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Simple Summary: This study aims to improve the preoperative classification of nerve sheath tumors
using radiomics, a method that extracts quantitative data from medical images. By analyzing MRI
scans, we seek to develop a more accurate way to distinguish between different types of nerve
sheath tumors before surgery. Our findings could lead to better treatment planning and outcomes for
patients with these tumors. This research has the potential to enhance the diagnostic process and
contribute to more personalized care for individuals with nerve sheath tumors, ultimately benefiting
the medical community and patients alike.

Abstract: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue tumors
prevalent in neurofibromatosis type 1 (NF1) patients, posing a significant risk of metastasis and
recurrence. Current magnetic resonance imaging (MRI) imaging lacks decisiveness in distinguishing
benign peripheral nerve sheath tumors (BPNSTs) and MPNSTs, necessitating invasive biopsies. This
study aims to develop a radiomics model using quantitative imaging features and machine learning
to distinguish MPNSTs from BPNSTs. Clinical data and MRIs from MPNST and BPNST patients
(2000–2019) were collected at a tertiary sarcoma referral center. Lesions were manually and semi-
automatically segmented on MRI scans, and radiomics features were extracted using the Workflow
for Optimal Radiomics Classification (WORC) algorithm, employing automated machine learning.
The evaluation was conducted using a 100× random-split cross-validation. A total of 35 MPNSTs and
74 BPNSTs were included. The T1-weighted (T1w) MRI radiomics model outperformed others with
an area under the curve (AUC) of 0.71. The incorporation of additional MRI scans did not enhance
performance. Combining T1w MRI with clinical features achieved an AUC of 0.74. Experienced
radiologists achieved AUCs of 0.75 and 0.66, respectively. Radiomics based on T1w MRI scans and
clinical features show some ability to distinguish MPNSTs from BPNSTs, potentially aiding in the
management of these tumors.

Keywords: machine learning; magnetic resonance imaging; radiomics; radiologic imaging; soft
tissue sarcoma
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1. Introduction

Peripheral nerve sheath tumors (PNSTs) are soft-tissue tumors that are associated
with a number of peripheral nerves, encompassing a variety of both benign and malignant
tumors [1]. Among benign peripheral nerve sheath tumors (BPNSTs), schwannomas
are the most prevalent type (up to 80%), with neurofibromas constituting a significant
portion of the remaining BPNSTs (10–24%) [2,3]. Malignant peripheral nerve sheath tumors
(MPNSTs) are rare, accounting for 2% of all soft-tissue sarcoma (STS) [4]. About 23–51% of
MPNSTs occur in neurofibromatosis type 1 (NF1) patients. These tumors can be sporadic or
radiation-induced as well [5–8]. NF1 patients have an 8–13% lifetime risk of developing an
MPNST, which is the leading cause of mortality among these patients [9,10]. High-grade
MPNSTs behave aggressively, with a high risk of metastasis and recurrence. Around 60%
of patients develop metastases over time and approximately 40–70% of patients experience
recurrence [5–7,11–18]. The prognosis of MPNSTs remains poor, as the median 5-year
survival rates of localized disease at diagnosis ranges between 23–69% [19].

Therapeutic strategies of PNSTs vary depending on tumor type and grade. The
treatment for asymptomatic BPNST consists of monitoring; however, in symptomatic
cases, the tumor can be removed through intracapsular resections, minimizing neurological
damage [20,21]. In contrast, the resection of high-grade MPNSTs commonly results in
significant postoperative morbidity and major nerve deficits [22]. Distinguishing MPNSTs
from BPNSTs is crucial for appropriate treatment planning, so biopsies are essential for all
instances of suspected lesions. However, biopsy, although standard practice, is invasive,
challenging, and associated with pain and nerve damage. Moreover, sampling errors
may occur due to the heterogeneous nature of PNSTs, such as neurofibromas, when they
undergo dedifferentiation [23].

Magnetic resonance imaging (MRI) plays a central role in the evaluation and monitor-
ing of PNSTs, offering detailed imaging that aids in assessment. Despite its importance,
there are currently no known distinctive MRI features that allow radiologists to establish a
certain diagnosis between MPNSTs and BPNSTs [2]. Even for experienced radiologists, the
accuracy in distinguishing between these tumor types may only be around 50% [24,25]. Ul-
trasound (US) is often the initial imaging modality for STS due to its availability, portability,
and cost-effectiveness, allowing real-time image acquisition to confirm lesions, differentiate
solid from cystic masses, and assess blood flow. However, conventional US has limited
accuracy in distinguishing between benign and malignant STTs, leading to the use of ad-
vanced techniques like elastography and contrast-enhanced ultrasound (CEUS) to improve
diagnostic capabilities [26]. In addition to MRI, diffusion-weighted imaging (DWI) and
positron emission tomography (PET) have been reported as useful supplementary imaging
modalities, providing additional information on tumor cellularity and metabolism. How-
ever, potential risks and imprecision are associated with these modalities [2,27–29]. Thus, a
novel method to improve the discrimination between MPNSTs and BPNSTs is needed.

Radiomics is a quantitative approach to identifying significant imaging features from
medical images, which has been widely used in current tumor research [24,30–34]. These
quantitative features have the potential to uncover tumoral patterns and characteristics
that are subtle for visual inspection and to avoid subjective assessment by radiologists.
Integrated with machine learning techniques, radiomics can be used to find optimized
combinations of imaging features and construct diagnostic models. Studies have shown the
potential of combining radiomics and machine learning in differentiating between MPNSTs
and BPNSTs using MRI [34,35]. These approaches show promise in reducing unnecessary
biopsies and alleviating anxiety. However, existing studies primarily focus on a single
MRI scan, leaving the potential of combining multiple MRIs unexplored. Additionally,
region of interest (ROI) segmentation, a labor-intensive task in radiomics research, often
requires time-consuming manual efforts. While manual segmentation ensures accuracy, it
may not always be feasible within radiologists’ workflow. The potential of automatic or
semi-automatic segmentation tools needs further investigation.



Cancers 2024, 16, 2039 3 of 14

Therefore, this study aims to develop a radiomics model to differentiate MPNSTs
from BPNSTs, evaluating various combinations of MRI scans and clinical features. The
performance of the radiomics model will be compared with radiologists in this task and the
study will also assess the efficacy of manual versus semi-automatic segmentation methods.

2. Materials and Methods
2.1. Study Population and Data Collection

Patients referred to or treated at Erasmus Medical Center (Rotterdam, The Netherlands)
between 2000 and 2019, with a confirmed pathological diagnosis of either MPNST or BPNST
(neurofibroma or schwannoma), and who had either undergone surgical treatment or had
at least 1 year of follow-up without malignant transformation, were included if they had
non-metastatic disease at the time of diagnosis and had undergone a MRI scan as part of
standard care. The MRI scans included T1-weighted (T1w) imaging, T2-w imaging, T1
with fat saturation and gadolinium (T1w-FS-GD), T1 Spectral Presaturation with Inversion
Recovery with gadolinium (T1w-SPIR-GD), T2 with fat saturation (T2w-FS), and T2 with
Short τ Inversion Recovery (T2w-STIR). Notably, several MRI scans were conducted in
hospitals that referred these patients, resulting in differences in scanner types and scan
protocols. No restrictions on the acquisition protocol were imposed, which could result in
not all sequences being present for each patient. All the MRI scans were pseudonymized.
This study received approval and review from the local medical ethics committee (MEC-
2019-0843), with a waiver of informed consent.

For each identified patient, clinical features were extracted from medical records,
including age at operation, sex, neurogenetic diagnosis (i.e., NF1 or Schwannomatosis),
presence of spontaneous pain, and presence of preoperative motor deficits.

2.2. Manual and Semi-Automatic Segmentation

Each lesion was manually segmented once by one of two observers (I.A. and E.M.)
on the MRI scan where the tumor was deemed best visible to indicate the ROI. These
segmentations were randomly distributed between the observers. Random samples were
verified with a musculoskeletal radiologist. To transfer the segmentation from one image
sequence to the others, all image sequences were spatially aligned with the sequence where
the initial segmentation was performed. This alignment was achieved through automated
image registration using a rigid transformation model and mutual information metric with
the Elastix software (https://sourceforge.net/projects/elastix/) [36]. Following image
registration, a visual inspection was carried out on all segmentations to verify the quality of
the aligned images. Images on which segmentation after registration showed zero overlap
with the tumor, due to misregistration, were excluded.

As manual segmentation is labor-intensive and time-consuming in clinical practice,
we also evaluated a semi-automated minimally interactive segmentation method called
InteractiveNet [37]. InteractiveNet requires the user to only input the six extreme points per
tumor (i.e., two in each direction), which are used to guide a convolutional neural network
to perform the segmentation. This framework’s efficacy has been previously validated
across thirteen types of soft tissue tumors but we are the first to test its efficacy in MPNSTs
and neurofibromas.

In the context of this study, each lesion was semi-automatically segmented on T1w
MRI by one observer (I.A.) using InteractiveNet. Subsequently, the observer scored the
resulting segmentation quality based on four scales (Excellent, Sufficient, Insufficient, and
Incorrect, see Table S1) [37]. Similar to the manual segmentations, the semi-automatic
segmentations were spatially aligned to the other sequences using image registration.

2.3. Radiomics Feature Extraction

For each lesion on each MRI scan, a total of 564 radiomics features were extracted. An
overview of all features is provided in Table S3. Radiomics features quantifying intensity,
shape, and texture were extracted by the Workflow for Optimal Radiomics Classification

https://sourceforge.net/projects/elastix/
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(WORC) toolbox (version 3.6.3), which internally uses the PREDICT (version 3.1.17) and
PyRadiomics software (version 3.0.1) [38–41]. More details on the extracted features can
be found in the WORC paper [41]. The categorical clinical features were converted into
numerical form.

2.4. Decision Model Creation

The WORC algorithm was used to find the optimal decision model from the extracted
features. An overview of the methodology implemented in WORC is presented in Figure 1.
Within WORC, the creation of decision models unfolds in multiple stages, e.g., feature
imputation, feature scaling, feature selection, and feature resampling and classification.
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Figure 1. Schematic overview of the radiomics approach, adopted from Vos et al. (2019) [24]. The
MRI data is the input data. The processing steps include segmentations of tumors either by manual
segmentation or semi-automatic segmentation, image registration, feature extraction, and the creation
of machine learning models, consisting of the 100 best workflows from 1000 candidate workflows.

Throughout each step, a variety of algorithms and their associated hyperparameters
are considered and an exhaustive search is conducted to determine the combinations of
algorithms that yield the highest prediction accuracy on the training set. Recognizing
that a single optimal solution might be a coincidental finding, the 100 highest-performing
decision models are combined into a single model by ensembling.

2.5. Classification by Radiologists

To compare radiomics with clinical practice, two musculoskeletal radiologists (8 and
9 years of experience in differentiating BPNSTs from MPNSTs), specialized in the evaluation
of STS, scored the lesions on a four-point scale to indicate their level of confidence regarding
whether the tumor was an MPNST (ranging from 1, indicating strong disagreement, to
4, indicating strong agreement). Lesions with scores above 2 were classified as MPNST,
while those with scores equal to or below 2 were considered BPNST. The radiologists were
blinded for the diagnosis. To assess the impact of clinical features on the diagnosis, each
radiologist scored lesions twice: once without and once with the clinical features.

2.6. Experimental Set-Up

First, to evaluate the predictive capacity of different combinations of MRI scans for
MPNST, multiple radiomics models were developed. Three models were constructed
exclusively using the non-contrast enhanced T1w MRI and T2w MRI scans, either as
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separate or combined inputs. Next, several models based on combinations of these with the
other MRI scans (e.g., T1w MRI with contrast) were constructed and evaluated. In the cases
where a specific MRI scan is missing for a tumor, automatic imputation of feature values
was employed within the WORC pipeline to compensate for the missing sequence.Second,
for the T1w MRI models, the above experiment was repeated using radiomics features
extracted from the semi-automatic segmentations to verify whether a more time-efficient
approach could replace manual segmentation while maintaining prediction accuracy. To
evaluate the impact of segmentation quality, the performance of the model trained and
tested on all semi-automatic segmentations was compared to the model both trained and
evaluated only using the tumors with semi-automatic segmentations scored as “Sufficient”
or “Excellent” in quality.

Third, to examine the added value of clinical features on top of imaging, a model
that combined clinical features with the radiomics model with the highest mean AUC
was evaluated. Additionally, two models were developed, with one utilizing only clinical
features and the other using only volume, to evaluate the individual predictive value of
these features.

Fourth, the predictions from the best radiomics model and radiologists were merged.
This integration was realized by using either the OR or AND operator between the binarized
predictions from the model and those made by the radiologist. In the OR integrated model,
a tumor is classified as malignant if either the model or the radiologist indicates malignancy.
Conversely, in the AND integrated model, a tumor is classified as malignant only if both
the model and the radiologist indicate malignancy. The radiomics model with the best
AUC was integrated with two radiologists in these two different ways, resulting in a total
of four models created during this step.

2.7. Statistical Analysis and Evaluation

All statistical analyses on patient demographics were performed in R (version 4.2.2).
Baseline characteristics were compared between patients with MPNSTs or BPNSTs. The
chi-squared test and Fisher exact test were used to analyze categorical variables. The
Student’s t-test was used to analyze continuous variables. All analyses with a p < 0.05
were considered statistically significant. The performance of models was assessed through
random-split cross-validation, as is the default in WORC [41]. The dataset was randomly
divided into 80 percent for training and 20 percent for testing and 100 iterations were
conducted to construct confidence intervals on the performance estimates (Figure S1).
Within each iteration, the training set underwent an internal five-times random-split cross-
validation. All model optimization of WORC was performed exclusively within the training
set, followed by evaluation on the testing set.

All statistical analyses on the imaging characteristics and radiomics models were
performed in Python (version 3.6.8). The area under the curve (AUC) of the receiver
operating characteristic (ROC) curve, accuracy, sensitivity, and specificity were used for
the evaluation. These metrics were computed by averaging over the 100 cross-validation
iterations. Furthermore, 95% confidence intervals (95% CI) for the performance measures
were computed using the corrected resampled t-test [42]. To construct 95% CIs for the
performance of radiologists, 1000× bootstrap resampling was employed [43]. Cohen’s
kappa was used to measure the agreement between radiologists.

To gain insight into which radiomics features are most informative for prediction,
univariate statistical testing using the Mann–Whitney U test was applied on the radiomics
features. Bonferroni correction was used to correct p-values of features from multiple
testing, i.e., multiplying the p-values by the number of tests.

3. Results
3.1. Clinical Characteristics of Database

A total of 35 (32%) MPNSTs and 74 (68%) BPNSTs were included. Patient characteristics
and clinical features are summarized in Table 1. In both patient groups with MPNSTs
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and BPNSTs, there were fewer male patients, comprising 30% and 43%, respectively.
Additionally, in both MPNST and BPNST groups, most patients experienced spontaneous
pain (70% and 59%, respectively). Furthermore, the proportion of patients who experienced
pre-operative motor deficits in MPNSTs was significantly higher than that in BPNSTs (33%
versus 12%, p = 0.02). MPNSTs were generally larger than BPNSTs, with a mean volume of
208 cubic centimeters (cm3) compared to 54 cm3 (p = 0.01).

Table 1. Patient characteristics and clinical features of 74 BPNSTs and 35 MPNSTs.

Variable Benign (N = 74) Malignant (N = 35) p-Value

Mean Age (SD) 44 yr (19 yr) 43 yr (25 yr) 0.78

Gender
Male

Female
22 (30%)
52 (70%)

15 (43%)
20 (57%)

0.26

Neurogenetic diagnosis
None
NF1

Schwannomatosis

35 (47%)
38 (52%)
1 (1%)

16 (47%)
18 (53%)
0 (0%)

0.79

Spontaneous pain
No
Yes

Unknown

28 (41%)
40 (59%)

6

10 (30%)
23 (70%)

2

0.40

Pre-operative motor deficits
No
Yes

Unknown

60 (88%)
8 (12%)

6

22 (67%)
11 (33%)

2

0.02

Mean Volume (SD) 54 cm3 (141 cm3) 208 cm3 (324 cm3) 0.01
Unknown denotes missing clinical information. Abbreviations: BPNST, Benign Peripheral Nerve Sheath Tumors;
MPNST, Malignant Peripheral Nerve Sheath Tumors; SD, standard deviation; NF, neurofibromatosis; N, number;
cm3, cubic centimeters.

An overview of the included MRI scans and the variation in the acquisition protocols is
depicted in Table S2. The dataset originated from 37 different scanners, including 23 model
types (Siemens: 27 patients, Philips: 32 patients, and General Electric: 50 patients), and
thus showed substantial heterogeneity in the acquisition protocols.

3.2. Evaluation of the Radiomics Models

A comprehensive overview of the performance of all radiomics models is shown in
Table 2. Among the models with manual segmentations, their performance was similar,
with mean values of metrics close to each other and confidence intervals substantially
overlapping. In particular, the T1w MRI model exhibited the highest mean AUC of 0.71.

Among the models with semi-automatic segmentations, the T1w MRI model had
slightly lower AUC compared to the T1w MRI model with manual segmentations (0.68
versus 0.71). Notably, using only the segmentations with “Sufficient” or “Excellent” quality
scores resulted in similar performance of the radiomics model.

The T1w MRI model with manual segmentations, as the radiomics model with the
highest mean AUC, was selected for integration with clinical features. The performance of
the T1w MRI model combined with clinical features, the imaging-only T1w MRI model,
the clinical model, and the volume model are presented in Table 3, with the corresponding
ROC curves of the first two models depicted in Figure 2. The integrated T1w MRI model
with clinical features exhibited a slightly higher AUC than the imaging-only T1w MRI
model (0.74 versus 0.71). The model relying only on volume showed a higher mean AUC
than the model relying solely on clinical features (0.64 versus 0.60) but substantially lower
than the radiomics model.



Cancers 2024, 16, 2039 7 of 14

Table 2. The performance of all radiomics models is based on different combinations of MRI sequences.

Models AUC Accuracy Sensitivity Specificity

Models with manual segmentations

T1w (n = 90) 0.71 [0.56, 0.86] 0.75 [0.67, 0.84] 0.30 [0.10, 0.50] 0.93 [0.84, 1.00]
T2w (n = 87) 0.70 [0.56, 0.84] 0.65 [0.56, 0.75] 0.33 [0.14, 0.52] 0.83 [0.71, 0.95]

T1w, T2w (n = 97) 0.68 [0.54, 0.83] 0.72 [0.64, 0.79] 0.29 [0.11, 0.46] 0.91 [0.82, 0.99]
T1w, T2w, T1w-FS-GD OR

T1w-SPIR-GD (n = 99) 0.70 [0.57, 0.83] 0.72 [0.66, 0.79] 0.26 [0.09, 0.42] 0.92 [0.85, 1.00]

T1w, T2w, T2w-FS OR
T2w-STIR
(n = 103)

0.66 [0.55, 0.77] 0.67 [0.60, 0.74] 0.25 [0.08, 0.42] 0.88 [0.78, 0.98]

T1w, T1w-FS-GD OR
T1w-SPIR-GD (n = 93) 0.70 [0.56, 0.83] 0.73 [0.66, 0.80] 0.26 [0.11, 0.41] 0.95 [0.87, 1.00]

T2w, T2w-FS OR
T2w-STIR (n = 94) 0.66 [0.56, 0.77] 0.68 [0.60, 0.75] 0.26 [0.10, 0.42] 0.87 [0.76, 0.97]

Models with semi-automatic segmentations using InteractiveNet

T1w_Interactive model (n = 87) 0.68 [0.56, 0.79] 0.70 [0.63, 0.77] 0.23 [0.07, 0.38] 0.94 [0.85, 1.00]
T1w_Interactive_Sufficient

model (n = 66) 0.64 [0.48, 0.79] 0.69 [0.59, 0.79] 0.20 [0.01, 0.38] 0.89 [0.76, 1.00]

Values are mean [95% confidence interval] over the cross-validation iterations for radiomics models. T1w_Interactive
model: the T1w radiomics model using semi-automatic segmentations; T1w_Interactive_Sufficient model: the
T1w radiomics model using only semi-automatic segmentations with “Sufficient” or “Excellent” quality scores.
Abbreviation: FS, Fat Saturation; n, number; SPIR, Spectral Presaturation with Inversion Recovery; GD, Gadolinium
Contrast; STIR, Short τ Inversion RecoveryAUC, area under curve.

Table 3. Performance of the radiomics models based on T1w MRI and the performance of
the radiologists.

Models AUC Accuracy Sensitivity Specificity

Imaging + Clinical features

T1w + clinical model (n = 90) 0.74 [0.60, 0.88] 0.75 [0.69, 0.82] 0.31 [0.12, 0.50] 0.92 [0.84, 1.00]
Radiologist 1 with clinical

features (n = 108) 0.75 [0.65, 0.85] 0.72 [0.64, 0.80] 0.71 [0.56, 0.86] 0.73 [0.63, 0.83]

Radiologist 2 with clinical
features (n = 108) 0.66 [0.55, 0.77] 0.62 [0.53, 0.71] 0.60 [0.43, 0.77] 0.63 [0.52, 0.74]

Imaging only

T1w model (n = 90) 0.71 [0.56, 0.86] 0.75 [0.67, 0.84] 0.30 [0.10, 0.50] 0.93 [0.84, 1.00]
Radiologist 1 (n = 108) 0.78 [0.68, 0.88] 0.79 [0.71, 0.87] 0.71 [0.56, 0.86] 0.82 [0.73, 0.91]
Radiologist 2 (n = 108) 0.68 [0.58, 0.78] 0.64 [0.55, 0.73] 0.60 [0.42, 0.78] 0.66 [0.55, 0.77]

Clinical features only

Clinical model (n = 90) 0.60 [0.46, 0.73] 0.71 [0.64, 0.78] 0.26 [0.07, 0.44] 0.88 [0.80, 0.96]

Volume only

Volume model (n = 90) 0.64 [0.50, 0.78] 0.71 [0.63, 0.80] 0.28 [0.07, 0.49] 0.88 [0.75, 1.00]

Values are mean [95% confidence interval] over the cross-validation iterations for radiomics models and the point
estimation on the performance with confidence interval over bootstrap resampling iterations for radiologists.
T1w + clinical model: the radiomics model with T1w MRI, manual segmentations, and clinical features; T1w
model: the radiomics model with T1w MRI and manual segmentations. Abbreviation: AUC, area under curve.

Within the radiomics model of the highest mean AUC, using T1w MRI and clinical
features, only two T1w imaging features showed statistically significant predictive power
(Figure S2). Specifically, these features are the major axis length and the maximum 2D
diameter (column). The major axis length represents the largest axis length of the ROI-
enclosing ellipsoid and the maximum 2D diameter denotes the largest pairwise distance
between tumor surface mesh vertices in the column-slice plane [40].
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Figure 2. Plots of receiver operating characteristic curves of the radiomics models using T1w MRI
and the radiologists employing all MRI sequences (a) with using clinical features and (b) without
using clinical features. T1w + clinical model: the radiomics model with T1w imaging, manual
segmentations, and clinical features; T1w model: the radiomics model with T1w imaging and
manually created segmentations; T1w_Interactive model: the radiomics model with T1w images and
semi-automatic segmentations made using InteractiveNet. Abbreviation: AUC, area under curve.

3.3. Evaluation of the Radiologists

The performance of the radiologists is presented in Table 3 and Figure 2. When as-
sessing the tumor without the clinical features, Radiologist 1 had a better performance
than Radiologist 2 (AUC: 0.79 versus 0.68). Confidence intervals of the AUCs from both
radiologists overlap substantially. In the second assessment with clinical features, both
radiologists’ mean AUCs slightly decreased (0.75 and 0.66, respectively). Interestingly,
adjustments made by both radiologists in the second assessment resulted in more incor-
rect predictions, mainly involving the changes from benign to malignant classifications
(Table S4). Cohen’s kappa values between the two radiologists were computed as 0.46 with
clinical features and 0.47 without, suggesting a moderate level of interobserver agreement.

In both assessments, the mean AUC values of Radiologist 1 were higher than those
of T1w MRI models, while the mean AUC values of Radiologist 2 were lower than T1w
MRI models.

3.4. Evaluation of the Integrated Models

An overview of the performance of integrated models is shown in Table 4. Both
integrated models using the OR operation showed a higher mean sensitivity compared to
the performance of radiologists. However, the mean accuracy and mean specificity of the
integrated models were lower than those of the radiologists before integration. Conversely,
both integrated models using the AND operation showed higher mean accuracy and
mean specificity than the radiologists before integration. Due to the nature of the AND
operation, which requires stricter conditions for predicting malignancy compared with the
OR operation, the mean sensitivity decreased in the two models using this operation.

Table 4. Performance of the integrated models based on OR and AND operations.

Metrics AUC Accuracy Sensitivity Specificity

OR operation

T1w + clinical model OR
Radiologists 1 (n = 90) N/A 0.68 [0.65, 0.70] 0.74 [0.70, 0.78] 0.65 [0.63, 0.68]
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Table 4. Cont.

Metrics AUC Accuracy Sensitivity Specificity

T1w + clinical model OR
Radiologists 2 (n = 90) N/A 0.63 [0.61, 0.65] 0.71 [0.67, 0.75] 0.61 [0.58, 0.63]

AND operation

T1w + clinical model AND
Radiologist 1 (n = 90) N/A 0.78 [0.76, 0.79] 0.21 [0.18, 0.25] 0.96 [0.96, 0.97]

T1w + clinical model AND
Radiologist 2 (n = 90) N/A 0.75 [0.74, 0.76] 0.20 [0.17, 0.24] 0.93 [0.91, 0.94]

Values are mean [95% confidence interval] over bootstrap resampling iterations for integrated models. Specifically:
T1w + clinical model OR Radiologist 1: Integration of outcomes from the radiomics model utilizing T1w MRI
and clinical features with those from Radiologist 1 the OR operation. T1w + clinical model OR Radiologist
2: Integration of outcomes from the radiomics model utilizing T1w MRI and clinical features with those from
Radiologist 2 using the OR operation. T1w + clinical model AND Radiologist 1: Integration of outcomes from the
radiomics model utilizing T1w MRI and clinical features with those from Radiologist 1 using the AND operation.
T1w + clinical model AND Radiologist 2: Integration of outcomes from the radiomics model utilizing T1w MRI
and clinical features with those from Radiologist 2 using the AND operation.

4. Discussion

In this study, radiomics models were developed and evaluated to differentiate be-
tween BPNSTs and MPNSTs using preoperative MRI scans and clinical features. The
best-performing radiomics model, combining both T1w MRI scans and clinical features,
was, to some degree, able to distinguish MPNSTs from BPNSTs. Adding other MRI scans
did not yield an improvement in performance. Moreover, the model’s performance was
further compared with two radiologists, where one performed slightly better than the
model, while the other performed slightly worse. Lastly, the T1w MRI radiomics model
using semi-automatic segmentation achieved a slightly lower AUC compared to manual
segmentation but significantly reduced manual workload.

Our study investigated radiomics models utilizing various combinations of MRI
scans and clinical features for the diagnosis of MPNST. First, T1w and T2w MRI models
demonstrated comparable diagnostic power. However, combining T1w and T2w MRI
scans did not enhance model performance in our results, which indicated that similar
diagnostic information was used from both scans. This may be explained by the fact that
only shape features were found to be significant in univariate testing in both T1w and T2w
MRI. Notably, two shape features (MajorAxisLength and Maximum2DDiameterColumn)
associated with tumor diameters emerged as significant predictors, aligning with findings
from previous studies [34,44]. Second, incorporating clinical features in the radiomics
model slightly improved the mean AUC, while the model using only clinical features
exhibited some predictive power but it was not substantial. Using clinical features thus
might add some value to the radiomics models.

Furthermore, our study revealed the varying interpretations of BPNSTs and MPNSTs
among different radiologists, as well as inconsistent evaluations of the same tumor between
two assessments. Analyzing the altered evaluations that led to new errors in the second
round, we observed that errors mainly come from benign tumors with above-average
volume and malignant tumors with below-average volume. These findings underscore the
challenges of achieving consistent and convincing agreement on the diagnostic outcomes
of PNSTs, even among experienced radiologists. Additionally, using clinical information
might have limited ability to mitigate these challenges in diagnosing complex tumors.

In comparison to radiologists, all the presented radiomics models exhibited higher
specificity but much lower sensitivity. This discrepancy could potentially result in missed
diagnoses of MPNSTs, leading to delays in crucial treatments in clinical practice. Achieving
a high sensitivity is crucial for diagnosing MPNSTs, which indicates that the current
models might not be sufficient for clinical support. However, adjusting the choice of
the point along the ROC curve allows for fine-tuning the balance between sensitivity
and specificity, providing flexibility in model performance tailored to specific clinical
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needs. Furthermore, radiomic models offer the advantage of providing relatively consistent
predictions regardless of experience or training for years. Hence, our study attempted to
integrate the opinions of radiologists and the radiomics models using two logical operations.
Although neither method improved the overall performance, integrating the assessments
from radiomics models and radiologists could be a potential approach to address this
challenge for future work.

Prior studies have underscored that radiomics is a promising non-invasive method for
distinguishing between BPNSTs from MPNSTs [34,35]. Zhang et al. identified 95 MPNSTs
and 171 BPNSTs using T1-GD scans, achieving an AUC of 0.85 with a model incorporating
both clinical and imaging features [34]. Similarly, Ristow et al. developed a radiomics model
in 17 MPNSTs, 117 BPNSTs, and 8 atypical neurofibromas among NF1 patients, achieving
an AUC of 0.94 using fat-suppressed T2-weighted MRI scans without clinical features [35].
Our models did not achieve comparable performances. One potential reason for this
discrepancy could be differences in data sources and acquisition protocols. Zhang et al. [34]
used data from three institutes, while Ristow et al. [35] collected data from a single institute
with a standardized acquisition protocol. In contrast, our dataset exhibited heterogeneity
due to differences in acquisition protocols, as part of the data was obtained from other
institutes. Second, the limited availability of MRI scans could have affected the model’s
performance. Ristow et al. [35] achieved a model with a higher AUC using fat-suppressed
T2w MRI compared to Zhang et al. [34] using T1-GD. However, our study did not observe
such a performance difference. Since T1-GD or fat-suppressed T2w was not available for all
patients, T1-GD and fat-suppressed T2w scans were therefore compared indirectly when
combined with both T1w and T2w scans. Although data imputation on radiomics features
was employed to compensate for missing scans, the limited availability of MRI scans may
have affected the comparison between models.

With respect to the existing studies, our study brings several novel contributions to this
field. First, instead of focusing on a single MRI scan, we explored the potential of radiomics
models using different combinations of MRI scans through comprehensive performance
comparisons. Second, a semi-automatic segmentation method was introduced, which
could provide a notable reduction in time compared to manual segmentation, particularly
for tumors in less visible positions. Although the T1w MRI model with semi-automatic
segmentations achieved through this method exhibited slightly lower AUC than the T1w
MRI model with manual segmentation, the efficiency gained in terms of time could make
this approach valuable, especially for future pilot studies. Third, the model creation process
in our study involves a comprehensive and automated search for optimized models and
the corresponding parameters, different from studies using a single-model approach with
manual optimization. Last, our cross-validation scheme completely eliminates the risk of
overfitting, which is a common concern in radiomics models.

Several limitations in this study should be noted. First, the variation in the imaging
protocols might have influenced the performance of the models. Our study did not im-
pose any restrictions on the parameters of MRI acquisition settings, as selecting a single
protocol is unrealistic in clinical practice and could have compromised the robustness of
radiomic models. Second, our dataset is a retrospective collection, which might introduce
potential bias. This bias might particularly occur in the BPNSTs group, as tumors reaching
a certain volume or presenting symptoms like pain might be more likely to be referred to a
tertiary center. Moreover, this bias may also add difficulties to the classification task in our
dataset, as these referred cases may be more complex. Lastly, missing data were present in
our study as there are no standardized imaging modalities for the diagnosis of MPNSTs
across every hospital. While data imputation on the radiomics features was employed to
compensate for the absence of actual data, these absent data may have (negatively) affected
the performance.

In future research, there are several avenues worth exploring further. First, investi-
gating radiomics in other imaging modalities may provide valuable insights. FDG-PET
serves as an additional imaging modality for distinguishing between neurofibromas and
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MPNSTs in NF1 but not in sporadic cases [28,45–47]. Multiple attempts have been made to
identify optimal semi-quantitative parameters for distinguishing malignant transformation,
e.g., Standardized Uptake Value (SUVmax); however, this parameter remains a challenge
due to the variability in cut-off values [48]. Furthermore, DWI has been proposed as a
supplementary sequence offering discriminative information, with BPNSTs typically ex-
hibiting a higher apparent diffusion coefficient than MPNSTs [45,49,50]. Second, leveraging
deep learning models may hold promise for enhancing diagnostic capabilities. However,
the rarity of PNSTs may pose challenges in obtaining sufficiently large datasets to train
deep learning models. One potential direction could involve tuning existing deep learning
models trained on MRI scans for other tasks to address our research question. Lastly,
the validation of developed models in real clinical settings by the end-users, including
clinicians and radiologists, is crucial to evaluate their impact on diagnostic and therapeutic
decision making.

5. Conclusions

This study investigated the diagnostic potential of radiomics models for distinguishing
between benign and malignant PNSTs using multiple MRI scans and clinical parameters.
The radiomics model using T1w MRI scans and clinical features showed some ability to
distinguish MPNSTs from BPNSTs, with the shape features emerging as predictive, and
achieved a comparable AUC to the experienced radiologist. Future refinements, including
integration with radiologist assessments, exploration of additional imaging modalities,
and leveraging deep learning techniques, hold promise for improving diagnostic accuracy
in PNSTs.
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mdpi.com/article/10.3390/cancers16112039/s1, Figure S1: Visualization of the nested cross-validation
for the evaluation; Figure S2: Univariate statistical testing of 564 radiomics features employing the
Mann–Whitney U test; Table S1: Rule-based scoring of tumor segmentation based on visual inspection
by the user; Table S2: Overview of included MRI sequences and several acquisition parameters;
Table S3: Overview of the 564 features used in this study, adopted from Vos et al. (2019) [24]; Table S4:
Overview of the changes between two assessments by radiologists.
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