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A B S T R A C T   

Background: Establishing collaborations between cohort studies has been fundamental for progress in health 
research. However, such collaborations are hampered by heterogeneous data representations across cohorts and 
legal constraints to data sharing. The first arises from a lack of consensus in standards of data collection and 
representation across cohort studies and is usually tackled by applying data harmonization processes. The second 
is increasingly important due to raised awareness for privacy protection and stricter regulations, such as the 
GDPR. Federated learning has emerged as a privacy-preserving alternative to transferring data between in
stitutions through analyzing data in a decentralized manner. 
Methods: In this study, we set up a federated learning infrastructure for a consortium of nine Dutch cohorts with 
appropriate data available to the etiology of dementia, including an extract, transform, and load (ETL) pipeline 
for data harmonization. Additionally, we assessed the challenges of transforming and standardizing cohort data 
using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) and evaluated our 
tool in one of the cohorts employing federated algorithms. 
Results: We successfully applied our ETL tool and observed a complete coverage of the cohorts’ data by the OMOP 
CDM. The OMOP CDM facilitated the data representation and standardization, but we identified limitations for 
cohort-specific data fields and in the scope of the vocabularies available. Specific challenges arise in a multi- 
cohort federated collaboration due to technical constraints in local environments, data heterogeneity, and 
lack of direct access to the data. 
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Observational Health Data Sciences and Informatics; ETL, Extract, Transform and Load; FAIR, Findable, Accessible, Interoperable, Reusable. 
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Conclusion: In this article, we describe the solutions to these challenges and limitations encountered in our study. 
Our study shows the potential of federated learning as a privacy-preserving solution for multi-cohort studies that 
enhance reproducibility and reuse of both data and analyses.   

1. Introduction 

Cohort studies have been fundamental in the understanding of dis
ease etiology, progression, and the effect of exposure to numerous risk 
factors. As in many fields, the design of these studies evolved to take 
advantage of more comprehensive measurements of the participant’s 
condition. This resulted in larger and more complex data systems [1]. 
Cohort studies often engage in national or international collaborations 
to enhance external validity and statistical power. Although these col
laborations improve the evaluation of research questions in larger sub
groups, they face numerous barriers. These include the inability to share 
data (to protect privacy) and data ownership as well as challenges in the 
harmonization and standardization of the datasets [2]. 

In the current environment, techniques that enable data sharing in a 
privacy-preserving manner have gathered increasing interest. Federated 
learning is a prominent example in this field [3]. Federated learning 
protects data by analyzing individual-level data at each location and 
aggregating the local analyses’ results (often iteratively). This avoids the 
need to transfer the individual-level data between locations. It also en
sures that potentially identifiable clinical information remains safely 
within the data-owner’s network. For this purpose, federated learning 
requires algorithms that are adapted to perform analyses in a decen
tralized way. In addition, it requires a distributed computing infra
structure connected through a secure network. Setting up such a 
federated infrastructure demands efforts from a multi-disciplinary team 
to guarantee efficient privacy-preserving communication and synchro
nization of multiple organizations, which requires specific solutions [4]. 
Since the introduction of federated learning, the development of soft
ware resources [5] that assist in addressing these difficulties has 
increased. A growing number of studies provide examples of applica
tions that demonstrate the feasibility and usefulness of this approach 
[3,4]. 

In the process of integrating data from different sources, one 
fundamental step that poses challenges and demands considerable effort 
is guaranteeing the homogeneity of the data [1]. The representation of 
cohort data varies significantly between centers due to a lack of 
consensus on a data model and different methodologies. This results in a 
heterogeneous landscape that semantically and structurally impedes 
integration. Defining and implementing standards for structuring and 
standardizing data can be challenging. However, efforts have been made 
to create common data models (CDM) to represent clinical data from 
particular or multiple domains [6]. The Observational Medical Out
comes Partnership (OMOP) CDM [7], developed by the Observational 
Health Data Sciences and Informatics (OHDSI) program, initially tackled 
the challenge of integrating data from multiple sources in the field of 
medical products. Nevertheless, it has rapidly evolved to support addi
tional domains and integrate common representations. These facilitate 
the standardization of medical terms to guarantee structural and 
semantical compatibility between data sources. Moreover, by providing 
mechanisms to minimize the loss of information, the support of a large 
community, and the development of open-source applications for data 
exploration and transformation, OMOP has been widely adopted by 
diverse clinical databases [8]. Among the applications targeted for data 
transformation, WhiteRabbit and Rabbit-In-A-Hat [9] provide software 
to scan the source data and generate documentation for the mapping. In 
addition, OHDSI provides Achilles [1], a tool that characterizes OMOP 
databases through descriptive statistics within a data quality dashboard. 

Transforming a dataset into a specific CDM can be a cumbersome 
process that requires careful planning. It usually incorporates an extract, 
transform, and load (ETL) process to harmonize the data. As reported by 

previous studies [10–12], in the first stage, the choice of a CDM should 
entail factors such as stakeholders’ and participants’ expectations, 
available tools, maintenance, and scalability. These are relevant con
siderations that can impact the success of the transformation. Further
more, an ETL process focuses on providing a framework that assists in 
extracting the data from the source, transforming the information to the 
correct format (e.g., standardization), and loading the data in the CDM 
according to the required conditions. There has been an increasing 
number of studies [13–22] focusing on the development of ETL pro
cesses to transform clinical data, such as electronic health records 
(EHR), and biobank data, into the OMOP CDM. Overall, these studies 
identified challenges that can hinder the success of an ETL process to 
OMOP, mainly the incomplete coverage of medical terms, possible loss 
of information, and steep learning curve [12]. Notwithstanding these 
aspects, the transformation and practical use of the OMOP database 
highlighted the benefits of these efforts. It did so by promoting inte
gration with other databases, access to open-source tools, and enhancing 
reproducible observational research [6,11]. 

Implementing a federated learning infrastructure will commonly 
come across the problem of data heterogeneity. Thus, it requires solu
tions to harmonize that data, facilitating the analysis across centers. 
Studies focused on the challenges of data harmonization to OMOP for 
cohort study data are limited and predominantly focused on the choice 
of a CDM [23] or applications that successfully employ OMOP as a data 
source [24]. In this work, we develop an ETL process and apply it across 
a group of nine cohorts to establish an interoperable federated network. 
We do it while guaranteeing that each center provides its data in a ho
mogeneous manner, semantically and structurally, by following the 
OMOP CDM. Furthermore, we assess the main aspects experienced in 
the project that impact the development of an ETL tool and harmonizing 
the data. Finally, we evaluate our ETL tool in a comprehensive dataset 
by simulating the federated infrastructure and using federated algo
rithms to validate the correct transformation of the data. 

1.1. Motivation 

The Netherlands Consortium of Dementia Cohorts (NCDC) comprises 
nine prospective cohort studies from the Netherlands that collected data 
on cognitive decline and dementia. Together, these cohorts provide a 
population of over 40,000 participants for the study of dementia, 
covering population-based samples as well as (memory) clinic patients. 
Traditionally, in this setting, a team conducting an analysis can perform 
pooled data-analysis or create custom scripts for each cohort, perform 
the analysis locally, and combine the results through meta-analysis. 
However, these approaches can be ineffective due to the current growth 
in privacy protection regulations and the potential to hinder the repro
ducibility of the analysis and results. A collaboration of this nature 
combines heterogeneous data sources from cohort studies with different 
purposes, guidelines, and data representations. Considering these 
characteristics, the consortium planned efforts to improve the interop
erability between cohorts, enhance data reusability by adhering to the 
FAIR principles, and develop a federated infrastructure to facilitate 
decentralized data analysis. 

1.2. Statement of significance 

1.2.1. Problem 
Multi-cohort studies are hindered by inconsistent data representa

tions, lack of standards, and privacy constraints to data sharing. 
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1.2.2. What is already known 
Federated learning is a privacy-preserving alternative to traditional 

analysis methods that require data harmonization to enable interoper
ability between cohorts. However, manual harmonization or ETL tools 
available can lack generalizability, standardization, or suitability for 
cohort data. 

1.2.3. What this paper adds 
This study proposes an ETL process for multi-cohort studies devel

oped and evaluated with a federated collaboration of 9 cohorts. In this 
process, data is standardized and transformed to the OMOP CDM. The 
challenges identified point to the need for community consensus for data 
models and standard vocabularies. 

2. Methods 

2.1. Data 

The nine cohorts participating in the NCDC, described in Table 1, 
comprise more than 40,000 participants and collect information rele
vant to the study of dementia, such as clinical, lifestyle, and cognitive 
data, blood and plasma biomarkers, and magnetic resonance imag
ing scans. Although there is substantial overlap in the data collected 
across cohorts, data models and practices to store and represent the data 
are often heterogeneous. As a result, the data harmonization de
velopments performed and described in this study were planned to 
facilitate the integration of these cohorts into a federated learning 
network. 

In this article, we describe the process of data harmonization of all 
cohorts but place a special focus on the harmonization of one of the 
cohorts as an exemplary case, the Maastricht Study [25] (9188 partici
pants aged between 40 and 75 years), an observational prospective 
population-based study focusing on the etiology of type 2 diabetes. This 
cohort takes part in NCDC, aiming to understand the acceleration in 

cognitive decline seen in individuals with type 2 diabetes. The dataset 
for this cohort was made available as a single long-format SPSS (Sta
tistical Package for the Social Sciences) file. Additionally, we created a 
synthetic dataset using an open-source tool based on conditional 
generative adversarial networks [26]. We generated 250 examples 
based on the source data and used it to perform integration testing and 
experiment with the developed tool. 

2.2. Common data model 

We employed the OMOP CDM [35] (version 6.0) to represent the 
information across the organizations with a homogeneous syntax and 
semantics. This person-centric model encompasses 39 tables that can 
assimilate clinical data, standard vocabularies, and additional metadata. 
We mapped each organization’s data to the OMOP CDM using 12 of the 
39 tables while standardizing the variable names, operators, units, and 
values using SNOMED [36], OMOP Gender, and UCUM [37] 
vocabularies. 

In OMOP, representing a medical term requires a concept that 
uniquely defines it using codes and can be derived from international 
vocabularies. As observed in previous studies [10,13,15,17], obtaining 
complete coverage by standardized vocabularies of the medical terms 
used in different domains is challenging. To address this problem, when 
failing to find a suitable standard concept, we followed the OHDSI 
recommendations by creating a new concept in the OMOP standardized 
vocabulary tables, with an ID above 2 billion to avoid conflicts with the 
existing terminology. In addition, we linked these concepts to the EMIF- 
AD ontology [38] by using the optional field “concept_code” (“Concept” 
table), designed to represent the concept identifier from the source vo
cabulary. When creating a new concept, we established a short-term 
based on the description provided by the consortium and identified 
the OMOP domain using the definitions from the OHDSI documentation. 
We then stored the concept code from the ontology in the “con
cept_code” field, providing a link to a definition that currently cannot be 
specified in the OMOP vocabulary tables. 

Although a common data model generally provides a comprehensive 
structure, challenges can arise when adapting the data. In particular, 
with applications outside the core target of the OMOP CDM, such as 
cohort data representation. In our work, we encountered three central 
difficulties concerning the representation of 1) the absence of a medical 
condition, 2) the observation period, and 3) non-patient data (illustrated 
in Supplementary Figs. 1 and 2). 

1) The OMOP CDM includes the Condition table to represent the pres
ence of medical conditions. However, it does not provide a 
straightforward method to include information on the absence of a 
medical condition. We did not find a consensual solution proposed in 
the OMOP documentation or literature. Moreover, based on the 
OHDSI public forum (https://forums.ohdsi.org/t/negative-informati 
on-in-omop-cdm/4923), the current position of the developers is to 
maintain such a design. Since this data is essential in epidemiology 
research, we stored these cases in the Observation table with the 
respective condition concept ID as the observation concept ID and a 
concept ID representing “Absence of” (SNOMED concept ID 
4132135) as its value.  

2) In the OMOP CDM, the “Person” and “Observation_period” tables are 
mandatory to identify the patients and the period for the events 
registered. However, as previously recognized elsewhere 
[13,15,19,39], it can be challenging to assign data into observation 
periods, as defined in the OMOP CDM. For example, data from lon
gitudinal cohort studies usually characterizes the periods of time not 
individually but at a cohort level, as a representation of the interval 
taken to perform the necessary measurements and observations for 
all participants (‘waves’). The resulting data does not guarantee an 
accurate observation period for each participant, making it difficult 
to determine the start and end date. In order to address this 

Table 1 
Description of the NCDC cohorts participating in the federated network.  

Cohort Description Number of 
participants 

Frequency 
of follow- 
up 

Start 

Amsterdam 
dementia 
cohort [27] 
(ADC) 

Neurodegenerative 
dementias (clinical) 

6,000 1 year 2004 

Doetinchem 
Cohort Study 
[28] (DCS) 

Lifestyle risk factors 4,300 5 years 1987 

EMIF-AD 90 +
study [29] 

Cognitive impairment 129 1 year 2016 

EMIF-AD 
PreclinAD 
study [30] 

Amyloid pathology 
and cognitive decline 
in monozygotic twins 

204 2 years 2014 

Leiden 
longevity 
study [31] 
(LLS) 

Ageing and longevity 3,359 10 years 2003 

Longitudinal 
Aging Study 
Amsterdam  
[32] (LASA) 

Ageing and longevity 4,000 3–4 years 1992 

The Maastricht 
Study [25] 

Type 2 diabetes 
mellitus, dementia, 
depression, and other 
chronic conditions 

9,188 > 10 years 2010 

Rotterdam 
Study [33] 

Chronic diseases in 
middle-aged and 
elderly persons 

14,926 3–4 years 1990 

SMART[34] Cardiovascular 
disease progression 
(clinical) 

1,309 5 years 2001  
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limitation, we employed the “Observation_period” table to store the 
overall interval of each ‘wave’ and the “datetime” field of each 
observation, measurement, or condition to store, when available, the 
individual dates. Additionally, we duplicated the observation inter
val in the “Visit Occurrence” table by creating a visit for each 
participant and linking it with the clinical observations, measure
ments, or conditions occurring in that period.  

3) Representing the cohort’s data may entail additional information 
that is not direct observations or measurements of a participant, such 
as specifications on imaging equipment or cognitive assessments. 
These data items are provided at a cohort level and not per partici
pant, creating a challenge in the OMOP CDM since this model follows 
a person-centric model and lacks a solution to represent this data 
accordingly. Therefore, we included the option to use the additional 
columns available for each record in the database (“observa
tion_source_value”, “measurement_source_value”, and “con
dition_source_value”) to link the information. This decision does not 
interfere with storing the verbatim values from the cohort data in the 
OMOP database. 

Setting up a federated infrastructure may require the representation 
of multiple cohorts in one institution. Although the OMOP CDM pro
vides a table to define cohorts, its purpose is to identify subsets of pa
tients according to particular criteria, such as being diagnosed with a 
specific condition. Notwithstanding, the model allows linking each pa
tient with a care site, describing the principal healthcare provider. Based 
on these characteristics, we represented the cohort metadata (name, 
responsible institution, and description) using the “Care_Site” table and 
linked each participant with the respective cohort through the “care_
site_id”. Since multiple care sites can be represented, this decision allows 
institutions to represent multiple cohorts in a single OMOP database. 
Additionally, we employed the “CDM_SOURCE” table, designed to store 
information on the data harmonization process, to register the ETL 
GitHub repository, tool version, and vocabulary version. Another aspect 
of cohort studies is the information on the reasons for missing data. Such 
details are generally recorded in longitudinal cohort studies. However, 
the OMOP CDM does not have a solution to store this information. Due 
to this limitation and the lack of a straightforward strategy, we did not 
include such details when harmonizing the data. 

2.3. OHDSI software tools 

The tools developed by OHDSI for data exploration, conversion, and 
standardization mainly target ETL processes concerning one central 
dataset. In a federated network, these tools are hindered by potential 
software installation restrictions at each site, the constraint of accessing 
the dataset only locally, and requiring training for the researcher sup
porting the ETL process in the cohort. 

In our work, we employed two OHDSI tools for data standardization, 
Athena [40] and Usagi [41], to identify the concepts that correctly 
describe the medical terms. The first provides a web-search portal to 
explore matching concepts and download the standard vocabularies. 
The second assists in creating a mapping to standard concepts and 
encountering matching concepts by taking advantage of text similar
ities. To standardize the variables in our project, we first created a table 
with the variable names and a description provided by a researcher on 
the field. We then used this table as input for Usagi and manually 
selected the best match for our variable based on the similarity score and 
the metadata provided in Athena. In case of no satisfactory options, we 
created a new concept as described in the previous section. 

2.4. ETL 

Ensuring data harmonization between the cohorts is crucial for a 
federated learning network. For this purpose, we developed an ETL 
process to harmonize each cohort’s data into a common schema using 

standard representations. Although in our approach, the OMOP CDM 
provides the schema followed in the transformation, we believe the steps 
described can be agnostic and applicable to most common data models. 

2.4.1. Metadata collection 
At the initial stage, the consortium defines relevant research ques

tions and the set of variables needed to answer these questions. To 
characterize this selection, we start by collecting information that de
fines each variable, such as the type of data (i.e., numeric or categorical), 
range of values or categories, and units. Additionally, if available, each 
variable is linked to the EMIF-AD ontology [38] concept for complete 
characterization. Based on these attributes, we create a consortium-level 
mapping that defines the correspondence between the relevant variables 
and their representation within the OMOP CDM (the “destination 
mapping”). This information is configured with a CSV (comma-sepa
rated values) file containing one row per variable with 11 fields 
(described in Table 1 of the Supplementary Material). The mapping 
entails identifying the domain (corresponding OMOP table) and stan
dardizing the variable name, range of values or categories, and units 
using the concepts from the OMOP vocabularies (Fig. 1A–B). Overall, 
this mapping characterizes the data representation that will become 
available in all institutions and employed when performing federated 
analyses. 

The complete characterization of the selected variables also defines 
the guidelines for developing the mapping of each cohort (the “source 
mapping”). In this process (Fig. 1C), we identify the variables and cor
responding categories from the source dataset and map them to the 
equivalent identifiers from the consortium-level mapping. To accom
plish this, a researcher from each institution with knowledge of the 
cohort’s data provides the necessary information for the variable map
ping with additional support from the available cohort codebooks. The 
cohort mapping is agnostic to the CDM selected and exclusively char
acterizes the cohort’s data. Additionally, we include the necessary 
transformations, such as unit conversion, to minimize the pre-processing 
of the dataset and facilitate the data extraction process. The result is a 
CSV file with 12 fields (described in Table 2 of the Supplementary Ma
terial), where each row represents the mapping and necessary trans
formations for each variable using metadata. 

2.4.2. Data transformation 
We developed a command-line interface (CLI) to transform the data 

based on the information collected in the source and destination map
pings (Fig. 1D). This tool sets up a database following the OMOP 
schema, inserts the vocabularies, and populates the database with the 
harmonized data. Moreover, it provides summary statistics to assess the 
correctness of the transformation. In practice, we perform this process 
locally for each cohort, assisted by a researcher from the institution with 
access to the dataset. For support, we provided documentation and 
directly guided the data harmonization in each cohort via virtual 
meetings. We did not perform formal training on the OMOP CDM but 
promoted it through introductory presentations and assisted researchers 
when implementing their analysis. The ETL tool transforms each row in 
the dataset sequentially. It starts by obtaining the cohort-specific met
adata for each variable from the source mapping. Then, it identifies the 
correct target table and concept for each variable in the OMOP database 
using the destination mapping. Lastly, it extracts the data, performs the 
cohort-specific transformations, and populates the database. 

Additionally, in order to facilitate the adoption by researchers who 
are used to working with a single data table and do not have experience 
with relational databases, we included the option to generate a single 
table from the OMOP database. This option does not require additional 
input and produces a long-format table using the EMIF-AD ontology to 
designate the columns. The ETL tool accomplishes this by sequentially 
retrieving the records from OMOP for each patient and employing the 
destination mapping to identify the column in the new table for each 
OMOP concept. 
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The source code is publicly available on GitHub (https://github. 
com/MaastrichtU-CDS/omop-converter). It was written in Python 
3.8.10 and developed to operate with a PostgreSQL database using SQL. 
It accepts file-based datasets in CSV, SPSS, or SAS (Statistical Analysis 
Software) formats as input. We used Docker to containerize and version 
the application, which includes the SQL statements to create the OMOP 
database schema and the CSV files, downloaded from Athena, repre
senting the selected vocabularies. Additionally, we version the 
consortium-level and the cohorts’ mapping information in our GitHub 

repository. 

2.5. Federated learning infrastructure 

In our work, we implemented a federated architecture based on the 
Personal Health Train [42] (PHT) using Vantage6 [43] version 2.1.0. 
This Python library facilitates the installation of nodes in each organi
zation that communicate with a central server, responsible for handling 
the communications between the participants. Moreover, it provides the 

Fig. 1. ETL process plan to harmonize the consortium cohorts’ data. The tables presented have been simplified to illustrate the most relevant fields.  

P. Mateus et al.                                                                                                                                                                                                                                  

https://github.com/MaastrichtU-CDS/omop-converter
https://github.com/MaastrichtU-CDS/omop-converter


Journal of Biomedical Informatics 155 (2024) 104661

6

tools to manage the involved parties, secure communications, and 
execute analyses at each node. However, Vantage6 does not solve the 
problems arising from the heterogeneity of the data systems at each 
organization. 

There are no specific requirements for the data source type when 
using Vantage6 since this needs to be addressed by the algorithm 
developer. In our work, we opted for a PostgreSQL database to store our 
data following the OMOP CDM definition. The algorithms developed 
relied on this database and retrieved the data using SQL queries. To 
evaluate the quality and functionality of the proposed framework, we 
implemented a federated summary statistics algorithm based on the 
OMOP CDM structure, detailed in the Supplementary Material. 

The resulting architecture, presented in Fig. 2, allows researchers to 
analyze the data through authorized algorithms, containerized with 
Docker, that only provide non-individual level results. 

2.6. Experiments 

To evaluate the effectiveness of our tool and the quality of the 
transformation to OMOP, we assessed the coverage of the variables by 
valid concepts from the available vocabularies by counting how many 
variables have a valid concept from a standardized vocabulary to 
represent them. In addition, we used descriptive statistics to compare 
the source data and the OMOP tables. Additionally, we developed and 
employed a federated algorithm for summary statistics and cohort se
lection (detailed in the Supplementary Material) to demonstrate the 
functionality of the database in a federated architecture. 

3. Results 

We successfully applied our ETL tool to harmonize the data from the 
NCDC cohort studies to the OMOP CDM. In this process, we observed 
that the OMOP CDM can completely represent the data for the selected 
set of variables. However, the standardized vocabularies lack the terms 
to describe most variables. 

3.1. Data harmonization challenges 

We developed the ETL tool to address the challenges of harmonizing 
the data of multiple cohorts by structuring the different components in 
modules. As illustrated in Fig. 3, three main modules provide the 
necessary information to perform the ETL process: the consortium-level 
variable definition (destination mapping), the cohort-specific informa
tion (source mapping), and the CDM’s requirements. We followed an 
iterative approach to develop and test our tool, initially using a repre
sentative synthetic dataset, followed by an initial trial with three co
horts, and ultimately applying the mapping to every cohort. In this 
process, we identified difficulties associated with the cohort’s resources, 
data access, and the CDM that hindered the successful application of the 
ETL tool. Table 2 describes these challenges and the solutions imple
mented to tackle them. 

3.2. Common data model evaluation 

We have applied our ETL process and tool to the nine cohorts in the 
NCDC project, comprising approximately 40,000 participants, and suc
cessfully harmonized the data into the OMOP CDM. In total, we installed 
eight PostgreSQL databases (keeping two cohort studies from the same 
institution in a single database) at eight different locations and the 
necessary software to establish the intended federated system. The 
initial selection of relevant data for the project resulted in 201 variables 
considered for the data harmonization process. From this selection, we 
matched 62 (31 %) variables to standard concepts from the SNOMED 
vocabulary and created new concepts for the remaining 139 (69 %) 
variables. Overall, we represented the cohort data with four OMOP 
domains: the Person, Observation, Measurement, and Condition 
Occurrence tables. As shown in Fig. 4, the “Measurement” domain 
presented the highest percentage of unmapped variables (117 out of 
140), where we found a particular difficulty with the cognitive screening 
tests domain, from which 71 out of the 72 variables remained un
mapped. In the “Condition” domain, which had the lowest percentage of 
unmapped variables, four of the five unmapped variables were related to 
medical imaging assessments. Additionally, we completely mapped the 

Fig. 2. Representation of the federated architecture based on the Personal Health Train (PHT) [42]. The PHT server mediates the communications between the PHT 
nodes and handles requests for analysis by authorized researchers. 
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units and categorical values to standard concepts from the UCUM and 
SNOMED vocabularies. 

3.3. ETL tool evaluation 

We assessed the quality of the ETL tool by comparing the distribution 
of the harmonized variables between the source data and the OMOP 
database. We transformed the data from 3,807 participants considering 
22 variables, resulting in 3,807 visits and 74,894 events (observations, 
measurements, and conditions) registered in the OMOP CDM database. 
The resulting summary statistics for the source data (Table 3), obtained 

using federated algorithms for summary statistics, matched precisely 
with the OMOP CDM and the EMIF-AD table. We observed consistency 
of the data for every variable after performing the harmonization, 
including the derived variables, such as the year of birth, calculated by 
the tool from the participant’s age. Moreover, in Table 4, we calculated 
the expected number of rows in the OMOP tables based on the number of 
variables and missing information from the source dataset. In particular, 
the “Demographics” and “Risk factors” variables were mapped to the 
Observation domain, except for “year of birth” and “sex” which belong 
to the “Person” domain. The “Clinical measurements” and “Cognitive 
screening tests” were mapped to the Measurement domain and the 
“Clinical conditions” to the Condition Occurrence domain. Furthermore, 
the “Clinical conditions” were also included in the Observation domain 
to account for the number of entries representing the absence of a 
condition, as specified in the Methods. The results demonstrated the 
complete coverage of the source data by the OMOP tables. 

4. Discussion 

In this study, we have set up a federated learning network connecting 
nine cohort studies using a newly developed ETL process to harmonize 
and standardize cohort study data into the OMOP CDM. Following this 
approach allowed us to transform the data from nine cohorts with 
minimal loss of information, improve compliance with the FAIR data 
principles [44], and analyse the data in a decentralized setting using 
federated learning algorithms. 

Developing an ETL process for a federated network required 
decoupling the project, cohort, and CDM-specific components, making 
the tool generalizable to new cohorts. This approach automates the 
interaction with the OMOP database, avoids incorporating database- 
specific metadata and standardization preferences, and improves ver
sioning by allowing separate management of each component. 
Furthermore, it benefits the partition of tasks and responsibilities within 
the multidisciplinary team necessary to harmonize the data. Previous 
studies [13,14,16–22] focusing on ETL frameworks for a single database 
transformation commonly developed project-specific scripts or required 
a pre-processing step to a specified format, limiting its reusability. 
Although with similar constraints, a recent study [8] presented a 
metadata-driven framework, improving readability and manipulation of 
the data transformations. Notwithstanding the impact of project speci
ficities in ETL development, efforts for agnostic tools can be funda
mental to potentiate interoperability with new databases. Finally, it is 
relevant to acknowledge that these works focused on transforming 

Fig. 3. ETL design illustration: the consortium (destination mapping), cohort (source mapping), and Common Data Model (schema and vocabularies) components 
are separated. The ETL tool uses these elements as input to harmonize the dataset provided. 

Table 2 
Description of relevant challenges that influenced the ETL process development.  

Challenge Solution 

Estimating the technical resources 
available for each cohort can be 
challenging. 
Data access methods, security rules, and 
software tools available vary greatly, in 
some cases only available behind secure 
environments, limiting the preparation of 
the ETL tool. 

Containerizing the application and 
developing the ETL tool iteratively. 

Variability of the cohort data structure. 
Commonly, cohorts generate a specific 
dataset for each research question, 
containing the necessary information for 
the analysis. However, the data 
characteristics and schema can vary 
between requests. 

Automating the necessary data 
transformations within the ETL tool and 
minimizing modifications of the dataset 
supplied before the ETL process. 
Documenting and versioning the cohort- 
specific transformations separately from 
the ETL tool. 

No direct access to the data by the ETL 
tool developing team. 
Data access is often restricted, especially 
in the federated learning context and 
completing the data harmonization 
process may rely on non-technical 
personnel following instructions. 

Using a synthetic dataset to develop the 
mappings and test the transformation. 
Minimizing the knowledge necessary to 
execute the ETL tool and reducing the 
interaction with technical frameworks, 
such as Python scripts. Solutions to 
simplify the interaction encompass CLIs 
and visual interfaces. 

Complexity of the OMOP CDM relational 
structure. 
The relational structure that 
characterizes the OMOP CDM is often 
more complex than the plain format data 
provided by cohort studies. This 
complexity can result in a steep learning 
curve for its users, negatively impacting 
the successful adoption of CDMs. 

Generate a plain table, in a long or wide 
format, from the data stored in the 
OMOP CDM format. Promote the 
integration of the CDM by adapting 
analysis algorithms and tools.  
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clinical relational databases. In most cases, these databases have unique 
and more complex schemas than cohort data, which typically makes 
data extraction more challenging. 

Addressing the harmonization of cohort study data presented unique 
challenges, notably the semantic heterogeneity between cohorts, the 
differences in IT resources available, and security measures to access and 

Fig. 4. Mapping of variables from the Netherlands Consortium of Dementia Cohorts to OHDSI standard concepts from the SNOMED vocabulary by OMOP domain.  

Table 3 
Summary statistics and mapping metadata for the 22 variables harmonized from the Maastricht Study source data. Mean and standard deviation were calculated for the 
continuous variables and frequency distribution for the categorical variables.  

n Source Data OMOP DB V6.0 

3807 3807 

Frequency Missing information Concept ID* Vocabulary Domain** 

Demographics 
Year of birth*** − − − − Person 
Sex (female/male) 1857/1950 0 − − Person 
Age at visit (years) 59.90 (8.34) 0 4265453 SNOMED Observation 
Education level*** (low/high) 105/3567 135 4171617 SNOMED Observation 
Education level (low/medium/high) 1274/1037/1417 79 − − Observation 
Risk factors 
Smoking behaviour (current/past/never) 520/1937/1300 50 4275495 SNOMED Observation 
Current smoker*** (yes/no) − − 4298794 SNOMED Observation 
Current alcohol consumption (yes/no) 3044/715 48 4074035 SNOMED Observation 
Physical Activity (hours/week) 14.00 (8.15) 484 2000000417 EMIF-AD Observation 
History of hypertension (yes/no) 2180/1625 2 4058286 SNOMED Observation 
Hypertension medication (yes/no) 1533/2274 0 2000000494 EMIF-AD Observation 
Hypercholesterolemia medication (yes/no) 1387/2420 0 2000000359 EMIF-AD Observation 
History of cardiovascular disease (yes/no) 651/3089 67 4144290 SNOMED Observation 
Clinical measurements 
BMI (kg/m2) 27.09 (4.57) 3 4245997 SNOMED Measurement 
Waist circumference (cm) 95.91 (13.77) 4 4172830 SNOMED Measurement 
SBP (mmHg) 135.04 (18.08) 3 4152194 SNOMED Measurement 
DBP (mmHg) 75.99 (9.84) 3 4154790 SNOMED Measurement 
Cholesterol ratio 3.66 (1.16) 4 4195214 SNOMED Measurement 
Cognitive screening tests     
MMSE score 28.93 (1.27) 143 4169175 SNOMED Measurement 
Clinical conditions 
Depression (yes/no) 136/3500 171 440383 SNOMED Condition 
Diabetes type 1 (yes/no) 39/3768 0 201254 SNOMED Condition 
Diabetes type 2 (yes/no) 1078/2729 0 201826 SNOMED Condition  

* The OMOP standard concept ID for concepts from the SNOMED vocabulary; the EMIF-AD ontology concept code for terms without a standard concept from the 
vocabularies. 

** Variables from the “Person” domain are core elements of the CDM and do not require a standard concept to represent them. 
*** Derived variables: “year of birth” was calculated from the “age” variable and “current smoker” from the “smoking behaviour”. Recoded variables: “Education 

level” was recoded from a source variable with eight levels. 
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operate the datasets. In light of the planned data and applications, 
proven stability and scalability of relational databases [11], integration 
of standard vocabularies, and support from previous studies [24,45], we 
opted for the OMOP CDM to ensure network interoperability. Con
cerning the limitations due to diversity in cohort resources and security 
conventions, containerization proved an efficient method to minimize 
system dependencies and facilitate setting up and populating the data
bases. Additionally, it proved effective when incorporated into the 
federated infrastructure, facilitating the management and development 
of standardized algorithms due to the straightforward interface. Lastly, 
ensuring reproducibility can be challenging due to cohort-specific data 
management procedures and the legal agreements. Nevertheless, 
establishing versioning of the ETL components and including the pos
sibility for periodic backups can facilitate this procedure and ensure its 
reproducibility. 

The conversion of the cohorts’ data into the OMOP CDM proved 
successful, with the results displaying a complete coverage of the data 
and correct transformation of the values. Notwithstanding the flexibility 
of OMOP, the implementation process and development of applications 
highlighted limitations and drawbacks to consider, such as the addi
tional complexity that emerges with a relational schema and the stan
dardization of terms. Compared to standard file-based datasets provided 
by cohorts to researchers, employing OMOP can result in a steep 
learning curve to understand and query the data, as previously reported 
[12]. To address this, we developed examples of queries and generated a 
single table from the OMOP database that facilitates the initial inter
action with a relational database. Nonetheless, this table does not 
conform to an international community data standard, representing an 
instrument to promote familiarity with the federated platform and 
future transition to the OMOP CDM. Furthermore, we identified three 
matters that required specific solutions to avoid information loss, spe
cifically the representation of negative medical diagnostics, observation 
periods, and additional specifications on imaging equipment or cogni
tive assessments. Although these decisions allowed for a more complete 
representation of the cohort data, they can potentially impact the 
interoperability with other OMOP databases. These findings reinforce 
the need for agreements within the community on how to represent 
cohort data in OMOP. 

As observed in previous studies [10,17,20], mapping the terms into 
standard concepts proved difficult, mainly due to the lack of granularity 
and limited scope in the cognitive screening domain. Cohort informa
tion, such as cognitive test performance or questionnaire data, can un
fold in multiple data elements for each record (e.g., the number of 
correct answers and the time taken may be necessary to characterize a 
single test). This level of detail is not available in the standard vocab
ularies included in the OMOP ecosystem. The solution requires creating 
project-specific concepts, which may hinder the benefit of future inter
operability with external databases employing the OMOP CDM. Utiliz
ing metadata-driven tools (e.g., ontologies) can facilitate future 
integration by linking and describing the new concepts. Nonetheless, 
community efforts to reach domain standardization consensuses are 
fundamental to promote this further. A comprehensive standard vo
cabulary with widespread acceptance could avoid project-specific 

solutions and facilitate interoperability between CDMs. In particular, 
contributing to the OHDSI standardized vocabularies creates an oppor
tunity to enhance its sustainability for the OMOP CDM. 

The federated network described has been used in practice to obtain 
summary statistics on cohort data, develop linear models, and train a 
deep learning model [46] between cohorts. The ETL process enabled 
such applications by establishing a homogeneous data representation 
across cohorts. Although this represents one central problem for estab
lishing such collaborations, additional aspects can impact the success of 
this strategy. Namely, the diversity in measurements between cohorts (e. 
g., distinct standard cognitive tests to assess the same domain) affects 
the interoperability and requires data harmonization solutions beyond 
employing a CDM. Moreover, setting the legal contracts and attaining 
consensus proved demanding and time-consuming. Although partially 
due to a lack of past instances and the novelty of the federated approach, 
enhancing this phase is crucial to drive this method’s effectiveness. 
Finally, federated learning introduces a challenge for researchers 
accustomed to directly accessing the cohorts’ data. Future developments 
should consolidate the data quality guarantees, provide mature feder
ated applications for data exploration, and facilitate interaction with the 
ETL tool (e.g., by developing a user interface). 

In conclusion, the efforts for data harmonization greatly benefit a 
federated infrastructure by extending the interoperability to the anal
ysis, improving reproducibility and future reuse. Although current 
CDMs allow for an almost complete representation of data, facilitating 
standardization and future collaborations, community efforts are still 
necessary to develop standard vocabularies with higher domain 
coverage. This work demonstrates the necessity of non project-specific 
ETL processes and the potential of federated learning as the future for 
multi-cohort studies. 

Statement of significance 

Problem: Multi-cohort studies are hindered by inconsistent data 
representations, lack of standards, and privacy constraints to data 
sharing. 

What is already known: Federated learning is a privacy-preserving 
alternative to traditional analysis methods that require data harmoni
zation to enable interoperability between cohorts. However, manual 
harmonization or ETL tools available can lack generalizability, stan
dardization, or suitability for cohort data. 

What this paper adds: This study proposes an ETL process for multi- 
cohort studies developed and evaluated with a federated collaboration 
of 9 cohorts. In this process, data is standardized and transformed to the 
OMOP CDM. The challenges identified point to the need for community 
consensus for data models and standard vocabularies. 
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-py. 

CRediT authorship contribution statement 

Pedro Mateus: Writing – review & editing, Writing – original draft, 
Software, Resources, Methodology, Data curation, Conceptualization. 
Justine Moonen: Writing – review & editing, Software, Resources, Data 
curation. Magdalena Beran: Writing – review & editing, Software, Data 
curation. Eva Jaarsma: Writing – review & editing, Software, Data 
curation. Sophie M. van der Landen: Writing – review & editing, 
Software, Data curation. Joost Heuvelink: Writing – review & editing, 
Software, Data curation. Mahlet Birhanu: Writing – review & editing, 
Software, Data curation. Alexander G.J. Harms: Writing – review & 

Table 4 
Assessment of the cohort’s data coverage by the OMOP database.    

Source data OMOP Coverage 

Observation Demographics 11,207 − −

Risk factors 29,755 − −

Clinical conditions 9997 − −

Total 50,959 50,959 100 % 
Measurement Clinical measurements 19,018 − −

Cognitive screening tests 3664 − −

Total 22,682 22,682 100 % 
Condition Clinical conditions 1253 − −

Total 1253 1253 100 %  

P. Mateus et al.                                                                                                                                                                                                                                  

https://github.com/MaastrichtU-CDS/omop-converter
https://github.com/MaastrichtU-CDS/omop-converter
https://github.com/pedro-cmat/v6-summary-omop-py
https://github.com/pedro-cmat/v6-summary-omop-py
https://github.com/pedro-cmat/v6-summary-rdb-py
https://github.com/pedro-cmat/v6-summary-rdb-py


Journal of Biomedical Informatics 155 (2024) 104661

10

editing, Software, Data curation. Esther Bron: Writing – review & 
editing, Resources. Frank J. Wolters: Writing – review & editing, Re
sources, Data curation. Davy Cats: Writing – review & editing, Software, 
Data curation. Hailiang Mei: Writing – review & editing, Resources. 
Julie Oomens: Writing – review & editing, Resources. Willemijn 
Jansen: Writing – review & editing, Resources. Miranda T. Schram: 
Writing – review & editing, Resources. Andre Dekker: Writing – review 
& editing, Supervision. Inigo Bermejo: Writing – review & editing, 
Writing – original draft, Supervision, Software, Resources, Methodol
ogy, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors acknowledge all researchers of the Netherlands Con
sortium of Dementia Cohorts (NCDC), funded in the context of Deltaplan 
Dementie from ZonMW Memorabel (projectnr 73305095005) and Alz
heimer Nederland. 

FJW is supported by The Netherlands Organisation for Health 
Research and Development (project BIRD-NL, number 
10510032120005), the Dutch Research Council (Veni 
09150162010108), and the Alzheimer’s Association (AARF-22- 
924982). 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jbi.2024.104661. 

References 

[1] V. Ehrenstein, H. Nielsen, A.B. Pedersen, S.P. Johnsen, L. Pedersen, Clinical 
epidemiology in the era of big data: new opportunities, familiar challenges, CLEP 9 
(2017) 245–250. 

[2] T. Hulsen, et al., From big data to precision medicine, Front. Med. 6 (2019) 34. 
[3] J. Xu, et al., Federated learning for healthcare informatics, J. Healthc. Inform. Res. 

5 (2021) 1–19. 
[4] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, Y. Jararweh, Federated learning 

review: fundamentals, enabling technologies, and future applications, Inf. Process. 
Manag. 59 (2022) 103061. 

[5] I. Kholod, et al., Open-source federated learning frameworks for IoT: a comparative 
review and analysis, Sensors 21 (2020) 167. 

[6] E.A. Voss, et al., Feasibility and utility of applications of the common data model to 
multiple, disparate observational health databases, J. Am. Med. Inform. Assoc. 22 
(2015) 553–564. 

[7] G. Hripcsak, et al., Observational Health Data Sciences and Informatics (OHDSI): 
opportunities for Observational Researchers, Stud. Health Technol. Inform. 216 
(2015) 574–578. 

[8] J.C. Quiroz, et al., Extract, transform, load framework for the conversion of health 
databases to OMOP, PLoS One 17 (2022) e0266911. 

[9] WhiteRabbit and Rabbit-In-A-Hat (Version 0.10.8). OHDSI. https://github.com/ 
OHDSI/WhiteRabbit/. 

[10] X. Zhou, et al., An evaluation of the THIN database in the OMOP common data 
model for active drug safety surveillance, Drug Saf. 36 (2013) 119–134. 

[11] S.T. Rosenbloom, R.J. Carroll, J.L. Warner, M.E. Matheny, J.C. Denny, 
Representing knowledge consistently across health systems, Yearb. Med. Inform. 
26 (2017) 139–147. 

[12] B. Li, R. Tsui, How to improve the reuse of clinical data– openEHR and OMOP 
CDM, J. Phys. Conf. Ser. 1624 (2020) 032041. 

[13] V. Papez, et al., Transforming and evaluating the UK Biobank to the OMOP 
Common Data Model for COVID-19 research and beyond, J. Am. Med. Inform. 
Assoc. 30 (2022) 103–111. 

[14] Y. Yu, et al., Developing an ETL tool for converting the PCORnet CDM into the 
OMOP CDM to facilitate the COVID-19 data integration, J. Biomed. Inform. 127 
(2022) 104002. 

[15] S.M.K. Sathappan, et al., Transformation of electronic health records and 
questionnaire data to OMOP CDM: a feasibility study using SG_T2DM dataset, 
Appl. Clin. Inform. 12 (2021) 757–767. 

[16] N. Paris, A. Lamer, A. Parrot, Transformation and evaluation of the MIMIC 
database in the OMOP common data model: development and usability study, 
JMIR Med. Inform. 9 (2021) e30970. 

[17] J.G. Klann, M.A.H. Joss, K. Embree, S.N. Murphy, Data model harmonization for 
the All Of Us Research Program: Transforming i2b2 data into the OMOP common 
data model, PLoS One 14 (2019) e0212463. 

[18] J.R. Almeida, L.B. Silva, I. Bos, P.J. Visser, J.L. Oliveira, A methodology for cohort 
harmonisation in multicentre clinical research, Inf. Med. Unlocked 27 (2021) 
100760. 

[19] A. Matcho, P. Ryan, D. Fife, C. Reich, Fidelity assessment of a clinical practice 
research datalink conversion to the OMOP common data model, Drug Saf. 37 
(2014) 945–959. 

[20] M. Oja, et al., Transforming Estonian health data to the Observational Medical 
Outcomes Partnership (OMOP) Common Data Model: lessons learned, JAMIA Open 
6 (2023) ooad100. 

[21] P. Biedermann, et al., Standardizing registry data to the OMOP Common Data 
Model: experience from three pulmonary hypertension databases, BMC Med. Res. 
Method. 21 (2021) 238. 

[22] D. Puttmann, N. De Keizer, R. Cornet, E. Van Der Zwan, F. Bakhshi-Raiez, 
FAIRifying a Quality Registry Using OMOP CDM: Challenges and Solutions, in: B. 
Séroussi, et al. (Eds.) Studies in Health Technology and Informatics, IOS Press, 
2022. https://doi.org/10.3233/SHTI220476. 

[23] F. Cremonesi, et al., The need for multimodal health data modeling: a practical 
approach for a federated-learning healthcare platform, J. Biomed. Inform. 141 
(2023) 104338. 

[24] G.H. Lee, et al., Feasibility study of federated learning on the distributed research 
network of OMOP common data model, Healthc. Inform. Res. 29 (2023) 168–173. 

[25] M.T. Schram, et al., The Maastricht Study: an extensive phenotyping study on 
determinants of type 2 diabetes, its complications and its comorbidities, Eur. J. 
Epidemiol. 29 (2014) 439–451. 

[26] C. Sun, J. Van Soest, M. Dumontier, Generating synthetic personal health data 
using conditional generative adversarial networks combining with differential 
privacy, J. Biomed. Inform. 143 (2023) 104404. 

[27] W.M. Van Der Flier, et al., Optimizing patient care and research: the Amsterdam 
dementia cohort, JAD 41 (2014) 313–327. 

[28] W. Verschuren, A. Blokstra, H. Picavet, H. Smit, Cohort profile: the doetinchem 
cohort study, Int. J. Epidemiol. 37 (2008) 1236–1241. 

[29] N. Legdeur, et al., Resilience to cognitive impairment in the oldest-old: design of 
the EMIF-AD 90+ study, BMC Geriatr. 18 (2018) 289. 

[30] E. Konijnenberg, et al., The EMIF-AD PreclinAD study: study design and baseline 
cohort overview, Alz Res Therapy 10 (2018) 75. 

[31] M. Schoenmaker, et al., Evidence of genetic enrichment for exceptional survival 
using a family approach: the Leiden Longevity Study, Eur. J. Hum. Genet. 14 
(2006) 79–84. 

[32] M. Huisman, et al., Cohort profile: the longitudinal aging study Amsterdam, Int. J. 
Epidemiol. 40 (2011) 868–876. 

[33] M.M.B. Breteler, J.J. Claus, D.E. Grobbee, A. Hofman, Cardiovascular disease and 
distribution of cognitive function in elderly people: the Rotterdam study, BMJ 308 
(1994) 1604–1608. 

[34] A.P. Appelman, et al., Total cerebral blood flow, white matter lesions and brain 
atrophy: the SMART-MR study, J. Cereb. Blood Flow Metab. 28 (2008) 633–639. 

[35] S.J. Reisinger, et al., Development and evaluation of a common data model 
enabling active drug safety surveillance using disparate healthcare databases, 
J. Am. Med. Inform. Assoc. 17 (2010) 652–662. 

[36] K.A. Spackman, K.E. Campbell, R.A. Côté, SNOMED RT: a reference terminology 
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