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General	introduction	
On	ischemic	stroke,	stroke	imaging,	CT	perfusion	imaging	as	patient	selection	tool	for	

thrombectomy,	the	CLEOPATRA	healthcare	evaluation,	the	CT	perfusion	imaging		

acquisition	protocol,	and	the	CT	perfusion	imaging	processing	protocol.	



Chapter	1	

	

8	

	

Figure	1	

Ischemic	and	hemorrhagic	stroke.	In	an	ischemic	stroke,	a	blood	clot	restricts	the	blood	flow	
to	downstream	vessels	and	brain	regions.	In	a	hemorrhagic	stroke,	a	blood	vessel	ruptures,	
causing	bleeding	around	the	brain.	Reprinted	with	permission	from	healthline.com	

	

Ischemic	stroke	

Ischemic	stroke	is	a	medical	condition	that	arises	from	the	occlusion	of	a	vessel	that	supplies	

blood	to	the	brain	(Figure	1).	The	vessel	occlusion	causes	ischemia,	which	is	a	restriction	of	

blood	supply	that	disrupts	the	cellular	metabolism.	Besides	from	a	vessel	occlusion,	stroke	

can	also	arise	from	the	rupture	of	a	vessel	leading	to	a	hemorrhage,	bleeding,	in	the	brain.	

Hemorrhagic	stroke	is	ten	times	less	frequent	in	western	countries	than	ischemic	stroke	[1].	

In	case	of	an	ischemic	stroke,	the	brain	cells	in	the	ischemic	region	rapidly	perish	as	they	are	

deprived	 of	 oxygen	 and	 nutrients.	 The	 resulting	 infarction,	which	 is	 tissue	 death	 due	 to	

ischemia,	can	cause	serious	and	lasting	damage	to	the	patient.	
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Figure	2	

Stroke	symptoms.	Stroke	symptoms	include	problems	with	balance	and	vision,	a	drooping	
face,	weakness	in	the	arm,	difficulty	with	speech,	and	headache.	Acting	fast	is	important	to	
reduce	the	risk	of	early	complications	and	long-term	disability.	Reprinted	with	permission	
from	befast.org	

	

Key	symptoms	of	a	stroke	include	sudden	weakness	or	numbness	on	one	side	of	the	body,	

difficulty	speaking	or	understanding	speech,	problems	with	vision,	and	a	lack	of	coordination	

(Figure	2).	To	emphasize	the	relevance	of	this	condition,	an	ischemic	stroke	occurs	every	four	

seconds	worldwide,	with	two	out	of	five	resulting	in	fatality	and	three	out	of	five	resulting	in	

long-term	disability	more	likely	than	not	[2].	These	statistics	contribute	to	making	stroke	the	

third-leading	medical	cause	of	death	and	disability,	with	an	annual	global	cost	of	650	billion	

euros,	 equivalent	 to	0.66%	of	 the	global	 gross	domestic	product	 [3].	Timely	 treatment	of	

ischemic	stroke	is	crucial	in	order	to	minimize	the	risk	of	death	and	disability.	
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Figure	3	

Mechanical	thrombectomy.	A	recently	validated	medical	procedure,	called	thrombectomy,	
mechanically	removes	the	blood	clot	(thrombus)	from	a	blood	vessel.	During	the	procedure,	
a	specialized	catheter	is	guided	through	the	blood	vessels	to	the	site	of	the	clot.	Once	in	
position,	a	device	is	employed	to	break	up	or	extract	the	clot,	restoring	blood	flow	and	
preventing	further	damage.	Reprinted	with	permission	from	medtronic.com	

	

The	choice	of	treatment	for	ischemic	stroke	depends	on	multiple	factors,	such	as	the	location	

of	the	vessel	occlusion,	the	extent	of	the	ischemia,	the	time	since	the	stroke	onset,	and	the	

patient's	age	and	overall	health.	One	common	treatment	for	ischemic	stroke	is	thrombolysis,	

where	 clot-dissolving	 drugs	 are	 administered	 in	 an	 attempt	 to	 recanalize	 the	 vessel	 and	

restore	the	blood	flow	to	the	ischemic	regions.	These	drugs	work	best	when	administered	

within	 the	 first	 few	 hours	 after	 the	 onset	 of	 the	 stroke	 symptoms	 and	 require	 careful	

monitoring	in	order	to	avoid	the	risk	of	bleeding	or	other	complications.	A	different	and	more	

recent	 treatment	 option,	 called	 thrombectomy,	 involves	 the	 use	 of	 specialized	 tools	 to	

mechanically	remove	the	clot	from	the	occluded	vessel	(Figure	3).	Either	or	both	treatment	

options	can	be	applied.	In	general,	thrombectomy	is	more	effective	than	thrombolysis	for	the	

treatment	of	large,	proximal	clots	in	the	brain.	However,	it	is	also	more	invasive	and	time-

consuming	than	thrombolysis	and	may	carry	a	higher	risk	of	complications	by	damaging	the	

arterial	wall	[4].	Hence,	the	available	treatment	options	require	an	accurate	patient	selection	

for	treatment.	
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Figure	4	

Non-contrast	CT	scan	of	a	hemorrhagic	stroke	patient.	The	hyperintense	region	on	the	right	
side	of	the	image	indicates	a	hyperdense	region	due	to	bleeding.	Case	courtesy	of		
David	Cuete	[5].	

	

Stroke	imaging	

To	help	physicians	tailor	their	approach	to	each	patient's	circumstances,	they	are	assisted	by	

multimodal	imaging	techniques.	These	techniques	can	provide	critical	information	about	the	

severity	of	the	ischemic	stroke	[6].	First,	a	hemorrhagic	stroke	needs	to	be	ruled	out	with	a	

non-contrast	CT	scan,	which	can	reveal	a	hemorrhage	as	a	hyperintense	region	(Figure	4).	

After	 the	 non-contrast	 CT	 scan,	 the	 ischemic	 stroke	 patient	 will	 move	 on	 to	 a	 contrast-

enhanced	phase	of	CT	scanning.	Contrast-enhanced	CT	scanning	involves	the	injection	of	a	

contrast	 agent	 when	 the	 patient	 is	 scanned.	 The	 contrast	 agent	 contains	 iodine,	 which	

illuminates	 on	 a	 CT	 scan.	Whether	 or	 not	 certain	 vessels	 and	 tissue	 illuminate,	 helps	 to	

establish	the	location	and	extent	of	the	vessel	occlusion,	ischemia,	and	infarction.	
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Figure	5	

Multimodal	imaging	of	an	ischemic	stroke	patient.	From	left	to	right:	a	non-contrast	CT	scan	
which	rules	out	hemorrhagic	stroke,	a	CT	angiography	scan	which	shows	the	blood	vessels	
and	the	location	of	the	vessel	occlusion	on	the	left	side	of	the	image,	and	a	CT	perfusion	scan	
which	shows	an	ischemic	region.	The	red	oval	roughly	indicates	the	total	ischemic	region,	in	
which	a	severely	ischemic	region	with	a	low	cerebral	blood	volume	can	be	recognized.	The	
slice	that	is	shown	for	the	CT	perfusion	scan	is	different	from	the	slice	that	is	shown	for	the	
other	scans.	Case	courtesy	of	Frans	Kauw	[7].	

	

The	contrast-enhanced	phase	of	CT	scanning	consists	of	CT	angiography	(CTA)	imaging	and	

CT	perfusion	(CTP)	imaging	(Figure	5).	CTA	imaging	aims	to	visualize	the	vessels	in	order	to	

establish	the	location	and	extent	of	the	vessel	occlusion.	CTP	imaging	aims	to	visualize	the	

blood	flow	to	the	brain	tissue	in	order	to	establish	the	location	and	extent	of	the	ischemia	and	

infarction.	The	location	of	a	vessel	occlusion,	the	degree	of	alternate	circulation	around	an	

occluded	vessel,	and	 the	extent	 to	which	 ischemic	 tissue	has	 infarcted	 can	each	affect	 the	

clinical	outcome	and	treatment	options	for	 ischemic	stroke	patients	[8–10].	Both	CTA	and	

CTP	imaging	can	thus	provide	information	to	evaluate	and	manage	ischemic	stroke.	
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Instead	of	CT,	MR	is	sometimes	used	to	image	stroke	patients	in	the	acute	setting.	MR	imaging	

can	provide	detailed	images	of	the	brain	through	the	diffusion	of	water	molecules	and	is	more	

sensitive	 to	 infarction,	making	 it	better	 at	detecting	 small	 and	early	 infarcts.	 In	 the	acute	

setting	 though,	 CT	 imaging	 has	 the	 advantages	 of	 being	 faster,	 more	 easily	 and	 widely	

available,	and	having	less	contraindications.	It	is	also	better	at	ruling	out	hemorrhagic	stroke	

and	 providing	 quantitative	 data	 on	 the	 perfusion	of	 the	 brain.	 Because	 of	 its	 practicality,	

CT	imaging	has	remained	preferred	in	acute	ischemic	stroke	care,	whereas	MR	imaging	is	still	

used	to	provide	accurate	follow-up	imaging	of	ischemic	stroke	patients.	

CT	perfusion	imaging	as	patient	selection	tool	for	thrombectomy	

Since	the	publication	of	the	MR	CLEAN	trial	in	2015,	thrombectomy	has	radically	improved	

the	outlook	for	stroke	patients	with	a	large	vessel	occlusion	[11].	However,	this	initial	trial	

only	 covered	 those	 who	 received	 treatment	 within	 6	 hours	 of	 symptom	 onset,	 making	

thrombectomy	the	standard	of	care	for	early	large	vessel	occlusion	patients	but	not	for	later	

arrivals	or	for	patients	with	smaller	vessel	occlusions.	With	the	publication	of	the	DAWN	and	

DEFUSE	3	trials	in	2018,	CTP	imaging	emerged	as	a	tool	to	select	ischemic	stroke	patients	for	

thrombectomy	[12,	13].	The	rationale	is	that	patients	with	a	smaller	infarcted	region,	which	

can	be	measured	both	in	absolute	terms	and	in	terms	relative	to	the	total	ischemic	region,	

stand	to	benefit	more	from	thrombectomy.	

CLEOPATRA	healthcare	evaluation	

The	 CLEOPATRA	 (cost-effectiveness	 of	 CT	 perfusion	 for	 patients	 suffering	 from	 acute	

ischemic	stroke)	healthcare	evaluation	was	launched	to	investigate	the	cost-effectiveness	of	

selecting	 ischemic	 stroke	patients	 for	thrombectomy	with	CTP	 imaging	 [14].	With	around	

3600	large	vessel	occlusion	stroke	patients	annually	in	the	Netherlands,	both	ineffective	and	

withheld	treatments	not	only	pose	risks	to	the	patient	but	to	society	at	large.	Long-term	care	

costs	 are	 steep,	 exceeding	 50,000	 euros	 per	 patient	 per	 year,	 and	 the	 overall	 success	 of	

thrombectomy	strains	healthcare	resources	in	the	acute	setting	[15–18].	To	help	elicit	the	use	

of	CTP	imaging	as	a	patient	selection	tool	for	thrombectomy,	seventeen	stroke	centers	in	the	

Netherlands	 participated	 in	 the	 CLEOPATRA	 healthcare	 evaluation	 and	 contributed	 both	

retrospective	and	prospective	data.	
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Figure	6	

Acquisition	of	a	contrast-enhanced	CT	scan.	The	injection	protocol	is	set	on	the	injector.	The	
scan	protocol	is	selected	on	the	computer	by	the	radiologic	technologist	behind	the	
radiation	shielding	window.	Reprinted	with	permission	from	mayoclinic.org	

	

The	 CLEOPATRA	 healthcare	 evaluation	 comprised	 a	 technical,	 clinical,	 and	 economic	

component.	 This	 thesis	 is	 dedicated	 to	 the	 technical	 component,	 which	 focused	 on	

harmonizing	 and	 optimizing	 the	 CTP	 imaging	 acquisition	 and	 processing	 protocol.	 The	

practicality	of	CTP	imaging	has	been	questioned	at	times	because	of	a	lack	of	standardized	

protocols	 for	acquisition	and	processing.	The	CT	market	 is	 very	mature,	 featuring	 several	

major	players	offering	multiple	 scanner	models	 and	utilizing	proprietary	 software.	These	

tools	not	only	differ	in	interface,	but	also	in	the	underlying	algorithms	that	are	employed	to	

transform	the	scans	into	perfusion	data.	The	lack	of	consensus	on	the	CTP	imaging	acquisition	

and	processing	protocol	has	hindered	the	widespread	adoption	of	image-based	criteria	for	

stroke	diagnosis	and	treatment	planning	[19–21].	A	thorough	examination	of	these	technical	

aspects	is	necessary	to	assess	the	clinical	use	of	CTP	imaging	in	a	multicenter	setting.	
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CT	perfusion	imaging	acquisition	protocol	

The	acquisition	of	a	CTP	scan	requires	both	an	injection	and	a	scan	protocol	(Figure	6).	The	

injection	 protocol	 dictates	 the	 passing	 of	 the	 iodinated	 contrast	 agent	 through	 the	 brain	

vasculature.	 In	 the	 span	 of	 roughly	 a	 minute,	 CT	 scans	 are	 taken	 every	 few	 seconds	 as	

determined	by	the	scan	protocol.	These	CTP	frames	collectively	depict	the	dynamic	contrast	

enhancement	in	the	brain	to	provide	insight	into	the	perfusion	of	the	brain	when	analyzed	

with	dedicated	software	(Figure	7).	

Injection	protocol	

The	injection	protocol	controls	the	signal	to	be	measured	with	the	CT	scanner.	The	injection	

protocol	is	specified	by	choosing	a	contrast	agent	of	a	certain	concentration	(mg	I/mL),	an	

injection	volume	(mL),	and	an	 injection	rate	(mL/s).	The	injection	of	 the	contrast	bolus	is	

followed	by	a	saline	flush,	which	ensures	that	no	contrast	material	is	left	in	the	syringe.	The	

injection	normally	occurs	in	a	vein	in	the	upper	arm,	meaning	that	most	of	the	contrast	bolus	

does	not	reach	the	brain.	A	typical	injection	protocol	consists	of	injecting	a	contrast	bolus	with	

a	volume	of	40	to	50	mL	and	a	concentration	of	300	mg	I/mL	at	a	rate	of	6	mL/s,	followed	by	

injecting	a	saline	flush	of	the	same	volume	at	the	same	rate.	The	injection	protocol	parameters	

should	ensure	a	signal	that	can	be	measured	accurately	with	a	CT	scanner	and	that	is	sufficient	

to	distinguish	ischemic	tissue	from	healthy	tissue.	

Scan	protocol	

The	scan	protocol	controls	the	measurement	of	the	signal.	The	scan	protocol	may	be	specified	

by	the	strength	of	the	X-ray	beam	(mA),	the	energy	of	the	X-ray	beam	(kV),	and	the	timing	of	

the	CTP	frames.	Together,	the	mA	and	kV	determine	the	visibility	of	the	iodinated	contrast	

agent	on	a	CT	scan.	A	higher	mA	decreases	noise,	which	makes	the	signal	easier	to	measure.	

A	 higher	 kV	 also	 decreases	 noise,	 but	 at	 the	 same	 time	 reduces	 the	 relative	 contrast	

enhancement	of	the	iodine,	which	makes	the	signal	harder	to	measure.	The	timing	of	the	CTP	

frames	should	be	such	that	the	signal	is	sampled	sufficiently.	Important	data	for	the	perfusion	

analysis	may	be	missed	if	the	signal	is	not	sampled	frequently,	early,	or	late	enough.	
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Figure	7	

Frames	of	a	CT	perfusion	scan.	The	CT	frames	depict	the	dynamic	contrast	enhancement	in	
the	brain.	The	frame	at	0	seconds	does	not	show	any	contrast	enhancement.	The	frame	at	20	
seconds	shows	contrast	enhancement	in	large	arteries.	The	frame	at	30	seconds	shows	
contrast	enhancement	throughout	the	brain.	The	frame	at	50	seconds	shows	contrast	
enhancement	mostly	in	the	veins.	Case	courtesy	of	Edwin	Bennink	[22].	

	

Figure	8	

Analysis	of	a	CT	perfusion	scan.	Dedicated	perfusion	software	translates	the	dynamic	
contrast-enhanced	CT	frames	(Figure	7)	to	perfusion	parameter	maps	that	provide	insight	
into	the	brain’s	perfusion.	From	left	to	right,	we	see	the	cerebral	blood	flow,	the	cerebral	
blood	volume,	the	mean	transit	time,	and	a	so-called	summary	map.	The	summary	map	is	
derived	from	the	perfusion	parameter	maps	and	shows	an	estimation	of	the	infarcted	brain	
region	in	red	and	an	estimation	of	a	brain	region	that	will	still	infarct	if	the	vessel	occlusion	
persists	in	green.	Screenshots	from	Philips	Extended	Brilliance	Workspace	4.0.	Case	
courtesy	of	Edwin	Bennink	[22].	

	



General	introduction	

	

17	

	

Figure	9	

Perfusion	analysis	by	a	non-linear	regression	model	[23].	On	the	left	is	the	arterial	input	
function,	which	is	determined	from	the	CT	measurements,	shown	in	the	plot	as	circles.	The	
arterial	input	function	is	reshaped	by	convolving	it	with	a	box	function.	Three	different	box	
functions	are	shown	in	the	middle	column.	The	convolution	results	in	a	calculated	tissue	
enhancement	curve.	Different	box	functions	result	in	different	calculated	tissue	
enhancement	curves.	These	calculated	curves	are	shown	in	the	right	column,	together	with	
the	CT	measurements,	shown	in	the	plot	as	circles.	The	calculated	curves	should	
approximate	the	CT	measurements	as	closely	as	possible.	This	fixes	the	shape	of	the	box	
function.	From	the	shape	of	the	fixed	box	function,	several	perfusion	parameters	can	be	
derived:	the	cerebral	blood	flow	(CBF),	cerebral	blood	volume	(CBV),	mean	transit	
time	(MTT),	time	to	maximum	(TMAX),	time	to	drain	(TTD),	and	the	delay.	
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In	practice,	the	X-ray	beam	is	specified	by	setting	the	mAs	and	kVp	(‘p’	for	‘peak’)	instead	of	

the	mA	and	kV.	The	mAs	is	the	X-ray	tube	exposure	time	product.	This	parameter	indicates	

the	radiation	dose	more	directly	than	the	strength	of	the	X-ray	beam,	as	it	is	multiplied	by	the	

duration	of	the	exposure,	the	fixed	rotation	time	of	the	X-ray	tube.	Setting	the	kVp	results	in	

a	distribution	of	energies	for	the	X-ray	beam	that	cannot	be	higher	than	the	specified	kVp	and	

that	is	considerably	lower	on	average.	A	typical	scan	protocol	consists	of	thirty	CTP	frames,	

scanned	with	an	interval	of	2	seconds,	at	80	kVp,	and	at	100	to	150	mAs.	The	scan	protocol	

parameters	determine	the	quality	of	the	images	on	which	to	perform	the	perfusion	analysis.	

CT	perfusion	imaging	processing	protocol	

The	 dynamic	 contrast-enhanced	 CTP	 frames	 can	 be	 analyzed	 with	 dedicated	 perfusion	

software.	The	CTP	 frames	are	 first	corrected	 for	motion,	which	 is	 called	 registration,	 and	

noise,	which	is	called	filtering.	Then,	an	arterial	input	function,	which	is	a	curve	of	the	contrast	

enhancement	in	a	 large	artery,	 is	determined.	As	the	contrast	agent	travels	 from	the	 large	

artery	through	the	arterioles	and	capillaries,	the	contrast	enhancement	curve	changes	due	to	

several	 physiological	 factors	 such	 as	 the	 local	 microvascular	 structure,	 capillary	 flow	

dynamics,	 dispersion,	 collateral	 circulation,	 and	 ischemia.	 This	 results	 in	 varying	 tissue	

enhancement	curves,	which	each	corresponds	to	a	so-called	voxel,	which	is	typically	of	size	

0.5	mm	x	0.5	mm	x	5.0	mm.	The	tissue	enhancement	curve	of	each	voxel	is	compared	with	the	

arterial	 input	 function	 to	 produce	 several	 perfusion	 parameters	 for	 each	 voxel.	 Taken	

together,	the	voxels	make	up	a	perfusion	map	for	each	perfusion	parameter	(Figure	8).	

Perfusion	parameters	

To	 understand	 how	 to	 generate	 the	 perfusion	 parameters,	 we	 consider	 a	 non-linear	

regression	model	 [23].	This	model-based	 perfusion	 algorithm	 reshapes	 the	 arterial	 input	

function,	by	convolving	 it	with	a	box	function,	 into	a	calculated	tissue	enhancement	curve	

(Figure	9).	This	calculated	curve	should	approximate	the	measured	tissue	enhancement	as	

closely	 as	 possible.	 The	 shape	 of	 the	 calculated	 curve	 follows	 from	 the	 shape	 of	 the	 box	

function.	From	the	shape	of	the	box	function,	we	can	derive	several	perfusion	parameters.	

Typically,	 four	 perfusion	 parameters	 are	 calculated:	 the	 cerebral	 blood	 flow	 (CBF),	 the	

cerebral	 blood	 volume	 (CBV),	 the	 mean	 transit	 time	 (MTT),	 and	 the	 time	 to	 maximum	

(TMAX).	Other	perfusion	parameters,	such	as	the	delay,	the	time	to	drain	(TTD),	and	the	time	

to	peak	(TTP),	are	sometimes	also	calculated	(Figure	9).	We	note	that	CBF	=	CBV	/	MTT	and	

TMAX	=	delay	+	MTT/2.	The	TTP	is	the	time	at	which	the	tissue	enhancement	curve,	so	not	

the	convolution	function,	is	at	its	maximum.	
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Table	1	

The	default	thresholds	to	estimate	the	ischemic	regions	for	different	vendor	software.	CBF	is	
cerebral	blood	flow,	CBV	is	cerebral	blood	volume,	MTT	is	mean	transit	time,	and	TMAX	is	
time	to	maximum.	Values	relative	to	the	opposite	hemisphere	are	indicated	by	an	‘r’.	The	
units	of	the	CBF	and	CBV	are	given	per	100	g	of	(hypothetical)	brain	tissue.	

Software	vendor	 Infarct	core	 Total	ischemic	region	

Philips	Healthcare	(ISP)	 CBV	<	2.0	mL/100g	&	rMTT	>	150%	 rMTT	>	150%	

Siemens	Healthineers	 CBV	<	1.2	mL/100g	 CBF	<	27.0	mL/100g/min	

Canon	Medical	Systems	 rCBV	<	38%	&	TMAX	>	2.30	s	 TMAX	>	2.30	s	

iSchemaView	(RAPID)	 rCBF	<	30%	 TMAX	>	6	s	

	

Ischemic	regions	

The	perfusion	parameters	describe	different	aspects	of	the	perfusion,	which	enables	the	iden-

tification	of	different	ischemic	regions	(Figure	8).	The	total	ischemic	region	is	characterized	

by	an	 increased	delay	and	MTT,	so	also	an	increased	TMAX.	The	total	 ischemic	region	can	

contain	both	a	region	with	a	sustained	CBV	and	a	region	with	a	decreased	CBV.	Where	the	

CBV	is	sustained,	the	CBF	is	slightly	decreased,	in	accordance	with	the	increased	MTT.	As	the	

CBV	decreases,	the	CBF	further	decreases	with	it	(Figure	9).	

The	ischemic	brain	region	with	a	decreased	CBV	is	typically	called	the	infarct	core.	The	rest	

of	the	total	ischemic	region	is	typically	called	the	penumbra.	Clinical	threshold	values	used	to	

estimate	the	infarct	core	and	penumbra	are	found	in	Table	1.	Applying	these	threshold	values	

to	 the	perfusion	maps	 results	 in	a	 so-called	 summary	map	 (Figure	8).	The	 summary	map	

indicates	two	scenarios.	In	the	first	scenario	of	a	persistent	vessel	occlusion,	both	the	infarct	

core	 and	 penumbra	 are	 assumed	 to	 infarct.	 In	 the	 second	 scenario	 of	 a	 complete	 and	

immediate	recanalization	of	the	occluded	vessel,	only	the	infarct	core	is	assumed	to	infarct.	

The	smaller	the	infarct	core	and	the	larger	the	penumbra,	the	more	a	patient	might	benefit	

from	a	 successful	 treatment.	As	 such,	 the	 infarct	 core	and	penumbra	may	provide	 image-

based	criteria	for	the	treatment	decision	in	ischemic	stroke.	
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Thesis	outline	

This	thesis	is	concerned	with	harmonizing	and	optimizing	the	CTP	imaging	acquisition	and	

processing	protocol.	Chapters	2	and	3	examine	the	acquisition	protocol.	Chapter	2	examines	

the	effect	of	the	injection	protocol	on	the	perfusion	maps	and	on	the	summary	map.	Chapter	3	

examines	the	effect	of	the	scan	protocol	on	the	perfusion	maps	and	on	the	summary	map.	

Both	 chapters	 are	 studies	 that	 were	 performed	 with	 an	 anthropomorphic	 digital	 CTP	

phantom.	Chapter	4	describes	our	efforts	to	construct	a	physical	CTP	phantom,	based	on	the	

digital	phantom	used	in	chapters	2	and	3.	Chapters	5	and	6,	both	patient	studies,	consider	the	

processing	protocol.	Chapter	5	introduces	a	method	to	standardize	the	estimation	of	ischemic	

regions.	This	standardized	method	is	also	applied	in	chapter	3	(written	more	recently	than	

chapter	5),	which	includes	a	comparison	of	processing	protocols	in	addition	to	a	comparison	

of	 scan	 protocols.	 Chapter	6	 compares	 the	 segmentations	 from	 four	methods	 to	 estimate	

ischemic	regions:	 the	clinical	default	segmentations,	segmentations	from	the	standardized	

method,	 manual	 segmentations	 of	 perfusion	 maps,	 and	 segmentations	 from	 acute	 MR	

imaging.	Chapter	7	provides	a	perspective	into	a	novel	use	of	CTP	imaging	as	a	tool	to	locate	

the	vessel	occlusion.	Chapter	8	discusses	the	previous	chapters.	 	
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Supplementary	Table	1	

List	of	the	abbreviations	that	appear	in	this	thesis.	

Abbreviation	 Full	phrase	

AIF	 Arterial	Input	Function	

ASPECTS	 Alberta	Stroke	Program	Early	CT	Score	

AUC	 Area	Under	the	Curve	

BAT	 Bolus	Arrival	Time	

bSVD	 block-circulant	Singular	Value	Decomposition	

CBF	 Cerebral	Blood	Flow	

CBV	 Cerebral	Blood	Volume	

CLEOPATRA	 Cost-effectiveness	of	CT	perfusion	for	patients	with	acute	ischemic	stroke	
(healthcare	evaluation)	

CONTRAST	 Collaboration	for	New	Treatments	of	Acute	Stroke	(consortium)	

CSF	 Cerebrospinal	Fluid	

CT	 Computed	Tomography	(imaging)	

CTP	 CT	Perfusion	

CTA	 CT	Angiography	

DSA	 Digital	Subtraction	Angiography	

DSC	 Dice	Similarity	Coefficient	

DUST	 Dutch	acute	Stroke	(study)	

ISLES	 Ischemic	Stroke	Lesion	Segmentation	(challenge)	

ISP	 IntelliSpace	Portal	

mAOL	 modified	Arterial	Occlusive	Lesion	(grade)	

MR	 Magnetic	Resonance	(imaging)	

MRCLEAN	 Multicenter	Randomized	Clinical	trial	of	Endovascular	treatment	for	
Acute	ischemic	stroke	in	the	Netherlands	

mRS	 modified	Rankin	Scale	

MTT	 Mean	Transit	Time	
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Continued	 	

NCCT	 Non-Contrast	CT	

NIHSS	 National	Institutes	of	Health	Stroke	Scale	

PMMA	 Polymethyl	Methacrylate	

ROC	 Receiver	Operating	Characteristic	(curve)	

TMAX	 Time	to	Maximum	

TTP	 Time	To	Peak	

VOF	 Venous	Output	Function	
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We	aimed	to	report	the	variation	 in	computed	tomography	perfusion	(CTP)	arterial	 input	

function	(AIF)	in	a	multicenter	stroke	study	and	to	assess	the	impact	this	has	on	CTP	results.	

CTP	data	sets	from	14	different	centers	were	included	from	the	Dutch	acute	Stroke	(DUST)	

study.	 The	 AIF	 was	 taken	 as	 a	 direct	 measure	 to	 characterize	 contrast	 bolus	 injection.	

Statistical	analysis	was	applied	to	evaluate	differences	 in	amplitude,	area	under	the	curve	

(AUC),	bolus	arrival	time	(BAT)	and	time	to	peak	(TTP).	To	assess	the	clinical	relevance	of	

differences	in	AIF,	CTP	acquisitions	were	simulated	with	a	realistic	anthropomorphic	digital	

phantom.	Perfusion	parameters	were	extracted	by	CTP	analysis	using	commercial	software	

(IntelliSpace	 Portal	 (ISP),	 version	 10.1)	 as	 well	 as	 an	 in-house	method	 based	 on	 block-

circulant	singular	value	decomposition	(bSVD).	

A	total	of	1422	CTP	data	sets	were	included,	ranging	from	6	to	322	included	patients	per	

center.	 The	 measured	 values	 of	 the	 parameters	 used	 to	 characterize	 the	 AIF	 differed	

significantly	with	approximate	interquartile	ranges	of	200-750	HU	for	the	amplitude,	2,500-

10,000	HU*s	for	the	AUC,	0-17	s	for	the	BAT	and	10-26	s	for	the	TTP.	Mean	infarct	volumes	of	

the	 phantom	were	 significantly	 different	 between	 centers	 for	 both	methods	 of	 perfusion	

analysis.	

Although	guidelines	for	the	acquisition	protocol	are	often	provided	for	centers	participating	

in	 a	 multicenter	 study,	 contrast	 medium	 injection	 protocols	 still	 vary.	 The	 resulting	

volumetric	differences	in	infarct	core	and	penumbra	may	impact	clinical	decision	making	in	

stroke	diagnosis.	 	
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Introduction	

The	 computed	 tomography	 perfusion	 (CTP)	 protocol	 is	 central	 to	 a	 large	 number	 of	

multicenter	stroke	studies.	These	studies	often	focus	on	the	impact	of	endovascular	or	intra-

arterial	therapies	on	stroke	outcome	and	use	CTP	as	a	selection	modality	[1–3].	A	premise	in	

these	 studies	 is	 that	 the	 CTP	 data	 from	 the	 contributing	 centers	 is	 uniform	 in	 diagnostic	

quality	 and	 quantitative	 results	 (e.g.	 infarct	 core	 volume),	 and	 can	 be	 pooled	 to	 form	 a	

homogeneous	database.	

However,	the	CTP	protocol	involves	a	number	of	technical	acquisition	and	processing	steps	

that	 may	 violate	 this	 assumption	 of	 uniformity	 [4,	 5].	 This	 heterogeneity	 may	 lead	 to	

significantly	different	(quantitative)	results,	necessitating	harmonization	of	the	acquisition	

and	processing	steps.	

Studies	have	already	shown	that	variation	in	the	injection	protocol	can	influence	CTP	results.	

The	effect	of	contrast	medium	factors	and	patient	factors	on	the	time	attenuation	curve	has	

been	studied	with	a	physiologically	based	pharmacokinetic	model	[6].	Also	in	a	patient	study,	

some	of	these	contrast	medium	and	patient	factors	were	found	to	affect	the	time	attenuation	

curve	[7].	Furthermore,	it	was	shown	that	a	higher	iodine	contrast	concentration	can	improve	

the	quality	of	patient	perfusion	data	[8].	Although	several	aspects	of	the	injection	protocol	

have	been	deliberated,	the	clinical	variation	between	centers	participating	in	a	harmonized	

multicenter	study	and	the	effect	this	variation	can	have	on	the	perfusion	analysis	have	not	

been	studied.	

This	 paper	 explores	 the	 variation	 in	 contrast	 injection	 protocol,	 as	 characterized	 by	 the	

arterial	input	function	(AIF),	for	centers	participating	in	a	multicenter	CTP	study	to	test	the	

hypothesis	that	substantial	differences	in	CTP	results	arise.	

Methods	

The	methods	of	our	study	follow	the	steps	visualized	in	Figure	1.	
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Figure	1	

Flow	chart	of	our	study.	AIF	stands	for	arterial	input	function,	AUC	stands	for	area	under	the	
curve,	BAT	stands	for	bolus	arrival	time,	and	TTP	stands	for	time	to	peak.	
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Acquisition	of	imaging	data	

Imaging	 data	 was	 acquired	 from	 fourteen	 stroke	 centers	 (labelled	 center	 A-M)	 that	

participated	in	the	Dutch	acute	stroke	(DUST)	study	[9].	Patients	with	a	clinical	diagnosis	of	

acute	ischemic	stroke	were	included	if	they	were	older	than	eighteen	years,	if	they	had	an	

acute	 neurological	deficit	 of	 less	 than	 nine	hours,	 and	 if	 the	National	 Institutes	 of	 Health	

Stroke	 Scale	 was	 at	 least	 two	 or,	 if	 an	 indication	 for	 intravenous	 recombinant	 tissue	

plasminogen	activator	was	present,	was	equal	to	one.	

The	DUST	study	protocol	design	describes	acquisition	at	80	kVp	and	150	mAs	on	40-	to	320-

detector	CT	scanners	(GE	Healthcare,	Philips,	Siemens,	Toshiba)	with	a	two-second	interval	

for	a	duration	of	50	 seconds	and	reconstructed	 to	a	 slice	thickness	of	5	mm.	The	advised	

injection	protocol	was	a	40	mL	contrast	bolus	injected	at	a	rate	of	6	mL/s	followed	by	a	saline	

flush	of	40	mL	injected	at	a	rate	of	6	mL/s.	

Determination	of	acquisition	protocols	

Although	a	general	CTP	acquisition	protocol	was	formulated	for	the	centers	participating	in	

the	DUST	study,	the	acquisition	protocols	still	varied	between	centers.	Since	these	protocols	

were	not	 inventoried	at	the	time	of	 the	DUST	study	and	we	were	unable	to	retrieve	them	

retrospectively,	the	acquisition	protocols	were	reconstructed	from	the	imaging	data.	

Whereas	the	scan	protocols	could	be	reproduced	from	the	DICOM	metadata	of	the	CTP	scans,	

information	about	the	injection	protocol	was	not	stored	in	the	DICOM	dataset.	In	order	to	still	

study	the	injection	protocol,	we	looked	at	the	variation	in	AIF,	which	reflects	all	important	

aspects	of	the	injection	protocol.	

Determination	of	patient	AIFs	

All	CTP	data	were	processed	centrally	in	a	uniform	manner.	Prior	to	analysis,	the	scans	were	

corrected	for	motion	by	three-dimensional	registration	on	the	skull	using	the	registration	

software	package	Elastix	[10].	For	each	scan,	 the	AIF	was	determined	from	the	registered	

image	employing	in-house	software	by	averaging	all	attenuation	curves	in	an	automatically	

segmented	part	of	the	arterial	tree	of	at	least	a	hundred	voxels.	The	AIF	was	then	rescaled,	

such	that	the	area	under	the	curve	(AUC)	of	the	AIF	equaled	the	AUC	of	the	automatically	

segmented	venous	output	function	(VOF),	to	correct	for	partial	volume	effects.	Contrary	to	

clinical	practice,	the	automatically	determined	AIF	was	never	manually	rectified.	
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Figure	2	

The	considered	parameters	of	the	arterial	input	function:	amplitude,	area	under	the	curve	
(AUC),	bolus	arrival	time	(BAT)	and	time	to	peak	(TTP).	The	BAT	is	defined	as	the	left	
0.05%	percentile	of	the	maximum	of	the	gamma	distribution	curve.	

	

Processing	of	patient	AIFs	

For	each	AIF,	 the	amplitude,	AUC,	bolus	arrival	 time	 (BAT)	and	 time	 to	peak	 (TTP)	were	

automatically	determined	from	a	gamma	distribution	fitted	to	the	AIF	(Figure	2).	A	boxplot	

was	made	for	each	parameter	to	show	the	variation	within	and	between	centers.	

To	test	for	significant	differences	between	centers,	a	one-way	analysis	of	variance	(ANOVA)	

was	performed	for	each	parameter	of	the	AIF.	Additionally,	the	average	amplitude,	AUC,	BAT	

and	 TTP	 with	 95%	 confidence	 intervals	 were	 compared	 between	 centers,	 where	 non-

overlapping	 confidence	 intervals	 imply	 a	 statistically	 significant	 difference.	 Significant	

differences	between	groups	of	scanner	manufacturers	were	also	tested	for	with	a	one-way	

ANOVA	for	each	parameter	of	the	AIF.	In	these	statistical	calculations,	AIFs	with	outliers	in	

any	of	its	parameters	were	excluded,	where	an	outlier	was	defined	as	a	data	point	more	than	

1.5	times	the	interquartile	range	below	the	first	quartile	or	above	the	third	quartile.	

To	indicate	the	variation	of	the	AIF	further,	the	proportion	of	explained	variance,	i.e.	the	sum	

of	 squares	between	groups	divided	by	the	 sum	of	 squares	 total,	was	determined	for	 each	

parameter	of	 the	AIF.	These	proportions	 indicate	how	much	of	 the	variation	 is	due	to	the	

center	of	admission	and	were	compared	to	see	which	parameters	would	benefit	 the	most	
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from	harmonization.	Four	centers	were	chosen	as	representative	of	the	variation	in	AIF	that	

results	from	the	admission	center.	Although	we	were	unable	to	retrieve	all	injection	protocols	

retrospectively,	these	four	centers	were	able	to	provide	us	with	the	injection	protocols	at	the	

time	of	the	DUST	study.	

Design	of	simulation	study	

To	assess	the	clinical	impact	of	the	variation	in	AIF	between	centers,	a	simulation	study	was	

performed	demonstrating	the	effect	on	the	estimated	infarct	core	and	penumbra	volumes.	

The	average	AIF	curve	of	each	chosen	center	served	as	input	for	an	updated	version	of	an	

anthropomorphic	digital	phantom	[11].	These	center	specific	average	AIFs	were	constructed	

by	 aligning	 the	 peak	 of	 each	 individual	 patient	 curve	 before	 averaging	 these	 curves.	 If	

necessary,	padding	was	performed	by	repeating	the	endpoints	of	the	aligned	AIFs.	

We	simulated	a	standard	scanning	protocol	for	the	phantoms,	consisting	of	25	acquisitions	at	

80	kVp	and	150	mAs	for	a	total	duration	of	48	seconds	with	a	two-second	interval	between	

acquisitions	and	a	slice	thickness	of	5	mm.	In	the	first	series	of	phantoms	a	small	infarct	core	

with	penumbra	(8	mL	core	and	48	mL	penumbra)	was	included	in	the	right	hemisphere,	and	

in	a	second	series	a	large	infarct	core	with	penumbra	(26	mL	core	and	243	mL	penumbra)	

was	included	in	the	right	hemisphere.	In	both	series,	ten	identical	phantoms	were	generated	

for	each	of	the	four	AIFs	but	with	different	randomly	generated	noise	realizations,	so	we	could	

take	into	account	the	influence	of	noise	on	the	parameters	[11].	

CTP	analysis	of	digital	phantoms	

Because	 the	AIF	might	 affect	 infarct	quantification	differently	depending	on	 the	perfusion	

software,	the	images	were	analyzed	both	with	a	commercial	method	(‘Arrival	Time	Sensitive’)	
in	IntelliSpace	Portal	(ISP;	Brain	Perfusion,	IntelliSpace	Portal	10.1,	Philips	Healthcare)	and	

with	in-house	developed	software	based	on	a	bSVD	method,	currently	considered	the	clinical	

state-of-the-art	to	perform	deconvolution	on	CTP	data	[4].	

In	 ISP,	 the	 phantoms	 were	 automatically	 processed	 (filtering	 and	 automatic	 AIF/VOF	

selection)	using	proprietary	methods.	Factory	default	 thresholds	were	applied	to	estimate	

volumes	of	 the	 infarct	 core	and	penumbra,	where	 infarct	 core	 is	defined	as	 tissue	with	a	

relative	mean	transit	time	(rMTT)	>	150%	and	cerebral	blood	volume	(CBV)	<	2.0	mL/100g,	

and	penumbra	as	tissue	with	rMTT	>	150%	and	CBV	>	2.0	mL/100g.	For	each	set	of	ten	noise	

realizations,	the	estimated	core	and	penumbra	volumes	were	displayed	in	a	boxplot.	
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The	 in-house	 deconvolution	 software	 automatically	 determined	 the	AIF	 of	 each	 phantom	

from	the	CTP	image	before	filtering,	using	the	method	that	was	described	earlier.	After	this,	a	

bilateral	filter	with	an	isotropic	spatial	kernel	of	3	mm	and	an	intensity	kernel	of	20	HU	was	

applied	to	filter	the	phantom	noise	realizations.	Perfusion	analysis	was	performed	following	

a	bSVD	deconvolution	method	[12].	The	 infarct	core	was	defined	as	tissue	with	a	relative	

cerebral	blood	flow	(rCBF)	<	20%,	and	penumbra	as	tissue	with	a	rCBF	between	20%	and	

45%.	These	thresholds	were	found	by	maximizing	the	Dice	similarity	coefficient	between	the	

predicted	 and	 known	 regions	 for	 the	 core	 and	 penumbra	 of	 the	 digital	 phantom.	 The	

predicted	core	and	penumbra	volumes	for	each	center	were	displayed	in	a	boxplot	for	each	

set	of	the	noise	realizations.	

Statistical	analysis	of	volumes	

The	mean	 estimated	 core	 and	 penumbra	 volumes	 for	 each	 center	 were	 compared	 using	

ANOVA	for	both	of	the	processing	methods.	The	mean	mismatch,	defined	as	the	penumbra	

volume	divided	by	the	sum	of	the	penumbra	volume	and	core	volume,	was	compared	in	the	

same	way.	In	case	of	statistical	significance,	the	volumes	and	mismatch	were	tested	post-hoc	

with	Tukey’s	honest	 significant	 difference	 test.	The	 level	 of	 significance	was	 defined	 as	 a	

two-tailed	P	<	0.05.	

Results	

All	DUST	participants	 (n	=	1422)	gave	 informed	consent	 for	 the	use	of	 their	 clinical	 and	
imaging	data.	Eleven	of	the	acquired	scans	were	excluded	due	to	problems	in	registration	of	

the	data.	The	scanning	protocols,	reconstructed	from	the	DICOM	metadata	of	the	remaining	

scans,	can	be	found	in	the	Supplementary	Material.	Dismissing	scans	that	deviated	from	the	

general	protocol	of	their	respective	centers	resulted	in	another	17	exclusions	so	that	a	total	

of	1394	scans	were	analyzed.	When	analyzing	the	scanning	protocols,	we	found	that	center	F	

changed	 their	 scanning	protocol	 at	 some	point	during	 the	 study,	 resulting	 in	 two	distinct	

scanning	protocols.	Therefore	we	split	up	this	center	into	centers	F1	and	F2,	corresponding	

to	a	scan	acquisition	with	a	one	second	and	two	second	interval	respectively.	

Analysis	of	patient	AIFs	

The	 boxplots	 of	 the	amplitude,	 AUC,	 BAT	and	 TTP	 are	 shown	 in	 Figure	 3.	 These	 show	 a	

variation	 within	 centers,	 which	 can	 be	 explained	 by	 patient	 variability	 [6,	 7],	 as	 well	 as	

between	centers.	Overall,	the	amplitude	yields	approximate	interquartile	ranges	of	200-750	

HU,	the	AUC	of	2,500-10,000	HU*s,	the	BAT	of	0-17	seconds	and	the	TTP	of	10-26	seconds.	
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Figure	3	

Boxplots	of	the	parameters	characterizing	the	arterial	input	function	per	stroke	center.	
Outliers	are	depicted	as	red	crosses.	Extreme	values	were	clipped,	retaining	the	relative	
order,	to	avoid	compressed	boxplots.	

	

The	 amplitude,	 AUC,	 BAT	 and	 TTP	 each	 differed	 significantly	 between	 centers	 (all	 with	

P	<	0.001).	 An	 indication	 of	 which	 centers	 differed	 significantly,	 can	 be	 found	 in	 the	
Supplementary	Material.	For	three	groups	of	scanner	manufacturers	(i.e.	Canon,	Philips,	and	

Siemens),	no	significant	differences	were	found	for	the	amplitude	(P	=	0.36),	AUC	(P	=	0.20),	
BAT	(P	=	0.17)	or	TTP	(P	=	0.25).	A	specification	of	which	centers	were	grouped,	according	
to	their	scanner	manufacturer,	can	be	found	in	the	Supplementary	Material.	

The	proportion	of	explained	variance	for	the	amplitude	was	64.6%,	for	the	AUC	63.3%,	for	

the	BAT	37.1%,	and	for	the	TTP	22.4%.	Based	on	the	amplitude	and	AUC,	the	centers	F2	(light	

blue	in	the	figures),	G	(dark	blue	in	the	figures),	H	(light	red	in	the	figures)	and	J	(dark	red	in	

the	figures)	were	selected	for	the	simulation	study,	as	they	represent	a	large	range	in	AIF.	

Their	 average	AIF	 curves	 can	 be	 found	 in	 Figure	 4.	 The	dark	 colored	 curves	 have	a	 high	

amplitude	and	the	light	colored	curves	a	low	amplitude.	Blue	curves	have	a	comparable	width	

and	red	curves	have	a	comparable	AUC.	The	injection	protocols	of	 these	centers	are	given	

in	Table	1.	
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Figure	4	

The	average	arterial	input	function	(AIF)	per	stroke	center.	The	four	colored	curves	served	
as	input	for	an	anthropomorphic	digital	phantom.	The	dotted	black	curves	are	the	AIFs	of	
the	other	centers.	Red	curves	have	comparable	AUCs	and	blue	curves	comparable	widths.	
Light	curves	have	a	low	amplitude	and	dark	curves	a	high	amplitude.	

	

Table	1	

Summary	of	the	average	parameters	characterizing	the	arterial	input	functions	selected	to	
generate	the	anthropomorphic	digital	phantoms.	

Center	 Solution	for	injection	 Concentration	(mg	I/mL)	 Volume	(mL)	 Injection	rate	(mL/s)	

F2	 Ultravist	 300	 40	 6	

G	 Xenetix	 300	 60	 5.5	

H	 Iomeron	 300	 35	 6	

J	 Iomeron	 400	 40	 6	
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Figure	5	

Parameter	maps	of	one	of	the	noise	realizations	of	the	anthropomorphic	digital	phantom	
with	a	small	infarct	for	each	of	the	four	selected	arterial	input	functions	obtained	from	ISP.	
The	cerebral	blood	flow	(CBF;	upper	row)	is	in	mL/100g/min,	the	cerebral	blood	volume	
(CBV,	middle	row)	in	mL/100g	and	the	mean	transit	time	(MTT;	bottom	row)	in	seconds.	

	

CTP	analysis	of	digital	phantoms	

As	an	example	of	the	anthropomorphic	digital	phantom,	the	parameter	maps	of	ISP	for	one	of	

the	ten	noise	realizations	that	include	a	small	infarct	are	shown	in	Figure	5.	Boxplots	of	the	

estimated	core	and	penumbra	volumes	of	the	small	and	large	infarct	for	each	of	the	selected	

centers	are	shown	in	Figure	6.	Their	median	and	interquartile	range	are	indicated,	along	with	

the	mismatch,	 in	Table	2.	The	median	 core	 volume	 differed	between	 centers	 from	 0.1	 to	

7.0	mL,	the	median	penumbra	volume	differed	between	centers	from	0.8	to	34.5	mL,	and	the	

median	mismatch	differed	between	centers	from	0	to	8%.	
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Figure	6	

Boxplots	of	the	estimated	core	and	penumbra	volumes	for	a	small	infarct	(8	mL	core	and	48	
mL	penumbra)	and	a	large	infarct	(26	mL	core	and	243	mL	penumbra)	obtained	from	ISP	
(upper	row)	and	the	in-house	software	(bottom	row)	for	the	representative	centers.	
Outliers	are	depicted	as	red	crosses.	

	

Statistical	analysis	of	volumes	

The	analysis	with	ISP	yielded	significantly	different	mean	infarct	core	volumes	for	the	small	

infarct	(P	=	0.01)	between	center	F2	and	center	G.	It	also	yielded	significantly	different	mean	
infarct	core	volumes	for	the	large	infarct	(P	<	0.001)	between	center	F2	and	the	other	three	
centers.	Mean	penumbra	volumes	were	not	significantly	different	between	centers	 for	the	

small	infarct	(P	=	0.06).	For	the	large	infarct,	mean	penumbra	volumes	differed	significantly	
(P	=	0.03)	between	centers	H	and	J.	The	mean	mismatch	was	significantly	different	for	the	
small	infarct	(P	<	0.001)	between	center	F2	and	centers	G	and	J	as	well	as	between	center	H	
and	 centers	 G	 and	 J.	 The	mean	mismatch	was	 significantly	 different	 for	 the	 large	 infarct	

(P	<	0.001)	for	each	pair	of	centers	except	between	centers	G	and	J.	
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Table	2	

Median	core	volume,	penumbra	volume,	and	mismatch	with	the	interquartile	range	in	
brackets.	The	mismatch	is	defined	as	the	penumbra	volume	divided	by	the	sum	of	the	
penumbra	volume	and	the	core	volume.	

Infarct	 Center	 Core	volume	(mL)	 Penumbra	volume	(mL)	 Mismatch	

Small	(ISP)	 F2	 7.9	(5.9	–	8.5)	 11.1	(9.3	–	15.6)	 0.63	(0.57	–	0.65)	

	 G	 5.4	(4.8	–	6.2)	 14.3	(12.0	–	15.9)	 0.70	(0.68	–	0.74)	

	 H	 6.5	(5.5	–	7.4)	 12.7	(10.1	–	16.5)	 0.67	(0.59	–	0.69)	

	 J	 6.6	(5.5	–	6.9)	 16.1	(15.5	–	17.0)	 0.71	(0.69	–	0.75)	

Large	(ISP)	 F2	 21.6	(19.4	–	24.8)	 76.9	(64.1	–	111.8)	 0.80	(0.78	–	0.82)	

	 G	 14.6	(14.2	–	14.9)	 89.3	(81.5	–	102.6)	 0.86	(0.85	–	0.87)	

	 H	 15.0	(14.9	–	16.0)	 83.0	(60.4	–	91.0)	 0.84	(0.80	–	0.85)	

	 J	 17.3	(14.9	–	18.3)	 104.0	(101.0	–	109.4)	 0.86	(0.85	–	0.87)	

Small	(in-house)	 F2	 9.2	(8.2	–	9.6)	 52.5	(52.1	–	54.5)	 0.85	(0.84	–	0.86)	

	 G	 8.8	(8.4	–	9.0)	 51.7	(49.9	–	51.9)	 0.85	(0.85	–	0.86)	

	 H	 8.2	(7.7	–	8.5)	 47.7	(45.2	–	49.0)	 0.85	(0.85	–	0.86)	

	 J	 8.7	(8.1	–	9.1)	 50.1	(49.2	–	50.6)	 0.85	(0.84	–	0.86)	

Large	(in-house)	 F2	 30.3	(29.6	–	31.7)	 191.0	(187.9	–	194.1)	 0.86	(0.86	–	0.87)	

	 G	 26.9	(26.7	–	27.7)	 225.5	(222.8	–	228.5)	 0.89	(0.89	–	0.89)	

	 H	 26.3	(25.1	–	26.6)	 195.8	(193.9	–	198.1)	 0.88	(0.88	–	0.89)	

	 J	 27.2	(26.9	–	28.2)	 218.2	(217.5	–	220.5)	 0.89	(0.89	–	0.89)	

	

	

	

	

	



Comparing	injection	protocols	

	

39	

The	analysis	with	 the	 in-house	processing	method	yielded	no	 significantly	different	mean	

core	volumes	between	centers	for	the	small	infarct	(P	=	0.22).	A	significant	difference	was	
found	for	the	large	infarct	(P	<	0.001)	for	each	pair	of	centers	except	between	centers	G	and	
J.	Mean	 penumbra	 volumes	were	 significantly	 different	 for	 the	 small	 infarct	 (P	<	 0.001)	
between	center	H	and	the	other	three	centers	as	well	as	between	center	F2	and	center	J.	Mean	

penumbra	volumes	were	also	significantly	different	for	the	large	infarct	(P	<	0.001)	for	each	
pair	 of	 centers.	 The	mean	mismatch	 for	 the	 small	 infarct	 was	 not	 significantly	 different	

between	the	centers	(P	=	0.80).	For	the	large	infarct,	the	mean	mismatch	was	significantly	
different	 (P	<	 0.001)	 between	center	 F2	and	 the	 other	 three	 centers	 as	well	 as	between	
center	G	and	center	H.	

Discussion	

This	 study	 explored	 the	 variation	 in	 contrast	 injection	 protocol	 between	 centers,	 as	

characterized	 by	 their	 average	 AIFs,	 in	 a	 large	 multicenter	 stroke	 study.	 Significant	

differences	in	the	magnitude	and	timing	of	the	AIF	were	found	between	centers.	This	variation	

is	 important	 as	 it	 influences	 the	 variability	 of	 CTP	 analyses	 in	 a	 multicenter	 study.	

Harmonization	of	the	injection	protocol,	as	correspondent	with	the	proportions	of	explained	

variance,	could	reduce	variation	in	the	amplitude	with	64.6%,	in	the	AUC	with	63.3%,	in	the	

BAT	with	37.1%,	and	in	the	TTP	with	22.4%.	Significant	differences	in	infarct	quantification	

were	found	as	a	result	of	the	variation	in	amplitude	and	AUC	between	the	average	AIFs.	

In	 clinical	practice,	 imaging	based	 treatment	decisions	 result	 from	a	 combination	of	non-

enhanced	CT,	occlusion	 site	(provided	by	CT	angiography)	and	CTP.	The	variation	 in	CTP	

contrast	bolus	 is	 relevant	 for	 current	 clinical	practice,	where	treatment	decisions	may	be	

based	on	the	infarct	core	volume	and	the	mismatch	for	patients	presenting	beyond	6	hours	

after	symptom	onset	[2,	3]	or	for	patients	with	wake-up	stroke	[13,	14].	Although	our	study	

considered	the	variation	in	CTP	contrast	bolus,	CT	angiography	also	requires	a	contrast	bolus,	

which	is	likely	to	vary	between	centers.	

The	influence	on	the	AIF	of	the	injection	protocol,	e.g.	contrast	concentration,	injection	rate	

and	injection	volume,	as	well	as	some	patient	characteristics,	e.g.	patient	weight	and	cardiac	

output,	has	already	been	studied	using	simulations	[6].	For	some	of	these	parameters,	the	

effect	on	the	AIF	has	also	been	studied	within	patient	groups	[7]	and,	in	addition,	the	effect	

on	the	perfusion	parameters	has	been	examined	for	the	contrast	concentration	[8].	Our	study	

reported	the	variation	in	AIF	between	centers	in	a	harmonized	multicenter	study	and	showed	

the	clinical	impact	this	variation	can	have.	
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In	 part,	 this	 clinical	 impact	depends	 on	 the	perfusion	 software.	 Differences	 in	 volumetric	

prediction	 between	 the	 two	 methods	 may	 be	 ascribed	 to	 different	 filtering	 methods,	

algorithms	 and	 definitions	 of	 infarct	 core	 and	 penumbra.	 Harmonization	 of	 these	 image	

processing	steps	to	reduce	the	variability	of	CTP	results	in	a	multicenter	study	presents	itself	

as	 a	 major	 and	 important	 challenge.	 Our	 study	 showed	 that,	 given	 the	 differences	 in	

volumetric	 predictions	 within	 each	 processing	 method,	 harmonization	 of	 the	 injection	

protocol	is	likewise	important.	

There	were	several	limitations.	One	major	limitation	was	that	the	average	AIF	had	to	be	used	

as	a	surrogate	for	the	injection	protocol,	while	at	the	same	time	the	AIF	was	affected	by	the	

patient’s	 physiology.	 We	 assumed	 that	 the	 AIF	 of	 each	 patient	 is	 determined	 by	 the	

combination	of	the	patient’s	physiology	and	the	contrast	injection,	which	is	expected	to	be	

constant	 within	 each	 center.	 Moreover,	 we	 assumed	 that	 the	 average	 physiology	 of	 the	

patients	 admitted	 to	 each	 center	 was	 comparable	 between	 the	 centers.	 Therefore,	 the	

variation	between	the	average	AIFs	was	assumed	to	be	the	result	of	differences	in	contrast	

injection.	This	justifies	the	average	AIF	as	a	proxy	for	the	injection	protocol,	even	though	the	

exact	 connection	 between	 the	 average	 AIF	 and	 parameters	 of	 the	 injection	 protocol	

remains	unclear.	

Second,	we	were	unable	to	retrieve	the	injection	protocols	of	all	the	centers	at	the	time	of	

patient	inclusions.	Under	the	assumption	that	the	average	physiology	of	the	patients	admitted	

to	each	center	was	comparable	between	centers,	the	average	AIF	served	as	a	surrogate	for	

the	injection	protocol	to	check	adherence	to	the	advised	injection	protocol.	For	the	selected	

representative	 centers,	 the	 injection	 protocols	were	made	available.	These	 show	 that	 the	

injection	protocol	of	the	DUST	study,	which	lacked	a	restriction	on	the	contrast	concentration,	

was	not	strictly	adhered	to	with	regard	to	bolus	volume	and	injection	rate.	

Third,	 the	perfusion	maps	used	to	study	the	clinical	impact	of	 the	AIF	were	not	generated	

from	patient	CTP	data	but	from	a	digital	phantom.	This	was	done	in	order	to	keep	the	pre-	

and	 postprocessing	 constant,	 so	 we	 could	 isolate	 the	 influence	 of	 the	 AIF.	 Since	 centers	

perform	their	scans	on	different	scanners	with	different	protocols	and	software,	the	cause	of	

discrepancies	in	patient	perfusion	data	is	more	difficult	to	establish.	
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Fourth,	 our	 focus	 with	 respect	 to	 the	 clinical	 relevance	 of	 varying	 AIFs	 has	 been	 on	 the	

amplitude	and	AUC	of	 the	AIF.	Harmonization	of	 the	BAT	and	TTP	could	also	prove	to	be	

beneficial	as	it	may	allow	for	more	easily	implemented	modulated	scanning	protocols	[15]	

and	minimization	of	the	risk	on	truncation	of	tissue	curves	[16].	

Conclusion	

In	 the	present	 study	we	have	 shown	that	 the	variation	 in	CTP	contrast	 injection	protocol	

between	centers	results	in	significant	differences	in	the	magnitude	and	timing	of	the	AIF.	The	

variation	in	the	magnitude	of	the	AIF	between	centers	was	greater	than	that	within	centers.	

This	variation	 results	 in	 significant	differences	 in	 core	and	penumbra	volume	estimation,	

which	 should	be	acknowledged	 in	present	multicenter	 studies	and	 is	 relevant	 for	 current	

clinical	practice.	 	
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Center	 Slices	 Acquisitions	 kVp	 mAs	 Included	 Excluded	[based	on]	

A	[C]	 8	(4	mm)	 25	(2	s)	 120	 70	 35	 3	[slices:	4	(8	mm)]	

2	[kVp:	80;	mAs:	150]	

B	[P]	 12	(5	mm)	 25	(2	s)	 80	 150	 76	 0	

C	[S]	 6	(4.8	mm)	

12	(5	mm)	

25	(2	s)	

25	(2	s)	

80	

80	

150	

140	

73	

41	

0	

D	[P]	 12	(5	mm)	 25	(2	s)	 80	 125	 232	 3	[slices:	8	(3.5	mm);	
acquisitions:	40	(1	s);	kVp:	
90;	mAs:	150]	

E	[C]	 32	(5	mm)	 19	(variable,	
see	caption)	

80	 75/100/200	 30	 5	[slices:	6	(5	mm);	
acquisitions:	25	(2	s);	
mAs:	150]	

F1	[P]	 8/12	(5	mm)	 50	(1	s)	 80	 75	 63	 1	[acquisitions:	41	(1	s)]	

F2	[P]	 8/12	(5	mm)	

8/12	(5	mm)	

25	(2	s)	

30	(2	s)	

80	

80	

150	

150	

226	

32	

0	

G	[P]	 8	(5	mm)	 25	(2	s)	 80	 200	 74	 0	

H	[S]	 6	(4.8	mm)	 25	(2	s)	 80	 150	 54	 0	

I	[P]	 12	(5	mm)	 25	(2	s)	 80	 120/125	 124	 0	

J	[S]	 18	(4	mm)	

15	(5	mm)	

19	(4	mm)	

25	(3	mm)	

32	(1.25	s)	

34	(1.5	s)	

34	(1.5	s)	

34	(1.5	s)	

80	

80	

80	

80	

250	

220	

220	

220	

15	

25	

7	

30	

0	

K	[C]	 32	(5	mm)	 19	(variable,	
see	caption)	

80	 100/120/225	 189	 0	

L	[C]	 8	(5.4	mm)	 25	(2.5	s)	 80	 150	 62	 1	[acquisitions:	33	(2	s)]	

1	[acquisitions:	30	(2.1	s)]	

1	[slices:	4	(5.4	mm)]	

M	[P]	 8	(5.3	mm)	 25	(2	s)	 80	 150	 6	 0	
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Supplementary	Table	1	

Overview	of	the	different	scanning	protocols	(by	approximation)	of	the	stroke	centers.	
Center	J	used	spiral	scanning.	Centers	E	and	K	used	a	wide-detector	scanner.	For	the	centers	
with	a	wide-detector	scanner,	the	protocols	are	(2	acquisitions	(with	4	s	interval),	12	
acquisitions	(2	s),	and	last	5	acquisitions	(5	s))	for	center	E	and	(2	acquisitions	(3	s),	12	
acquisitions	(2	s),	5	acquisitions	(5	s))	for	center	K.	The	scanner	manufacturer	for	each	
center	has	been	indicated	by	‘C’	for	Canon,	‘P’	for	Philips	or	‘S’	for	Siemens.	

	

Supplementary	Figure	1	

Average	value	and	95%	confidence	intervals	of	the	parameters	characterizing	the	AIF	per	
stroke	center.	These	show	significant	differences	between	stroke	centers	whenever	
confidence	intervals	do	not	overlap.	The	AIFs	of	the	four	colored	centers	were	used	as	input	
for	an	anthropomorphic	digital	phantom.	
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We	 aimed	 to	 evaluate	 the	 real-world	 variation	 in	 CT	 perfusion	 (CTP)	 imaging	 protocols	

among	 stroke	 centers	 and	 to	 explore	 the	 potential	 for	 standardizing	 vendor	 software	 to	

harmonize	CTP	images.	

Stroke	 centers	 participating	 in	 a	 nationwide	 multicenter	 healthcare	 evaluation	 were	

requested	to	share	their	CTP	scan	and	processing	protocol.	The	impact	of	these	protocols	on	

CTP	imaging	was	assessed	by	analyzing	data	from	an	anthropomorphic	phantom	with	center-

specific	vendor	software	with	default	settings	from	one	of	three	vendors	(A-C):	IntelliSpace	

Portal,	syngoVIA,	and	Vitrea.	Additionally,	standardized	infarct	maps	were	obtained	using	a	

logistic	model.	

Eighteen	scan	protocols	were	studied,	all	varying	in	acquisition	settings.	Of	these	protocols,	

seven,	 eight,	 and	 three	 were	 analyzed	 with	 center-specific	 vendor	 software	 A,	 B,	 and	 C	

respectively.	The	perfusion	maps	were	visually	dissimilar	between	the	vendor	software	but	

were	relatively	unaffected	by	the	acquisition	settings.	The	median	error	[interquartile	range]	

of	the	infarct	core	volumes	(mL)	estimated	by	the	vendor	software	was	-2.5	[6.5]	(A)/-18.2	

[1.2]	(B)/-8.0	[1.4]	(C)	when	compared	to	the	ground	truth	of	the	phantom	(where	a	positive	

error	indicates	overestimation).	Taken	together,	the	median	error	[interquartile	range]	of	the	

infarct	 core	 volumes	 (mL)	 was	 -8.2	 [14.6]	 before	 standardization	 and	 -3.1	 [2.5]	 after	

standardization.	

CTP	imaging	protocols	varied	substantially	across	different	stroke	centers,	with	the	perfusion	

software	being	the	primary	source	of	differences	in	CTP	images.	Standardizing	the	estimation	

of	ischemic	regions	harmonized	these	CTP	images	to	a	degree.	 	
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Introduction	

Clinical	stroke	research	increasingly	relies	on	multicenter	CT	perfusion	(CTP)	imaging	[1,	2].	

Yet,	multicenter	CTP	imaging	is	afflicted	by	a	substantial	variation	in	the	imaging	protocols	

used	 across	 different	 centers	 [3].	 This	 variation	 raises	 important	 questions	 about	 the	

consistency	of	scientific	results	and	the	validity	of	clinical	guidelines.	

The	 scan	 protocol	 and	 perfusion	 software	 can	 influence	 CTP	 results	 in	 numerous	 ways.	

Several	acquisition	settings,	such	as	the	tube	voltage,	exposure,	and	timing	of	the	frames,	have	

been	assessed	over	the	years	and	have	resulted	in	a	multitude	of	considerations	[4–7].	The	

same	holds	for	different	preprocessing	steps,	such	as	determining	the	arterial	input	function	

or	 reducing	 noise,	 implemented	 by	 the	 perfusion	 software	 [8–10].	 Moreover,	 perfusion	

algorithms	and	infarct	estimations	have	been	shown	to	characterize	ischemia	differently	from	

each	other	[11–14].	 In	daily	clinical	practice,	stroke	patients	are	thus	evaluated	 in	various	

ways	according	to	the	protocols	of	their	admission	center.	

To	address	the	daily	reality	of	stroke	imaging,	this	paper	presents	the	first	study	of	real-world	

variation	 in	 CTP	 imaging	 protocols	 among	 stroke	 centers.	 For	 a	 large	 stroke	 healthcare	

evaluation,	we	assess	the	impact	of	scan	protocols	on	CTP	imaging	by	analyzing	data	from	an	

anthropomorphic	phantom	with	 center-specific	 vendor	 software.	Additionally,	we	explore	

the	potential	for	standardizing	vendor	software	to	harmonize	CTP	images.	

Methods	

Phantom	data	for	scan	protocols	

Stroke	 centers	 participating	 in	 the	 CLEOPATRA	 (cost-effectiveness	 of	 CTP	 for	 patients	

with	 acute	 ischemic	 stroke)	 healthcare	 evaluation	 were	 requested	 to	 share	 their	 scan	

protocol	[15].	 The	 CLEOPATRA	 healthcare	 evaluation	 combines	 data	 from	 multiple	

prospective	endovascular	thrombectomy	trials	in	the	Collaboration	for	New	Treatments	of	

Acute	 Stroke	 (CONTRAST)	 consortium	 [16–18].	 In	 total,	 1164	 patients	 were	 eligible	 for	

CLEOPATRA:	228	from	the	MR	CLEAN-NO	IV	trial,	120	from	the	MR	CLEAN-MED	trial,	251	

from	the	MR	CLEAN-LATE	trial,	419	from	the	MR	CLEAN	Registry,	and	146	from	a	local	cohort.	
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Figure	1	

The	scan	protocols	that	were	all	shared	upon	request.	Time	is	zero	at	the	start	of	the	
contrast	injection.	Each	of	the	eighteen	scan	protocols	is	denoted	by	a	letter	(A-C)	indicating	
the	vendor	software	and	followed	by	a	number,	specifying	the	scan	protocol.	

	

The	 tube	 voltage	 (kVp),	 the	 exposure	 (mAs),	 and	 the	 timing	 of	 the	 frames	 from	 the	

CLEOPATRA	stroke	centers	were	input	to	an	anthropomorphic	digital	phantom	designed	for	

a	 realistic	 CTP	 simulation	 of	 acute	 ischemic	 stroke	 that	 is	 entirely	 digital	 [19].	 These	

parameters	could	be	implemented	in	the	phantom	easily	while	giving	a	proper	overview	of	

the	differences	between	centers.	
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Table	1	

The	default	thresholds	to	estimate	the	ischemic	stroke	regions	for	each	vendor	software.	
CBF	is	cerebral	blood	flow,	CBV	is	cerebral	blood	volume,	MTT	is	mean	transit	time,	and	
TMAX	is	time	to	maximum.	Values	relative	to	the	opposite	hemisphere	are	indicated	by	
an	‘r’.	

Software	 Infarct	core	 Hypoperfused	region	 Perfusion	algorithm	

A	 CBV	<	2.0	mL/100g	&	rMTT	>	150%	 rMTT	>	150%	 Singular	value	decomposition	

B	 CBV	<	1.2	mL/100g	 CBF	<	27.0	mL/100g/min	 Singular	value	decomposition	

C	 rCBV	<	38%	&	TMAX	>	2.30	s	 TMAX	>	2.30	s	 Bayesian	

	

The	phantom	combined	MR	brain	images	with	CT	imaging	parameters.	The	(nondynamic)	MR	

imaging	of	 a	healthy	volunteer	provided	 the	brain	parenchyma	and	 the	 cerebral	 vascular	

system	 in	 high	 resolution	 (0.34	mm	 x	 0.34	mm	 x	 0.3	mm).	On	 the	MR	 brain	 images,	we	

manually	drew	a	ground	truth	infarct	core	(i.e.	irreversibly	damaged	tissue)	of	30	mL	and	a	

ground	truth	penumbra	(i.e.	salvageable	tissue)	of	55	mL	in	the	right	hemisphere,	totaling	to	

85	mL	of	hypoperfused	tissue.	

The	CT	volumes	that	were	produced	from	these	MR	images	were	of	size	512	x	512	x	8	voxels	

(for	each	frame)	with	a	voxel	size	of	0.5	mm	x	0.5	mm	x	5	mm.	We	added	realistic	CT	noise	to	

these	CT	volumes.	The	noise	images	were	randomly	generated	with	a	standard	deviation	that	

corresponded	to	the	noise	in	scans	of	a	physical	skull	phantom	made	for	a	range	of	CT	imaging	

parameters.	 (At	500	mAs,	 the	 standard	deviation	of	white	noise	would	be	3.7	HU	 for	 the	

digital	phantoms	used	in	this	study.	The	actual	noise	images	were	adjusted	to	the	reported	

mAs	and	were	made	spatially	dependent	with	a	kernel	derived	from	the	scans	of	the	physical	

skull	phantom.)	For	each	scan	protocol,	ten	noise	realizations	of	the	phantom	were	generated	

to	take	the	effect	of	noise	on	CTP	images	into	account.	

The	phantom	could	not	generate	noise	for	a	tube	voltage	of	70	kVp	because	no	scan	data	of	

the	physical	skull	phantom	was	available	for	70	kVp.	Hence,	for	acquisitions	at	70	kVp,	the	

input	 parameters	 for	 the	 phantom	 were	 adjusted	 to	 80	 kVp	 while	 halving	 the	 mAs,	

conforming	to	the	rule	of	thumb	that	an	increase	of	15%	in	tube	voltage	corresponds	to	a	50%	

decrease	in	tube	current	for	the	dose	to	stay	the	same	[20].	
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Perfusion	analysis	by	vendor	software	

For	each	scan	protocol	(Figure	1),	the	ten	noise	realizations	of	the	phantom	were	analyzed	

with	center-specific	software	from	one	of	three	vendors	(A-C):	CT	Brain	Perfusion	(arrival-

time-sensitive	 algorithm)	 from	 IntelliSpace	 Portal	 version	 10.1	 (Philips	 Healthcare),	 CT	

Neuro	Perfusion	from	syngoVIA	version	VB40A-HF02	(Siemens	Healthineers),	and	CT	Brain	

Perfusion	2D	(Bayesian	algorithm)	from	Vitrea	version	7.14	(Vital	Images).	For	each	analysis,	

we	adhered	to	the	default	software	settings	and	let	the	arterial	input	function	be	determined	

automatically.	 All	 further	 data	 processing	 and	 analysis	 were	 carried	 out	 with	 MATLAB	

(MATLAB,	R2019b:	The	Mathworks	Inc.).	

The	three	vendor	software	did	not	all	produce	the	same	set	of	perfusion	parameters.	Vendor	

software	A	 yielded	a	 perfusion	map	 of	 the	 cerebral	 blood	 flow	 (CBF),	 the	 cerebral	 blood	

volume	(CBV),	the	mean	transit	time	(MTT),	and	the	time	to	peak	(TTP).	Vendor	software	B	

and	C	generated	a	time	to	maximum	(TMAX)	parameter	map	instead	of	a	TTP	parameter	map.	

The	 TTP	 parameter	 is	 the	 time	 from	 the	 start	 of	 the	 scan	 until	maximum	 enhancement.	

Loosely	speaking,	the	TMAX	parameter	is	the	TTP	parameter	corrected	for	the	arrival	time	of	

the	arterial	input	function.	 In	this	paper,	we	sometimes	write	‘TMAX	or	TTP’	by	which	we	

mean	TTP	for	vendor	software	A	and	TMAX	for	vendor	software	B	and	C.	

The	 three	 vendor	 software	 did	 not	 all	 export	 the	 perfusion	maps	 in	 the	 same	way.	 The	

perfusion	maps	from	vendor	software	A	and	B	were	exported	as	DICOM	files	that	contained	

the	actual	parameter	values.	The	parameter	values	from	vendor	software	A	were	exported	as	

integers	 whereas	 the	 parameter	 values	 from	 vendor	 software	 B	 were	 not	 rounded.	 The	

perfusion	 maps	 from	 vendor	 software	 C	 were	 exported	 as	 DICOM	 files	 that	 contained	

grayscale	values	(i.e.	intensities	ranging	from	0	to	255).	These	grayscale	values	were	rescaled	

to	 obtain	 the	 parameter	 values.	 The	 range	 with	 which	 the	 grayscale	 DICOM	 files	 were	

exported	was	0-150	mL/100g/min	for	the	CBF,	0-10	mL/100g	for	the	CBV,	0-20	seconds	for	

the	MTT,	and	0-15	seconds	for	the	TMAX.	For	vendor	software	A,	the	exported	images	were	

upsampled	from	256	x	256	voxels	to	512	x	512	voxels	(i.e.	the	original	size	of	the	phantom)	

by	repeating	each	voxel	2	x	2	times.	
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Ischemic	stroke	regions	estimated	by	vendor	software	

The	ischemic	stroke	regions	were	estimated	from	the	perfusion	maps	by	the	vendor	software	

with	the	default	thresholds	(Table	1).	The	volumes	of	the	estimated	ischemic	stroke	regions	

reported	by	the	vendor	software	were	logged.	The	segmentations	of	the	estimated	ischemic	

stroke	 regions	 could	 not	 be	 exported	 as	 DICOM	 files	 so	 we	 made	 screenshots	 of	 these	

segmentations	instead	(for	illustrative	purposes	and	to	archive	the	results	visually).	

Ischemic	stroke	regions	estimated	by	standardized	method	

From	 the	perfusion	maps	 that	were	generated	by	 the	vendor	 software,	we	estimated	 the	

ischemic	 stroke	 regions	 with	 a	 standardized	method.	 Our	 aim	 was	 to	 provide	 a	 flexible	

framework	to	summarize	the	perfusion	maps	into	different	(ischemic	stroke)	regions.	The	

model	 used	 for	 this	 standardization	 should	 be	 robust	 and	 generalizable.	 Little	 but	 clear	

training	data	should	help	to	provide	certainty	to	evident	cases,	leaving	less	certain	cases	to	

the	predictive	ability	of	the	model.	

We	opted	for	a	logistic	model	that	was	multivariable	(i.e.	more	than	one	input	variables)	and	

multivariate	(i.e.	more	than	two	output	variates)	[21].	In	a	multivendor	context	and	from	a	

theoretical	perspective,	it	is	preferable	to	include	multiple	perfusion	parameters	because	it	

allows	a	 fairer	comparison	between	perfusion	 software.	 Since	CTP	differentiates	between	

multiple	ischemic	stroke	regions,	it	is	natural	to	implement	multiple	outcomes	for	the	tissue	

fate	of	a	voxel	in	a	single	model.	So,	the	logistic	model	we	used	to	estimate	the	ischemic	stroke	

regions	reads:	

PCORE	=	 10SCORE	 	(1	+	10SCORE+	10SPENUMBRA)⁄ 	,	

PPENUMBRA	=	 10SPENUMBRA	 	(1	+	10SCORE+	10SPENUMBRA)⁄ 	,	

PHEALTHY	=	1	-	PCORE	-	PPENUMBRA	,	

where	

SCORE	=	CINTCORE	+	CCBFCORE	×	CBF	+	CCBVCORE	×	CBV	+	CMTTCORE	×	MTT	+	CTMAXCORE 	×	TMAX	,	

and	

SPENUMBRA	=	CINTPENUMBRA	+	CCBFPENUMBRA	×	CBF	+	CCBVPENUMBRA	×	CBV	+	CMTTPENUMBRA	×	MTT	+	CTMAXPENUMBRA	×	TMAX	.	
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The	CBF	 is	 in	mL/100g/min,	 the	CBV	in	mL/100g,	 the	MTT	in	 seconds,	 and	 the	TMAX	 in	

seconds.	 For	 each	 vendor	 software,	 the	 regression	 coefficients	 C	 followed	 from	a	 logistic	

regression	 by	maximum	 likelihood	estimation.	 For	 vendor	 software	A,	 the	algorithm	was	

changed	 to	 arrival-time-insensitive	 (yielding	 a	 TMAX	 parameter	 map)	 because	 variable	

scanning	starting	times	would	otherwise	result	 in	a	TTP	that	 is	not	suited	as	a	predicting	

variable.	The	arrival-time-insensitive	algorithm	 has	 no	 recommended	 threshold	 values	 to	

estimate	the	ischemic	stroke	regions	so	was	otherwise	not	used	in	the	comparison	between	

vendor	software.	

To	estimate	the	regression	coefficients	of	the	logistic	model,	training	data	were	obtained	from	

five	patient	CTP	scans	included	in	the	DUST	(Dutch	acute	stroke)	study	[22].	These	scans	were	

selected	because	of	 an	 infarct	 core	and	a	penumbra	 that	were	easy	 to	distinguish	on	 the	

perfusion	 maps	 generated	 by	 an	 in-house	 developed	 model-based	 nonlinear	 regression	

method	[23].	To	obtain	the	ground	truth	classifications,	we	drew	two	regions	of	ten	by	ten	

voxels	in	what	we	considered	to	be	100%	infarct	core,	100%	penumbra,	and	100%	healthy	

tissue	 for	 each	 of	 the	 five	 patient	 scans.	 Hence,	 the	model	 was	 trained	 on	 the	 perfusion	

parameters	 of	 1000	 (=	 2	 x	 10	 x	 10	 x	 5)	 voxels	 annotated	 as	 infarct	 core,	 1000	 voxels	

annotated	 as	 penumbra,	 and	 1000	 voxels	 annotated	 as	 healthy	 tissue.	 We	 obtained	 the	

perfusion	maps	for	the	training	data	by	analyzing	the	patient	scans	with	each	vendor	software	

in	the	same	way	as	the	phantoms.	

The	logistic	models	were	applied	to	the	exported	perfusion	maps	of	the	phantoms,	producing	

fuzzy	 segmentations	 of	 the	 ischemic	 stroke	 regions.	 We	 determined	 the	 volumes	 of	 the	

estimated	ischemic	stroke	regions	by	adding	the	probabilities	in	the	fuzzy	segmentation	[24].	

Assessment	of	CTP	imaging	

We	assessed	the	impact	of	the	scan	protocol	and	the	vendor	software	on	both	the	perfusion	

parameters	 and	 the	estimated	 ischemic	 stroke	 regions.	For	 the	perfusion	parameters,	we	

pooled	 the	 ten	 noise	 realizations	 for	 each	 scan	 protocol	 and	 depicted	 the	 values	 of	 the	

perfusion	 parameters	 within	 the	 infarct	 core,	 the	 penumbra,	 healthy	 white	 matter,	 and	

healthy	gray	matter	with	boxplots	(given	the	ground	truth	regions	in	the	phantom).	For	the	

estimated	ischemic	stroke	regions,	we	depicted	the	volumes	from	the	scan	protocols	with	

boxplots	 and	 reported	 the	median,	 first	 quartile,	 and	 third	 quartile	 error	 of	 the	 volumes	

estimated	by	the	vendor	software	and	after	standardization.	
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Results	

Scan	protocols	and	vendor	software	

All	eighteen	(A|1-C|3)	scan	protocols	from	the	CLEOPATRA	stroke	centers	were	shared	upon	

request	(Figure	1).	Seven	of	the	protocols	were	analyzed	with	vendor	software	A,	eight	with	

vendor	software	B,	and	three	with	vendor	software	C.	The	scan	protocols	varied	considerably	

between	centers	in	the	exposure	and	timing	of	the	frames.	

For	scan	protocols	at	80	kVp,	the	average	exposure	was	between	100	and	150	mAs,	except	

for	scan	protocols	C|2	and	C|3	with	an	average	exposure	of	196	mAs	and	93	mAs	respectively.	

For	lower	tube	voltages	(of	70	kVp	in	scan	protocols	B|7	and	B|8),	the	average	exposure	was	

200	mAs.	For	higher	tube	voltages	(of	120	kVp	in	scan	protocol	A|1),	the	average	exposure	

was	35	mAs.	

Scan	 protocols	 A|1	 and	 A|5	 had	 a	 longer	 interval	 between	 frames	 during	 contrast	

enhancement	(which	was	between	10	and	35	seconds):	3.4	seconds	and	4.0	seconds	for	scan	

protocols	 A|1	 and	 A|5	 respectively	 compared	 to	 at	 most	 2.0	 seconds	 for	 the	 other	 scan	

protocols.	Scan	protocol	A|7	had	a	delayed	scanning	starting	time	of	10.0	seconds.	Also,	scan	

protocol	C|2	had	only	one	frame	well	before	contrast	arrival	(which	was	around	10	seconds).	

Examples	of	CTP	imaging	

Figure	2	shows	examples	of	the	ischemic	stroke	regions	estimated	by	the	vendor	software	

and	after	standardization	(see	Table	2	for	the	logistic	regression	coefficients	for	each	vendor	

software).	These	estimated	ischemic	stroke	regions	were	derived	from	the	perfusion	maps,	

shown	in	Figure	3	for	one	of	the	eight	slices.	Additionally,	the	CBF	parameter	map	is	shown	

for	all	eight	slices	in	Figure	4.	All	eight	slices	for	the	CBV,	MTT,	and	TMAX/TTP	parameter	

maps	 can	 be	 found	 in	 the	 Supplementary	 Material.	 Between	 vendor	 software,	 both	 the	

ischemic	stroke	regions	estimated	by	the	vendor	software	(Figure	2)	and	the	perfusion	maps	

(Figure	3	and	Figure	4)	were	visually	dissimilar.	
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Figure	2	

Examples	of	the	ischemic	stroke	regions	estimated	by	the	vendor	software	and	by	the	
standardized	method.	The	infarct	core	is	in	red	and	the	penumbra	is	in	green	or	yellow.	
Ideally,	each	column	should	be	the	same	in	all	its	rows.	On	the	top	row,	the	ground	truth	
segmentations	are	shown.	These	segmentations	are	fuzzy	because	they	were	made	on	
thinner	MR	slices.	On	the	second	to	fourth	row,	the	ischemic	stroke	regions	estimated	by	the	
vendor	software	(A-C)	are	shown,	obtained	from	screenshots.	The	screenshots	from	vendor	
software	C	are	darker	and	noisier	because	they	show	the	first	frame	instead	of	a	maximum	
intensity	projection.	On	the	fifth	to	seventh	row,	the	ischemic	stroke	regions	estimated	by	
the	standardized	method	(A*-C*)	are	shown.	The	examples	are	the	first	noise	realization	
from	the	representative	scan	protocols	A|4,	B|6,	and	C|1	(see	Figure	1).	
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Table	2	

The	logistic	regression	coefficients	for	each	vendor	software.	The	coefficient	for	the	cerebral	
blood	flow	(CCBF)	is	in	(mL/100g/min)-1,	the	coefficient	for	the	cerebral	blood	volume	(CCBV)	
is	in	(mL/100g)-1,	the	coefficient	for	the	mean	transit	time	(CMTT)	is	in	(seconds)-1,	and	the	
coefficient	for	either	the	time	to	maximum	or	the	time	to	peak	(CTMAX)	is	in	(seconds)-1.	

Software	 Ischemic	region	 CINT	 CCBF	 CCBV	 CMTT	 CTMAX	

A	 Core	 -5.0	 -0.0391	 -4.74	 -0.39	 2.8	

	 Penumbra	 -18.5	 -0.0313	 0.73	 -0.56	 3.2	

B	 Core	 20.7	 -0.7049	 -8.00	 -0.29	 2.9	

	 Penumbra	 -13.7	 -0.0045	 0.54	 0.33	 2.9	

C	 Core	 -0.2	 -0.7486	 4.70	 -0.41	 1.7	

	 Penumbra	 -16.3	 -0.1747	 3.87	 0.48	 1.7	

	

It	appears	from	Figure	2	that	the	estimated	ischemic	stroke	regions	were	harmonized,	to	a	

degree,	 after	 standardization.	 For	 vendor	 software	 B,	 the	 estimated	 penumbra	 in	 a	 slice	

resembled	the	ground	truth	penumbra	in	that	slice	and	its	adjacent	slices.	In	particular,	this	

seemed	to	result	in	a	reduced	estimation	of	the	infarct	core	by	vendor	software	B	as	well	as	

an	estimated	hypoperfused	region	in	the	outer	slices,	where	barely	any	hypoperfusion	should	

exist.	Hypoperfusion	in	the	outer	slices	is	also	clearly	visible	on	the	perfusion	maps	generated	

by	vendor	software	B	(Figure	4).	These	results	may	have	been	due	to	the	filter	size	of	vendor	

software	B,	which	was	10	mm	i.e.	 twice	the	slice	thickness.	Vendor	software	A	appears	to	

generate	the	noisiest	perfusion	parameters.	
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Figure	3	

Examples	of	the	perfusion	maps	generated	by	the	vendor	software.	In	each	row,	the	
perfusion	maps	from	a	different	vendor	software	(A-C)	are	shown	for	a	single	slice	of	the	
phantom.	In	each	column,	a	different	perfusion	map	is	shown	for	each	vendor	software.	
Ideally,	each	column	should	be	the	same	in	all	its	rows.	CBF	is	cerebral	blood	flow,	CBV	is	
cerebral	blood	volume,	MTT	is	mean	transit	time,	TMAX	is	time	to	maximum,	and	TTP	is	
time	to	peak.	The	color	schemes	were	left	unadjusted.	The	examples	are	the	first	noise	
realization	from	the	representative	scan	protocols	A|4,	B|6,	and	C|1	(see	Figure	1).	

	

	



Chapter	3	

	

58	

	

Figure	4	

Examples	of	the	cerebral	blood	flow	parameter	map	generated	by	the	vendor	software.	In	
each	row,	the	cerebral	blood	flow	from	a	different	vendor	software	(A-C)	is	shown	for	all	
slices	of	the	phantom.	Ideally,	each	column	should	be	the	same	in	all	its	rows.	The	color	
schemes	were	left	unadjusted.	The	examples	are	the	first	noise	realization	from	the	
representative	scan	protocols	A|4,	B|6,	and	C|1	(see	Figure	1).	

	

Assessment	of	CTP	imaging	

Figure	5	shows	boxplots	of	the	perfusion	parameters	for	one	(representative)	scan	protocol	

per	vendor	software.	We	refer	to	the	Supplementary	Material	for	a	similar	overview	of	all	the	

scan	protocols.	Figure	6	shows	the	boxplots	of	the	volumes	of	the	estimated	ischemic	stroke	

regions	 for	 each	 scan	 protocol	 (additional	 boxplots	 can	 be	 found	 in	 the	 Supplementary	

Material).	The	median,	first	quartile,	and	third	quartile	error	of	the	volumes	estimated	by	the	

vendor	software	and	by	the	standardized	method	are	given	in	Table	3.	

Figure	6	demonstrates	that	the	differences	between	centers	were	mainly	due	to	the	vendor	

software.	Vendor	software	A	estimated	the	largest	infarct	cores	and	was	the	most	sensitive	to	

different	noise	realizations	of	the	phantom.	Vendor	software	B	and	C	were	both	much	less	

sensitive	to	the	different	noise	realizations.	Vendor	software	B	estimated	smaller	infarct	cores	

than	 vendor	 software	 C.	 Hence,	 three	 groups	 of	 estimated	 volumes	 according	 to	 vendor	

software	clearly	emerged.	
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Figure	5	

Boxplots	of	the	perfusion	parameters	estimated	by	the	vendor	software.	We	pooled	the	ten	
noise	realizations	of	the	phantom	for	each	scan	protocol	and	show	the	results	for	scan	
protocol	A|4,	B|6,	and	C|1.	The	dashed	horizontal	colored	lines	indicate	the	thresholds	given	
in	Table	1,	for	which	relative	values	were	calculated	as	relative	to	the	median	value	of	the	
perfusion	parameter	in	healthy	matter.	CBF	is	cerebral	blood	flow,	CBV	is	cerebral	blood	
volume,	MTT	is	mean	transit	time,	TMAX	is	time	to	maximum,	and	TTP	is	time	to	peak.	

	

Albeit	 much	 less	 than	 the	 vendor	 software,	 the	 scan	 acquisition	 protocol	 impacted	 the	

estimated	volumes	in	some	cases	(Figure	6).	Scan	protocols	A|1	and	A|5,	with	a	longer	inter-

val	between	frames	during	contrast	enhancement,	resulted	in	volumes	that	deviated	the	most.	

Too	 few	frames	before	contrast	arrival	may	have	 increased	 the	variance	 in	 the	estimated	

infarct	core	for	scan	protocols	A|7	and	C|2	because	of	an	increased	noise	in	the	CBV	[25].	
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Figure	6	

Boxplots	of	the	volumes	of	the	ischemic	stroke	regions	estimated	by	the	vendor	software	
and	by	the	standardized	method.	Eighteen	scan	protocols	(A|1-C|3)	were	analyzed	with	
center-specific	software	from	one	of	three	vendors	(A-C).	The	vertical	black	lines	indicate	
the	ground	truth	volumes.	

	

The	estimated	volumes	of	the	infarct	core	were	aligned	between	vendor	software	and	scan	

protocols	 after	 standardization	 (Figure	 6	 and	 Table	 3).	 The	 estimated	 volumes	 of	 the	

hypoperfused	region	were	still	segregated,	mainly	between	vendor	software	B	and	vendor	

software	 A	 and	 C	 (Figure	 6).	 The	 standardized	method	 overestimated	 the	 hypoperfused	

region	for	vendor	software	B,	which	could	be	expected	from	the	perfusion	maps	and	which	

resulted	in	a	wider	interquartile	range	for	the	hypoperfused	volumes	(Figure	4	and	Table	3).	
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Table	3	

Median	[first	quartile,	third	quartile]	error	of	the	volumes	of	the	ischemic	stroke	regions	
estimated	by	the	vendor	software	and	by	the	standardized	method.	We	pooled	all	noise	
realizations	of	the	phantom.	A	positive	error	indicates	overestimation.	

Ischemic	region	 Vendor	software	 Standardized	method	

Core	(mL)	 -8.2	[-18.1,	-3.5]	 -3.1	[-4.2,	-1.7]	

Hypoperfused	(mL)	 18.4	[10.2,	32.0]	 -3.2	[-12.5,	28.8]	

	

Discussion	

Our	study	evaluated	CTP	stroke	imaging	in	a	real-world	setting	and	found	that	the	estimated	

ischemia	 varied	 greatly	 between	 centers.	 The	 primary	 source	 of	 this	 variation	 was	 the	

perfusion	software	rather	than	the	acquisition	protocol.	Previous	research	has	already	shown	

for	patient	data	that	vendor	software	can	cause	large	differences	in	estimated	ischemia	and	

our	study	supports	these	findings	with	homogeneous	phantom	data	representative	of	clinical	

variation	[11,	26,	27].	The	homogeneous	nature	of	our	data,	combined	with	the	disparate	

outcome,	suggests	that	multicenter	CTP	data	and	prevailing	clinical	guidelines	may	in	fact	

hold	 limited	 validity.	 Hence,	 patients	 are	 likely	 evaluated	 variously	 at	 present,	with	 both	

scientific	 and	 clinical	 consequences,	 depending	 on	 the	 software	 used	 to	 analyze	 their	

CTP	scans.	

Much	of	the	variation	between	vendor	software	was	due	to	the	estimation	of	ischemia.	While	

the	perfusion	maps	were	both	qualitatively	and	quantitatively	dissimilar,	the	standardized	

method	resulted	in	a	harmonized	estimation	of	 ischemia.	This	 feasibility	of	harmonization	

implies	that	the	perfusion	parameters	from	the	different	vendor	software	actually	contain	a	

comparable	 level	of	information	and	can	be	equally	valuable	on	the	whole	when	properly	

assessed.	We	opted	for	a	logistic	model	to	standardize	vendor	software	because	of	its	ability	

to	 combine	 multiple	 perfusion	 parameters	 when	 characterizing	 ischemia,	 while	 being	

insusceptible	to	multicollinearity	in	 its	predictions,	so	that	each	vendor	software	could	be	

assessed	 fairly	 based	 on	 all	 of	 their	 perfusion	 data	 [28].	 Additionally,	 a	 logistic	model	 is	

relatively	easy	to	implement	by	vendors.	Although	similar	models	have	been	proposed	in	the	

past,	 they	 have	 not	 been	 applied	 in	 the	 context	 of	 harmonization	 [13,	 24,	 29–31].	 Some	

variation	 in	the	estimated	ischemia	remained,	demonstrating	a	desirable	sensitivity	to	the	

acquisition	and	processing	protocol.	As	a	clear	example,	 the	overestimated	hypoperfusion	
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from	 vendor	 software	 B	 rightly	 resulted	 in	 divergent	 volumes.	 Thus,	 variability	 in	 CTP	

imaging	 resulted	mainly	 from	 the	 vendor	 software	 but	 could	 be	 compensated	 for	 when	

estimating	ischemia.	

The	acquisition	protocol	may	require	minimal	guidelines	to	ensure	consistent	CTP	imaging.	

Previous	studies	have	already	shown	that	acquisition	settings	can	affect	CTP	images	sepa-

rately	[4–7].	By	examining	existent	acquisition	protocols	integrally,	our	findings	suggest	that	

the	timing	of	the	frames	is	the	most	consequential	aspect	of	present	scan	protocols.	Minimal	

requirements	on	this	timing,	such	as	a	maximum	interval	during	contrast	enhancement	and	

a	minimum	number	of	frames	before	contrast	arrival,	may	be	sufficient	to	level	the	variation	

that	was	due	to	the	scan	protocol.	Hence,	only	little	standardization	of	the	acquisition	protocol	

seems	necessary	to	secure	a	harmonized	CTP	outcome	when	the	same	perfusion	software	

is	used.	

Our	study	has	some	limitations.	It	is	based	on	phantom	data,	which	may	not	directly	translate	

to	patient	data.	Emulating	anthropomorphic	perfusion	data	and	generating	realistic	scanner	

noise	 are	 both	 challenging	 tasks.	 Additionally,	 scanner-specific	 features	 such	 as	 the	

reconstruction	algorithm	are	difficult	to	incorporate	in	a	digital	phantom.	Besides,	we	did	not	

consider	the	contrast	medium	injection	protocol,	which	has	been	shown	to	affect	CTP	imaging	

as	well	and	which	may	combine	with	aspects	of	the	scan	protocol	[32].	For	instance,	shorter	

injection	times	may	require	shorter	 frame	intervals	to	not	overpass	the	contrast	enhance-

ment	phase.	Finally,	an	identical	treatment	of	each	vendor	software	was	hampered	by	their	

different	 implementations,	 for	example	 in	 the	 set,	 the	 size,	 and	 the	value	of	 the	exported	

DICOM	images,	limiting	the	veracity	of	the	standardization	of	the	vendor	software.	

Conclusion	

We	evaluated	CTP	imaging	 in	a	real-world	setting	and	found	that	 ischemia	was	estimated	

disparately	between	centers.	The	perfusion	software,	rather	than	the	acquisition	protocol,	

was	 the	main	 cause	 of	 this	 variation.	 Still,	 the	 variation	 in	 estimated	 ischemia	 could	 be	

reconciled	by	incorporating	all	available	perfusion	data	in	a	consistent	way.	Accordingly,	we	

advocate	 for	 the	 harmonization	 of	 CT	 perfusion	 imaging	 by	 standardizing	 the	estimation	

of	ischemia.	 	
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Figure	7	

Examples	of	the	cerebral	blood	flow	parameter	map	generated	by	the	vendor	software.	In	
each	row,	the	cerebral	blood	flow	from	a	different	vendor	software	(A-C)	is	shown	for	all	
slices	of	the	phantom.	The	color	schemes	were	left	unadjusted.	The	examples	are	the	first	
noise	realization	from	the	representative	scan	protocols	A|4,	B|6,	and	C|1	(see	Figure	1).	

	

Supplementary	Figure	1	

Examples	of	the	cerebral	blood	volume	parameter	map	generated	by	the	vendor	software.	
In	each	row,	the	cerebral	blood	volume	from	a	different	vendor	software	(A-C)	is	shown	for	
all	slices	of	the	phantom.	The	color	schemes	were	left	unadjusted.	The	examples	are	the	first	
noise	realization	from	the	representative	scan	protocols	A|4,	B|6,	and	C|1	(see	Figure	1).	
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Supplementary	Figure	2	

Examples	of	the	mean	transit	time	parameter	map	generated	by	the	vendor	software.	In	
each	row,	the	mean	transit	time	from	a	different	vendor	software	(A-C)	is	shown	for	all	
slices	of	the	phantom.	The	color	schemes	were	left	unadjusted.	The	examples	are	the	first	
noise	realization	from	the	representative	scan	protocols	A|4,	B|6,	and	C|1	(see	Figure	1).	

	

Supplementary	Figure	3	

Examples	of	the	time	to	maximum	or	time	to	peak	parameter	map	generated	by	the	vendor	
software.	In	the	first	row,	the	time	to	peak	from	vendor	software	A	and,	in	the	second	and	
third	row,	the	time	to	maximum	from	vendor	software	B	and	C	are	shown	for	all	slices	of	the	
phantom.	The	color	schemes	were	left	unadjusted.	The	examples	are	the	first	noise	
realization	from	the	representative	scan	protocols	A|4,	B|6,	and	C|1	(see	Figure	1).	
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Supplementary	Figure	4	

Boxplots	of	the	cerebral	blood	flow	(CBF)	estimated	by	the	vendor	software	for	each	scan	
protocol	(A|1-C|3).	We	pooled	the	ten	noise	realizations	of	the	phantom	for	each	scan	
protocol.	The	dashed	horizontal	colored	lines	indicate	the	thresholds	given	in	Table	1,	for	
which	relative	values	were	calculated	as	relative	to	the	median	value	of	the	perfusion	
parameter	in	healthy	matter.	

	

Supplementary	Figure	5	

Boxplots	of	the	cerebral	blood	volume	(CBV)	estimated	by	the	vendor	software	for	each	
scan	protocol	(A|1-C|3).	We	pooled	the	ten	noise	realizations	of	the	phantom	for	each	scan	
protocol.	The	dashed	horizontal	colored	lines	indicate	the	thresholds	given	in	Table	1,	for	
which	relative	values	were	calculated	as	relative	to	the	median	value	of	the	perfusion	
parameter	in	healthy	matter.	
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Supplementary	Figure	6	

Boxplots	of	the	mean	transit	time	(MTT)	estimated	by	the	vendor	software	for	each	scan	
protocol	(A|1-C|3).	We	pooled	the	ten	noise	realizations	of	the	phantom	for	each	scan	
protocol.	The	dashed	horizontal	colored	lines	indicate	the	thresholds	given	in	Table	1,	for	
which	relative	values	were	calculated	as	relative	to	the	median	value	of	the	perfusion	
parameter	in	healthy	matter.	

	

Supplementary	Figure	7	

Boxplots	of	the	time	to	maximum	(TMAX)	or	the	time	to	peak	(TTP)	estimated	by	the	
vendor	software	for	each	scan	protocol	(A|1-C|3).	For	vendor	software	A,	the	TTP	is	shown.	
For	vendor	software	B	and	C,	the	TMAX	is	shown.	We	pooled	the	ten	noise	realizations	of	the	
phantom	for	each	scan	protocol.	The	dashed	horizontal	colored	lines	indicate	the	thresholds	
given	in	Table	1,	for	which	relative	values	were	calculated	as	relative	to	the	median	value	of	
the	perfusion	parameter	in	healthy	matter.	
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Supplementary	Figure	8	

Boxplots	of	the	mismatches	and	the	volumes	of	the	penumbra	estimated	by	the	vendor	
software	and	by	the	standardized	method.	The	mismatch	is	defined	as	the	volume	of	the	
penumbra	over	the	volume	of	the	hypoperfused	tissue.	Eighteen	scan	protocols	(A|1-C|3)	
were	analyzed	with	center-specific	software	from	one	of	three	vendors	(A-C).	The	vertical	
black	lines	indicate	the	ground	truth	volumes.	
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Supplementary	Table	1	

Median	[first	quartile,	third	quartile]	error	of	the	mismatches	and	the	volumes	of	the	
penumbra	estimated	by	the	vendor	software	and	by	the	standardized	method.	We	pooled	all	
noise	realizations	of	the	phantom.	A	positive	error	indicates	overestimation.	

Ischemic	region	 Vendor	software	 Standardized	method	

Penumbra	(mL)	 19.1	[12.5,	50.3]	 -1.1	[-11.2,	31.6]	

Mismatch	(%)	 9.8	[3.3,	25.1]	 3.9	[-3.5,	11.6]	
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CT	 perfusion	 (CTP)	 imaging	 yields	 crucial	 quantitative	 information	 on	 the	 infarct	 for	

management	of	acute	ischemic	stroke	patients.	Given	the	technical	complexity	and	variability	

of	CTP	protocols	across	centers,	there	is	a	need	for	calibration	and	image	quality	control.	No	

physical	phantom	is	available	that	realistically	includes	all	relevant	features	of	CTP	imaging.	

To	this	end,	we	developed	an	anthropomorphic	physical	phantom	to	provide	CTP	imaging	

quality	control	in	acute	ischemic	stroke.	

We	 propose	 a	 phantom	 that	 generates	 realistic	 brain	 features	 by	 stacking	 contrast	 agent	

printed	 sheets.	 By	moving	 the	 phantom	 through	 the	 CT	 field	of	 view,	 a	dynamic	 effect	 is	

achieved,	enabling	a	realistic	simulation	of	contrast	inflow	and	egress.	The	physical	phantom	

was	 a	 printed	 version	 of	 an	 anthropomorphic	 digital	 phantom,	 which	 thus	 provided	 the	

ground	truth.	The	final	design	of	the	phantom	was	scanned	in	slices	of	5	mm	thickness	and	

analyzed	 with	 the	 perfusion	 software	 CT	 Brain	 Perfusion	 (IntelliSpace	 Portal,	 Philips	

Healthcare).	

The	 perfusion	maps	 of	 the	 physical	phantom	were	 visually	 similar	 to	 those	 of	 the	 digital	

phantom.	The	ischemia	was	estimated	similarly	as	well	with	a	Dice	similarity	coefficient	of	

0.96	for	the	infarct	core	an	0.92	for	the	penumbra.	However,	the	tissue	enhancement	curves	

themselves	were	biased	due	to	technical	imperfections	in	the	phantom.	

We	 showed	 the	 feasibility	 of	 mimicking	 anthropomorphic	 brain	 tissue	 perfusion	 with	 a	

physical	phantom.	In	its	current	state,	the	phantom	still	has	limitations,	such	as	the	need	for	

post-processing	before	the	perfusion	analysis	and	suboptimal	contrast	enhancement	in	the	

brain	tissue.	 	

	

Constructing	a	physical	phantom	
Based	on	‘Daan	Peerlings,	Edwin	Bennink,	Jan	W	Dankbaar,	Hugo	WAM	de	Jong.		

An	anthropomorphic	physical	phantom	for	CT	perfusion	imaging	in	acute	ischemic	stroke.’	

Ongoing	research.	
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Introduction	

CT	 perfusion	 (CTP)	 imaging	 is	 critical	 to	 evaluate	 acute	 ischemic	 stroke	 patients.	 The	

objective	of	CTP	scanning	is	to	come	to	quantitative	volume	measures	for	the	infarct	core	and	

penumbra.	 The	 treatment	 decision	 is	 typically	 based	 on	 these	 volumes,	 underlining	 the	

importance	 of	 quantitative	 accuracy.	 However,	 the	 CTP	 imaging	 protocol	 is	 complicated,	

consisting	of	a	diverse	array	of	injection,	scanning,	and	processing	methodologies	employed	

across	 stroke	 centers,	 all	 of	 which	 can	 lead	 to	 significant	 variations	 in	 the	 estimated	

ischemia	[1].	Despite	recognition	of	these	complexities	and	their	clinical	implications,	there	

is	currently	no	quality	control	for	the	quantitative	accuracy	of	CTP	outcome	measures.	

Quality	 control	 is	 already	 established	 in	 other	 quantitative	 imaging	 situations,	 where	

dedicated	 phantoms	 have	 become	 instrumental.	 The	 National	 Electrical	 Manufacturers	

Association's	(NEMA)	NU	2	image	quality	phantom,	for	example,	has	been	used	to	assess	the	

quantitative	performance	of	PET/CT	systems	and	to	harmonize	multicenter	studies	[2].	For	

dual-energy	X-ray	absorptiometry,	comparable	methodologies	are	in	place	[3,	4].	Likewise,	

phantoms	 may	 facilitate	 harmonization	 and	 optimization	 of	 the	 CTP	 imaging	 protocol;	

providing	a	way	to	check	the	consistency	and	performance	of	CT	scanner	hardware	and	CTP	

software	between	and	within	centers.	

Ideally,	a	CTP	image	quality	phantom	meets	the	following	requirements.	Firstly,	it	can	mimic	

the	dynamic	behavior	of	contrast	agent	through	the	tissue.	This	inflow	and	egress,	which	can	

be	depicted	 in	time	attenuation	curves,	is	 the	basis	on	which	perfusion	measurements	are	

based	 and	 should	 be	 representative	 of	 a	 clinical	 brain	 scan.	 Secondly,	 the	 phantom	 has	

anthropomorphic	 features	 such	 that	 the	 automatic	 analysis	 of	 clinical	 software	 can	 be	

evaluated	 for	 the	 accuracy	 of	 infarct	 volume	measurements	 in	 standard	 clinical	 settings.	

Lastly,	the	phantom	should	be	relatively	easy	to	operate	and	yield	reproducible	results.	To	

our	 knowledge	 no	 phantom	 exists	 that	 meets	 these	 requirements.	 A	 few	 phantoms	 are	

available	that	provide	some	dynamic	contrast	features,	such	as	a	phantom	that	moves	rods	

with	 varying	 radiopacity	 and	a	 phantom	 that	 employs	a	 pump	 to	 perfuse	a	 plastic	 tissue	

mimicking	compartment	[5,	6].	Still,	both	phantoms	lack	anthropomorphic	features	so	that	a	

clinically	meaningful	CTP	analysis,	with	a	volume	measurement	of	ischemia,	cannot	be	tested.	
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Figure	1	

The	normal	radiopaque	printing	process	of	PhantomX.	The	head	CT	phantom	on	the	left	
consists	of	paper	sheets	that	were	printed	on	with	contrast	agent,	cut	out,	stacked	together	
with	adhesive	in	the	axial	direction,	and	coated.	The	phantom	can	be	scanned	to	obtain	
anatomically	accurate	CT	scans	as	on	the	right.	Reprinted	with	permission	from	
phantomx.de	

	

Radiopaque	printing	has	made	it	possible	to	construct	realistically	anthropomorphic	physical	

CT	phantoms	(Figure	1).	In	radiopaque	printing,	attenuating	materials	are	printed	to	simulate	

human	 anatomy.	 Radiopaque	 printed	 phantoms	 have,	 so	 far,	 been	 designed	 to	 evaluate	

human-reader	 diagnostics,	 to	 train	 medical	 professionals,	 or	 to	 plan	 surgical	 proce-

dures	[7-9].	We	propose	a	CTP	phantom	based	on	radiopaque	printing	consisting	of	a	number	

of	sections	representing	different	contrast	transition	phases	that,	combined	with	a	translation	

mechanism,	creates	a	dynamic	effect	in	the	CT	scanner’s	field	of	view.		This	way,	a	dynamic	

process	 can	be	 simulated	accurately	 enough	 to	perform	a	perfusion	analysis	 and	 serve	as	

method	for	quality	control.	In	this	study,	the	development	of	the	phantom	and	the	current	

performance	status	is	reported	on.	
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Methods	

Concept	of	the	phantom	

The	concept	of	the	phantom	is	depicted	in	Figure	2.	CTP	imaging	can	be	considered	as	a	series	

of	scans	of	different	time	frames	of	the	same	anatomical	volume.	One	scan	typically	takes	0.5	

seconds	and	the	time	between	frames	is	typically	1	to	4	seconds.	In	the	phantom,	every	CTP	

frame	corresponds	to	a	stack	of	printed	sheets,	which	we	will	refer	to	as	a	CTP	frame	volume.	

As	the	number	of	time	frames	in	a	typical	CTP	series	is	between	thirty	and	sixty,	our	phantom	

also	contains	this	number	of	CTP	frame	volumes,	which	are	stacked	in	a	large	cylinder.	The	

idea	is	that,	after	a	CTP	frame	volume	is	scanned,	the	phantom	is	automatically	moved	in	the	

time	between	frames,	to	place	the	next	CTP	frame	volume	in	the	scanner’s	field	of	view.	This	

creates	the	perception	of	a	dynamic	change	of	the	anthropomorphic	frames.	

Constructing	 the	 phantom	 includes	 a	 number	 of	 challenges.	 The	 amplitude	 of	 time	

attenuation	curves	depends	on	the	anatomical	location	(voxel)	of	contrast	measurement.	In	

an	artery,	 the	 contrast	 ranges	 from	around	0	HU,	when	 the	voxel	 contains	blood	without	

contrast	agent,	to	500	HU,	when	the	voxel	is	completely	filled	with	contrast	and	the	maximum	

of	the	bolus	passes	through.	In	healthy	brain	tissue,	where	only	a	fraction	of	the	voxel	will	be	

filled	with	contrast	agent,	the	contrast	ranges	between	25	HU	and	35	HU	for	white	matter	and	

between	30	HU	and	50	HU	for	gray	matter.	In	ischemic	brain	tissue,	these	contrast	ranges	are	

reduced,	possibly	to	only	a	couple	Hounsfield	units.	In	order	for	all	time	attenuation	curves	

to	be	accurately	represented	in	the	phantom,	a	resolution	of	approximately	2	HU	should	be	

attained,	which	requires	a	high	printing	quality.	In	addition,	the	background	contrast	from	

the	paper	sheets	should	ideally	be	below	this	resolution	of	2	HU,	as	spurious	variation	of	the	

background	may	result	in	unrealistic	time	attenuation	curves.	

Paper	phantom	prototype	

The	envisioned	 paper	 stack	 phantom	consists	 of	 approximately	 15	 to	 30	 thousand	 paper	

sheets,	with	every	CTP	time	frame	volume	consisting	of	500	printed	sheets,	corresponding	to	

a	thickness	of	5	mm	per	CTP	time	frame	volume.	The	total	stack,	which	is	30	to	60	cm	in	length,	

is	to	be	translated	with	a	stepping	device.	
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Figure	2	

The	concept	of	the	radiopaque	printed	CT	perfusion	(CTP)	phantom.	Each	500	sheets,	which	
add	to	a	thickness	of	5	mm,	represent	the	same	anatomical	volume	but	a	different	time	
frame.	In	the	time	between	frames,	the	phantom	should	be	moved	5	mm	to	create	the	
perception	of	a	dynamic	change	as	the	phantom	moves	through	the	CTP	field	of	view.	

	

To	investigate	the	uniformity	and	contrast	resolution	of	such	a	stacked	paper	phantom,	we	

tested	a	block	phantom	provided	by	PhantomX,	a	company	specialized	in	printing	iodinated	

contrast	agent	(Figure	3).	The	block	phantom	consisted	of	a	grid	with	contrast	enhancement	

curves,	 of	 varying	heights	 and	widths,	 for	brain	 tissue	and	a	 single	 arterial	 enhancement	

curve.	The	block	phantom	also	included	regions	that	were	not	printed	(no	contrast	agent).	

The	 unprinted	 paper	 had	 a	 standard	 deviation	 of	 5.0	 HU,	 which	 meant	 that	 the	 paper	

background	was	not	uniform	enough	to	measure	the	 signal	of	 approximately	15	HU	from	

contrast	enhancement	curves	for	brain	tissue.	However,	the	signal	of	500	HU	from	the	arterial	

enhancement	curve	could	be	accurately	replicated	(Figure	3).	
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Figure	3	

Block	phantom	for	testing.	On	the	top,	the	direction	from	left	to	right	simulates	time.	The	
bottom	left	shows	the	HU	for	paper	that	is	not	printed	on.	The	bottom	right	shows	the	
arterial	enhancement	curve	that	was	printed	in	the	block	phantom.	The	curves	represent	
scanning	at	80	kVp	and	500	mAs,	with	each	point	in	the	graphs	corresponding	to	a	region	of	
5	mm	x	5	mm	x	5	mm.	

	

PMMA	phantom	prototype	

As	the	paper	stack	approach	could	not	replicate	contrast	enhancement	curves	for	brain	tissue,	

an	alternative	approach	was	proposed.	In	this	approach,	a	single	anatomical	CTP	time	frame	

volume	was	not	printed	on	a	stack	of	paper	sheets	but	instead	on	one	paper	sheet.	The	printed	

sheet	was	 placed	 between	 two	 disks	 of	 polymethyl	methacrylate	 (PMMA).	 By	 scanning	a	

single	CT	slice	with	a	collimation	of	5	mm,	the	acquired	CT	image	was	an	average	of	the	paper	

with	the	PMMA	disks.	On	one	hand,	this	limited	our	phantom	to	time	frames	consisting	of	two-	
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Figure	4	

Calibration	phantom	with	polymethyl	methacrylate	(PMMA)	disks	as	background.	An	
unprinted	paper	sheet	between	PMMA	disks	in	a	slice	of	5	mm	thickness	resulted	in	a	
measured	attenuation	of	95	HU.	The	measured	attenuation	increased	linearly	as	expected	
until	the	measured	attenuation	dropped	off	compared	to	the	expectation.	At	earlier	points,	
the	measured	attenuation	also	occasionally	deviated	from	the	expectation.	

	

dimensional	volumes,	but	also	came	with	a	number	of	advantages.	First	of	all,	the	PMMA	has	

an	 improved	 uniformity	 over	 stacked	 papers,	 reducing	 the	 standard	 deviation	 of	 the	

background	 to	 0.7	 HU	 (Figure	 4),	 which	 allows	 more	 subtle	 and	 realistic	 tissue	 time	

attenuation	curves.	Secondly,	instead	of	printing	more	than	10	thousand	paper	sheets,	only	

one	sheet	per	time	frame	is	to	be	printed,	improving	the	flexibility	of	the	phantom	and	costs.	

And	lastly,	averaging	out	the	contrast	on	the	single	printed	sheet	with	PMMA	converts	a	large	

contrast	 range	with	a	 limited	 contrast	 resolution	 into	 a	 small	 range	with	 a	high	 contrast	

resolution,	which	is	required	to	replicate	the	contrast	enhancement	curves	for	brain	tissue.	

To	investigate	the	resolution	of	the	printed	contrast	for	the	new	approach,	a	test	phantom	

was	constructed	(Figure	4).	The	test	phantom	consisted	of	sheets	with	a	printed	brain	mask,	

for	which	each	hemisphere	had	a	specific	printed	HU.	In	total,	20	such	sheets	were	printed,	

ranging	from	-400	to	1200	HU	in	steps	of	50	HU,	and	were	placed	in	between	PMMA	disks,	

which	had	a	thickness	of	1	cm	and	a	diameter	of	15	cm.	The	printed	sheets	between	the	PMMA	

were	scanned	in	5	mm	slices.	Figure	4	shows	the	uniformity	of	solid	PMMA	as	well	as	the	

linearly	 increasing	 contrast	 enhancement,	 with	 a	 sufficient	 resolution	 to	 print	 contrast	

enhancement	curves	for	brain	tissue.	
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Anthropomorphic	phantom	

After	 this	 an	 anthropomorphic	 version	 of	 the	 phantom	 was	 constructed	 (Figure	 5).	 We	

designated	 the	 anthropomorphic	 physical	 phantom	 to	 be	 a	 printed	 version	 of	 our	

anthropomorphic	 digital	 phantom	 [10].	 Only	 the	 brain	 tissue	 of	 the	 digital	 phantom	was	

printed.	We	printed	the	brain	tissue	on	151	separate	paper	sheets,	for	0	to	75	seconds	in	steps	

of	0.5	seconds.	By	selecting	printed	sheets	to	put	in	between	the	PMMA	disks,	we	can	tailor	to	

specific	scan	protocols.	To	test	the	phantom,	we	chose	a	scan	protocol	from	0	to	60	seconds	

with	 frames	every	2	 seconds,	 for	which	we	 thus	used	31	of	 the	151	available	 sheets.	We	

scanned	the	phantom	at	80	kVp	and	150	mAs	on	a	dual-energy	IQon	Spectral	CT	scanner	

(Philips	Healthcare).	The	scan	was	reconstructed	in	1	mm	axial	slices	and	was	exported	as	

DICOM	file.	

The	exported	scan	required	post-processing	to	look	like	a	CTP	scan.	The	PMMA	disks	resulted	

in	 a	relatively	dense	background	of	95	HU	(Figure	4).	While	this	may	not	obstruct	a	CTP	

analysis	in	theory,	clinical	software	may	not	expect	such	dense	soft	tissue	and	exclude	these	

regions	from	the	analysis.	Therefore,	we	subtracted	69	HU	to	reach	the	baseline	intensity	as	

seen	in	real	CTP	scans.	On	the	positions	of	the	paper	sheets,	we	averaged	five	slices	of	1	mm	

thickness	to	a	single	slice	of	5	mm	thickness.	The	resulting	31	slices	of	5	mm	thickness	were	

transformed	rigidly	to	the	first	slice.	Finally,	we	synthetically	added	the	remaining	tissue,	like	

the	 vessels,	 cerebrospinal	 fluid,	 and	 skull,	 from	 a	 digital	 phantom,	 because	 our	 dynamic	

printing	range	was	limited	to	brain	tissue.	

The	 post-processed	 scan	 was	 analyzed	 with	 CT	 Brain	 Perfusion	 (arrival-time-sensitive	

algorithm)	 from	 IntelliSpace	 Portal	 (ISP)	 version	 10.1	 (Philips	 Healthcare).	 This	 gave	

perfusion	maps	of	the	cerebral	blood	flow	(CBF),	cerebral	blood	volume	(CBV),	mean	transit	

time	(MTT),	and	 time	to	peak	(TTP).	From	 these	perfusion	maps,	 the	 summary	map	was	

determined	by	estimating	the	infarct	core	as	tissue	with	both	a	CBV	<	2.0	mL/100g	and	a	

relative	MTT	>	150%,	and	by	estimating	the	penumbra	as	tissue	with	a	relative	MTT	>	150%	

not	estimated	as	infarct	core.	
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Figure	5	

Final	design	of	the	anthropomorphic	physical	phantom	while	under	construction.	The	axial	
direction	simulates	time.	On	the	top,	single	paper	sheets	were	printed	on	with	different	
concentrations	of	contrast	agent.	In	the	middle,	the	printed	sheets	were	put	in	between	
disks	of	polymethyl	methacrylate	and	were	joined	together	with	plastic	bolts	and	nuts.	On	
the	bottom,	the	phantom	was	scanned	at	80	kVp	and	150	mAs,	and	the	slices	were	averaged	
to	5	mm	thickness.	The	slices	are	shown	in	a	window	of	80	to	120	HU.	
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Figure	6	

Screenshots	of	the	perfusion	maps	and	summary	map	for	the	anthropomorphic	physical	
phantom.	The	maps	are	from	IntelliSpace	Portal	(Philips).	On	the	top,	the	results	are	shown	
for	the	anthropomorphic	physical	phantom	scanned	at	80	kVp	and	150	mAs.	On	the	bottom,	
for	comparison,	the	results	are	shown	for	the	anthropomorphic	digital	phantom	with	noise	
corresponding	to	80	kVp	and	150	mAs.	

	

Results	

Figure	6	shows	screenshots	of	the	perfusion	maps	and	the	summary	map	generated	by	ISP	

for	the	physical	phantom	and,	for	comparison,	the	digital	phantom.	The	summary	map	shows	

the	estimated	infarct	core	and	penumbra	on	a	maximum	intensity	projection.	The	maximum	

intensity	 projection	 and	 the	 perfusion	maps	 of	 the	 CBF	 and	 CBV	 show	 that	 the	 contrast	

enhancement	of	gray	matter	was	insufficient.	The	estimated	infarct	core	and	penumbra	of	the	

physical	 phantom	 were	 very	 close	 to	 those	 of	 the	 digital	 phantom,	 with	 Dice	 similarity	

coefficients	of	0.96	and	0.92	respectively.	
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Figure	7	

Average	contrast	enhancement	curves	for	different	regions	in	the	anthropomorphic	physical	
phantom.	Apart	from	the	healthy	white	matter,	the	contrast	enhancement	is	lower	than	
expected.	

	

Figure	7	shows	the	average	enhancement	curve	for	different	regions	in	the	brain.	For	healthy	

white	matter,	 the	shape	of	 the	contrast	enhancement	curve	was	replicated	well,	while	 for	

healthy	gray	matter,	 the	contrast	enhancement	was	 lower	than	the	ground	truth	(also	see	

Figure	4).	The	contrast	enhancement	correctly	vanished	for	the	infarct	core	and	was	correctly	

delayed	and	prolonged	for	the	penumbra,	but	was	too	low	on	average	for	both	regions,	as	

each	region	contained	gray	matter.	
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Figure	8	

The	third	(left)	and	fourth	(right)	frame	of	the	scanned	physical	phantom.	In	the	fourth	
frame,	the	attenuation	is	lower	because	of	air	in	between	the	two	disks	of	polymethyl	
methacrylate	(also	see	Figure	7).	The	phantom	was	scanned	at	80	kVp	and	150	mAs,	and	the	
slices	were	averaged	to	5	mm	thickness.	The	slices	are	shown	in	a	window	of	80	to	120	HU.	

	

Figure	8	shows	the	third	and	fourth	frame	of	the	scanned	phantom,	to	exemplify	an	issue	that	

arises	when	stacking	PMMA	disks.	The	third	and	fourth	frame	should	 look	similar	to	each	

other,	but	the	fourth	frame	deviated	from	its	expectation	(Figure	7).	For	the	fourth	frame,	air	

in	between	the	two	PMMA	disks	lowered	the	attenuation;	the	attenuation	of	air	(-1000	HU)	

divided	 by	 the	 slice	 thickness	 (5000	 micrometer)	 results	 in	 decrease	 of	 0.2	 HU	 per	

micrometer	of	air	between	the	disks.	The	air	in	between	the	PMMA	disks	was	the	result	of	

slightly	hollow	disks.	The	PMMA	disks	turned	out	not	to	be	perfectly	flat	because	they	were	

molded,	a	technique	where	liquid	is	hardened	in	a	mold.	
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Discussion	

We	developed	an	anthropomorphic	physical	CTP	phantom	that	simulated	a	dynamic	process	

accurately	enough	for	a	perfusion	analysis	with	clinical	software.	The	perfusion	maps	and	

summary	map	 for	 the	 physical	 phantom	 were	 visually	 similar	 to	 its	 digital	 counterpart.	

However,	 the	 tissue	 enhancement	 curves	 for	 brain	 tissue	 were	 biased	 due	 to	 technical	

imperfections	 in	the	phantom,	and	the	scanned	phantom	required	post-processing	to	 look	

like	 a	 CTP	 scan.	 Still,	 this	 proof-of-concept	 study	 showed	 the	 feasibility	 of	 mimicking	

anthropomorphic	brain	tissue	perfusion	with	a	physical	phantom.	

In	its	current	state,	the	phantom	still	has	several	issues.	Mainly,	we	could	not	reproduce	the	

perfusion	 of	 gray	matter;	 our	 range	was	 insufficient,	most	 clearly	 illustrated	 in	 Figure	 4,	

where	 the	measured	HU	 drops	 off	 compared	 to	what	was	expected.	We	 suspected	 beam	

hardening	caused	this	drop-off,	because	the	printed	sheets	themselves	had	a	high	attenuation	

and	because	scanning	at	higher	tube	voltages	reduced	the	issue.	Beam	hardening	occurs	when	

very	dense	material	attenuates	the	beam,	which	is	a	negative	consequence	of	using	a	single	

printed	sheet	with	high	contrast	averaged	out	by	PMMA	disks.	Putting	two	printed	sheets	

between	 the	 PMMA	 disks,	 which	 allows	 a	 less	 concentrated	 attenuation	 by	 doubling	 the	

amount	 of	 printed	 contrast	 agent,	 also	 reduced	 the	 drop-off.	However,	 these	adaptations	

introduced	complications:	it	became	notably	more	difficult	to	confine	stacked	sheets	to	a	5	

mm	slice,	as	it	was	already	difficult	to	align	the	phantom	accurately	enough	for	a	single	sheet,	

and	a	higher	tube	voltage	would	deviate	from	the	most	common	tube	voltage	in	CTP	imaging	

as	well	as	require	differently	calibrated	radiopaque	printing	[11].	

In	addition	to	the	insufficient	range	to	print	brain	tissue,	we	were	limited	to	print	only	brain	

tissue	because	we	traded	in	dynamic	range	for	sub-Hounsfield-unit	accuracy	when	printing	

iodine.	Regions	with	a	higher	attenuation	than	brain	tissue,	such	as	the	skull	and	contrast	

enhanced	 vessels,	 and	 regions	 with	 a	 lower	 attenuation	 than	 brain	 tissue,	 such	 as	 the	

cerebrospinal	 fluid	 (CSF),	were	 implemented	 digitally.	These	 regions	 need	 to	 be	 realized	

physically	 to	 test	 CTP	 protocols	 integrally,	 as	 the	 perfusion	 software	 required	a	 skull	 for	

image	registration,	needed	an	arterial	input	function	for	the	perfusion	analysis,	and	confused	

CSF	for	infarcted	white	matter.	In	an	attempt	to	solve	these	issues,	we	laser	engraved	the	CSF	

on	 the	 PMMA	 disks,	 lowering	 the	 attenuation	 by	 substituting	 PMMA	 by	 air,	 and	 added	

aluminum	 plates	 on	 the	 disks	 to	 increase	 the	 attenuation	 for	 the	 skull,	 but	 adding	 an	

aluminum	casing	around	the	phantom	seemed	a	constructional	challenge	and	laser	engraving	

lacked	precision.	Contrast	enhanced	vessels,	such	as	the	arterial	input	function,	pivotal	in	a	



Chapter	4	

	

86	

perfusion	analysis,	are	even	more	of	a	challenge	because	of	their	dynamics.	To	replicate	the	

arterial	 input	 function,	 we	 could	 revert	 to	 the	 original	 paper	 stack	 solution	 that	 we	

demonstrated	was	adequate	for	these	curves	and	combine	that	with	the	PMMA	solution.	This	

could	be	achieved	by	inserting	small	cylinders,	each	printed	with	a	certain	attenuation	with	

PhantomX’	normal	printing	process	and	placed	over	a	length	of	5	mm	for	each	slice.	

Further,	the	background	provided	by	the	PMMA	disks	was	unstable	across	frames	because	of	

how	the	disks	fit	together,	given	they	were	not	perfectly	flat.	We	tried	to	bore	the	phantom’s	

fourth	frame	flat,	but	this	roughened	the	surfaces	of	the	PMMA	disks,	resulting	in	more	noise	

and	 an	 even	 lower	 average	 attenuation.	 A	more	 precise	 process	 to	 machine	 plastic	 may	

solve	this.	

Finally,	we	did	not	implement	the	device	to	automatically	move	the	phantom	through	the	field	

of	view.	The	phantom	was	not	scanned	through	time,	but	as	a	long	axial	scan	and	made	to	look	

like	a	CTP	scan	through	post-processing.	To	select	a	preset	CTP	protocol	on	a	scanner,	the	

phantom	 would	 need	 to	 be	moved	 in	 between	 frames,	 which	 may	 be	 accomplished,	 for	

example,	by	placing	the	phantom	on	a	construction	with	rolling	tires	that	automatically	move	

the	phantom	a	centimeter	each	couple	of	seconds.	

Conclusion	

We	 have	 developed	 a	 radiopaque	 printed	 anthropomorphic	 physical	 phantom	 for	 CTP	

imaging	 quality	 control.	 Despite	 limitations,	 the	 phantom	 showed	 realistic	 brain	 tissue	

perfusion,	which	resulted	in	realistically	estimated	ischemia.	A	CTP	imaging	quality	control	

phantom	 could	 harmonize	 and	 optimize	 the	 evaluation	 of	 acute	 ischemic	 stroke	 patients	

across	stroke	centers.	 	
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We	 aimed	 to	 compare	 single	 parameter	 thresholding	 with	 multivariable	 probabilistic	

classification	of	ischemic	stroke	regions	in	the	analysis	of	computed	tomography	perfusion	

(CTP)	parameter	maps.	

Patients	were	included	from	two	multicenter	trials	and	were	divided	into	two	groups	based	

on	their	modified	arterial	occlusive	lesion	grade.	CTP	parameter	maps	were	generated	with	

three	methods	–	a	commercial	method	(ISP),	block-circulant	singular	value	decomposition	

(bSVD),	and	non-linear	regression	(NLR).	Follow-up	non-contrast	CT	defined	the	follow-up	

infarct	region.	Conventional	thresholds	for	individual	parameter	maps	were	established	with	

a	receiver	operating	characteristic	curve	analysis.	Probabilistic	classification	was	carried	out	

with	 a	 logistic	 regression	 model	 combining	 the	 available	 CTP	 parameters	 into	 a	 single	

probability.	

A	 total	 of	 225	 CTP	 data	 sets	 were	 included,	 divided	 into	 a	 group	 of	 166	 patients	 with	

successful	recanalization	and	59	with	persistent	occlusion.	The	precision	and	recall	of	the	CTP	

parameters	were	 lower	 individually	 than	when	 combined	 into	 a	 probability.	The	median	

difference	[interquartile	range]	in	mL	between	the	estimated	and	follow-up	infarct	volume	

was	29/23/23	[52/50/52]	(ISP/bSVD/NLR)	for	conventional	thresholding	and	was	4/6/11	

[31/25/30]	(ISP/bSVD/NLR)	for	the	probabilistic	classification.	

Multivariable	probability	maps	outperform	thresholded	CTP	parameter	maps	in	estimating	

the	 infarct	 lesion	as	observed	on	 follow-up	non-contrast	CT.	A	multivariable	probabilistic	

approach	may	harmonize	the	classification	of	ischemic	stroke	regions.	 	
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Introduction	

Since	endovascular	 treatment	 revolutionized	acute	 ischemic	 stroke	care,	baseline	 imaging	

has	become	ever	more	relevant	to	select	patients	for	treatment	[1–3].	Personalized	selection	

criteria	may	be	provided	by	computed	tomography	perfusion	(CTP)	imaging.	

For	a	patient	with	acute	ischemic	stroke,	a	CTP	scan	should	estimate	the	irreversibly	damaged	

tissue	(i.e.	the	infarct	core)	and	the	salvageable	tissue	(i.e.	the	penumbra),	which	together	

form	the	total	hypoperfused	region.	To	classify	these	regions,	the	CTP	scan	is	processed	with	

dedicated	software	to	produce	four	perfusion	maps:	the	cerebral	blood	flow	(CBF),	cerebral	

blood	volume	(CBV),	mean	transit	time	(MTT),	and	time	to	peak	(TTP/Tmax).	Subsequently,	

a	predefined	threshold	can	be	applied	to	outline	the	ischemic	core	and	the	penumbra.	

However,	different	approaches	 in	CTP	processing	 software	and	analysis	between	vendors	

have	 led	 to	 a	variety	of	 threshold	values	 for	 ischemia	 in	 stroke	 imaging	 (Table	1).	These	

different	 thresholds	 may	 partly	 contribute	 to	 the	 discordance	 between	 vendors	 in	 CTP	

results,	 hampering	 multicenter	 CTP	 studies.	 A	 standardized	 classification	 method	 could	

increase	harmony	in	CTP	results	between	different	processing	methods.	

Probabilistic	classification	of	ischemic	stroke	regions	has	been	proposed	as	an	alternative	to	

threshold-based	 classification	 [4,	 5].	 Probability	 maps	 can	 combine	 parameters	 and	 can	

indicate	certainty	of	ischemia	[4,	6].	Volumes	obtained	from	probability	maps	were	already	

validated	against	conventional	threshold-based	volumes	for	probability	models	that	include	

a	single	perfusion	parameter	[4].	However,	the	chosen	perfusion	parameter	may	still	differ	

between	vendors	and	the	disregarded	maps	may	contain	additional	–	unused	–	information.	

Also,	 a	 multivariable	 probabilistic	 classification	 has	 been	 compared	 to	 single	 parameter	

thresholding,	but	only	for	different	CTP	software	between	the	two	classification	methods	[7].	

Probabilistic	classification	has	not	yet	been	compared	to	threshold-based	classification	for	a	

probability	map	that	combines	multiple	perfusion	parameters	readily	available	within	any	

single	CTP	software.	

This	study	tests	the	hypothesis	that	a	multivariable	probabilistic	analysis	of	perfusion	maps	

is	 superior	 to	 single	 variable	 thresholding	 in	 predicting	 the	 ischemic	 core	 and	 total	

hypoperfused	region.	
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Table	1	

Clinical	definitions	of	ischemic	core	and	penumbra	that	are	currently	implemented	in	
varying	commercially	available	perfusion	software	packages.	CBF	is	cerebral	blood	flow,	
CBV	is	cerebral	blood	volume,	MTT	is	mean	transit	time,	and	TTP/Tmax	is	time	to	peak.	
Values	relative	to	the	opposite	hemisphere	are	indicated	by	an	‘r’.	

Software	 Ischemic	core	 Penumbra	

IntelliSpace	Portal	(Philips	Healthcare)	 CBV	<	2.0	mL/100g	&	rMTT	>	150%	 rMTT	>	150%	

Syngo.via	(Siemens	Healthineers)	 CBV	<	1.2	mL/100g	 CBF	<	27.0	mL/100g/min	

Vitrea	(Toshiba/Canon	Medical	Systems)	 rCBV	<	41%	 TTP	>	6.8	s	

RAPID	(iSchemaView)	 rCBF	<	30%	 Tmax	>	6	s	

	

Methods	

Acquisition	of	imaging	data	

Both	the	Dutch	acute	stroke	(DUST)	study,	in	which	fourteen	stroke	centers	participated,	and	

the	Multicenter	Randomized	 Clinical	 Trial	 of	 Endovascular	Treatment	 for	 Acute	 Ischemic	

Stroke	 in	 the	 Netherlands	 (MRCLEAN),	 in	 which	 seventeen	 stroke	 centers	 participated,	

contributed	 their	 data	 to	 this	 study	 [8,	 9].	All	 included	DUST	 participants	 (n	=	 182)	and	
included	MRCLEAN	participants	(n	=	43)	gave	informed	consent	for	the	use	of	their	clinical	
and	imaging	data.	

The	DUST	study	protocol	design	describes	acquisition	of	the	admission	CTP	scan	at	80	kVp	

and	150	mAs	on	40-	to	320-detector	CT	scanners	(GE	Healthcare,	Philips,	Siemens,	Toshiba)	

with	a	two-second	interval	for	a	duration	of	50	seconds	and	reconstructed	to	a	slice	thickness	

of	5	mm.	The	advised	injection	protocol	was	a	40	mL	contrast	bolus	injected	at	a	rate	of	6	

mL/s	followed	by	a	saline	flush	of	40	mL	injected	at	a	rate	of	6	mL/s.	Patients	eligible	 for	

treatment	received	intravenous	thrombolysis,	intra-arterial	thrombolysis,	and/or	mechani-

cal	 thrombectomy.	 For	 this	 study,	 the	 necessary	 follow-up	 imaging	 consisted	 of	 a	 non-

contrast	CT	(NCCT)	as	well	as	a	CT	angiography	(CTA)	scan	within	three	days.	

In	the	MRCLEAN	trial,	centers	could	adhere	to	their	own	acquisition	and	injection	protocol.	

Patients	 eligible	 for	 treatment	 received	 intravenous	 thrombolysis,	 intra-arterial	 thrombo-

lysis,	and/or	mechanical	thrombectomy.	The	necessary	follow-up	imaging	again	consisted	of	

a	NCCT	as	well	as	a	CTA	scan	and	was	acquired	after	24	hours.	
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Processing	of	imaging	data	

For	 the	 data	 from	 the	 DUST	 study,	 a	 radiologist	 with	 6	 years	 of	 experience	 manually	

segmented	the	follow-up	NCCT	of	each	patient	to	define	the	follow-up	infarct	region.	In	the	

MRCLEAN	trial,	 the	 follow-up	NCCT	of	each	patient	was	 segmented	automatically	using	a	

convolutional	neural	network	[10].	Because	our	study	compared	two	classification	methods,	

any	inconsistencies	in	the	follow-up	infarct	regions	were	the	same	for	both	these	methods.	

The	 total	 patient	 population	 (n	=	 225)	was	 divided	 into	a	 patient	 group	with	 successful	
recanalization	(REC,	n	=	166)	and	a	patient	group	with	persistent	occlusion	(OCC,	n	=	59),	
based	on	the	modified	arterial	occlusive	lesion	(mAOL)	grade	determined	from	the	follow-up	

CTA	(REC:	mAOL	grade	3;	OCC:	mAOL	grade	0	and	1)	[11].	Subsequently,	each	patient	group	

was	divided	2:1	into	a	REC/OCC	training	patient	group	(n	=	110/n	=	39)	and	a	REC/OCC	test	
patient	group	(n	=	56/n	=	20).	

Patients	were	divided	into	a	REC	and	OCC	patient	group	because	the	segmentation	on	the	

follow-up	NCCT	should	resemble	the	infarct	core	at	the	time	of	admission	imaging	for	the	REC	

patient	 group	 (since	 the	 recanalization	 should	 have	 saved	 the	 penumbra)	 whereas	 the	

segmentation	on	the	follow-up	NCCT	should	resemble	the	total	hypoperfused	region	at	the	

time	 of	 admission	 imaging	 for	 the	 OCC	 patient	 group	 (since	 the	 occlusion	 should	 have	

infarcted	 the	 penumbra).	 Hence,	 the	 REC	 patient	 group	 was	 used	 to	 train	 and	 test	 the	

classification	of	the	infarct	core,	whereas	the	OCC	patient	group	was	used	to	train	and	test	the	

classification	of	the	total	hypoperfused	region.	

To	assess	the	robustness	and	universality	of	our	method,	perfusion	maps	were	generated	

with	three	perfusion	processing	methods,	all	providing	a	CBF,	CBV,	MTT,	and	TTP	map.	The	

first	 is	 a	 commercial	 method	 in	 which	 the	 CTP	 scan	 was	 analyzed	 with	 the	 arrival	 time	

sensitive	 algorithm	 in	 IntelliSpace	 Portal	 (ISP;	 Brain	 Perfusion,	 IntelliSpace	 Portal	 10.1,	

Philips	 Healthcare).	 The	 second	 is	 an	 in-house	 developed	 method,	 which	 uses	 a	 block-

circulant	 singular	 value	 decomposition	 (bSVD)	 [12]	 algorithm.	 The	 third	 is	 an	 in-house	

model-based	nonlinear	regression	(NLR)	method	[13].	
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Prior	to	perfusion	analysis,	the	CTP	scans	were	processed	the	same	way	for	both	in-house	

methods	(bSVD	and	NLR),	as	described	previously	[14].	For	ISP,	the	IntelliSpace	Portal	Brain	

Perfusion	application	was	used	to	filter	the	CTP	image	data	as	well	as	to	automatically	select	

the	arterial	 input	 function	 (AIF)	and	 venous	 output	 function	 (VOF).	All	 further	 data	 pro-

cessing	and	analysis	was	carried	out	with	MATLAB	(MATLAB,	R2019b:	The	Mathworks	Inc.).	

Determining	thresholds	

To	determine	 thresholds,	we	 followed	 (and	refer	 to)	 the	procedure	on	which	 the	 current	

clinical	thresholds	of	ISP	are	based	[15].	To	summarize,	a	receiver	operating	characteristic	

(ROC)	curve	is	produced	for	each	perfusion	parameter.	The	perfusion	parameter	yielding	the	

largest	AUC	of	its	ROC	curve	is	chosen	as	the	parameter	to	define	either	the	ischemic	core	(for	

the	REC	training	patient	group)	or	the	total	hypoperfused	region	(for	the	OCC	training	patient	

group).	The	threshold	value	for	this	perfusion	parameter	 is	then	found	by	maximizing	the	

Youden	index	[16].	

Determining	probability	models	

To	determine	the	probability	models,	we	performed	logistic	regression	by	maximum	likeli-

hood	estimation	on	all	four	perfusion	parameters	with	follow-up	tissue	outcome	as	response	

variable.	This	resulted	in	a	logistic	model	for	the	ischemic	core	(from	the	REC	training	patient	

group)	and	for	the	total	hypoperfused	region	(from	the	OCC	training	patient	group):	

P(CORE)	=	 1	 	(1	+	e(CINT,		REC	+	CCBF,REC	×	CBF	+	CCBV,REC	×	CBV	+	CMTT,REC	×	MTT	+	CTTP,REC	×	TTP))⁄ 	,	

P(HYPOPERFUSED)	=	 1	 	(1	+	e(CINT,OCC	+	CCBF,OCC	×	CBF	+	CCBV,OCC	×	CBV	+	CMTT,OCC	×	MTT	+	CTTP,OCC	×	TTP))⁄ 	.	

Once	the	coefficients	for	the	intercept	(CINT),	the	CBF	(CCBF),	the	CBV	(CCBV),	the	MTT	(CMTT),	

and	the	TTP	(CTTP)	were	determined	from	the	training	patient	groups,	the	CBF,	CBV,	MTT	and	

TTP	of	a	voxel	gave	the	probability	P(CORE)	that	this	voxel	belonged	to	the	ischemic	core	

(based	on	the	REC	training	patient	group)	and	the	probability	P(HYPOPERFUSED)	that	this	

voxel	belonged	to	the	total	hypoperfused	region	(based	on	the	OCC	training	patient	group).	

Calculating	these	probabilities	for	all	voxels	resulted	in	a	probability	map	for	the	ischemic	

core	and	a	probability	map	for	the	total	hypoperfused	region.	
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Training	data	set	

The	training	data	set	was	prepared	the	same	way	for	both	the	ROC	curve	analysis	and	the	

logistic	regression	analysis.	Because	the	ROC	curve	can	show	bias	towards	the	majority	class	

in	 imbalanced	 data	 (in	 our	 case	 the	 class	 of	 healthy	 voxels	 against	 the	 class	 of	 ischemic	

voxels)	[17],	the	training	data	set	was	limited	to	the	collection	of	parenchymal	voxels	in	the	

ischemic	 hemisphere	 of	 slices	 with	 a	 segmentation	 of	 the	 follow-up	 infarct	 region.	 To	

minimize	the	impact	of	high	leverage	voxels	on	logistic	regression	(in	our	case	voxels	with	

normal	perfusion	in	the	segmented	region	on	the	ground	truth	map	and	voxels	with	reduced	

perfusion	outside	this	region)	[18],	voxels	with	an	outlier	in	one	of	the	perfusion	parameters	

were	removed.	An	outlier	was	defined	as	a	data	point	more	than	1.5	times	the	interquartile	

range	below	the	first	quartile	or	above	the	third	quartile	[19].	

Determining	volumes	

A	threshold-based	volume	followed	from	a	summary	map	by	summing	the	voxel	volumes	of	

all	voxels	in	a	classified	region.	Before	determining	a	volume,	the	summary	map	was	morpho-

logically	opened	and	then	morphologically	closed,	both	with	a	spherical	structure	element	of	

5	mm	in	diameter,	to	reduce	noise	artefacts.	

A	probabilistic	volume	follows	from	a	probability	map	by	summing	the	probabilities,	multi-

plied	by	the	voxel	volume,	of	the	left	and	right	hemisphere	separately	and	taking	the	absolute	

difference	between	these	two	sums.	Noise	artefacts	are	automatically	accounted	for	 in	the	

comparison	between	the	two	hemispheres.	

Classification	performance	

The	classification	performance	of	both	methods	was	assessed	on	the	level	of	voxels	as	well	as	

on	the	level	of	patients.	On	the	level	of	voxels,	a	precision-recall	curve	was	produced	for	each	

perfusion	parameter	and	for	the	probability.	These	curves	show	the	precision	and	the	recall	

for	different	thresholds	of	a	perfusion	parameter	or	of	the	probability.	On	the	level	of	patients,	

the	 predicted	 threshold-based	 volume	and	 the	 predicted	 probabilistic	 volume	were	 com-

pared	to	the	follow-up	infarct	volume	for	each	patient.	Both	assessments	were	carried	out	on	

the	total	ischemic	hemisphere.	
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Table	2	

Thresholds	following	from	a	receiver	operating	characteristic	(ROC)	curve	analysis	for	three	
processing	methods	(ISP,	bSVD,	NLR)	based	on	a	training	patient	group	with	successful	
recanalization	(REC)	and	a	training	patient	group	with	persistent	occlusion	(OCC).	CBF	
stands	for	cerebral	blood	flow,	MTT	for	mean	transit	time,	TTP	for	time	to	peak,	and	AUC	for	
area	under	the	curve.	

Method	 Training	patient	group	 Threshold	 AUC	of	ROC	curve	 Youden	index	

ISP	 REC	 CBF	<	14.0	mL/100g/min	 0.68	 0.29	

	 OCC	 MTT	>	11.0	s	 0.75	 0.44	

bSVD	 REC	 CBF	<	9.0	mL/100g/min	 0.74	 0.38	

	 OCC	 TTP	>	6.0	s	 0.79	 0.49	

NLR	 REC	 CBF	<	10.0	mL/100g/min	 0.78	 0.41	

	 OCC	 TTP	>	6.5	s	 0.82	 0.54	

	

A	precision-recall	curve	was	used	to	visualize	classification	performance	because	of	consid-

erable	 class	 imbalance	 between	 the	 ischemic	 and	 healthy	 tissue	 in	 the	 total	 ischemic	

hemisphere	[17].	In	the	context	of	classifying	ischemic	regions,	the	precision	is	the	percentage	

of	 the	 classified	 region	 that	 is	 truly	 ischemic	 core	 or	 hypoperfused	 and	 the	 recall	 is	 the	

percentage	of	the	true	ischemic	core	or	hypoperfused	region	that	is	correctly	classified.	

The	predicted	volume	was	compared	to	the	follow-up	infarct	volume	because	the	final	infarct	

volume	 is	 a	 principal	 predictor	 of	 functional	 outcome	 [20–22].	 The	 volume	 difference	

between	the	predicted	volume	and	the	ground	truth	volume	was	defined	as	the	predicted	

volume	minus	the	ground	truth	volume.	A	boxplot	of	the	volume	difference	was	made	for	each	

patient	group	(i.e.	REC	and	OCC),	each	CTP	processing	method	(i.e.	ISP,	bSVD,	and	NLR),	and	

each	 classification	 method	 (i.e.	 threshold-based	 and	 probabilistic).	 The	 mean	 volume	

differences	 of	 the	 threshold-based	 classification	 and	 probabilistic	 classification	 were	

compared	with	a	paired	t-test	for	each	patient	group	and	for	each	CTP	processing	method.	
The	level	of	significance	was	defined	as	a	two-tailed	P	<	0.05.	
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Figure	1	

The	ground	truth	map	(i.e.	manual	segmentation	from	a	follow-up	non-contrast	CT	scan,	in	
this	case	from	the	REC	patient	group),	summary	map	(obtained	from	thresholding	
according	to	Table	2,	in	this	case	for	the	bSVD	processing	method),	the	probability	map	
P(CORE)	in	case	of	successful	recanalization	(REC;	obtained	from	the	logistic	model	in	Table	
3,	in	this	case	for	the	bSVD	processing	method),	the	probability	map	P(HYPOPERFUSED)	in	
case	of	persistent	occlusion	(OCC;	obtained	from	the	logistic	model	in	Table	3,	in	this	case	
for	the	bSVD	processing	method),	and	the	perfusion	maps.	The	cerebral	blood	flow	(CBF)	is	
in	mL/100g/min,	the	cerebral	blood	volume	(CBV)	is	in	mL/100g,	the	mean	transit	time	
(MTT)	is	in	seconds,	and	the	time	to	peak	(TTP)	is	in	seconds.	

	

Results	

Threshold-based	classification	of	ischemic	regions	

Based	on	the	REC	training	patient	group	(to	acquire	the	optimal	threshold	for	the	ischemic	

core),	the	CBF	was	the	parameter	with	the	highest	AUC	of	its	ROC	curve	for	each	processing	

method	(Table	2).	Based	on	the	OCC	training	patient	group	(to	acquire	the	optimal	threshold	

for	the	total	hypoperfused	region),	the	MTT	had	the	highest	AUC	of	its	ROC	curve	for	the	ISP	

processing	method	 and	 the	 TTP	 had	 the	 highest	 AUC	 of	 its	ROC	 curve	 for	 both	 in-house	

processing	methods	(Table	2).	For	these	parameters,	the	threshold	value	was	determined	by	

maximizing	the	Youden	index.	Figure	1	shows	an	example	summary	map.	
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Table	3	

Coefficients	following	from	a	logistic	regression	analysis	for	three	processing	methods	(ISP,	
bSVD,	NLR)	based	on	a	training	patient	group	with	successful	recanalization	(REC)	and	a	
training	patient	group	with	persistent	occlusion	(OCC).	The	coefficient	for	the	CBF	(CCBF)	is	
in	(mL/100g/min)-1,	the	coefficient	for	the	CBV	(CCBV)	is	in	(mL/100g)-1,	the	coefficient	for	
the	MTT	(CMTT)	is	in	(seconds)-1,	and	the	coefficient	for	the	TTP	(CTTP)	is	in	(seconds)-1.	

Method	 Patient	group	 CINT	 CCBF	 CCBV	 CMTT	 CTTP	

ISP	 REC	 2.31	 0.06	 0.26	 -0.09	 -0.08	

	 OCC	 3.98	 0.04	 0.12	 -0.21	 -0.17	

bSVD	 REC	 2.58	 0.13	 0.57	 -0.14	 -0.32	

	 OCC	 3.09	 0.08	 0.30	 -0.16	 -0.38	

NLR	 REC	 3.45	 0.14	 0.66	 -0.15	 -0.39	

	 OCC	 4.16	 0.09	 0.28	 -0.17	 -0.48	

	

Probabilistic	classification	of	ischemic	regions	

Table	3	shows	the	coefficients	from	a	logistic	regression	analysis	to	acquire	probability	maps.	

The	positive	model	coefficients	for	the	CBF	and	CBV	reflect	that	the	CBF	and	CBV	decrease	in	

an	ischemic	region.	The	negative	model	coefficients	for	the	MTT	and	TTP	reflect	that	the	MTT	

and	TTP	increase	in	an	ischemic	region.	For	the	CBF	and	CBV,	the	coefficient	from	the	REC	

patient	group	is	higher	than	the	coefficient	from	the	OCC	patient	group	for	each	of	the	three	

processing	methods.	For	the	MTT	and	TTP,	the	coefficient	from	the	OCC	patient	group	is	lower	

than	the	coefficient	from	the	REC	patient	group	for	each	of	the	three	processing	methods.	This	

implies	that	the	CBF	and	CBV	were	more	important	for	predicting	the	ischemic	core,	whereas	

the	MTT	and	TTP	were	more	important	for	predicting	the	total	hypoperfused	region.	Figure	1	

shows	 an	 example	 probability	 map	 in	 case	 of	 successful	 recanalization,	 and	 in	 case	 of	

persistent	occlusion.	
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Figure	2	

Precision-recall	curves	of	the	perfusion	and	probability	maps	for	three	processing	methods	
(ISP,	bSVD,	NLR)	following	from	a	test	patient	group	with	successful	recanalization	(REC)	
and	a	test	patient	group	with	persistent	occlusion	(OCC).	CBF	stands	for	cerebral	blood	flow,	
CBV	for	cerebral	blood	volume,	MTT	for	mean	transit	time,	TTP	for	time	to	peak,	and	Prob	
for	the	probability	(corresponding	to	the	patient	group).	

	

Classification	performance	

The	precision-recall	curve	of	the	probability	generally	lies	above	the	precision-recall	curves	

of	the	perfusion	parameters	(Figure	2),	indicating	a	better	classification	performance.	For	ISP,	

low	 values	 of	 the	 CBF	 and	 CBV	may	 have	 a	 higher	 precision	 in	 predicting	 the	 total	 hy-

poperfused	region	(i.e.	in	the	OCC	patient	group)	than	the	probability	at	the	same	(low)	level	

of	recall.	Clinically,	however,	 these	 low	values	of	 the	CBF	and	CBV	are	not	so	relevant	 for	

predicting	the	total	hypoperfused	region	because	of	the	low	recall.	
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Figure	3	

Boxplots	of	the	volume	difference	between	the	ground	truth	volume	and	the	predicted	
volume	(either	threshold-based	or	probabilistic)	for	three	processing	methods	(ISP,	bSVD,	
NLR)	following	from	a	test	patient	group	with	successful	recanalization	(REC)	and	a	test	
patient	group	with	persistent	occlusion	(OCC).	

	

For	 ISP,	 the	 curve	 for	 the	 CBF	 was	 calculated	 for	 1	 to	 40	 mL/100g/min	 in	 steps	 of	

2	mL/100g/min,	the	curve	for	the	CBV	for	0.1	to	4.0	mL/100g	in	steps	of	0.2	mL/100g,	the	

curve	for	the	MTT	for	25	to	5	s	in	steps	of	1	s,	the	curve	for	the	TTP	for	15	to	5	s	in	steps	of	

1	s,	and	the	curve	for	the	probability	for	95	to	5%	in	steps	of	5%.	For	the	in-house	processing	

methods,	 the	 curve	 for	 the	 CBF	 was	 calculated	 for	 1	 to	 20	 mL/100g/min	 in	 steps	 of	

1	mL/100g/min,	the	curve	for	the	CBV	for	0.1	to	2.0	mL/100g	in	steps	of	0.1	mL/100g,	the	

curve	for	the	MTT	for	25	to	5	s	in	steps	of	1	s,	the	curve	for	the	TTP	for	15	to	5	s	in	steps	of	

0.5	s,	and	the	curve	for	the	probability	for	95	to	5%	in	steps	of	5%.	

Threshold-based	 classification	 led	 to	 an	 overall	 overestimation	 of	 the	 follow-up	 infarct	

volume	within	the	test	patient	groups.	For	the	REC	and	OCC	test	patient	groups	combined,	the	

median	 volume	 difference	 [Q1,	 Q3]	 in	 mL	 was	 29	 [4,	 56]/23	 [3,	 53]/23	 [4,	 56]	

(ISP/bSVD/NLR)	for	threshold-based	classification	and	was	4	[-10,	21]/6	[-7,	18]/11	[0,	30]	

(ISP/bSVD/NLR)	for	probabilistic	classification.	For	each	test	patient	group	separately,	the	

volume	difference	 following	 from	 the	probabilistic	 classification	was	 lower	 than	from	 the	

threshold-based	classification	(Figure	3).	
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Between	 threshold-based	 classification	and	probabilistic	 classification,	 the	mean	 ischemic	

core	volume	difference	differed	significantly	for	each	processing	method	(P	<	0.001).	The	
mean	hypoperfused	region	volume	difference	differed	significantly	for	bSVD	(P	=	0.003)	as	
well	as	for	NLR	(P	=	0.002)	but	not	for	ISP	(P	=	0.24).	A	scatter	plot	of	the	volumes	and	a	
Bland-Altman	plot	of	the	volumes	can	be	found	in	the	Supplementary	Material.	

Discussion	

Our	 results	 show	 that	 combining	 perfusion	 parameters	 in	 a	 logistic	model	 improved	 the	

precision-recall	curve	and	that	probabilistic	volumes	were	significantly	more	accurate	than	

threshold-based	 volumes	 in	 estimating	 the	 infarct	 volume	 on	 follow-up	 non-contrast	 CT	

obtained	within	three	days.	This	study	suggests	that	multivariable	probability	maps	classify	

ischemic	stroke	regions	more	accurately	than	CTP	summary	maps.	

Fixed	single	parameter	thresholds	do	not	use	the	available	information	to	its	full	potential,	

because	of	their	 limitation	to	 incorporate	multiple	(perfusion)	parameters	as	well	as	their	

limitation	 to	 show	 the	 certainty	 of	 predicted	 ischemia;	 a	 voxel	 is	 classified	 as	 either	

completely	healthy	or	not,	regardless	of	its	proximity	to	the	defined	threshold	or	the	value	of	

the	 other	 perfusion	 parameters	 [4,	 6,	 23].	 Moreover,	 the	 existence	 of	 a	 universal	

pathophysiological	 cut-off	 value	 to	 determine	 final	 tissue	 state	 is	 questionable	 due	 to	

oversimplification	[4,	5].	

For	a	logistic	model	with	four	perfusion	parameters,	we	showed	that	the	precision	and	recall	

of	the	probability	map	are	better	than	that	of	the	individual	perfusion	maps.	The	precision-

recall	curve	of	a	probability	map	that	follows	from	a	logistic	model	with	a	single	perfusion	

parameter,	 is	 identical	 to	 the	 precision-recall	 curve	 of	 the	 perfusion	 parameter	 itself.	

Therefore,	the	inclusion	of	multiple	perfusion	parameters	in	a	logistic	model	improved	the	

model.	 However,	 we	 have	 not	 compared	 the	 probabilistic	 volumes	 following	 from	 our	

multivariable	logistic	model	with	probabilistic	volumes	following	from	single	variable	logistic	

models.	 Instead,	 we	 have	 tested	 the	 multivariable	 logistic	 model	 against	 single	 variable	

thresholding	because	in	the	current	clinical	setting,	thresholds	are	typically	applied	to	single	

perfusion	maps.	

A	 strength	 of	 our	 study	 is	 that	 data	was	 used	 from	 two	 different	multicenter	 trials	with	

multiple	 CT	 vendors	 and	was	 divided	 into	a	 training	and	 test	 patient	 group,	which	 gives	

generalizable	results.	The	data	also	included	small	and	large	follow-up	infarct	volumes.	Our	

analysis	 has	 strengths	 as	 well.	 First,	 the	 validation	 with	 three	 CTP	 processing	 methods	
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demonstrated	 the	 translatability	 of	 our	method	 of	 probabilistic	 classification.	 Second,	we	

compared	 the	 predicted	 volumes	 of	 both	methods	 next	 to	 a	 voxel-wise	 comparison	 –	 as	

represented	by	the	precision-recall	curve	–	because	the	final	infarct	volume	is	characterized	

as	pivotal	in	determining	functional	outcome	[20,	21,	24].	

Several	limitations	to	our	study	should	be	noted.	First,	NCCT	was	used	as	follow-up	imaging	

method	 since	 better	 methods	 such	 as	 diffusion-weighted	MR	 imaging	 was	 not	 generally	

available	for	our	data.	For	patients	from	the	MRCLEAN	trial,	the	infarct	was	sometimes	poorly	

visible	on	the	follow-up	NCCT	after	24	hours.	Additionally,	the	centers	in	the	MRCLEAN	trial	

could	adhere	to	their	own	acquisition	and	injection	protocol,	which	introduces	variability	to	

the	 CTP	 results	 [25–27].	 For	 the	 REC	 patient	 group,	 the	 ischemic	 core	may	 have	 grown	

between	 the	 time	 of	 admission	 imaging	 and	 recanalization,	 especially	 for	 patients	 who	

received	intravenous	thrombolytic	therapy.	As	a	result,	the	ground	truth	maps	for	the	REC	

patient	 group	may	 cover	 substantial	 parts	 of	 the	 penumbra	 at	 the	 time	 of	 imaging.	 The	

resulting	probability	maps	should	therefore	be	interpreted	as	an	estimation	of	the	ischemic	

core	at	time	of	reperfusion	[6].	Also,	for	all	patients,	the	ground	truth	map	could	be	influenced	

by	brain	shift	due	to	edema.	

There	are	weaknesses	to	our	analysis	as	well.	First,	class	imbalance,	although	minimized	by	

the	choice	of	our	sample	space,	can	lead	to	low	predictive	accuracy	for	the	class	of	ischemic	

voxels	 in	both	classification	methods	[17].	Second,	regarding	probabilistic	classification	 in	

specific,	 the	 decision	 to	 include	 all	 four	 perfusion	maps	may	 not	 be	 optimal	 for	 logistic	

regression	because	of	correlation	between	the	perfusion	parameters.	Third,	we	interpreted	

the	probabilities	as	volume	fractions	and	estimated	the	ischemic	core	and	total	hypoperfused	

region	volumes	by	taking	the	difference	between	both	hemispheres,	but	this	approach	may	

leave	room	for	improvement.	Fourth,	relative	values	of	the	perfusion	parameters	were	not	

studied	both	because	relative	perfusion	parameter	maps	could	not	be	exported	from	ISP	and	

because	no	clear	definition	of	relative	values	exists.	

Conclusion	

Multivariable	probability	maps	outperform	conventional	CTP	summary	maps	in	estimating	

the	follow-up	infarct	lesion,	as	observed	on	follow-up	non-contrast	CT	obtained	within	three	

days.	 Clinically,	 an	 improved	 classification	 benefits	 the	 selection	 to	 treat	 acute	 ischemic	

stroke	patients.	Probability	maps	may	provide	an	improved	and	standardized	classification	

of	ischemic	regions	in	CTP	stroke	imaging.	 	
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Supplementary	Figure	1	

Scatter	plot	of	threshold-based	and	probabilistic	volumes	for	three	processing	methods	
(ISP,	bSVD,	NLR)	following	from	a	test	patient	group	with	successful	recanalization	(REC)	
and	a	test	patient	group	with	persistent	occlusion	(OCC).	
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Supplementary	Figure	2	

Bland-Altman	plot	of	threshold-based	and	probabilistic	volumes	for	three	processing	
methods	(ISP,	bSVD,	NLR)	following	from	a	test	patient	group	with	successful	recanalization	
(REC)	and	a	test	patient	group	with	persistent	occlusion	(OCC).	The	difference	and	average	
are	between	the	predicted	volume	and	the	follow-up	volume.	The	continuous	line	
represents	the	mean	volume	difference,	which	is	positive	for	an	overestimation	of	predicted	
volumes.	The	dashed	lines	represent	the	mean	volume	difference	plus	or	minus	1.96	times	
the	standard	deviation.	
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We	aimed	to	demonstrate	the	diagnostic	value	of	CTP	imaging	in	a	best-case	scenario.	

CTP	data	sets	from	a	local	cohort	of	the	CLEOPATRA	(cost-effectiveness	of	CTP	for	patients	

with	acute	ischemic	stroke)	healthcare	evaluation	were	included	retrospectively	if	acute	MR	

diffusion	imaging	was	available.	The	CTP	data	sets	were	processed	with	a	widely	used	vendor	

software	 (syngoVIA,	 Siemens	 Healthineers)	 to	 produce	 perfusion	 maps.	 We	 manually	

segmented	 the	 perfusion	 maps	 and	 compared	 the	 volume	 and	 location	 of	 the	 manual	

segmentations	 with	 segmentations	 that	 were	 derived	 from	 the	 MR	 diffusion	 imaging.	

Additionally,	we	examined	the	segmentations	produced	by	the	vendor	software	itself	and	by	

an	in-house	method,	which	was	based	on	a	logistic	model.	

Fifteen	patients,	all	with	anterior	circulation	stroke,	were	included.	Median	time	between	CTP	

imaging	and	MR	imaging	was	61	minutes.	The	MR	segmentation	volumes	ranged	from	0.4	to	

118	mL.	The	manual	segmentations	each	overlapped	with	the	MR	segmentation	and	had	a	

mean	 absolute	 volume	 difference	 of	 15	 mL.	 Performance	 varied	 with	 the	 segmentation	

method:	 for	 the	 manual	 segmentations,	 the	 vendor	 segmentations,	 and	 the	 in-house	

segmentations,	we	observed	a	mean	Dice	similarity	coefficient	of	0.44,	0.26,	and	0.48,	a	mean	

precision	of	0.61,	0.38,	and	0.49,	and	a	mean	recall	of	0.41,	0.25,	and	0.54,	respectively.	

CTP	imaging	seems	diagnostically	valuable	by	resembling	MR	diffusion	imaging	in	the	acute	

phase	 of	 ischemic	 stroke.	 Still,	 the	 volume	and	 location	 of	 the	 estimated	 ischemia	 varied	

substantially	with	different	segmentation	methods.	 	
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Introduction	

The	infarct	 core	volume	and	 its	 ratio	 to	 the	volume	of	 the	penumbra	have	been	the	main	

selection	criteria	for	multiple	 large	acute	ischemic	stroke	trials	and	have	been	included	in	

clinical	 guidelines	 accordingly	 [1–4].	 In	 current	 clinical	 practice,	 the	 infarct	 core	 and	

penumbra	 are	 most	 frequently	 estimated,	 in	 the	 acute	 phase,	 with	 CT	 perfusion	 (CTP)	

imaging.	

Although	 CTP	 imaging	 is	 standard	 practice,	 its	 validation	 has	 remained	 challenging.	 The	

estimated	infarct	core	and	penumbra	vary	greatly	between	various	software	in	use	and	are	

difficult	to	verify	because	of	the	lack	of	a	reliable	ground	truth	reference	[5,	6].	Typically,	the	

ground	truth	infarct	core	and	penumbra	are	derived	from	follow-up	imaging	obtained	after	a	

couple	of	days	and	grouped	by	the	success	of	recanalization	[7–9].	However,	the	ischemia	can	

change	considerably	in	this	time	and	depends	on	the	level	of	reperfusion	and	collateral	blood	

supply.	MR	diffusion	imaging	is	sensitive	to	acute	infarction	and	could	therefore	provide	a	

ground	 truth	 reference	 for	 CTP	 imaging	 in	 the	 acute	 phase	 of	 ischemic	 stroke	 [10,	 11].	

However,	MR	 diffusion	 imaging	 is	 challenging	 to	 acquire	 in	 the	 acute	 phase,	 limiting	 the	

amount	of	available	data	to	compare	CTP	imaging	with.	

In	this	study,	we	investigated	the	diagnostic	value	of	CTP	imaging	in	a	best-case	scenario	by	

comparing	 manually	 segmented	 CTP	 images	 with	 lesion	 segmentations	 from	 acute	 MR	

diffusion	imaging.	Additionally,	we	considered	automatic	segmentations	of	the	CTP	images	

from	the	clinical	perfusion	software	and	from	an	in-house	segmentation	model.	

Methods	

Data	acquisition	

Retrospective	data	were	used	from	a	local	cohort	at	Amsterdam	University	Medical	Centers	

(location	 AMC)	 relating	 to	 the	 nationwide	multicenter	healthcare	 evaluation	 CLEOPATRA	

(cost-effectiveness	of	CTP	for	patients	with	acute	ischemic	stroke)	[12].	The	study	population	

and	 image	 acquisition	 for	 this	 cohort	 are	 described	 by	Hoving	 et	 al.	 in	more	 detail	 [13].	

Patients	from	the	CTP	cohort	were	included	in	our	study	if	they	had	MR	diffusion	imaging	

within	4	hours	of	CTP	imaging.	
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The	CTP	protocol	consisted	of	scanning	at	70	kVp	and	200	mAs	on	a	dual	source	192-slice	CT	

scanner	(SOMATOM	Force,	Siemens	Healthineers,	Forchheim,	Germany)	with	15	frames	1.5	

seconds	apart	followed	by	15	frames	3	seconds	apart.	The	scans	were	reconstructed	as	5	mm	

axial	 slices.	 The	 injection	 protocol	 consisted	 of	 a	 35	 mL	 contrast	 bolus	 (Iomeron	 300,	

iomeprol,	 300	 mg	 iodine/mL;	 Bracco	 Imaging	 Deutschland	 GmbH,	 Konstanz,	 Germany)	

injected	at	a	rate	of	6	mL/s	followed	by	a	saline	flush	of	40	mL	injected	at	a	rate	of	6	mL/s.	

The	MR	diffusion	images	 (b	=	0	 s/mm2	and	b	=	1000	 s/mm2)	were	acquired	on	a	1.5	T	

scanner	(MAGNETOM	Avanto	fit,	Siemens	Healthcare,	Erlangen,	Germany)	or	a	3.0	T	scanner	

(Ingenia	3.0T,	Philips	Healthcare,	Best,	The	Netherlands),	both	with	a	slice	thickness	of	5	mm.	

MR	segmentations	of	severe	ischemia	

For	 each	 patient,	 we	 aligned	 the	 MR	 diffusion	 images	 with	 the	 CTP	 images	 by	 a	 rigid	

transformation	with	a	mean	square	error	metric	using	Elastix	[14].	The	aligned	MR	diffusion	

images	 were	 segmented	 employing	 a	 convolutional	 neural	 network	 and	 were	 adjusted	

manually	 where	 necessary	 [15].	 We	 considered	 the	 segmentations	 from	 the	 acute	 MR	

diffusion	 imaging	 as	 the	 ground	 truth	 for	 severe	 ischemia,	 but	 refer	 to	 them	 as	 MR	

segmentations.	Additionally,	we	prefer	severe	ischemia	instead	of	infarct	core	because	this	

study	aims	 to	 compare	 the	visible	 ischemia	on	CTP	 imaging	with	 the	 lesion	on	acute	MR	

diffusion	imaging	and	is	thus	not	concerned	with	follow-up	imaging.	

Vendor	segmentations	of	severe	ischemia	

All	CTP	scans	were	analyzed	with	the	perfusion	software	CT	Neuro	Perfusion	from	syngoVIA	

version	 VB40A-HF02	 (Siemens	 Healthineers)	 and	 additional	 smoothing	 was	 applied	

following	 recommendations	 to	 minimize	 artifacts	 [16].	 The	 arterial	 input	 function	 was	

determined	automatically.	The	software	calculated	perfusion	maps	of	the	cerebral	blood	flow	

(CBF),	 the	 cerebral	 blood	 volume	 (CBV),	 the	 mean	 transit	 time	 (MTT),	 and	 the	 time	 to	

maximum	(TMAX).	Subsequently,	severe	ischemia	was	segmented	with	the	default	threshold	

of	CBV	<	1.2	mL/100g.	

Manual	segmentations	of	severe	ischemia	

We	 manually	 segmented	 the	 exported	 perfusion	 maps	 using	 ITK-SNAP	 4.0.0	 [17].	 The	

perfusion	maps	were	viewed	with	a	jet	color	map	windowed	0-50	mL/100g/min	for	the	CBF,	

0-5	mL/100g	for	the	CBV,	0-20	seconds	for	the	MTT,	and	0-15	seconds	for	the	TMAX.	We	

applied	a	conservative	strategy	by	looking	primarily	for	both	a	low	CBV	and	a	high	TMAX,	but	

we	 inspected	all	 the	 perfusion	 parameters	 and	 deliberated	 the	 geometry	 of	 the	 ischemic	

region	as	well.	First,	an	imaging	scientist,	with	three	years	of	experience	in	perfusion	imaging,	
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segmented	 the	 images.	 Then,	 two	 expert	 neuroradiologists,	with	 at	 least	 fifteen	 years	 of	

experience,	checked	the	segmentations	and	gave	feedback.	This	process	was	repeated	until	

consensus	was	reached.	All	observers	were	blinded	to	everything	other	than	the	perfusion	

maps.	

In-house	segmentations	of	severe	ischemia	

Because	logistic	models	have	been	shown	to	outperform	threshold-based	segmentation,	we	

also	considered	automatic	segmentations	that	followed	from	an	in-house	developed	logistic	

model	 [9].	The	 training	data	and	 the	model	design	are	explained	in	detail	 by	Peerlings	et	

al.	[18].	The	in-house	model	takes	 in	the	perfusion	parameters	of	a	voxel	and	puts	out	the	

probability	 that	 the	 voxel	 is	 infarct	 core,	 penumbra,	 or	 healthy.	 The	 logistic	model,	 with	

weights	specific	to	the	perfusion	software	from	syngoVIA,	reads:	

PCORE	=	 10SCORE	 	(1	+	10SCORE	+	10SPENUMBRA)⁄ 	,	

PPENUMBRA	=	 10SPENUMBRA	 	(1	+	10SCORE	+	10SPENUMBRA)⁄ 	,	

PHEALTHY	=	1	-	PCORE	-	PPENUMBRA	,	

where	

SCORE	=	20.7	-	0.7049	×	CBF	-	8.00	×	CBV	-	0.29	×	MTT	+	2.9	×	TMAX	,	

and	

SPENUMBRA	=	-13.7	-	0.0045	×	CBF	+	0.54	×	CBV	+	0.33	×	MTT	+	2.9	×	TMAX	.	

The	in-house	segmentations	of	severe	ischemia	were	obtained	by	considering	PCORE	within	a	

region	 of	 interest	 to	 eliminate	 false	 positives.	 This	 region	 of	 interest	 was	 automatically	

determined	from	the	probabilities	as	follows.	The	voxels	for	which	PCORE	was	greater	than	

PPENUMBRA	and	PHEALTHY	constituted	an	initial	segmentation.	This	initial	segmentation,	having	

false	positive	regions	that	were	similar	in	both	hemispheres,	was	mirrored	over	the	midline	

of	the	brain.	After	subtracting	the	mirrored	segmentation	from	the	initial	segmentation,	we	

took	 the	 largest	 connected	 component,	 which	 we	 subsequently	 opened	 and	 closed	

morphologically.	The	morphological	operations	were	performed	with	a	spherical	structure	

element	that	had	a	diameter	equal	to	the	slice	thickness.	The	resulting	region	of	interest	was	

intersected	 with	 the	 initial	 segmentation	 to	 obtain	 the	 in-house	 segmentation	 of	 severe	

ischemia.	



Benchmarking	the	estimation	of	ischemic	regions	

	

113	

Table	1	

Relevant	patient	information.	The	patients	(A-O)	are	ordered	according	to	their	MR	
segmentation	volume.	

Patient	 MR	volume	
(mL)	

Occlusion	 NIHSS	 Time	
onset-CTP	
(min)	

Time	
CTP-MR	
(min)	

Reason	for	MR	 Time	spent	for	
manual	
segmentation	
(min)	

A	 0.4	 M2	 2	 785	 39	 Uncertain	age	
of	infarct	

32	

B	 0.9	 M2	 6	 995	 32	 Wake-up	 53	

C	 1.5	 M3	 11	 455	 61	 Wake-up	 9	

D	 2.1	 M4	 5	 126	 252	 Strong	
suspicion	of	
endocarditis	

20	

E	 3.1	 M2	 10	 645	 100	 Wake-up	 24	

F	 5.3	 M1	 15	 451	 65	 Wake-up	 277	

G	 13	 M3	 -	 720	 62	 Wake-up	 32	

H	 26	 M2	 13	 474	 47	 Wake-up	 56	

I	 34	 ICA	 18	 917	 50	 Wake-up	 70	

J	 43	 M2/A2	 8	 544	 59	 Wake-up	 35	

K	 83	 M1	 16	 590	 37	 Wake-up	 129	

L	 84	 M1	 18	 295	 47	 Wake-up	 58	

M	 101	 M1	 17	 303	 128	 Doubtful	
indication	for	
thrombectomy	

120	

N	 106	 ICA	 23	 275	 65	 Confirmation	
of	CT	findings	
for	treatment	
decision	

240	

O	 118	 ICA/M1	 -	 -	 227	 Wake-up	 284	
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Performance	assessment	of	perfusion-based	segmentations	

For	each	patient,	we	determined	 the	volume	of	 the	MR	segmentation.	For	 the	CTP	based	

segmentations,	we	determined	the	volume	inside	and	outside	the	MR	segmentation.	From	

this,	we	calculated	the	precision	by	dividing	the	volume	inside	the	MR	segmentation	by	the	

total	volume	of	the	perfusion-based	segmentation,	the	recall	by	dividing	the	volume	inside	

the	MR	segmentation	by	the	total	volume	of	 the	MR	segmentation,	and	the	Dice	similarity	

coefficient	(DSC)	by	taking	the	harmonic	mean	of	the	precision	and	the	recall.	

Results	

Fifteen	patients,	all	with	anterior	circulation	stroke,	were	included	(Table	1).	Median	(first	

quartile,	third	quartile)	time	between	CTP	and	MR	imaging	was	61	(47,	100)	minutes.	We	

named	the	patients	A	through	O,	according	to	an	increasing	MR	segmentation	volume.	The	

volumes	of	the	segmentations	are	depicted	in	Figure	1.	Table	2	presents	their	precision,	recall,	

and	 DSC.	 In	 Figure	 2,	 we	 plotted	 the	 precision,	 recall,	 and	 DSC	 against	 the	 MR	 volume,	

demonstrating	 that	 the	 precision,	 recall,	 and	 DSC	 improved	 for	 larger	 MR	 volumes.	

Figures	3-6	 illustrate	 the	 general	 findings.	 In	 Figures	 3-5,	 the	 ischemia	 on	 CTP	 imaging	

resembled	 the	 lesion	 on	 MR	 diffusion	 imaging.	 In	 the	 Supplementary	 Material,	 we	 have	

included	boxplots	of	the	perfusion	parameters	in	the	different	segmentations	for	each	patient.	

Vendor	segmentations	of	severe	ischemia	

The	vendor	segmentations	overestimated	the	smaller	MR	volumes	and	underestimated	the	

larger	MR	volumes,	with	a	mean	absolute	volume	difference	of	25	mL,	and	resulted	in	the	

lowest	mean	precision	(0.38),	the	lowest	mean	recall	(0.25),	and	the	lowest	mean	DSC	of	the	

three	segmentation	methods	(Figure	1,	Table	2).	For	four	of	the	five	smallest	MR	volumes,	the	

recall	was	very	low	(<	0.08)	and	the	precision	was	near	zero	(<	0.02).	The	precision	for	larger	

MR	volumes	was	the	best	feature	of	the	vendor	segmentations.	The	overestimation	of	smaller	

MR	 volumes	 and	 the	 underestimation	 of	 larger	 MR	 volumes	 resulted	 in	 a	 lack	 of	

differentiation	between	the	patients;	the	patients	C,	G,	H,	and	O	had	MR	volumes	of	1.5	mL,	

13	mL,	26	mL,	and	118	mL,	respectively,	and	estimated	volumes	of	10	mL,	32	mL,	8.5	mL,	and	

36	mL,	respectively.	
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Figure	1	

Volumetric	agreement	of	the	perfusion-based	segmentations	with	the	MR	segmentations	for	
patients	A	to	O,	who	were	ordered	to	MR	volume.	The	black	outline	is	the	volume	of	the	MR	
segmentation.	The	stacked	bar	graphs	indicate	the	volume	inside	(bright)	and	outside	
(pale)	the	MR	segmentation	for	the	perfusion-based	segmentations.	The	volume	ranges	on	
the	horizontal	axes	differ	in	the	three	charts.	
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Table	2	

Spatial	agreement	of	the	perfusion-based	segmentations	with	the	MR	segmentations.	The	
patients	(A-O)	are	ordered	according	to	their	MR	segmentation	volume.	

	 Precision	 Recall	 Dice	similarity	coefficient	

Patient	 Manual	 In-house	 Vendor	 Manual	 In-house	 Vendor	 Manual	 In-house	 Vendor	

Mean	 0.61	 0.49	 0.38	 0.41	 0.54	 0.25	 0.44	 0.48	 0.26	

A	 0.03	 0	 0	 0.13	 0	 0	 0.05	 0	 0	

B	 0.14	 0.15	 0	 0.35	 0.52	 0.01	 0.21	 0.24	 0	

C	 0.77	 0.58	 0.01	 0.22	 0.62	 0.08	 0.35	 0.60	 0.02	

D	 0.70	 0.35	 0.22	 0.28	 0.70	 0.36	 0.40	 0.47	 0.27	

E	 0.40	 0.41	 0	 0.32	 0.33	 0	 0.36	 0.36	 0	

F	 0.10	 0.05	 0.10	 0.57	 0.54	 0.37	 0.17	 0.09	 0.16	

G	 0.94	 0.47	 0.11	 0.18	 0.43	 0.27	 0.30	 0.45	 0.16	

H	 0.75	 0.69	 0.34	 0.46	 0.58	 0.11	 0.57	 0.63	 0.17	

I	 0.82	 0.70	 0.69	 0.29	 0.42	 0.26	 0.43	 0.53	 0.38	

J	 0.49	 0.43	 0.43	 0.60	 0.65	 0.54	 0.54	 0.52	 0.48	

K	 0.68	 0.60	 0.61	 0.53	 0.44	 0.23	 0.60	 0.51	 0.33	

L	 0.75	 0.65	 0.75	 0.64	 0.77	 0.31	 0.69	 0.70	 0.44	

M	 0.90	 0.81	 0.84	 0.56	 0.76	 0.36	 0.69	 0.79	 0.50	

N	 0.74	 0.59	 0.75	 0.61	 0.74	 0.50	 0.67	 0.65	 0.60	

O	 0.89	 0.82	 0.92	 0.48	 0.66	 0.28	 0.63	 0.73	 0.43	
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Figure	2	

Performance	measures	plotted	against	the	MR	segmentation	volume.	The	line	of	best	fit	
shows	the	trend	of	increased	performance	for	larger	MR	volumes.	

	

Manual	segmentations	of	severe	ischemia	

The	manual	segmentations	generally	underestimated	the	MR	volumes,	with	a	mean	absolute	

volume	difference	of	15	mL,	and	resulted	in	a	mean	precision	(0.61)	that	was	higher	than	the	

mean	 recall	 (0.41),	 yielding	 a	 mean	 DSC	 of	 0.44	 (Figure	 1,	 Table	 2).	 The	 manual	

segmentations	 had	 a	 non-zero	 recall	 for	 each	 patient.	 Besides	 being	 time	 consuming	

(Table	1),	it	was	not	always	obvious	what	to	segment.	Examples	are	the	area	with	a	lower	

TMAX	inside	the	MR	segmentation	in	Figure	3	and	the	area	with	a	higher	CBV	inside	the	MR	

segmentation	in	Figure	5.	We	also	note	that	the	vendor	segmentations	sometimes	differed	

completely	from	the	manual	segmentations	(Figure	3).	
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Figure	3	

The	perfusion	maps,	MR	diffusion	scan,	and	segmentations	of	severe	ischemia	for	patient	H.	
For	the	segmentations,	the	bright	red	regions	are	inside	the	MR	segmentation	whereas	the	
pale	red	regions	are	outside	the	MR	segmentation.	

	

It	was	remarked,	during	its	manual	segmentation,	that	patient	F	may	had	been	spontaneously	

recanalized	 given	 the	 hyperperfusion	 in	 the	 basal	 ganglia	 (Figure	 6).	 The	 manual	

segmentation	 for	 patient	 F	 resulted	 in	 the	 largest	 overestimation	 compared	 to	 the	 other	

patients	(Figure	1).	The	CTP	imaging	and	MR	diffusion	imaging	are	dissimilar	for	this	patient	

(Figure	6).	
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Figure	4	

The	perfusion	maps,	MR	diffusion	scan,	and	segmentations	of	severe	ischemia	for	patient	B.	
For	the	segmentations,	the	bright	red	regions	are	inside	the	MR	segmentation	whereas	the	
pale	red	regions	are	outside	the	MR	segmentation.	

	

In-house	segmentations	of	severe	ischemia	

The	in-house	segmentations	had	a	mean	absolute	volume	difference	of	14	mL	and	resulted	in	

a	mean	precision	of	0.49,	a	mean	recall	of	0.54,	and	a	mean	DSC	of	0.48	(Figure	1,	Table	2).	

The	mean	DSC	of	 the	 in-house	segmentations	was	similar	to	the	mean	DSC	of	the	manual	

segmentations,	but	 the	 in-house	 segmentations	 resulted	 in	 a	 lower	mean	precision	and	a	

higher	 mean	 recall	 than	 the	 manual	 segmentations.	 Were	 we	 to	 take	 the	 manual	

segmentations	as	our	ground	truth,	then	the	in-house	segmentations	would	give	a	mean	DSC	

of	 0.58	 with	 a	 mean	 precision	 of	 0.49	 and	 a	 mean	 recall	 of	 0.82.	 Indeed,	 the	 in-house	

segmentations	appeared	to	enclose	the	manual	segmentations	(Figures	3-6).	
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Figure	5	

The	perfusion	maps,	MR	diffusion	scan,	and	segmentations	of	severe	ischemia	for	patient	M.	
For	the	segmentations,	the	bright	red	regions	are	inside	the	MR	segmentation	whereas	the	
pale	red	regions	are	outside	the	MR	segmentation.	

	

Discussion	

The	manual	segmentations	demonstrated	that	CTP	imaging	resembles	MR	diffusion	imaging	

in	the	acute	phase	of	ischemic	stroke.	The	manual	segmentations	were	in	the	right	place	for	

each	patient	and	were	generally	of	 the	right	size.	For	one	patient,	the	overestimation	may	

have	been	the	result	of	a	spontaneous	recanalization	that	was	recognized	with	CTP	imaging.	

While	the	 in-house	segmentations	were	as	good	as	the	manual	segmentations,	 the	vendor	

segmentations	 were	 worse.	 Together,	 these	 results	 imply	 that	 CTP	 imaging	 can	 be	 of	

diagnostic	value,	but	that	the	estimation	of	ischemia	needs	to	be	critically	evaluated.	
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Figure	6	

The	perfusion	maps,	MR	diffusion	scan,	and	segmentations	of	severe	ischemia	for	patient	F.	
For	the	segmentations,	the	bright	red	regions	are	inside	the	MR	segmentation	whereas	the	
pale	red	regions	are	outside	the	MR	segmentation.	The	hyperperfusion	of	the	basal	ganglia	
visible	on	the	perfusion	maps	may	indicate	that	the	patient	was	spontaneously	recanalized.	

	

We	considered	CTP	imaging	in	a	best-case	scenario	with	manual	segmentations	and	acute	MR	

diffusion	imaging.	To	our	knowledge,	this	is	the	first	study	to	consider	manual	segmentations	

for	CTP	imaging.	CTP	imaging	has	been	compared	to	acute	MR	diffusion	imaging	before	in	the	

ISLES	(Ischemic	Stroke	Lesion	Segmentation)	challenge,	a	machine	learning	competition	for	

stroke	lesion	analysis	[19].	In	this	challenge,	the	best	Dice	similarity	coefficient	was	0.51	and	

the	best	mean	absolute	volume	difference	was	10	mL,	comparable	to	our	performance.	As	we	

considered	a	best-case	scenario,	this	performance	seems	to	be	limited,	since	roughly	only	half	

of	each	segmentation	overlapped	the	MR	segmentation	and	vice	versa	on	average.	We	also	

struggled	 to	 consistently	 segment	 the	 perfusion	maps	manually,	we	 observed	 a	 different	

performance	 for	 the	 manual	 and	 in-house	 segmentations,	 and	 severe	 ischemia	 on	 CTP	

imaging	 appeared	 viable	 for	 a	 patient	 who	 may	 had	 been	 recanalized	 already.	 These	

observations	 are	 in	 line	 with	 an	 earlier	 study	 that	 outlined	 conceptual	 and	 practical	
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challenges	that	arise	when	estimating	ischemia	from	perfusion	imaging	[6].	In	addition,	the	

practical	utility	of	CTP	imaging	to	select	patients	for	treatment	is	increasingly	contested,	as	

thrombectomy	proves	to	be	an	effective	treatment	for	a	broadening	range	of	patients	[20-22].	

Still,	this	study	shows	that	ischemia	estimated	with	CTP	imaging	can	be	of	diagnostic	value,	

considering	its	resemblance	to	acute	MR	diffusion	imaging.	

Our	study	has	limitations.	Firstly,	we	used	MR	diffusion	imaging	to	provide	a	ground	truth	for	

severe	 ischemia.	 However,	 a	 diffusion	 lesion	 does	 not	 always	 result	 in	 complete	

infarction	[23].	 It	 is	 also	 possible,	 although	 unlikely,	 for	 infarction	 not	 to	 show	 up	 as	 a	

diffusion	lesion	[24].	Additionally,	the	time	between	CTP	imaging	and	MR	diffusion	imaging,	

although	 limited,	 allowed	 the	 infarct	 to	 grow	 so	 that	 the	 diffusion	 lesion	may	 have	 been	

smaller	at	the	time	of	CTP	imaging.	Also,	the	small	number	of	patients	with	acute	MR	diffusion	

imaging	makes	our	study	 less	generalizable.	Secondly,	we	were	biased	to	segment	at	 least	

some	 tissue	 based	 on	 the	 patient	 selection.	 Therefore,	 our	 manual	 segmentations	 were	

somewhat	inconsistent	across	patients,	because	we	were	more	willing	to	segment	tissue	with	

ambiguous	perfusion	for	smaller	ischemic	regions	than	for	larger	ischemic	regions.	Thirdly,	

we	only	 considered	 severe	 ischemia	and	not	 the	 total	 ischemic	 region,	which	 is	 clinically	

important	 as	 well.	 To	 validate	 CTP	 imaging,	 future	 studies	 might	 focus	 on	 manual	

segmentations	of	perfusion	maps.	These	manual	segmentations	may	be	considered	the	acute	

ground	truth	and	could	be	used	to	develop	automatic	segmentation	methods.	This	approach	

would	facilitate	the	availability	of	data	for	both	the	severely	ischemic	and	the	total	ischemic	

tissue,	 and	 would	 make	 it	 possible	 to	 account	 for	 uncertainty	 by	 making	 manual	

segmentations	with	different	levels	of	confidence.	

Conclusion	

Ischemia	 can	 be	 estimated	 with	 CTP	 imaging	 in	 a	 diagnostically	 valuable	 way.	Manually	

segmented	ischemia	on	CTP	imaging	resembled	lesions	on	MR	diffusion	imaging	in	the	acute	

phase	 of	 ischemic	 stroke.	 Still,	 the	 estimated	 ischemia	 varied	 based	 on	 the	 segmentation	

method.	Estimating	ischemia	in	a	consistent	way	can	help	to	diagnose	acute	ischemic	stroke	

patients	accurately,	and	to	advance	stroke	healthcare.	 	
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Supplementary	Figure	1	

Boxplots	of	the	cerebral	blood	flow	in	different	segmentations	for	each	patient	(A-O).	The	
MR	segmentation	is	in	white,	the	manual	segmentation	in	cyan,	the	in-house	segmentation	
in	magenta,	and	the	vendor	segmentation	in	yellow.	The	horizontal	black	lines	indicate	the	
median	value	in	the	contralateral	hemisphere.	

	

Supplementary	Figure	2	

Boxplots	of	the	cerebral	blood	volume	in	different	segmentations	for	each	patient	(A-O).	The	
MR	segmentation	is	in	white,	the	manual	segmentation	in	cyan,	the	in-house	segmentation	
in	magenta,	and	the	vendor	segmentation	in	yellow.	The	horizontal	black	lines	indicate	the	
median	value	in	the	contralateral	hemisphere.	
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Supplementary	Figure	3	

Boxplots	of	the	mean	transit	time	in	different	segmentations	for	each	patient	(A-O).	The	MR	
segmentation	is	in	white,	the	manual	segmentation	in	cyan,	the	in-house	segmentation	in	
magenta,	and	the	vendor	segmentation	in	yellow.	The	horizontal	black	lines	indicate	the	
median	value	in	the	contralateral	hemisphere.	

	

Supplementary	Figure	4	

Boxplots	of	the	time	to	maximum	in	different	segmentations	for	each	patient	(A-O).	The	MR	
segmentation	is	in	white,	the	manual	segmentation	in	cyan,	the	in-house	segmentation	in	
magenta,	and	the	vendor	segmentation	in	yellow.	The	horizontal	black	lines	indicate	the	
median	value	in	the	contralateral	hemisphere.	
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Locating	a	vessel	occlusion	is	important	for	the	clinical	decision	support	in	stroke	healthcare.	

The	advent	of	endovascular	thrombectomy	beyond	proximal	 large	vessel	occlusions	spurs	

alternative	approaches	to	locate	vessel	occlusions.	We	explore	whether	CT	perfusion	(CTP)	

data	can	help	to	automatically	locate	vessel	occlusions.	

We	composed	an	atlas	with	the	downstream	regions	of	particular	vessel	segments.	Occlusion	

of	 these	 segments	 should	 result	 in	 the	 hypoperfusion	 of	 the	 corresponding	 downstream	

region.	We	differentiated	between	seven	vessel	occlusion	locations	(ICA,	proximal	M1,	distal	

M1,	M2,	M3,	ACA,	and	posterior	circulation).	We	included	596	patients	from	the	Dutch	acute	

stroke	(DUST)	multicenter	study.	Each	patient	CTP	data	set	was	processed	with	perfusion	

software	 to	determine	the	hypoperfused	 region.	The	downstream	region	with	the	highest	

overlap	 with	 the	 hypoperfused	 region	 was	 considered	 to	 indicate	 the	 vessel	 occlusion	

location.	 We	 assessed	 the	 indications	 from	 CTP	 against	 expert	 annotations	 from	 CT	

angiography	(CTA)	imaging.	

Our	atlas-based	model	had	a	mean	accuracy	of	86%	and	could	achieve	substantial	agreement	

with	 the	 annotations	 from	 CTA	 according	 to	 Cohen’s	 kappa	 coefficient	 (up	 to	 0.68).	 In	

particular,	anterior	large	vessel	occlusions	and	occlusions	in	the	posterior	circulation	could	

be	located	with	an	accuracy	of	80%	and	92%,	respectively.	

The	spatial	layout	of	the	hypoperfused	region	can	help	to	automatically	indicate	the	vessel	

occlusion	 location	 for	 acute	 ischemic	 stroke	 patients.	 However,	 variation	 in	 vessel	

architecture	between	patients	seemed	to	limit	the	capacity	of	CTP	data	to	distinguish	between	

vessel	occlusion	locations	more	accurately.	 	
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Introduction	

The	location	of	a	vessel	occlusion	is	central	to	the	clinical	decision	support	of	acute	ischemic	

stroke	patients.	To	diagnose	these	patients,	multimodal	CT	imaging	is	performed,	consisting	

of	non-contrast	CT,	CT	angiography	(CTA),	and	CT	perfusion	(CTP).	Non-contrast	CT	can	be	

used	 to	 exclude	 hemorrhagic	 stroke	 and	 stroke	mimics,	 after	 which	 CTP	 can	 be	 used	 to	

distinguish	the	infarcted	tissue	from	the	salvageable	tissue,	and	CTA	can	be	used	to	locate	the	

vessel	occlusion	[1].	

Mechanical	thrombectomy	has	become	the	standard	of	care	for	patients	suffering	from	acute	

ischemic	 stroke	 due	 to	 anterior	 circulation	 proximal	 large	 vessel	 occlusions	 [2].	 Recent	

advancements	in	stent	retriever	technology	and	thromboaspiration	devices	may	widen	the	

eligibility	criteria	for	endovascular	treatment	by	considering	occlusions	in	smaller	and	more	

distal	vessels	[3].	It	is	a	prerequisite	for	endovascular	treatment	to	locate	the	vessel	occlusion.	

Reading	 CTA	 to	 locate	 vessel	 occlusions	 can	 be	 challenging.	 The	 more	 distal	 the	 vessel	

occlusion,	 the	 harder	 this	 task	 becomes	 because	 the	 occlusion	 is	 smaller,	 has	 delayed	

opacification,	can	be	concealed	behind	cortical	veins,	and	can	be	found	in	a	larger	number	of	

vessels	 that	 exhibit	more	 anatomical	 variability	 [4,	 5].	 Moreover,	 while	 less	 experienced	

readers	are	likely	on	call	in	the	emergency	setting,	they	do	not	perform	as	well	as	experienced	

readers	in	giving	fast	and	accurate	evaluations	[6,	7].	Therefore,	the	advent	of	endovascular	

treatment	beyond	proximal	 large	vessel	occlusions	 spurs	alternative	approaches	 to	 locate	

vessel	occlusions	[8].	

CTP	 provides	 a	 way	 to	 locate	 vessel	 occlusions	 because	 a	 vessel	 occlusion	 results	 in	 a	

perfusion	deficit	in	the	downstream	region	of	the	occluded	vessel	[3,	5,	9,	10].	As	such,	it	has	

been	shown	that	experienced	readers	of	CTP	can	accurately	discern	patients	with	a	distal	

vessel	occlusion	from	patients	without	a	vessel	occlusion	[5].	Moreover,	the	addition	of	CTP	

to	CTA	has	expedited	and	improved	the	detection	of	vessel	occlusions	on	CTA	in	previous	

studies	[9,	10].	Hence,	CTP	data	may	 contain	 information	 that	 is	helpful	 in	 locating	vessel	

occlusions.	

CTP	data	on	its	own	are	often	regarded	as	complex	because	it	consists	of	several	physiological	

parameters.	Although	the	presence	of	a	perfusion	deficit	suffices	to	detect	a	vessel	occlusion,	

assessing	 this	 deficit	 to	 locate	 the	 vessel	 occlusion	 requires	 additional	 physiological	 and	

neuroanatomical	expertise.	Therefore,	an	automatic	evaluation	of	CTP	data	may	facilitate	the	

support	of	CTP	in	reading	CTA.	
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In	this	study,	we	explore	the	potential	of	CTP	to	automatically	locate	vessel	occlusions.	We	

present	an	atlas-based	method	in	which	CTP	data	are	used	to	indicate	the	vessel	occlusion	

location.	These	 indicated	vessel	occlusion	 locations	were	compared	with	annotated	vessel	

occlusion	locations	from	expert	readings	of	CTA.	

Methods	

Acquiring	imaging	data	from	the	patient	population	

Retrospective	data	were	obtained	from	the	Dutch	acute	stroke	(DUST)	study,	in	which	14	

stroke	 centers	 in	 the	 Netherlands	 participated	 [11].	 All	 included	 DUST	 participants	 gave	

informed	consent	for	the	use	of	their	imaging	and	clinical	data.	Patients	that	were	admitted	

to	the	DUST	study	were	suspected	of	an	ischemic	stroke	and	underwent	non-contrast	CT,	CTP,	

and	CTA	imaging	within	9	h	after	symptom	onset.	Only	patients	with	both	an	annotated	vessel	

occlusion	 location	(obtained	from	CTA)	and	a	perfusion	deficit	(obtained	from	CTP)	were	

considered	in	this	study.	

The	CTP	protocol	consisted	of	scanning	at	80	kVp	and	150	mAs	on	40-	to	320-detector	CT	

scanners	(GE	Healthcare,	Philips,	Siemens,	or	Toshiba)	with	a	2	s	interval	for	a	duration	of	

50	s.	The	scans	were	reconstructed	as	5	mm	contiguous	axial	slices.	The	advised	injection	

protocol	was	a	40	mL	contrast	bolus	injected	at	a	rate	of	6	mL/s	followed	by	a	saline	flush	of	

40	mL	injected	at	a	rate	of	6	mL/s.	

For	the	CTA,	a	50–70	mL	contrast	bolus	was	injected	at	a	rate	of	6	mL/s	followed	by	a	saline	

flush	 of	 40	mL	 injected	at	 a	 rate	 of	 6	mL/s.	 Centers	 could	adhere	 to	 their	 own	 scanning	

protocol	(such	as	setting	the	kVp	and	the	mAs).	The	CTA	scan	delay	after	contrast	injection	

was	determined	on	a	per	patient	basis	either	from	the	time	to	peak	arterial	enhancement	on	

CTP	or	by	a	 trigger	based	on	a	 threshold	 for	 the	attenuation	measured	 in	 the	aortic	arch	

during	contrast	enhancement.	

The	 multicenter	 DUST	 data	 were	 processed	 centrally	 in	 the	 University	 Medical	 Center	

Utrecht.	The	CTA	scans	were	examined	with	commercially	available	software	on	an	Extended	

Brilliance	Workstation	 (IntelliSpace	 Portal	 4.5,	 Philips	 Healthcare).	 All	 further	 data	 pro-

cessing	and	analysis	were	carried	out	with	MATLAB	(MATLAB,	R2019b:	The	Mathworks	Inc.).	
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Vessel	occlusion	
location	

Vasculature	(CTA)	 Downstream	region	(CTP)	

ICA	 Up	to	the	bifurcation	of	the	
internal	carotid	artery.	

The	collection	of	neuroanatomical	regions	from	the	M1p	
downstream	region	and	either	the	ACA	downstream	
region	or	the	PC	downstream	region.	

M1p	(proximal	M1)	 From	the	bifurcation	of	the	
internal	carotid	artery	up	to	
the	end	of	the	lateral	
lenticulostriate	arteries.	

The	collection	of	neuroanatomical	regions	from	the	M1d	
downstream	region	together	with	the	neuroanatomical	
regions	that	are	supplied	by	the	anterior	choroidal	artery	
(entorhinal	region,	parahippocampus,	hippocampus,	and	
amygdala)	and	the	neuroanatomical	regions	that	are	
supplied	by	the	lateral	lenticulostriate	arteries	(caudate,	
pallidum,	putamen,	anterior	limb	of	internal	capsule,	
retrolenticular	part	of	internal	capsule,	posterior	limb	of	
external	capsule,	and	external	capsule).	

M1d	(distal	M1)	 From	the	end	of	the	lateral	
lenticulostriate	arteries	to	
the	bifurcation	of	the	middle	
cerebral	artery.	

The	collection	of	neuroanatomical	regions	from	the	M2	
downstream	regions	(anterior	and	posterior).	

M2	(anterior)	 From	the	bifurcation	of	the	
middle	cerebral	artery	to	
where	arteries	exit	the	
Sylvian	fissure.	(The	
annotations	from	CTA	did	
not	specify	between	different	
M2	branches.)	

Rostral	middle	frontal	region,	caudal	middle	frontal	
region,	pars	orbitalis	of	inferior	frontal	region,	pars	
opercularis	of	inferior	frontal	region,	pars	triangularis	of	
inferior	frontal	region,	precentral	region,	insular	region,	
frontal	white	matter,	anterior	corona	radiata,	superior	
corona	radiata,	superior	fronto-occipital	fasciculus,	and	
uncinate	fasciculus.	

M2	(posterior)	 From	the	bifurcation	of	the	
middle	cerebral	artery	to	
where	arteries	exit	the	
Sylvian	fissure.	(The	
annotations	from	CTA	did	
not	specify	between	different	
M2	branches.)	

Postcentral	region,	supramarginal	region,	superior	
parietal	region,	inferior	parietal	region,	superior	temporal	
region,	transverse	temporal	region,	middle	temporal	
region,	inferior	temporal	region,	parietal	white	matter,	
temporal	white	matter,	posterior	corona	radiata,	and	
superior	longitudinal	fasciculus.	

M3	 Distal	to	where	arteries	exit	
the	Sylvian	fissure.	(The	
annotations	from	CTA	did	
not	specify	between	different	
M3	branches.)	

The	individual	neuroanatomical	regions	from	the	M1d	
downstream	region.	

ACA	 The	anterior	cerebral	artery.	 Superior	frontal	region,	lateral	division	of	orbitofrontal	
region,	medial	division	of	orbitofrontal	region,	
paracentral	region,	anterior	cingulate	region,	posterior	
cingulate	region,	isthmus	cingulate,	accumbens	area,	and	
corpus	callosum.	

PC	 The	arteries	of	the	posterior	
circulation	i.e.	the	vertebral	
arteries,	the	basilar	artery,	
and	the	posterior	cerebral	
artery.	

Mesencephalon,	pons,	medulla	oblongate,	vermis,	
precuneal	region,	cuneal	region,	pericalcarine	region,	
lingual	region,	lateral	occipital	region,	fusiform	region,	
thalamus,	cerebellum,	occipital	white	matter,	and	
corticospinal	tract.	
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Table	1	

The	definitions	of	the	vessel	occlusion	locations	and	their	downstream	regions.	The	regions	
from	a	neuroanatomical	CT-MRI	brain	atlas	specific	to	the	stroke	population	were	grouped	
to	constitute	downstream	regions	that	correspond	to	vessel	occlusion	locations	[12].	We	
adhere	to	the	nomenclature	of	the	atlas	to	indicate	the	neuroanatomical	regions.	

	

Figure	1	

A	visual	representation	of	our	methods.	On	the	left	is	a	schematic	depiction	of	the	arterial	
blood	supply	of	the	brain.	The	annotations	from	CTA	did	not	specify	between	different	M2	
(or	M3)	branches.	On	the	top	right,	we	show	the	regions	from	a	neuroanatomical	CT-MRI	
brain	atlas	specific	to	the	stroke	population	(registered	to	the	CT	perfusion	scan	of	a	
patient)	[12].	On	the	bottom	right,	the	neuroanatomical	regions	(shown	on	the	top	right)	
are	grouped	to	constitute	downstream	regions	that	correspond	to	the	vessel	occlusion	
locations	(shown	on	the	left).	We	show	the	M1d	downstream	region	in	the	left	hemisphere	
and	the	two	M2	downstream	regions	in	the	right	hemisphere.	
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Annotating	vessel	occlusion	locations	with	CTA	

The	vessel	occlusion	locations	on	CTA	were	defined	as	shown	in	Table	1	(also	see	Figure	1)	

and	were	termed	ICA,	M1p,	M1d,	M2	(anterior	and	posterior),	M3,	ACA,	and	PC.	An	expert	

reader	(from	a	pool	of	three	readers	with	at	least	five	years	of	experience	in	neurovascular	

imaging)	 annotated	 the	 CTA	 images	with	 the	most	 proximal	 vessel	 occlusion	 location	by	

reviewing	thin	slice	CTA	data	with	adjustable	maximum	intensity	projection	and	multiplanar	

reformatting.	The	reader	was	blind	to	all	clinical	information	other	than	the	side	of	the	symp-

toms.	In	Table	1,	we	differentiated	between	anterior	M2	and	posterior	M2	occlusions	because	

these	have	different	downstream	regions,	but	both	were	annotated	as	M2	on	the	CTA	images.	

Defining	downstream	regions	for	vessel	occlusion	locations	

We	adopted	a	neuroanatomical	CT-MRI	brain	atlas	 specific	 to	 the	 stroke	population	 from	

Kaffenberger	et	al.	to	define	the	downstream	regions	corresponding	to	the	vessel	occlusion	

locations	[12].	The	neuroanatomical	regions	 in	the	atlas	were	grouped	to	constitute	these	

downstream	regions	in	each	hemisphere	separately	as	shown	in	Table	1	(see	Figure	1).	

Determining	hypoperfused	regions	with	CTP	

The	CTP	scans	were	first	corrected	for	motion	by	a	three-dimensional	rigid	registration	on	

the	skull	with	Elastix	[13].	Subsequently,	 the	registered	CTP	scans	were	smoothed	using	a	

bilateral	filter	with	a	kernel	of	size	3	mm	x	3	mm	x	3	mm	x	20	HU.	The	arterial	input	function	

was	determined	automatically	as	described	elsewhere	[14].	An	in-house	developed	model-

based	non-linear	regression	method	generated	the	perfusion	maps	of	the	cerebral	blood	flow,	

the	 cerebral	blood	volume,	 the	mean	 transit	 time,	 and	 the	 time	 to	peak	 [15].	 From	 these	

perfusion	maps,	a	logistic	model	(that	is	described	elsewhere)	determined	the	hypoperfused	

region	(i.e.	the	infarct	core	and	the	penumbra	taken	together)	[16].	

Indicating	vessel	occlusion	locations	with	CTP	

For	each	patient,	we	aligned	the	atlas	with	the	downstream	regions	to	the	CTP	scan	by	an	

affine	 transformation	 using	 Elastix.	 For	 each	 downstream	 region,	 we	 calculated	 the	

intersection-over-union	with	the	hypoperfused	region,	i.e.	the	volume	of	the	region	that	is	

both	the	downstream	region	and	the	hypoperfused	region	(the	intersection)	divided	by	the	

volume	of	the	region	that	is	either	the	downstream	region	or	the	hypoperfused	region	or	both	

(the	 union).	 The	 downstream	 region	 with	 the	 highest	 intersection-over-union	 with	 the	

hypoperfused	region	was	considered	to	indicate	the	vessel	occlusion	location.	We	restricted	

the	calculation	of	the	intersection-over-union	to	slices	with	a	perfusion	deficit,	and	we	used	

the	Zadeh	operators	to	determine	the	intersection	and	the	union	[17].	
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Assessing	classification	with	performance	metrics	

We	compared	the	 indicated	vessel	occlusion	 locations	from	CTP	and	the	annotated	vessel	

occlusion	 locations	 from	 CTA	with	 a	 confusion	matrix	 (also	 known	 as	 an	 error	matrix),	

considering	the	annotations	from	CTA	as	the	reference	class	and	the	indications	from	CTP	as	

the	predicted	class.	To	elicit	some	properties	of	our	atlas-based	model,	we	also	looked	at	two	

(separate)	variations	of	this	confusion	matrix.	The	first	variation	was	to	consider	both	the	

best	 and	 second-best	 downstream	 regions	 in	 order	 to	 examine	 the	 extent	 of	 wrong	

indications.	For	example,	if	the	annotation	was	M1p,	the	best	indication	was	M1d,	and	the	

second-best	 indication	 was	M1p,	 then	 we	 would	 count	 the	 classification	 as	 correct.	 The	

second	variation	was	a	dichotomization	of	vessel	occlusion	locations	into	anterior	large	vessel	

occlusions	and	other	vessel	occlusions	because	CTP	has	been	shown	to	improve	the	detection	

of	CTA	of	vessel	occlusions	that	are	not	anterior	large	vessel	occlusions	[9,	10].	Anterior	large	

vessel	occlusions	were	defined	as	ICA,	M1p,	M1d,	and	the	first	segment	of	the	ACA	(A1).	We	

visualized	the	confusion	matrices	with	stacked	bar	graphs.	

We	derived	several	performance	metrics	from	the	confusion	matrices.	The	accuracy	 is	the	

number	of	matching	annotations	and	indications	divided	by	the	number	of	patients.	For	each	

vessel	occlusion	location,	we	determined	the	precision	and	the	recall.	Given	an	indication,	the	

precision	is	the	probability	that	it	matches	the	annotation.	Given	an	annotation,	the	recall	is	

the	probability	that	it	matches	the	indication.	

To	indicate	the	agreement	between	annotations	and	indications,	we	computed	Cohen's	kappa	

coefficient	(with	 its	95%	confidence	 interval).	Cohen's	kappa	coefficient	 is	 a	 statistic	 that	

measures	 the	 overall	 agreement	 between	 two	 different	 categorizations	 of	 the	 same	 data.	

Mathematically,	Cohen's	kappa	is	defined	as	one	minus	the	quotient	of	the	relative	observed	

disagreement	and	the	hypothetical	probability	of	chance	disagreement.	We	evaluated	Cohen's	

kappa	 coefficient	 qualitatively	 according	 to	 the	 levels	 of	 agreement:	 poor	 (<0.00),	 slight	

(0.00–0.20),	 fair	 (0.21–0.40),	 moderate	 (0.41–0.60),	 substantial	 (0.61–0.80),	 and	 almost	

perfect	(0.81–1.00)	[18].	

Results	

A	total	of	620	patients	was	included.	The	included	patients	had	a	mean	age	of	67	years	(SD:	

15	years),	a	median	NIHSS	quintile	of	4	(Q1-Q3:	3-5),	a	mean	time	from	onset	to	imaging	of	

148	minutes	(SD:	121	minutes),	a	median	3-month	follow-up	mRS	of	3	(Q1-Q3:	1-4),	and	57%	

were	male	(N:	353).	
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Table	2	

The	confusion	matrix	for	the	annotated	vessel	occlusion	locations	from	CT	angiography	
(CTA)	and	the	indicated	vessel	occlusion	locations	from	CT	perfusion	(CTP).	We	considered	
the	annotations	from	CTA	as	the	reference	class	and	the	indications	from	CTP	as	the	
predicted	class.	The	percentages	in	square	brackets	are	over	the	columns.	The	overall	
accuracy	was	48%	(299/620).	

	 ICA	(CTA)	 M1p	(CTA)	 M1d	(CTA)	 M2	(CTA)	 M3	(CTA)	 ACA	(CTA)	 PC	(CTA)	

ICA	(CTP)	 14	[13%]	 14	[19%]	 7	[5%]	 5	[3%]	 1	[3%]	 1	[7%]	 1	[1%]	

M1p	(CTP)	 25	[24%]	 38	[52%]	 22	[16%]	 5	[3%]	 1	[3%]	 0	[0%]	 2	[2%]	

M1d	(CTP)	 23	[22%]	 13	[18%]	 82	[60%]	 32	[20%]	 0	[0%]	 0	[0%]	 0	[0%]	

M2	(CTP)	 22	[21%]	 4	[5%]	 16	[12%]	 76	[47%]	 13	[36%]	 3	[21%]	 0	[0%]	

M3	(CTP)	 9	[9%]	 1	[1%]	 4	[3%]	 31	[19%]	 16	[44%]	 2	[14%]	 8	[9%]	

ACA	(CTP)	 1	[1%]	 0	[0%]	 1	[1%]	 1	[1%]	 1	[3%]	 6	[43%]	 5	[5%]	

PC	(CTP)	 7	[7%]	 1	[1%]	 4	[3%]	 9	[6%]	 1	[3%]	 2	[14%]	 67	[72%]	

None	(CTP)	 4	[4%]	 2	[3%]	 0	[0%]	 4	[2%]	 3	[8%]	 0	[0%]	 10	[11%]	

	

Table	2	shows	the	confusion	matrix	for	the	annotations	and	indications.	The	annotations	and	

indications	matched	for	48%	(299/620)	of	the	included	patients.	Based	on	chance	alone,	the	

classification	of	seven	categories	would	result	in	an	accuracy	of	14%	(=1/7).	For	23	patients	

(4%),	there	was	no	hypoperfused	region.	

Table	3	presents	the	accuracy,	Cohen’s	kappa,	precision,	and	recall	for	each	vessel	occlusion	

location.	The	mean	accuracy	for	these	location-specific	performance	assessments	was	86%,	

the	mean	precision	was	46%,	and	the	mean	recall	was	47%.	Overall,	Cohen’s	kappa	coefficient	

[95%	confidence	interval]	was	0.39	[0.35,	0.44],	which	indicates	fair	agreement.	Figures	2-5	

show	 examples	 of	 the	 downstream	 regions	 and	 the	 hypoperfused	 region	 for	 different	

annotations	and	indications.	
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Table	3	

The	accuracy,	Cohen’s	kappa,	precision,	and	recall	for	each	vessel	occlusion	location.	We	
considered	the	annotated	vessel	occlusion	locations	from	CT	angiography	as	the	reference	
class	and	the	indicated	vessel	occlusion	locations	from	CT	perfusion	as	the	predicted	class.	
The	mean	accuracy	was	86%,	the	mean	precision	was	46%,	and	the	mean	recall	was	47%.	

	 ICA	 M1p	 M1d	 M2	 M3	 ACA	 PC	

Accuracy		 81%	 85%	 80%	 77%	 88%	 97%	 92%	

Kappa	 0.10	 0.38	 0.45	 0.36	 0.24	 0.40	 0.68	

Precision	 33%	 41%	 55%	 57%	 23%	 40%	 74%	

Recall	 13%	 52%	 60%	 47%	 44%	 43%	 72%	

	

Table	4	shows	the	confusion	matrix	 for	considering	both	the	best	and	second-best	down-

stream	regions.	The	precision	and	the	recall	for	the	vessel	occlusion	locations	can	be	found	in	

the	 Supplementary	 Material.	 This	 allowance	 yielded	 410/620	 correct	 matches,	 a	 mean	

accuracy	of	91%,	a	mean	precision	of	64%,	a	mean	recall	of	64%,	and	an	overall	Cohen’s	kappa	

coefficient	 [95%	 confidence	 interval]	 of	 0.62	 [0.57,	 0.67],	 which	 indicates	 substantial	

agreement.	

Table	5	shows	the	confusion	matrix	for	the	dichotomization	of	vessel	occlusion	locations	into	

anterior	large	vessel	occlusions	and	other	vessel	occlusions.	The	precision	and	the	recall	for	

the	vessel	occlusion	locations	can	be	found	in	the	Supplementary	Material.	This	dichotomiza-

tion	yielded	an	accuracy	of	80%	(479/597),	a	mean	precision	of	80%,	a	mean	recall	of	80%,	

and	a	Cohen’s	kappa	coefficient	[95%	confidence	interval]	of	0.61	[0.54,	0.67],	which	indicates	

substantial	agreement.	

Figure	6	shows	the	stacked	bar	graphs	corresponding	to	the	confusion	matrices	of	Table	2,	

Table	4,	and	Table	5.	
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Figure	2	

Examples	of	annotations	(CTA)	and	
indications	(CTP)	that	match	for	different	
segments	of	the	middle	cerebral	artery.	On	
the	left,	time-to-peak	perfusion	maps	are	
shown.	On	the	right,	the	hypoperfused	
regions	and	the	downstream	regions	
(according	to	Figure	1)	are	shown.	For	each	
example,	we	only	regarded	the	M3	
downstream	region	with	the	highest	
intersection-over-union.	If	displayed,	these	
M3	downstream	regions	are	the	superior	
temporal	region,	the	superior	temporal	
region,	and	the	precentral	region	(from	top	
to	bottom).	
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Figure	3	

Examples	of	annotations	(CTA)	and	
indications	(CTP)	that	match	for	arteries	
other	than	the	middle	cerebral	artery.	On	
the	left,	time-to-peak	perfusion	maps	are	
shown.	On	the	right,	the	hypoperfused	
regions	and	the	downstream	regions	
(according	to	Figure	1)	are	shown.	For	each	
example,	we	only	regarded	the	M3	
downstream	region	with	the	highest	
intersection-over-union.	The	only	
displayed	M3	downstream	region	is	the	
superior	temporal	region.	
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Figure	4	

Examples	of	annotations	(CTA)	and	
indications	(CTP)	that	do	not	match	for	
different	segments	of	the	middle	cerebral	
artery.	On	the	left,	time-to-peak	perfusion	
maps	are	shown.	On	the	right,	the	
hypoperfused	regions	and	the	downstream	
regions	(according	to	Figure	1)	are	shown.	
For	each	example,	we	only	regarded	the	M3	
downstream	region	with	the	highest	
intersection-over-union.	These	M3	
downstream	regions	are	the	superior	
temporal	region,	the	supramarginal	region,	
the	supramarginal	region,	the	
supramarginal	region,	and	the	middle	
temporal	region	(from	top	to	bottom).	The	
second-best	indications	were	M1p,	M1d,	
M1p,	M2,	and	M1d	(from	top	to	bottom).	
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Figure	5	

Examples	of	annotations	(CTA)	and	
indications	(CTP)	that	do	not	match	for	
arteries	other	than	the	middle	cerebral	
artery.	On	the	left,	time-to-peak	perfusion	
maps	are	shown.	On	the	right,	the	
hypoperfused	regions	and	the	downstream	
regions	(according	to	Figure	1)	are	shown.	
For	each	example,	we	only	regarded	the	M3	
downstream	region	with	the	highest	
intersection-over-union.	If	displayed,	these	
M3	downstream	regions	are	the	frontal	
white	matter	and	the	frontal	white	matter	
(from	top	to	bottom).	The	second-best	
indications	were	M2,	ACA,	and	M2	(from	
top	to	bottom).	
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Table	4	

The	confusion	matrix	for	the	annotated	vessel	occlusion	locations	from	CT	angiography	
(CTA)	and	the	indicated	vessel	occlusion	locations	from	CT	perfusion	(CTP)	if	we	allow	the	
second-best	indication	to	also	count	as	correct.	We	considered	the	annotations	from	CTA	as	
the	reference	class	and	the	indications	from	CTP	as	the	predicted	class.	The	percentages	in	
square	brackets	are	over	the	columns.	The	overall	accuracy	was	66%	(410/620).	

	 ICA	(CTA)	 M1p	(CTA)	 M1d	(CTA)	 M2	(CTA)	 M3	(CTA)	 ACA	(CTA)	 PC	(CTA)	

ICA	(CTP)	 25	[24%]	 3	[4%]	 7	[5%]	 4	[2%]	 1	[3%]	 1	[7%]	 0	[0%]	

M1p	(CTP)	 21	[20%]	 61	[84%]	 3	[2%]	 5	[3%]	 1	[3%]	 0	[0%]	 2	[2%]	

M1d	(CTP)	 23	[22%]	 3	[4%]	 114	[84%]	 27	[17%]	 0	[0%]	 0	[0%]	 0	[0%]	

M2	(CTP)	 22	[21%]	 2	[3%]	 3	[2%]	 110	[67%]	 5	[14%]	 3	[21%]	 0	[0%]	

M3	(CTP)	 8	[8%]	 1	[1%]	 4	[3%]	 3	[2%]	 24	[67%]	 1	[7%]	 7	[8%]	

ACA	(CTP)	 0	[0%]	 0	[0%]	 1	[1%]	 1	[1%]	 1	[3%]	 7	[50%]	 5	[5%]	

PC	(CTP)	 2	[2%]	 1	[1%]	 4	[3%]	 9	[6%]	 1	[3%]	 2	[14%]	 69	[74%]	

None	(CTP)	 4	[4%]	 2	[3%]	 0	[0%]	 4	[2%]	 3	[8%]	 0	[0%]	 10	[11%]	

	

Table	5	

The	confusion	matrix	for	the	annotated	vessel	occlusion	locations	from	CT	angiography	
(CTA)	and	the	indicated	vessel	occlusion	locations	from	CT	perfusion	(CTP)	if	we	
dichotomize	the	vessel	occlusion	locations	into	anterior	large	vessel	occlusions	and	other	
vessel	occlusions.	We	considered	the	annotations	from	CTA	as	the	reference	class	and	the	
indications	from	CTP	as	the	predicted	class.	The	percentages	in	square	brackets	are	over	the	
columns.	The	overall	accuracy	was	80%	(479/597).	

	 Anterior	large	vessel	occlusion	(CTA)	 Other	vessel	occlusion	(CTA)	

Anterior	large	vessel	occlusion	(CTP)	 238	[77%]	 48	[17%]	

Other	vessel	occlusion	(CTP)	 70	[23%]	 241	[83%]	
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Figure	6	

The	stacked	bar	graphs	for	the	confusion	matrices	from	Table	2	(top),	Table	4	(middle),	and	
Table	5	(bottom).	We	considered	the	annotated	vessel	occlusion	locations	from	CT	
angiography	as	the	reference	class	and	the	indicated	vessel	occlusion	locations	from	CT	
perfusion	as	the	predicted	class.	For	the	middle	stacked	bar	graph,	we	allowed	the	second	
best	indication	to	also	count	as	correct.	For	the	bottom	stacked	bar	graph,	we	dichotomized	
the	vessel	occlusion	locations	into	anterior	large	vessel	occlusions	and	other	vessel	
occlusions.	
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Discussion	

We	presented	an	atlas-based	method	in	which	CTP	data	were	used	to	automatically	indicate	

the	vessel	occlusion	location	in	acute	ischemic	stroke	patients.	We	evaluated	the	performance	

of	 these	 indications	by	comparing	them	with	the	vessel	occlusion	 locations	acquired	from	

expert	visual	assessments	of	CTA.	The	inter-rater	agreement	between	the	annotations	from	

CTA	and	the	indications	from	CTP	was	fair	to	substantial.	

We	focused	on	locating	vessel	occlusions	instead	of	detecting	vessel	occlusions.	Studies	that	

automatically	 detected	 vessel	 occlusions	 on	 CTA	 did	 not	 evaluate	 their	 performance	 in	

locating	 vessel	 occlusions	 [19–24].	 Instead,	 these	 studies	 were	 designed	 to	 distinguish	 a	

group	of	patients	with	a	large	vessel	occlusion	from	a	group	of	patients	without	a	detectable	

vessel	occlusion.	Similarly,	experienced	readers	of	CTP	images	could	distinguish	a	group	of	

patients	 with	 distal	 vessel	 occlusion	 from	 a	 group	 of	 patients	 without	 detectable	 vessel	

occlusion	 [5].	 Although	 these	 readers	 did	 not	 report	 the	 vessel	 occlusion	 location,	 their	

sensitivity	for	detecting	vessel	occlusions	with	CTP	imaging	agrees	with	the	percentage	of	

patients	 that	 did	 not	 show	 hypoperfusion	 in	 our	 study.	 Furthermore,	 expert	 readers	 of	

multiphase	CTA	images	could	distinguish	a	group	of	patients	with	a	medium	vessel	occlusion	

from	a	group	of	patients	without	a	detectable	vessel	occlusion,	with	a	large	vessel	occlusion,	

or	with	the	occlusion	of	the	vertebrobasilar	circulation	[25].	This	last	study	reported	that	70%	

(81/116)	of	vessel	occlusions	were	located	correctly,	whereas	we	indicated	48%	(299/620)	

of	vessel	occlusion	locations	correctly.	

Our	atlas-based	method	varied	in	performance	by	the	vessel	occlusion	location	(Table	3).	In	

particular,	ICA	annotations	had	the	lowest	recall	(14%)	and	ICA	indications	had	the	second	

lowest	 precision	 (33%).	 This	 relative	 underperformance	may	 be	 explained	 by	 the	 larger	

potential	for	blood	supply	via	conduit	collaterals	for	ICA	annotated	occlusions	than	for	other	

vessel	occlusions.	Conduit	collaterals	such	as	the	circle	of	Willis	can	redirect	blood	flow	based	

on	 the	 patient-specific	 angioarchitecture,	 resulting	 in	 hypoperfused	 regions	 that	 may	 be	

highly	variable	between	patients	(compare	Figure	3	and	Figure	5)	[26–28].	

Considering	both	the	best	and	second-best	downstream	region	improved	our	overall	perfor-

mance.	 Although	 the	 performance	 for	 occlusions	 of	 the	 different	 segments	 of	 the	middle	

cerebral	artery	improved,	the	performance	stayed	roughly	equal	for	middle	cerebral	artery	

occlusions	 as	 a	 whole	 as	 well	 as	 for	 ICA	 occlusions,	 ACA	 occlusions,	 and	 PC	 occlusions	

(Figure	6).	This	partial	improvement	may	be	due	to	the	variation	in	vessel	architecture	of	the	

middle	 cerebral	 artery,	 resulting	 in	 a	 considerable	 number	 of	 consequential	 boundary	
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cases	[3].	For	the	different	segments	of	the	middle	cerebral	artery,	only	M2	annotations	with	

an	 M1d	 indication	 were	 not	 resolved	 by	 considering	 both	 the	 best	 and	 second-best	

downstream	region.	For	these	M2	annotations,	the	second-best	downstream	region	often	was	

M1p	because	of	the	relatively	small	difference	between	the	M1p	downstream	region	and	the	

M1d	downstream	region	(Figure	4).	Thus,	the	performance	of	our	atlas-based	method	likely	

suffered	 from	variation	 in	vessel	architecture,	 emphasizing	 the	need	 for	an	approach	 that	

incorporates	patient-specific	vessel	data	to	locate	vessel	occlusions.	

Our	atlas-based	method	was	limited	by	its	design.	It	was	unfeasible	to	differentiate	between	

all	possible	vessel	occlusion	 locations.	To	 illustrate,	consider	an	occlusion	of	 the	recurrent	

artery	 of	 Heubner,	 which	 is	 the	 largest	 perforating	 branch	 from	 the	 proximal	 anterior	

cerebral	artery.	Occlusion	of	this	artery	may	result	in	a	perfusion	deficit	that	is	restricted	to	

the	basal	ganglia.	Although	this	perfusion	deficit	is	distinctly	different	from	an	M1p	occlusion,	

our	atlas-based	method	would	indicate	M1p.	For	the	sake	of	clarity,	we	decided	to	have	no	

overlapping	downstream	regions	for	arteries	that	are	not	in	ordinal	relation.	

Several	 shortcomings	 should	 be	 noted.	 Although	 the	 defined	downstream	regions	appear	

reasonable	(Figure	2	and	Figure	4),	the	performance	of	our	atlas-based	method	seemed	to	

suffer	 from	 physiological	 variation,	 for	 example,	 in	 collateral	 circulation	 or	 in	 M2	

angioarchitecture.	 Furthermore,	 in	 contrast	 with	 the	middle	 cerebral	 artery,	 we	 did	 not	

consider	 occlusions	 of	 different	 vessels	 in	 the	 posterior	 circulation	 because	 of	 a	 limited	

number	of	patients	with	occlusions	in	the	posterior	circulation.	Moreover,	there	might	be	a	

number	 of	 patients	with	a	missed	 vessel	 occlusion	 on	 the	 CTA	 images,	 especially	 for	 the	

smaller	vessel	occlusions.	Unfortunately,	the	majority	of	the	patients	included	in	the	DUST	

study	did	not	have	digital	subtraction	angiography	(DSA)	imaging,	so	we	could	not	compare	

CTA	 and	 DSA	 imaging	 for	 this	 group.	 Finally,	 technical	 limitations	 (e.g.	 artifacts,	 the	

registration,	 or	 the	 perfusion	 analysis)	may	 have	 resulted	 in	an	 inaccurate	hypoperfused	

region,	 an	 inaccurate	 downstream	 region,	 an	 inaccurate	 alignment	 of	 the	 hypoperfused	

region	and	the	downstream	region,	or	an	unfortunate	scoring	by	the	intersection-over-union	

(Figure	3	and	Figure	5).	
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Conclusion	

Spatial	CTP	data	can	help	to	automatically	locate	vessel	occlusions	for	acute	ischemic	stroke	

patients.	However,	variations	in	vessel	architecture	between	patients	seemed	to	limit	the	ca-

pacity	of	CTP	data	to	distinguish	between	vessel	occlusion	locations	more	accurately.	Never-

theless,	the	spatial	layout	of	the	hypoperfused	region	might	be	employed	in	combination	with	

patient-specific	vessel	data	to	locate	vessel	occlusions	more	effectively.	 	
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Supplementary	Table	1	

The	precision	and	the	recall	for	each	vessel	occlusion	location	if	we	allow	the	second-best	
indication	to	also	count	as	correct.	We	considered	the	annotated	vessel	occlusion	locations	
from	CT	angiography	as	the	reference	class	and	the	indicated	vessel	occlusion	locations	
from	CT	perfusion	as	the	predicted	class.	The	mean	accuracy	was	91%,	the	mean	precision	
was	64%,	and	the	mean	recall	was	64%.	

	 ICA	 M1p	 M1d	 M2	 M3	 ACA	 PC	

Accuracy		 85%	 93%	 88%	 86%	 94%	 98%	 93%	

Kappa	 0.27	 0.69	 0.67	 0.62	 0.54	 0.47	 0.72	

Precision	 61%	 66%	 68%	 76%	 50%	 47%	 78%	

Recall	 24%	 84%	 84%	 67%	 67%	 50%	 74%	

	

Supplementary	Table	2	

The	precision	and	the	recall	for	each	vessel	occlusion	location	if	we	dichotomize	the	vessel	
occlusion	locations	into	anterior	large	vessel	occlusions	and	other	vessel	occlusions.	We	
considered	the	annotated	vessel	occlusion	locations	from	CT	angiography	as	the	reference	
class	and	the	indicated	vessel	occlusion	locations	from	CT	perfusion	as	the	predicted	class.	
The	mean	precision	was	80%	and	the	mean	recall	was	80%.	

	 Anterior	large	vessel	occlusion	 Other	vessel	occlusion	

Precision	 83%	 77%	

Recall	 77%	 83%	
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General	discussion	
With	a	summary	of	the	previous	chapters,	a	general	discussion,	future	perspectives,	

and	a	conclusion.	
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This	 thesis	 considered	 technical	 CTP	 imaging	 protocols	 in	 ischemic	 stroke.	 The	 lack	 of	

consensus	 on	 the	 CTP	 imaging	 acquisition	 and	 processing	 protocol	 has	 hindered	 the	

widespread	adoption	of	image-based	criteria	 for	stroke	diagnosis	and	treatment	planning.	

Accordingly,	 the	 CLEOPATRA	 healthcare	evaluation	was	 launched	 to	 investigate	 the	 cost-

effectiveness	of	selecting	ischemic	stroke	patients	for	thrombectomy	with	CTP	imaging.	We	

focused	on	harmonizing	and	optimizing	the	CTP	imaging	acquisition	and	processing	protocol.	

Summary	

Chapter	2	considered	the	injection	protocol.	We	took	the	arterial	input	function	as	a	direct	

measure	to	characterize	the	injection	protocol.	The	arterial	input	 function	varied	between	

centers	participating	in	a	multicenter	study.	Using	an	anthropomorphic	digital	CTP	phantom,	

we	argued	that	these	differences	may	impact	clinical	decision	making	in	stroke	diagnosis.	

Chapter	3	 considered	 the	 scan	 and	 processing	 protocol.	 We	 requested	 the	 scan	 and	

processing	 protocols	 from	 the	 stroke	 centers	 participating	 in	 the	 CLEOPATRA	 healthcare	

evaluation	and	compared	these	protocols	using	an	anthropomorphic	digital	CTP	phantom.	

We	found	that	the	estimated	ischemia	varied	greatly	between	centers.	The	primary	source	of	

this	variation	was	the	perfusion	software	rather	than	the	scan	protocol.	The	biases	in	CTP	

imaging	results	had	a	clear	relation	to	the	vendor	software.	Standardizing	the	estimation	of	

ischemic	regions,	as	described	in	chapter	5,	harmonized	CTP	imaging	results	to	a	degree.	

Chapter	4	described	our	efforts	to	construct	an	anthropomorphic	physical	CTP	phantom.	Such	

a	phantom	could	contribute	to	CTP	image	quality	control	and	harmonization.	The	physical	

phantom	was	based	on	the	digital	phantom	used	in	chapters	2	and	3.	By	scanning	contrast	

agent	printed	sheets,	we	produced	CTP	imaging	results	that	were	visually	similar	to	those	of	

the	digital	phantom.	However,	the	physical	phantom	required	separate	processing	before	the	

actual	processing	protocol	and	showed	suboptimal	contrast	enhancement	in	the	brain	tissue.	

Nonetheless,	we	 demonstrated	 the	 feasibility	 of	mimicking	anthropomorphic	 brain	 tissue	

perfusion	with	a	physical	phantom.	An	anthropomorphic	physical	CTP	image	quality	phantom	

could	help	to	harmonize	and	optimize	the	CTP	imaging	acquisition	and	processing	protocol.	

Chapter	5	introduced	a	method	to	standardize	the	estimation	of	ischemic	regions.	Instead	of	

thresholding	 a	 selected	 perfusion	map,	which	 results	 in	 segregated	 ischemic	 regions,	we	

combined	perfusion	maps	into	probability	maps,	which	show	the	likelihood	for	ischemia.	In	

chapters	3,	5,	and	6	together,	we	showed	that	this	standardized	method	could	harmonize	and	

optimize	CTP	imaging	results	to	a	degree.	
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Chapter	6	compared	the	segmentations	from	four	methods	to	estimate	ischemic	regions:	we	

considered	the	segmentations	from	acute	MR	diffusion	imaging	as	the	ground	truth	and	seg-

mented	the	perfusion	maps	from	CTP	imaging	by	the	clinical	vendor	default,	by	hand,	and	by	

the	standardized	method	described	in	chapter	5.	The	clinical	vendor	default	segmentations	

underperformed	compared	to	both	the	manual	segmentations	and	the	segmentations	from	

the	 standardized	method.	 Additionally,	 the	manual	 segmentations	 and	 the	 segmentations	

from	the	standardized	method	agreed	well	with	each	other.	Although	the	segmentations	from	

the	four	methods	differed,	CTP	 imaging	 still	 resembled	MR	diffusion	imaging	 in	 the	acute	

phase	of	ischemic	stroke	overall.	

Chapter	7	provided	insights	into	a	novel	application	of	CTP	imaging	results	to	locate	the	vessel	

occlusion.	 Recent	 advancements	 in	 stent	 retriever	 technology	 could	 widen	 the	 eligibility	

criteria	for	thrombectomy	by	considering	occlusions	in	smaller	and	more	distal	vessels.	These	

occlusions	are	increasingly	difficult	to	locate	with	CTA	imaging.	We	showed	that	the	spatial	

layout	of	the	total	ischemic	region,	determined	from	CTP	imaging,	can	help	to	locate	the	vessel	

occlusion.	

Discussion	

This	thesis	concerns	the	harmonization	and	optimization	of	CTP	imaging.	To	simplify,	CTP	

imaging	involves	three	critical	stages:	acquiring	the	CTP	imaging	source	data,	processing	this	

data	into	perfusion	maps,	and	translating	these	maps	into	clinically	relevant	information.	The	

existent	scientific	literature	highlights	the	variability	of	CTP	imaging,	leading	us	to	investigate	

and	discuss	which	of	those	three	stages	contributes	to	this	variability.	

In	chapters	2	and	3,	we	looked	at	the	acquisition	protocols.	Despite	a	wide	variation	between	

these	protocols	in	clinical	practice,	the	impact	of	this	variation	was	small	[1].	Therefore,	only	

minimal	 requirements	 need	 to	 be	 set	 to	 further	 improve	 the	 uniformity	 of	 acquisition	

protocols.	Regarding	this,	we	suggest	that	the	interval	between	CTP	frames	is	at	most	two	

seconds	around	maximal	contrast	enhancement	to	ensure	that	no	critical	information	about	

the	contrast	enhancement	is	missed.	We	also	suggest	having	at	least	two	frames,	or	a	single	

frame	 at	 double	 the	 radiation	 dose,	 before	 the	 first	 contrast	 enhancement	 to	 establish	 a	

proper	baseline	needed	for	an	accurate	perfusion	analysis.	Tube	settings	should	be	80	kVp	at	

most	and	100	mAs	at	least.	Most	of	the	centers	participating	in	the	CLEOPATRA	healthcare	

evaluation	 already	met	 these	 criteria.	 For	 the	 injection	 protocol,	 it	 is	 important	 to	 inject	

enough	iodine	[2].	New	guidelines,	which	specify	that	15	g	iodine	is	injected	at	1.8	g	iodine	

per	second,	have	been	issued	already	to	centers	in	the	CONTRAST	consortium	[3–5].	
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In	 chapters	 3,	 5,	 and	 6,	 we	 looked	 at	 the	 perfusion	maps	 from	 different	 clinical	 vendor	

software	and	examined	the	estimation	of	ischemic	regions	from	these	perfusion	maps.	Our	

findings	indicate	that	this	estimation	of	ischemic	regions	causes	most	of	the	variation	in	the	

clinically	relevant	information	derived	from	CTP	imaging	[1].	It	is	interesting	to	discuss	why	

such	variation	exists	when	clinical	experts	seem	to	assess	the	perfusion	maps	as	useful	and	

reliable,	and	agree	on	the	ischemic	information	contained	within	these	maps.	We	argue	that	

these	 inconsistencies	 arise	 from	an	 incorrect	 interpretation	of	 the	perfusion	maps	by	 the	

perfusion	software	and	we	identify	two	key	reasons	for	the	suboptimal	estimation	of	ischemic	

regions.	

First,	simply	thresholding	the	perfusion	maps	to	estimate	the	infarct	core	and	penumbra	does	

not	work	 satisfactorily	 [1,	 6–8].	The	 quantitative	 differences	 in	 the	 perfusion	 parameters	

between	 different	 software	 have	 led	 to	 the	 use	 of	 various	 threshold	 values	 to	 different	

perfusion	maps,	which	is	very	impractical.	Additionally,	because	the	perfusion	parameters	

vary	naturally	throughout	the	brain,	thresholding	inevitably	leads	to	false	positive	and	false	

negative	estimations.	Each	software	seems	to	mitigate	these	false	estimations	differently,	for	

example	 by	 additional	 filtering	 of	 the	 source	 data,	 by	 calculating	 relative	 values	 of	 the	

perfusion	parameters,	 or	by	additional	processing	of	 the	 summary	maps.	 In	our	view,	by	

combining	all	 the	available	perfusion	maps,	we	were	able	to	standardize	the	estimation	of	

ischemic	regions	and	we	found	that	false	negative	estimations	were	substantially	reduced.	

Still,	additional	processing	turned	out	to	be	necessary	to	reduce	false	positive	estimations	

also.	 Experts	 can	 easily	 discard	 these	 false	 positive	 estimations	 based	 on	 anatomical	

knowledge	 or	 by	 comparing	 hemispheres	 to	 each	 other,	 but	 both	 thresholding	 and	 our	

standardized	method	make	predictions	for	individual	voxels.	Not	knowing	whether	such	an	

individual	 voxel	belongs	 to	white	or	 gray	matter,	 for	example,	 elevates	 the	 risk	of	a	 false	

prediction.	Hence,	to	estimate	ischemic	regions,	we	should	leverage	all	perfusion	data,	while	

also	accounting	for	spatial	information,	including	anatomical	information.	

Second,	 the	 habit	 of	 calibrating	 CTP	 imaging	 based	 on	 follow-up	 imaging	 appears	 to	 be	

unproductive	[7].	Visual	assessments	of	perfusion	maps	and	follow-up	imaging	should	make	

this	clear.	But	in	scientific	literature	as	well,	the	comparison	between	CTP	imaging	and	follow-

up	 imaging	 has	 consistently	 yielded	 limited	 results	 [8–10].	 In	 chapter	 6,	 we	 took	 an	

alternative	approach	to	calibrate	CTP	imaging.	Our	findings	reveal	that	clinical	experts	can	

confidently	delineate	CTP	imaging	without	an	external	ground	truth	reference,	emphasizing	

the	intrinsic	value	of	CTP	imaging.	We	should	aim	to	automate	this	process,	as	there	is	no	time	

to	manually	delineate	CTP	imaging	in	clinical	practice.	
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In	conclusion,	to	reduce	inconsistencies	in	the	clinically	relevant	information	derived	from	

CTP	imaging,	we	recommend	establishing	a	standardized	framework	to	estimate	 ischemic	

regions.	 This	 framework	 should	 leverage	 all	 perfusion	 data,	 take	 into	 account	 spatial	

information,	and	rely	on	manual	segmentations	as	a	ground	truth	reference.	

The	CLEOPATRA	healthcare	evaluation	was	launched	to	investigate	whether	CTP	imaging	is	

cost-effective	 in	 selecting	patients	 for	 thrombectomy.	Recent	 scientific	 literature	 suggests	

that	CTP	imaging	is	of	 limited	additional	value	to	NCCT	and	CTA	imaging	 in	patient	selec-

tion	[11–13].	Despite	this,	we	believe	that	CTP	imaging	still	holds	clinical	value,	though	an	

interpretation	other	 than	patient	 selection	may	be	required.	Experts	 agree	 that	perfusion	

maps	 provide	 a	 quick	 and	 informative	 snapshot	 of	 the	 patient’s	 condition.	 Chapter	 6	

demonstrated	that	the	perfusion	maps	resemble	acute	MR	diffusion	imaging,	implying	that	

CTP	imaging	is	of	diagnostic	value.	Additionally,	chapter	7	illustrated	that	CTP	imaging	can	

help	interpret	CTA	imaging,	which	could	be	important	for	the	treatment	of	smaller	and	more	

distal	vessel	occlusions.	CTA	and	CTP	imaging	can	thus	complement	each	other,	and	neither	

renders	the	other	redundant.	

In	 summary,	 CTP	 imaging	 remains	 an	 interesting	modality	 in	managing	 ischemic	 stroke	

patients.	Harmonization	of	the	acquisition	protocol	should	prioritize	guidelines	for	the	timing	

of	CTP	frames.	We	argue	against	the	calibration	of	CTP	imaging	to	follow-up	imaging	and	we	

speak	out	for	the	intrinsic	value	of	the	perfusion	maps.	The	clinical	value	of	CTP	imaging	in	

ischemic	 stroke	 deserves	 attention,	 but	 adjusting	 the	 current	 unrealistic	 expectation	 of	

patient	selection	based	on	the	infarct	core	and	penumbra	may	yield	meaningful	results.	

Future	perspectives	

For	the	future,	a	number	of	improvements	can	be	implemented	to	optimize	CTP	image	quality	

and	to	advance	harmonization.	

Regarding	the	injection	protocol,	the	easiest	enhancement	of	CTP	imaging	can	be	achieved	by	

increasing	the	concentration	of	the	contrast	agent,	as	this	increases	both	the	amount	and	the	

rate	of	 the	 iodine	 [14].	While	 some	centers	have	already	adopted	 contrast	concentrations	

beyond	the	typical	300	mg	I/mL,	other	centers	could	follow	suit	in	the	future.	Another,	more	

advanced,	 optimization	 of	 the	 injection	 protocol	 could	 involve	 personalized	 contrast	

injection,	 considering	 that	 personal	 factors	 such	 as	weight	 and	 cardiac	 output	 have	 been	

shown	to	affect	the	contrast	enhancement	in	large	arteries	[14,	15].	
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Regarding	 the	 scan	 protocol,	 scanning	 at	 70	 kVp	 could	 reduce	 the	 radiation	 dose	 while	

maintaining	diagnostic	image	quality	[16,	17].	Alternatively,	some	centers	that	already	scan	

at	 70	kVp	 in	 clinical	 practice	 decided	 to	 increase	 the	mAs	 to	 improve	 image	 quality	 at	 a	

maintained	radiation	dose.	More	centers	might	choose	to	scan	at	70	kVp	in	the	future.	

Another	interesting	avenue	for	optimization	is	to	work	towards	a	single	contrast-enhanced	

scan.	Currently,	the	CTP	and	CTA	scan	are	two	separate	scans,	necessitating	additional	iodine	

and	 radiation.	 However,	 CTP	 and	 CTA	 imaging	are	 converging	 both	 in	 acquisition	 and	 in	

application.	 For	 example,	 the	 CTA	 imaging	 acquisition	 protocol	 can	 be	 extended	 to	

accommodate	 perfusion	 imaging,	while	 CTP	 imaging	 can	 help	 to	 detect	 and	 locate	 vessel	

occlusions	[18–23].	 Integrating	 the	 CTP	 and	 CTA	 imaging	acquisition	 protocols	 offers	 the	

potential	to	decrease	the	amount	of	iodine	and	radiation	for	the	patient	and	to	increase	image	

quality.	

Modern	techniques	could	advance	the	clinical	 impact	of	CTP	imaging.	Photon	counting	CT	

systems	and,	 to	a	 lesser	extent,	spectral	CT	imaging	have	a	higher	resolution	and	a	higher	

sensitivity	 to	 contrast	material	 [24–26].	 This	 could	ensure	 the	 detection	 of	 small	 lacunar	

infarcts	 that	 remain	 unnoticed	 on	 CTA	 imaging.	 Detecting	 these	 subtle	 infarcts	 holds	

significance	 for	 future	 patient	 treatment,	 as	 they	 indicate	 an	 increased	 risk	 of	 recurrent	

strokes,	thereby	facilitating	timely	preventive	measures	[27,	28].	

Regarding	the	processing	protocol,	we	pursued	decentral	harmonization	through	anthropo-

morphic	 phantoms	 and	 a	method	 to	 harmonize	 the	 estimated	 ischemic	 regions	 between	

clinical	vendor	software.	However,	central	harmonization	may	also	be	a	viable	option.	The	

Dutch	stroke	technology	software	StrokeViewer	(Nicolab,	Amsterdam)	offers	a	cloud-based	

stroke	 portfolio	 that	 is	 already	 in	 clinical	 use	 across	 various	 Dutch	 stroke	 centers.	 This	

portfolio	 covers	 the	 multiple	 facets	 of	 stroke	 diagnosis,	 such	 as	 detecting	 hemorrhage,	

locating	 the	 vessel	 occlusion,	 and	 estimating	 ischemic	 regions.	 For	 CTP	 imaging,	 such	 a	

platform	presents	an	opportunity	to	implement	desired	improvements	in	the	production	of	

perfusion	maps	and	in	the	estimation	of	ischemic	regions.	

	

	

	



General	discussion	

	

159	

Conclusion	

This	thesis	addresses	the	harmonization	and	optimization	of	the	CTP	imaging	acquisition	and	

processing	protocol.	We	argue	that	the	inconsistencies	in	clinically	relevant	information	from	

CTP	imaging	arise	from	the	conversion	of	perfusion	maps	to	ischemic	regions.	We	suggest	a	

shift	in	perspective,	urging	to	assess	CTP	imaging	on	its	own	merits.	This	involves	recognizing	

the	intrinsic	value	of	the	perfusion	maps	and	considering	diverse	clinical	applications	of	CTP	

imaging.	Only	then	can	the	full	diagnostic	potential	of	CTP	imaging	be	unveiled.	
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Supplementary	Figure	1	

The	injection	protocols	shared	by	the	centers	participating	in	the	CLEOPATRA	healthcare	
evaluation.	The	nomenclature	is	the	same	as	in	chapter	3.	The	width	of	each	bar	represents	
the	injection	rate.	From	top	to	bottom,	the	contrast	bolus	injection	volumes	are	50,	45,	40,	
40,	60,	50,	47,	45,	50,	50,	50,	50,	40,	35,	40,	50,	50,	and	50	mL.	
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Supplementary	Figure	2	

The	scan	protocols	on	top	of	the	injection	protocols	for	the	acquisition	protocols	shared	by	
the	centers	participating	in	the	CLEOPATRA	healthcare	evaluation.	The	nomenclature	is	the	
same	as	in	chapter	3.	
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A Nederlandse	samenvatting	

	
Dit	 proefschrift	 gaat	 over	 het	 harmoniseren	 en	 optimaliseren	 van	 CT	 perfusie	 (CTP)	

beroertebeeldvorming.	CTP	beeldvorming	kan	helpen	bij	het	selecteren	van	patiënten	met	

een	herseninfarct	voor	trombectomie.	Echter,	omdat	consensus	over	het	CTP	acquisitie-	en	

verwerkingsprotocol	ontbreekt,	is	een	brede	acceptatie	van	op	beeld	gebaseerde	behande-

lingscriteria	uitgebleven.	De	CLEOPATRA	zorgbeoordeling	 is	opgezet	om	te	bepalen	of	het	

kosteneffectief	 is	om	patiënten	met	een	herseninfarct	 te	selecteren	voor	trombectomie	op	

basis	van	beroertebeeldvorming.	Wij	richtten	ons	daarbij	op	het	harmoniseren	en	optimali-

seren	van	de	protocollen	voor	CTP	beroertebeeldvorming.	

Hoofdstuk	1	 introduceert	enkele	concepten	van	CTP	beeldvorming.	Bij	CTP	beeldvorming	

wordt	 contrastmiddel	 in	 de	 bloedbaan	 geïnjecteerd.	 Door	 veranderingen	 in	 contrastver-

lichting	 door	 de	 tijd	 heen	 te	meten,	 kunnen	 perfusieafbeeldingen	worden	 gemaakt.	 Deze	

perfusieafbeeldingen	tonen	de	doorbloeding	van	het	hersenweefsel	en	worden	gebruikt	om	

ischemische	 (minder	 doorbloede)	 gebieden	 af	 te	 schatten.	 De	 afgeschatte	 ischemische	

gebieden	helpen	de	klinische	besluitvorming	rond	een	herseninfarct.	

Hoofdstuk	 2	 behandelt	 het	 injectieprotocol	 van	 CTP	 beeldvorming.	We	 beschouwden	 de	

contrastverlichting	 in	 een	 grote	 ader	 als	 een	 directe	 maat	 om	 het	 injectieprotocol	 te	

karakteriseren.	Deze	contrastverlichting	varieerde	tussen	centra	die	deel	hadden	genomen	

aan	een	geharmoniseerde	multicenterstudie.	Met	behulp	van	een	antropomorf	digitaal	CTP	

fantoom	 beargumenteerden	 we	 dat	 deze	 variatie	 van	 invloed	 kan	 zijn	 op	 de	 klinische	

besluitvorming	bij	de	diagnose	van	een	herseninfarct.	

Hoofdstuk	3	behandelt	het	scanprotocol	en	verwerkingsprotocol	van	CTP	beeldvorming.	We	

hebben	de	scanprotocollen	en	verwerkingsprotocollen	opgevraagd	bij	de	beroertecentra	die	

deelnamen	aan	de	CLEOPATRA	zorgbeoordeling	en	hebben	deze	protocollen	vergeleken	met	

behulp	van	een	antropomorf	digitaal	CTP	fantoom.	De	scanprotocollen	varieerden	allen	in	

instellingen.	De	CTP	beeldresultaten	waren	relatief	weinig	beïnvloed	door	deze	instellingen.	

Voor	de	verwerking	van	de	CTP	scans	hebben	we	drie	leverancierssoftware	gebruikt.	De	CTP	

beeldresultaten	waren	duidelijk	gegroepeerd	op	basis	van	de	leverancierssoftware.	Door	de	

afschatting	van	ischemische	gebieden	te	standaardiseren	zoals	beschreven	in	hoofdstuk	5,	

konden	de	CTP	beeldresultaten	tot	op	zekere	hoogte	geharmoniseerd	worden.	
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Hoofdstuk	 4	 beschrijft	 onze	 inspanningen	 om	 een	 antropomorf	 fysiek	 CTP	 fantoom	 te	

vervaardigen.	Dit	fysieke	fantoom	was	gebaseerd	op	het	digitale	fantoom	gebruikt	in	hoofd-

stukken	2	en	3.	Door	het	scannen	van	papieren	vellen	bedrukt	met	contrastmiddel,	verkregen	

we	CTP	beeldresultaten	die	vergelijkbaar	waren	met	die	van	het	digitale	fantoom.	Het	fysieke	

fantoom	vereiste	echter	aparte	verwerking	vóór	het	daadwerkelijke	verwerkingsprotocol	en	

vertoonde	 suboptimale	 contrastverlichting.	 Desondanks	 hebben	 we	 aangetoond	 dat	 het	

nabootsen	van	antropomorf	hersenweefselperfusie	met	een	fysiek	fantoom	haalbaar	is.	

Hoofdstuk	 5	 introduceert	 een	 methode	 om	 het	 afschatten	 van	 ischemische	 gebieden	 te	

standaardiseren.	 In	 plaats	 van	 een	 drempelwaarde	 te	 stellen	 op	 een	 specifieke	 perfusie-

afbeelding,	 combineerden	 we	 perfusieafbeeldingen	 tot	 een	 enkele	 kansafbeelding	 voor	

ischemie.	In	hoofdstukken	3,	5	en	6	tezamen,	toonden	we	aan	dat	deze	gestandaardiseerde	

methode	de	CTP	beeldresultaten	tot	op	zekere	hoogte	kon	harmoniseren	en	optimaliseren.	

Hoofdstuk	6	vergelijkt	de	segmentaties	van	vier	methoden	om	ischemische	gebieden	af	 te	

schatten:	we	beschouwden	de	segmentaties	van	acute	MR-diffusiebeelden	als	de	referentie-

standaard	en	segmenteerden	de	perfusieafbeeldingen	van	de	CTP	beeldvorming	volgens	de	

klinische	standaard,	handmatig,	en	volgens	de	gestandaardiseerde	methode	beschreven	in	

hoofdstuk	 5.	 De	 segmentaties	 van	 de	 klinische	 standaard	 presteerden	 minder	 goed	 ten	

opzichte	van	zowel	de	handmatige	segmentaties	als	de	segmentaties	van	de	gestandaardi-

seerde	methode.	Bovendien	kwamen	de	handmatige	segmentaties	en	de	segmentaties	van	de	

gestandaardiseerde	methode	goed	met	elkaar	overeen.	Hoewel	de	segmentaties	van	de	vier	

methoden	verschilden,	kwamen	de	CTP	beeldresultaten	over	het	algemeen	goed	overeen	met	

de	MR-diffusiebeelden	in	de	acute	fase	van	een	herseninfarct.	

Hoofdstuk	7	geeft	een	kijk	op	een	nieuw	gebruik	van	CTP	beeldvorming	als	hulpmiddel	om	

de	vaatafsluiting	te	lokaliseren.	Recente	verbeteringen	aan	stent	retrievers	zouden	de	criteria	

voor	trombectomie	kunnen	verruimen	door	afsluitingen	van	kleinere	en	meer	distale	vaten	

mee	 te	 nemen.	 Dit	 soort	 afsluitingen	 is	 echter	 steeds	 moeilijker	 te	 lokaliseren	 met	 CT	

angiografie	beeldvorming.	We	toonden	aan	dat	de	ligging	van	het	totale	ischemische	gebied,	

bepaald	uit	CTP	beeldvorming,	kan	helpen	bij	het	lokaliseren	van	de	vaatafsluiting.	
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Hoofdstuk	8	beveelt	aan	een	gestandaardiseerd	kader	op	te	stellen	voor	het	afschatten	van	

ischemische	gebieden,	om	zo	de	onsamenhangendheden	in	de	klinisch	relevante	informatie	

verkregen	uit	CTP	beeldvorming	te	verminderen.	Gebaseerd	op	ons	onderzoek,	zou	dit	kader	

alle	 informatie	 over	 de	 perfusie	 moeten	 benutten,	 ruimtelijke	 informatie	 in	 overweging	

moeten	nemen,	en	moeten	steunen	op	handmatige	segmentaties	als	referentiepunt.	

Kortom,	 volgens	 ons	 is	 en	 blijft	 CTP	 beeldvorming	 belangrijk	 om	 patiënten	 met	 een	

herseninfarct	te	helpen.	Dit	proefschrift	beargumenteert	dat	huidige	onsamenhangendheden	

voortkomen	uit	een	verkeerde	interpretatie	van	de	perfusieafbeeldingen.	We	pleiten	voor	een	

verschoven	perspectief	waarin	CTP	beeldvorming	op	intrinsieke	waarde	wordt	beoordeeld	

en	waarbij	breder	wordt	gekeken	naar	klinische	toepassingen.	Alleen	zo	kan	het	volledige	

potentieel	van	CTP	beeldvorming	gedaante	krijgen.	
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B Dankwoord	

	
Hugo,	 bedankt	 voor	 de	 kans	 om	 een	 promotietraject	 in	 de	 medische	 beeldvorming	 te	

doorlopen,	zeker	omdat	mijn	academische	achtergrond	daarbuiten	lag.	In	dit	nieuwe	onder-

zoeksgebied	was	er	veel	te	leren	en	ontdekken,	en	ik	kreeg	de	ruimte	om	dit	te	doen.	Jouw	

begeleiding	op	vorm	en	inhoud	heeft	me	door	de	jaren	heen	op	het	wetenschappelijke	rechte	

pad	gehouden.	

Henk,	bedankt	voor	het	ontvangen	van	een	Utrechter	in	het	Amsterdamse.	Op	deze	nieuwe	
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vorming	tevens	inhoudelijk	met	elkaar	te	verbinden	zijn	waarde	bewezen,	zowel	binnen	als	

buiten	dit	proefschrift.	

Edwin,	bedankt	voor	 je	altijd	welkome	houding,	door	me	mee	te	nemen	in	de	wereld	van	

perfusie	alsook	een	plek	op	je	kantoor	aan	te	bieden.	Jouw	scherpe	analytische	blik	en	oog	

voor	detail	leiden	tot	steekhoudende	resultaten	die	in	waarde	worden	onderschat.	Zonder	de	

door	jou	ontwikkelde	software	had	dit	proefschrift	er	simpelweg	niet	gelegen.	

Jan	Willem,	 bedankt	 voor	 de	 benodigde	 klinische	 kijk	 op	 de	 zaak.	 Enerzijds	was	 het	 van	

bijkomstig	belang	om	knopen	door	te	hakken.	Anderzijds	was	het	van	aldoor	belang	om	het	

onderzoek	klinisch	relevant	te	houden.	Het	bewustzijn	dat	theorie	moet	worden	gekoppeld	

aan	praktijk	zal	ik	altijd	met	me	meedragen.	

Betrokkenen	bij	het	CLEOPATRA-project,	bedankt	voor	de	prettige	samenwerkingen	en	de	

mogelijkheid	om	deel	uit	te	maken	van	een	nationaal	samenwerkingsverband.	Het	streven	
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maar	het	tegelijkertijd	grote	belang	voor	de	samenleving.	

Utrechtse	collega’s,	bedankt	voor	alle	goede	gesprekken	en	verhalen	over	het	reilen	en	zeilen	

van	het	UMC	Utrecht.	Een	zekere	pandemie	heeft	ons	samenzijn	bemoeilijkt,	maar	mettertijd	

heb	ik	toch	velen	van	jullie	mogen	leren	kennen.	Jullie	ervaringen	hebben	een	onschatbare	

rol	gespeeld	in	de	totstandkoming	van	dit	proefschrift.	
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Amsterdamse	collega’s,	bedankt	voor	alle	leerzame	en	bovenal	leuke	tijden	die	ik	met	jullie	

heb	mogen	 delen.	 De	 gedeelde	 smart	 van	 het	 promoveren,	 is	 toch	 de	 halve	 smart.	 Jullie	

aanwezigheid	heeft	mijn	promotietijd	ontegenzeggelijk	verrijkt.	

Alle	ph’tjes	bedank	ik	graag	bij	naam:	Arnoud,	Daniël,	Dianne,	Femke,	Hans,	 Jordi,	Karlijn,	

Liesbeth,	Marissa,	 Stella,	 Stijn,	Tim,	 en	Tonya.	Zonder	 jullie	had	 ik	waarschijnlijk	 zelf	 een	

beroerte	aan	dit	proefschrift	overgehouden.	

Mam,	pap,	en	Lotte,	bedankt	dat	jullie	er	altijd	zijn	en	bedankt	voor	de	doorlopende	ruggen-

steun	die	uiteindelijk	ook	in	dit	proefschrift	verweven	zit.	
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