, a few investigations have showed that such an interference can 
provide useful information for enhancing the accuracy of cerebral activity analysis. For 
example, Svinkunaite et al. [20] showed that using cardiac and respiratory features extracted 
from the fNIRS spectrum can enhance the accuracy of mental workload classification when 
employed alongside fNIRS temporal analysis. More interestingly, Hakimi et al. [21] showed 
the synergy of combining fNIRS temporal analysis alongside the extracted heart rate variability 
(HRV) for the stress assessment. According to the reported results by the authors, employing 
the extracted HRV from fNIRS improved the accuracy of classification by 10%. 

Besides the heart rate, respiration is another physiological interference that is vividly 
observable in the fNIRS spectrum (usually ranging from 0.2 to 0.4 Hz) [22]. According to the 
best of our knowledge, no research has yet considered the possibility of respiratory rate (RR) 
estimation from fNIRS. This is while fNIRS is being employed in several applications where 
RR can also play an important role, e.g., meditation [23], stress assessment [24], and exercise 
[10]. Unarguably, such an estimation can provide complementary information to be used in 
conjunction with the cerebral activity analysis. 

Motivated accordingly, we propose a new method for estimating RR from fNIRS. Inspired by 
the studies that estimated RR from the photoplethysmography (PPG) [25], our hypothesis is 
that the baseline wander of fNIRS also might be related to alternations in the respiration. On 
the other hand, it has been shown that respiration has a stronger influence on the O2Hb than 
the HHb signal [26]. Hence, the basis of our method is to (i) extract the troughs of the O2Hb 
signal, (ii) synthesize the baseline wander using the cubic spline interpolation of the extracted 
troughs, and (iii) find the dominant frequency of the baseline wander to estimate RR. In order 
to assess the performance of the proposed method, two different datasets are used. The first 
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one is used to adjust the parameters of proposed method whereas the second one is only 
used for testing. 

2. Methods 

The block diagram of the proposed method for RR estimation from fNIRS signals is shown in 
Figure 1. It mainly consists of two stages: pre-processing (A) and RR estimation (B). In the 
subsections below, each step of the proposed method is explained in detail. 

 
Figure 1: The block diagram of the proposed method. It should be noted that for the sake of clarity, fNIRS signals 
are shown only for 10 s. 

2.1. Preprocessing 
One the most important steps in every fNIRS-based study is to find high quality data for the 
analysis [27]. Thus, we have employed the signal quality index (SQI) [28] algorithm, which 
quantitatively scores fNIRS data in a numeric scale from 1 (very low quality) to 5 (very high 
quality). To compute the SQI, firstly, the modified Beer-Lambert law [29] is applied to covert 
the optical density (OD) signals into O2Hb and HHb changes in concentration. Secondly, OD, 
O2Hb, and HHb signals are detrended by subtracting the least-squares fit of a straight line to 
the data. Thirdly, a 208th-order zero-phase FIR band-pass filter with cutoff frequencies at 0.4 
Hz and 3 Hz is applied on the signals from the previous step. Finally, several features are 
extracted from the filtered signals, and each channel is scored numerically between 1 and 5. 
It should be also noted that the SQI is computed based on 10 s windows. For a more detailed 
explanation, see [28]. After finding the highest quality channel, a zero-phase FIR band-pass 
filter with cut-off frequencies between 0.05 and 2 Hz is used for the removal of very low- and 
high-frequency artifacts from the selected O2Hb signal via the SQI algorithm. 
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2.2. RR Estimation 
2.2.1. Trough Detection 
Inspired from the PPG-based studies to estimate RR [25,30], our assumption is that 
alternations in the baseline wander of O2Hb signal can be related to RR. To this end, the 
fiducial points of O2Hb signal, i.e., the peaks and troughs, can be used. As shown in Figure 
2, the synthesis of the baseline wander from troughs, compared to peaks, are more convenient 
as they are not subjected to dicrotic notch-induced peak fluctuations. 

 
Figure 2: An example of 𝑂2𝐻𝑏 signal with its corresponding peaks (blue) and troughs (black). 

To localize the troughs, firstly, the filtered O2Hb signal, 𝑥(𝑛), is normalized to between −1 and 
1. Then, the local minima that have a value lower than 𝑇ℎ1 = 𝐴 ×𝑀𝑒𝑎𝑛(𝑥(𝑛)) are considered 
as the potential troughs (Figure 3(a)). Yet, the emergence of motion artifacts can still 
jeopardize the accurate synthesis of baseline wander (Figure 3(b)). To overcome this problem, 
after localizing the troughs, their corresponding magnitudes are set on a vector, 𝑧(𝑛), and 
elements with values lower than 𝑇ℎ2 = 𝑀𝑒𝑎𝑛(𝑧(𝑛)) + 𝐵 × 𝑠𝑡𝑑(𝑧(𝑛)) are discarded (Figure 
3(c)). The coefficients A and B are constants that will be regulated empirically (see Section 
4.1.1). The main steps of trough detection are summarized in Algorithm 1. 

Algorithm 1 Localization of 𝑂2𝐻𝑏 signal troughs 

Input: 𝑂2𝐻𝑏 signal 𝑥(𝑛), constants A, B 

Output: Troughs, K 

 Initialization 𝑇ℎ1← 0, 𝑇ℎ2← 0, 𝐽← [ ], 𝐾← [ ] 

1: 𝑥(𝑛)← Normalize (𝑥(𝑛)) 

2: 𝑇ℎ1← A × Mean (𝑥(𝑛)) 

3: for 𝑖=2 to length(𝑥(𝑛))−1 do 

4:    if 𝑥(𝑖)<𝑥(𝑖−1) && 𝑥(𝑖)<𝑥(𝑖+1) && 𝑥(𝑖)<𝑇ℎ1 then 

5:      𝐽←[𝐽𝑖] 

6:    end if 

7: end for 
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8: 𝑧(𝑛)←𝑥(𝐽) 

9: 𝑇ℎ2← Mean (𝑧(𝑛)) + B × std (𝑧(𝑛)) 

10: for 𝑖=1 to length(𝑧(𝑛)) do 

11:    if 𝑧(𝑖)>𝑇ℎ2 then 

12:      𝐾=[𝐾𝑖] 

13:    end if 

14: end for 

15: return K 

 
Figure 3: An example of the trough detection. The filtered O2Hb signal (a), the selected troughs after employing 
𝑇ℎ1 (b), and 𝑇ℎ2 (c). 

2.2.2. Forming the Baseline Wander Signal 
After extracting the troughs, the corresponding time series, i.e., baseline wander, needs to be 
re-sampled. This is a necessary step, as the baseline wander generated from the troughs is 
irregularly sampled, whereas the following analysis needs a regularly sampled signal [25]. For 
this aim, the cubic spline interpolation method is employed, which approximates a signal by 
connecting a series of points through a polynomial equation that passes through all of those 
points continuously.  

2.2.3. FFT for RR Estimation 
After synthesizing the baseline wander, non-respiratory oscillations, i.e., very-low-frequency 
components, should be filtered, as they can hinder the identification of the dominant frequency 
in the FFT domain (Figure 4(a)) [25,31]. For this aim, a moving average (MA) filter is used. 
After MA filtering, the dominant frequency of baseline wander (Figure 4(b)) is multiplied by 60 
to estimate RR in breaths per minute (BPM). Although it can be argued that applying the MA 
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may also influence the baseline wander, the MA filtering removes very-low-frequency 
components (below 0.04 Hz) that are not in the frequency range of RR for healthy subjects. 
The regulation of the moving average filter’s length is described in Section 4.1.2. The summary 
of RR estimation procedure after extracting the troughs of O2Hb signal is presented in 
Algorithm 2. 

Algorithm 2 Estimation of the RR from the 𝑂2𝐻𝑏 signal’s baseline wander 

Input: 𝑂2𝐻𝐵 signal 𝑥(𝑛), Troughs of 𝑂2𝐻𝐵 signal K, and the length of moving average 

 filter L 

Output: 𝑅𝑅 

1: 𝑚(𝑛)← Spline (K, 𝑥(𝐾), 1 to length(𝑥(𝑛))) 

2: 𝑀𝐴←1𝐿× ones(L,1) 

3: 𝑆(𝑛)← filtfilt(𝑀𝐴,1,𝑚(𝑛)) 

4: 𝐺(𝑛)←𝑚(𝑛)−𝑆(𝑛) 

5: [𝑃,𝐹]← FFT (𝐺(𝑛)) 

6: 𝑟← find(𝑃(𝐹)← Max(𝑃(𝐹))) 

7: 𝑅𝑅← r × 60 

8: return 𝑅𝑅 

 
Figure 4: The FFT of the baseline wander before (a) and after (b) employing the MA filtering. The red dot stands 
for dominant frequency in the FFT domain. Note that the reference RR is 0.4 Hz in this example. 

2.3. Evaluation Criteria 
The performance of trough and motion-induced artifact detection is assessed using the critical 
success index (CSI), defined as 

𝐶𝑆𝐼 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (1) 

where 𝑇𝑃, 𝐹𝑁, and 𝐹𝑃 stand for correctly, missed, and wrongly detected trough and artifactual 
samples. Regarding RR estimation, the absolute error (AE) between the reference RR 
obtained from the respiratory signal and estimated RR from O2Hb signal is employed as 
follows: 



Chapter 4                                                                                                    

 

 76 

 

𝐴𝐸 =  |𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑅𝑅 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑅𝑅| (2) 

To investigate whether there is a significant difference between the estimated and reference 
RRs, the paired samples t-test with a significance level of 0.05 was performed for each subject. 

3. Data 

In this paper, two different datasets are employed. The first one is used to adjust the 
parameters of the proposed method, whereas the second one is only used for testing. Two 
different fNIRS devices were used for each dataset, and the reference respiratory signals were 
recorded simultaneously using a chest-band with a TMSi SAGA 32+/64+ amplifier (Twente 
Medical Systems International B.V., Oldenzaal, The Netherlands) at a sampling rate of 4000 
Hz. 

3.1. Data Recording Protocol 
Before starting the experiment, the subjects were briefed on the procedure and instructed on 
how to perform the tasks, in English. The data recording protocol for RR estimation, which 
was adapted from [32–34], is shown in Figure 5. As displayed, it consisted of one block of a 
resting period lasting for 60 s (A), followed by two blocks of breathing control tasks (B and D), 
separated by a 30 s rest period (C). Subsequently, the same blocks were repeated (E to H). 
The subjects were asked to inhale and exhale at a constant pace and at specific rates while 
watching a bar moving vertically together with a text showing inhale- or exhale phases on the 
screen. Each block of the breathing control task consisted of 5 steps with a constant RR over 
a period of 50 s. The RRs for the first and third blocks were 6, 12, 24, 12, and 6 BPM, and for 
the second and fourth blocks, they were 9, 18, 24, 18, and 9 BPM. 

 
Figure 5: Data recording protocol. It consists of a resting period for 60 s (A), and two breathing control tasks lasting 
for 250 s (B, D), which are separated by a 30 s resting period (C). Subsequently, the same blocks were repeated 
(E–H). 

The local ethics committee of Comitatio Bioetico of the University of Pisa approved this study 
protocol with ref. num. 2/2020. Before starting the experiment, all subjects were informed 
about the experiment and signed the consent form. All methods were performed based on the 
guidelines and regulations required by the Declaration of Helsinki. Data were registered at 
Artinis Medical Systems B.V., Elst, The Netherlands. 
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3.2. fNIRS Systems for Data Collection 
3.2.1. Dataset I 
This dataset comprised fNIRS data from 8 healthy subjects (3 female) aged from 21 to 32 
years recorded using a portable wireless 23 channel fNIRS system (Brite23, Artinis Medical 
Systems B.V., The Netherlands) covering the whole frontal cortex (Figure 6(a)). This device 
is supplied with a source–detector separation of 35 mm, nominal wavelengths of 760 and 850 
nm, ambient light correction, and a sampling frequency of 50 Hz. 

 
Figure 6: fNIRS optode placement for dataset I (a) and dataset II (b). 

3.2.2. Dataset II 
This dataset consisted of fNIRS data collected from 18 healthy subjects (9 female) aged from 
24 to 37 years using a wireless multi-sensor fNIRS-system (PortaLite MKII, Artinis Medical 
Systems B.V., The Netherlands). This device is equipped with up to 2 sensors, each having 3 
long channels (the source–detector distance being up to 41 mm), and 3 short-separation 
channels (with distances of 7.2 and 8.0 mm), nominal wavelengths of 760 and 850 nm, 
ambient light correction, and a sampling rate of 100 Hz. The sensors simultaneously recorded 
any movement using an IMU embedded within each sensor, and were designed to be placed 
on both hemispheres of the prefrontal cortex of the brain. In this paper, we have used only a 
single sensor placed on the left hemisphere of the prefrontal cortex (Figure 6(b)). 

4. Experimental Results 

In this section, the obtained results from both datasets are described. It is worth mentioning 
that the required parameters of the proposed method were first tuned based on the optimal 
results obtained from dataset I, then the adjusted parameters were used for the analysis of 
dataset II. In addition, the short separation channels of dataset II were discarded to have a 
similar data structure and analysis for both datasets. 
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4.1. Optimization of the Proposed Method’s Parameters 
4.1.1. Trough Detection 
Two empirical thresholds require tuning for the trough detection: 𝑇ℎ1, which is necessary for 
ignoring the local minima in the dicrotic notch, i.e., a small downward deflection between the 
peaks and troughs, and 𝑇ℎ2, which is used to discard the troughs contaminated by the motion 
artifacts. Regarding the scaling coefficient of 𝑇ℎ1, values from 0.25 to 1.5 with a step size of 
0.25 were inspected. The best fit, i.e., the highest mean CSI, was 𝐴=1 (Figure 7(a)). As for the 
scaling coefficient of 𝑇ℎ2, values from 1 to 6 with a step size of 1 were investigated, and 𝐵=3 
was obtained as the best fit (Figure 7(b)). 

 
Figure 7: Regulation of constants for trough detection in terms of mean±std of the CSI. 𝑇ℎ1 (a) and 𝑇ℎ2 (b). 

4.1.2. The Length of MA Filtering 
As displayed in Figure 4, removing very-low-frequency components of the generated baseline 
wander is of great importance for the accurate estimation of RR. For this aim, different lengths 
of the MA filter from 2 to 5 s with a stepping size of 0.5 s were investigated. According to the 
obtained average AE, although no noticeable difference was observed between different 
lengths, 3 s had the lowest error (Table 1). 

Table 1: The Influence of MA Filter’s Length on the RR estimation. 

MA Filter Length (s) Average AE ± Std (BPM) 

2 3.2 ± 1.9 

2.5 3.1 ± 1.8 

3 2.6 ± 1.3 

3.5 2.7 ± 1.4 

4 2.9 ± 1.9 

4.5 2.9 ± 2.1 

5 3.1 ± 2.2 
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4.1.3. Results of RR Estimation from Dataset I 
In total, 160 50 s trials of the concurrent O2Hb and respiratory signals were used, where each 
RR was repeated 4 times per subject. Table 2 displays the average AE between the reference 
and estimated RRs for each subject. The average AE of all trials was 2.6 BPM. Given the 
reported results from the PPG-based studies for RR estimation [32–34], the obtained results 
indicate the feasibility of the proposed method for RR estimation from fNIRS. According to the 
conducted statistical analysis between the reference and estimated RRs, except for the 
subject 8, there is no significant difference (p>0.05). 

Table 2: The average AE between the reference and estimated RRs for each subject of dataset I. 

Subjects Average AE (BPM) 

1 0.9 

2 2.7 

3 2.7 

4 1.1 

5 2.2 

6 1.9 

7 2.1 

8 5.2 

4.2. Results of RR Estimation from Dataset II 
An example of the filtered O2Hb signal, as well as its corresponding extracted baseline 
wanders and the reference respiratory signal are displayed in Figure 8. As it can be seen, the 
frequency of baseline wander is close to that of the reference respiratory signal. 

 
Figure 8: An example of the filtered 𝑂2𝐻𝑏 signal, the corresponding baseline wanders, and the reference 
respiratory signal. 

The average AE between the reference and estimated RRs for each subject of dataset II is 
disclosed in Table 3. Except for subject 13, the statistical analysis shows no significant 
difference between the reference and estimated RRs (𝑝>0.05). The average AE for all trials is 
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1.3 BPM. To evaluate the overall performance of the proposed method on dataset II, a Bland–
Altman plot (Figure 9) was used; this assesses the agreement between reference and 
estimated RRs by showing the difference between each estimate and the references against 
their mean. In this paper, the Limit of Agreement (LOA) is computed as [𝑚𝑒𝑎𝑛 −
2 × 𝑠𝑡𝑑,𝑚𝑒𝑎𝑛 + 2 × 𝑠𝑡𝑑]. In this range, 94% of the differences are inside. 

 
Figure 9: The Bland–Altman plot of the estimated RRs on dataset II. 

Table 3: The average of AE between the reference and estimated RRs for each subject of dataset II. 

Subjects Average AE (BPM) 
1 1.7 
2 0.3 
3 0.3 
4 0.5 
5 1.8 
6 0.8 
7 1.5 
8 2.7 
9 2.1 
10 0.3 
11 0.4 
12 0.7 
13 3.6 
14 0.5 
15 1.8 
16 1.8 
17 0.4 
18 2.1 
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5. Discussion  

The aim of this paper was to investigate the possibility of RR estimation from fNIRS. 
Indisputably, this is a novel view on respiration interference in fNIRS, as almost all studies 
have considered such an interference as a detrimental phenomenon. The importance of this 
study is to derive an extra measure, i.e., RR, to the cerebral activity analysis without requiring 
a reference signal. From the research point of view, the proposed method facilitates the 
approximation of RR in applications where both cerebral and respiratory activities may 
synergize the analysis. For instance, there is solid evidence in the literature suggesting that 
RR alternation is an indicator of anxiety and mental workload levels [35,36]. 

5.1. Significance and Robustness of the Proposed Method 
It is common knowledge that inhalation and exhalation can alter the blood flow within the body 
[37]. On the other hand, respiratory fluctuations affect the cerebral blood volume and flow [38]. 
Therefore, it can be expected that alternation in RR is revealed in fNIRS, and in particular, in 
O2Hb signals [26]. Our underlying assumption, which was inspired from PPG-based studies 
[25], was that fluctuations in the frequency of O2Hb signal’s baseline wander can be related 
to RR. 

The proposed method is based on the FFT obtained from the baseline wander of an O2Hb 
signal. To synthesize the baseline wander, either troughs or peaks can be used. In this paper, 
we have found the localization of troughs to be more convenient (Figure 2). Yet, synthesizing 
the baseline wander required an interpolation method due to the irregular sampling. Here, we 
used cubic spline interpolation, which was already proven as an effective method in PPG-
based studies [30]. Afterwards, the dominant frequency of synthesized baseline wander in the 
FFT domain was considered as RR. The motivation behind using FFT rather than other 
spectral analyses such as Welch or MUSIC is its simplicity. i.e., the FFT is a non-parametric 
algorithm. 

To assess the feasibility of the proposed method, two different datasets were used: one for 
adjustment of the required parameters of the proposed method and the other for testing. 
Indeed, the second dataset was used to investigate the robustness of the proposed method’s 
parameters when data were recorded from another fNIRS equipment with different 
characteristics, e.g., the sampling rate, receiver gain, LED types, etc. The comparison 
between Table 2 and Table 3 confirms such robustness as there is no noticeable difference 
between the obtained results from both datasets. More surprisingly, even a lower mean of AE 
was achieved with the second dataset. One plausible explanation can be the weak 
performance of our method for subject 8 in dataset I. 

5.2. Comparison with State-of-the-Art Methods 
As this is the first research that proposes a method for RR estimation from fNIRS, there is no 
possibility for comparing the performance of the proposed method to other studies. Yet, a few 
investigations have aimed to regress out the respiratory components from fNIRS data. For 
example, Tong et al. [38] used a zero-phase band-pass filter with cut-off frequencies from 0.2 
to 0.6 Hz to partition out the respiratory components from the O2Hb signals. In another study, 
Lühmann et al. [39] proposed a multimodal extension of the general linear model based on 
temporally embedded canonical correlation analysis to extract respiratory components from 
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fNIRS measurements. The former methodology may not be efficient, as such a band width 
also involves cerebral activities, and the latter requires the simultaneously recorded 
respiratory signal. Nonetheless, neither of the mentioned studies have considered RR 
estimation from the regressed respiratory components. Although it may be inequitable to 
compare the quality of estimated RR from fNIRS with PPG-based studies, our results are still 
comparable to [34], where both the finger and forehead PPG data were used. 

On the other hand, the mentioned studies used a large amount of data, which is not 
appropriate for practical applications, as wearing a cap covering the whole head discomforts 
the user for long-term recording. Furthermore, such a configuration usually involves covering 
the hair-bearing areas of the head that are more subjected to noise. In contrast, we developed 
and tested our algorithm-based sensors placed only on the frontal region of head, which 
provide the user with more comfort, as it is mostly a hairless area. In addition, such a 
configuration reduces the complexity of wearable instrumentation as only one region of the 
brain is monitored. 

5.3. Directions for Future Work 
Regardless of the reported promising results, this research has several limitations that should 
be addressed in future works. Firstly, the employed SQI algorithm is not necessarily an optimal 
method for finding the best fNIRS data for the analysis. In particular, the SQI is not sensitive 
to the emergence of motion artifacts, which can significantly influence the synthesis of 
baseline wander. Yet, to the best of our knowledge, it is one of the best methods for monitoring 
the quality of data. Secondly, the data recording protocol was a simple breathing task where 
subjects needed to sit on a chair and perform the experiment. In future work, the subjects 
should be asked to perform more dynamic activities, e.g., cycling, to obtain more realistic RRs. 
Thirdly, due to the nature of the data recording protocol, fNIRS data were not significantly 
contaminated by motion artifacts. Thus, the performance of 𝑇ℎ1 and 𝑇ℎ2 for trough detection 
should be investigated further, with more artifactual data. Fourthly, the performance of the 
proposed method should be investigated by analyzing different time windows. Fifthly, it should 
be mentioned that the correction for multiple comparisons has not been conducted for 
statistical analysis. Lastly, the reliability of the proposed method was only evaluated on young 
healthy subjects. It is also of great importance to assess the robustness of the proposed 
method on more diverse cohorts (e.g., the elderly, neonates, and patients) as some studies 
showed that the performance of RR estimation algorithm can be affected by different factors 
such as age [40]. Nevertheless, it should be noted that this is the first research that has 
proposed a method for RR estimation from fNIRS; therefore, having the mentioned limitations 
was necessary for investigating the possibility of RR estimation. 

6. Conclusions 

In this paper, a method based on the spectrum analysis of the O2Hb signal’s baseline wander 
was introduced to estimate RR, and its performance was assessed on two different datasets 
with distinctive data recording characteristics. The comparison between the obtained results 
from both datasets confirmed the robustness of the proposed method, which is of great 
importance for real-world applications. The milestone of this research was to consider the 
respiration interference in fNIRS as source of complementary information, rather than a source 
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of artifact. Indeed, the proposed method can provide extra information from fNIRS that can be 
used alongside the cerebral activity analysis. 
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Abstract 

The employment of wearable systems for continuous monitoring of vital signs is increasing. 
However, due to substantial susceptibility of conventional bio-signals recorded by wearable 
systems to motion artifacts, estimation of the respiratory rate (RR) during physical activities is 
a challenging task. Alternatively, functional Near-Infrared Spectroscopy (fNIRS) can be used, 
which has been proven less vulnerable to the subject’s movements. This paper proposes a 
fusion-based method for estimating RR during bicycling from fNIRS signals recorded by a 
wearable system. Firstly, five respiratory modulations are extracted, based on amplitude, 
frequency, and intensity of the oxygenated hemoglobin concentration (O2Hb) signal. 
Secondly, the dominant frequency of each modulation is computed using the fast Fourier 
transform. Finally, dominant frequencies of all modulations are fused, based on averaging, to 
estimate RR. The performance of the proposed method was validated on 22 young healthy 
subjects, whose respiratory and fNIRS signals were simultaneously recorded during a 
bicycling task, and compared against a zero delay Fourier domain band-pass filter. The 
comparison between results obtained by the proposed method and band-pass filtering 
indicated the superiority of the former, with a lower mean absolute error (3.66 vs. 11.06 
breaths per minute, p < 0.05). The proposed fusion strategy also outperformed RR estimations 
based on the analysis of individual modulation. This study orients towards the practical 
limitations of traditional bio-signals for RR estimation during physical activities.  
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1. Introduction 

The advent of wearable systems for the measuring of vital signs has started a revolution in 
non-laborious healthcare and sports science practices [1]. Unarguably, such systems have 
provided the possibility of customized continuous monitoring of physiological parameters, 
such as heart rate (HR), blood pressure, and respiratory rate (RR), which are of great value 
for both clinical and research purposes [2,3]. 

A majority of wearable systems indirectly estimate the aforementioned parameters using bio-
signals, such as the photoplethysmography (PPG) and electrocardiography (ECG) [4]. Despite 
the excellent performance during resting state, wearable systems usually do not show a 
satisfactory performance when the subject is engaging in physical activity [5]. The reason for 
such failure is the substantial susceptibility of bio-signals to motion artifacts originating from a 
subject’s movements, which are inevitable during physical activity. Amongst the physiological 
parameters mentioned, estimation of RR from bio-signals contaminated with motion artifacts 
is the most challenging [6]. 

Alternatively, functional Near-Infrared Spectroscopy (fNIRS) can be employed and is less 
sensitive to a subject’s movements. Specifically, fNIRS is an optical brain imaging technique 
that quantifies oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations, 
related to the neural activities in the cerebral cortex. Not only does fNIRS provide a better 
spatial resolution than electroencephalography (EEG), it also outperforms functional magnetic 
resonance imaging (fMRI) in terms of temporal resolution [7]. More importantly, compared to 
other bio-signal monitoring techniques, fNIRS is more motion tolerant, i.e., the subject’s 
movements do not necessarily affect the quality of the data [8,9]. Due to its noninvasive and 
mobile nature, fNIRS also has the advantage of being usable in outdoor applications [10]. 
Indeed, the advent of lightweight single sensor fNIRS equipment has opened new doors for 
outdoor studies, and, in particular, fitness applications [11–14]. 

Opportunely, fNIRS is contaminated by non-cerebral interference cited from physiological 
systemic activities, such as HR, blood pressure, Mayer waves, and respiration [15], providing 
the possibility of extraction of complementary physiological parameters. Although the HR 
estimation from fNIRS measurements has been addressed in several studies, no research, 
except for our previous study [16], has yet investigated the possibility of RR estimation from 
fNIRS. Respiration is one of the main physiological interferences in fNIRS, manifesting in its 
spectrum (∼0.2 to 0.4 Hz) [17,18]. The reason for such contamination is twofold; changes of 
the blood flow within the body during inhaling and exhaling, and the influence of respiratory 
oscillations on cerebral blood volume and flow [19]. Therefore, it can be presumed that RR 
changes are disclosed in the fNIRS signals. 

Due to the similar principles of PPG and fNIRS measurements, and, in particular, O2Hb signal, 
and considering the fact that cerebral blood volume and flow changes are proportional to 
fNIRS output [20], it can be expected that respiratory modulations exhibited in PPG behave 
similarly in O2Hb signals. Therefore, we hypothesize that respiration can influence the O2Hb 
signal in three aspects: frequency, intensity and amplitude. 

In our previous research, [16], we showed the possibility of RR estimation from an O2Hb signal 
in a resting state. However, the main challenge is to estimate RR when subjects are 
performing physical activities. The objective of this paper is, thus, to propose a new method 
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for estimation of RR from O2Hb signals during a bicycling task. The basis of the proposed 
method involves the following: (i) extraction of five respiratory modulations, based on 
amplitude, frequency, and intensity of an O2Hb signal, (ii) computation of the dominant 
frequency of each modulation, and (iii) application of a mean-based fusion strategy on the 
computed dominant frequencies to estimate RR. 

2. Methods 

The block diagram of the proposed method is shown in Figure 1. As displayed, it mainly 
consists of two blocks: pre-processing and RR estimation. 

 
Figure 1: Block diagram of the proposed method for RR estimation using fNIRS. 
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2.1. Preprocessing 
The first step of the proposed method is to find a high quality fNIRS channel for the analysis. 
Towards this aim, firstly, the modified Beer–Lambert law is employed to convert raw optical 
density signals to O2Hb and HHb changes in concentrations as follows [21]: 

𝛥𝑂𝐷(𝜆) = 𝜖(𝜆) · 𝛥𝐶 · 𝐿 · 𝐷𝑃𝐹 (1) 

where 𝑂𝐷, 𝜆, 𝜖, C, L, and 𝐷𝑃𝐹 stand for optical density, wavelength, absorption coefficient, 
concentration, physical path length, and differential path length factors, respectively. Then, 
the signal quality index (SQI) algorithm [22] is used, which numerically scores the signals from 
1 (low) to 5 (high) quality. After finding the fNIRS channel with the highest signal quality, the 
corresponding O2Hb signal (Figure 2(a)) is filtered by a wavelet transform [23] for elimination 
of possible motion artifacts (Figure 2(b)). Then, an FIR low-pass filter with cut-off frequency at 
4 Hz is used to remove high frequency noise originating from non-physiological sources 
(Figure 2(c)). 

 
Figure 2: An example on noise reduction from an O2Hb signal: (a) selected O2Hb signal with the SQI; (b) motion 
artifact reduction using DWT algorithm; (c) low-pass filtering for high frequency noise removal. 

2.2. RR Estimation from 𝑂2𝐻𝑏 
2.2.1. Background 
As was already mentioned, the O2Hb signal originating from fNIRS functions on the same 
basis as PPG, and, thus, respiratory modulations in PPG can also appear in the O2Hb signal. 
It is common knowledge that HR increases during inhalation and decreases during exhalation, 
and, thus, given the fact that each cycle of the O2Hb signal is a heartbeat, respiration causes 
frequency modulation in the O2Hb signal [24]. On the one hand, increasing and decreasing of 
the intrathoracic pressure during inhalations and exhalations leads to a variation in blood 
volume, known as baseline wander, and, thus, respiration causes intensity modulation in the 
O2Hb signal [25]. On the other hand, reduction of the blood stroke volume during inhalation, 



Chapter 5                                                                                                    

 

 94 

 

because of alternation in intrathoracic pressure, leads to changes in the O2Hb signal’s 
strength, causing respiratory amplitude modulation [26]. 

2.2.2. Extraction of Respiratory Modulations 
In this paper, two frequency and two intensity respiratory modulations were extracted from the 
O2Hb signal, along with one amplitude respiratory modulation, for RR estimation. Regarding 
the frequency modulations, the following were computed: (i) the distance between two 
consecutive peaks and (ii) the distance between troughs and peaks. For the intensity 
modulations, two baseline wanders were formed: (i) based on peaks and (ii) based on troughs. 
Regarding the amplitude modulation, the absolute difference between the magnitude of 
troughs and peaks were computed. 

2.2.3. Trough and Peak Detection 
In order to localize peaks and troughs, we used our previous method for trough detection from 
the O2Hb signal, wherein the O2Hb signal is first normalized between −1 and 1, and then, 
local minima, with values lower than average of the O2Hb signal, are considered as potential 
troughs. Yet, the existence of motion artifacts may lead to a fallacious analysis. To overcome 
this issue, the corresponding magnitude of potential troughs were set on a vector, e.g., 𝑧[𝑛], 
and, then, troughs with a lower value than 𝑀𝑒𝑎𝑛(𝑧[𝑛]) + 3 × 𝑠𝑡𝑑(𝑧[𝑛]) were discarded [16]. 
Afterwards, the maxima between two consecutive troughs were considered the peaks. 

2.2.4. Processing of the Extracted Modulations 
After forming the extracted modulations, up-sampling is an essential step, as the modulations 
were formed based on irregular sampling, whereas regularly sampled signals are often 
required for the subsequent analysis [27]. To this end, the cubic spline interpolation method 
was used, which has already been shown to be promising in PPG studies [28]. 

Before computing the dominant frequency of the up-sampled extracted modulations, it is also 
necessary to remove non-respiratory fluctuations, e.g., Mayer waves [29], which can hamper 
the accurate detection of the corresponding RR frequency [27]. Non-respiratory fluctuations 
can have both very low and very high frequency components. Unfortunately, there is no assent 
on the ideal frequency range of respiration. Indeed, such a range might need to be regulated 
based on the subject’s background, e.g., age [30]. In our previous study, it was shown that 
low-frequency components of non-respiratory fluctuations can be removed by a 3s moving 
average filter. For the maximum frequency of RR, we adopted a threshold based on the HR 
[31] as follows: 

𝐹𝑀𝑎𝑥 = 𝐴 ×  
𝐻𝑅
60  (2) 

where A is a constant. It is worth mentioning that HR was estimated based on the number of 
detected peaks on a 50s window length. The regulation of the constant A is described in 
Section 4. 

After applying the moving average filter on the up-sampled modulations, the fast Fourier 
transform (FFT) algorithm was computed and the dominant frequency in the range of [0, 𝐹𝑀𝑎𝑥] 
considered to be the RR. 
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2.2.5. Mean-Based Fusion Method for RR Estimation 
According to several studies, there is no optimal modulation for RR estimation [32]. For 
example, it was shown that frequency modulations may not be efficient for elderly subjects 
[33]. Therefore, computing the RR based on a fusion strategy, where several modulations are 
combined, can be more effective. Here, we used a simple mean fusion method where the final 
RR is computed based on the average of computed dominant frequencies of all modulations. 

2.3. Method under Comparison 
To the best of our knowledge, there is no direct method to estimate RR from fNIRS. Yet, some 
studies tried to portion out respiratory components from fNIRS measurements [19,34]. In this 
paper, we compared performance of the proposed method to a band-pass filtering strategy to 
extract respiratory components from the O2Hb signal. As described in [19], a zero delay 
Fourier domain band-pass filter, with cut-off frequencies from 0.2 to 0.6 Hz, was used. In this 
paper, after finding the fNIRS channel with the highest signal quality, the corresponding O2Hb 
signal was filtered and the dominant frequency within the range [0.2 to 0.6] Hz considered to 
be the estimated RR. 

2.4. Performance Index 
In order to assess the performance of RR estimation using both methods, the absolute error 
(AE) between the reference and estimated RRs was computed as follows: 

𝐴𝐸 =  |𝑅𝑅𝑟𝑒𝑓 − 𝑅𝑅𝑒𝑠𝑡| (3) 

3. Data Collection 

3.1. The Experimental Setup 
The experimental setup involved an ergometer bike, a wireless single-sensor fNIRS-system 
(PortaLite MKII, Artinis Medical Systems B.V., the Netherlands), placed on the left 
hemispheres of the prefrontal cortex, and a respiratory chest belt connected to a TMSi SAGA 
32+/64+ amplifier (Twente Medical Systems International B.V., The Netherlands), with a 
sampling rate of 4000 Hz (Figure 3(a)). The fNIRS system was equipped with three long 
channels (transmitter–receiver distance up to 41 mm), recording data with nominal 
wavelengths of 760 and 850 nm, and a sampling rate of 100 Hz. 

 
Figure 3: The data recording procedure. The experimental (a): setup and (b): paradigm. 
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3.2. The Experimental Paradigm for Data Recording 
The data recording procedure is displayed in Figure 3(b). It comprised of a 60 s resting period 
block, followed by two bicycling blocks detached by a 60 s resting period, and the final resting 
period block lasting for 60 s. At each bicycling block, subjects bicycled for 8 min, wherein every 
minute the resistance of the ergometer increased by 1. In the first bicycling block, subjects 
were allowed to regulate their bicycling speed arbitrarily. In the second bicycling block, the 
subjects were asked to keep the speed constant around 18–22 km/h. In the whole procedure, 
subjects were allowed to freely move their heads and arms. 

3.3. Participants 
Twenty-two young healthy subjects with varied ethnicity and fitness endurance volunteered to 
take part in the experiment (Table 1). None of the subjects had any psychological and 
neurological disorders nor were they under any specific medications in the week of the 
experiment. Before starting the experiment, all participants were briefed about the study and 
signed a consent letter. A waiver for formal ethical approval was obtained from the medical 
ethics committee (CMO Arnhem-Nijmegen) with the ethical code of 2021-8284. All regulations 
and guidelines needed by the Declaration of Helsinki were followed. The data were collected 
at the premises of Artinis Medical Systems B.V., Elst, The Netherlands. 

Table 1: Characteristics of subjects who participated in the experiment. The BMI stands for the body mass index. 

Subject BMI Age Blood Pressure Status Sex 
1 23.4 37 Hypotension Female 
2 22.6 37 Hypotension Male 
3 20.4 24 Normotension Male 
4 18.6 33 Normotension Female 
5 25.6 22 Normotension Male 
6 19.3 22 Normotension Male 
7 19.8 26 Normotension Male 
8 21.4 31 Hypotension Female 
9 24.2 27 Hypotension Female 
10 22.3 24 Normotension Female 
11 26.8 24 Normotension Male 
12 25.4 32 Normotension Female 
13 23.8 22 Normotension Male 
14 26.2 28 Normotension Male 
15 23.4 23 Normotension Male 
16 21.8 22 Normotension Male 
17 26.7 24 Normotension Female 
18 22.9 22 Normotension Female 
19 20.8 25 Normotension Female 
20 21.5 24 Normotension Female 
21 26.4 24 Normotension Male 
22 24.6 33 Normotension Female 
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4. Results 

In this section, the experimental results obtained from the proposed method and the method 
under comparison are described. Before starting the analysis, the respiratory reference 
signals were manually inspected and trials with an unreliable RR were rejected. After the 
manual inspection, the data associated with subject 21 were completely discarded. It should 
be noted that after discarding unreliable respiratory signals, 418 trails with a length of 50 s 
were used for the analysis. 

4.1. Regulation of RR Maximum Frequency 
The only parameter of the proposed method that was required to be tuned was the constant 
A, which regulated the RR maximum frequency based on HR. For this purpose, 78 trials, 
having 50 s lengths, from five subjects were randomly selected and values from 0.2 to 0.4 with 
a step size of 0.05 were investigated. To find the best fit, the lowest mean AE between the 
reference and estimated RR was considered (Figure 4). Although there was no significant 
difference between the obtained results by 𝐴 = 0.3 and 𝐴 = 0.35, we considered 𝐴 = 0.3 to be 
the best fit, due to it having the lowest mean AE. 

 
Figure 4: Tuning the constant A for determination of RR maximum frequency, based on lowest mean AE obtained 
from 78 randomly selected trials. The AE is shown in terms of mean and standard deviations. 

4.2. The Performance of Proposed Method 
Figure 5 shows an example of the O2Hb signal and its corresponding modulations, followed 
by the frequency spectrum of each modulation. It should be noted that the reference RR was 
0.32 Hz. 
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Figure 5: An example of the O2Hb signal and its corresponding respiratory signal, as well as its extracted 
respiratory modulations and spectra. 

Table 2 displays the mean AE between the reference and estimated RRs for each subject, 
indicating the superiority of the fusion-based strategy over the individual modulation for the 
majority of the subjects. 

Table 2: The mean AE between reference and estimated RRs (BPM) for each subject with individual and fusion 
features. The lowest mean AE is in bold. 

Subject RAM RFM I RFM II RIM I RMI II Fusion 
1 1.45 1.30 1.46 2.17 2.23 1.05 
2 8.54 8.72 6.30 7.79 7.17 6.17 
3 4.85 3.72 6.91 6.27 6.9 3.83 
4 5.62 4.01 3.27 4.95 5.23 3.08 
5 3.29 2.53 2.75 2.53 3.25 1.35 
6 6.48 7.78 8.50 7.60 7.77 5.35 
7 6.51 6.76 5.15 5.49 7.02 5.11 
8 3.09 3.25 4.91 5.66 3.89 3.75 
9 5.96 3.99 10.96 9.16 8.07 5.10 
10 8.66 5.38 5.18 7.47 7.68 5.00 
11 5.98 4.31 6.21 6.93 5.43 4.31 
12 5.47 3.61 5.01 5.05 3.9 2.81 
13 4.97 3.09 6.09 6.47 5.31 3.35 
14 7.62 6.82 5.63 3.98 3.92 4.99 
15 5.87 7.30 5.62 3.38 5.86 3.98 
16 5.73 3.67 2.88 2.54 3.00 2.00 
17 2.87 3.56 5.84 8.36 6.98 3.61 
18 5.34 4.07 2.40 3.73 3.84 3.13 
19 4.73 4.03 7.26 6.98 5.09 3.47 
20 3.71 3.69 6.85 8.59 5.31 3.67 
21 2.72 2.82 4.87 4.36 3.60 2.75 
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When comparing the performance of each individual modulation with the fusion-based 
strategy on all trials (Figure 6), the latter showed a lower mean AE (3.66) against those 
obtained from RAM (5.14), RFM I (4.45), RFM II (5.32), RIM I (5.61), and RIM II (5.22) BPM. 
According to the conducted t-test analysis, regarding the individual modulation, there was a 
significant difference between the AE of RFM I and others (p < 0.05). Notably, there was also 
a significant difference between the fusion-based strategy and RFM I (p < 0.05). 

 
Figure 6: The overall performance of each individual feature and fusion-based strategy in terms of AE. 

4.3. Comparison with the Band-Pass Filtering Method 
To compare the performance of both methods, a Bland–Altman plot was used, which 
evaluates the agreement between two quantitative measurements by displaying their 
difference as a function of their average. Figure 7 shows the Bland–Altman plot of the AE 
values obtained by the proposed method and the method based on band-pass filtering, as 
used in [19] for all trials. As displayed, the proposed method outperformed the band-pass 
filtering with a lower average of the differences (3.66 vs. 11.06 BPM, p < 0.05). 
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Figure 7: The Bland−Altman plots for: (a) the proposed method and (b) band−pass filtering [19]. 

5. Discussion 

The objective of this paper was to propose a robust RR estimation method during bicycling 
using fNIRS signals recorded by portable equipment. This study, by taking advantage of the 
lower vulnerability of fNIRS to a subject’s movements, was oriented towards highlighting the 
practical limitations of the current state-of-the-art studies for RR estimation during physical 
activity. The proposed method provides an extra measure, i.e., RR, that can be used alongside 
brain activity analysis. Genuinely, RR estimation from fNIRS can synergize the cerebral 
activity analysis in applications, such as stress assessment and mental workload, where RR 
changes are important indicators [35,36]. 

5.1. The Significance of Proposed Fusion Strategy 
According to the literature, the performance of each extracted respiratory modulation for RR 
estimation depends on several factors, such as age, gender, body position, and health status 
[27]. Thus, a fusion-based estimation, i.e., one employing multiple respiratory modulations, 
can lead to a more robust RR estimation. In this paper, a fusion-based strategy was provided 
with an average of five respiratory modulations, based on the amplitude, intensity and 
frequency of an O2Hb signal, over a 50 s window. The comparison between the individual and 
fusion-based RR estimations confirmed such robustness as the 15 subjects showed lower 
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mean AE (Table 2). Furthermore, the comparison also confirmed that the performance of an 
individual modulation may not be generalized for the whole population, as each modulation 
performed differently for different subjects. In terms of overall performance over all the trials, 
the fusion-based strategy outperformed each individual modulation with a lower mean of AE. 

5.2. Comparison with State-of-the-Art 
Except for our previous study, that estimated RR from an O2Hb signal in a resting state, there 
is no research estimating RR from fNIRS. Yet, a few studies have tried to portion out the 
respiratory components from fNIRS measurements. For instance, a multimodal extension of 
the general linear model using a temporal embedded canonical correlation method was 
employed to regress out respiratory components from fNIRS [34]. Firstly, the mentioned study 
required a reference respiratory signal to be recorded concurrently. Secondly, employing a 
general linear model usually requires a large number of fNIRS channels, which increases the 
complexity of wearable instrumentation. In contrast, we used a single sensor fNIRS system 
placed on the prefrontal cortex, which reduces the complexity of wearable instrumentation. 
Furthermore, the prefrontal cortex is a hairless area, and, therefore, provides the user with 
more comfort. 

In other research, a zero delay Fourier domain band-pass filter, with cut-off frequencies from 
0.2 to 0.6 Hz, was applied to the O2Hb signal to separate respiratory components from the 
cerebral brain activity [19]. The comparison between performance of the proposed method 
and band-pass filtering method (Figure 7) indicates the superiority of our proposed method, 
as a lower mean of difference between the reference and estimated RRs was obtained (3.66 
vs. 11.06 BPM). The reason for such a high error could be the fact that the suggested 
bandwidth also includes other non-respiratory components, such as cerebral and cardiac 
activities. 

5.3. Directions for Future Work 
Although the results obtained by the proposed method are promising, there are some issues 
that should be addressed in future work. Firstly, performance of the proposed method was 
only investigated on young healthy subjects. It is important to consider a broader range of 
subjects (e.g., the elderly) to further assess the robustness of the proposed method. 
Furthermore, it may also be important to consider different characteristics of subjects, e.g., 
race, skin color, and BMI in developing an RR estimation algorithm. In particular, the employed 
maximum respiratory frequency (𝐹𝑚𝑎𝑥) might require further adjustment for a different cohort. 
Secondly, although the data were recorded during physical activity and the subjects were 
allowed to freely move their bodies throughout the experiment, performance of the proposed 
method should be further validated on data where the subjects are performing more intense 
exercise, e.g., squatting, with more movements. Lastly, employing a smart fusion strategy, 
such as [37], may also further improve the performance of the proposed method. However, 
we did not find enormous differences amongst the estimated RRs from individual modulations 
(Table 2). 
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6. Conclusion 

This paper presented a fusion-based strategy for RR estimation during a bicycling task from 
O2Hb signals originating from fNIRS measurements. For this purpose, five respiratory 
modulations were extracted from an O2Hb signal and, then, the RR was estimated, based on 
the average of dominant frequencies of each modulation. The comparison between the 
obtained results from the proposed method and band-pass filtering showed the superiority of 
the proposed method with a lower mean of AE (3.66 vs. 11.03 BPM). The importance of this 
study was that it addressed RR estimation during physical activity, and, by taking advantage 
of the motion tolerance quality of fNIRS, was oriented towards overcoming the practical 
limitations of traditional bio-signals, i.e., vulnerability to the subject’s movements. Furthermore, 
the proposed method derives an extra parameter from fNIRS signals, i.e., RR, which can be 
used alongside brain activity analysis. 
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Abstract 

Abnormal patterns of cerebral perfusion/oxygenation are associated with neuronal damage. 
In preterm neonates, hypoxemia, hypo-/hypercapnia and lack of cerebral autoregulation are 
related to peri-intraventricular hemorrhages and white matter injury. Reperfusion damage after 
perinatal hypoxic ischemia in term neonates seems related with cerebral hyperoxygenation. 
Since biological tissue is transparent for near infrared (NIR) light, NIR-spectroscopy (NIRS) is 
a noninvasive bedside tool to monitor brain oxygenation and perfusion. This review focuses 
on early assessment and guiding abnormal cerebral oxygenation/perfusion patterns to 
possibly reduce brain injury. In term infants, early patterns of brain oxygenation help to decide 
whether or not therapy (hypothermia) and add-on therapies should be considered. Further 
NIRS-related technical advances such as the use of (functional) NIRS allowing simultaneous 
estimation and integrating of heart rate, respiration rate and monitoring cerebral autoregulation 
will be discussed. 
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1. Introduction 

Reduction and prevention of perinatal brain damage focus, among other measures, mainly on 
stress reduction (preterm neonate), moderate hypothermia (term neonate) and 
pharmacological (add-on) therapy [1–3]. However, abnormal oxygenation and/or perfusion 
patterns often precede brain damage. The occurrence and extension of peri-intraventricular 
hemorrhages (PIVH) in very and extremely preterm infants (born between 28–32 weeks 
gestational age and below 28 weeks, respectively), whereas profound and persistent 
hypoxemia or hyperoxemia often precedes white matter injury (WMI) in this vulnerable group 
of neonates [4,5]. Likewise, in term neonates experiencing perinatal hypoxia-ischemia or birth 
asphyxia, (early) cerebral hyperoxygenation, loss of cerebral autoregulation and subsequent 
perfusion disturbances are related with additional brain damage and adverse 2-year outcome, 
or even death [6–8]. Early identification of erroneous cerebral oxygenation and/or perfusion 
patterns may therefore be important for timely corrective interventions, if possible, in order to 
prevent or at least reduce damage to the developing brain. 

Biological tissue is transparent for the near infrared light part of the spectrum (700–1000 nm) 
and its subsequent absorption by oxygenated and deoxygenated hemoglobin makes 
(continuous-wave) near-infrared spectroscopy (NIRS) an ideal bedside tool to noninvasively 
monitor substantial changes in oxygenation and perfusion of the developing brain [9–12]. It 
actually measures the regional cerebral saturation (rScO2) in a mixture of arterial, capillary 
and venous blood (normally in a ratio of ~25~5~75%, respectively) within the reach of the 
NIRS sensor attached to the skin of the head [9]. Typically, a banana-shaped area between 
emitting and receiving optodes is measured. The maximal penetration depth of the near 
infrared light is between 2 and 3 cm, at least when the optodes distance is at least 4 cm [13]. 
It is expected that white and grey matter are both “insonated”, at least in the preterm infants. 
This may be less straight forward when dealing with full-term infants. Oxygenation of the 
different brain regions seem to be quite homogeneous and did not substantially differ as 
investigated by us [14], suggesting that a single sensor placement is reliable to determine 
global rScO2. It is important to state that the clinically used NIRS devices monitor “trends” or 
changes in rScO2 rather than absolute values. Earlier studies showed that the precision of the 
commercially available devices is about 5.2% (ability to measure the same value after 
repeated measurement attempts) [9,10,15]. Moreover, there are sometimes quite significant 
differences in readings of rScO2 by the various available devices based on different basic 
assumptions or algorithms [10,16]. It is widely accepted, though, that “normal” values of rScO2 
in neonates are between 55–85% [17,18]. In several experimental and clinical studies, it has 
been shown that sustained episodes of rScO2 values below 40–45% compromise oxygen 
metabolism of the developing brain and may cause neuronal damage [19–22]. 

Despite the reservations with respect to the exactness of NIRS-determined cerebral 
oxygenation we are of the opinion that “trend monitoring” of the oxygenation of the immature 
brain at the bedside in this noninvasive manner can be relevant for clinical care. The early 
recognition of (persistent) abnormal patterns of rScO2 values and NIRS-derived cerebral 
oxygen extraction may reflect derailment of cerebral oxygenation and perfusion [15,23,24] and 
energetic and quick correction, if possible, may protect the immature brain. 

In the next sections we will concentrate on the possible benefits for clinical care of early 
evaluation of the NIRS-monitored oxygen saturation signal (pattern recognition) in extremely 
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preterm infants [15] and in term infants who experienced perinatal hypoxia and ischemia [8]. 
Further refinement such as integration with other monitoring parameters such as heart rate, 
respiratory rate and amplitude-integrated EEG (aEEG) will be briefly discussed, as well as the 
benefits of integration of the NIRS signal with blood pressure to assess (the lack of) cerebral 
autoregulation. 

2. Mechanisms of Brain Injury in the Preterm Infant 
and Cerebral Oxygenation 

In extremely preterm neonates, PIVH is one of the most important reasons for adverse (motor) 
developmental outcome and death, which has an incidence up to 45% in this population 
[25,26]. Mostly the bleedings are limited to the germinal matrix or with an additional moderate 
extension into the lateral cerebral ventricles (grade I and II, respectively, according to the 
Papile classification [27]). A minority evolves to larger PIVHs, grade III (large amount of blood 
in the cerebral ventricles which are dilated) or even extension of the blood into the brain 
parenchyma around the cerebral ventricles (grade IV or venous infarction). The etiology of 
PIVH is multifactorial and PIVHs developed perinatally and/or extended within 12 h after birth 
seem strongly associated with pro-inflammatory cytokines and formation of oxidative species 
[28,29]. However, most PIVHs develop and extend during the first 3 days of life or even later. 
The combination of vascular immaturity in the microcirculation of the germinal matrix [30] and 
often substantial increases (and fluctuations) in brain perfusion due to the respiratory distress 
syndrome (IRDS)-induced acutely increases in pCO2 and/or hypoxia [31,32], setting the brain 
for the development of PIVHs and their extension to more severe stages (i.e., grade III and 
IV) [28,33]. Important in this respect is that intravascular CO2 diffuses very quickly to the 
perivascular space of the cerebral resistance vasculature (contrary to bicarbonate: the blood–
brain barrier is relatively impermeable to bicarbonate [34]), where it lowers the perivascular 
pH, inducing acute vasodilation [32]. The fragile autoregulatory ability of the cerebral vascular 
bed in these extremely immature neonates is further provoked by the vasodilating effect of 
hypercarbia. This could result in a blood pressure-passive brain circulation contributing to 
fluctuations in the cerebral perfusion, possible episodes of hypoxia during hypotension and to 
extensions of already existing bleedings [35,36]. 

It may be clear that prevention or early recognition and down tuning of cerebral hyper(hypo-
)perfusion/-oxygenation and/or a fluctuating pattern of the cerebral blood flow potentially 
reduce or even prevent the occurrence and extension of PIVHs. In this respect it is especially 
important to aim for a stable arterial carbon dioxide level within normal limits (i.e., 35–50 
mmHg). Monitoring the pattern of cerebral oxygenation using NIRS-determined rScO2 as 
early after birth as possible, preferably already on the resuscitation table, at least up to 
postnatal day 4 in these vulnerable group of neonates can alert the clinician at an early point 
in time for hypercapnia-induced hyperoxygenation/hyperperfusion [25,35] and hypoxia- or 
hypocapnia-induced underoxygenation/hypoperfusion [32] of the immature brain. A very 
recent study from Tamura et al. [37] showed that hypercapnia in the delivery room was 
associated with the occurrence of all grades of PIVH in a large cohort of preterm infants. 
Alderliesten et al. [35] showed supranormal rScO2 values [17] during 24 h preceding PIVH in 
a case–control study of 650 preterm infants below 32 gestational weeks. In the same study it 
was shown that the combination of hyperoxygenation (hyperperfusion) and loss of 
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autoregulation preceded the extension of PIVHs to a higher grade. It was also reported that 
inotropes were related with loss of cerebral autoregulation (defined as a moving correlation 
>0.5 between rScO2 and mean arterial pressure). Other potentially more precise 
mathematical models to describe presence or absence of cerebral autoregulation such as 
coherence and transfer function gain are intensively investigated on their clinical relevance 
[38], which will be discussed in more detail in another section of this paper. A follow-up study 
at 15 and 24 months corrected age of a cohort of 734 preterm infants showed an association 
between low rScO2 values and adverse neurodevelopmental outcome at 2 years of age [39]. 
A recent prospective study in 185 extremely preterm neonates using NIRS-monitored rScO2 
showed that prolonged cerebral desaturation was associated with the occurrence of any grade 
of PIVH [40]. So, early intervention to quickly normalize the arterial carbon dioxide, cerebral 
oxygen saturation levels, and prevention of large fluctuations in cerebral perfusion due to lack 
of autoregulatory ability of the cerebral vascular bed (“hands off” policy and/or sedation) will 
probably lower the PIVH incidence and its severity [41]. Up to now, only one prospective 
randomized intervention study in which in 166 preterm infants born after less than 28 weeks 
cerebral oxygenation was monitored with NIRS (study group) or not (control group) aiming to 
reduce episodes of hypo- or hyperoxia during the first 3 days of life [42]. It was reported that 
monitored infants, contrary to those infants whose monitors were blinded, lowered the burden 
of hypoxia and/or hyperoxia and showed a more stable cerebral oxygen saturation which was 
mostly within normal limits (55–85%) [17]. This decreased the incidence of particularly severe 
PIVHs (grade III and IV) [43]. 

Although the incidence of cystic periventricular leukomalacia has greatly decreased in modern 
neonatal intensive care units, diffuse white matter injury (dWMI) occurs in about 50% of the 
extremely and very preterm infants according to MRI studies [44,45]. It has been suggested 
that an aborted maturation of the very vulnerable precursors of oligodendrocytes and by that 
arrest of myelination is responsible for the dWMI [46] and a very important reason for a 
suboptimal neurodevelopmental outcome of this patient group [47]. dWMI is often related to 
maternal and/or fetal infection or fetal hypoxia leading to pro-inflammatory cytokines and 
increased activity of microglia disturbing the development of oligodendrocyte precursors [48]. 
However, postnatal issues and in particular hypoxia with or without ischemia are also strongly 
related to dWMI. A relatively important role postnatally plays acute hypocapnia (and to a lesser 
extend hyperoxia) leading to instantaneous vasoconstriction of the cerebral vascular bed with 
consequent hypoperfusion, and thus lower oxygen delivery [5,32]. Especially abnormally low 
rScO2 values in a stable but artificially ventilated infant is suspicious for a ventilation-induced 
hypocapnia leading to ischemic-hypoxic damage of the immature brain [49]. The combination 
of NIRS-monitored cerebral oxygenation, arterial oxygen saturation, and end-tidal CO2 
monitoring, increasingly used in standard clinical care in newborn intensive care units, might 
be a strong preventive policy against hypocapnia-induced WMI. 

Some caution is also justified in case of a longstanding hemodynamically Patent Ductus 
Arteriosus (hsPDA), especially at present where an expectative policy with regard to (surgical) 
closure of the duct becomes mainstream [50,51]. A hsPDA gives rise to a ductal steal of blood 
originally destined for the brain with potential underperfusion/oxygenation of the developing 
immature brain and may not match metabolic demands [52]. In a study with a relatively large 
population of infants with hsPDA, we found abnormally low values of rScO2, often below 45% 
(so well below the lower limit of “normal” values of 55% [17]). Persistent values lower than 40–
45% are reported to be related with brain damage [19,53]. We indeed found an association 
between low cerebral oxygenation and duration of a hsPDA on the one hand and a lower 
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volume of especially the cerebellum, a brain region with a remarkably high metabolism, on the 
other hand [53–55]. This finding confirmed earlier studies which reported negative effects of 
hsPDA on cerebellar growth in these immature neonates [22,56]. This suggests that 
longstanding hsPDAs may not always be as innocent as earlier believed. In our NICU all 
infants with signs of an hsPDA the cerebral oxygenation will be monitored for reasons as 
explained above. 

The definition of “hypotension” of prematurity, mostly defined as a mean arterial pressure 
lower than the gestational age in weeks, gives way to overtreatment with positive inotropes. 
Several studies report the absence of signs of organ system dysfunction, metabolic acidosis 
or NIRS-monitored under-oxygenation of the brain during these “hypotensive” periods [35,57]. 
Moreover, long-term developmental outcome was not different compared to infants without 
hypotension [57,58]. At present our policy toward “hypotension” is expectative when NIRS-
determined oxygenation of the brain is within normal limits with no signs of systemic under-
perfusion or acidosis. 

Other issues in which NIRS-monitored cerebral oxygenation can help to prevent injury to the 
immature brain are anemia and hypoglycemia: anemia with hemoglobin values below 6 
mmol/L is reported to affect proper oxygenation of the preterm brain [59], whereas profound 
hypoglycemia can be recognized by spontaneously increasing levels of cerebral oxygenation 
due to depletion of glucose leading to a hampering of metabolism and hence oxygen utilization 
[60]. 

3. Mechanisms of Brain Injury of the Term Infant 
and Cerebral Oxygenation 

Hypoxic-ischemic encephalopathy (HIE) due to perinatal asphyxia is a major cause of adverse 
neurodevelopmental outcome and neonatal mortality [61]. Although neuronal damage occurs 
during the actual (mostly fetal) hypoxic episode(s) due to excessive formation of excitatory 
neurotransmitters, profound calcium influx into the neuronal cells leading to acute oxidative 
damage to the cell membrane, a substantial part of birth asphyxia-induced brain injury occurs 
during the first 48 to 96 h of life and can even last for weeks and starts upon reperfusion and 
reoxygenation at birth [62]. Phosphorus nuclear magnetic resonance spectroscopy showed 
that during the first hours after reperfusion/reoxygenation upon birth cerebral oxidative 
metabolism is apparently normal, but secondary cerebral energy failure started after 10 to 12 
h of age which seems to be maximal between 24 and 72 h of age leading to substantial 
additional brain injury [22,62]. Reoxygenation-induced production of free radicals, nitric 
monoxide and other toxic compounds give not only rise to acute damage to neuronal cells but 
also to activation of pro-inflammatory cytokine production leading to secondary cerebral 
energy failure and a decrease in trophic factors [63]. This delayed damage due to secondary 
energy failure, provides us with a “therapeutic” window in which reduction of brain damage 
can be achieved by preventing and/or scavenging free radical and nitrosative stress, important 
toxic substances contributing to secondary energy failure and concomitant brain damage. Until 
now, moderate hypothermia of the body down to 33.5 °C for 72 h is the only established 
therapy reducing reperfusion damage after birth asphyxia. However, add-on therapy with 
(combinations of) pharmacologic neuroprotective compounds are currently investigated: It 
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seems very likely that the combination of hypothermia with pharmacological compounds 
contribute to a further reduction of birth asphyxia related brain damage [63]. 

For an optimal reduction or even prevention of birth asphyxia-induced reoxygenation–
reperfusion damage of the developing brain, it is crucial to select infants that will benefit from 
postnatal treatment. This selection needs to be done as early as possible in this “therapeutic” 
window (alleged span of time first 6 h of life). 

Abnormally high values of rScO2 (>80%) during the first 72 to 96 h of life in perinatally 
moderately and severely asphyxiated neonates, probably indicating less utilization of oxygen 
due to secondary energy failure and ongoing brain damage, are related with adverse long-
term neurodevelopmental outcome with a high predictive value at as early as 3 h of life 
[8,64,65]. The pattern of rScO2 can, therefore, be an attractive noninvasive means to 
determine whether or not (add-on) neuroprotective therapy is necessary to reduce brain 
damage: although not properly investigated yet, a normalization of rScO2 values within normal 
limits upon (add-on) therapy may indicate a beneficial effect of treatment. 

Since neuroimaging techniques such as cranial ultrasound, nowadays standard implemented 
in clinical care in the newborn intensive care unit, and (advanced) MRI of the neonatal brain 
improved substantially in the recent years, perinatal arterial ischemic stroke (PAIS) appeared 
to occur more often than previously reported and with an incidence of at least in 1:2300 
newborns it is no longer a rare complication [66]. PAIS presents itself mostly in the first days 
after birth with seizures and can lead to cerebral paresis and to cognitive and motor 
impairments [67,68]. Neuroprotective/neurodegenerative therapeutic options were not 
existent up to recently and treatment was mostly limited to anti-epileptic therapy. However, 
nowadays potentially beneficial early neuroprotective intervention strategies are reported such 
as the use of neurotrophic substances such as erythropoietin and mesenchymal stem cells to 
boost neuro-regeneration [69,70]. 

Neuromonitoring, i.e., the combination of NIRS-monitored cerebral oxygenation and 
amplitude-integrated encephalography (aEEG), has an important prognostic value in PAIS 
[71]. Moreover, the early pattern of rScO2 and electrical background pattern and sleep-wake 
cycling of the aEEG are probably useful in identifying neonates with PAIS who may benefit 
from neuroprotective interventions and for assessment of beneficial effects of these 
interventions [71]. rScO2 is substantially higher in the affected brain half as compared to the 
contralateral side, probably indicating luxury perfusion in the affected hemisphere [72,73]. The 
magnitude and duration of this difference was related with neurodevelopmental outcome [71]. 
Likewise, time to normal aEEG-derived electrical background (continuous normal voltage) of 
the affected brain half was longer as compared to the healthy brain half. The time to 
normalization of the electrical background pattern of the affected side was also related to 
neurodevelopmental outcome [71]. It is conceivable that neuroprotective interventions can 
shorten the duration of these asymmetries indicating a therapeutic effect. This assumption, 
however, remains to be investigated. 

Table 1 summarizes the association between the nature of preterm and term acquired brain 
injuries on the one hand and the pattern of cerebral oxygenation on the other. 
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Table 1: Summary of associations between pathological substrate and pattern of cerebral oxygenation. 

Development/Extension of PIVH 
- Hypercarbia-induced cerebral vasodilation: (abnormally) high rScO2 
- Lack of CAR: Blood pressure passive fluctuating pattern of rScO2 

(Cystic) Diffuse White Matter Injury 
- Hypocarbia-induced cerebral vasoconstriction: (abnormally) Low rScO2 
- Hyperoxia-induced formation of cytokines/free rad: Low-to-normal rScO2 
- hsPDA-related ductal steal of brain perfusion: prolonged episodes of low (<45%) rScO2 
- Anemia-induced hypoxemia of the preterm brain: Low rScO2 
- Hypoglycemia-related disturbance of glucose metabolism: increasing rScO2 values 

Perinatal Ischemia-Hypoxia (Birth Asphyxia) 
- Secondary energy failure-induced: (abnormally) high rScO2 (from birth up to 72–96 h of age) 

Perinatal Arterial Ischemic Stroke 
- Luxury perfusion-induced: higher rScO2 in the ipsilateral hemisphere as compared to contralateral 
hemisphere 

hsPDA: hemodynamically significant Ductus Arteriosus. PIVH: peri-intraventricular hemorrhages. rScO2: regional cerebral 
oxygen saturation. 

4. Future Perspectives of Multimodal Cerebral 
Oxygenation Monitoring: What Can It Add to 
Neuroprotection of the Perinatal Brain in the Clinical 
Setting? 

NIRS-derived monitoring of the cerebral oxygenation pattern in the preterm neonate and to a 
lesser extent also in the term neonate, has undeniable neuroprotective potential as showed 
above. However, applied research of NIRS-derived surveillance of oxygenation, cerebral 
perfusion and cerebral autoregulation is progressing quickly with the ultimate goal to improve 
clinical care. 

In this perspective we want to discuss two important developments in perinatal NIRS research 
which may lead to clinical application in the near future: proper assessment of cerebral 
hemodynamics regulation which aims to couple systemic (hemodynamic and oxygenation) 
variables to NIRS signals; a more detailed analysis of NIRS-derived intensity signals for the 
surge to other usable physiological variables and artifacts detection is reviewed in Sections 5 
and 6 below. 

5. Assessment of Cerebral Hemodynamics 
Regulation Using NIRS Signals 

In regard to cerebral hemodynamics regulation, one must take into account the mechanism of 
Cerebral Vascular Autoregulation (CVAR)—or pressure-flow reactivity. This property of the 
brain has the end goal of maintaining the cerebral blood flow at a constant level, regardless 
of the systemic blood pressure (BP)—but still within a limited range of BP values [74,75]. In 
the case of the BP going too low (or too high), the CVAR mechanism, through the arterioles, 
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can no longer regulate the transmural pressure and the blood flow in the brain will, 
respectively, decrease or increase [76] (see Figure 1). 

 
Figure 1: Autoregulatory curve of CBF variations according to mean arterial BP (MABP). In green, the ideal/healthy 
autoregulatory plateau, and in read/orange the extreme, and therefore dangerous areas of the plot. 

Term infants have functional autoregulation and vasoreactivity, but preterm infants are born 
with an underdeveloped cerebral vascular system [74,77]. This is why the study of CVAR 
becomes relevant, when one takes into consideration the fact that (very) preterm infants are 
exposed to a higher risk of hemodynamic instability—and, therefore, brain damage—leading 
to PIVH or white matter injury [78] as also stated above. For this reason, online assessment 
and monitoring of the brain tissue oxygenation, combined with the state of the autoregulatory 
mechanism, is of utmost importance in the frontline of preventing brain injury and further 
neurodevelopmental disorders [39,79]. 

By evaluating the relation between BP and Cerebral Blood Flow (CBF) in a continuous way, it 
is possible to assess the mechanism of CVAR [75]. Since there is not a direct and non-invasive 
way to measure CBF, and assuming a constant arterial oxygen saturation (SaO2), the NIRS 
signal can be used as a surrogate for CBF changes, providing information on the oxygen 
saturation of the brain (rScO2) [39,80,81]. By observing the rScO2 signal it becomes possible 
to detect sudden changes and eventually relate them to variations in BP, therefore identifying 
the presence or absence of the dynamics of autoregulation and providing us the possibility to 
interfere as already suggesting above [74]. 

The first steps into this analysis focus on the pre-processing stage, including filtering of the 
data, artifact removal and SaO2 correction [39]. Once this step is performed, there are two 
main approaches possible: analysis in the time domain or in the frequency domain. Time 
domain analysis calculates the correlation between the BP and rScO2 over short continuous 
segments, which can then be averages and distributed according to the corresponding BP 
values, thus having one correlation value per “bin” of blood pressure value [80,82–84]. 
Frequency domain analysis also explores the relation between these two signals, but with a 
focus on specific frequency bands [39]. This might come as an advantage when one considers 
that CVAR may be composed of responses with different time lags, therefore taking into 
account the delay between changes in BP and rScO2 [39]. One of these methods focuses on 
the Transfer Function (TF), analyzing the power spectral density (PSD) of the signals, which 
is a representation of the presence of each different frequency in the segments considered. 
From this, one can assess the TF gain, which indicates the impact that a change in the input 



Chapter 6                                                                                                    

 

 118 

 

signal (the BP) had in the output signal (the rScO2), and therefore assessing if CVAR was 
indeed present or not [39,79]. Another method of analysis is Coherence: this function 
measures the linearity of the two signals considered (BP and rScO2) in the frequency domain, 
indicating if there is a linear relationship between the input and the output of the system in 
focus [39,76,77,80,84]. 

In all the methods described above, one must take into account the length of the epochs 
considered for analysis, as shorter epochs might produce noisier values—due to a smaller 
number of sub windows in the analysis—but epochs that are too long may indicate the 
presence of more nonstationary segments than the ones regarding CVAR, and, therefore, 
producing lower values and hindering the results [84]. Another factor from the clinical care 
point of view is that it is important to have in mind that these methods require signals that are 
continuous and stable enough to provide trustworthy results [85]. 

We, therefore, must always aim for a stable CVAR mechanism, even though there is still a 
lack of agreement as to what the best method for analysis is, as well as a proper online 
monitoring method at the bedside. 

Despite the methods presented above, a global consensus is still lacking, as the ideal (online) 
system should be easily reproducible regardless of the population in focus and the preterm 
age. Ongoing research of CVAR assessment should also focus on the demonstration of a 
globally accepted tool or method that monitors CBF and rScO2, confirming the relation of the 
changes in those signals with neurodevelopmental outcome [76]. 

6. NIRS-Derived Intensity Signals and the 
Importance of Signal Quality Assessment 

Using the NIRS technique, different information can be acquired from the intensity of the light 
measured by the receivers. As stated above cerebral oxygenation (rScO2) is the most 
common information acquired when using NIRS in clinical applications. However, the NIRS-
derived intensity signals provide, apart from estimating the cerebral oxygenation, some useful 
additional functional and physiological information. The intensity signals can be converted into 
concentration changes in oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin 
(HHb) [86], which can be used to determine brain hemodynamic response in different brain 
regions [86–88]. The intensity and concentration signals contain some physiological 
information including cardiac pulsation, respiration, and vasomotor action [89–92]. Figure 2 
shows an example of the O2Hb and HHb signals, in which the heartbeats are visibly seen with 
approximately 0.4-s time intervals, together with the rScO2 measured by Artinis cerebral 
oximetry device (TOM, Artinis Medical Systems B.V., Elst, The Netherlands). 



Neuroprotection of Perinatal Brain by NIRS 

 119 

 

 
Figure 2: An example of the NIRS signals recorded by the TOM device (Artinis Medical Systems B.V., Elst, the 
Netherlands). (A) Concentration changes in oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb) 
in red and blue, respectively. These signals have been detrended to have a similar baseline. The heartbeats are 
visible in both signals as pulsatile changes with approximately 0.4-s time interval. (B) The cerebral tissue 
oxygenation, rScO2, computed by the TOM device in percentage. The signals are sampled at 100 Hz. 

6.1. NIRS-Derived Heartbeat Pattern 
The most prominent physiological information in NIRS signals are the pulsatile fluctuations 
caused by heartbeats and will be discussed here. This Information in the NIRS signals allows 
for the extraction of heart rate (HR). Several studies have shown the compatibility of the HR 
derived from NIRS with the HR extracted from electrocardiography and 
photoplethysmography [93–95]. Moreover, the HR derived from NIRS has shown to be a richer 
source of information than HR derived from PPG or ECG under physical and mental stressful 
conditions [92,94–96]. Deriving HR from NIRS signals is highly useful in neonates as it can 
eliminate the need to use extra electrode for recording this information [97]. Eliminating extra 
electrodes can relieve neonates from physical stresses induced by electrode placement and 
potentially reduces injury risks [98]. 

The HR and brain hemodynamic information in the NIRS signals can be fused in different 
applications where both brain and heart functions are altered. For instance, they can be 
combined to accurately assess (physical) stress [92,94,97]. Furthermore, extracting the HR 
information from NIRS can reduce the ambiguity of the hemodynamic response model [96,99–
101]. The extracted HR information can be used as a known physiological term in a part of the 
model representing different physiological components in the NIRS signal. This can ameliorate 
the hemodynamic response model and enhance the accuracy of brain hemodynamic 
response estimation in the clinical setting. 

6.2. Signal Quality Assessment 
In NIRS techniques, the NIR light travels through different tissue layers including intra- and 
extracranial layers before it strikes the brain. Some factors in the extracranial layer directly 
affect the optical pathway of the transmitted light. For example, scalp thickness, skin 
properties, and the presence and color of hair can disrupt the light passing through the head 
[102,103]. As a consequence, the coupling between NIRS sensors and scalp is decreased, 
and the NIRS signal quality is then deteriorated [104]. This may result in wrong interpretations 
and consequent false findings in the analyses. Therefore, assessing the quality of the NIRS 
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signals before analyzing the signals is important that can increase the reliability of the 
statistical analysis and decrease misinterpretations. 

To assess NIRS signal quality, the presence of a strong cardiac component has been often 
used as the main indicator of a reliable sensor-scalp coupling [105–108]. A reliable sensor-
scalp coupling guarantees that NIR light travels through both intra- and extracranial layers. As 
a result, the received light (NIRS signals) contains brain hemodynamic and physiological 
information from both layers. Therefore, the presence of heartbeat, the most prominent 
systemic information in NIRS signals, indicates that sensors have been well coupled to the 
scalp and that enough light strikes the brain and is backscattered to the receiver. This 
knowledge will greatly improve the reliability of the NIRS signal and hence its clinical use. 

7. Conclusion 

Wide-scale utilization of NIRS-derived monitoring of cerebral oxygenation based on timely 
recognition of an abnormal pattern of cerebral oxygenation seems a relatively straightforward 
means for prevention and/or reduction of brain injury in very and extremely preterm neonates 
(i.e., PIVH and dWMI) and to a lesser extent also in the term asphyxiated neonate. Despite 
this it is very important that the precision of NIRS monitored cerebral oxygen saturation further 
increases. Equally important is the extended research of NIRS signals to reliably monitor 
CVAR and the use of the NIRS signal (quality and diversity) to monitor also hemodynamic 
functions, which contributes to a more informed decision on whether or not to handle the infant 
at a certain time. These developments may further contribute to the prevention of perinatal 
brain damage. International collaboration and unified definitions are important to increase 
utilization of NIRS as a potentially neuroprotective strategy. 
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Abstract 

Near-infrared spectroscopy (NIRS) intensity signals provide useful additional physiological 
information of which the most prominent one is the pulsatile fluctuation by heartbeats. This 
allows for the extraction of heart rate (HR), one of the primary clinical indicators of health in 
neonates. In this study, we propose a novel algorithm, NHR (NIRS HR), for extracting HR from 
NIRS signals acquired from neonates admitted to the neonatal intensive care unit. After 
parental consent, we recorded synchronously NIRS, at 100 Hz, and reference HR, at 1 Hz, 
from ten newborn infants (gestational age = 38 ± 5 weeks; 3092 ± 990 grams). The NHR 
algorithm consists of two main parts. The first part includes four steps implemented once on 
the whole NIRS measurement: preprocessing, HR frequency bandwidth determination, 
interquartile range computation, and segmentation. The second part includes three steps 
implemented on each signal segment: motion artifact detection, signal quality assessment, 
and HR computation. We compared the NHR algorithm with two existing algorithms. The 
results showed that the proposed NHR algorithm provides a significantly (p < 0.05) higher 
correlation (r=99.5%) and lower Bland-Altman ratio (BAR=3.6%) between the extracted and 
reference HRs, compared to the existing algorithms. Extracting HR from NIRS in a clinical 
setting of critically ill neonates admitted to neonatal intensive care is feasible. With NIRS and 
HR combined in a single monitoring system, it is possible to have a perfectly time-synced 
integrated analysis of cerebral hemodynamics as well as systemic hemodynamics and 
autonomic nervous system tone.  
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1. Introduction 

Near-infrared spectroscopy (NIRS) is a non-invasive system for the continuous monitoring of 
brain hemodynamics [1,2]. It is an ideal system to measure changes in oxygenation and 
perfusion of the neonatal brain [3,4]. Although NIRS is not yet part of the standard clinical 
routine in most neonatal intensive care units (NICUs), it is increasingly used across various 
clinical settings [5]. NIRS-monitored cerebral oxygenation has been shown to be of clinical 
benefit in infants during (non-) cardiac surgery as well as for the assessment of some clinical 
conditions such as asphyxia, hypoxic-ischemic encephalopathy, anemia, hypoglycemia, 
hypotension, and hypocapnia [6–11]. Using NIRS, different types of information can be 
acquired, where cerebral oxygenation is the most common one used in clinical settings [3]. 
Another source of information is the raw NIRS-derived intensity signals, which are widely 
disregarded for clinical purposes. The NIRS intensity signals are contaminated by 
physiological artifacts such as cardiac pulsation, respiration, and blood pressure [12], which 
can potentially be harnessed to yield additional physiological information. The most prominent 
physiological information in the NIRS signals is the cardiac pulsation which allows for the 
extraction of heart rate (HR) from NIRS [3,13].  

Extracting HR from NIRS signals offers several potential advantages in neonates over 
traditional methods for HR monitoring, i.e., electrocardiography (ECG) and 
photoplethysmography (PPG). NIRS is a non-invasive technique that does not require sensors 
to be adhesively placed on the skin [3]. This could be especially advantageous for extremely 
preterm infants with vulnerable skin [17], preventing epidermal stripping [14]. In extremely 
preterm infants during the first days of life, when the skin is at its most fragile state, often no 
ECG sensors are placed due to the risk of skin injury, and heart rate (or pulse rate) is extracted 
from oximetry measurements [15]. The NIRS signals recorded on the forehead are less prone 
to motion artifacts than the PPG signals recorded in the periphery. This is because head 
movements are less frequent in neonates than hand movements [16]. Moreover, as reported 
in the previous studies [17,18], the HR derived from NIRS might be a richer source of 
information on the autonomic nervous system than the HR derived from PPG and ECG under 
stressful conditions. Additionally, NIRS also enables continuous monitoring of cerebral blood 
flow and oxygenation. Measuring HR with the same system would allow for a better 
understanding of physiological mechanisms and interventions in newborns with concurrent 
analysis of cerebral oxygenation and HR [3]. Lastly, NIRS devices are portable and easy to 
use [10], making them convenient for monitoring HR and other physiological variables in 
resource-limited settings or when rapid, non-invasive monitoring is necessary. 

Several studies have reported the compatibility of the HR extracted from NIRS with the 
standard reference HR derived from ECG and the HR derived from PPG in healthy adults [17–
20]. In 2012, Scholkmann et al. proposed an algorithm named AMPD (Automatic Multiscale-
based Peak Detection) for peak detection in noisy periodic and quasi-periodic signals [21]. 
Thereafter in 2016, Holper et al. employed the AMPD algorithm for extracting heart rate from 
NIRS data recorded from healthy adults [17]. Moreover, in the same study, they showed the 
usability of NIRS-derived HR in the assessment of physical stress in healthy adults. In 2018, 
Hakimi and Setarehdan showed the outperformance of the AMPD algorithm in HR extraction 
from NIRS signals recorded in healthy adults with respect to the existing algorithms proposed 
for extracting HR from PPG [18]. Furthermore, in the same study, they showed the usability 
of the NIRS-derived HR in the assessment of mental stress.  
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Extraction of HR from infant NIRS is more challenging than adult NIRS due to a lower signal-
to-noise ratio, a higher level of motion artifacts, and a greater physiological HR range [22]. 
The latter makes that there is a need for a system with a high sampling rate. In 2014, Perdue 
et al. reported an algorithm for the extraction of HR from NIRS signals recorded from healthy 
infants (~7 months old) in a controlled setting, sampled at 10 Hz [22]. In 2017, Perdue et al. 
conducted a longitudinal study investigating the applicability of the extracted HR in infants 
aged 3-12 months old with familial risk for autism spectrum disorder to observe the HR 
developmental trajectories to speech stimuli [23].  

Although the existing studies have shown the feasibility of extracting HR from NIRS signals 
recorded in both infants and adults, the existing algorithms have only been validated on data 
recorded from healthy subjects in controlled environments. There are however challenges 
existing in analyzing data acquired in a clinical environment in comparison with a controlled 
environment, including lower data quality, higher contamination by artifacts due to patient 
movement, intermittent sensor replacement, and ventilator use, more variability of the signal 
source, and more restriction imposed by patient safety regulations in the hospital. Due to these 
challenges, therefore, the existing algorithms might not be properly accurate in the extraction 
of HR from clinical NIRS data.  Therefore, there is a lack of a study to assess the performance 
of the existing algorithms in extracting heart rate from NIRS data recorded in clinical settings, 
especially in neonatal patients in the NICU. The issue of non-invasive monitoring of critical 
functions of the body is pre-eminent in very tiny and vulnerable (preterm) neonates with very 
vulnerable skin [14]. Especially, in this patient group one wants to have as few sensors and 
lines as possible, and in this issue, to obtain as much critical information of body functions 
with minimal wiring and burden on the patients [24]. A neonatal NIRS system with a robust 
HR extraction algorithm validated in clinical settings would allow for having a complementary 
view of the autonomic nervous system and systemic circulation, and cerebral hemodynamics 
within a single device.            

In this study, a novel algorithm, NHR (NIRS HR), is proposed for extracting HR from NIRS 
signals acquired from neonates admitted to the NICU. The algorithm is validated with respect 
to the reference HR measured with a clinically approved patient monitor system. In addition, 
we compare the performance of the NHR algorithm with two state-of-art algorithms: the 
Perdue algorithm [22], introduced by Perdue et al., validated on NIRS data recorded from 
healthy infants; the AMPD algorithm [21], introduced by Scholkmann et al., validated on NIRS 
data recorded from healthy adults. Since the proposed algorithm has some processing steps 
involved for signal quality assessment and motion artifact detection, we also investigate 
whether these processing steps would improve the HR extraction accuracy with respect to a 
simple version of the algorithm.  

2. Data 

2.1. Data acquisition 
In this study, NIRS signals were recorded by using a cerebral oximetry system (TOM, Artinis 
Medical Systems B.V., Elst, the Netherlands). This device has a sensor with two transmitters 
firing at two nominal wavelengths of 760 and 850 nm and a receiver at a 21.5 mm distance 
from the transmitters. It provides optical densities as well as cerebral oxygenation, commonly 
known as rSO2 or StO2, with a 100 Hz sampling rate. We placed the sensor on the neonate’s 
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forehead on the opposite side the neonate was lying on. We used a clinical self-adhesive 
elastic bandage to keep placed the sensor on the neonate’s forehead. Figure 1 shows a 
schematic of the configuration of the two transmitters and the receiver providing two NIRS 
channels in the sensor and a photograph of the sensor placed on a baby manikin’s forehead, 
covered by the bandage. We recorded the reference HR (RHR) with a Philips IntelliVue MP70 
(Philips Medical Systems, Best, the Netherlands) patient monitor, at a 1 Hz sampling rate.  

 
Figure 1: (a) Schematic of the layout of the two transmitters and one receiver in the TOM sensor (Artinis Medical 
Systems B.V., the Netherlands), with the banana-shaped light pathways. The transmitters-receiver distance is 21.5 
mm which provides an approximate penetration depth of 11 mm (half of 21.5 mm) [25,26]. (b) Photograph of the 
TOM sensor placed on a baby manikin’s forehead, covered with a clinical self-adhesive elastic bandage. 

2.2. Participants 
All participants were admitted to the NICU of the Wilhelmina Children’s Hospital, Utrecht, the 
Netherlands. This study was approved by the local ethics committee of the University Medical 
Center Utrecht, with the ethics code 21-098/C. We included ten newborn infants (gestational 
age = 38 ± 5 weeks; birth weight = 3092 ± 990 grams, 3 female) who already had an indication 
for NIRS monitoring, as determined by the caring physician or local neuromonitoring protocols. 
Parents were informed about the study protocol and gave written consent prior to the data 
acquisition. We recorded a total of 19 measurements with an average length of 1.5 hours from 
the included neonates, without interrupting clinical routines and with no specific experimental 
paradigm. 

3. Heart rate extraction algorithm 

Figure 2 illustrates the block diagram of the proposed HR extraction algorithm, NHR (NIRS 
HR). The algorithm is divided into two parts, Part I (Figure 2(a)), and Part II (Figure 2(b)). Each 
part of the algorithm is explained in detail in the next sections. The analyses in this study were 
implemented in Python using numpy, scipy, and matplotlib modules [27,28].  

3.1. Part I 
Part I of the NHR algorithm consists of four steps that are implemented once at the beginning 
of the analyses on the whole NIRS measurement (Figure 2(a)): Preprocessing, Adaptive HR 
Frequency Bandwidth (AHRFB), Interquartile range (IQR), and Segmentation. 

Receiver Transmitters

21.5 mm

~11 mm

(a) (b)
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Figure 2: The block diagram of the heart rate extraction algorithm proposed in this study, NHR (NIRS HR). The 
NHR algorithm consists of two parts: (a) Part I, consisting of four steps: Preprocessing (including OD to Hb, SQI, 
and Channel selection); Adaptive HR Frequency Bandwidth (AHRFB); Interquartile range (IQR); Segmentation. (b) 
Part 2, consisting of three steps: Motion artifact detection; Signal quality assessment; HR computation (including 
Detrend, multiplication operator, Autocorrelation, FFT, and Frequency maximum within AHRFB). 

1) Preprocessing: First, the optical densities (ODs) of the two NIRS channels are converted 
to concentration changes in oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin 
(HHb) by using the modified Beer-Lambert law [29] (OD to Hb in Figure 2 (a)). Second, using 
the SQI (Signal Quality Index) algorithm [30], the SQI signals of the two channels are 
computed (SQI in Figure 2(a)), based on sliding windows of 10 seconds, overlapping by 50%. 
Third, the average of the SQI signals is computed separately, and finally, the channel with the 
greater average SQI is selected (Channel selection in Figure 2(a)). In the subsequent steps 
of the algorithm, the O2Hb signal and the SQI signal of the selected channel are used. To 
have an equal sampling rate, the SQI ratings of all 10-second windows are finally interpolated 
to 100 Hz using cubic interpolation.   

2) Adaptive HR Frequency Bandwidth (AHRFB): The HR frequency bandwidth is adaptively 
adjusted per measurement according to a predefined bandwidth between 1.25 Hz and 3.5 Hz. 
The predefined bandwidth was selected according to the range of the RHR (75 BPM < RHR 
< 210). First, the O2Hb signal is low-pass filtered by using a moving average filter of 1 second, 
and then subtracted from the original O2Hb signal to filter out low-frequency components (~ < 
1 Hz). Second, the FFT (Fast Fourier Transformation) magnitude of the filtered signal 
multiplied by a Hamming window with the same length as the signal is computed. Third, the 
FFT magnitude within the predefined bandwidth ([1.25, 3.5] Hz) is sorted in descending order. 
Then the average frequency of the first fifty components (~50% of all components) is 
computed. Finally, the average frequency minus 0.5 Hz and plus 0.5 Hz are considered as the 
minimum and maximum thresholds of the adaptive HR frequency bandwidth that will be 
referred respectively to as 𝑓𝑙𝑜𝑤 and 𝑓ℎ𝑖𝑔ℎ in the subsequent analyses. 

3) Interquartile range (IQR): First, the difference between the third and first percentiles, known 
as the interquartile range, of the selected O2Hb signal is computed in sliding windows of 3 
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seconds. Second, the IQR values of all 3-second windows are interpolated to 100 Hz using 
cubic interpolation to have an equal sampling rate. Finally, the IQR signal is normalized by 
dividing it by the median of the O2Hb signal.  

4) Segmentation: On a sliding window approach, the resulting O2Hb, SQI, and IQR signals 
are segmented into windows of 50 seconds, overlapping by 75% (shifted every 12.5 seconds). 
It is noteworthy that the first HR value will be computed at earliest at 50 seconds of 
measurement time. Figure 3(a) illustrates a segment of the O2Hb signal acquired from the 
data recorded from one of the participants (Measurement 6).  

 
Figure 3: (a) A segment of the O2Hb signal acquired from one of the participants (Measurement 6). (b) The 
converted O2Hb signal calculated by multiplying the O2Hb signal with the binary SQI signal multiplied by the binary 
IQR signal. (c) The FFT magnitude of the autocorrelation computed from the O2Hb signal. Dashed green and 
brown lines depict the reference (RHR) and extracted (EHR) heart rates, respectively. (d) the FFT magnitude of 
the autocorrelation computed from the converted O2Hb signal. (e) The SQI signal calculated based on a sliding 
window approach of 10 seconds overlapping 50% and resampled to 100 Hz. The black dashed line depicts the 
SQI predefined threshold (thSQI = 1.75). (f) The IQR signal calculated from the O2Hb signal based on a sliding 
window approach of 3 seconds and resampled to 100 Hz. The dashed black line depicts the IQR predefined 
threshold (thIQR = 1 ). (g) The binary or thresholded SQI and IQR signals computed, shown in green and purple, 
respectively. 

3.2. Part II 
Part II of the NHR algorithm consists of three steps that are implemented every 12.5 seconds 
on each 50-second segment of the O2Hb, SQI, and IQR signals, computing or updating HR 
(Figure 2(b)): (1) Motion artifact detection, (2) Signal quality assessment, and (3) HR 
computation. 

1) Motion artifact detection: First, the segmented (normalized) IQR signal is thresholded with 
respect to a predefined threshold (𝑡ℎ𝐼𝑄𝑅) of 1% and is then converted to a binary signal. The 
threshold was obtained empirically. The converted IQR signal is zero when the IQR is above 
the threshold, meaning presumably contaminated with motion artifact. Second, the percentage 
of the zeros in the binary signal is calculated. If the percentage is above 80%, meaning that 
more than 80% of the signal in the 50-second window is contaminated with motion artifact, no 
HR will be computed for the considered window. Otherwise, the algorithm passes to the next 
step to assess the signal quality of the signal segment. Figure 3(f) illustrates a segment of the 
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IQR signal computed from the 50-second signal segment shown in Figure 3(a). After 
comparing the IQR signal with the corresponding predefined threshold (𝑡ℎ𝐼𝑄𝑅), the binary IQR 
signal is computed, which is shown in purple in Figure 3(g). It is observed that the motion 
artifacts that exist in about the second half of the signal segment have been correctly captured. 

2) Signal quality assessment: In this step, first, the segmented SQI signal is thresholded with 
respect to a predefined threshold (𝑡ℎ𝑆𝑄𝐼) of 1.75 and is then converted to a binary signal. The 
threshold was obtained empirically. The converted SQI signal is zero when the SQI is below 
the threshold. Second, the percentage of the zeros in the binary signal is calculated. If the 
percentage is above 25%, meaning that more than 25% of the signal in the considered window 
has a low signal quality (lower than an SQI of 1.75), then no HR for the considered window is 
computed. Otherwise, the algorithm passes to compute the HR. Figure 3(e) illustrates a 
segment of the SQI signal corresponding to the signal shown in Figure 3(a). It is observed that 
the signal quality in the second half of the segment is lower than that in the first half. After 
comparing the SQI signal with the corresponding predefined threshold (𝑡ℎ𝑆𝑄𝐼), the binary SQI 
signal is computed, which is shown in green in Figure 3(g).  

3) HR computation: The segmented O2Hb signal is detrended (Detrend in Figure 2(b)) to force 
its mean to zero as well as to reduce its overall linear variation (trend). The detrending is 
conducted by subtracting the least-squares fit of a straight line to the data. Following, the 
detrended O2Hb signal is multiplied by the product of the binary (or thresholded) IQR and SQI 
signals (multiplication operator in Figure 2(b)). Figure 3(b) shows a segment of the converted 
O2Hb signal which is corresponding to the O2Hb signal shown in Figure 3(a). Next, the 
autocorrelation of the converted signal is computed and is then detrended (Autocorrelation 
and Detrend in Figure 2(b)). Then, the FFT of the autocorrelation signal multiplied by a 
Hamming window with the same length is calculated (FFT in Figure 2(b)). Finally, the HR in 
the considered window is computed by finding the frequency with the maximum magnitude 
within the AHRFB ([𝑓𝑙𝑜𝑤, 𝑓ℎ𝑖𝑔ℎ]). We multiply the maximum frequency by 60 to obtain the result 
in beats per minute, bpm (Frequency maximum within AHRFB in Figure 2(b)). Figure 3(d) 
illustrates the FFT magnitude of the autocorrelation computed from the converted O2Hb signal 
that was shown in Figure 3(b). The dashed green and brown lines depict the RHR and 
extracted HR (EHR), respectively. To show the impact of the conversion on the HR extraction, 
Figure 3(c) shows the FFT magnitude of the autocorrelation computed from the original O2Hb 
signal shown in Figure 3(a), so without any motion artefact detection and signal quality 
assessment. It is observed that there is a huge error of approximately 23 bpm (0.38 Hz) when 
the original O2Hb signal is used. 

4. Algorithm performance assessment 

We assessed the performance of the NHR algorithm by calculating four quantitative measures 
quantifying the agreement between the EHR and RHR. The quantitative measures employed 
are: mean of error (ME), root mean square error (RMSE), Bland-Altman limits of agreement 
(LoA) [31], and Bland-Altman ratio (BAR). LoA was computed by calculating 1.96 times the 
standard deviation of the error. It represents the range wherein 95% of the differences 
between the EHR and RHR are falling. BAR was computed by calculating the ratio of the LoA 
to the mean of the pairwise HRs (RHR and EHR). It is described as an efficient way to quantify 
the agreement between the reference and extracted HR signals [32]: the agreement is ranked 
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as good (BAR<10%), moderate (10%<BAR<20%), or insufficient agreement (BAR>20%). 
Furthermore, we computed Pearson’s correlation to determine the linear association between 
the RHR and EHR, wherein the aforementioned quantitative measures fail in representing. 
We assessed the significance of the correlation with a Student’s t-test at a significance level 
𝛼 = 5 , by using the Python scipy.stats module [28]. In addition, we counted the number of 
segments that have successfully passed the steps of Motion artifact detection and Signal 
quality assessment to compute the percentage of included segments. The mentioned 
quantitative measures were computed for each measurement separately, and the average 
and standard deviation for each measure were also calculated. To have a fair comparison 
between the EHR and RHR, we have used the average of the RHR in each 50 s segment.     

We compared the performance of the NHR algorithm with the performance of two existing 
algorithms: the “Perdue” algorithm, proposed by Perdue et al. [22], used for extracting HR 
from NIRS in infants; the “AMPD” algorithm, proposed by Scholkmann et al. [17,21], used for 
extracting HR from NIRS in adults. Furthermore, to investigate the efficacy of the processing 
steps involved in the NHR algorithm for adaptively setting HR frequency bandwidth, detecting 
motion artifacts, and assessing signal quality, we also conducted a comparison with a simple 
version of the NHR algorithm. The simple version was obtained by excluding steps 2 and 3 in 
part I and steps 1 and 2 in part II of the NHR algorithm (see section 3), which will be referred 
to as the “Spectrum” algorithm. In the Perdue algorithm, the NIRS signals recorded with 10 
Hz were upsampled to 100 Hz as a preprocessing step [22]. We exempted this step as the 
NIRS signals here were already recorded at a 100 Hz sampling rate. In both Perdue and 
AMPD algorithms, we took the average of the extracted HR in each 50 s segment, as it is 
implemented for the RHR signal (see previous paragraph). This was performed to have an 
accurate comparison between the performance of the existing algorithms and our proposed 
NHR algorithm.  

To quantitatively compare the performance of the algorithms, we concatenated all 
measurements together and then computed the mentioned quantitative measures, except the 
included segments' percentage. In addition, for a detailed comparison, we computed the 
quantitative metrics per measurement for the Perdue, AMPD, and Spectrum algorithms that 
are reported in the Appendix. As another comparison measure between the algorithms, we 
defined an agreement limit representing the range in which the difference between RHR and 
the respective EHR is less than 20% of the mean of the pairwise HRs (RHR and EHR) [33]. 
Furthermore, we applied Student’s t-test with a significance level 𝛼 = 5  to statistically 
compare the performance of the algorithms against each other.   

We conducted a sensitivity analysis of the window length parameter for the NHR algorithm. 
We changed the window length from 10 s to 200 s (10 to 100 in steps of 10 s, and 100 to 200 
in steps of 25 s) and computed EHR for all measurements by each window length selected. 
Starting from the shortest window length, we compared the EHR signals computed by each 
window length with the ones computed by the next greater window length (e.g., 10 s with 20 
s). We used Student’s t-test (𝛼 = 5 ) to find the significant cases when increasing the window 
length leads to a significantly different performance compared with the next shorter window 
length. With this analysis, we determined the optimal window length that provides less delay 
as well as statistically better performance than the other ones. 
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5. Results 

5.1. Results of the proposed algorithm 
Figure 4 illustrates the scatter plots comparing the RHR with the EHR computed by the 
proposed NHR algorithm for each measurement, separately. It is observed that the 
measurements had different HR ranges that have been properly captured by the algorithm. 
As an example, Measurement 6 has HRs ranging from ~75 bpm to ~100 bpm, while 
Measurement 12 has HRs ranging from ~160 bpm to ~175 bpm. From the scatter plots, it is 
observed that there is a significant correlation (i.e., linear association) between the RHR and 
EHR in all measurements (p < 0.05). Looking at the bias (ME) in the scatter plots, we observe 
the bias in HR extraction to be negligible in all measurements. Looking at the LoA in the scatter 
plots, we observe it to be small in all measurements (exceptions: Measurements 4, 5, 9, 12, 
19).   

 
Figure 4: Scatter plots showing the association between the reference heart rate (RHR) and the extracted heart 
rate (EHR) by the NHR algorithm per measurement. The y and x axes represent the RHR and EHR in bpm (beats 
per minute), respectively. Each dot represents the HR in a 50s segment. The blue dashed line represents the 
identity line (y = x line) while the full purple and red lines represent the bias (mean of error, ME) and Bland-Altman 
limits of agreement (LoA), respectively. The correlation between RHR and EHR in all measurements is significant 
(p < 0.05%). The plot in the right-bottom corner is a sample plot to illustrate the identity, bias, and LoA lines. 
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The quantitative measures showing the agreement and linear association between the RHR 
and EHR signals for each measurement are reported in Table 1. The ME (or bias) is lower 
than 1 bpm in all measurements, except for Measurement 4 (ME = 3.7 bpm). The average 
and standard deviation of ME computed over all measurements are 0.2 bpm and 1.1 bpm, 
respectively. The RMSE is lower than 4 bpm in all measurements, except for Measurements 
4 and 19 which is approximately 6 bpm, with an average and standard deviation of both 
approximately 2 bpm. The LoA has an average and standard deviation of approximately 3 ± 
3 bpm in all measurements, with the largest ones in Measurement 4 (9.2 bpm) and 
Measurement 19 (9.8 bpm). Likewise, the BAR has an average and standard deviation of 2.5 
± 2.2 bpm in all measurements, with the highest ones in Measurement 4 (7.2%) and 
Measurement 19 (8.2%). The BAR percentage of each measurement falls within the good 
agreement category (BAR<10%) [32] between RHR and EHR. The EHR signal of each 
measurement showed a positive and significant (p < 0.05) correlation of more than 74% with 
the RHR signal. Across all measurements, the average and standard deviation of Pearson’s 
correlation are 91.1 ± 8.2%. The included segments’ percentage of each measurement is 
more than 95%, except for Measurements 8, 15, and 19 (88%, 82%, and 67%, respectively). 
Across all measurements, the average and standard deviation of the percentage of included 
segments are 95.2 ± 8.2%, meaning that the NHR algorithm, on average, excluded 
approximately 5% of the signal segments, during which no HR computation could be 
performed. 

Table 1: Quantitative measures for assessing the performance of the proposed NHR algorithm per measurement. 

Measurement MEa (bpmb) RMSEc 
(bpm) LoAd (bpm) BARe (%) Pearson’s r 

(%) ISf (%) 

1 -0.2 0.9 1.8 1.4 93.3 98.8 
2 0.0 0.5 1.0 0.7 95.8 100.0 
3 -0.1 0.3 0.5 0.4 97.5 99.6 
4 3.7 6.0 9.2 7.2 81.2 95.0 
5 -0.3 2.1 4.1 2.9 88.3 95.2 
6 -0.1 0.9 1.7 2.0 96.4 95.2 
7 -0.1 0.5 1.0 0.7 96.7 100.0 
8 -0.5 3.9 7.5 4.9 85.7 88.4 
9 -0.1 3.9 7.7 5.0 75.2 98.8 
10 -0.7 1.6 2.8 1.7 74.2 100.0 
11 -0.3 1.3 2.4 1.4 95.4 100.0 
12 0.8 2.4 4.5 2.7 84.5 95.5 
13 -0.1 0.8 1.5 1.2 98.3 98.0 
14 -0.1 0.5 1.0 0.8 97.4 100.0 
15 0.0 0.9 1.7 1.4 98.6 82.0 
16 -0.1 0.7 1.3 1.2 96.5 100.0 
17 -0.1 0.8 1.5 1.4 99.3 96.3 
18 0.1 0.9 1.8 1.8 95.2 98.9 
19 2.3 5.5 9.8 8.2 81.7 67.1 

Average 0.2 1.8 3.3 2.5 91.1 95.2 
Stdg 1.1 1.7 3.0 2.2 8.2 8.2 

a Mean of error. 
b beats per minute. 
c Root mean square error. 
d Band-Altman limits of agreement. 
e Bland-Altman ratio. 
f Standard deviation. 
g Included segments 

5.2. Comparison with the existing algorithms 
Figure 5 shows an example from one of the NIRS measurements (Measurement 17) of the 
EHR signals extracted by using our proposed NHR algorithm (in green), the Perdue algorithm 
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[22] (in blue), and the AMPD algorithm [21] (in purple). Our derived EHR signal is a better 
representation of the RHR (in red) that has properly followed the trend of the RHR signal from 
the beginning to the end of the measurement. In this measurement, Pearson’s correlation 
between the RHR and the EHR computed by our proposed NHR algorithm is 99.3% (p < 0.05) 
while that is 87.5% (p < 0.05) by using the Perdue algorithm, and 93.2% (p < 0.05) by using 
the AMPD algorithm.  

 
Figure 5: An example of the extracted HR (EHR) signals by using the NHR algorithm (in green), the Perdue 
algorithm [22] (in blue), and the AMPD algorithm [21] (in purple), compared with the reference heart rate (RHR) 
signal (in red). The x and y axes represent the time in minutes (min) and the HR in beats per minute (bpm), 
respectively. In this measurement (Measurement 17), Pearson’s correlation between the RHR and EHR by the 
NHR algorithm is 99.3% (p < 0.05), whereas it is 87.5% (p < 0.05) by the Perdue algorithm, and 93.2% (p < 0.05) 
by the AMPD algorithm. 

Figure 6 illustrates the scatterplots between the RHR and EHR computed by the NHR 
algorithm (Figure 6(a)), the Perdue algorithm (Figure 6(b)), the AMPD algorithm (Figure 6(c)), 
and the Spectrum algorithm (Figure 6(d)) when all the measurements were concatenated 
together. Data points in the scatter plots for the Perdue, AMPD, and Spectrum algorithms are 
more sparsely distributed around the identity line (y=x line) than the one for the proposed NHR 
algorithm in this study. Likewise, compared with the NHR algorithm (4 points), the Perdue (574 
points), AMPD (847 points), and Spectrum (255 points) algorithms have much more data 
points outside the defined agreement limit (cyan lines), indicating errors of more than 20% of 
the pairwise HRs mean. In addition, the Perdue, AMPD, and Spectrum algorithms are 
observed to have a bias in computing HR, e.g., the Perdue algorithm toward a higher value 
(i.e., more data points below the identity line) and the AMPD and Spectrum algorithms toward 
a lower value (i.e., more data points above the identity line) than the RHR. On the contrary, 
this is not the case for the NHR algorithm as the bias seems to be negligible. Furthermore, the 
Perdue, AMPD, and Spectrum algorithms are observed to be unable to adaptively capture 
different HR ranges, e.g., the Perdue algorithm in the RHR lower than approximately 100 bpm 
and AMPD in the RHR between approximately 100 and 150 bpm. Conversely, the NHR 
algorithm seems to be adaptable to the different ranges of HR, i.e., leaving the dots close to 
the identity line in the scatterplot for the whole HR range (Figure 6(a)).  
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Figure 6: Scatter plots between the reference heart rate (RHR) and the extracted heart rate (EHR) by (a) the NHR 
algorithm, (b) the Perdue algorithm [22], (c) the AMPD algorithm [21], and (d) the spectrum algorithm, for all the 
measurements concatenated together. The y and x axes in each plot represent the RHR and EHR in bpm (beats 
per minute), respectively. Each dot represents the HR in a 50s segment. The blue dashed line represents the 
identity line (y = x line) while the full purple and red lines represent the bias (ME) and Bland-Altman limits of 
agreement (LoA), respectively. The cyan lines represent the defined agreement limit. They are in 20% of the mean 
of the pairwise HRs (RHR and EHR) distance from the identity line.   

The quantitative measures showing the agreement and linear association between RHR and 
EHR computed by the four algorithms in all measurements concatenated together are 
reported in Table 2. The ME (or bias) is higher for the Perdue (ME=-5.3 bpm) and AMPD (6.8 
bpm) algorithms than that for the Spectrum algorithm (1.8 bpm) and NHR algorithm (0.2 bpm). 
The RMSE is approximately 17 bpm, 21 bpm, and 10.5 bpm by the Perdue, AMPD, and 
Spectrum algorithms, respectively, whereas it is low as 2.4 bpm by the NHR algorithm. The 
LoA is higher for the Perdue (LoA=31.5 bpm), AMPD (39.0 bpm), and Spectrum (20.3 bpm) 
algorithms than that for the NHR algorithm (4.6 bpm), this was also observed in the scatter 
plots shown in Figure 6. Looking at the BAR percentages, we obtained a good agreement 
(BAR<10%) between RHR and EHR for the NHR algorithm, whereas the agreement between 
RHR and EHR for the Perdue and AMPD algorithms was insufficient (BAR>20%) and for the 
Spectrum algorithm was moderate (10%<BAR<20%). Pearson’s correlation between the RHR 
and EHR for all algorithms was significant (p < 0.05); however, the correlation obtained by the 
NHR algorithm was approximately 28%, 26%, and 15.8% greater than the one obtained by 
the Perdue (71.8%), AMPD (73.2%), and Spectrum (83.7%) algorithms, respectively.  Figure 
7 illustrates the raincloud plot of the absolute error between RHR and EHR signals obtained 
for the four algorithms. In this figure, we observe that the majority of the errors by the NHR 
algorithm are about zero, whereas the errors made by the Perdue, AMPD, and Spectrum 
algorithms are more sparsely distributed toward higher values, leaving an additional peak 
close to the greatest error. This additional peak in the raincloud plot for the Perdue algorithm 
is due to the huge error in computing HRs lower than approximately 100 bpm as was observed 
in Figure 6. Conversely, the additional peak in the raincloud plots for the AMPD and Spectrum 



Chapter 7                                                                                                    

 

 144 

 

algorithms is due to the error observed in computing HRs above approximately 100 bpm. The 
result of the statistical comparison (Student’s t-test with 𝛼 = 5 ) between the performance of 
four algorithms exhibits that there is a significant difference (p < 0.05) between the 
performance of the algorithms against each other. 

Table 2: Quantitative measures for assessing the performance of the proposed NHR algorithm, the Perdue [22], 
the AMPD [21], and the Spectrum algorithms in all measurements concatenated together. 

Algorithm MEa (bpmb) RMSEc (bpm) LoAd (bpm) BARe (%) Pearson’s r (%) 
NHR 0.2 2.4 4.6 3.6 99.5 

Perdue -5.4 16.9 31.5 23.9 71.8 
AMPD 6.8 21.0 39.0 31.0 73.2 

Spectrum 1.8 10.5 20.3 15.8 83.7 
a Mean of error. 
b beats per minute. 
c Root mean square error. 
d Band-Altman limits of agreement. 
e Bland-Altman ratio. 

 
Figure 7: Raincloud plot of the absolute error between RHR and EHR computed by the NHR algorithm (first panel), 
the Perdue algorithm [22] (second panel), the AMPD algorithm [21] (third panel), and the Spectrum algorithm (fourth 
panel). For the sake of having better visualization in the distributions, the natural logarithm of the absolute error 
plus one (x-axis) was computed.   

5.3. Determining the optimal window length 
The optimal window length in the NHR algorithm was determined by changing the window 
length of the sliding window approach implemented in the Segmentation step. Figure 8 
illustrates the Pearson’s correlation computed between RHR and EHR with respect to the 
window length. It is generally observed that by selecting a greater window length, a greater 
correlation was achieved. Any window length greater than or equal to 30 seconds resulted in 
a correlation higher than 80%. Nevertheless, there was no statistically significant difference in 
the performance of the NHR algorithm when comparing window lengths greater than 50 
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seconds. Therefore, we defined the shortest optimal window length to be 50 seconds, because 
it statistically performs better than shorter window lengths (p < 0.05), but not worse than longer 
window lengths (p>0.05).  

 
Figure 8: Pearson’s correlation between the RHR and EHR when changing the window length in the sliding window 
approach implemented in the NHR algorithm. X and Y axes represent the window length in seconds and Pearson’s 
correlation in percentage, respectively. From the shortest window length upwards, the outcome of each window 
was compared statistically (Student’s t-test with α = 5 ) with the outcome of the next greater window length. The 
red and blue dots represent the significant cases (p < 0.05) and the first insignificant case, respectively. The blue 
dashed line depicts the window length corresponding to the first insignificant case, indicating the shortest optimum 
window length. 

6. Discussion 

In this study, we developed a novel algorithm for extracting HR from the NIRS signals recorded 
from the critically ill neonates admitted to the NICU. To the best of our knowledge, the 
proposed NHR algorithm is the first HR extraction algorithm developed on neonatal NIRS 
signals acquired in a clinical environment. The existing AMPD algorithm, introduced by 
Scholkmann et al. [21], was validated on signals recorded from healthy adults in a controlled 
environment [17,18]. The existing Perdue algorithm, introduced by Perdue et al. [22], was 
developed on signals recorded from infants older than 3 months and in a controlled 
environment, whereas our proposed algorithm was developed on signals recorded from 
newborn infants admitted to NICU, i.e., in real-life clinical settings. Our results showed that the 
NHR algorithm provides a significantly (p < 0.05) better performance in HR extraction from 
neonatal NIRS signals than the Perdue and AMPD algorithms (see Table 2 and Figures 6, 7). 
The NHR algorithm numerically showed a greater correlation (r=99.5%, p < 0.05) between the 
EHR and RHR than the Perdue algorithm (r=71.8%, p < 0.05), and the AMPD algorithm 
(r=73.2%, p < 0.05). Furthermore, the NHR algorithm showed a higher agreement between 
the EHR and RHR than the Perdue and AMPD algorithms, in terms of ME, RMSE, LoA, and 
BAR (see Table 2).  

Data acquisition in clinical settings has some challenges that have led us to use some 
novelties in the NHR algorithm by adding some processing steps in order to achieve a robust 
algorithm in HR extraction from neonatal NIRS. Compared with a controlled environment, the 
data recorded in a clinical environment contains more motion artifacts induced by patient 
movement, sensor replacement, and ventilator use. Hence, in this study, we have performed 
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steps in the NHR algorithm to detect motion artifacts per segment and reform the 
contaminated NIRS signal (see section 3.2). Figure 3 shows an example of a 50-second 
segment of the NIRS signal which is contaminated with motion artifacts (see Figure 3(a)). This 
figure illustrates the IQR (Figure 3(f)), thresholded IQR (Figure 3(g)), the converted NIRS 
signal (Figure 3(b)), and the spectra of the converted signal (Figure 3(d)) and the original 
signal (Figure 3(c)), i.e., without any motion artifact detection and signal quality assessment. 
With the conversion, the spectrum was enhanced in the vicinity of the reference HR frequency 
(1.66 Hz), and thereby a more accurate HR was computed (1.65 Hz vs 1.27 Hz). By using the 
proposed algorithm, we excluded only those signal segments where motion artifacts were 
detected in over 80% of the segment. Looking at the results reported in Table 1, we are 
including the majority of the signal segments for the HR computation, i.e., on average only 
excluding 5% of the 50-second segments which were highly (>80%) contaminated with motion 
artifacts. Another challenge in clinical data is the low data quality, which is partly due to the 
restrictions of data acquisition in clinical settings. To overcome this challenge, we have 
performed three steps in the NHR algorithm to select the highest quality NIRS channel (see 
section 3.1), assess the NIRS signal quality per segment, and include the good quality signals 
in the analyses (section 3.2). Another challenge in clinical data is the variability of the signal 
source, here the variability of HR (see Figure 4). To overcome this challenge, we have 
adaptively set the HR frequency bandwidth in each measurement in the NHR algorithm (see 
section 3.1). Our results of the comparison between the Spectrum and NHR algorithms 
showed the outperformance (p < 0.05) of the NHR algorithm and therefore confirmed the 
efficacy of the processing steps involved in the NHR algorithm in the HR extraction with 
respect to the simple version of the NHR algorithm (i.e., Spectrum algorithm). For example, 
the additional processing steps not only improved the linear correlation (99.5% vs 83.7%) but 
also enhanced the agreement between the EHR and RHR in terms of ME (0.2 vs 1.8 bpm), 
RMSE (2.4 vs 10.5 bpm), LoA (4.6 vs 20.3 bpm), and BAR (3.6 vs 15.8%). 

When an HR extraction algorithm is based on peak detection, such as the Perdue [22] and 
AMPD [17,21] algorithms, there will be an unavoidable discretization error in HR computation. 
The NIRS signals recorded in this study were sampled at 100 Hz, whereas the NIRS signals 
recorded in the Perdue et al. study [22] and Scholkmann et al. study [21] were sampled at 10 
Hz. The maximum error in peak detection with a 10 Hz sampling rate due to discretization 
error is 0.05 s, whereas it is 0.005 s with a 100 Hz sampling rate. The peak detection error 
yields an HR computation error depending on the HR range. For instance, if the HR is 65 bpm 
(= 60

𝑖𝑛𝑡𝑒𝑟𝑏𝑒𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 0.92 𝑠
), which is approximately the average resting state HR in male adults 

reported in [34], then the maximum error in HR computation due to discretization error with a 
10 Hz sampling rate will be approximately 3 bpm ( 60

0.92
− 60

0.92 + 0.05
), whereas it will be 

approximately 0.4 bpm with a 100 Hz sampling rate. Although this might not be a considerable 
error, it will be more pronounced in infant data. As an example, if the HR is 130 bpm, which is 
the average RHR in the neonates admitted in this study, the maximum error in HR computation 
with a 10 Hz sampling rate will be approximately 13 bpm, whereas it will be approximately 1 
bpm with a 100 Hz sampling rate. This explains the importance of having a high sampling rate 
in the NIRS system when extracting HR signals in infants.  

Another advantage of having the NIRS signal recorded with a high sampling rate (100 Hz) is 
that it provides the opportunity to have an accurate assessment of the signal quality as well 
as motion artifacts. In this study, we have employed the SQI algorithm [30] to assess the NIRS 
signal quality. This algorithm quantifies the strength of the heartbeat components in the NIRS 
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signals, representing the strength of the optode-scalp coupling. This assessment requires 
signals recorded with a high sampling rate, e.g., 50 Hz as has been used for developing SQI. 
As an additional step, in this study, we have employed IQR to detect the occurrence of motion 
artifacts. A high sampling rate provides more samples in the window where the IQR is 
computed rather than a low sampling rate, thereby a more accurate representation of motion 
artifacts (with different frequency components) is obtained. The impact of employing these two 
assessments is shown in Figure 3 which has led to a more accurate HR computation.  

Although the results we obtained for the proposed NHR algorithm are promising, further 
improvements are possible. The NHR algorithm updates HR every 12.5 seconds, whereas the 
Perdue and AMPD algorithms could compute HR beat-by-beat. This delay in HR computation 
makes this algorithm ineffective in applications where short-term characteristics of HR are 
analyzed [35,36]. The proposed NHR algorithm has been designed to be implemented offline 
on the NIRS measurements; however, an online version of the algorithm could be established 
with relatively few adjustments. These adjustments would be in part I of the algorithm in steps 
of Preprocessing and Adaptive HR Frequency Bandwidth. For instance, in the Preprocessing 
step when selecting the best channel, instead of computing the SQI for the whole 
measurement, we could compute it from the beginning of the measurement up to the current 
moment. This could be repeated at several-minute intervals, which depends on the variability 
of the signals. Moreover, instead of using SQI values from the beginning of the measurement, 
we could use the values in the last several minutes. Also, it is possible to store the SQI values 
computed in each segment within Part II of the algorithm and then we could reuse them when 
selecting the best channel. Similarly, in the Adaptive HR Frequency Bandwidth step, the 
adaptive bandwidth could be calculated using the O2Hb signal either from the start of the 
measurement up until the present moment or during the last several minutes.  

The NHR algorithm was validated in this study on a dataset of in total 7834 HR samples (19 
measurements), shown as dots in Figs 4, 6. However, eliminating excessive HR monitoring 
sensors used in clinical settings requires further validation of the algorithm on a more 
extensive dataset acquired from neonates in the clinical environment, especially extremely 
preterm infants. Looking at the public datasets, to the best of our knowledge, there is no public 
dataset including raw NIRS data with a high sampling rate as well as reference HR that all 
were recorded from newborn infants in a clinical environment. Therefore, we were unable to 
validate the proposed algorithm on a larger and more extensive dataset than the one 
employed in this study. Furthermore, we were unable to use the public PPG datasets as the 
proposed algorithm with the defined processing steps cannot be applied to the PPG data, i.e., 
we have used methods in the proposed algorithm for the assessment of signal quality and 
motion artifacts that were proposed and validated on NIRS data. 

Extracting HR from NIRS signals could have several advantages over traditional ECG and 
PPG methods. First, NIRS is a non-invasive technique that does not require electrodes or 
sensors to be adhesively attached to the skin. This could be particularly beneficial for fragile 
newborns, especially extremely preterm infants, in the NICU who have very delicate skin, 
especially in the first few days after birth [17]. Routinely placing and removing the adhesive 
sensors on the skin in these fragile newborns are known to induce discomfort, stress, and 
pain, which are reported to be linked with poor neurodevelopmental outcomes [14]–[16]. 
Second, in neonates, the PPG signals recorded in the periphery are more prone to motion 
artifacts than NIRS signals recorded on the forehead. This is because hand movements in 
newborn infants are more frequent than head movements [16]. So that some studies have 
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shown that newborn infants in the supine position tend to lie with their heads turned to the 
right, accounting for 70% to 85% of their lying time [37–39]. Moreover, it has been shown that 
the pulse oximeter sensor placed over the forehead has more sensitivity to arterial pulsatile 
changes under low perfusion conditions than the sensor placed over peripheral body locations 
[40]. This is due to the thin-skin layer of the forehead, which is coupled with a prominent bone 
structure, that helps to direct light back to the photodetector [41]. Third, two existing NIRS 
studies of stress assessment on adults have shown that the HR (i.e., pulse rate) derived from 
NIRS is a richer source of information than the HR derived from PPG and ECG under physical 
and mental stress conditions [17,18]. Hence, the HR signal derived from NIRS might be more 
beneficial in both research and clinical environments for the assessment of the autonomic 
nervous system; however, more studies need to be conducted to confirm the greater richness 
of the NIRS-derived HR. Fourth, NIRS provides continuous monitoring of cerebral blood flow 
and oxygenation [3]. Therefore, extracting HR from NIRS could help clinicians to 
simultaneously measure changes in perfusion, oxygenation, and HR and therefore better 
understand the physiological mechanisms underlying different health conditions and 
interventions in newborns. Lastly, NIRS devices are generally portable and easy to use [10], 
which could make them a convenient option for monitoring HR and other physiological 
variables in the NICU. This could be particularly beneficial in resource-limited settings or in 
situations where rapid, non-invasive monitoring is necessary.  

This study aimed to harness the richness of high sampling rate NIRS signals that are recorded 
in clinical settings, i.e., taking advantage of the heartbeat information in NIRS, and proposing 
a robust algorithm for the HR extraction from clinical neonatal data. Although the proposed 
NHR algorithm has more delay in computing HR than the existing Perdue and AMPD 
algorithms, i.e., 12.5 seconds with respect to HR computation beat-by-beat, the NHR 
algorithm showed significantly (p < 0.05) a greater accuracy in extracting HR from neonatal 
NIRS data. A NIRS system with the NHR algorithm provides the opportunity to have 
synchronized HR and cerebral oxygenation. NIRS-derived cerebral oxygenation is known as 
a surrogate for cerebral perfusion [42], and HR has been proposed as a considerable 
alternative for blood pressure in preterm infants [43]. Therefore, a high sampling rate NIRS 
system with the NHR algorithm could be used potentially as a future standalone system for 
assessing cerebrovascular autoregulation in preterm infants. Furthermore, the feasibility of 
the NIRS cerebral oxygenation and HR have been supported by a growing body of research 
in optimizing monitoring in newborns with hypoxic-ischemic encephalopathy, adding to 
neurodevelopmental outcome prediction and also in assessing sleep stages in infants [6,7,44–
54]. Therefore, the fusion of the cerebral oxygenation and HR provided by the standalone 
NIRS system could be investigated in infants as a future study.  

7. Conclusion 

In this study, we developed a novel algorithm, NHR (NIRS HR), for extracting HR from clinical 
NIRS signals recorded in neonates. The results numerically showed the compatibility of the 
HR extracted from NIRS with the reference HR, measured with ECG, in terms of Pearson’s 
correlation (r>0.9) and Bland-Altman ratio (<5%). The NHR algorithm significantly 
outperformed two existing algorithms, i.e., Perdue and AMPD algorithms. The promising 
results achieved suggest that the feasibility of the NHR algorithm could be exploited in clinical 
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applications where a combination of NIRS and HR monitoring can contribute to monitoring the 
vulnerable newborn brain. 

Appendix 

Table 3: Quantitative measures for assessing the performance of the Perdue, AMPD, and Spectrum algorithms 
per measurement. 

Perdue Algorithm 

Measurement MEa (bpmb) RMSEc (bpm) LoAd (bpm) BARe (%) Pearson’s r 
(%) 

1 -0.7 3.1 5.9 4.5 62.8 
2 -0.6 1.0 1.5 1.0 91.9 
3 -0.6 1.0 1.5 1.1 82.2 
4 -0.0 1.2 2.3 1.7 98.4 
5 -0.4 1.1 2.0 1.4 96.4 
6 -57.8 60.6 35.9 31.9 -83.3 
7 -0.8 1.4 2.3 1.6 89.3 
8 -1.4 4.0 7.3 4.8 86.9 
9 -1.3 2.5 4.2 2.8 91.8 
10 -1.2 3.6 6.7 4.1 6.1 
11 -0.7 1.2 1.9 1.1 97.0 
12 0.3 1.1 2.1 1.2 95.3 
13 -0.9 1.8 3.2 2.5 93.4 
14 -0.6 1.0 1.6 1.2 93.4 
15 -1.1 1.6 2.3 1.9 97.4 
16 -2.4 3.2 4.1 3.8 60.8 
17 -2.2 3.9 6.4 6.0 87.5 
18 -1.8 2.2 2.7 2.6 91.4 
19 -0.1 1.1 2.2 1.8 99.2 

Average -4.0 5.1 5.1 4.1 75.7 
Stdf 12.7 13.1 7.5 6.7 43.0 

AMPD Algorithm 
1 -0.1 2.8 5.4 4.2 62.0 
2 -0.5 0.7 1.0 0.7 96.1 
3 -0.2 0.3 0.5 0.3 98.0 
4 0.6 1.7 3.1 2.4 96.8 
5 -0.0 0.8 1.6 1.2 97.7 
6 -0.5 1.0 1.6 1.9 96.8 
7 68.4 68.5 6.1 5.6 45.2 
8 0.3 3.1 6.1 4.0 90.7 
9 -0.4 1.5 2.7 1.8 96.6 
10 -0.2 1.4 2.8 1.7 83.2 
11 0.7 2.1 3.8 2.2 90.4 
12 4.4 5.9 7.8 4.6 78.9 
13 -0.0 2.5 5.0 3.8 80.3 
14 -0.9 1.1 1.2 1.0 96.6 
15 60.7 61.0 11.4 12.4 44.6 
16 7.7 13.1 20.8 20.1 -18.4 
17 -0.5 1.2 2.2 2.0 93.2 
18 -0.9 1.6 2.6 2.5 90.2 
19 1.2 4.5 8.5 7.0 88.7 

Average 7.3 9.2 5.0 4.2 79.3 
Std 19.8 19.3 4.7 4.7 28.9 

Spectrum Algorithm 
1 0.6 6.0 11.8 9.1 26.7 
2 -0.0 0.6 1.3 0.9 93.5 
3 -0.1 0.4 0.7 0.5 95.2 
4 3.2 7.4 13.0 10.1 75.6 
5 1.2 10.6 20.6 14.8 27.8 
6 0.2 3.0 5.9 7.0 82.3 
7 15.2 30.7 52.5 38.8 -31.2 
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8 2.3 15.5 30.0 19.8 51.2 
9 -0.9 4.1 7.8 5.2 74.8 
10 -0.7 1.7 3.1 1.9 66.5 
11 -0.5 1.4 2.6 1.5 94.6 
12 -0.2 1.7 3.4 2.0 87.8 
13 1.6 9.1 17.5 13.6 13.4 
14 -0.1 0.6 1.2 0.9 96.4 
15 5.8 17.2 31.9 26.8 -15.0 
16 -0.1 0.7 1.3 1.2 96.7 
17 0.0 1.1 2.2 2.0 98.5 
18 0.2 2.2 4.3 4.1 78.0 
19 5.9 17.2 31.7 25.2 56.5 

Average 1.8 6.9 12.8 9.8 61.6 
Std 3.7 7.9 14.1 10.6 38.5 

a Mean of error. 
b beats per minute. 
c Root mean square error. 
d Band-Altman limits of agreement. 
e Bland-Altman ratio. 
f Standard deviation. 
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Abstract 

Near-infrared spectroscopy (NIRS) relative concentration signals contain ‘noise’ from 
physiological processes such as respiration and heart rate. Simultaneous assessment of NIRS 
and respiratory rate (RR) using a single sensor would facilitate a perfectly time-synced 
assessment of (cerebral) physiology. Our aim was to extract respiratory rate from cerebral 
NIRS intensity signals in neonates admitted to a neonatal intensive care unit (NICU). A novel 
algorithm, NRR (NIRS RR), is developed for extracting RR from NIRS signals recorded from 
critically ill neonates. In total, 19 measurements were recorded from ten neonates admitted to 
the NICU with a gestational age and birth weight of 38 ± 5 weeks and 3092 ± 990 g, 
respectively. We synchronously recorded NIRS and reference RR signals sampled at 100 Hz 
and 0.5 Hz, respectively. The performance of the NRR algorithm is assessed in terms of the 
agreement and linear correlation between the reference and extracted RRs, and it is 
compared statistically with that of two existing methods. The NRR algorithm showed a mean 
error of 1.1 breaths per minute (BPM), a root mean square error of 3.8 BPM, and Bland–
Altman limits of agreement of 6.7 BPM averaged over all measurements. In addition, a linear 
correlation of 84.5% (p < 0.01) was achieved between the reference and extracted RRs. The 
statistical analyses confirmed the significant (p < 0.05) outperformance of the NRR algorithm 
with respect to the existing methods. We showed the possibility of extracting RR from neonatal 
NIRS in an intensive care environment, which showed high correspondence with the reference 
RR recorded. Adding the NRR algorithm to a NIRS system provides the opportunity to record 
synchronously different physiological sources of information about cerebral perfusion and 
respiration by a single monitoring system. This allows for a concurrent integrated analysis of 
the impact of breathing (including apnea) on cerebral hemodynamics. 
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1. Introduction 

Monitoring changes in the respiratory rate (RR) of term and preterm infants admitted to the 
neonatal intensive care unit (NICU) plays a vital role in the timely detection of abnormal 
respiratory events such as tachypnea and apnea [1–5]. According to the literature, almost half 
of the neonates in the NICU were admitted due to respiratory morbidity [6]. Respiratory events 
and associated desaturation events affect cerebral physiology and contain relevant 
information about cerebral hemodynamics [7–10]. Hence, continuous monitoring of RR 
changes in hospitalized neonates and the impact on cerebral hemodynamics is of importance 
in clinical practice [11–13]. 

For monitoring cerebral hemodynamics, near-infrared spectroscopy (NIRS) can be employed, 
which is a non-invasive optical neuroimaging modality for measuring oxygenated (O2Hb) and 
deoxygenated (HHb) hemoglobin concentrations associated with neural activities in the 
cerebral cortex [14]. NIRS is becoming part of routine clinical practice in an increasing number 
of NICUs worldwide [15,16]. Aside from cerebral tissue oxygen saturation measured with 
NIRS, the raw NIRS signals (i.e., O2Hb and HHb) are contaminated by physiological noise 
arising from, e.g., heart rate, blood pressure, Mayer waves, and respiration [17]. While—in 
most studies—either the raw NIRS signals are not used or the physiological noise is filtered 
out, some studies have investigated the possibility of extracting extra physiological parameters 
[18–21]. 

Respiration is a major source of physiological noise in NIRS that is vividly observable in the 
spectra of both O2Hb and HHb signals [22]. The emergence of respiration in NIRS 
measurements is due to (i) the alternation of blood flow within the whole body during the 
course of inspiration and expiration and (ii) the effect of respiratory fluctuations on cerebral 
blood volume and flow [23,24]. Some studies have proposed algorithms for separating 
respiratory components from NIRS measurements, e.g., in [24] by proposing a band-pass 
filtering (BPF) method. The possibility of RR extraction from NIRS measurements has only 
been investigated in our previous study [21]. The presented baseline wandering (BW) method, 
however, was only validated on adult subjects in resting-state measurements which were free 
from motion artifacts. The presented method was not ideally designed for clinical purposes, 
i.e., to be implemented in NICU. There are several challenges that exist in data acquisition 
from hospitalized neonates such as low data quality and patient movements. 

Extracting RR from neonatal cerebral NIRS, on the one side, facilitates the concurrent and 
integrated analysis of breathing and cerebral oxygenation in the NICU. For instance, it could 
provide a perfectly time-synced analysis of the effect of respiration, including apnea and 
desaturation events, on cerebral hemodynamics. Deriving RR from neonatal NIRS, on the 
other side, could potentially reduce the need for adhesive electrodes in the future, which could 
reduce discomfort, stress, and epidermal stripping, and would promote parent–neonate 
interaction [25–30]. Therefore, the aim of the current study is to develop a novel algorithm, 
NRR (NIRS RR), for deriving RR from neonatal NIRS measurements recorded in NICUs. With 
respect to the reference RR recorded with a clinical patient monitor system, we assess the 
performance of the NRR algorithm in terms of agreement and linear correlation between the 
reference and extracted RRs. We also compare the NRR algorithm’s performance against the 
performance of two state-of-the-art methods, i.e., BPF and BW. 
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2. Materials and Methods 

2.1. Participants 
This study was approved by the local ethics committee of the University Medical Center 
Utrecht (21-098/C). We included ten newborn infants (three females) with gestational age 38 
± 5 weeks and birth weight 3092 ± 990 g that were admitted to the NICU of the Wilhelmina 
Children’s Hospital, Utrecht, the Netherlands. Among them, three babies were preterm infants 
(GA < 37 weeks) and one baby was an extremely preterm infant (GA < 28 weeks). They had 
an indication for clinical NIRS monitoring which was determined by the caring physician or 
local neuromonitoring protocols. Parents gave informed consent to participate in the study 
before data acquisition. A total of 19 measurements were recorded from the included neonates 
without interrupting the clinical routines. After assessing the signal quality as explained in 
Section 2.3.1, we excluded three measurements due to very low signal quality, leaving 16 
measurements from nine neonates (gestational age = 39 ± 3 weeks; weight = 3368 ± 473 g; 
three females) with a total length of approximately 20.5 h. 

2.2. Data Acquisition 
NIRS signals were recorded at 100 Hz with a cerebral oximetry system (TOM, Artinis Medical 
Systems B.V., Elst, the Netherlands). The infant-neonatal sensor of the system consists of 
two transmitters with nominal wavelengths of 760 and 850 nm and a receiver with a 21.5 mm 
distance from the transmitters, providing an approximate penetration depth of 11 mm, i.e., half 
the transmitter–receiver distance [31]. The sensor was placed on the neonate’s forehead 
under a clinical elastic bandage. Figure 1 illustrates the infant-neonatal sensor placed on a 
baby manikin’s forehead covered by the bandage (Figure 1(a)) with a schematic of the layout 
of the transmitters and the receiver, which provides two NIRS channels. The reference RR 
was recorded with a patient monitor system, Philips IntelliVue MP70 (Philips Medical Systems, 
Best, the Netherlands), sampled at 0.5 Hz. 

 
Figure 1: (a) A photograph of the infant-neonatal TOM sensor (Artinis Medical Systems B.V., the Netherlands) 
placed on a baby manikin’s forehead, covered with a clinical self-adhesive elastic bandage. (b) Schematic of the 
configuration of the two transmitters and one receiver embedded in the TOM sensor, illustrated in red and blue, 
respectively. 

2.3. Respiratory Rate Extraction Algorithm 
The block diagram of the proposed RR extraction algorithm, NRR (NIRS RR), is illustrated in 
Figure 2. The algorithm comprises two main stages: Stage A, illustrated in Figure 2(a); and 
Stage B, in Figure 2(b). Stage A of the NRR algorithm consists of four steps: Preprocessing, 
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HR frequency bandwidth, interquartile range (IQR), and segmentation. These steps are 
executed once at the beginning of the complete NIRS measurement. Stage B of the NRR 
algorithm consists of three steps: Motion artifact assessment, HR computation, and RR 
computation. These are implemented on each 30-second segment of the total hemoglobin 
concentration (tHb) and IQR signals, computing RR per segment. As respiration influences 
both O2Hb and HHb signals [22], we have employed the tHb, i.e., the sum of the O2Hb and 
HHb signals, in order to have a better representation of RR information. We implemented the 
analyses in this study in Python using numpy, scipy, and matplotlib modules [32,33]. 

 
Figure 2: The block diagram of the proposed NRR (NIRS RR) algorithm, comprising Stage A and Stage B. (a) 
Stage A consists of four steps: preprocessing (including OD to Hb and signal quality assessment), HR frequency 
bandwidth, interquartile range (IQR), and segmentation. (b) Stage B consists of three steps: motion artifact 
assessment (including thresholding and motion artifact assessment), HR computation (including detrending, 
multiplication operator, and HR computation), and RR computation (including band-pass filtering, spectrum, 
adaptive RR frequency bandwidth, and finding frequency maximum). 

2.3.1. Preprocessing 
Using the modified Beer–Lambert law [34], the optical densities (ODs) of the two NIRS 
channels are first converted to concentration changes in oxygenated hemoglobin (O2Hb) and 
deoxygenated hemoglobin (HHb) (OD to Hb in Figure 2(a)). Then, the signal quality of the 
NIRS channels is assessed using the Signal Quality Index (SQI) algorithm [35] (signal quality 
assessment in Figure 2(a)). The SQI signal is computed in sliding windows of 10 s, overlapping 
by 50%. Next, the average of the SQI signal across time is computed for each channel, and 
the channel with the greater average SQI is selected. The whole measurement is excluded in 
the subsequent analyses if more than 75% of the samples of the SQI of the selected channel 
are less than an SQI level of 2, which represents low signal quality. Otherwise, the algorithm 
continues to the subsequent steps. 

2.3.2. HR Frequency Bandwidth 
First, the tHb signal is low-pass filtered by applying a moving average filter of 1 s and then 
subtracting it from the original tHb signal. Second, the spectrum of the filtered tHb signal is 
computed using the multitaper power spectral density estimation [36] based on Slepian 
sequences [37]. In this study, we used the Python method scipy.signal.windows.dpss in order 
to compute the Slepian sequences by setting the parameters of standardized half bandwidth 
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and the number of windows at 2.5 and 5, respectively. Next, a predefined HR frequency 
bandwidth between 1.25 Hz and 3.5 Hz is defined according to the HR range of the included 
patients (75 < HR < 210 beats per minute). This bandwidth is computed once per 
measurement according to the dominant frequency of the spectrum as follows: the spectrum 
within the predefined bandwidth is sorted in descending order; the average frequency of the 
first fifty components (~50% of all components) is then computed; finally, the HR frequency 
bandwidth (𝐵𝑊𝐻𝑅) is set as the average frequency minus 0.5 Hz and plus 0.5 Hz. 

2.3.3. Interquartile Range (IQR) 
In sliding windows of 1 s, we compute the interquartile range (IQR)—the difference between 
the third and first quartiles—of the selected tHb signal. Afterwards, the computed IQR values 
are interpolated to 100 Hz using cubic interpolation. Subsequently, the IQR signal is 
normalized by dividing it by the median of the tHb signal. 

2.3.4. Segmentation 
The selected tHb and normalized IQR signals are segmented by sliding windows of 30 s 
overlapping by 75% (i.e., shifting 7.5 s). Examples of the segmented tHb and IQR are shown 
in Figure 3(a) and Figure 3(e), respectively. The subsequent steps are implemented on each 
segmented 30-second tHb and IQR signal, computing RR in each window (i.e., every 7.5 s). 

2.3.5. Motion Artifact Assessment 
The segmented IQR is thresholded with a threshold of 1%. The thresholded IQR is logically 
one if the IQR is below the threshold, meaning presumably free from motion artifacts. Figure 
3(f) shows an example of the thresholded IQR signal which has been obtained from the 
segmented IQR illustrated in Figure 3(e). Next, the percentage of samples which are one in 
the thresholded IQR signal is computed. The segment will be dismissed for RR computation 
if the percentage is less than 50%. Otherwise, at least 50% of the segment is presumably free 
from motion artifacts and the algorithm passes to the next steps to compute RR. 

2.3.6. HR Computation 
The segmented tHb signal is detrended by calculating a least-squares fit of a straight line to 
the data and then subtracting it (detrending in Figure 2(b)). Next, the detrended tHb signal is 
multiplied by the thresholded IQR (multiplication operator in Figure 2(b)). Figure 3(c) shows 
an example of this converted tHb signal, which corresponds to the tHb signal shown in Figure 
3(a). Then, the spectrum of the converted tHb is computed by using the multitaper power 
spectral density estimation as explained in Section 2.3.2. Finally, the HR in the considered 
window is computed by finding the dominant frequency within the 𝐵𝑊𝐻𝑅. The HR is further 
used in the next step to limit the allowed RR range. 

2.3.7. RR Computation 
First, the converted tHb is filtered by using an FIR (finite impulse response) zero-phase band-
pass filter implemented with a Kaiser window (band-pass filtering in Figure 2(b)). The lower 
and higher cutoff frequencies of the filter are set at 0.1 times the computed HR and 2 Hz, 
respectively. The higher cutoff frequency was chosen with a 0.5 Hz gap from the maximum 
reference RR frequency of the patients included (~1.5 Hz). The gap was considered in order 
to prevent filtering the RR components within the transition bandwidth of the filter. Second, the 
spectrum of the filtered signal is computed as explained in Sections 2.3.2 and 2.3.6. Afterward, 
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an adaptive RR frequency bandwidth (𝐵𝑊𝑅𝑅) is defined as 0.15 and 0.85 times the computed 
HR (i.e., 𝐵𝑊𝑅𝑅 = [0.15 ∗ 𝐻𝑅, 0.85 ∗ 𝐻𝑅]). Finally, the RR is computed by finding the dominant 
frequency in the filtered signal within the 𝐵𝑊𝑅𝑅. Figure 3(d) illustrates the spectrum of the 
filtered converted tHb signal corresponding to the converted tHb shown in Figure 3(c). The 
dashed red and green lines and the solid magenta lines depict the reference and extracted 
RRs and the 𝐵𝑊𝑅𝑅, respectively. To illustrate the impact of the multiplication by thresholded 
IQR on the RR computation, Figure 3(b) shows the spectrum computed from the original tHb 
signal displayed in Figure 3(a), i.e., without any motion artifact assessment and multiplication 
by the thresholded IQR. It is observed that there is a high error of approximately 0.33 Hz (i.e., 
20 breaths per minute, BPM) when the original tHb signal is used, while the error is 0.1 Hz 
(i.e., 6 BPM) when using the converted signal. 

 
Figure 3: (a) A 30-second segment of the tHb signal recorded from one of the subjects (Measurement 15). (b) The 
spectrum computed for the original tHb signal, i.e., without motion artifact assessment and signal conversion. The 
dashed red and green lines and the solid magenta line depict the reference RR, extracted RR, and adaptive RR 
frequency bandwidth (𝐵𝑊𝑅𝑅), respectively. (c) The converted tHb signal after motion artifact assessment and 
multiplication by the thresholded IQR signal. (d) The spectrum of the converted tHb signal. (e) The IQR signal 
computed based on sliding windows of 1 s, interpolated to 100 Hz, and normalized by the median of the tHb signal. 
The dashed black line depicts the IQR threshold considered for motion artifact assessment (i.e., 1%). (f) The 
thresholded IQR signal. It is zero (i.e., contaminated with motion artifacts) if the IQR is above the defined threshold; 
otherwise, it is one. 

2.4. Algorithm Performance Assessment 
We employed three quantitative measures for quantifying the agreement between the 
reference and extracted RRs, including the mean of error (ME) or bias, root mean square error 
(RMSE), and Bland–Altman limits of agreement (LoA), which is defined as 1.96 times the 
standard deviation of the error [38]. In addition, as a quantitative measure to determine the 
linear association between the reference and extracted RRs, we computed Pearson’s 
correlation coefficient. We assessed the significance of the correlation by performing a 
Student’s t-test with 𝛼 = 1 . Furthermore, we calculated the percentage of the segments 
wherein RR was computed in each measurement. The mentioned quantitative measures were 
computed for each measurement separately, and the average and standard deviation for each 
measure over all measurements were also calculated. Since the reference RR was recorded 
with 0.5 Hz, each segment of 30 s contains a total of 15 reference RR samples. To have an 
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equal number of samples between the reference and extracted RRs, we have taken the 
average of the reference RR samples in each 30 s segment. 

We compared the performance of the NRR algorithm with two existing methods proposed for 
extracting RR from NIRS in adults, i.e., band-pass filtering (BPF) [24] and baseline wander 
(BW) [21]. In these two methods, we set the window length at 30 s, as used in the NRR 
algorithm. In addition, the cutoff frequencies of the band-pass filter used in the BPF method 
were set to [0.15, 2] Hz according to the range of the reference RR in this study. To 
quantitatively compare the performance of the three methods, we computed the average and 
standard deviation of the mentioned quantitative measures, determining the agreement and 
linear association between the reference and extracted RRs, over all measurements. As 
another comparison measure, we defined a boundary wherein the absolute error in RR 
computation is less than 30% of the mean of the pairwise reference and extracted RRs. We 
refer to this boundary as the 30% boundary. Furthermore, we performed a Student’s t-test 
with 𝛼 = 5  to determine whether there is a significant difference in performance between the 
methods. 

2.5. Optimization of the Parameters 
We conducted a sensitivity analysis of the main parameters used in the NRR algorithm, i.e., 
the window length and the two constants 0.15 (𝐴𝑙𝑜𝑤) and 0.85 (𝐴ℎ𝑖𝑔ℎ) used in defining the 
adaptive RR frequency bandwidth (𝐵𝑊𝑅𝑅 = [𝐴𝑙𝑜𝑤 ∗ 𝐻𝑅, 𝐴ℎ𝑖𝑔ℎ ∗ 𝐻𝑅]). Among the 19 recorded 
measurements, 3 measurements were excluded due to having very low signal quality which 
was assessed as explained in Section 2.3.1. A total of 20% (i.e., a total of 4.1 h) of the included 
16 measurements were randomly selected to optimize the parameters of the NRR algorithm. 
We computed the RMSE as a measure of error and performed Student’s t-test with 𝛼 = 5  in 
order to find the statistically optimal parameters. 

3. Results 

3.1. Optimization of the Proposed Algorithm’s Parameters 
To find a suitable window length, firstly, constants 𝐴𝑙𝑜𝑤 and 𝐴ℎ𝑖𝑔ℎ were set at 0.05 and 0.95, 
respectively. Then, different window lengths from 20 to 60 s with steps of 10 s were used. As 
displayed in Figure 4(a), the significantly (p < 0.05) lowest RMSE between the reference and 
estimated RRs was obtained with a window length of 30 s. Different values of 𝐴𝑙𝑜𝑤 ranging 
from 0.05 to 0.2 with steps of 0.05 were investigated to adjust this constant, given the fact that 
the window length and the 𝐴ℎ𝑖𝑔ℎ were set at the optimal window length obtained (30 s) and 
0.95, respectively. As shown in Figure 4(b), 0.15 and 0.2 are the optimal values for the 
constant 𝐴𝑙𝑜𝑤 which provide significantly lower RMSEs than the other values. However, we 
selected the lower one (0.15) which makes the bandwidth larger. In the last step, by setting 
the window length and the constant 𝐴𝑙𝑜𝑤 at the optimal ones computed, we varied 𝐴ℎ𝑖𝑔ℎ from 
0.75 to 0.95 with steps of 0.05 to find the optimal value providing the lowest RMSE. As 
illustrated in Figure 4(c), we found 0.8 and 0.85 as the optimal values for 𝐴ℎ𝑖𝑔ℎ providing 
significantly (p < 0.05) lower RMSEs than the other values. However, similarly to the previous 
step, we selected the higher one (0.85) to set a larger bandwidth for RR. 



RR from Neonatal NIRS 

 165 

 

 
Figure 4: Sensitivity analysis of the main parameters of the NRR algorithm, i.e., window length and constants (i.e., 
𝐴𝑙𝑜𝑤, 𝐴ℎ𝑖𝑔ℎ) regulating the lower and higher sides of the adaptive RR frequency bandwidth (𝐵𝑊𝑅𝑅 = [𝐴𝑙𝑜𝑤 ∗
𝐻𝑅, 𝐴ℎ𝑖𝑔ℎ ∗ 𝐻𝑅]). The bar chart of RMSE computed between the reference and extracted RRs with respect to (a) 
the window length, (b) the constant 𝐴𝑙𝑜𝑤, and (c) the constant 𝐴ℎ𝑖𝑔ℎ selected, averaged over all measurements. 
The error bars and bar heights depict the standard deviation and average of RMSE, respectively. 

3.2. Results of the Proposed Algorithm 
After optimizing the parameters of the algorithm, the remaining 80% (i.e., not included in the 
sensitivity analysis, see Section 3.1) of the 16 included measurements, a total of 16.4 h or a 
total of 7872 30-s signal segments, were used for the validation of the proposed algorithm. 
Figure 5 illustrates the scatter plots of the measurements comparing the reference and 
extracted RRs. Looking at the reference RR, we observe that the range of reference RR differs 
between the measurements. As an example, the reference RR in Measurement 2 ranges 
approximately from 24 to 36 BPM while in Measurement 5 it ranges from approximately 60 to 
85 BPM. In addition, it is observed that the patients in some measurements such as 
Measurements 8, 14, and 15 experienced more variation (~40 BPM) in RR than others. 
Looking at the scatterplots, we observe that there is a significant linear association (p < 0.01) 
between the reference RR and the extracted RR by the NRR algorithm in all measurements. 

Table 1 summarizes the quantitative measures computed in this study to determine the 
agreement and linear association between the reference and extracted RRs. The ME or bias 
was lower than approximately 1 BPM (~2% of the average reference RR) in all measurements, 
except for Measurements 1 (2.4 BPM), 7 (2.7 BPM), and 15, which had the highest bias (8.1 
BPM). The average and standard deviation of bias calculated on all measurements are 1.1 
and 2.1 BPM (i.e., 1.1 ± 2.1), respectively. The RMSE is lower than 4 BPM in all measurements 
(exceptions: 1, 4, 7, 15), with the highest one computed for Measurement 15 (12.2 BPM) and 
average and standard deviation of 3.8 ± 3.0 BPM. The LoA has an average and standard 
deviation of 6.7 ± 4.7 over all measurements. The highest LoA was obtained in Measurement 
15 (18.1 BPM) which had also the highest bias and RMSE. However, looking at Pearson’s 
correlation, we observe the lowest correlation obtained in Measurement 7 (48%) while it was 
71% in Measurement 15. The greatest correlation was obtained in Measurement 5 (96.7%) 
with an average and standard deviation of 84.5 ± 12.3 computed on all measurements. 
Looking at the included segments’ percentages, we observe that the RR has been extracted 
on average for about 94% of the signal segments in all measurements, i.e., leaving on average 
about 6% of the signal segments with no RR computed due to being highly contaminated by 
motion artifacts. The lowest percentage of included segments was obtained in Measurement 
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15 (69.6%). This shows that Measurement 15 was the one in this study with the highest level 
of contamination by motion artifacts. 

 
Figure 5: Scatter plots showing the linear association between the reference RR and the extracted RR by the NRR 
algorithm per measurement. The x and y axes represent the RR in breaths per minute (BPM). Each black dot 
corresponds to the reference and extracted RRs of each 30-second signal segment. The blue dashed line depicts 
the identity line (y = x). The correlation between the reference and extracted RRs is significant in each 
measurement (p < 0.01). 

Table 1: Quantitative measures for assessing the performance of the proposed NRR algorithm per measurement. 

Measurement ME 1 (BPM 2) RMSE 3 (BPM) LoA 4 (BPM) Pearson’s r (%) Included 
Segments (%) 

1 2.4 5.9 10.6 76.1 92.1 
2 0.2 1.3 2.5 83.8 99.8 
3 0.3 1.7 3.2 94.4 99.9 
4 0.4 8.1 15.9 72.9 79.2 
5 −0.6 1.5 2.6 96.7 99.0 
6 0.9 2.0 3.4 84.6 100 
7 2.7 5.1 8.4 48.4 99.1 
8 0.3 3.8 7.5 85.5 95.5 
9 −0.1 2.0 4.0 90.4 96.2 
10 −0.5 1.5 2.7 95.7 94.5 
11 −0.1 1.8 3.6 87.5 98.8 
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12 0.0 2.5 4.9 93.1 87.0 
13 1.1 3.5 6.5 89.6 96.0 
14 0.8 4.4 8.6 93.6 96.5 
15 8.1 12.2 18.1 71.4 69.6 
16 1.0 2.9 5.7 87.6 97.4 

Average 1.1 3.8 6.7 84.5 93.8 
Std 5 2.1 3.0 4.7 12.3 8.5 

1 Mean of error. 2 Breaths per minute. 3 Root mean square error. 4 Bland–Altman limits of agreement. 5 Standard deviation. 

3.3. Comparison with the Existing Algorithms 
Figure 6 shows an example (Measurement 5) of the reference RR and the RR extracted by 
the proposed NRR algorithm compared with the ones obtained by the BPF and BW methods. 
It is observed that the BW method works poorly in this measurement in capturing the trend of 
the reference RR (except for the last ~20 min). The BPF method has provided a better RR 
extraction than the BW method, providing a Pearson’s correlation of approximately 87%. 
However, it has some outliers that have errors of more than approximately 20 BPM. On the 
contrary, the RR extracted by the NRR algorithm has no outliers and follows the trend of the 
reference RR from the beginning of the measurement to the end, providing a correlation of 
approximately 97%. 

 
Figure 6: An example of the reference RR signal (in red) and the extracted RR signals obtained by using the NRR 
algorithm (in green), band-pass filtering (BPF) method (in blue), and baseline wander (BW) method (in black). The 
x and y axes represent the time and RR in minutes and breaths per minute (BPM), respectively. In this 
measurement (Measurement 5), Pearson’s correlation magnitude between the reference and extracted RRs is 
97% (p < 0.01) using the NRR algorithm, 87% (p < 0.01) using the BPF method, and 56% (p < 0.01) using the BW 
method, indicating the superior performance of the NRR algorithm than BPF and BW methods. 

Figure 7 shows the scatterplot and the Bland–Altman plot for the three methods between the 
reference and extracted RRs when all the measurements are concatenated together. From 
the scatterplots, it is observed that the RR extracted by the NRR algorithm linearly follows the 
reference RR in different RR ranges with a Pearson’s correlation coefficient of 95.5% (Figure 
7(a)). This confirms the adaptability of the NRR algorithm to different ranges of RR. 
Conversely, the scatterplots obtained for the BPF (Figure 7(b)) and BW (Figure 7(c)) methods 
are more sparsely distributed around the identity line than the one obtained for the NRR 
algorithm. In the scatterplot of the BW method (Figure 7(c)), the majority of the points are 
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above the identity line, showing the bias of the method to result in a lower RR than the 
reference RR. Although a significant (p < 0.01) correlation was obtained by the BPF and BW 
methods between the reference RR and the extracted RR, the correlation (60.5% and 34.0%, 
respectively) is substantially lower than the one obtained by the NRR algorithm. Looking at 
the Bland–Altman plots, we observe that the BPF and BW methods result in a greater bias in 
computing RR than the NRR algorithm. Looking at the Bland–Altman limits of agreement (LoA) 
and comparing it with the 30% boundary (explained in Section 2.4), we observe that the LoA 
of the NRR algorithm fell within the 30% boundary. This shows that 95% of the error between 
the reference and extracted RRs, represented by LoA, is lower than 30% of the average RRs. 
Looking at the Bland–Altman plots of the BPF and BW methods, we observe that the LoA of 
both methods fell outside the 30% boundary, indicating a higher error, i.e., a wider distribution 
of error, in RR computation by these methods than the NRR algorithm. The percentage of 
data points outside of the 30% boundary in the Bland–Altman plots of the NRR, BPF, and BW 
methods is 2.7%, 22.2%, and 27.4%, respectively. Looking at the bias in the plots, we observe 
that the BW method has a considerable bias of 7.2 BPM in computing RR, while it is −3.8 and 
0.8 BPM for the BPF and NRR methods, respectively. 

 
Figure 7: Scatter plots between the reference RR and the extracted RRs using (a) the NRR algorithm, (b) the 
band-pass filtering (BPF) method, and (c) the baseline wander (BW) method when all measurements are pooled 
together. Each black dot corresponds to each 30-second signal segment. The Bland–Altman plots of the reference 
RR and the extracted RRs using (d) the NRR algorithm, (e) the BPF method, and (f) the BW method. The solid 
magenta line and the dashed red lines depict the bias and the Bland–Altman limits of agreement, respectively. The 
cyan lines represent the 30% boundary, wherein the error between the reference and extracted RRs is lower than 
30% of the mean of the pairwise RRs. 

Table 2 summarizes the quantitative measures determining the agreement and linear 
association between the reference and extracted RRs by each method, averaged over all 
measurements. The average of ME or bias computed over all measurements by the NRR (1.1 
BPM) and BPF (−1.4 BPM) methods is lower than the one in the BW method (8.4 BPM). 
However, the standard deviation of ME obtained in the NRR algorithm (2.1 BPM) is much 
lower than the ones obtained by the BPF (11.6 BPM) and BW (14.1 BPM) methods. The 
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average and standard deviation of RMSE and LoA obtained in the NRR algorithm are 3.8 ± 
3.0 BPM and 6.7 ± 4.7 BPM, respectively, which are substantially lower than the ones obtained 
in the BPF method (RMSE = 10.0 ± 10.7 BPM; LoA = 14.0 ± 11.1 BPM). Although the BW 
method had a higher average and standard deviation of RMSE (12.6 ± 12.2 BPM) compared 
with the BPF method, it has a lower average and standard deviation of LoA (11.4 ± 5.8 BPM), 
which are still higher than the ones obtained in the NRR algorithm. The average and standard 
deviation of Pearson’s correlation obtained in the NRR algorithm (84.5 ± 12.3%) are greater 
than the ones obtained by the BPF (70.8 ± 15.0%) and BW (51.1 ± 26.0%) methods. Figure 8 
shows the raincloud plot of the absolute error between the reference and extracted RRs for 
each method. Here, the natural logarithm, i.e., ln(), of the absolute error plus one has been 
shown for the sake of having a proper visualization of the error. It is observed that the majority 
(75%, represented by the third quartile in the box plot) of the error in the NRR algorithm fell 
approximately between 0 and 1, in ln(1 + BPM), whereas in the BPF and BW methods the 
error is more distributed and the majority fell up to approximately 2.5. Looking at the 
distribution plots, we observe the error was distributed mainly about zero in the NRR algorithm. 
Conversely, in the distribution plot for the BPF method, there are two additional peaks at about 
the greatest error, which is due to the outliers as shown in Figure 6. However, the distribution 
plot of error obtained for the BPF method is less sparse than the one obtained for the BW 
method, which is roughly uniformly distributed. The result of the statistical comparison 
between the performance of the three methods in RR extraction against each other showed 
all three methods performed significantly differently from each other (p < 0.05). Therefore, the 
NRR algorithm performed significantly better than the BPF and BW methods in computing RR. 

Table 2: Quantitative measures for assessing the performance of the proposed NRR algorithm and the two existing 
methods, i.e., band-pass filtering (BPF) and baseline wander (BW), averaged over all measurements. 

Algorithm ME 1 (BPM 2) RMSE 3 (BPM) LoA 4 (BPM) Pearson’s r (%) 

NRR 1.1 ± 2.1 3.8 ± 3.0 6.7 ± 4.7 84.5 ± 12.3 

BPF −1.4 ± 11.6 10.0 ± 10.7 14.0 ± 11.1 70.8 ± 15.0 

BW 8.4 ± 14.1 12.6 ± 12.2 11.4 ± 5.8 51.1 ± 26.0 
1 Mean of error. 2 Breaths per minute. 3 Root mean square error. 4 Bland–Altman limits of agreement. 
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Figure 8: Raincloud plot of the absolute error between the reference RR and the extracted RR by using the NRR 
algorithm (first panel), the band-pass filtering (BPF) method (second panel), and the baseline wander (BW) method 
(third panel). The x axis represents the natural logarithm of the absolute error (in BPM) plus one. This was done to 
have a better visualization of the error distribution. 

4. Discussion 

In this study, we developed a novel algorithm, the NRR algorithm, for extracting RR from 
neonatal NIRS signals recorded in NICUs. To the best of our knowledge, the proposed NRR 
algorithm is the first algorithm in the NIRS literature introduced for extracting RR from clinical 
neonatal NIRS data. The existing methods of RR extraction from NIRS were validated on adult 
data recorded during the resting stage in a controlled environment (i.e., laboratory 
environment), whereas the NRR algorithm was validated on neonatal data recorded in a 
neonatal intensive care unit. We assessed the performance of the NRR algorithm in terms of 
agreement and linear correlation between the reference and extracted RRs. The results 
showed a high degree of agreement between the reference and extracted RRs in terms of ME 
(1.1 ± 2.1 BPM), RMSE (3.8 ± 3.0 BPM), and LoA (6.7 ± 4.7 BPM). In addition, a high linear 
correlation (r = 84.5 ± 12.3%; p < 0.01) was achieved between the reference and extracted 
RRs. 

We compared the performance of the NRR algorithm with two existing methods, i.e., BPF [24] 
and BW [21]. Compared with the BPF and BW methods, the NRR algorithm showed a stronger 
agreement between the reference and extracted RRs in terms of ME, RMSE, and LoA. 
Likewise, the NRR algorithm showed a greater Pearson’s correlation (84.5 ± 12.3%) between 
the reference and extracted RRs compared with the BPF (70.8 ± 15.0%) and BW (51.1 ± 
26.0%) methods. The results of the statistical test implemented confirmed the significant (p < 
0.05) outperformance of the NRR algorithm over the BPF and BW methods in RR extraction 
from neonatal NIRS data. 
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There are several challenges when working with clinical neonatal data compared with healthy 
adult data. First, neonatal HR and RR have a greater range than the adult ones, and therefore 
a NIRS system with a higher sampling rate is required. Hence, we used a NIRS system with 
a 100 Hz sampling rate, whereas the sampling rate was 12.5 Hz in [24] wherein the BPF 
method was introduced. Second, clinical data, especially the data recorded in the intensive 
care unit, typically has a lower data quality than the data recorded in a controlled environment 
due to electromagnetic interference and some limitations in data acquisition which could 
increase the error in the analyses. Thus, in this study, we used the SQI (Signal Quality Index) 
algorithm [35] to assess the NIRS signal quality and exclude the signal segments which have 
very low signal quality, i.e., lower than the SQI level of 2 (low signal quality). Third, clinical 
data generally has a higher level of motion artifacts due to voluntary and unintentional patient 
motion than the data recorded in a controlled environment where the subjects’ movements 
are restricted. In the existing BPF [24] and BW [21] methods, motion artifacts were not 
considered in the analyses and the signals were recorded during the resting state. Conversely, 
in this study, we used the IQR (interquartile range) to detect motion artifacts and exclude the 
signal segments that were highly contaminated with motion artifacts. Fourth, there is more 
variation in the signal source in clinical recordings than in recordings from healthy subjects in 
the resting state. Therefore, in this study, we introduced an adaptive RR frequency bandwidth 
for computing RR that is updated in each segment according to the computed HR as explained 
in Section 2.3.7. All in all, taking into account the clinical data challenges, we have developed 
a robust algorithm, NRR, that results in a superior performance than the existing methods in 
extracting RR from neonatal and clinical NIRS data. 

The NIRS system used in this study provides raw NIRS signals (optical densities) with a high 
sampling rate, i.e., 100 Hz, whereas the existing clinical NIRS systems are incapable of such. 
High sampling rate NIRS has advantages when extracting physiological information such as 
RR. One advantage is that it gives the opportunity to assess the signal quality. The NIRS 
signal quality can be assessed by determining the strength of the heartbeat component in the 
signals as proposed in [35,39,40], which requires a high sampling rate in order to capture the 
heartbeats. Another advantage is that, compared with a low sampling rate, it provides a larger 
number of samples in a specified window; so, with IQR computed in sliding windows of, e.g., 
1 s, a better representation of the motion artifacts in the window is achieved. 

This study has some limitations that could be addressed in future studies. Due to limited 
resources and access to participants, especially in an intensive care environment, we were 
only able to enroll 10 neonates in the study. We chose to enroll 10 neonates based on previous 
experience with similar studies [19,41–43] and the practical constraints of conducting research 
in a clinical setting. The algorithm proposed in this study was validated on a dataset with a 
total number of 7872 signal segments. However, a validation of the algorithm is needed on a 
more extensive dataset acquired from a larger population and a more diverse group of patients 
in order to recognize this RR monitoring approach as suitable for current clinical routines of 
RR monitoring in hospitals. The NRR algorithm computes RR every 7.5 s; however, this delay 
in RR computation could be problematic if analyzing short characteristics of RR is desired. In 
addition, the NRR algorithm was used as an offline algorithm in this study, but it would be 
more beneficial in clinical practice to develop an online version of the algorithm. This could be 
achieved by implementing a few adjustments in Stage A of the algorithm. For instance, the 
signal quality could be assessed in each 30-s window, and the HR frequency bandwidth could 
be updated during the measurement every 10 min. 
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Extracting RR from neonatal NIRS provides the opportunity to have two perfectly synchronized 
clinical biomarkers—i.e., RR as well as cerebral oxygen saturation—using a single clinical 
system. RR, on the one side, is known as one of the main vital signs recorded in a standard 
clinical routine that is an early predictor of clinical deterioration in children [44–47]. 
Furthermore, RR monitoring is of great importance in neonates admitted to NICUs as 
respiratory distress is one of the leading causes of morbidity in the first days of life [48–51]. 
NIRS-monitored cerebral oxygen saturation, on the other side, is of great value for determining 
brain oxygen perfusion, so it has been widely incorporated into the standard clinical routine in 
NICUs [18]. NIRS monitoring has shown feasibility in diagnosing different clinical conditions 
such as hypotension, hypoxia, hypocapnia, hypercapnia, anemia, apnea, and asphyxia 
[10,52–57]. Therefore, a NIRS system with the extracted RR opens up the possibility of having 
a concurrent and complementary assessment of respiration and cerebral perfusion in 
neonates admitted to the NICU. As a potential use, the system could facilitate the concurrent 
analysis of RR and cerebral oxygenation for detecting abnormal respiratory events such as 
tachypnea and apnea and analyzing their effect on cerebral hemodynamics [7,12]. In addition 
to RR and cerebral oxygen saturation, while applying the NRR algorithm to the raw NIRS 
signals we could also compute the HR signal (see Section 2.3.6). As a result, we could 
potentially measure three facets of physiological information, i.e., cerebral oxygen saturation, 
HR, and RR, using only a single cerebral NIRS system. The portability and easy-to-use 
features of such a system would make it ideal to be used in the first hours or days of life in 
clinics, i.e., imposing a minimal burden on the patient and the nurse. In addition, it could 
prospectively eliminate the need for extra electrodes for RR and HR monitoring with adhesive 
electrodes. The elimination of excessive and adhesive electrodes would reduce discomfort, 
stress, and the risk of epidermal stripping, and also could facilitate parent–neonate physical 
interaction [25–29,58,59]. 

5. Conclusion 

In this study, we developed a novel algorithm, NRR (NIRS RR), for extracting RR from clinical 
NIRS signals recorded in neonates. The results showed a high degree of agreement and a 
high linear correlation between the reference RR and NIRS-extracted RR. The NRR algorithm 
outperformed two existing algorithms, i.e., BPF and BW. Therefore, simultaneous RR and 
cerebral oximetry using a single sensor in a neonatal intensive care setting is feasible. 
Combining neonatal cerebral NIRS with the extracted RR in a single monitoring system allows 
for a perfectly time-synced integrated analysis of the impact of abnormal respiratory events 
(e.g., apnea) on cerebral hemodynamics. 
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Abstract 

Sleep, notably active sleep (AS) and quiet sleep (QS), plays a pivotal role in the brain 
development and gradual maturation of (pre-) term infants. Monitoring their sleep patterns is 
imperative, as it serves as a vital tool in tracking neurological growth and well-being, 
particularly crucial for preterm infants who are at heightened risk of immature brain 
development. Accurate classification of neonatal sleep stages can significantly contribute to 
optimizing treatment for high-risk infants, with respiratory rate (RR) and heart rate (HR) serving 
as key components in sleep assessment systems for neonates. Recent studies have 
demonstrated the feasibility of extracting both RR and HR from near-infrared spectroscopy 
(NIRS) in neonates. This study introduces a comprehensive sleep classification approach 
leveraging high-frequency NIRS signals, recorded at a sampling rate of 100 Hz, from a cohort 
of nine preterm infants admitted to a neonatal intensive care unit. Eight distinct features were 
extracted from raw NIRS signals, including HR, RR, motion-related parameters, and proxies 
for neural activity. These features served as inputs for a deep convolutional neural network 
(CNN) model designed for the classification of AS and QS sleep stages. Performance 
evaluation of the proposed CNN model was done using two cross-validation approaches: data 
pooling and leave-two-subjects-out (LTSO). The accuracy, balanced accuracy, F1-score, and 
Kappa, were employed to assess classifier performance. In addition, comparative analyses 
against six benchmark classifiers, comprising K-Nearest Neighbors, Naive Bayes, Support 
Vector Machines, Random Forest (RF), AdaBoost, and XGBoost (XGB), were conducted. Our 
results reveal the CNN model's superior performance, achieving an average accuracy of 88%, 
balanced accuracy of 94%, F1-score of 91%, and Kappa of 95% in data pooling cross-
validation. Furthermore, in both cross-validation methods, RF and XGB demonstrated 
accuracy levels closely comparable to the CNN classifier. These findings underscore the 
feasibility of leveraging high-frequency NIRS data, coupled with NIRS-based HR and RR 
extraction, for assessing sleep stages in neonates, even in an intensive care setting. The user-
friendliness, portability, and reduced sensor complexity of the approach suggest its potential 
applications in various and less demanding settings. This research thus presents a promising 
avenue for advancing neonatal sleep assessment and its implications for infant health and 
development. 
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Introduction  

Infants born prematurely spend their early weeks in an incubator instead of the protective 
environment of the mother's womb [1]. This period is crucial for their brain development, 
because the latter part of the second, and the third trimester are critical for creating new 
connections in the brain [2]. Fetal sleep, which is believed to be the primary driver of neural 
activity, is vital for neuronal survival, axonal guidance, and synapse maturation [3,4]. However, 
infants in the neonatal intensive care unit (NICU) receive hands-on care and might be exposed 
to various external stimuli that can significantly disrupt their sleep [5].   

The significance of sleep for neonatal brain development is being increasingly acknowledged 
[6,7]. Disrupted sleep during the neonatal period has already proved to have negative 
developmental consequences [8]. Monitoring neonatal sleep continuously in the NICU could 
aid care in two ways. First, as neonatal sleep is considered to reflect typical brain maturation, 
it can also serve as a biomarker for future outcomes, such as the severity of an illness or the 
infant's maturational state [9]. Second, if sleep is monitored in real-time, elective care could 
be individually customized to sleep stages to ensure optimal brain development [10,11].   

The primary method of assessing sleep in very preterm infants is behavioral observation [12]
. Sleep comprises three behavioral stages: active sleep (AS), which is important for creating 
new brain connections; quiet sleep (QS), which is critical for consolidating connections and 
recovery; and intermediate sleep, which is a transitional stage [13]. Ideally, elective care 
should correspond with neonatal sleep stages, but this requires continuous sleep observation 
by trained observers, which is time-consuming and costly and therefore not feasible [14]. 
However, sleep stages in (pre-) term infants can also be determined using typical patterns in 
their heart rate and breathing [15]. This is different from adults which are categories are usually 
determined by polysomnography (PSG) [14].   

Numerous studies have delved into the utilization of machine learning and neural network 
classification techniques to automatically detect sleep-wake states in infants. Sentner et al. 
[16] and Werth et al. [17] integrated physiological characteristics such as HR, RR, and 
peripheral oxygen saturation (SpO2) from regular monitor recordings in the NICU to classify 
sleep stages in preterm infants. Other studies utilized electroencephalography (EEG) features 
for sleep classification. Specifically, Hermans et al. [18] developed a convolutional neural 
network (CNN) classifier that fused multiple EEG-derived features to differentiate between 
sleep stages in term infants. Besides, Wang et al. [19] exclusively utilized EEG features in 
preterm infants. Koolen et al. [20] proposed a Support Vector Machines (SVM) classifier 
trained on EEG features in infants, and Ansari et al. [21] used exclusively EEG features to 
classify QS vs non-QS in preterm infants. These studies demonstrate the potential of machine 
learning and neural network classification techniques in accurately identifying sleep stages in 
neonates.  

Despite the promising results of the automated sleep staging methods, they have some 
limitations that make them difficult to be used for continuous daily monitoring in the NICUs. 
For instance, some methods need multiple electrodes that can potentially damage the delicate 
skin of preterm infants [20,22,23]. Additionally, most of the existing studies, including those 
mentioned, have only classified sleep stages using pooled datasets, which lacks subject-
specific analysis of preterm infants' sleep.  



Chapter 9                                                                                                    

 

 182 

 

NIRS is a non-invasive technique that utilizes varying wavelengths of infrared light to monitor 
changes in oxygenated- and deoxygenated-hemoglobin in tissues, with venous circulation 
contributing significantly to the signal [24]. Therefore, the effects of many physiological signals 
of human body are embedded in recorded NIRS signals [25]. In this regard, recently, NIRS 
has demonstrated its ability to capture various physiological parameters such as heartbeats, 
respiration, and blood pressure [24–26].   

Both HR and RR have been successfully derived from high sampling rate NIRS signals in 
adults and neonates with good accuracy [27–29]. Extracting HR and RR from NIRS not only 
allows for the measurement of diverse physiological information using a single sensor but also 
opens avenues for exploring multi-modal feature extraction to assess sleep stages, 
particularly in infants, a domain yet unexplored. This innovative approach holds the potential 
to serve as a simplified and non-intrusive alternative to traditional PSG, minimizing discomfort 
for preterm infants by employing only a single head-mounted sensor.    

This study presents a novel approach for sleep assessment among the hospitalized preterm 
infants utilizing high sampling rate NIRS. In this approach, we took advantage of the high 
sampling rate NIRS by extracting multiple features including HR, RR, motion-related, and 
neuronal activity features. These features were then processed through a CNN-based 
classifier to classify the sleep stages AS versus QS. The performance of the classifier was 
evaluated in two cross-validation approaches and compared with six benchmark classifiers. 
Here we demonstrate the potential of high sampling rate NIRS for in-depth sleep analysis but 
also highlight the practicality of our single-sensor approach in clinical settings, offering a 
promising avenue for enhancing neonatal sleep stage assessment. 

2. Materials and Methods 

2.1. Participants 
This study was carried out within the NICU at the Wilhelmina Children’s Hospital, Utrecht, the 
Netherlands. The inclusion criterion was a gestational age (GA) of less than 37 weeks. 
Exclusion criteria were genetic anomalies, congenital malformations, historical occurrences of 
seizures, evident brain injuries (e.g., intraventricular hemorrhage exceeding grade 2 according 
to the classification by Papile [30]), and maternal utilization of recreational drugs during 
pregnancy. The study involved the participation of 13 infants, resulting in a total of 17 
measurements, with four infants contributing two measurements each. However, we excluded 
data from four infants due to factors such as recent administration of sedatives within 24 hours 
before recording, sensor malfunction, or the absence of reference data. Consequently, our 
analysis was performed on a dataset comprising 10 measurements obtained from nine infants. 
Prior to participation in the study, written parental informed consent was obtained. This 
research was approved by the local Medical Ethical Review Committee (METC number 21-
098/C). An overview of patient demographics is presented in Table 1. 
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Table 1: Patient demographics. 

Variable Subjects (N=9) 

Gender, male, % (n) 44% (4) 

Gestational age (GA), weeks, mean ± SD1 31.4 ± 2.7 

Birth weight, g, mean ± SD 1520 ± 462 

Delivery method % (n) 

 Spontaneous 
 Cesarean section 

 
11% (1) 
89% (8) 

Apgar score, mean ± SD 

 At 5 min 
 At 10 min 

 
7.4 ± 1.1 
8.8 ± 0.8 

1 Standard deviation 

2.2. Data acquisition 
A schematic overview of the data acquisition procedure is presented in Figure 1. NIRS data, 
encompassing measurements of oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin 
(HHb), and tissue saturation index (TSI), were acquired using the TOM device (Artinis Medical 
Systems B.V., Elst, the Netherlands), at a sampling rate of 100 Hz. The TOM sensor, equipped 
with two NIRS channels, was positioned on the neonate's forehead, precisely above and 
parallel to the eyebrows, and secured beneath a hat or headband worn by the infant. 
Reference HR and RR values were obtained using a bedside Philips IntelliVue MP70 (Philips 
Medical Systems, Best, the Netherlands), stored at 0.4 Hz. This reference data was collected 
to facilitate the evaluation of the accuracy of the algorithms employed for HR and RR 
extraction from the NIRS data. Throughout the entire recording period, the facial and bodily 
expressions of the infants were concurrently captured by one or two cameras. These cameras, 
specifically the Intel® RealSense Depth Camera D435i (Intel Corporation, Santa Clara, USA) 
and the 1SEE VDO360 camera (VDO360, Maryland, USA), provided a frame rate of 30 frames 
per second and a resolution of 1920x1080 pixels. Data synchronization was achieved in a 
two-step process. First, the time settings on each device were synchronized with internet time. 
Second, both the internet time and the device's individual measurement start time were 
adjusted to achieve accurate synchronization of the collected data.  
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Figure 1: Schematic representation of the data acquisition protocol in this study. 

2.3. Sleep observation 
We conducted sleep observations in adherence to a validated sleep stage classification 
approach in preterm infants, known as the Behavioral Sleep Stage classification for Preterm 
Infants (BeSSPI) [12]. A trained annotator (Maren Zahn) used video data to categorize sleep 
stages, with a specific focus on two primary stages: AS and QS. These classifications were 
performed at one-minute intervals. 

2.4. NIRS data analysis 
The NIRS optical densities were initially converted into O2Hb and HHb signals by applying the 
modified Beer-Lambert law [31]. Subsequently, the Signal Quality Index (SQI) algorithm [32] 
was employed to assess the signal quality of each NIRS channel. The channel with the highest 
signal quality was selected for further analysis.  

To extract HR and RR from the NIRS signals, we utilized the algorithms developed by Hakimi 
et al. [28,29]. This involved segmenting the total hemoglobin concentration (tHb) signal, which 
is the addition of O2Hb and HHb signals, and the normalized interquartile range (IQR) signal 
using sliding windows of 30 seconds with a 75% overlap (i.e., shifted 7.5 seconds). 
Subsequently, we computed the spectrum of the converted tHb signal and identified the 
dominant frequencies within the adaptive HR and RR frequency bandwidths. These dominant 
frequencies represented the extracted HR and RR values derived from the NIRS signals, 
respectively. The performance of the algorithms for extracting HR and RR was assessed using 
various metrics, including Mean Error (ME), Root Mean Square Error (RMSE), Pearson's 
correlation coefficient, and Bland-Altman Limits of Agreement (LoA), providing a 
comprehensive evaluation of their accuracy and effectiveness. 

2.5. Sleep classification  
2.5.1. Multi-modal feature extraction  
We extracted eight features, treated as modalities, as time series data sampled at 1 Hz from 
the NIRS signals. By the methodology detailed in section 2.4, the extraction of HR and RR 
from the NIRS signals occurred at 7.5-second intervals. Subsequently, we applied spline 
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interpolation to convert the extracted HR and RR values into time series with a 1 Hz sampling 
rate.  

For features related to motion artifacts present in the NIRS signals [29,33–35], we calculated 
the standard deviation and IQR based on the O2Hb signal within sliding windows of 1-second 
duration, with a 50% overlap. These computed values were then subjected to spline 
interpolation to achieve a 1 Hz sampling rate. To normalize these features, we divided the 
standard deviation by the signal's mean and the IQR by the signal's median. Additionally, we 
computed the Pearson’s correlation between the O2Hb and HHb signals within the same 
sliding window and interpolation procedure. This feature serves a dual purpose [36,37], 
potentially indicating brain activation when exhibiting a strong negative correlation, or 
conversely, motion artifacts when demonstrating a strong positive correlation. Furthermore, 
for the remaining features, we applied a 1-second moving average filter to the O2Hb, HHb, 
and TSI signals. Subsequently, these signals were downsampled to 1 Hz.   

Table 2 provides a comprehensive summary of the eight features derived from the NIRS 
signals. Notably, since the sleep scores were assigned in 1-minute intervals, and considering 
the 1 Hz sampling rate, each modality consisted of 60 data samples for analysis. 

Table 2: List of the features (i.e., modalities) extracted from the NIRS signals accompanied by description for each 
feature. 

Feature Description 

O2Hb Filtered O2Hb by using a moving average filter of 1 second and downsampled to 1 Hz. 

HHb Filtered HHb by using a moving average filter of 1 second and downsampled to 1 Hz. 

TSI Filtered TSI by using a moving average filter of 1 second and downsampled to 1 Hz. 

HR Extracted heart rate from NIRS and interpolated to 1 Hz. 

RR Extracted respiratory rate from NIRS and interpolated to 1 Hz. 

Moving standard 
deviation 

Normalized standard deviation on O2Hb in sliding windows of 1 second overlapping 50% 
and interpolated to 1 Hz. 

Moving IQR Normalized IQR on O2Hb in sliding windows of 1 second overlapping 50% and 
interpolated to 1 Hz. 

Moving 
correlation 

Pearson’s correlation between O2Hb and HHb in sliding windows of 1 second overlapping 
50% and interpolated to 1 Hz. 

2.5.2. Classification  
We employed six benchmark classifiers: K-Nearest Neighbors (KNN), Naive Bayes (NB), 
SVM, Random Forest (RF), AdaBoost (AdaB), and XGBoost (XGB) [38], alongside a novel 
classifier based on CNN. A visual depiction of the proposed CNN model can be seen in Figure 
2.  

The classifiers underwent training and testing utilizing the features extracted as described in 
Section 2.5.1, employing two distinct approaches. Initially, a data pooling approach was 
executed, where all measurements were consolidated, and the classifier was trained and 
tested through 10-fold cross-validation on the merged dataset. Subsequently, a 'leave-two-
subjects-out' (LTSO) cross-validation approach was adopted to ensure the model's 
generalizability across individual subject-specific variations. In this approach, the 10 
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measurements (from 9 subjects) were partitioned into 5 groups (referred to as Group 1 through 
Group 5), ensuring that each subject was exclusively represented in one group, and 
minimizing the difference in the ratio of AS to QS events between the 5 groups. Consequently, 
the classifier underwent training on data from four groups while its performance was assessed 
for the remaining group in a repeatable loop. Table 3 provides a summary of the optimized 
hyperparameters for the benchmark classifiers, determined through hyperparameter 
optimization utilizing the GridSearchCV package in Python [39]. The classifiers' performance 
was evaluated in terms of accuracy, balanced accuracy, F1-score, and Kappa.  

 
Figure 2: Graphical representation of the CNN model proposed in this study. 

Table 3: Optimized hyperparameters for benchmark classifiers. 

Classifier Hyperparameters 

KNN1 {‘Distance weight’: Squared inverse}; {‘Number of Neighbors’=12}; {‘NS method: 
Exhaustive}; {‘Break ties’: Smallest} 

NB2 {‘Kernel’: Normal – ‘Width’=0.028} 

SVM3 

 
{‘Kernel’: Linear}; {‘Box constraints’=0.072}; {‘Solver’: SMO}; {‘Kernel scale’=1}; 

{‘Decision function shape’: Ovo} 

RF4 {‘n_estimators’: 100}; {‘max_depth’: 20}; {‘min_samples_split’: 2}; {‘criterion’: ‘gini’} 

AdaB5 {‘Number of learning cycles’=479}; {’Learning rate’= 0.8}; {‘Minimum Leaf Size’=4}; 
{‘Max Splits’=58} 

XGB6 {’Learning rate’= 0.3}; {‘Min split loss’=0}; {‘Max depth=6} 
1 K-Nearest Neighbors. 2 Naive Bayes. 3 Support Vector Machine. 4 Random Forest. 5 AdaBoost. 6 XGBoost. 

3. Results 

3.1. Results of HR and RR extraction 
Figure 3 depicts scatter plots showcasing the relationship between the extracted HR from 
NIRS and the reference HR in Figure 3(a), and similarly, the extracted RR from NIRS in Figure 
3(b) against the reference RR. Notably, both scatter plots reveal a statistically significant (p < 
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0.01) linear correlation between the extracted physiological metrics (HR and RR) and their 
corresponding reference values. Specifically, Pearson’s correlation analysis reveals a strong 
correlation of 97.4% for HR and 93.3% for RR between the reference and extracted data. 
Looking at the scatter plots, we observe that the algorithms utilized for HR and RR extraction 
from NIRS effectively estimate the reference physiological parameters across a range of 
values. Table 4 summarizes the quantitative metrics averaged on all measurements that were 
used for validating the performance of the algorithm extracting HR and RR from NIRS. For HR 
extraction, the ME and RMSE between the reference and extracted HRs were computed at -
1.4 ± 0.2 bpm and 3.4 ± 0.2 bpm, respectively. In the case of RR extraction, the ME and RMSE 
were slightly higher in magnitude, calculated at -2.1 ± 0.5 BPM and 6.1 ± 0.2 BPM, 
respectively. Additionally, the LoA for HR extraction was narrower, at 6.0 ± 0.3 bpm, compared 
to RR extraction, where they were 11.1 ± 0.5 BPM. Furthermore, Pearson’s correlation 
analysis yielded a correlation of 93.9 ± 4.2% (p < 0.01) for HR extraction and 89.3 ± 6.6% (p 
< 0.01) for RR extraction, reaffirming the robustness of the algorithm in accurately estimating 
the reference physiological information. 

 
Figure 3: (a) Scatter plot between the reference HR and the extracted HR (in beats per minute (bpm)) from NIRS 
when all measurements are concatenated. (b) scatter plot between the reference RR and extracted RR from NIRS 
when all measurements are concatenated together, in BPM, which stands for breaths per minute. Each green dot 
corresponds to a 30-second signal segment. 

Table 4: Quantitative metrics for assessing the performance of the algorithms used for extracting the physiological 
information, i.e., HR and RR, from NIRS, averaged across all measurements. 

Physiological 
information 

ME1 (bpm2 or 
BPM3) 

RMSE4 (bpm or 
BPM) 

LoA5 (bpm or BPM) 
Pearson’s r (%) (p < 

0.01) 

HR -1.4 ± 0.2 3.4 ± 0.2 6.0 ± 0.3 93.9 ± 4.2 

RR -2.1 ± 0.5 6.1 ± 0.2 11.1 ± 0.5 89.3 ± 6.6 
1 Mean of error. 2 Beats per minute. 3 Breaths per minute. 4 Root mean square error. 5 Bland-Altman limits of agreement. 

3.2. Results of sleep classification with data pooling cross-
validation approach 
Figure 4 illustrates a bar chart depicting various quantitative performance metrics, including 
accuracy, balanced accuracy, F1-score, and Kappa, employed for evaluating classifier 
performance within the context of the data pooling cross-validation approach. Error bars are 
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incorporated into each bar chart to convey metric variability. Notably, the CNN classifier 
consistently outperforms the six benchmark classifiers (SVM, AdaB, KNN, NB, RF, and XGB) 
across all four metrics.   

 

Figure 4: Bar chart of the quantitative metrics (i.e., accuracy, balanced accuracy, F1-score, and Kappa) used for 
assessing the performance of the classifiers with error bars averaged across all measurements, obtained using the 
pooling cross-validation approach. 

Among the benchmark classifiers, RF and XGB exhibit higher accuracy, F1-score, and Kappa 
values compared to the other benchmarks, while KNN attains the highest balanced accuracy. 
A noteworthy observation emerges when comparing accuracy to balanced accuracy: in most 
instances, balanced accuracy falls below accuracy. However, exceptions arise for CNN and 
NB, where balanced accuracy surpasses accuracy, suggesting superior performance on the 
minority class (i.e., QS) by these classifiers. Furthermore, it is consistently observed that 
Kappa values are lower than their corresponding F1-scores, which, in turn, are lower than 
both accuracy and balanced accuracy.  

Table 5 summarizes numerically the average and standard deviation values for each 
quantitative metric across all measurements. Employing the data pooling cross-validation 
approach, our proposed CNN classifier consistently outperforms benchmark classifiers, 
yielding an average accuracy of 88%, balanced accuracy of 94%, F1-score of 91%, and Kappa 
of 95%. In contrast, benchmark classifiers, such as SVM and NB, consistently demonstrate 
performance levels lower than the best-performing classifiers. AdaB and KNN classifiers, 
while not reaching the highest levels of performance, also exhibit notable performance, while 
RF and XGB classifiers excel in terms of accuracy, averaging 88% and 86%, respectively. 
However, it's important to note that their superior accuracy comes at the expense of 
performance across other metrics, which remains notably lower than that of the proposed CNN 
classifier. 
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Table 5: Average and standard deviation of quantitative metrics employed to assess classifier performance using 
the data pooling cross-validation approach, calculated across all measurements. 

Classifier Accuracy (%) 
Balanced Accuracy 

(%) F1-score (%) Kappa (%) 

CNN1 88 ± 12 94 ± 7 91 ± 9 95 ± 5 

SVM2 74 ± 4 68 ± 4 53 ± 7 35 ± 9 

AdaB3 83 ± 4 77 ± 5 66 ± 9 54 ± 11 

KNN4 82 ± 5 83 ± 6 71 ± 9 59 ± 12 

NB5 63 ± 5 67 ± 5 51 ± 6 26 ± 8 

RF6 88 ± 5 79 ± 6 72 ± 10 65 ± 12 

XGB7 86 ± 3 79 ± 5 71 ± 8 62 ± 9 
1 Convolutional Neural Network. 2 Support Vector Machine. 3 AdaBoost. 4 K-Nearest Neighbors. 5 Naive Bayes. 6 Random Forest. 
7 XGBoost. 

3.3. Results of sleep classification with LTSO cross-validation 
approach 
Figure 5 presents a bar chart illustrating various quantitative metrics, including accuracy, 
balanced accuracy, F1-score, and Kappa, utilized to evaluate classifier performance within 
the context of the Leave-Two-Subjects-Out (LTSO) cross-validation approach. The chart 
demonstrates that the CNN classifier consistently outperformed benchmark classifiers across 
all performance metrics, with the exception of accuracy where RF and XGB classifiers 
exhibited comparable performance. Among the benchmark classifiers, RF and XGB classifiers 
demonstrated superior accuracy and Kappa values, while NB and SVM classifiers excelled in 
terms of balanced accuracy and F1-score. Notably, Kappa values for each classifier 
consistently registered lower values compared to their respective F1-scores, which, in turn, 
were lower than the attained accuracy and balanced accuracy. Furthermore, it is worth 
highlighting that, in most cases, balanced accuracy fell short of accuracy across all classifiers, 
except for the NB classifier.  

Table 6 summarizes a numerical summary of average and standard deviation values for each 
quantitative metric across all measurements, employing the LTSO cross-validation approach. 
Regarding accuracy, the proposed CNN, RF, and XGB classifiers demonstrated comparable 
performance, achieving the highest average accuracy among all classifiers at 78%. The 
proposed CNN classifier showcased superior performance in terms of balanced accuracy (72 
± 6%), F1-score (59 ± 10%), and Kappa (44 ± 14%). Among the benchmark classifiers, the 
NB classifier recorded the highest values for balanced accuracy (70 ± 8%) and F1-score (55 
± 6%), albeit with a lower accuracy (68 ± 11%). The XGB classifier exhibited the highest Kappa 
(38 ± 21%), although it displayed a relatively higher standard deviation. 
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Figure 5: Bar chart of the quantitative metrics (i.e., accuracy, balanced accuracy, F1-score, and Kappa) used for 
assessing the performance of the classifiers with error bars averaged across all measurements, obtained using the 
LTSO cross-validation approach. 

Table 6: Average and standard deviation of quantitative metrics employed to assess classifier performance using 
the LTSO cross-validation approach, calculated across all measurements. 

Classifier Accuracy (%) Balanced Accuracy 
(%) 

F1-score (%) Kappa (%) 

CNN1 78 ± 6 72 ± 6 59 ± 10 44 ± 14 

SVM2 72 ± 5 69 ± 7 53 ± 11 35 ± 14 

AdaB3 72 ± 2 61 ± 10 39 ± 22 22 ± 21 

KNN4 69 ± 9 63 ± 8 46 ± 10 25 ± 16 

NB5 68 ± 11 70 ± 8 55 ± 6 34 ± 14 

RF6 78 ± 5 67 ± 11 45 ± 23 35 ± 21 

XGB7 78 ± 5 69 ± 10 50 ± 21 38 ± 21 
1 Convolutional Neural Network. 2 Support Vector Machine. 3 AdaBoost. 4 K-Nearest Neighbors. 5 Naive Bayes. 6 Random Forest. 
7 XGBoost. 

Figure 6 illustrates a detailed performance analysis of the proposed CNN classifier, conducted 
within the framework of the LTSO cross-validation methodology. This assessment 
encompasses a suite of performance metrics, including accuracy, balanced accuracy, F1-
score, and Kappa. Notably, the classifier's performance exhibited variations across different 
subject groups (see section 2.5.2). Specifically, when tested on Group 1 (G1), the classifier 
achieved superior results in terms of accuracy, balanced accuracy, F1-score, and Kappa 
compared to other groups. In contrast, the classifier's performance was notably lower when 
tested on Group 3 (G3), registering the lowest values across all performance metrics. Looking 
at the variability of the performance metrics among groups, we observe that the Kappa had 
more variability from below 30% to above 60% than other metrics. Additionally, a consistent 
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trend emerges across all groups, with accuracy consistently exceeding balanced accuracy, 
which, in turn, surpasses the F1-score, while Kappa consistently lags behind as the metric 
with the lowest values.   

 
Figure 6: Bar chart of the quantitative metrics (i.e., accuracy, balanced accuracy, F1-score, and Kappa) used for 
assessing the performance of the proposed CNN classifier in each subject group, obtained using the LTSO cross-
validation approach. 

Table 7 summarizes numerically the accuracy, balanced accuracy, F1-score, and Kappa for 
the proposed CNN classifier per group when using the LTSO cross-validation approach. 
Among the subject groups, the classifier evaluated on Group 1 (G1) demonstrated the highest 
levels of performance across multiple metrics, including accuracy (86%), balanced accuracy 
(81%), F1-score (74%), and Kappa (65%). In contrast, the classifier assessed on Group 3 
(G3) displayed the lowest performance, recording accuracy (70%), balanced accuracy (63%), 
F1-score (48%), and Kappa (27%) at the lowest levels. The most pronounced variation among 
the groups was observed in the Kappa performance metric, with a range of 38%, while the 
smallest degree of variation was found in the accuracy metric, with a range of 16%. 

Table 7: Quantitative metrics employed to assess the performance of the proposed CNN classifier in each subject 
group, obtained using the LTSO cross-validation approach. 

Group NO. Accuracy (%) 
Balanced Accuracy 

(%) F1-score (%) Kappa (%) 

1 86 81 74 65 
2 76 72 51 36 
3 70 63 48 27 
4 84 75 66 56 
5 73 70 56 37 
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4. Discussion 

In this study, we harnessed the potential of multi-modal feature extraction from NIRS signals 
acquired at an enhanced sampling rate of 100 Hz, evaluating its feasibility of characterizing 
sleep stages among preterm infants using only a single NIRS sensor. Leveraging the CNN 
classifier, we differentiated AS from QS by extracting and fusing different features from high 
sampling rate NIRS, including physiological signals such as HR and RR, motion-related 
information, and raw NIRS signals. Our approach allowed for the assessment of NIRS signal 
quality and the extraction of diverse physiological and non-physiological features, including 
motion artifacts and brain activation, providing a comprehensive platform for sleep 
assessment. This amalgamation of features, not extensively explored in previous studies, 
enabled us to construct a more holistic framework for assessing sleep patterns in preterm 
infants, even those as young as 24 weeks of gestation or with birth weights as low as 500 
grams, solely from data acquired from a single sensor. This classifier distinguishing between 
AS which aids neural processing and learning consolidation [40–42], and QS that promotes 
physical growth and recovery [43,44], applied on data with minimal contact to the preterm, can 
be of pivotal benefit to both clinical and research settings.  

The performance of the proposed classifier was evaluated through a quantitative analysis 
involving key performance metrics, including accuracy, balanced accuracy, F1-score, and 
Kappa. The assessment of classifier performance was undertaken via two distinct cross-
validation strategies, namely, pooling cross-validation and LTSO cross-validation. In the 
context of pooling cross-validation employing a 10-fold scheme, the proposed classifier 
achieved an accuracy of 88 ± 12%, a balanced accuracy of 94 ± 7%, an F1-score of 91 ± 9, 
and a Kappa of 95 ± 5%. Moreover, we also assessed the outcomes of the classifier within 
the LTSO cross-validation paradigm, with a reported accuracy of 78 ± 6%, a balanced 
accuracy of 72 ± 6, an F1-score of 59 ± 10, and a Kappa of 44 ± 14 (as summarized in Tables 
5, 6, and 7).  

Furthermore, a comparative analysis was conducted to benchmark the performance of the 
proposed CNN classifier against six established classifiers, including SVM, AdaB, KNN, NB, 
RF, and XGB. Across both cross-validation methodologies, the CNN classifier consistently 
exhibited superior performance in terms of balanced accuracy, F1-score, and Kappa, although 
it is worth noting that RF and XGB classifiers displayed competitive results in terms of overall 
accuracy, as detailed in Tables 5 and 6. Notably, when considering metrics sensitive to 
imbalanced classification in the pooling cross-validation framework (i.e., balanced accuracy, 
F1-score, and Kappa), the CNN classifier demonstrated a substantial advantage over the 
benchmark classifiers, exceeding their performance by more than 10%. In contrast, the margin 
of superiority was somewhat reduced in the LTSO cross-validation approach, where the CNN 
classifier outperformed the benchmark classifiers by 2%, 4%, and 6% in terms of balanced 
accuracy, F1-score, and Kappa, respectively.  

Although direct comparisons with previous PSG studies are challenging due to differences in 
demographics, sample sizes, and classification criteria, our CNN classifier for NIRS performs 
well in distinguishing AS from QS. In this regard, some related previous research can be 
mentioned and compared. For instance, Sentner et al. [16] integrated physiological 
parameters such as HR, RR, and SpO2 derived from PSG recordings to delineate sleep 
stages among 39 preterm infants, achieving an area under the Receiver Operating 
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Characteristic curve (AUC-ROC) ranging from 0.61 to 0.78. Similarly, Werth et al. [17] 
leveraged features extracted from electrocardiography to attain a Kappa score of 0.43 in the 
classification of AS versus QS within a cohort of 34 preterm infants. Several studies 
exclusively concentrated on EEG and amalgamated diverse EEG-derived features for sleep 
stage classification. For instance, Hermans et al. [18] devised a CNN classifier that 
amalgamated multiple EEG-derived features to distinguish between sleep stages, achieving 
a Kappa score spanning from 0.33 to 0.44 among fifteen term infants. Similarly, Wang et al. 
[19] exclusively utilized EEG features, achieving an AUC-ROC of 0.75 in their study involving 
17 preterm infants. Koolen et al. [20] introduced a SVM classifier trained on EEG features, 
demonstrating an accuracy and balanced accuracy of 85% across a cohort of 67 infants, while 
Ansari et al. [21] reported average accuracy, balanced accuracy, and AUC-ROC values of 
79%, 79.5%, and 87%, respectively, in their utilization of exclusive EEG features to 
discriminate between QS and non-QS states among 97 preterm infants. Comparing these 
outcomes with the aforementioned results of our study, we conclude that it either outperforms 
or shows comparable results to existing methods.   

It is essential to acknowledge several limitations of the current study, which warrant attention 
in future research endeavors. First, the extraction of HR and RR in this study relied upon 
algorithms outlined in [28,29], with measurements obtained at 7.5-second intervals. Notably, 
if sleep stages exert an influence on the short-term dynamics of HR and RR, the 7.5-second 
interval for computation could potentially lead to the omission of critical sleep-related 
information, thereby potentially impinging upon the classifier's efficacy. Nevertheless, the 
promising results obtained in this study confirm that the computation times for HR and RR 
have been appropriate for achieving precise sleep classification (AS vs. QS) in the population 
studied. Second, despite our assessment involving 723 one-minute trials derived from a cohort 
of 9 subjects in a highly challenging intensive care setting, validation in a larger and more 
diverse patient population needs to be performed. Third, the current research was centered 
on offline feature extraction and classification procedures, utilizing data sourced from preterm 
infants in a NICU. However, for practical clinical implementation, an online bedside version for 
feature extraction and classification is needed. This crucial step would serve as a litmus test 
to evaluate the applicability and performance of our proposed sleep classification approach 
within a genuine clinical environment. To progress in this direction, a key focus would involve 
refining the existing RR and HR algorithms to adapt them for real-time, online processing 
[28,29]. By incorporating the preprocessing and feature extraction procedures outlined in the 
paper into the online system, the foundation for accurate data analysis can be established. 
Once the online algorithms are in place, integrating the trained classifier into this setup and 
then developing practical software would provide clinicians with a powerful tool for real-time 
sleep pattern analysis in clinical environments.  

Exploring potential future avenues for extending this study can open up a multitude of potential 
applications across diverse settings. Foremost, it could be used in hospital settings. 
Healthcare providers stand to benefit from enhanced sleep monitoring capabilities, enabling 
more precise and efficient diagnosis of sleep disorders. The simplicity of using a single head-
mounted sensor in our portable system has the additional advantage of reducing potential 
discomfort and distress that can arise from the placement of multiple sensors typically required 
for PSG in preterm infants [45]. This would facilitate the planning of elective care and thereby 
improve sleep (quality). Furthermore, NIRS-based sleep assessment could be used for more 
precise and comprehensive home-based sleep stage classification [46–48]. Given the 
increasing popularity of home-based sleep monitoring, while considering the limitations of 
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current sensor modalities [49], our NIRS-based method offers a potent alternative. Sleep 
analysis within the comfort of one's own home holds great advantages, not only in terms of 
logistics (transportation to and from the hospital) but also in the assessment of sleep in a 
patient’s daily environment. This could facilitate proactive health management [50,51]. In 
addition, the portability and user-friendliness would enable sleep assessment in environments 
with limited (monitoring) resources, which could significantly augment the quality of care in 
such environments. Lastly, our approach introduces exciting prospects for prospective 
research studies in the domain of neurodevelopmental assessment, complemented by 
concurrent sleep monitoring [52,53]. This innovative approach holds the potential for shedding 
light on the intricate relationship between sleep patterns and neurodevelopmental outcomes, 
thus enriching our understanding of this critical aspect of neonatal health and 
(brain)development. 

5. Conclusion  

Our study demonstrates the viability of accurately categorizing active sleep and quiet sleep in 
preterm infants within an intensive care setting using a single high sampling rate NIRS sensor 
and a sophisticated feature extraction approach and CNN classifier. Through rigorous 
quantitative analyses and cross-validation, our approach consistently outperforms in terms of 
balanced accuracy, F1-score, and Kappa when compared to the benchmark classifiers. Our 
findings offer a simplified, non-invasive, and user-friendly alternative to traditional PSG, 
reducing discomfort for preterm infants and facilitating more precise and efficient diagnosis of 
sleep disorders. 
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1. General discussion  

Using near-infrared spectroscopy (NIRS) to measure brain and tissue oxygen levels has 
become an important surveillance tool in neonatal perioperative and intensive care settings 
[1–5]. Although there are some challenges when using NIRS, such as systemic artifacts [6], 
these obstacles can also provide opportunities for improvement [7]. In particular, physiological 
artifacts, which are often seen as hindrances, can actually be helpful by providing a way to 
evaluate the quality of the signal [8,9]. Utilizing this approach can aid in identifying optimal 
sensor placement for achieving the highest signal quality, thereby enhancing the precision 
and reliability of data collection. Moreover, signals resulting from cardiac and respiratory 
activity can be analyzed to extract heart rate (HR) and respiratory rate (RR) measurements 
[7,10–14]. This approach, which involves analyzing these physiological signals to derive vital 
measurements, effectively transforms potential disturbances into crucial health data. 

The noninvasive nature of NIRS stands out particularly for its gentle approach on the delicate 
skin of neonates, potentially eliminating the need for adhesive sensors [15–17]. This method 
not only minimizes discomfort and stress associated with the routine application and removal 
of glue based sensors but also underscores the strategy of utilizing inherent challenges to 
refine the accuracy of signal quality assessments, along with HR and RR measurements. This 
thesis endeavors to shed new light on the methodologies of NIRS data collection within clinical 
environments, by harnessing physiological artifacts for a dual purpose of improving data 
quality and extracting vital signs. 

The research initially focused on adult subjects in Part I, as adult data is more accessible and 
has a higher signal-to-noise ratio than neonatal data, especially in clinical scenarios. The 
insights gained from adult data were instrumental in developing algorithms that were then 
adapted and applied to neonatal data. Part II of the thesis presents the application of these 
algorithms to data collected from neonates in clinical settings, demonstrating the adaptability 
and relevance of the initial findings to the more sensitive neonatal group. 

Part I: physiological information in adult NIRS  

In the first part of the thesis, chapter two focuses on the development of an algorithm for 
assessing signal quality in NIRS data. The newly developed Signal Quality Index (SQI) 
algorithm is capable of quantitatively evaluating NIRS signals on a numeric scale from 1, 
indicating very low quality, to 5, representing very high quality. This is the first algorithm of its 
kind to provide more than two levels of signal quality assessment, unlike existing algorithms 
such as Scalp Coupling Index (SCI) [8] and PHOEBE (placing headgear optodes efficiently 
before experimentation) [9], which only offer a binary good/bad evaluation. The SQI algorithm 
has demonstrated significantly better performance in quantitatively rating NIRS signal quality 
compared to PHOEBE and SCI, with a higher positive correlation to expert ratings and 
improved binary classification in terms of accuracy, sensitivity, and F1-score. Unlike SCI, 
which uses a single metric, or PHOEBE, which combines two metrics, SQI employs a three-
stage rating process. This process includes identifying very low and very high-quality signals, 
followed by a comprehensive signal quality rating, using selected features that translate visual 
assessments into numeric ratings. The algorithm’s efficacy is evident in its ability to identify 
signal quality with high precision, and its design allows for both offline and online application 
over 10-second sliding windows. This enables the assessment of signal quality variations over 
time and the exclusion of poor quality trials. The use of SQI ensures that the quality of NIRS 
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data is not dependent on the researcher’s experience, thereby facilitating the collection of 
reliable hemodynamic information and reducing artifacts. 

The results from the SQI algorithm show promise, but improvements are possible. Our study 
didn't address motion-affected signal segments, limiting our analysis to motion-artifact-free 
data. Motion artifacts, primarily caused by head and body movements, introduce 
unpredictable, non-stationary noise, making them challenging to filter out without losing critical 
information. Furthermore, the algorithm's training and validation were only performed on data 
from healthy young adults, which overlooks significant hemodynamic variations related to age 
and systemic conditions. For instance, aging could alter cerebral blood flow in association and 
limbic cortices during rest [18,19]. Studies using functional NIRS have shown that elderly 
individuals have a reduced hemodynamic response functional activation [20,21]. Additionally, 
cardiac abnormalities such as congenital heart disease could lead to altered cerebral 
hemodynamics, including lower cerebral blood flow and increased oxygen extraction in 
neonates [22]. These age- and condition-related changes can significantly affect NIRS signals. 
Future studies should expand the dataset to include infants, elderly, and individuals with 
cardiac abnormalities to enhance the algorithm's applicability and accuracy. 

Continuing on signal quality assessment, in chapter three, we leveraged machine learning to 
refine the assessment of signal quality in NIRS. Our developed algorithm, Machine Learning-
based SQI (MLSQI), quantitatively evaluates NIRS signal quality on a scale ranging from 1 for 
very low quality to 5 for very high quality, similar to SQI algorithm. It operates by analyzing 14 
temporal and morphological features from the NIRS signals using a medium Gaussian SVM 
regressor. When compared to three advanced algorithms—SCI, PHOEBE, and SQI—MLSQI 
demonstrated superior performance in both quantitative and binary evaluations of NIRS signal 
quality. The study also revisited the extraction of various features from NIRS signals that 
translate the heuristic visual assessment of signal quality into structured analysis. The cardiac 
pulses’ morphological and temporal characteristics within the NIRS signals provide insights 
into their quality. Although summarizing this information into a single metric would be ideal, 
our study found that using a greater number of features significantly improves algorithm 
performance. Additionally, we proposed the MLSQI algorithm to assess shorter, 4-second 
signal segments, offering quicker feedback compared to the previously proposed SQI 
algorithm that assessed 10-second segments. 

In chapter four, we explored the potential of utilizing respiratory-related physiological artifacts 
in NIRS data for adults. Our investigation centered on the feasibility of estimating RR from 
NIRS. This approach represents a novel perspective on the interpretation of respiratory 
interference in NIRS data, which is traditionally viewed as an unwanted disturbance [23]. The 
significance of our study lies in its ability to extract an additional metric, namely RR, from 
cerebral activity analysis without the need for a reference signal.  

Our study's promising findings are tempered by notable limitations that necessitate further 
exploration. Our data collection, restricted to a simple seated breathing task, didn't capture a 
broad spectrum of RRs, limiting our analysis. NIRS and respiratory signals were concurrently 
collected from subjects during controlled breathing tasks at a constant rate from 0.1 Hz to 0.4 
Hz. This controlled setting, while useful for consistency, does not reflect the variability 
encountered in more dynamic, real-world scenarios. Future research should incorporate 
dynamic activities to obtain a more representative range of RRs, as discussed in the 
subsequent chapter. Additionally, the study's reliability was also only verified in young, healthy 
subjects, underscoring the need for validation across diverse groups, such as the elderly, 
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neonates, and patients. This is particularly crucial because age-related changes in 
physiological mechanisms, like the reduction in respiratory sinus arrhythmia and chest wall 
expansion, can affect respiratory signal quality and consequently the performance of 
respiratory rate estimation algorithms [24].  

Progressing with RR estimation from NIRS in adults, in chapter five, we addressed the 
challenge of data corrupted by motion artifacts. We introduced a robust method for RR 
estimation during physical activities, such as bicycling, using NIRS signals captured with 
portable devices. This method leverages the reduced sensitivity of NIRS to subject movement, 
aiming to overcome the practical constraints identified in contemporary studies of RR 
estimation during exercise.  

Despite the promising outcomes of our method, several limitations highlight areas for future 
improvement. Testing on subjects engaging in more vigorous exercises beyond the current 
study's scope could also validate its effectiveness under diverse physical conditions. 
Additionally, exploring advanced fusion strategies, such as the Smart Fusion method 
proposed in [25], might improve performance, despite minimal observed differences in 
estimated RRs across modalities. This underscores the need for broader and more intensive 
testing to refine the RR estimation method. 

Part II: physiological information in neonatal NIRS 

Transitioning from adult to neonatal data, in chapter seven, we applied our acquired 
knowledge and developed algorithms to create a new method for HR extraction from NIRS 
signals of neonates admitted to the neonatal intensive care unit (NICU). To our knowledge, 
our NHR (NIRS HR) algorithm, developed here, is the first HR extraction method tailored to 
neonatal NIRS data collected in clinical settings. In contrast, the existing automatic multiscale-
based peak detection (AMPD) algorithm, introduced by Scholkmann et al. [26], was validated 
on signals from healthy adults in controlled environments. Similarly, the Perdue algorithm was 
designed for signals from infants over three months old, also in controlled settings [11]. Our 
algorithm, however, is specifically developed for signals from (pre)term neonates in NICUs. 
Our findings demonstrate that the NHR algorithm significantly outperform (p < 0.05) the 
Perdue (r = 71.8%) and AMPD (r = 73.2%) algorithms in HR extraction from neonatal NIRS 
signals, as evidenced by a higher agreement with a greater correlation coefficient (r = 99.5%). 
Despite these advancements, the NHR algorithm is constrained by a 12.5-second delay in 
updates, which may limit its application in scenarios requiring analysis of rapid physiological 
changes. 

Building upon the use of physiological information in neonatal NIRS, chapter eight introduces 
the development of the NRR (NIRS RR) algorithm. This innovative algorithm is designed to 
extract RR from neonatal NIRS signals obtained within the NICU. The NRR algorithm is 
specifically tailored for clinical neonatal data. Unlike previous methods validated on adult data 
during resting state in controlled settings [14], the NRR algorithm has been validated on 
neonatal data in the active and variable conditions of a NICU. The algorithm’s performance 
was evaluated, showing a high agreement and strong linear correlation (r = 84.5%) between 
the reference and extracted RRs. However, it similarly suffers from a limitation of a 7.5-second 
delay in updates, restricting its effectiveness in analyzing quick, transient physiological shifts. 

The process of data acquisition in clinical environments presents unique challenges that 
necessitated innovative modifications to the NHR and NRR algorithms. Unlike controlled 
settings, clinical data often contain a higher incidence of motion artifacts due to factors such 
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as patient movement, sensor adjustments, and ventilator operations. To address this, we 
implemented specific steps to detect and correct motion artifacts on a segment-by-segment 
basis. The algorithm selectively excludes signal segments where motion artifacts are present 
in the majority of the signal segment. On average, this process excluded approximately 6% of 
the signal segments (see Table 1 in Chapter 8). Moreover, the inherent low quality of clinical 
data, typically resulting from electromagnetic interference and limitations in data acquisition in 
such settings, posed another obstacle. To mitigate this, we introduced a processing step that 
involves selecting the highest quality NIRS channel, evaluating the signal quality for each 
segment, and incorporating only those signals deemed of sufficient quality into our analysis. 
Variability in the signal source, primarily due to potentially greater physiological changes in 
clinical settings compared to controlled environments, is yet another challenge encountered 
in clinical data. To effectively handle this variability, the NHR and NRR algorithms adaptively 
adjust the HR and RR frequency bandwidths for each measurement.  

While the NHR and NRR algorithms currently exhibit delays in updates—12.5 seconds for HR 
and 7.5 seconds for RR—these limitations open avenues for future enhancements. The 
existing framework of both algorithms provides a strong foundation for adaptation towards 
real-time, online usage. For the NHR algorithm, real-time adaptation can be achieved by 
computing SQI from the beginning of the measurement up to the current moment at several-
minute intervals and storing segment SQI values for reuse. Additionally, the adaptive HR 
frequency bandwidth can be recalculated using recent O2Hb signals. For the NRR algorithm, 
the signal quality could be assessed in each 30-s window, and the HR frequency bandwidth 
could be updated during the measurement every 10 min. Such advancements could 
significantly increase their clinical utility by enabling dynamic signal quality assessments and 
adaptive frequency adjustments based on real-time data.  

In chapter nine, a relevant application of signal quality assessment, along with HR and RR 
extraction from neonatal NIRS was demonstrated in the context of sleep stage assessment in 
NICU-admitted neonates. Utilizing multi-modal feature extraction from NIRS signals at an 
enhanced sampling rate of 100 Hz, we assessed the capability of these signals to characterize 
sleep stages in preterm neonates using a solitary NIRS sensor. Employing a convolutional 
neural network classifier, we distinguished between active sleep and quiet sleep by integrating 
various features derived from the high-frequency NIRS data. These features encompass 
physiological signals like HR and RR, motion-related information, and the raw NIRS signals 
themselves. Our comprehensive approach facilitated the evaluation of NIRS signal quality and 
the extraction of a broad spectrum of physiological and non-physiological features. This novel 
combination of features, previously underexplored, allowed for the creation of an inclusive 
framework for analyzing sleep patterns in preterm neonates as young as 24 weeks gestational 
age or with birth weights as minimal as 500 grams, using only data from a single sensor.  

This study's limitations include the reliance on algorithms that compute HR and RR at 7.5-
second intervals, which may overlook short-term dynamics affected by sleep stages, 
potentially affecting classifier performance for sleep classification [27–29]. Additionally, while 
the study's validation involved trials from a limited number of (pre)term neonates in an 
intensive care setting, broader validation and the development of an online system for real-
time feature extraction and classification are essential steps for practical clinical application. 
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2. Conclusions 

 The SQI algorithm, developed for evaluation of NIRS signal quality, significantly 
enhances the ability to manage data integrity by allowing researchers to discard poor 
quality signals without losing valuable channels. Additionally, there is potential for 
adapting this algorithm for online use, as evidenced by similar functionalities in Artinis 
software. 

 Implementation of the SQI algorithm could standardize the evaluation of NIRS signal 
quality, reducing dependency on the user's expertise and allowing for broader 
application across various research settings. 

 The feasibility of extracting HR and RR from neonatal NIRS signals in NICU settings 
has been demonstrated. NIRS offers a non-invasive monitoring alternative that could 
potentially supplement traditional methods like electrocardiography and 
photoplethysmography, especially given its reduced susceptibility to motion artifacts 
[28].  

 This thesis highlights the potential of NIRS technology to develop standalone systems 
capable of simultaneously monitoring multiple physiological parameters (cerebral 
oxygen saturation, HR, and RR) using a single device. Such systems that provide a 
more comprehensive view of a patient's physiological state with minimal discomfort 
and reduced risk of skin damage could revolutionize patient monitoring in clinical 
settings. 

 Initial investigations into the use of NIRS for neonatal sleep monitoring suggest the 
possibility of tracking sleep stages by analyzing integrated physiological data from 
NIRS signals (e.g., HR, RR, and cerebral oxygen saturation). This method might offer 
a non-invasive and continuous way to monitor neonatal sleep patterns, potentially 
providing valuable insights into neurodevelopment and overall health [29–32], although 
further research is necessary to confirm its effectiveness. 

3. Future directions 

Future advancements in NIRS technology, by integrating SQI for signal quality evaluation, HR 
and RR extraction capabilities for neonatal monitoring, and methods for assessing sleep 
stages, present a significant opportunity to enhance the precision, reliability, and scope of use 
in both clinical and research settings. As these technologies are further refined, NIRS could 
potentially streamline the use of multiple monitoring devices. Moreover, integrating NIRS-
derived measurements of HR, RR, and cerebral oxygenation can significantly improve 
multimodal monitoring in NICUs, enhancing care responsiveness and minimizing neonate 
stress. 
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3.1. Signal quality assessment 
Improving signal quality assessment is paramount for advancing NIRS technology. As 
mentioned, our study excluded major motion-affected segments, limiting analysis to motion-
artifact-free data. Future research should prioritize the development of algorithms that can 
accurately identify and mitigate major motion artifacts, which are a significant source of noise 
in NIRS signals [35,36]. This is especially important for applications involving infants [37], 
patients undergoing rehabilitation therapy [38,39], and sports science [40] where subject 
movement is inevitable. Integrating machine learning techniques to dynamically adapt to the 
presence of artifacts and improve signal fidelity in real-time could revolutionize signal quality 
assessment in NIRS systems. Additionally, the exploration of novel sensor designs and 
placement strategies to minimize the impact of motion and enhance optical coupling between 
the optodes and the scalp will further augment signal quality [41]. 

3.2. HR extraction 
To improve HR extraction, achieving real-time beat-by-beat HR computation is a critical 
objective. In our study, we used a frequency domain-based approach to extract HR due to the 
low quality of our data, at the expense of reduced time resolution. However, with high-quality 
data, a time domain-based approach, such as peak detection (e.g., using AMPD), could 
provide beat-by-beat HR information. Reducing the delay in HR computation and increasing 
the algorithm's sensitivity to short-term HR dynamics are essential for applications in acute 
care settings and for monitoring conditions that require immediate response [42,43]. Future 
developments could include the implementation of adaptive algorithms that can adjust to the 
signal's quality in real-time and employ advanced signal processing techniques to enhance 
accuracy and reduce latency in HR detection. 

3.3. RR extraction 
Expanding the robustness and accuracy of RR extraction algorithms is another key direction. 
Future studies should aim at validating the performance of RR extraction algorithms in more 
dynamic and realistic scenarios, such as during intense physical activities [44] or in diverse 
clinical settings [45]. Additionally, the development of algorithms that can adapt to different 
cohorts, taking into account factors like age, race, skin color, and body mass index (BMI), will 
enhance the universality and reliability of RR measurement using NIRS technology. 

3.4. Sleep assessment 
In sleep assessment, refining algorithms for the detection of sleep stages and their influence 
on HR and RR dynamics is crucial. Future research should focus on reducing computation 
intervals to capture more granular sleep-related changes in physiological signals. Moreover, 
validating these algorithms in a broader range of subjects, including diverse patient 
populations in clinical settings, will enhance their applicability. Developing online versions of 
these algorithms for real-time monitoring and classification of sleep stages, both in clinical 
environments and for home-based healthcare, would provide valuable tools for healthcare 
professionals and enhance patient care in diverse settings.  

Our approach, which utilizes NIRS technology to derive HR and RR, could potentially be 
employed as a nonintrusive, real-time bedside automated sleep classification system for 
preterm infants, similar to the Sleep Well Baby algorithm developed by Sentner et al. [46]. This 
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innovative approach could eliminate the need for the extra electrodes that are standard in 
traditional polysomnography, thus simplifying routine sleep assessment and enabling 
continuous monitoring of sleep patterns in the NICU. 

The practical implementation of NIRS systems equipped with advanced SQI, HR, RR, and 
sleep assessment features necessitates the development of user-friendly, robust, and 
portable devices that can deliver real-time feedback and monitoring in clinical and everyday 
settings. Such development requires interdisciplinary collaboration among engineers, 
clinicians, and end-users.   

3.5. Integrated multimodal monitoring 
Advancements in algorithms for extracting HR and RR from neonatal NIRS signals could 
potentially enhance multimodal monitoring capabilities in NICUs. By integrating HR and RR 
measurements with cerebral oxygenation data concurrently, NIRS technology can potentially 
reduce the number of sensors required. Thus it could potentially minimize stress on neonates 
[15,16], and improve the accuracy of managing conditions like hypoxic-ischemic 
encephalopathy [47–49], respiratory distress [50,51], and monitor cerebral vascular 
autoregulation. To assess cerebral vascular autoregulation, one method involves analyzing 
the relationship between blood pressure and NIRS-derived cerebral oxygen saturation [52], 
which serves as a surrogate for cerebral blood flow [53]. Integrating HR—a surrogate for blood 
pressure in preterm infants [54]—with cerebral oxygen saturation could allow for the 
assessment of cerebral vascular autoregulation using a standalone NIRS system in preterm 
infants. 

This integrated approach using NIRS could allow for real-time, tailored adjustments to 
treatment protocols, enhancing the responsiveness of neonatal care. Evidence from the 
SafeBoosC Phase II trial shows that monitoring cerebral oxygen saturation (StO2) alongside 
cardiovascular and respiratory status—guided by specific treatment guidelines—effectively 
reduces the risks of hypo- and hyperoxia [55]. This approach could allow for immediate 
interventions and reduce neonate stress with fewer sensors. Additionally, it could provide 
valuable diagnostic information without relying on absolute set-off values, addressing a 
challenge in current StO2 implementation in clinics. 

Furthermore, integrating NIRS-derived data on HR, RR, and cerebral oxygenation—with its 
proven role as a surrogate for cerebral perfusion [53]—with other monitoring technologies like 
electroencephalography [56] and continuous transcranial Doppler (the NeoDoppler device) 
[57], can provide a more comprehensive evaluation of a neonate's cerebral health. This 
integration allows for real-time tracking of the balance between cerebral oxygen supply and 
demand, needed for detecting early signs of cerebral dysregulation [40]. Such an integrated 
approach underscores the potential of continuous, multimodal monitoring systems to enhance 
the responsiveness and effectiveness of individualized neonatal critical care. 

  



Discussion and Conclusion 

 209 

 

References 

1.  Yu, Y.; Zhang, K.; Zhang, L.; Zong, H.; Meng, L.; Han, R. Cerebral Near‐infrared 
Spectroscopy (NIRS) for Perioperative Monitoring of Brain Oxygenation in Children and 
Adults. Cochrane Database Syst Rev 2018, 2018, 
doi:10.1002/14651858.CD010947.PUB2. 

2.  Petrova, A.; Mehta, R. Near-Infrared Spectroscopy in the Detection of Regional Tissue 
Oxygenation during Hypoxic Events in Preterm Infants Undergoing Critical Care. 
Pediatric Critical Care Medicine 2006, 7, 449–454, 
doi:10.1097/01.PCC.0000235248.70482.14. 

3.  Scheeren, T.W.L.; Schober, P.; Schwarte, L.A. Monitoring Tissue Oxygenation by near 
Infrared Spectroscopy (NIRS): Background and Current Applications. J Clin Monit 
Comput 2012, 26, 279, doi:10.1007/S10877-012-9348-Y. 

4.  Van Bel, F.; Lemmers, P.; Naulaers, G. Monitoring Neonatal Regional Cerebral Oxygen 
Saturation in Clinical Practice: Value and Pitfalls. Neonatology 2008, 94, 237–244, 
doi:10.1159/000151642. 

5.  Chock, V.Y.; Vesoulis, Z.A.; El-Dib, M.; Austin, T.; van Bel, F. The Future of Neonatal 
Cerebral Oxygenation Monitoring: Directions After the SafeBoosC-III Trial. J Pediatr 
2024, 270, 114016, doi:10.1016/J.JPEDS.2024.114016. 

6.  Tachtsidis, I.; Scholkmann, F. False Positives and False Negatives in Functional Near-
Infrared Spectroscopy: Issues, Challenges, and the Way Forward. 
https://doi.org/10.1117/1.NPh.3.3.031405 2016, 3, 031405, 
doi:10.1117/1.NPH.3.3.031405. 

7.  Hakimi, N.; Kamaledin Setarehdan, S. Stress Assessment by Means of Heart Rate 
Derived from Functional Near-Infrared Spectroscopy. 
https://doi.org/10.1117/1.JBO.23.11.115001 2018, 23, 115001, 
doi:10.1117/1.JBO.23.11.115001. 

8.  Pollonini, L.; Olds, C.; Abaya, H.; Bortfeld, H.; Beauchamp, M.S.; Oghalai, J.S. Auditory 
Cortex Activation to Natural Speech and Simulated Cochlear Implant Speech Measured 
with Functional Near-Infrared Spectroscopy. Hear Res 2014, 309, 84–93, 
doi:10.1016/J.HEARES.2013.11.007. 

9.  Pollonini, L.; Bortfeld, H.; Oghalai, J.S. PHOEBE: A Method for Real Time Mapping of 
Optodes-Scalp Coupling in Functional near-Infrared Spectroscopy. Biomedical Optics 
Express, Vol. 7, Issue 12, pp. 5104-5119 2016, 7, 5104–5119, 
doi:10.1364/BOE.7.005104. 

10.  Hakimi, N.; Jodeiri, A.; Mirbagheri, M.; Setarehdan, S.K. Proposing a Convolutional 
Neural Network for Stress Assessment by Means of Derived Heart Rate from Functional 
near Infrared Spectroscopy. Comput Biol Med 2020, 121, 103810, 
doi:10.1016/J.COMPBIOMED.2020.103810. 

11.  Perdue, K.L.; Westerlund, A.; Mccormick, S.A.; Nelson, C.A.; Iii, C.A.N. Extraction of 
Heart Rate from Functional Near-Infrared Spectroscopy in Infants. 



Chapter 10                                                                                                    

 

 210 

 

https://doi.org/10.1117/1.JBO.19.6.067010 2014, 19, 067010, 
doi:10.1117/1.JBO.19.6.067010. 

12.  Perdue, K.L.; Edwards, L.A.; Tager-Flusberg, H.; Nelson, C.A. Differing Developmental 
Trajectories in Heart Rate Responses to Speech Stimuli in Infants at High and Low Risk 
for Autism Spectrum Disorder. J Autism Dev Disord 2017, 47, 2434–2442, 
doi:10.1007/S10803-017-3167-4/FIGURES/4. 

13.  Holper, L.; Seifritz, E.; Scholkmann, F. Short-Term Pulse Rate Variability Is Better 
Characterized by Functional near-Infrared Spectroscopy than by 
Photoplethysmography. J Biomed Opt 2016, 21, 091308, 
doi:10.1117/1.JBO.21.9.091308. 

14.  Izzetoglu, M.; Holtzer, R. Effects of Processing Methods on FNIRS Signals Assessed 
during Active Walking Tasks in Older Adults. IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 2020, 28, 699–709, 
doi:10.1109/TNSRE.2020.2970407. 

15.  Kuller, J.M.M. Skin Breakdown: Risk Factors, Prevention, and Treatment. Newborn and 
Infant Nursing Reviews 2001, 1, 35–42, doi:10.1053/NBIN.2001.22874. 

16.  Afsar, F.S. Skin Care for Preterm and Term Neonates. Clin Exp Dermatol 2009, 34, 
855–858, doi:10.1111/J.1365-2230.2009.03424.X. 

17.  Tarar, A.A.; Mohammad, U.; Srivastava, S.K. Wearable Skin Sensors and Their 
Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. Biosensors 
2020, Vol. 10, Page 56 2020, 10, 56, doi:10.3390/BIOS10060056. 

18.  Martin, A.J.; Friston, K.J.; Colebatch, J.G.; Frackowiak, R.S.J. Decreases in Regional 
Cerebral Blood Flow with Normal Aging. http://dx.doi.org/10.1038/jcbfm.1991.121 
1991, 11, 684–689, doi:10.1038/JCBFM.1991.121. 

19.  Nakano, S.; Asada, T.; Matsuda, H.; Uno, M.; Takasaki, M. [Effects of Healthy Aging 
on the Regional Cerebral Blood Flow Measurements Using 99mTc-ECD SPECT 
Assessed with Statistical Parametric Mapping]. Nihon Ronen Igakkai Zasshi 2000, 37, 
49–55, doi:10.3143/GERIATRICS.37.49. 

20.  Hock, C.; Müller-Spahn, F.; Schuh-Hofer, S.; Hofmann, M.; Dirnagl, U.; Villringer, A. 
Age Dependency of Changes in Cerebral Hemoglobin Oxygenation during Brain 
Activation: A Near-Infrared Spectroscopy Study. 
http://dx.doi.org/10.1038/jcbfm.1995.137 1995, 15, 1103–1108, 
doi:10.1038/JCBFM.1995.137. 

21.  Schroeter, M.L.; Zysset, S.; Kruggel, F.; Von Cramon, D.Y. Age Dependency of the 
Hemodynamic Response as Measured by Functional Near-Infrared Spectroscopy. 
Neuroimage 2003, 19, 555–564, doi:10.1016/S1053-8119(03)00155-1. 

22.  Cheng, H.H.; Ferradal, S.L.; Vyas, R.; Wigmore, D.; McDavitt, E.; Soul, J.S.; 
Franceschini, M.A.; Newburger, J.W.; Grant, P.E. Abnormalities in Cerebral 
Hemodynamics and Changes with Surgical Intervention in Neonates with Congenital 
Heart Disease. J Thorac Cardiovasc Surg 2020, 159, 2012, 
doi:10.1016/J.JTCVS.2019.08.045. 



Discussion and Conclusion 

 211 

 

23.  Nguyen, H.D.; Yoo, S.H.; Bhutta, M.R.; Hong, K.S. Adaptive Filtering of Physiological 
Noises in FNIRS Data. Biomed Eng Online 2018, 17, 1–23, doi:10.1186/S12938-018-
0613-2/FIGURES/17. 

24.  Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Alastruey, J.; Clifton, D.A.; Beale, R.; 
Watkinson, P.J. Extraction of Respiratory Signals from the Electrocardiogram and 
Photoplethysmogram: Technical and Physiological Determinants. Physiol Meas 2017, 
38, 669, doi:10.1088/1361-6579/AA670E. 

25.  Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter Respiratory 
Rate Estimation from the Photoplethysmogram. IEEE Trans Biomed Eng 2013, 60, 
1946–1953, doi:10.1109/TBME.2013.2246160. 

26.  Scholkmann, F.; Boss, J.; Wolf, M. An Efficient Algorithm for Automatic Peak Detection 
in Noisy Periodic and Quasi-Periodic Signals. Algorithms 2012, Vol. 5, Pages 588-603 
2012, 5, 588–603, doi:10.3390/A5040588. 

27.  Yan, C.; Li, P.; Yang, M.; Li, Y.; Li, J.; Zhang, H.; Liu, C. Entropy Analysis of Heart Rate 
Variability in Different Sleep Stages. Entropy 2022, 24, doi:10.3390/E24030379. 

28.  Latremouille, S.; Lam, J.; Shalish, W.; Sant’Anna, G. Neonatal Heart Rate Variability: A 
Contemporary Scoping Review of Analysis Methods and Clinical Applications. BMJ 
Open 2021, 11, e055209, doi:10.1136/BMJOPEN-2021-055209. 

29.  de Groot, E.R.; Knoop, M.S.; van den Hoogen, A.; Wang, X.; Long, X.; Pillen, S.; 
Benders, M.; Dudink, J. The Value of Cardiorespiratory Parameters for Sleep State 
Classification in Preterm Infants: A Systematic Review. Sleep Med Rev 2021, 58, 
doi:10.1016/J.SMRV.2021.101462. 

30.  Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative 
Comparison of Photoplethysmographic Waveform Characteristics: Effect of 
Measurement Site. Front Physiol 2019, 10, 431697, 
doi:10.3389/FPHYS.2019.00198/BIBTEX. 

31.  Spaeder, M.C.; Klugman, D.; Skurow-Todd, K.; Glass, P.; Jonas, R.A.; Donofrio, M.T. 
Perioperative Near-Infrared Spectroscopy Monitoring in Neonates with Congenital 
Heart Disease: Relationship of Cerebral Tissue Oxygenation Index Variability with 
Neurodevelopmental Outcome. Pediatric Critical Care Medicine 2017, 18, 213–218, 
doi:10.1097/PCC.0000000000001056. 

32.  Su, W.C.; Colacot, R.; Ahmed, N.; Nguyen, T.; George, T.; Gandjbakhche, A. The Use 
of Functional Near-Infrared Spectroscopy in Tracking Neurodevelopmental Trajectories 
in Infants and Children with or without Developmental Disorders: A Systematic Review. 
Front Psychiatry 2023, 14, 1210000, doi:10.3389/FPSYT.2023.1210000/BIBTEX. 

33.  Chock, V.Y.; Kwon, S.H.; Ambalavanan, N.; Batton, B.; Nelin, L.D.; Chalak, L.F.; Tian, 
L.; Van Meurs, K.P. Cerebral Oxygenation and Autoregulation in Preterm Infants (Early 
NIRS Study). Journal of Pediatrics 2020, 227, 94-100.e1, 
doi:10.1016/j.jpeds.2020.08.036. 

34.  Ren, H.; Jiang, X.; Xu, K.; Chen, C.; Yuan, Y.; Dai, C.; Chen, W. A Review of Cerebral 
Hemodynamics During Sleep Using Near-Infrared Spectroscopy. Front Neurol 2020, 
11, 524009, doi:10.3389/FNEUR.2020.524009/BIBTEX. 



Chapter 10                                                                                                    

 

 212 

 

35.  Robertson, F.C.; Douglas, T.S.; Meintjes, E.M. Motion Artifact Removal for Functional 
near Infrared Spectroscopy: A Comparison of Methods. IEEE Trans Biomed Eng 2010, 
57, 1377–1387, doi:10.1109/TBME.2009.2038667. 

36.  Cui, X.; Baker, J.M.; Liu, N.; Reiss, A.L. Sensitivity of FNIRS Measurement to Head 
Motion: An Applied Use of Smartphones in the Lab. J Neurosci Methods 2015, 245, 
37–43, doi:10.1016/J.JNEUMETH.2015.02.006. 

37.  Di Lorenzo, R.; Pirazzoli, L.; Blasi, A.; Bulgarelli, C.; Hakuno, Y.; Minagawa, Y.; 
Brigadoi, S. Recommendations for Motion Correction of Infant FNIRS Data Applicable 
to Multiple Data Sets and Acquisition Systems. Neuroimage 2019, 200, 511–527, 
doi:10.1016/J.NEUROIMAGE.2019.06.056. 

38.  Li, Q.; Feng, J.; Guo, J.; Wang, Z.; Li, P.; Liu, H.; Fan, Z. Effects of the Multisensory 
Rehabilitation Product for Home-Based Hand Training after Stroke on Cortical 
Activation by Using NIRS Methods. Neurosci Lett 2020, 717, 134682, 
doi:10.1016/J.NEULET.2019.134682. 

39.  Strangman, G.; Goldstein, R.; Rauch, S.L.; Stein, J. Near-Infrared Spectroscopy and 
Imaging for Investigating Stroke Rehabilitation: Test-Retest Reliability and Review of 
the Literature. Arch Phys Med Rehabil 2006, 87, 12–19, 
doi:10.1016/J.APMR.2006.07.269. 

40.  De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and 
Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An 
Overview. Sensors 2023, Vol. 23, Page 1856 2023, 23, 1856, doi:10.3390/S23041856. 

41.  Yücel, M.A.; Selb, J.; Boas, D.A.; Cash, S.S.; Cooper, R.J. Reducing Motion Artifacts 
for Long-Term Clinical NIRS Monitoring Using Collodion-Fixed Prism-Based Optical 
Fibers. Neuroimage 2014, 85, 192–201, doi:10.1016/J.NEUROIMAGE.2013.06.054. 

42.  Johnson, P.A.; Schmölzer, G.M. Heart Rate Assessment during Neonatal 
Resuscitation. Healthcare 2020, 8, doi:10.3390/HEALTHCARE8010043. 

43.  Anton, O.; Fernandez, R.; Rendon-Morales, E.; Aviles-Espinosa, R.; Jordan, H.; Rabe, 
H. Heart Rate Monitoring in Newborn Babies: A Systematic Review. Neonatology 2019, 
116, 199–210, doi:10.1159/000499675. 

44.  Hamaoka, T.; McCully, K.K.; Niwayama, M.; Chance, B. The Use of Muscle Near-
Infrared Spectroscopy in Sport, Health and Medical Sciences: Recent Developments. 
Philos Trans A Math Phys Eng Sci 2011, 369, 4591–4604, 
doi:10.1098/RSTA.2011.0298. 

45.  Peng, Z.; Kommers, D.; Liang, R.H.; Long, X.; Cottaar, W.; Niemarkt, H.; Andriessen, 
P.; van Pul, C. Continuous Sensing and Quantification of Body Motion in Infants: A 
Systematic Review. Heliyon 2023, 9, e18234, doi:10.1016/J.HELIYON.2023.E18234. 

46.  Sentner, T.; Wang, X.; De Groot, E.R.; Van Schaijk, L.; Tataranno, M.L.; Vijlbrief, D.C.; 
Benders, M.J.N.L.; Bartels, R.; Dudink, J. The Sleep Well Baby Project: An Automated 
Real-Time Sleep-Wake State Prediction Algorithm in Preterm Infants. Sleep 2022, 45, 
doi:10.1093/SLEEP/ZSAC143. 

47.  Massaro, A.N.; Govindan, R.B.; Vezina, G.; Chang, T.; Andescavage, N.N.; Wang, Y.; 
Al-Shargabi, T.; Metzler, M.; Harris, K.; du Plessis, A.J. Impaired Cerebral 
Autoregulation and Brain Injury in Newborns with Hypoxic-Ischemic Encephalopathy 



Discussion and Conclusion 

 213 

 

Treated with Hypothermia. J Neurophysiol 2015, 114, 818–824, 
doi:10.1152/JN.00353.2015/ASSET/IMAGES/LARGE/Z9K0131532000002.JPEG. 

48.  Kurth, C.D.; McCann, J.C.; Wu, J.; Miles, L.; Loepke, A.W. Cerebral Oxygen Saturation-
Time Threshold for Hypoxic-Ischemic Injury in Piglets. Anesth Analg 2009, 108, 1268–
1277, doi:10.1213/ANE.0B013E318196AC8E. 

49.  Mitra, S.; Bale, G.; Meek, J.; Tachtsidis, I.; Robertson, N.J. Cerebral Near Infrared 
Spectroscopy Monitoring in Term Infants With Hypoxic Ischemic Encephalopathy—A 
Systematic Review. Front Neurol 2020, 11, 1–17, doi:10.3389/FNEUR.2020.00393. 

50.  Liu, J.; Sorantin, E. Neonatal Respiratory Distress Syndrome. Neonatal Lung 
Ultrasonography 2019, 17–39, doi:10.1007/978-94-024-1549-0_3/COVER. 

51.  Reuter, S.; Moser, C.; Baack, M. Respiratory Distress in the Newborn. Pediatr Rev 
2014, 35, 417–428, doi:10.1542/PIR.35-10-417. 

52.  Kooi, E.M.W.; Verhagen, E.A.; Elting, J.W.J.; Czosnyka, M.; Austin, T.; Wong, F.Y.; 
Aries, M.J.H. Measuring Cerebrovascular Autoregulation in Preterm Infants Using 
Near-Infrared Spectroscopy: An Overview of the Literature. Expert Rev Neurother 
2017, 17, 801–818, doi:10.1080/14737175.2017.1346472. 

53.  Kooi, E.M.W.; Richter, A.E. Cerebral Autoregulation in Sick Infants: Current Insights. 
Clin Perinatol 2020, 47, 449–467, doi:10.1016/J.CLP.2020.05.003. 

54.  Mitra, S.; Czosnyka, M.; Smielewski, P.; O’Reilly, H.; Brady, K.; Austin, T. Heart Rate 
Passivity of Cerebral Tissue Oxygenation Is Associated with Predictors of Poor 
Outcome in Preterm Infants. Acta Paediatr 2014, 103, e374–e382, 
doi:10.1111/APA.12696. 

55.  Pellicer, A.; Greisen, G.; Benders, M.; Claris, O.; Dempsey, E.; Fumagalli, M.; Gluud, 
C.; Hagmann, C.; Hellström-Westas, L.; Hyttel-Sorensen, S.; et al. The SafeBoosC 
Phase II Randomised Clinical Trial: A Treatment Guideline for Targeted Near-Infrared-
Derived Cerebral Tissue Oxygenation versus Standard Treatment in Extremely Preterm 
Infants. Neonatology 2013, 104, 171–178, doi:10.1159/000351346. 

56.  Thewissen, L.; Caicedo, A.; Lemmers, P.; Van Bel, F. V.; Van Huffel, S. V.; Naulaers, 
G. Measuring Near-Infrared Spectroscopy Derived Cerebral Autoregulation in 
Neonates: From Research Tool toward Bedside Multimodal Monitoring. Front Pediatr 
2018, 6, 341349, doi:10.3389/FPED.2018.00117/BIBTEX. 

57.  Lovett, M.E.; MacDonald, J.M.; Mir, M.; Ghosh, S.; O’Brien, N.F.; LaRovere, K.L. 
Noninvasive Neuromonitoring Modalities in Children Part I: Pupillometry, Near-Infrared 
Spectroscopy, and Transcranial Doppler Ultrasonography. Neurocrit Care 2024, 40, 
130–146, doi:10.1007/S12028-023-01730-4/TABLES/2. 

 

 

 

 



 

 

 



 

 

CHAPTER 11 
 

Nederlandse samenvatting 
(summary in Dutch) 



Chapter 11                                                                                                    

 

 216 

 

Near-Infrared Spectroscopy (NIRS) is een essentieel hulpmiddel geworden in de neonatale 
intensieve care unit (NICU) voor effectieve monitoring van zuurstofniveaus in de hersenen en 
andere weefsels zoals de nier [1–5]. Hoewel artefacten in NIRS-gegevens uitdagingen 
vormen tijdens de analyse, kunnen deze voordelig worden gebruikt [6]. Zo kunnen 
systemische fysiologische artefacten niet alleen worden gebruikt voor het beoordelen van de 
signaalkwaliteit [7,8], maar ook voor het extraheren van bijvoorbeeld de hartslag (HR) [6,9–
13]. Daarnaast kunnen ademhalingspatronen in NIRS-signalen worden geanalyseerd om 
ademhalingsfrequenties (RR) te extraheren, vergelijkbaar met technieken die worden gebruikt 
in photoplethysmography [14,15], waardoor potentiële verstoringen worden omgezet in 
bruikbare gezondheidsgegevens. 

Deze strategie om fysiologische informatie via NIRS te benutten is vooral waardevol bij 
neonaten. Het kan potentieel het ongemak en de stress verminderen die samenhangen met 
het frequent plaatsen en verwijderen van meerdere sensoren. Dit wordt mogelijk gemaakt 
door gelijktijdige analyse van HR, RR en cerebrale zuurstofverzadiging, terwijl ook de kwaliteit 
van de gegevens wordt gewaarborgd voor een nauwkeurige analyse. In deze scriptie 
onderzoeken we innovatieve methoden voor het verzamelen van NIRS-gegevens in klinische 
settings, met als dubbel doel het verbeteren van de kwaliteit van de gegevens en het 
extraheren van vitale functies zoals HR en RR. 

Aanvankelijk richtte het onderzoek zich in Deel I op volwassenen, aangezien gegevens van 
volwassen proefpersonen in een gecontroleerde omgeving toegankelijker zijn dan de 
neonatale gegevens in klinische scenario's. De inzichten die uit deze studies met volwassenen 
zijn verkregen, waren cruciaal bij de ontwikkeling van algoritmen die later werden aangepast 
voor gebruik bij neonaten. Deel II van de scriptie toont de toepassing van deze algoritmen op 
neonatale gegevens. 

Deel I: fysiologische informatie in volwassen NIRS 

De eerste hoofdstukken in dit deel introduceren twee nieuwe algoritmen—de Signaal 
Kwaliteitsindex (SQI) en de op Machine Learning gebaseerde SQI (MLSQI)—voor de 
beoordeling van de kwaliteit van NIRS-signalen. Hoofdstuk 2 beschrijft de ontwikkeling van 
SQI, het eerste algoritme dat de kwaliteit van NIRS-signalen kwantitatief beoordeelt op een 
meerledige schaal, wat de traditionele binaire goede/slechte beoordelingen door bestaande 
algoritmen overtreft [7,8]. Dit algoritme blijkt sterk te correleren met visuele beoordelingen van 
experts, waardoor gegarandeerd wordt dat NIRS-gegevens betrouwbaar worden 
geïnterpreteerd zonder afhankelijk te zijn van subjectief oordeel. In Hoofdstuk 3 verschuift de 
focus naar MLSQI, dat voortbouwt op de fundamenten van SQI door machine learning 
technieken te incorporeren om een breder scala aan signaal kenmerken te analyseren. Dit 
algoritme toont superieure prestaties in het beoordelen van signaalkwaliteit, essentieel voor 
het aanpassen van NIRS-technologie voor realtime besluitvorming. 

In hoofdstukken 4 en 5 verkennen we innovatieve benaderingen voor het schatten van RR 
uit NIRS-gegevens bij volwassenen, waarmee de bruikbaarheid van NIRS verder wordt 
uitgebreid dan traditionele toepassingen. Hoofdstuk 4 introduceert een nieuwe methode voor 
het extraheren van RR zonder dat een referentiesignaal nodig is, waardoor de manier waarop 
ademhalingsgerelateerde fysiologische artefacten in NIRS-gegevens worden gebruikt, typisch 
beschouwd als verstoringen, wordt getransformeerd [16]. Voortbouwend op deze basis 
adresseert hoofdstuk 5 de uitdaging van door beweging gecorrumpeerde gegevens tijdens 
fysieke activiteiten zoals fietsen. We ontwikkelden een robuuste methode voor RR-schatting 
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die gebruikmaakt van de inherente lage gevoeligheid van NIRS voor bewegingen van het 
onderwerp, wat de betrouwbaarheid van RR-metingen onder dynamische omstandigheden 
effectief verhoogt. Deze vooruitgang markeert een significante vooruitgang in het verfijnen van 
NIRS-toepassingen, waardoor het een veelzijdiger hulpmiddel wordt voor het monitoren van 
fysiologische reacties in real-world scenario's. 

Deel II: fysiologische informatie in neonatale NIRS 

De overgang naar neonatale toepassingen, in hoofdstukken 7 en 8 van deze scriptie, 
benadrukken we significante vooruitgang in neonatale monitoring binnen NICU-instellingen 
door de ontwikkeling van nieuwe algoritmen voor het extraheren van HR en RR uit NIRS-
signalen. Het nieuw geïntroduceerde NHR (NIRS HR) algoritme is specifiek ontworpen voor 
HR-extractie uit (pre)term neonaten in NICU's, wat een baanbrekende stap markeert in de 
aanpassing van NIRS-technologie voor real-world klinische toepassingen. Deze methode 
toont een opmerkelijke verbetering ten opzichte van bestaande algoritmen, bereikt een hoge 
correlatiecoëfficiënt (r = 99,5%) en presteert aanzienlijk beter dan de automatische 
multischaal gebaseerde piekdetectie (AMPD) [17] en Perdue-algoritmen [10], die werden 
gevalideerd onder minder uitdagende omstandigheden. Voortbouwend hierop werd het NRR 
(NIRS RR) algoritme ontwikkeld om RR nauwkeurig te extraheren uit (pre)term neonaten in 
NICU's. Dit algoritme is het eerste dat specifiek de complexiteiten van neonatale RR-meting 
adresseert, en toont sterke prestaties met een robuuste correlatie (r = 84,5%) tussen de 
geëxtraheerde en referentie RR's. Samen vertegenwoordigen deze algoritmen 
transformerende verbeteringen in het vermogen van NIRS om cruciale fysiologische 
gegevens te leveren voor de meest kwetsbare patiënten. 

Hoofdstuk 9 van de scriptie toont een toepassing van HR, RR en signaal 
kwaliteitsbeoordeling met behulp van een enkel NIRS-apparaat voor het beoordelen van 
slaapstadia bij neonaten opgenomen in NICU's. Door gebruik te maken van een hoge 
frequentie (100 Hz) bemonstering, werden kenmerken van NIRS-signalen geanalyseerd met 
behulp van een convolutioneel neuraal netwerk classifier om onderscheid te maken tussen 
actieve en stille slaap bij (pre)term neonaten. Deze aanpak integreerde fysiologische en niet-
fysiologische gegevens, en demonstreerde het nut van een enkele sensor in gedetailleerde 
slaappatroon analyse voor neonaten zo jong als 24 weken zwangerschap leeftijd of met 
geboortegewichten zo laag als 500 gram. 

Deze scriptie benadrukt het transformerende potentieel van NIRS in klinische instellingen, met 
name door de verfijnde toepassingen in neonatale zorg. Door algoritmen te ontwikkelen voor 
het extraheren van vitale fysiologische metingen zoals HR en RR, en deze te integreren met 
cerebrale zuurstof gegevens, zou NIRS-technologie niet alleen de behoefte aan meerdere 
sensoren kunnen minimaliseren—waardoor neonatale stress wordt verminderd [18,19]—
maar ook het beheer van aandoeningen zoals hypoxisch-ischemische encefalopathie [20–22] 
en cerebrale vasculaire autoregulatie [23] kunnen verbeteren. Deze integratie, gecombineerd 
met technologieën zoals electroencephalography [24] en transcraniële Doppler [25], zou ook 
een uitgebreide beoordeling van de cerebrale gezondheid van een patiënt kunnen bieden, 
waardoor continue, real-time monitoring cruciaal wordt voor de vroege detectie van cerebrale 
dysregulatie [4]. Deze ontwikkelingen zouden een nieuwe standaard kunnen stellen voor niet-
invasieve patiëntmonitoring in neonatale zorg, waarbij NIRS's capaciteit wordt 
gedemonstreerd om patiëntenzorg te transformeren door gedetailleerde en real-time 
fysiologische beoordelingen. 



Chapter 11                                                                                                    

 

 218 

 

Referenties 

1.  Yu, Y.; Zhang, K.; Zhang, L.; Zong, H.; Meng, L.; Han, R. Cerebral Near‐infrared 
Spectroscopy (NIRS) for Perioperative Monitoring of Brain Oxygenation in Children and 
Adults. Cochrane Database Syst Rev 2018, 2018, 
doi:10.1002/14651858.CD010947.PUB2. 

2.  Petrova, A.; Mehta, R. Near-Infrared Spectroscopy in the Detection of Regional Tissue 
Oxygenation during Hypoxic Events in Preterm Infants Undergoing Critical Care. 
Pediatric Critical Care Medicine 2006, 7, 449–454, 
doi:10.1097/01.PCC.0000235248.70482.14. 

3.  Scheeren, T.W.L.; Schober, P.; Schwarte, L.A. Monitoring Tissue Oxygenation by near 
Infrared Spectroscopy (NIRS): Background and Current Applications. J Clin Monit 
Comput 2012, 26, 279, doi:10.1007/S10877-012-9348-Y. 

4.  Van Bel, F.; Lemmers, P.; Naulaers, G. Monitoring Neonatal Regional Cerebral Oxygen 
Saturation in Clinical Practice: Value and Pitfalls. Neonatology 2008, 94, 237–244, 
doi:10.1159/000151642. 

5.  Chock, V.Y.; Vesoulis, Z.A.; El-Dib, M.; Austin, T.; van Bel, F. The Future of Neonatal 
Cerebral Oxygenation Monitoring: Directions After the SafeBoosC-III Trial. J Pediatr 
2024, 270, 114016, doi:10.1016/J.JPEDS.2024.114016. 

6.  Hakimi, N.; Kamaledin Setarehdan, S. Stress Assessment by Means of Heart Rate 
Derived from Functional Near-Infrared Spectroscopy. 
https://doi.org/10.1117/1.JBO.23.11.115001 2018, 23, 115001, 
doi:10.1117/1.JBO.23.11.115001. 

7.  Pollonini, L.; Olds, C.; Abaya, H.; Bortfeld, H.; Beauchamp, M.S.; Oghalai, J.S. Auditory 
Cortex Activation to Natural Speech and Simulated Cochlear Implant Speech Measured 
with Functional Near-Infrared Spectroscopy. Hear Res 2014, 309, 84–93, 
doi:10.1016/J.HEARES.2013.11.007. 

8.  Pollonini, L.; Bortfeld, H.; Oghalai, J.S. PHOEBE: A Method for Real Time Mapping of 
Optodes-Scalp Coupling in Functional near-Infrared Spectroscopy. Biomedical Optics 
Express, Vol. 7, Issue 12, pp. 5104-5119 2016, 7, 5104–5119, 
doi:10.1364/BOE.7.005104. 

9.  Hakimi, N.; Jodeiri, A.; Mirbagheri, M.; Setarehdan, S.K. Proposing a Convolutional 
Neural Network for Stress Assessment by Means of Derived Heart Rate from Functional 
near Infrared Spectroscopy. Comput Biol Med 2020, 121, 103810, 
doi:10.1016/J.COMPBIOMED.2020.103810. 

10.  Perdue, K.L.; Westerlund, A.; Mccormick, S.A.; Nelson, C.A.; Iii, C.A.N. Extraction of 
Heart Rate from Functional Near-Infrared Spectroscopy in Infants. 
https://doi.org/10.1117/1.JBO.19.6.067010 2014, 19, 067010, 
doi:10.1117/1.JBO.19.6.067010. 

11.  Perdue, K.L.; Edwards, L.A.; Tager-Flusberg, H.; Nelson, C.A. Differing Developmental 
Trajectories in Heart Rate Responses to Speech Stimuli in Infants at High and Low Risk 



Nederlandse samenvatting (summary in Dutch) 

 219 

 

for Autism Spectrum Disorder. J Autism Dev Disord 2017, 47, 2434–2442, 
doi:10.1007/S10803-017-3167-4/FIGURES/4. 

12.  Holper, L.; Seifritz, E.; Scholkmann, F. Short-Term Pulse Rate Variability Is Better 
Characterized by Functional near-Infrared Spectroscopy than by 
Photoplethysmography. J Biomed Opt 2016, 21, 091308, 
doi:10.1117/1.JBO.21.9.091308. 

13.  Izzetoglu, M.; Holtzer, R. Effects of Processing Methods on FNIRS Signals Assessed 
during Active Walking Tasks in Older Adults. IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 2020, 28, 699–709, 
doi:10.1109/TNSRE.2020.2970407. 

14.  Hernando, A.; Peláez-Coca, M.D.; Lozano, M.T.; Lázaro, J.; Gil, E. Finger and 
Forehead PPG Signal Comparison for Respiratory Rate Estimation. Physiol Meas 
2019, 40, 095007, doi:10.1088/1361-6579/AB3BE0. 

15.  Madhav, K.V.; Ram, M.R.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. Robust Extraction 
of Respiratory Activity from PPG Signals Using Modified MSPCA. IEEE Trans Instrum 
Meas 2013, 62, 1094–1106, doi:10.1109/TIM.2012.2232393. 

16.  Nguyen, H.D.; Yoo, S.H.; Bhutta, M.R.; Hong, K.S. Adaptive Filtering of Physiological 
Noises in FNIRS Data. Biomed Eng Online 2018, 17, 1–23, doi:10.1186/S12938-018-
0613-2/FIGURES/17. 

17.  Scholkmann, F.; Boss, J.; Wolf, M. An Efficient Algorithm for Automatic Peak Detection 
in Noisy Periodic and Quasi-Periodic Signals. Algorithms 2012, Vol. 5, Pages 588-603 
2012, 5, 588–603, doi:10.3390/A5040588. 

18.  Kuller, J.M.M. Skin Breakdown: Risk Factors, Prevention, and Treatment. Newborn and 
Infant Nursing Reviews 2001, 1, 35–42, doi:10.1053/NBIN.2001.22874. 

19.  Afsar, F.S. Skin Care for Preterm and Term Neonates. Clin Exp Dermatol 2009, 34, 
855–858, doi:10.1111/J.1365-2230.2009.03424.X. 

20.  Massaro, A.N.; Govindan, R.B.; Vezina, G.; Chang, T.; Andescavage, N.N.; Wang, Y.; 
Al-Shargabi, T.; Metzler, M.; Harris, K.; du Plessis, A.J. Impaired Cerebral 
Autoregulation and Brain Injury in Newborns with Hypoxic-Ischemic Encephalopathy 
Treated with Hypothermia. J Neurophysiol 2015, 114, 818–824, 
doi:10.1152/JN.00353.2015/ASSET/IMAGES/LARGE/Z9K0131532000002.JPEG. 

21.  Kurth, C.D.; McCann, J.C.; Wu, J.; Miles, L.; Loepke, A.W. Cerebral Oxygen Saturation-
Time Threshold for Hypoxic-Ischemic Injury in Piglets. Anesth Analg 2009, 108, 1268–
1277, doi:10.1213/ANE.0B013E318196AC8E. 

22.  Mitra, S.; Bale, G.; Meek, J.; Tachtsidis, I.; Robertson, N.J. Cerebral Near Infrared 
Spectroscopy Monitoring in Term Infants With Hypoxic Ischemic Encephalopathy—A 
Systematic Review. Front Neurol 2020, 11, 1–17, doi:10.3389/FNEUR.2020.00393. 

23.  Kooi, E.M.W.; Verhagen, E.A.; Elting, J.W.J.; Czosnyka, M.; Austin, T.; Wong, F.Y.; 
Aries, M.J.H. Measuring Cerebrovascular Autoregulation in Preterm Infants Using 
Near-Infrared Spectroscopy: An Overview of the Literature. Expert Rev Neurother 2017, 
17, 801–818, doi:10.1080/14737175.2017.1346472. 



Chapter 11                                                                                                    

 

 220 

 

24.  Thewissen, L.; Caicedo, A.; Lemmers, P.; Van Bel, F. V.; Van Huffel, S. V.; Naulaers, 
G. Measuring Near-Infrared Spectroscopy Derived Cerebral Autoregulation in 
Neonates: From Research Tool toward Bedside Multimodal Monitoring. Front Pediatr 
2018, 6, 341349, doi:10.3389/FPED.2018.00117/BIBTEX. 

25.  Lovett, M.E.; MacDonald, J.M.; Mir, M.; Ghosh, S.; O’Brien, N.F.; LaRovere, K.L. 
Noninvasive Neuromonitoring Modalities in Children Part I: Pupillometry, Near-Infrared 
Spectroscopy, and Transcranial Doppler Ultrasonography. Neurocrit Care 2024, 40, 
130–146, doi:10.1007/S12028-023-01730-4/TABLES/2. 

  



 

CHAPTER 12 
 

List of abbreviations 

List of coauthors 

List of publications 

Curriculum vitae 

Acknowledgements 



Chapter 12                                                                                                    

 

 222 

 

LIST OF ABBREVIATIONS 

AHRFB = adaptive heart rate frequency bandwidth 
AE = absolute error 
AdaB = AdaBoost 
AMPD = automatic multiscale-based peak detection 
AUC-ROC = area under the receiver operating characteristic curve 
BAR = bland-altman ratio 
BeSSPI = behavioral sleep stage classification for preterm infants 
BLL = Beer-Lambert law 
BLA = Bland-Altman limits of agreement 
BMI = body mass index 
BPM = breaths per minute 
bpm = beats per minute 
BP = blood pressure 
BW = baseline wandering 
CAR = cerebral autoregulation 
CNN = convolutional neural network 
CO2 = carbon dioxide 
CSI = critical success index 
CBF = cerebral blood flow 
CVAR = cerebral vascular autoregulation 
dWMI = diffuse white matter injury 
DPF = differential pathlength factor 
EEG = electroencephalography 
ECG = electrocardiogram 
EHR = extracted heart rate 
FDA = food and drug administration 
FFT = fast fourier transform 
FIR = finite impulse response 
fMRI = functional magnetic resonance imaging 
fNIRS = functional near-infrared spectroscopy 
GA = gestational age 
GB = gigabyte 
HHb = deoxygenated hemoglobin  
HIE = hypoxic-ischemic encephalopathy 
HR = heart rate 
hsPDA = hemodynamically significant patent ductus arteriosus 
IQR = interquartile range 
IRDS = infant respiratory distress syndrome 
IS = included segments 
LOA = Bland-Altman limits of agreement 
LTSO = leave-two-subjects-out 
MA = moving average 
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MBLL = modified Beer-Lambert law 
ME = mean of error 
MLSQI = machine learning-based signal quality index 
MRI = magnetic resonance imaging 
ms = milliseconds 
NB = naive bayes 
NHR = NIRS heart rate 
NICU = neonatal intensive care unit 
NIRS = near-infrared spectroscopy 
NRR = NIRS respiratory rate 
OD = optical density 
O2Hb = oxygenated hemoglobin 
PAIS = perinatal arterial ischemic stroke 
PIVH = periventricular-intraventricular hemorrhage 
PHOEBE = placing headgear optodes efficiently before experimentation 
PPG = photoplethysmography 
PSG = polysomnography 
PI = performance index 
pCO2 = partial pressure of carbon dioxide 
QS = quiet sleep 
RF = random forest 
RHR = reference heart rate 
RMSE = root mean square error 
RR = respiratory rate 
rSO2 = regional oxygen saturation 
rScO2 = regional cerebral oxygen saturation 
R2 = coefficient of determination 
SaO2 = arterial oxygen saturation 
SD = standard deviation 
SNR = signal-to-noise ratio 
SpO2 = peripheral oxygen saturation 
SQI = signal quality index 
StdE = standard deviation of error 
SVM = support vector machine 
StO2 = tissue oxygen saturation 
TF = transfer function 
tHb = total hemoglobin 
TSI = tissue saturation index 
WMI = white matter injury 
XGB = extreme gradient boosting or XGBoost 
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