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Stable Decoding from a Speech BCI Enables Control for an
Individual with ALS without Recalibration for 3 Months

Shiyu Luo, Miguel Angrick, Christopher Coogan, Daniel N. Candrea,
Kimberley Wyse-Sookoo, Samyak Shah, Qinwan Rabbani, Griffin W. Milsap,
Alexander R. Weiss, William S. Anderson, Donna C. Tippett, Nicholas J. Maragakis,
Lora L. Clawson, Mariska J. Vansteensel, Brock A. Wester, Francesco V. Tenore,
Hynek Hermansky, Matthew S. Fifer, Nick F. Ramsey, and Nathan E. Crone*

Brain-computer interfaces (BCIs) can be used to control assistive devices by
patients with neurological disorders like amyotrophic lateral sclerosis (ALS)
that limit speech and movement. For assistive control, it is desirable for BCI
systems to be accurate and reliable, preferably with minimal setup time. In
this study, a participant with severe dysarthria due to ALS operates computer
applications with six intuitive speech commands via a chronic
electrocorticographic (ECoG) implant over the ventral sensorimotor cortex.
Speech commands are accurately detected and decoded (median accuracy:
90.59%) throughout a 3-month study period without model retraining or
recalibration. Use of the BCI does not require exogenous timing cues,
enabling the participant to issue self-paced commands at will. These results
demonstrate that a chronically implanted ECoG-based speech BCI can reliably
control assistive devices over long time periods with only initial model
training and calibration, supporting the feasibility of unassisted home use.
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1. Introduction

Brain-computer interfaces (BCIs) enable
the control of devices and software appli-
cations by interpreting the user’s intent
from recorded brain signals.[1,2] BCIs may
be used by individuals with severe paral-
ysis to complement or replace their exist-
ing communication abilities and/or to con-
trol devices in their environment.[3,4] Under
these circumstances, ideally a BCI user can
issue commands whenever needed, with-
out external cueing or assistance, and with
high confidence that the command will be
executed.[5]

Recently, there has been a dramatic emer-
gence of speech BCI capabilities, with audio
waveforms and entire sentences translated
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directly from intracranial recordings.[6–14] These techniques of-
fer a promising path toward restoring communication, but are
not intended for device control, a crucial need among individu-
als who are severely paralyzed.[15] Unlike communication BCIs,
BCIs for device control must provide low-latency, reliable com-
mands with minimal linguistic context or assistance from lan-
guage models. Moreover, the use of BCIs to interface with phys-
ical devices (e.g., thermostats, robotic assistants) arguably re-
quires even higher decoding performance and stability over time
for safety reasons.

Implantable BCIs have enabled increasingly sophisticated
functionality to users, but it is challenging to maintain high per-
formance over long periods of time without the need to retrain
or recalibrate, which can be time-consuming and require inter-
vention by a research team or a caregiver.[4,16–19] One study has
demonstrated that time spent recalibrating can be reduced to as
little as 2 min for baseline collection in a cursor-control task,
proving the feasibility of a ‘plug-and-play’ BCI.[20] However, it
is not clear if long-term decoding without retraining and recal-
ibration is still feasible for speech BCI. It also remains unknown
whether daily baseline data collection, as was necessary for the
aforementioned study, can be eliminated altogether, which would
give more autonomy to BCI users and allow for broader BCI us-
age.

Here, we present a ‘plug-and-play’ BCI control system based
on real-time decoding of speech-related neural activity from a
chronic electrocorticographic (ECoG) implant. Using this BCI
system, a study participant with amyotrophic lateral sclerosis
(ALS) was able to freely generate a set of control commands (i.e.,
up, down, left, right, enter, and back). Commands were reliably
detected and decoded as the participant navigated a communi-
cation board and controlled devices like room lights and stream-
ing TV applications. We found that decoder retraining and recal-
ibration, as well as baseline collection before each session, were
not required to sustain high performance over a 3-month study
period following initial laboratory calibration. Together, these re-
sults provide evidence that an implanted BCI system decoding
speech commands can enable a reliable and stable means of con-
trolling a computer and other external devices over a period of
several months for individuals with motor speech impairments
due to neurological disorders such as ALS.

2. Results

2.1. Real-Time Neural Decoding

A participant in the CortiCom clinical trial (ClinicalTrials.gov
Identifier: NCT03567213; see Experimental Section for details)
with severe dysarthria due to ALS was able to control external de-
vices (Video S1, Supporting Information, the participant gave in-
formed consent for the release of video recordings) and navigate
a 4 × 8 communication board (Figure 1a; Video S2, Supporting
Information) using a BCI in real-time. No device-related adverse
events or serious adverse events have occurred to date. The in-
vestigational BCI device is still operating nominally at the time of
the reporting, acquiring good-quality ECoG signals in all but four
of the 128 ECoG electrodes. Two 64-channel high-density ECoG
arrays were implanted over motor and somatosensory cortical ar-
eas (Figures 1a and 4a). The lateral array primarily covered brain

regions responsible for speech-related functions; this array alone
was used to decode speech commands in this study. Raw ECoG
signals were bandpass filtered between 70 and 170 Hz to estimate
high gamma energy (HGE), which has been shown to correlate
with neuronal population activity underlying the electrodes[21–23]

and used widely to decode speech from ECoG signals.[8,9,24] The
event-related increases in HGE were used by the BCI system
to determine whether a command had been issued by the user
(Figure 1b,c). Specifically, the time associated with the local max-
imum of a 1-s rolling average of channel-averaged HGE was iden-
tified. Once a speech event was detected, we classified neural fea-
tures in a window consisting of HGE 2 s prior to peak detection
and 0.5 s after peak detection using a convolutional neural net-
work (CNN, InceptionTime,[25] Figure 1d). Visual feedback was
presented to the participant as soon as decoding results were re-
ceived by the system. In the communication board navigation
task, the participant could see a red highlight moving in cardi-
nal directions when the decoding results were up, down, left, or
right, respectively. This red highlight turned green if the com-
mand enter was decoded. When a back command was decoded, a
yellow highlight replaced any existing highlight, which indicated
that the current option had been unselected.

The CNN decoding model was trained on data collected during
a word production task where the subject was instructed to read
the six commands as they appeared on the screen. Training data
collection for this task began and concluded 77 and 120 days post-
implant (4 and 3 months prior to real-time usage), respectively. To
accommodate for the usage of the system without recalibration,
all data were normalized using the mean and standard deviation
of the silence period (0.8 to 0 s prior to stimulus onset) in a syl-
lable repetition task (Note S1, Supporting Information) collected
from a single, arbitrarily chosen day (95 days post-implant) in the
aforementioned time frame.

2.2. Stable Decoder Performance Over Three Months

Real-time testing began 194 days after implantation, at which
point all model parameters were fixed and no retraining of the de-
coding model took place. On each day of testing, the participant
was instructed to issue verbal commands (up, down, left, right,
enter, and back) at his own pace to navigate across the commu-
nication board toward targets of his choice. HGE features were
normalized with statistics collected on Day 95 post-implant. No
separate baseline collection/model recalibration took place prior
to real-time experiments. We report here performance statistics
in a 3-month study period, concluding 285 days post-implant (n
= 35 sessions in total). For the first 2 days of real-time usage, two
sessions were conducted each day. All other days had a single ses-
sion lasting just under 5 min on average (Table S1, Supporting
Information).

As all commands were selected by the participant overtly in
real time, audio recordings of the participant during online us-
age were transcribed as ground truth. We define online accuracy
as the percentage of real-time classification results matching the
transcriptions when a command was indeed issued by the partici-
pant. The participant achieved a median accuracy of 90.59% (95%
CI: [89.47%, 92.00%], Figure 2a). Performance held steady across
the study span, with no significant relationship between online
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Figure 1. Schematics of the speech BCI for functional control. a) Neural signals were acquired from two 64-channel ECoG arrays implanted over the
motor and somatosensory areas responsible for upper extremity and speech functions. Only the inferior array was used in this study. b) A sample of
high gamma energy (HGE, 70–170 Hz, z-scored) for six channels. c) 1-s rolling average of channel-averaged HGE (updated every 10 ms). The peak of
this signal was used to detect speech intent. Once the intended speech was detected, a decoding window consisting of HGE 2 s before and 0.5 s after
the peak was sent to the classifier. d) The CNN model (InceptionTime[25]) classified the window of HGE into commands that facilitated navigation of a
communication board or control of external devices.
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Figure 4. Electrode contribution during the study period. a) MRI reconstruction of the participant’s brain, overlaid on top of which are the ECoG grids
implanted as part of the clinical trial. Electrodes used in this study are colored in red (motor) and blue (sensory). The grey electrodes were not used
in this study. b) Simulated online accuracy when the decoding model is trained with both motor and sensory electrodes, only motor electrodes, only
sensory electrodes, and only the most salient electrode. Chance = 16.67% (shown as dashed line). Each box corresponds to the accuracy for n = 33
testing days (****p < 0.0001, Mann–Whitney-Wilcoxon test two-sided with Bonferroni correction). c) Relative contribution of each of the electrodes to
the decoding results for each real-time usage month.

accuracy and days after implant (y = 0.010x + 88.70, where x is
the number of days after implant (same below), R2 = 0.006, p =
0.65, Figure 2a). The median correct decodes per minute across
sessions was 14.9 (95% CI: [14.0, 15.3], Figure 2b, the median
for commands issued per minute was 16.49), and its relationship
with days after implant also could not be established (y =−0.001x
+ 15.11, R2 = 0.001, p = 0.88, Figure 2b). These findings indicate
the stability of our decoder even without retraining or dedicated
baseline recalibration.

Separately, we measured the performance metrics of our de-
tection algorithm (Figure 2c). False detections were defined as
speech events detected by the algorithm while the participant
did not attempt to say a word. Missed detections were defined
as instances where the participant finished a full word that the
detection algorithm failed to detect. Across the study period,
both the false detection rate and missed detection rate remained
low. The median false detection rate was 0.19 min−1(95% CI
[0.00, 0.23], y = 0.001x − 0.027, R2 = 0.017, p = 0.45), and the
median missed detection rate was 0.19 min−1 (95% CI [0.00,
0.20], y = 0.002x − 0.208, R2 = 0.066, p = 0.14). We found
no statistically significant linear trend between either of these
metrics and days after implantation. Additionally, the median
time interval between speech offset and when the decoding re-
sults were registered by the BCI system was 1.24 s (95% CI:
[1.23, 1.25], Figure 2d). This response speed represented the de-
lay of the system between when the participant issued the in-
struction and when the system completed the corresponding
action.

2.3. Stability of the Decoding Signals

To quantify the stability of the underlying neural signals, we in-
vestigated both the neural features used for the training of the
decoding model and those collected during the real-time testing
phase. Figure 3b displays the HGE over a time period of 4 s, start-
ing from 1 s prior to speech onset, for two example electrodes (lo-
cation shown in Figure 3a). Here, HGE is aggregated by month
when using the communication board online, or from the collec-
tion of training data—colorized for each case differently. We saw
similar patterns of event-related HGE increase during the train-
ing data collection phase and each month that the BCI system
was used in real-time (Figure 3b; Figures S5 and S6, Supporting
Information).

We then compared the similarity between the time series
(−1.0 to 1.5 s relative to speech onset) of raw event-related HGE
during the model training phase and each day of real-time
usage. Figure 3c reports Pearson’s correlation coefficients for
each channel across days. Despite the variance of correlation
values across channels, the correlation pattern between neural
activity during training and real-time use was relatively stable. A
small increasing trend was observed for the channel average (y
= 0.001x + 0.410, R2 = 0.183, p <0.05, Figure 3c). For n = 37/60
channels, a small (slope <0.001 day−1) but statistically significant
(p <0.05) increase in correlation scores over time was observed
(Figure 3d). For n = 23/60 channels, no significant relationship
between correlation coefficients and days after implant could be
established (Figure 3d). These findings suggest that the neural
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Figure 2. Stable performance of the BCI in online self-paced experiments over 3 months. a) Online accuracy of the BCI system. Each dot represents one
session. Average chance = 16.16% (n = 10000 simulations, dashed line). The blue line is the linear least squares regression line between accuracy and
days after implant. b) Correct decoding results performed by the BCI per minute. Each dot represents one session. The blue line is the linear least squares
regression line between correct decodes per minute and days after implant. c) Number of false detections (blue dot) and missed detections (purple
triangle) per minute. Each symbol represents one experiment session. d) Time between speech offset and when the decoding result was registered by
the BCI system for every successful decode per day. For all boxplots, the center line represents the median, top and bottom edges of the box represent
quantiles. Data outside of 1.5 times of interquartile range were shown as outlier data points, and the maximum and minimum of non-outliers were
shown as whiskers.

signals maintained their relative similarity to the training data
during the course of real-time usage.

Lastly, we monitored the stability of the neural signals from
the perspective of raw HGE. We computed the average HGE
across channels for each command (−1.0 to 1.5 s relative to
speech onset) during each day of online usage (Figure 3e).
We observed no statistically significant (p < 0.05) relation-
ship between command-specific HGE and days after implant
(Figure 3f).

2.4. Electrode Contribution

Next, we examined that electrodes among those selected made
the strongest contribution to decoding performance and stabil-
ity. We first tested whether similar decoding performance could

have been achieved had the ECoG grid only covered either mo-
tor (including premotor) or sensory cortices (pre-versus post-
central areas). We simulated real-time usage of a motor-only
and a sensory-only model using neural activity data from on-
line sessions, detected from the aforementioned methods us-
ing all 60 electrodes. Lower accuracies were observed in both
motor-only (median: 81.33%, 95% CI [79.07%, 83.33%]) and
sensory-only (median: 70.67%, 95% CI [66.67%, 73.49%]) condi-
tions (Figure 4b, p < 0.0001, Mann–Whitney-Wilcoxon test, two-
sided with Bonferroni correction for six comparisons). As with
the full model, no statistically significant trend between decod-
ing accuracies and days from implantation could be established
(y1 = −0.058 x + 95.186, R2 = 0.109, p = 0.06; y2 = −0.016 +
74.159, R2 = 0.004, p = 0.73 where y1 and y2 are accuracies with
models trained with sensory and motor electrodes excluded, re-
spectively; Figure S2, Supporting Information). These findings
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Figure 3. Stability of the event-related high gamma activities acquired from the ECoG arrays. a) Anatomical location of the ECoG array used in this study.
Example channels in (b) are highlighted. b) Examples of event-related HGE in both training and real-time usage phases for two different commands. A
vertical dotted line at 0 s indicates speech onset. The shaded area represents 95% CI. CB: Communication Board (real-time usage). WP: Word Production
(training data). c) Correlation between the real-time usage trials and average training data per channel. For each real-time usage trial, the Pearson’s
correlation coefficient between its HGE and the average HGE of the corresponding command in training data collection phase was calculated. Each
dot represents the average (weighted against the frequency of the command) of the correlation coefficients per usage day per channel. The blue line
represents the linear least squares regression line between channel-averaged correlation and days after implant. d) Rate of change for correlation. Each
dot represents one channel. Filled dots represent statistically significant linear relationships between correlation values and days after implant (p <0.05,
Wald test with t-distribution). Unfilled dots indicate that a relationship could not be established (p > = 0.05). e) Channel-average of logarithmic HGE
(unnormalized) for each command during online usage. Lines represent the linear least squares regression lines between HGE and days after implant
for each command. f) Same as (d), but for HGE.

suggest that the wide coverage of the ECoG grid might have been
necessary to achieve the high performance we observed, though
performance stability did not seem to be affected by reduced
coverage.

We then took a more granular look at which specific electrodes
had the greatest influence on decoding. Each electrode’s influ-
ence on decoding was quantified as relative changes to model pre-
dictions based on small perturbations to the neural activity from
that electrode.[26] The dorsal and posterior parts of the grid had
more influence on the decoding model than the ventral and ante-
rior parts of the grid. The most influential electrodes were local-
ized to the dorsal part of the ventral sensorimotor cortex (vSMC),
which has been associated with lip movement, and to a lesser ex-
tent, to areas associated with tongue and jaw movement.[27] We
then investigated whether this spatial pattern of electrode influ-
ence was stable across the study period (Figure 4c). Strong corre-

lations (Pearson’s correlation coefficient, r = 0.985 between 1 and
2 months, r = 0.994 between 1 and 3 months, r = 0.992 between
2 and 3 months, p < 0.0001 for all three pairs) between the in-
fluence of the electrodes across the three real-time usage months
were observed.

2.5. Generalizing Stable Performance to Functional Control and
Silent Speech

Since many aspects of the decoding system design were moti-
vated by the need for ALS patients to interface with computa-
tional devices and external hardware, we examined whether the
stability and performance of a fixed decoder could still hold under
hardware-control conditions. In these functional control experi-
ments, options on the communication board were linked with
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Figure 5. Performance in functional control and during silent (mimed) speech. a) Online accuracy of the BCI system during functional control. Each
data point represents one session. Chance = 16.67% (dashed line). The blue line is the linear least squares regression line between accuracy and
days after implant. b) Correct decoding results performed by the BCI per minute during functional control. Each dot represents one session. The blue
line is the linear least squares regression line between correct decodes per minute and days after implant. c) Number of false detections (blue dots)
and missed detections (purple triangles) per minute during function control. Each symbol represents one session. d) Online accuracy of silent speech
decoder. Each dot represents one day. Average chance = 16.73% (dashed line, n = 10000 simulations). The purple line represents the linear least squares
regression between accuracy and days after implant. e) Correct decoding results performed by the BCI per minute using the silent speech decoder. Each
dot represents one day. The purple line is the linear least squares regression line between correct decodes per minute and days after implant.

real-world events (e.g., turning a light on and off, contacting care-
givers, playing the radio, etc.). The participant was also given the
ability to control a TV application on a separate screen (Video
S1, Supporting Information), which also consisted of 2-D arrays
of menu options that were navigated using the same six com-
mands. Online functional control experiments started 266 days
post-implant and concluded 285 days after implant (coinciding
with the last month of online communication board usage ex-
periments). The same fixed decoder as described above was used
without any further training or recalibration. The participant was
instructed to finish a series of functional tasks at his own pace in
the following order: activate the BCI system (by issuing three en-
ter commands in a row), turn off a lamp, turn on the radio, turn
off the radio, activate smart TV control, open a video application,
and select a video to watch. Median accuracy across the nine func-
tional control sessions was 86.49% (95% CI: [80.00%, 96.30%]).
No statistically significant relationship between functional con-

trol accuracy and days after implant could be established (y =
−0.450 x + 212.21, R2 = 0.278, p = 0.15, Figure 5a). The median
for correct decodes per minute was 9.8 (95% CI [8.2, 10.7]), with
no significant relationship with days after implant (y = 0.018 x
+ 4.975, R2 = 0.016, p = 0.74, Figure 5b). Note that this number
was substantially lower than the correct decodes per minute re-
ported earlier for communication board control. This was mainly
because the participant required more time to examine their op-
tions, and to a lesser extent, wait for control commands to take
effect in the real world. The median false detection rate was 0.71
min−1(95% CI [0.35, 1.24]), and median missed detection rate
was 0 min−1 (95% CI [0.00, 0.35]). No statistically significant re-
lationship between either metric and days after implant could be
established (y1 = −0.061 x + 17.543, R2 = 0.405, p = 0.06; y2 =
0.017 x − 4.494, R2 = 0.406, p = 0.06, where y1 is false detection
rate and y2 missed detection rate, Figure 5c). Together, these find-
ings suggest that the performance and stability of our BCI system
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also apply to functional control under simulated real-life settings
in laboratory.

We then examined whether stable performance could be
achieved if no audible speech was produced. A separate decoder
was trained using data collected in a word production task where
the participant silently mimed the words shown on the screen.
Data collection for the training of the silent speech decoder
started and concluded 83 and 225 days after implant, respec-
tively, across eight different days. The participant was instructed
to silently move his articulators and facial muscles in these ses-
sions; all other parameters of the task paradigm were kept consis-
tent with the aforementioned word production task. Online usage
of this new decoder started and concluded 236 and 313 days af-
ter implant, respectively. In these experiments, a cross occurred
on the screen for 2 s prompting the participant to give a silent
command, chosen freely by him. The decoding window started
when the cross disappeared and ended 2.5 s after. Once the cross
disappeared, the user interface displayed the same 4 × 8 commu-
nication board as referenced above in the real-time communica-
tion board usage experiments. The participant was instructed to
issue commands once the cross disappeared. The lip movements
of the participant were transcribed as ground truth. Once the de-
coding result was received by the user interface, the highlight on
the communication board changed accordingly and the results
were presented to the subject for a further 1.5 s before the next
cross replaced the communication board display. Median accu-
racy across the eight silent speech control sessions was 85.18%
(95% CI: [76.79%, 93.75%]). No linear trend of decoding accu-
racy could be established across days after implant (y = −0.010 x
+ 88.437, R2 = 0.002, p = 0.92, Figure 5d). The median for the
number of correct decodes per minute was 8.16 (95% CI [7.2,
8.5], Figure 5e). These results indicate that BCI stability can also
be achieved in the absence of phonation.

3. Discussion

In this study, we demonstrated the accuracy and stability of a
speech BCI system based on a chronic ECoG implant. No se-
rious adverse events or device-related adverse events occurred
during the study period. At the time of this report, the BCI sys-
tem is still operating nominally, capable of streaming all but 4
of 128 ECoG signals. A clinical-trial participant was able to use
the system at his own pace to control computer applications and
external devices over a 3-month study period without model re-
calibration or retraining. Previous demonstrations of implanted
speech BCIs have focused primarily on the restoration of com-
munication abilities for participants by translating brain activity
into text.[24,28] An outstanding question is whether decoding neu-
ral activities during speech commands can also be used to enable
the direct control of devices, another crucial need among severely
paralyzed individuals. In a control-oriented BCI, similar to voice
assistants used by able-bodied individuals, each user-issued com-
mand needs to be detected and classified with high confidence.
Otherwise, BCI users may elect to abandon device use.[29] Here,
we show that a speech BCI using a small set of intuitive com-
mands can indeed achieve a high accuracy for performant navi-
gation of a communication board, as well as to control household
devices, without the use of a language model to correct for decod-
ing errors.

Another outstanding question for BCI development is whether
day-to-day setup time associated with retraining and base-
line collection can be reduced while still maintaining robust
performance.[30] This problem becomes more acute for control-
focused BCIs, as their ultimate purpose is to facilitate the inde-
pendent use of assistive and other smart devices at home. In-
dividuals with severe motor impairments need to be able to re-
liably control BCI systems whenever the need arises. Previous
studies have already demonstrated that the neural representa-
tions responsible for consistent motor behaviors that underlie
BCI control are stable.[31,32] A few recent studies have reduced
the setup time for BCI systems to as little as 2 min.[18,20] Our
study builds on these prior works by eliminating the model re-
training and baseline recalibration steps altogether, marking a
critical step toward the independent usage of a speech BCI for
navigational control without the need for ongoing researcher
intervention.

What drove the decoding stability in our study? We believe
the stability of high gamma responses recorded from the im-
planted ECoG arrays had an important impact on decoding
stability. Previous studies have demonstrated short- and long-
term stability of ECoG implants in both humans[3,20,33–35] and
non-human primates.[36,37] In this study, we extended these
findings on chronic ECoG decoding stability to speech BCI
in an ALS participant. Our results add to the growing evi-
dence that high gamma responses are highly informative for
speech-related motor behaviors,[7,20,21,38] and that they are sta-
ble, likely because they reflect the collective firing rates of neu-
ronal populations.[21–23] Further studies are needed to explore in
detail the stability of these and other spectral features of ECoG
signals.

One limitation of our approach was the limited vocabulary
used for speech decoding. Although the six commands we
adopted in this study were both intuitive and sufficient for con-
trolling grid-based applications, a more comprehensive vocabu-
lary may reduce the time needed to perform each selection. Pre-
vious reports on speech BCIs have demonstrated that a higher
number of decoding classes can still be accurately decoded.[28]

The success of speech synthesis directly from neural recording
also suggests the potential for decoding a larger vocabulary.[6,8,9]

The current study was conducted with only a single participant
in a phase I clinical trial of the safety and feasibility of an ECoG-
based BCI device. Few studies have explicitly tested the effective-
ness of an ECoG-based speech BCI in people living with ALS.[3]

Further studies are needed to verify if our proposed approach
will generalize to other participants with similar conditions. Even
though we explored how various other popular BCI approaches
would perform in offline simulations, we did not have the oppor-
tunity to establish how those approaches would perform in the
same online close-loop experiments for longer periods of time.
For example, the addition of lower-frequency information or an-
alytic amplitude extraction of high gamma could have potentially
resulted in better online decoding accuracy. Our participant had
severe dysarthria due to bulbar dysfunction, with limited intelli-
gibility. Nevertheless, he was still capable of phonation and artic-
ulation. Even though we were able to achieve high performance
with silent speech, it still remains to be seen whether the same
level of performance can be achieved in people living with ALS
who are unable to phonate and/or articulate.

Adv. Sci. 2023, 10, 2304853 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304853 (8 of 12)
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4. Conclusion

Overall, our work demonstrates the potential of safely using im-
planted BCIs for intuitive control of external devices for a pro-
longed time. In future studies, it might be possible to extend the
capability of decoding systems that require no recalibration to
longer and more diverse voice commands. In a home-use BCI
system, stable decoders such as ours can also be used to initi-
ate calibration sessions for more sophisticated, albeit less stable,
decoders. Utilizing the signal stability afforded by intracortical
ECoG recordings, our results may be one of the first steps in re-
alizing the potential for independent home use of speech BCIs
by individuals with severe paralysis.

5. Experimental Section
Clinical Trial and Participant: This study included data from one clini-

cal trial participant (ClinicalTrials.gov Identifier: NCT03567213) who gave
written informed consent for implantation of the study device and all re-
search activities associated with this study. The use of the device in this
study was approved by the US Food and Drug Administration under an In-
vestigational Device Exemption. The study protocol was approved by the
Johns Hopkins Medicine Institutional Review Board (IRB00167247). The
participant was a right-handed man who was 61 years old at the time of im-
plant. He was diagnosed with ALS ≈8 years prior to the start of the study.
The participant had severe progressive dysarthria and dysphagia as a re-
sult of bulbar dysfunction. This had also been accompanied by progressive
dyspnea. His residual phonation and articulation ability could still support
overt speech, albeit with reduced speed and limited intelligibility. In addi-
tion, he had experienced progressive upper limb weakness, but his lower
limbs were less affected.

Safety and Signal Monitoring: The primary outcome measures of the
clinical trial described here were designed to establish the safety and
recording viability of the investigational BCI device. The safety outcome
was measured by time to device explanation and was considered a success
if the device was not explanted due to safety concerns during the study pe-
riod. At the time of this reporting, the device was implanted for 52 weeks.
Safety monitoring of the device throughout the study period had consisted
of visual inspections of the device, review of streamed ECoG signals, as-
sessments of vital signs, mood, and cognition at every study visit, as well
as monthly physical, neurological, and cognitive examinations. No serious
adverse events or device-related adverse events had been reported to date.
The recording viability of the study device was measured as the number of
usable neural signals. All but 4 of the 128 ECoG electrodes had produced
usable neural signals throughout the study duration to date. Three elec-
trodes with consistently high impedance (>15kΩ) were excluded from the
analysis. Impedances for the rest of the electrodes remained under 15kΩ
throughout the study period. One additional electrode was excluded due
to inconsistent signal quality confirmed with visual inspection of the raw
signals. On a few occasions, raw signal recorded from that channel did not
exhibit nominal patterns of brain waves and remained lower in amplitude
than normal. ECoG signals from the remaining 60 electrodes of the ECoG
array implanted over ventral sensorimotor cortex were used for training
and testing decoding algorithms.

Surgical Implantation: Implantation of the investigational device oc-
curred in July 2022 at the Johns Hopkins Hospital without surgical com-
plications. Two 64-channel ECoG grids (PMT Corporation, Chanhassen,
MN) were implanted subdurally on the pial surface of the brain, over
brain regions responsible for speech and upper extremity movements. Ex-
act placement was informed by anatomical landmarks, preoperative fMRI,
and somatosensory evoked potentials. Each ECoG grid had a surface area
of 12.11 cm2 (36.66 mm x 33.1 mm) with an 8 × 8 electrode configuration
and 4 mm center-to-center spacing embedded in soft silastic sheets. Each
platinum-iridium disc electrode had a thickness of 0.76 mm and an ex-
posed surface diameter of 2 mm. Two wires implanted over the surface of

the grids served as a reference for ECoG signal amplification. One percu-
taneous pedestal connector (Blackrock Microsystems, Salt Lake City, UT)
connected to the ECoG grids was surgically anchored to the skull.

Activity Detection: The channel average of the normalized high
gamma signal of the 60 included electrodes across a 1-s integral window
was calculated every 10 ms and used for detection of neural activity associ-
ated with speech (referred to as detection signal henceforth, Figure 1b,c).
The peak from a 3-s rolling buffer of the detection signal was identified if its
prominence[39] was over two times the standard deviation of a 10-s rolling
window of detection signals. A 2.5-s window (2 s before the peak and 0.5 s
after the peak) of the processed neural activity was then used for the classi-
fication of the six speech commands (neural decoding model, Figure 1b).
The same detection algorithm was also used for extracting training sam-
ples.

Neural Decoding Model: For the neural decoding model, a convo-
lutional neural network (CNN) was designed using the InceptionTime
architecture.[25] Targeted toward time series classification, the Inception-
Time model incorporated filters of variable length to gain access to hier-
archical latent structures of different time resolutions. In the implementa-
tion of the CNN, Six Inception[40] blocks were used, each with three Incep-
tion modules (Figure 1d), without neural network ensembling. Inside each
Inception module, three sets of convolutions, each with 32 filters with ker-
nel sizes ∈ {5, 11, 23}, were used after an initial convolution layer with 32
filters of kernel size = 1. A MaxPooling layer with kernel size = 3 and one
subsequent set of convolutions with 32 filters of kernel size = 1 were also
used within each module. The output of the four sets of convolutions was
concatenated to form the output of each module. The final output from the
last Inception block was used as input to a MaxPooling layer, followed by a
fully connected layer that provided the final predicted classification score.
The model in Python 3.8/3.9 was implemented using PyTorch v1.10. See
Note S2 (Supporting Information) for details on the decoding model.

Data Collection and Model Training: The overt speech command de-
coding model was trained on data collected between Day 77 and Day
120 post-implant. The silent speech decoding model was trained on
data collected between Day 83 and Day 225 post-implant. The subject
was instructed to read aloud or silently mime single text commands
as each appeared on a computer monitor (Note S1, Supporting Infor-
mation). There were in total 30 data collection experiments for overt
speech conducted across 11 days, totaling 142.8 min and 300 trials for
each command. Data collection experiments (43 in total) were conducted
for silent speech across 17 days, totaling 266.6 min and 430 trials for
each command. Decoding model optimization was performed with Adam
optimizer.[41] Model performances were evaluated with different hyperpa-
rameter choices by withholding an entire day’s data as validation set.

Data Preprocessing and Real-Time System: ECoG signals were filtered
(0.3–7500 Hz), amplified, and digitized using a NeuroPlexE headstage
(Blackrock Microsystems, Salt Lake City, UT) attached to the 128-channel
percutaneous connector of the implanted investigational device. The
headstage was connected by HDMI cable to a Digital NeuroPort Biopo-
tential Signal Processing System (NSP, Blackrock Microsystems, Salt Lake
City, UT) where signals were downsampled to 1000 Hz. During real-time
usage, data from the NSP was streamed from a ZeroMQ[42] server im-
plemented in the signal processing module of BCI2000.[43] Subsequent
real-time signal processing and model inference were implemented in
Python within the ezmsg framework, a directed acyclic messaging pattern
(https://github.com/iscoe/ezmsg), and deployed on a desktop computer
with an Ethernet cable connection to the host computer for the Neuro-
port System. A ZeroMQ subscriber within this framework received and
reformatted the data. Subsequently, data from the 60 channels used in
this study were selected. High gamma signals were extracted using an 8th
order Butterworth bandpass filter between 70 and 170 Hz. A notch filter
between 118 and 122 Hz was applied to remove line noise. The logarith-
mic power of the high gamma signal for a 50-ms window was computed
once 10-ms data was received. These processed HGE features were then
stored in a decoding data buffer pending the detection of speech intent.

The channel average of HGE was stored in a separate 1-s circular buffer.
Every 10 ms, the time average of the circular buffer was computed and
stored in a detection buffer that was 3 s in duration. A 10-s baseline buffer

Adv. Sci. 2023, 10, 2304853 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304853 (9 of 12)
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was also updated the same way. Any local maximum in the detection win-
dow whose prominence was over two times the standard deviation of the
detection window was defined as a detection. Peak detection was rejected
if the difference between the signal peak and the minimum of the baseline
buffer was below the standard deviation of the baseline buffer. Otherwise,
the detected peak time was sent to the decoding data buffer.

Once the detected peak time was received by the decoding data buffer,
another 0.5-s worth of data was collected. This was appended to the 2 s of
data prior to peak detection. This 2.5-s window of data was then normal-
ized against the mean and standard deviation of the pre-trial silent period
(0.8 to 0 s prior to stimulus onset) collected during a syllable repetition
task conducted 95 days after implant. Next, the fixed CNN decoder classi-
fied these neural signals into commands. Decoding results with raw scores
at or above 0.55 were considered valid results and were sent back to the
host machine. Results with raw scores below 0.55 were not registered and
were treated as missed detections if a speech attempt was made.

In the real-time communication board control tasks, for ease of use, a
command after enter would only be considered valid if it were back. In the
case of any other commands being decoded, the application considered
them to be back. In functional control tasks, this feature was not enabled
as directional commands were still valid options after enter.

Online Experimental Task Design: In the real-time communication
board control task, the subject was asked to freely choose his own tar-
get on a 4 × 8 communication board and navigate toward the target by
issuing verbal commands. The application started with a red highlight
over one of the icons on the communication board. This highlight turned
green if the enter command was received, and would move rightward, left-
ward, upward, or downward if the right, left, up, or down command was
received, respectively. The highlight turned yellow upon receiving the back
command.

In the real-time functional control task, operation of the application
started with the participant saying three enter commands in a row. The
participant was asked to navigate in an application displayed on the screen
directly in front of him. This application had an identical layout to the afore-
mentioned communication board but provided different options. A sepa-
rate screen displaying a streaming TV application was placed to the front
left of the participant. The TV application was put into standby mode at the
start of the experiment. Once the experiment started, the participant was
instructed to first enter the functional control application. He was asked to
then navigate to the correct icons by issuing up, down, left, or right com-
mands. After the correct icon was selected, an enter command triggered
functional control associated with the selected icon. If the TV application
was selected, all further commands were then relayed to the TV application
in lieu of the functional control application.

In the silent speech control task, a cross occurred on the screen for
2 s prompting the participant to give the next command. At the end of
the 2 s, the cross was replaced by the communication board application.
The participant was instructed to silently mime a freely chosen command
immediately after the cross disappeared. Once the decoding result was
received by the application, the highlight on the communication board
was changed accordingly and displayed for a further 1.5 s until the next
cross cue appeared.

Performance Evaluation: Real-time decoding results saved along with
neural recordings were used to evaluate online performance. Simultane-
ous recordings of the participant’s speech were transcribed as ground
truth. Speech onset and offset times for each command were obtained
using an energy-based voice activity detection model and verified during
the manual transcription process.

The chance level was calculated for real-time usage without functional
control by taking the average of n = 10000 simulations. In these chance-
level simulations, a random number generator simulated a six-way ran-
dom classification. If the simulated result was enter, the next result was
corrected to back as the BCI system did in real-time usage. These simu-
lated results were then compared with the ground-truth transcriptions for
final chance level calculation. For functional control and offline analysis,
the theoretical chance levels were used.

Signal Stability Analysis: For the correlation analysis, the average high
gamma energy of all trials (−1.0 to 1.5 s relative to speech onset) was first

computed during the training data collection phase for each command.
For signal stability analysis, HEG was not normalized. For each real-time
usage day, Pearson’s correlation coefficient was calculated between each
issued command that was decoded and their respective average training
data. The average correlation of all trials was then computed for each chan-
nel. For the HGE analysis, the HGE was computed for each trial (−1.0–1.5
s) during every real-time usage day. The average across time for all trials
for each stimulus was then computed.

Electrode Contribution Analysis: For electrode localization and cortical
reconstruction, volumetric preoperative MRI and postoperative CT scans
were used. They were then co-registered using Freesurfer.[44] When deter-
mining electrode contributions to decoding, the gradient of the loss func-
tion was calculated with regard to the neural activity input per trial. Subse-
quently, the L1-norm of these gradients was calculated across time. Then,
the average of this value was computed for all trials within each real-time
usage month to get a final score of the electrode contribution.

Tuning Fork Control Experiments: To control for potential acoustic
artifacts[45,46] in experiments where overt speech was attempted by the
participant, a tuning fork experiment previously reported by Wilson et al.
was conducted.[47] A 128-Hz tuning fork (fundamental frequency (F0) of
the participant’s voice was ≈130 Hz) was held next to the participant or
gently pressed against the participant’s skull. In these tuning fork exper-
iments, no increase in energy was observed near the 128-Hz tuning fork
frequency in the ECoG channels used in this study (Figures S7 and S8,
Supporting Information).

Statistical Analysis: Performance data was either presented as raw val-
ues for each day, or in the case of ablation studies, box plots with the edges
of the box representing quartiles. Data outside 1.5 times the interquartile
range were shown as outliers. The maximum and minimum values of non-
outliers were shown as box plot whiskers. Each box corresponds to the ac-
curacy for n = 33 testing days for overt real-time experiments. Two-sided
Mann–Whitney–Wilcoxon tests with Bonferroni correction were used to
assess significance. All statistical tests were performed in Python using
SciPy packages.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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