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Clinical Investigation
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Genome-wide association studies with experimental validation
identify a protective role for B lymphocytes against chronic post-
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Abstract

Background: Chronic post-surgical pain (CPSP) significantly impacts patients’ recovery and quality of life. Although

environmental risk factors are well-established, genetic risk remains less understood.

Methods: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on

1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent

animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and
Received: 17 January 2024; Accepted: 9 April 2024

© 2024 The Authors. Published by Elsevier Ltd on behalf of British Journal of Anaesthesia. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

For Permissions, please email: permissions@elsevier.com

360

https://orcid.org/0000-0003-2924-5960
https://orcid.org/0000-0001-5407-0301
https://orcid.org/0000-0002-4812-4024
https://orcid.org/0000-0002-6492-9973
https://orcid.org/0009-0000-7674-0847
https://orcid.org/0000-0002-1731-2903
https://orcid.org/0009-0009-0484-8926
https://orcid.org/0000-0002-8201-980X
https://orcid.org/0000-0001-5715-5482
https://orcid.org/0000-0001-8009-2643
https://orcid.org/0000-0002-7131-2461
https://orcid.org/0000-0002-2209-1711
https://orcid.org/0000-0002-8296-9426
https://orcid.org/0000-0003-4505-5809
https://orcid.org/0000-0001-6990-7231
https://orcid.org/0000-0002-1696-7342
https://orcid.org/0000-0003-1359-5720
https://orcid.org/0000-0002-4212-7750
https://orcid.org/0000-0002-1350-6727
mailto:luda.diatchenko@mcgill.ca
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:permissions@elsevier.com
https://doi.org/10.1016/j.bja.2024.04.053


B cells protect against chronic post-surgical pain - 361
wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell

types.

Results:We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci

and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at ~39%, indicating

a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment

of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice

lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued

by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in

the footpad, lymph nodes, and dorsal root ganglia.

Conclusions: These findings suggest a key protective role for the adaptive immune system in the development of chronic

post-surgical pain.

Keywords: B cells; chronic post-surgical pain; genome-wide association study; immune system; lymphocytes
Editor’s key points

� Genetic risk factors for development of chronic post-

surgical pain (CPSP) are unclear.

� The authors performed a meta-analysis of genome-

wide association studies followed by partitioned

heritability on 1350 individuals across five surgery

types, with subsequent validation in animal models.

� The analysis identified 77 single-nucleotide poly-

morphisms spread over 24 genomic loci associated

with CPSP severity, with heritability of ~39% indi-

cating a substantial genetic contribution.

� Functional analysis strongly suggested a critical

contribution of the adaptive immune system in the

genetic factors associated with CPSP, and animal

studies indicated a particular role for B lymphocytes.

� These underlying immune mechanisms for CPSP

identify a new potential approach for treatment and

prevention.
Chronic post-surgical pain (CPSP) is a debilitating condition

affecting 5e85% of patients undergoing surgery, varying with

the type of surgery.1 Chronic pain is defined as pain persisting

for >3 months, and includes both nociceptive (inflammatory)

and neuropathic components.1 CPSP has a large negative

impact on the quality of life of those affected.1e3

Despite its high prevalence, research on CPSP has been

sparse and its underlying mechanisms are only partially un-

derstood. Clinical (e.g. type of surgery, surgical skill), de-

mographic, and psychosocial risk factors have been identified

to predispose to CPSP,2,4 but these only partially explain the

observed variance. Currently, a basic understanding of the

genetic risk factors for CPSP and its molecular aetiology is

lacking.2,4 Studies in other chronic pain syndromes have

demonstrated considerable heritability, with estimates

ranging 30e70% and a median of 45%.5e9 Candidate gene-

based studies on CPSP have provided conflicting

evidence.10e13 Nonetheless, CPSP has recently been intro-

duced as a distinct disease entity in the International Classifi-

cation of Diseases v.11 (ICD-11), which should raise awareness

and increase interest in CPSP research.1

One way forward to decipher the complex aetiology of CPSP

is via genome-wide association studies (GWASs), which pro-

vide a hypothesis-free tool for identification of genetic
contributors.5 Thus far, one small GWAS of CPSP has been

conducted, but no genome-wide significant risk locus was

identified.14We performed a GWAS of CPSP in six independent

cohorts covering five surgical types (open hernia repair, hys-

terectomy, abdominal surgery, knee surgery, and mastec-

tomy) in adults of both sexes. Functional annotation of the

meta-analysis of the independent cohorts via heritability

partitioning identified a possible role of the adaptive immune

system in CPSP. Further mouse studies confirmed the

involvement of B cells specifically among lymphocytes.
Methods

Human studies

Patients undergoing hysterectomy, mastectomy, abdominal

surgery, hernia repair, or knee surgery were recruited and

genotyped. Post-surgical pain was assessed 3e6 months after

surgery. Genotype data were imputed, then used for input in

GWAS by surgery type, with pain intensity as the quantitative

trait. All GWASs were then combined in a meta-analysis. The

results were analysed using partitioned heritability. Details

can be found in the ‘Extended Materials and Methods’ section

of the Supplementary material.
Mouse studies

Rag1 null mutant and wild-type mice of both sexes were sub-

mitted to plantar incision and laparotomy surgical assays,

supplemented with B cells, T cells, or both. Withdrawal re-

sponses to mechanical stimuli were determined using cali-

brated von Frey filaments. Cell sorting by flow cytometry was

performed to monitor immune cell infiltration and recruit-

ment, in the footpad/skin, dorsal root ganglia (DRG), and

inguinal lymph nodes. Experimental details can be found in

the ‘Extended Materials and Methods’ section of the

Supplementary material.
Statistical analyses

For GWAS, linear regressionwas used to assess the association

between allelic dosage and pain intensity. We complemented

PLINK’s linear regressionmodel with other models tested with

the R statistical package (R Foundation for Statistical

Computing, Vienna, Austria), including Poisson, quasi-

Poisson, and negative binomial, and found that the linear



Table 1 Summary of genome-wide association study results per surgery type. Genome-wide significance (GWS) threshold was set at
5�10�8, whereas nominal significance (NOMS) was set at 5�10�7. lGC, genomic control’s lambda; GWS, genome-wide significance;
NOMS, nominal significance; PPVE, associated P-value; PVE, percent variance explained of the phenotype by genetics.

Surgery GWS Loci NOMS l GC PVE (%) PPVE

Hysterectomy 24 12 107 1.03 99 0.07
Abdominal 3 2 21 1.03 99 0.33
Mastectomy 0 0 0 1.02 83 0.14
Hernia 44 6 69 1.02 64 0.36
Knee (meta) 1 1 1 1.02 12 0.41
Meta-analysis 5 3 22 1.00 39 0.02
Total 77 24 220
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regression provided themost-flat, least-skewed distribution of

association P-values (data not shown), which ideally should be

uniformly distributed (given a fair null model of association;

e.g. linear regression of the phenotype to the additive genetic

inheritance burden model).

Mouse data were analysed using GraphPad Prism, v.7.04

(GraphPad Software, Inc., La Jolla, CA, USA). Normality and

homoscedasticity of all data sets were confirmed using

ShapiroeWilk and Levene tests, respectively. Data were ana-

lysed using repeated measures analysis of variance (ANOVA),

followed by post hoc testing as appropriate. A criterion a¼0.05

was adopted for statistical significance.

For each statistical test, the threshold for significance and

the methods used for correction for multiple testing are

indicated.
Results

Genome-wide association studies

Data from a total of 1350 individuals with simultaneous ge-

notype and phenotype information were used for association

studies at the genome-wide scale, first as per surgery type,

followed by a meta-analysis of all cohorts (Table 1). Genome-

wide association results are displayed in Manhattan plots

(Fig. 1) for single-nucleotide polymorphism (SNP)-, gene-, and

pathway-wise results. We observed many statistically signifi-

cant hits at all levels of analysis (Bonferroni’s genome-wide

5�10�8 threshold for SNPs, false discovery rate [FDR] 20% for

genes and pathways; Supplementary Table S5). Significant

SNP hits were grouped in loci in which the lead SNP was

highlighted along genes residing immediately before, within,

and immediately after these hits (Table 2). QQ plots indicated

statistical significance at SNP, gene, and pathway levels

guarding against FDRs of up to 20% (Fig. 1; Supplementary

Table S5).

A total of 77 genome-wide significant SNP hits were uncov-

ered scattered across 24 loci, 244 genes, and 64 pathways

(Supplementary Table S5). Only themastectomyGWAS failed to

yield nominally significant SNP hits (P<10�7). Among the 24

significant genetic loci, one locus spanning ZNF594-DT, RABEP1,

and NUP88 genes was significant in both the hernia GWAS and

in the meta-analysis of all cohorts. We did not specifically test

for effect differences in sex in cohorts featuring both sexes

because of a relatively small sample size of each cohort. As sex

was used as a co-variable in cohorts with both sexes for all

analyses, we expected to observe mostly sex-independent ef-

fects. All point estimates for percent phenotypic variance

explained by genetics, also known as narrow-sense heritability,
were found to be non-significant (P>0.05), except for the overall

meta-analysis with 39% variance of the CPSP phenotype

explained by genetic effects (P¼0.02).
Tissues or cell types with enriched heritability

We completed a functional analysis of the genetic summary

statistics to take advantage of the large number of identified

genes to reveal the pathophysiology underpinning CPSP by

testing tissues and cell types whose uniquely expressed genes

would carry excess heritability when contrasted against other,

non-tissue-specific genes. To do so, we performed partitioned

heritability analysis, with partitions based on genes expressed

in cell types or tissues pertinent to pain states. The selected

gene expression database contained many nervous tissues,

including various brain regions and the spinal cord and pe-

ripheral nervous system ganglia (in particular, dorsal root and

trigeminal), various immune cell types, musculoskeletal tis-

sues, and other tissues and cell types.15

Overall, 126 tissues and cell types were tested, grouped into

eight broad categories (Fig. 2). We found enriched heritability at

the FDR 20% level in immune cells,more specifically in B- and T-

cell subtypes, and in CD34þCD38e haematopoietic progenitor

stem cells (Fig. 2a; Supplementary Table S6A). To reduce the

impact of between-study differences in surgical sites, of surgery

types, and of mean age, we performed a random effects meta-

analysis, followed by a sensitivity analysis testing the robust-

ness of the meta-analysed results under fixed- and random-

effects models. The results of partitioned heritability were

largely the same and reinforced the enriched heritability for

CPSP in both B and T cells (Fig. 2b and c; Supplementary

Table S6B). No evidence was found to support contributions

from neutrophils, macrophages, central or peripheral nervous

system tissues, or musculoskeletal tissues. The findings were

replicated in another gene expression database itself,16 also

containing brain regions and immune cell types

(Supplementary Table S6C). There, B- and T-cell subtypes were

also significantly enriched among eight cell and tissue types

(with enrichment P�0.05). Further support for contributions of B

and T cells came from another dataset17 with H3K9ac and

H3K27ac chromatin markers (P�0.05), where acetylated H3K9

turns on gene expression and acetylated H3K27 enhances gene

transcription (Supplementary Table S6D). In this dataset,

among 20 cell types with evidence for enrichment at P<0.05, 11
were different subsets of T cells and one was primary B cells.

Although it is unclear whether specific B- or T-cell subtypes are

most important in post-surgical pain chronicity given the

datasets available, our results point to the adaptive immune



FDR 5% 10% 15% 20%

Abdominal

Mastectomy

Hernia

Knee (meta)

Meta

–l
og

10
(F
D
R

)
ge

ne
s

–l
og

10
(P

)
SN

Ps

10

0
0

2

–l
og

10
(F
D
R

)
ge

ne
s

–l
og

10
(P

)
SN

Ps

10

0
0

2

–l
og

10
(F
D
R

)
ge

ne
s

–l
og

10
(P

)
SN

Ps

10

0
0

2

–l
og

10
(F
D
R

)
ge

ne
s

–l
og

10
(P

)
SN

Ps

10

0
0

2

SNPs Genes Pathways

SNPs Genes Pathways

SNPs Genes Pathways

SNPs Genes Pathways

1 2 3 4 5 10 15 20

1 2 3 4 5 10 15 20

1 2 3 4 5 10 15 20

1 2 3 4 5 10 15 20

10

0

8

0

8

0

–l
og

10
(P

ob
s)

10

0

8

0

8

0

–l
og

10
(P

ob
s)

10

0

8

0

8

0

–l
og

10
(P

ob
s)

10

0

8

0

8

0

–l
og

10
(P

ob
s)

0 7–log10(Pexp)
0 5–log10(Pexp)

0 5–log10(Pexp)

0 7–log10(Pexp)
0 5–log10(Pexp)

0 5–log10(Pexp)

0 7–log10(Pexp)
0 5–log10(Pexp)

0 5–log10(Pexp)

0 7–log10(Pexp)
0 5–log10(Pexp)

0 5–log10(Pexp)

–l
og

10
(F
D
R

)
ge

ne
s

–l
og

10
(P

)
SN

Ps

10

0
0

2

1 2 3 4 5 10 15 20

SNPs Genes Pathways10

0

8

0

8

0

–l
og

10
(P

ob
s)

0 7–log10(Pexp)
0 5–log10(Pexp)

0 5–log10(Pexp)

Hysterectomy
–l

og
10

(F
D
R

)
ge

ne
s

–l
og

10
(P

)
SN

Ps
10

0
0

2

SNPs Genes Pathways

1 2 3 4 5 10 15 20

10

0
0 7

8

0

8

0

–l
og

10
(P

ob
s)

–log10(Pexp)
0 5–log10(Pexp)

0 5–log10(Pexp)

a

b

c

d

e

f

Fig 1. Association summary statistics by surgery types. Summary statistics are shown using: Manhattan plots (left) for single-nucleotide

polymorphism (SNP)-level (top, green) and gene-level (bottom, blue) summaries; and QQ plots (right) for SNP-level (green), gene-level

(blue), and pathway-level (purple) summaries. Manhattan plots use dark colour hues for odd chromosomes and light colour hues for

even ones. SNP-level genome-wide significance indicated using red horizontal bars and gene-level genome-wide significance is indicated

using various false discovery rate (FDR) thresholds ranging from 5% (black) to 10% (dark grey) to 20% (light grey). QQ plots track observed P-

values (Pobs) as a function of expected ones (Pexp). SNP-level statistics obtained with PLINK or METAL (meta-analysis), whereas gene-level

statistics obtained with MAGMA. Surgeries are: (a) hysterectomy, (b) abdominal, (c) mastectomy, (d) hernia, and (e) knee, from a meta-

analysis; (f) meta-analysis of all cohorts combined.
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Table 2 Summary of genome-wide significant hits. Single-nucleotide polymorphism (SNP) hits are grouped by surgeries (A to E) and by
overall meta-analysis (F). Only the lead SNP per locus is shown. EA, effect allele; EAF, effect allele frequency; ES, effect size (beta).

# Lead SNP EA EAF ES P-value Genes

A. Hysterectomy
1 rs143994530 C 0.022 3.008 2.96E-08 DPP10 | DDX18
2 rs78454748 T 0.026 2.627 2.10E-08 LOC105374704 | CDH6
3 rs74896012 C 0.023 2.975 1.57E-08 LOC101927691 | LINC01622 | FOXQ1
4 rs117244643 T 0.020 3.454 1.45E-09 FHL5 | GPR63 | NDUFAF4
5 rs10488532 T 0.105 1.346 3.38E-08 SAMD9 | SAMD9L | HEPACAM2
6 rs10969869 A 0.018 3.665 7.23E-10 LINGO2 | LINC01242 | LINC01243
7 rs78326996 C 0.020 2.974 1.38E-08 AAED1 | LOC441455
8 rs17882261 G 0.058 1.882 7.36E-09 SFTPA2 | SFTPA1
9 rs76985919 A 0.017 3.569 5.47E-09 SERPINA1 | SERPINA11
10 rs4347600 T 0.028 2.518 3.56E-08 IQGAP1 | CRTC3
11 rs79423608 T 0.115 1.416 8.13E-09 LOC554206 | LINC02175
12 rs140299794 G 0.017 3.365 3.42E-08 LOC100505851 | ZNF254 |

HAVCR1P1 | LINC00662
B. Abdominal
1 rs142578347 G 0.056 2.287 1.79E-09 LINC02089 | C17orf112
2 rs112030385 T 0.127 1.455 7.45E-09 CDH2 | DSC3
C. Mastectomy

N/A
D. Hernia
1 rs111290518 A 0.080 2.465 4.91E-09 MAGI2 | MAGI2-AS2 | MAGI2-AS3
2 rs7946537 C 0.132 1.810 7.87E-09 LRP5 | PPP6R3 | GAL
3 rs76991866 T 0.071 2.771 1.98E-09 SLC52A1 | ZFP3
4 rs114604537 G 0.063 2.880 2.33E-09 ZNF232 | LOC101928000 | USP6 | ZNF594 |

LOC100130950 | SCIMP | RABEP1 | NUP88
5 rs11653414 C 0.041 3.302 1.66E-08 LOC728392 | NLRP1 | LOC339166
6 rs4142128 T 0.049 2.870 3.22E-08 NCOR1P1 | LINC01597
E. Knee
1 rs1596479 T 0.139 1.464 4.38E-08 LINC01924 | CDH7
F. Meta-analysis
1 rs138190025 A 0.017 2.766 1.07E-08 NRXN1 | LOC730100 | LINC01867
2 rs114837251 T 0.021 2.638 3.87E-09 MAP9 | GUCY1A1 | GUCY1B1
3 rs3026120 A 0.037 1.625 6.18E-09 LOC100130950 | RABEP1 | NUP88
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system, but not to the innate immune system or the nervous

system, as a key player in CPSP.
Pain behavioural measures in lymphocyte-deficient
mice

Based on the results from genetic analyses implicating a

contribution of lymphocytes to development of CPSP, we

directly tested the role of the adaptive immune system in post-

surgical pain using mouse assays. We used plantar incision

and laparotomy, two well-characterised preclinical post-

surgical pain models,18 to assess pain outcomes. Although

the partitioned heritability analysis did not provide the di-

rection of the observed contribution of the adaptive immune

system, we started from the hypothesis that B and T cells were

needed for pain resolution in CPSP, testing Rag1e/emice which

lack mature B and T lymphocytes.19 Withdrawal thresholds to

evoked mechanical stimulation at the plantar hind paw were

measured before and at multiple time points up to 84 days

after hind-paw incision in C57BL/6J (wild-type) and Rag1 null

mutant (Rag1e/e) mice (Fig. 3a). Repeated measures ANOVA

revealed significant interactions between strain and sex

(F13,221¼2.1, P¼0.015), but with both sexes clearly displaying

robust allodynia and a large genotype effect (Supplementary

Fig. S2); collapsing the data across sex, the strain interaction

was also highly significant (F13,247¼2.3, P¼0.007). Although the
mechanical allodynia produced by the incision was fully

resolved in wild-type mice by 5 days and certainly 7 days after

surgery, exacerbated and prolonged allodynia was observed in

Rag1e/e mice, with a statistically significant strain difference,

corrected bymultiple comparisons, up to 42 days after surgery

(Fig. 3a). There was no main effect of repeated measure

(F13,247¼1.1, P¼0.29) or repeated measure by strain interaction

on the contralateral hind paw (F13,247¼1.7, P¼0.07; data not

shown).

A similar pattern of responses was observed in the lapa-

rotomy assay, with nomain effects of, or interactionswith, sex

observed; therefore, the data were collapsed across sex. A two-

between (genotype, surgery), one-within repeated measures

ANOVA revealed significant main effects and interactions,

including a genotype � surgery � repeated measures interac-

tion (F6,49¼6.4, P<0.001). Pain hypersensitivity in this assay was

observed only in mice after laparotomy, which was increased

and prolonged in duration in Rag1e/e mutant mice (Fig. 3b).

This experiment improves both external validity (general-

isability across another surgery type) and internal validity

(replication in an independent laboratory) of the conclusion

that B cells, T cells, or both are relevant to post-surgical pain in

mice.

Next, purified B cells, T cells, or both were injected in

Rag1e/e mice to determine whether a specific lymphocyte

lineage was responsible for the differences in pain outcomes
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Fig 2. Partitioned heritability of fixed and random effects meta-analyses. Partitioned heritability in a fixed effects (a) and random effects (b)

models meta-analysis. Enrichment tracked in 106 tissues or cell lines from Benita and colleagues.15 Tissues are grouped by central nervous

system (C, purple, n¼21), peripheral nervous system (P, blue, n¼4), muscle (M, red, n¼3), stem cells (S, green, n¼11), myeloid cells (Y,

orange, n¼16), B cells (B, brown, n¼8), T cells (T, pink, n¼22), and other tissues or cell lines (O, grey, n¼21). Shown are false discovery rate

(FDR)-corrected P-values for enrichment. (c) Tissues and cell lines significantly enriched at the FDR 20% level, numbered from left to right

using Roman numerals as in panels a and b.
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Fig 3. Correlation of pain behaviour with B-cell recruitment in mice in the plantar and abdominal incision pain assays. (aec) Rag1e/e mice

lacking T and B cells display increased and prolonged postsurgical pain. (a) Mechanical pain thresholds before and after plantar incision in

the ipsilateral hind paw in C57BL/6 (wild-type; n¼11) and Rag1e/e mice (n¼10). (b) Abdominal sensitivity scores (see Methods) before and

after laparotomy (LAP) or sham surgery in C57BL/6 and Rag1e/e mice (n¼8 per surgery per genotype), performed in a different laboratory. (c)

Supplementation of B cells resolves pain hypersensitivity in Rag1e/e mice. Mice received saline, or tail vein injection of purified total T

cells, B cells, or both (n¼5 per group), 14 days pre-surgery (inset; icons from iStock). Symbols in all graphs represent mean (SEM). *P<0.05
compared with wild-type (a, b) or as indicated (c). (def) B-cell fractions vary with time in a tissue-dependent fashion after surgery.

CD45þB220þCD19þ B cells were isolated from mice at 1, 3, and 7 days post-injury (dpi), with naive tissue used as a control and are

represented as a percentage of all CD45þ immune cells in each tissue. Cell quantification by flow cytometry. Significance levels: *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001, non-significant (ns). Tissues are: (d) footpad, (e) dorsal root ganglia (DRG), and (f) lymph node.
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observed. As before, we observed a prolonged duration of

mechanical allodynia in (saline-treated) Rag1e/e mice

compared with wild-type mice. As expected, combined

administration of T and B cells to Rag1e/e mice prior to plantar

incision resolved allodynia in a kinetics similar to lymphocyte-

replete animals (Fig. 3c). However, reconstitution of mice with

only T cells did not significantly affect the time course of

mechanical allodynia. Remarkably, transfer of purified B cells

alone led to a significant acceleration of pain resolution at day

7 after surgery (day 7 one-way ANOVA: F4,20¼6.9, P¼0.001; Tukey

post hoc analysis revealed two homogenous subsets at P<0.05;
see Fig. 3c).
Tissue-specific recruitment of B cells to the dorsal root
ganglion in mechanical allodynia

Using the plantar incision assay, we determined the recruit-

ment patterns of B and T cells in the footpad, L4e6 DRG, and

inguinal lymph nodes over the first 7 days post-injury, by

which time post-incisional allodynia is no longer observed

(Fig. 3a and c). Flow cytometry analysis of cells collected from

these tissues showed a marked decline in the proportion of

CD45þCD19þB220þ B cells in the footpad and DRG as early as

24 h post-incision (Fig. 3d and e; Supplementary Fig. S3). These

cells did not return in the footpad for the duration of the study

but were seen again in the DRG at 7 days post-injury. There

was an early and significant increase in the proportion of B

cells in the inguinal lymph nodes at 1 and 3 days post-incision,

returning to baseline levels by 7 days (Fig. 3f; Supplementary

Fig. S3). There were no significant changes in T-cell infiltra-

tion of either the footpad or the DRG (Supplementary Figs 4a, b,

and 5). A more in-depth characterisation of specific T-cell

subsets in the lymph node showed a small significant increase

in CD8þ T cells at 24 h and a decrease in CD4þ T cells at 7 days

post-injury (Supplementary Figs 4c and 5).
Discussion

The aim of this study was to identify genetic variants associ-

ated with CPSP severity in the general surgical population. We

used a GWAS approach in six independent cohorts grouped

into five surgical types to interrogate the common variants

associated with CPSP severity. Although this was a GWAS of

several relatively small-scale studies, we were able to identify

the first genome-wide significant hits associated with CPSP

severity in the majority of the individual surgeries. Our study

thus serves as a starting point for more large-scale efforts to

identify mechanisms underlying CPSP across various types of

surgeries.

Our data produced the first estimation of SNP-based heri-

tability of CPSP incidence across an array of surgeries. The

estimate of 35% heritability is in line with a recent study on

overall chronic pain heritability in the UK Biobank, which

found an estimate of 38.4%.20 This further solidifies chronic

pain in general, and CPSP specifically, as a heritable trait. Our

GWAS analysis identified a total of 77 genome-wide significant

SNPs across 24 loci associated with the severity of CPSP.

Furthermore, hundreds of genes with individual or aggregated

SNP effects and biological pathways were found significant at

the FDR 20% level.

After performing GWAS, we carried out functional analyses

of our genetic results to gain insights into biological processes

contributing to CPSP. We first aimed to uncover the basic

mechanism underlying CPSP by identifying disease-relevant
tissues and cell types, independent of the surgery site and

sex. For our functional analysis we used the results of the

GWAS meta-analysis across different surgeries, using sex as a

co-variable. Our results were thus related to the overall

strongest identified genetic effect but not to any particular

SNP. Our work led to unexpected findings when we tested for

tissue-specific partitioned heritability. Previous GWASs of

chronic pain indicated enriched heritability in brain regions,

with the DCC gene and the axonal guidance pathway showing

the strongest genetic associations.21 These studies pointed to a

neuronal origin hypothesis of chronic pain. Brain connectivity

has been found to be a predictor for the transition to chronic

pain,22 and effective treatment of chronic pain has been

shown to reverse abnormal brain anatomy and function.23 In

contrast, we observed an enrichment of heritability in adap-

tive immune cells, specifically in B and T lymphocytes. The

enrichment pattern further suggests differentiation of B and T

cells, judged by enrichment for haematopoietic progenitor

stem cells. Importantly, we cannot exclude the importance of

other cells or tissues, such as central or peripheral neuronal

tissues, just because their signals did not reach significance in

our analyses of this relatively small cohort. However, an im-

mune origin of CPSP is clearly highlighted by our results as the

adaptive immune contribution appeared as the strongest

signal.

A possible explanation for this stronger immune response

elicited by surgery-related injury might be related to associ-

ated inflammatory responses.24 Another possible explanation

could be the difference in time spans for the assessment of the

reported pain. Typically, chronic pain patients have pain

lasting for years, whereas in our study, caseswere evaluated at

3- and 6-month time points. Therefore, our results point to a

more substantial role for the immune system in earlier stages

of persistent pain (i.e. 3e6months after surgery). Although the

majority of these cases resolve over time, contribution of the

nervous system could bemore critical in the late phase of CPSP

(i.e. years after surgery). These findings are supported by

multiple longitudinal studies of chronic pain neuro-

inflammation that show a strong immune response early after

injury,25 and are further supported here by our GWAS.

The physiological response to surgical trauma features a

complex yet distinctive profile of coordinated, overlapping,

and time-dependent events categorised into three phases: (1)

an apoptosis-inducing inflammatory reaction, (2) proliferative

events that lead to restoration of affected tissue, and (3)

remodelling of the affected tissue.26 In all phases, a significant

role for T lymphocytes is found. CD4þ T helper cells are

attracted by the interferon-g secreted by macrophages and

contribute to the initial proinflammatory environment, gd T

cells promote proliferation of keratinocytes thereby affecting

tissue remodelling, and regulatory T cells reduce the inflam-

mation by secretion of anti-inflammatory mediators.27 How-

ever, our previous studies show that although gd T cells

respond early after injury, they do not contribute to pain sig-

nalling.28 Furthermore, ab T cells do not infiltrate the skin until

well after the incisional wound has healed and pain has

subsided.29

Although the exact role of B lymphocytes within thewound

healing process has not yet been solidified, CD19 (a key regu-

lator of B cells) controls wound healing through a hyaluronan-

induced TLR4 signalling process. TLR4-dependent pro-

inflammatory signalling induces B-cell proliferation and

cytokine excretion, indicating a role for B lymphocytes.30

Although there is evidence that various T-cell populations
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contribute to wound healing, these often use the punch biopsy

model (~1 cm diameter wound), whereas the model we used is

a very discrete sterile incision followed by close apposition

and suturing of the skin. Thus, wound healing is likely unaf-

fected in our injury model. In part, the detrimental effect of

prolonged inflammation after injury results from the deregu-

lation and desynchronisation of wound-healing events,

impairing the transition towards the proliferation phase in

which both B and T cells play critical roles.27 As corticosteroids

are often administered as a standard of care after surgery,

their impact on adaptive immunity must also be taken into

account.31

When we validated our results obtained by genetic ap-

proaches using in vivomouse assays, we found evidence for a B

cell, but not T cell, contribution to resolving CPSP. After hind

paw or abdominal surgical incision, mice with a genetic defi-

ciency in B and T cells displayed higher peak levels of pain

hypersensitivity, and thus B or T cellsmight play a role in post-

surgical pain initiation. The mutant mice remained in an

allodynic state significantly longer than their wild-type coun-

terparts, indicating a clear role for B or T cells in the mainte-

nance post-surgical pain. To identify which immune cell type

was directly responsible for this prolonged allodynia, we

attempted to rescue the allodynic effect in the Rag1e/e mice

using purified B or T cells. The rescue was observed convinc-

ingly in the presence of supplemented B cells, thus establish-

ing their critical role. Furthermore, the recruitment pattern of

T and B cells suggests aminor change in T cells across key sites

(footpad, DRG, inguinal lymph node) in the acute stage after an

incisional wound. Conversely, B-cell numbers showed a robust

and significant decrease in the footpad and DRG early after

incision (days 1e3) with a concomitant increase in inguinal

lymph nodes. By day 7, however, B cells returned to baseline

levels in the lymph nodes and DRG but remained largely ab-

sent in the footpad, which suggests that redistribution of B

cells during the course of wound healing is fundamental to

pain resolution in this animal model. The specific mecha-

nisms by which B lymphocytes contribute to the control of

CPSP remain unknown. However, our conclusions build on our

previous results demonstrating the importance of the active

contribution of the immune system to prevention of pain

development.32 In contrast to our previous findings, obtained

via blood transcriptomics from which immune system

changes would be expected, the current results were obtained

from GWAS analysis and are thus completely unbiased.

B-cell involvement has been well characterised in chronic

pain conditions, such as rheumatoid arthritis and complex

regional pain syndrome, however, in the direction opposite to

that proposed by our results. Indeed, the monoclonal antibody

rituximab, targeting the B lymphocyte antigen CD20, has been

shown to alleviate chronic pain.33e36 Furthermore, immuno-

globulin G (IgG) from fibromyalgia patients, when transferred

to mice, induces pain-like behaviour.37 These findings suggest

that B lymphocytes and autoantibodies could contribute to the

pathology of chronic pain. However, our results suggest that

they are protective against chronic pain development at the

acute-to-chronic pain transition state, most likely through

their critical contributions to wound healing through

hyaluronan-induced TLR4 signalling.30,38 Thus, our current

findings are reminiscent of the apparently bidirectional role of

neutrophils, which variously have been shown to contribute to

pain development39 or pain resolution.32

There were a number of limitations to this study: (1) small

sample sizes for GWAS analysis, though larger datasets are
unavailable; (2) several types of surgeries, with potentially

different pain intensities and chronification rates; (3) the ma-

jority of clinical cases were evaluated at the 3-month time

point post-surgery, when patients might have resolved their

pain by 6 months; (4) unbalanced male and female represen-

tation as the majority of participants (75%) were women,

although this skew in data is apparent in many clinical pain

studies; (5) an absence of bona fide replication in independent

cohorts, which will be necessary in follow-up studies; (6) a

high probability for hospital- and country-specific post-surgi-

cal care affecting our results, such as drug treatments, post-

surgical care, length of stay, and diet; and 7) an overlap in

genes expressed in both B and T cells present in partitioned

heritability methodology, obscuring the ability to distinguish

between B and T cells unequivocally. However, wewere able to

validate our GWAS results in the mouse experiments

addressing many of these concerns and suggesting that B cells

are the main effectors of pain after surgery, displaying a net

protective effect.

In conclusion, we identified 77 SNPs spread over 24

genomic loci associated with CPSP severity, a debilitating

condition affecting up to 85% of patients undergoing surgery

and varying with surgery type. Functional analysis strongly

suggested a critical contribution of the adaptive immune

system in the genetic factors associated with CPSP. Further-

more, B cells rather than T cells were able to rescue the pro-

longed allodynia experienced by immune-compromised mice

after paw incisional surgery. These insights into the aetiology

of CPSP severity warrant clinical and preclinical studies to

further specify the underlying immune mechanisms for CPSP

and suggest a new direction for disease-modifying treatment.
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