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Cytologic and histopathologic diagnosis of non-ductal pancreatic neoplasms can be challenging
in daily clinical practice, whereas it is crucial for therapy and prognosis. The cancer methylome
is successfully used as a diagnostic tool in other cancer entities. Here, we investigate if
methylation profiling can improve the diagnostic work-up of pancreatic neoplasms.
METHODS:
 DNA methylation data were obtained for 301 primary tumors spanning 6 primary pancreatic
neoplasms and 20 normal pancreas controls. Neural Network, Random Forest, and extreme
gradient boosting machine learning models were trained to distinguish between tumor types.
Methylation data of 29 nonpancreatic neoplasms (n[ 3708) were used to develop an algorithm
capable of detecting neoplasms of non-pancreatic origin.
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RESULTS:
 After benchmarking 3 state-of-the-art machine learning models, the random forest model
emerged as the best classifier with 96.9% accuracy. All classifications received a probability
score reflecting the confidence of the prediction. Increasing the score threshold improved the
random forest classifier performance up to 100% with 87% of samples with scores surpassing
the cutoff. Using a logistic regression model, detection of nonpancreatic neoplasms achieved an
area under the curve of >0.99. Analysis of biopsy specimens showed concordant classification
with their paired resection sample.
CONCLUSIONS:
 Pancreatic neoplasms can be classified with high accuracy based on DNA methylation signa-
tures. Additionally, non-pancreatic neoplasms are identified with near perfect precision. In
summary, methylation profiling can serve as a valuable adjunct in the diagnosis of pancreatic
neoplasms with minimal risk for misdiagnosis, even in the pre-operative setting.
Keywords: Pancreatic Neuroendocrine Tumor; Acinar Cell Carcinoma; Solid Pseudopapillary Neoplasms; Pancreato-
blastoma; Pancreatic Ductal Adenocarcinoma; DNA Methylation; Tumor Classification.
Around 90% of pancreatic neoplasms are ductal
adenocarcinomas (PDACs); the remainder is of

non-ductal origin, including pancreatic neuroendocrine
neoplasms (pancreatic neuroendocrine tumor [PNET]
and pancreatic neuroendocrine carcinoma [PNEC]),
acinar cell carcinoma (ACC), solid pseudopapillary neo-
plasms (SPN), and pancreatoblastoma (PB), accounting
for 5%, 2%, 1%, and <1% of cases, respectively.1 These
tumors differ significantly in biology and clinical out-
comes. For instance, SPNs rarely metastasize and have a
95% 5-year survival rate,2 whereas PNETs, ACCs, and
PBs show 5-year survival rates of 38%–59%.3–5 Addi-
tionally, these tumors require different treatment. ACCs
are typically treated by a combination of surgical resec-
tion, chemotherapy, and radiotherapy6; SPNs are cured
by surgical resection7; and PNET management varies
from resection to active surveillance depending on
such factors as hormone production, tumor size, grade,
and stage.8,9 Hence, accurate diagnosis is crucial for ther-
apeutic decision making, but ACCs, SPNs, and PNETs can
present diagnostic challenges because of overlapping
cytologic, histologic, and immunohistochemical features,
particularly when dealing with limited tissue samples,
such as preoperative fine-needle aspirates (FNAs) or
fine-needle biopsies (FNBs).1,10–12

To improve diagnosis, there is a growing trend in
using whole genome methylation-based diagnostic
models for tumor classification,13–17 with the World
Health Organization recommending its routine applica-
tion in central nervous system tumors.18 DNA methyl-
ation, a covalent modification of cytosine residues
regulating gene expression, is known for its high cell-
type specificity, making it effective in differentiating be-
tween tumor types.17,19,20 Previous studies identified the
origin of different gastrointestinal (neuroendocrine) tu-
mors based on methylation profiles, including those
originating in the pancreas, indicating potential utility in
non-ductal pancreatic neoplasms.21–23

This study aimed to facilitate and improve preoper-
ative and postoperative diagnosis of non-ductal pancre-
atic neoplasms, by developing a machine learning
classifier on a well-curated collection of pancreatic neo-
plasms. Additionally, we aimed to make the classifier
capable of detecting non-pancreatic entities.

Materials and Methods

Study Overview

Methylation data from 20 normal pancreatic tissues
and 301 major primary pancreatic tumor types were
collected to develop a classification algorithm
(Table 1).22–28 Samples were randomly split into training
and test cohorts stratified by tumor type (50:50 ratio;
Figure 3A). Neural Network (NN), Random Forest (RF),
and extreme gradient boosting (XGB) models were
trained on the training cohort and evaluated in the test
cohort (Figure 1A). Considering that the models are
specifically trained to classify only the tumor types
present in their training data, we enhanced the model
with the ability to identify neoplasms of non-pancreatic
origin (eg, tumors types it is not trained on). To do so, a
logistic regression model using the pancreatic dataset
(n ¼ 321) supplemented with non-pancreatic neoplasms
(n ¼ 3708) was trained based on the RF output
(Figure 1B). Furthermore, we performed 3 additional
analyses with (1) mixed neuroendocrine-non-
neuroendocrine neoplasm (MiNEN, n ¼ 7), (2) matched
primary and metastatic cases (n ¼ 5), and (3) matched
FNA and resection specimens (n ¼ 4). Details on patients
and samples, DNA extraction and whole genome DNA
methylation analysis, preprocessing, quality control and
batch effect, unsupervised analysis, classifier develop-
ment and validation, and additional analysis are
described in Supplementary Methods, Supplementary
Table 1, and Supplementary Figure 1.

Code Availability

All analyses were performed in RStudio version
2023.03.1 based on the statistical language R version



What You Need to Know

Background
Non-ductal pancreatic neoplasms have overlapping
cytological, histological and immunohistochemical
features, which often makes correct histopatholog-
ical diagnosis challenging, while it is crucial for
prognosis and therapeutic decision making.

Findings
Methylation profiling enables highly accurate clas-
sification of pancreatic neoplasms and near perfect
identification of non-pancreatic entities, and can also
be applied in fine-needle-aspiration / biopsy speci-
mens, providing a valuable adjunct for pre-operative
diagnostics.

Implications for patient care
This DNA methylation-based classifier can reduce
(pre-operative) misdiagnoses and thereby assist in
pre-operative clinical decision making, enhancing
therapy accuracy, and improving patient selection
for studies. Prospective studies are needed to further
validate and potentially extend the model.
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4.3.0, using the tidyverse software collection for data
wrangling and ggplot for visualization. Code used for the
generation of results and figures can be accessed at
https://github.com/averschuur/pancreas.

Results

Pancreatic Dataset

The entire study cohort comprises 301 primary
pancreatic tumors including 124 PNETs, 13 PNECs, 46
ACCs, 20 SPNs, 16 PBs, 82 PDACs, and 20 normal
pancreas controls (Table 1). Dimensionality reduction
with uniform manifold approximation and projection
(UMAP) showed clustering predominantly by tumor type
(Figure 2). Analysis of average methylation distribution,
bisulfite conversion efficiency, and tumor purities based
on ESTIMATE and ABSOLUTE scores across tumor types
revealed lower purity in PDACs and lower genome-wide
methylation in PBs (Supplementary Figure 2A-H). Pro-
jecting different sample preservation types onto the
UMAP demonstrated no difference in clustering between
fresh-frozen and formalin-fixed, paraffin embedded tis-
sue (Supplementary Figure 3). Batch effect analyses
revealed small but consistent differences regarding beta
values distribution and conversion scores across tumor
types (Supplementary Figure 4A-T).

Classifier Development and Performance

When assessing the classifiers without any cutoffs
and assigning each sample to the category with the
highest probability score, classifiers achieved accuracies
of 96.9% (RF), 91.3% (XGB), and 95.7% (NN) in the test
cohort (Figure 3B). The RF model consistently
Table 1.Overview of Pancreatic Dataset Including Source, Dat

Source Dataset Tissue type Array

Benhamida et al22 NA FFPE EPIC

Jäkel et al23 EGAS00001002533 FFPE 450K

Chan et al24 GSE117852 FF 450K

Di Domenico et al25 EMTAB-7924 FFPE 450K

Endo et al26 GSE155353 FF 450K

Selenica et al27 NA FFPE EPIC

Yachida et al28 JGAS000359 Unknown EPIC

Local cohort EGAS00001004878 FFPE EPIC

ACC, acinar cell carcinoma; FF, fresh frozen; FFPE, formalin-fixed, paraffin-emb
blastoma; PDAC, pancreatic ductal adenocarcinoma; PNEC, pancreatic neuroend
dopapillary neoplasm.
outperformed other models across all tumor types,
except for SPN (Figure 3C). The accuracies of the models
were not significantly different (P ¼ .40; 1-way analysis
of variance).

Applying a threshold with minimum classification
scores of 0.45 (RF), 0.95 (XGB), and 0.80 (NN), improved
accuracies to 100%, 99%, and 97%, respectively
(Figure 3D-F). With the same threshold, classification
was possible for 87% (RF), 62% (XGB), and 99% (NN) of
samples. Adjusting the RF score cutoff to 0.30 resulted in
aset Number, Tissue Type, and Array Type

Tumor type

PDAC PNET PNEC ACC SPN PB NORM Total

0 0 0 7 0 16 0 23

0 17 0 37 0 0 6 60

0 23 0 0 0 0 0 23

0 46 0 0 0 0 14 60

82 0 0 0 0 0 0 82

0 0 0 0 13 0 0 13

0 30 13 0 0 0 0 43

0 8 0 2 7 0 0 17

82 124 13 46 20 16 20 321

edded; NA, not applicable; NORM, normal pancreatic tissue; PB, pancreato-
ocrine carcinoma; PNET, pancreatic neuroendocrine tumor; SPN, solid pseu-

https://github.com/averschuur/pancreas


Figure 1. Study methods for classifier development and detection of non-pancreatic entities. A cohort of pancreatic neo-
plasms and pancreatic controls, comprising publicly available and in-house DNA methylation data, was randomly divided into
training and test cohort stratified by tumor type (50:50 ratio). Neural Network, Random Forest, and extreme gradient boosting
models were trained on the training cohort and evaluated in the test cohort (A). A cohort of pancreatic and non-pancreatic
neoplasms was used to (1) evaluate the Random Forest’s performance in detecting non-pancreatic tumors and to (2) optimize
nonpancreatic tumor detection using logistic regression (B).
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97.5% accuracy while retaining 98.8% of samples,
comparable with the maximum accuracy of NN (97.4%)
while retaining a slightly lower proportion of samples
(96.9%). Taken together, the RF model without any
cutoffs demonstrated the highest accuracy in the highest
proportion of samples.

Furthermore, the confusion matrices of the RF, XGB,
and NN classifiers give an overview of misclassified cases
per tumor type (Figure 3G-I). Projecting RF classification
results within the test cohort onto UMAP demonstrates
that 2 out of 5 cases cluster with the tumor type assigned
by the classifier (Figure 3J). In summary, RF achieved
almost 97% accuracy in an independent test cohort with
similar results across different tumor types, with po-
tential for further improvement using score cutoffs.
−5.0

−2.5

0.0

2.5

−5.0 −2.5 0.0 2.5
UMAP 1

U
M

A
P 

2

Tumor Type 
By Histology

PNET

PDAC

ACC

SPN

NORMAL

PB

PNEC

Figure 2. Visualization of methylation profiles of the pancre-
atic dataset using UMAP dimensionality reduction.
Detection of Non-pancreatic Neoplasms

Considering that the models are specifically trained to
classify pancreatic neoplasms, for diagnosis it is crucial
to detect neoplasms of non-pancreatic origin. First, we
applied the RF model in an extended cohort of 3708
samples encompassing 29 nonpancreatic neoplasms
including those known to metastasize to the pancreas
(Figure 4A). Out of 7 possible categories, the RF model
classified all non-pancreatic tumors as either PDAC,
PNET, ACC, SPN, or PNEC (Figure 4B). Non-pancreatic
neoplasms received significantly lower probability
scores compared with pancreatic neoplasms and the
receiver operating characteristic analysis of RF proba-
bility scores revealed an area under the curve of >0.95
(Figure 4C and D). Logistic regression using RF scores
and classification results as input was used to identify
non-pancreatic neoplasms. The resulting probability
scores were lower for non-pancreatic neoplasms
(Figure 4E) and receiver operating characteristic analysis
showed an improved area under the curve of >0.99
compared with RF scores alone (Figure 4F). At a cutoff of
0.5, 7% of pancreatic tumors were classified as non-
pancreatic, whereas <0.1% non-pancreatic neoplasms
were classified as originating from the pancreas (Figure 4G
and H). This additional safety measure can be used to flag
samples of non-pancreatic origin. Excluding flagged sam-
ples from the test cohort improved classifier performance
to 97.9% (RF), 93.6% (XGB), and 97.9% (NN).

Classifier Application in Histopathologic
Challenging and Misdiagnosed Clinical Cases

To investigate the added value of methylation
profiling, we retrospectively applied the RF classifier on
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3 cases that were misdiagnosed (cases A1 and B) or
difficult to classify (case C) during initial histopathologic
assessment (Figure 5).
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the differential diagnoses of the spinal cord biopsy were
PNET and ACC. Because neuroendocrine markers were
positive and ACC marker BCL10 was negative (Figure 5,
case A1), the case was signed out as metastasis of a PNET
grade 3 and the patient underwent resection of the primary
tumor in the pancreas. Histopathologic analysis of the
resection specimen showed comparable immunohisto-
chemistry with the biopsy but, surprisingly, strong BCL10
expression, changing the diagnosis to ACC (Figure 5, case
A2). Methylation profiling by the RF model classified both
the bone biopsy and the pancreatic lesion as ACC.

The second case was initially classified as PNET but
histopathologic revision at a tertiary expert center raised
doubt about this diagnosis. Based on additional immu-
nohistochemistry of SPN markers (b-catenin, vimentin,
and CD10), the case was reclassified as SPN (Figure 5,
case B). The RF model also classified the case as SPN.

The third case was a liver biopsy that showed a tumor
with varying neuroendocrine marker expression and
BCL10 positivity in about half of the tumor cells
(Figure 5, case C). The differential diagnosis included a
pancreatic neuroendocrine neoplasm (PNET G3 or
PNEC), ACC with neuroendocrine differentiation, or
mixed acinar-neuroendocrine neoplasm. Molecular immu-
nohistochemistry showed, among other things, ATRX loss
and TSO500 sequencing TruSight Oncology (Illumina)
revealed mutations in NRAS (p.Q61R), RAD50, and ATM.
Taken together, although noted that this is a difficult tumor
to classify, the case was signed out as a MiNEN (PNET G3-
ACC). The RF classification yielded divergent results, with
high probability scores for both ACC and PNET, aligning
with the suspicion of a MiNEN. Because of these divergent
probability scores, we analyzed 7 additional primary
MiNENs that obtained corresponding divergent classifica-
tion results and higher entropy compared with pancreatic
tumors (Supplementary Figure 5A-E).
Additional Analysis on Paired Cases

First, 4 primary tumors with matched metastases were
analyzed: 3 liver metastases from 2 primary PNETs, 1 liver
metastasis from a MiNEN, and 1 bone metastases from an
ACC (Figure 5, cases A1 and A2). High correlations were
observed between the matched samples compared with
other cases, and metastases and primary lesions were
classified identically (Supplementary Figure 6A-C). Second,
4 paired preoperative FNA cytology and resection speci-
mens were analyzed. The EPIC array successfully pro-
cessed all FNA cases, and there were strong correlations
=
Figure 3. Development, comparison, and validation of DNA met
in the training and test sets (A). The classifiers achieved accu
(Neural Network) in the test cohort (B). Evaluation of classifie
classifier consistently outperforms the Neural Network and XGB
(E), and Neural Network (F) probability scores demonstrates tha
most cases. Confusion matrices for Random Forest (G), XGB (H)
tumor type. UMAP visualization of the random forest classificat
cases actually cluster with the tumor type assigned by the clas
between matched samples compared with other cases.
Identical classifications were observed in all matched cases
(Supplementary Figure 7A-C).

Discussion

This proof-of-concept study effectively uses DNA
methylation profiling to address the diagnostic challenge
of distinguishing between different primary pancreatic
tumors. After benchmarking the performance of 3 state-
of-the-art machine learning models (NN, XGB, RF) on a
comprehensive cohort spanning all relevant pancreatic
tumor types, the RF model emerged as the best classifier
with 96.9% accuracy. Because the models’ classification
is limited to classify tumor types present in their training
data, and to account for metastases to the pancreas, we
developed a second algorithm based on the pancreatic
dataset supplemented with non-pancreatic neoplasms.
This approach reduced the probability of a false
pancreatic neoplasm diagnosis to less than 1 in 1000
cases, whereas 7% of true pancreatic tumors were
classified as non-pancreatic. Considering the rare
occurrence of metastases to the pancreas and the artifi-
cial case mix, the actual risk of a false pancreatic tumor
diagnosis is likely much lower.

The pancreatic-tumor classifier in this study is highly
accurate, comparable with methylation-based classifiers for
other tumor types (95.1% for brain tumors,13 99.9% for
sarcoma,15 96% for squamous cell carcinoma,14 and 89%
for head and neck squamous cell carcinoma16). Although
RF models have traditionally been successful and widely
used algorithms, recent studies suggest superiority of other
models, such as NN, Support Vector Machines, and
LOGREG.13–16,21 In this study, the performance of the 3
models was not significantly different. Nonetheless,
adjusting cutoffs for minimum probability scores demon-
strated that RF achieved higher accuracies for most of the
cases. Its probability score distribution makes it especially
well-suited for detecting nonpancreatic entities, making RF
the preferred model in this study.

This study underscores the benefits of methylation
profiling in diagnosing pancreatic tumors in several
ways. First, the algorithm presented here effectively
distinguishes between different pancreatic tumors, even
when they exhibit overlapping signatures in unsuper-
vised analysis, such as PB and ACC, which is likely caused
by their similar epigenetic profiles linked to acinar dif-
ferentiation.22 Our machine learning model correctly
classified 30 out of 31 ACC and PB cases in the test
hylation–based classifier. Sample counts for each tumor type
racies of 96.9% (Random Forest), 91.3% (XGB), and 95.7%
r accuracies by tumor type shows that the Random Forest
algorithms (C). Threshold analysis of Random Forest (D), XGB
t the Random Forest model achieves the highest accuracy in
, and Neural Network (I) showing discordant classifications per
ion results within the test cohort demonstrates that 2 out of 5
sifier (J).
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Figure 4. Detection of non-pancreatic neoplasms. Sample counts per tumor type in the non-pancreatic dataset (A). The Random
Forest model classified all non-pancreatic tumors as PDAC, PNET, ACC, PNEC, or SPN (B). Random Forest score distribution of
non-pancreatic and pancreatic neoplasms (C). Receiver operating characteristic (ROC) curves based on Random Forest distribution
scores show an outlier probability with area under the curve (AUC) of 0.95 (D). A second algorithm (logistic regression) was developed
to identify non-pancreatic neoplasms, and its probability scores were lower for non-pancreatic neoplasms (E). ROC curve based on
logistic regression shows an improved AUC of >0.99 (F ). Threshold analysis shows real pancreatic samples considered as non-
pancreatic neoplasms (dropouts) (H) and non-pancreatic neoplasms classified as pancreatic neoplasms (pass rate) (I). At a cutoff of
0.5, dropout is 7% and pass rate <0.1%. The Cancer Genome Atlas (TCGA) abbreviations: ADC, adrenocortical carcinoma; BLCA,
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cystadenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; SARC, sarcoma; SKCM,
skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM,
thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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Figure 5. Classifier application in histopathologically misdiagnosed and challenging clinical cases. Case A includes a spine
biopsy (case A1) and resection specimen of the primary pancreatic lesion (case A2) of a patient with moderate radioactive
depositions in the pancreas and spine on 68Ga-DOTATOC PET/CT suggesting metastasized PNET. Based on positive
neuroendocrine markers and negative ACC marker BCL10, the case was signed out as metastatic PNET grade 3. Histo-
pathologic analysis of the subsequent pancreatic resection specimen showed positivity of BCL10 changing the diagnosis to
ACC. The Random Forest model classified both the bone biopsy and the pancreatic lesion as ACC. Case B, initially mis-
diagnosed as a PNET, was later reevaluated as a SPN on revision at a tertiary referral center. This reclassification was based
on additional immunohistochemistry studies, which showed positivity for SPN markers (b-catenin, vimentin, and CD10). The
Random Forest model confirmed the case as SPN. Case C is a liver biopsy classified as MiNEN (mixed ACC-PNET) based on
expression of both neuroendocrine markers and ACC marker BCL10 in approximately half of the tumor cells. The Random
Forest classification was divergent and showed a high probability score for ACC and PNET, consistent with the histopath-
ologic suspicion of MiNEN.
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cohort, indicating that dissimilarities between these tu-
mors are significant enough to enable differentiation
through DNA methylation. Of note, because of existing
diagnostic challenges and the impact of sampling bias,
methylation profiling alone is currently not considered
suitable for classification of potential MiNEN cases.
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Second, this classifier assists in excluding other tumor
types in the differential diagnosis of pancreatic lesions.
The non-pancreatic dataset includes primary neoplasms
known to metastasize to or directly invade the pancreas,
such as renal cell, lung, breast, colonic, and gastric can-
cer.29,30 This is valuable in excluding the possibility of
metastasis to the pancreas. Additionally, the presence of
cholangiocarcinoma in the non-pancreatic dataset helps
exclude periampullary tumors from consideration.
Although it would have been interesting to include more
periampullary tumors, such methylation data were un-
available from public resources.

Lastly, DNA methylation profiling can aid diagnosis of
FNA/FNB samples of primary tumors and metastases,
particularly in challenging cases with insufficient mate-
rial for additional immunohistochemistry, technical ar-
tefacts (ie, caused by decalcification, or cellular
distortion). This study demonstrates that the RF model
accurately classified all FNA/FNB samples. Thereby, it
correctly classified the preoperative biopsy of a case
affected by technical artifacts (case A), highlighting the
potential robustness of DNA methylation profiling in
various sample conditions, mitigating potential diag-
nostic errors.

Nonetheless, using publicly available DNA methyl-
ation data has limitations. First, our dataset had limited
data on PB, SPN, and PNEC from only a few studies,
possibly contributing to slightly lower model perfor-
mance in these tumor types (Figure 3C). Second, we were
unable to verify the histopathologic diagnoses from the
publicly available DNA methylation data. Most samples
that received a discordant classifier classification clus-
tered with the corresponding tumor type. Although
UMAP should not be considered a definitive means to
classify samples, it suggests that at least in several cases,
methylation profiling may have identified misdiagnosed
samples. This has been noted previously for PDACs of
The Cancer Genome Atlas cohort, which were later
shown to actually represent PNETs.31,32 Because of a lack
of additional data this hypothesis cannot be proven.
Nonetheless, these dissimilarities highlight the potential
value of methylation profiling as a second layer of
information.

This study again demonstrates the potential of
epigenetic tumor classification and shows that DNA
methylation-based classification can be achieved with
limited tumor cells, such as FNA cytology samples. This
suggests that the previously reported 13% misclassifi-
cation rate of pancreatic neuroendocrine neoplasms us-
ing FNA cytology may be reduced with methylation
profiling.12 The ability to assist in preoperative clinical
decision making makes this diagnostic tool highly
appealing.

DNA methylation is now routinely used to aid di-
agnostics of central nervous and soft tissue tumors.15,18

EPIC array can be performed on histologic and cyto-
logic specimens, is routinely available in most academic
centers or accessible on a consultation basis, and results
are obtained in 1–2 weeks. Ongoing optimizations of
brain tumor classifiers aim for a diagnosis within 90
minutes,33 offering promising prospects for broader
clinical use. Considering our model is a proof-of-concept
classification model, further extension and validation are
necessary before considering its widespread accessibility
for daily practice.

To conclude, this study presents a highly accurate DNA
methylation-based classifier capable of differentiating
pancreatic neoplasms. At the same time, non-pancreatic
entities are identified with near perfect precision, thereby
preventing false pancreatic tumor diagnoses excellently.
The successful classification of FNA samples makes the
technique applicable in the preoperative setting.
Supplementary Material

Note: To access the supplementary material accom-
panying this article, visit the online version of Clinical
Gastroenterology and Hepatology at www.cghjournal.org,
and at http://doi.org/10.1016/j.cgh.2024.02.007.
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Supplementary Methods

Patients and Samples

Methylation data for the pancreatic dataset (n ¼ 321)
were obtained from 7 previously published datasets (n ¼
304)1–7 and from resection specimens collected at the
University Medical Center Utrecht (UMCU) and Radboud
University Medical Center (Radboud UMC), The
Netherlands (n ¼ 17) (Table 1). Dataset details can be
found in Table 1. Datasets used in Selenica et al6 and
Behamida et al1 were obtained from the authors on
request. Data collected from the UMCU and Radboud
UMC pathologic archives were obtained with approval by
the UMCU and Radboud UMC Biobank Research Ethics
Committees. The data that have not been deposited at
EGA, which is hosted by the European Bioinformatics
Institute and the Centre for Genomic Regulation under
accession number EGAS00001004878,8 are available on
reasonable request. Methylation data of the pancreatic
dataset were generated on Infinium Human-
Methylation450 (n ¼ 225) and Infinium Human-
MethylationEPIC v1.0 (n ¼ 96) platforms.

To facilitate detection of nonpancreatic entities,
nonpancreatic tumor samples (n ¼ 3708), spanning 29
different tumor types, were obtained from The Cancer
Genome Atlas (TCGA). Three cases, referred for a second
opinion or treatment at our tertiary center, which were
histopathologically difficult and/or misdiagnosed, were
used to illustrate the added value of the classifier
(Figure 5). The cases comprise 2 primary tumors
included in the pancreatic dataset and 2 additional
metastatic cases, 1 of which was a matched metastasis
from case 1 (Supplementary Table 1).

The additional analysis on (1) MiNENs (n ¼ 7)
included 1 additional local MiNEN case and 6 samples
from Benhamida et al1; (2) matched primary and meta-
static cases (n ¼ 5) included 3 primary tumors included
in the pancreatic dataset, 1 primary tumor used for
MiNEN analysis, and 5 additional matched metastatic
cases, all were local cases; and (3) matched FNA and
resection specimens (n ¼ 4) of which all 4 resection
specimens were included in the pancreatic dataset, all
were local cases (Supplementary Table 1).

Methylation Array Processing

DNA extraction and bisulfite conversion were con-
ducted at our in-house core facility. Freshly cut un-
stained (4 mm) sections were used and tumor tissue was
macrodissected for DNA extraction. DNA extraction was
performed using the Maxwell RSC FFPE Plus DNA kit
(Promega) after 2-hour proteinase K digestion. Subse-
quent steps adhered to protocols from the DNA
Methylation BeadChip manufacturer (Illumina). In brief,
EZ DNA Methylation Kit (Zymo Research) was used for
bisulfite conversion, and FFPE Restore Kit (Illumina)
addressed formalin fixation-induced DNA damage.
Whole-genome amplification on the bisulfite converted
and restored DNA was performed, followed by frag-
mentation, precipitation, and hybridization to CpG
Site–specific Beads (Illumina). After clearing unhybri-
dized and nonspecifically hybridized DNA, BeadChips
were extended, stained, coated, and scanned using the
iScan Software (Illumina). Raw data were exported as
IDAT files for further processing.

Preprocessing

IDAT files were analyzed using the software package
minfi9 and normalized using the preprocessNoob func-
tion.10 Next, probes were removed that (1) were located
on sex chromosomes, (2) contain single-nucleotide poly-
morphisms in the CpG or single-base extension site, or (3)
were found to exhibit cross-reactivity previously.11 Finally,
data were filtered for probes available on both platforms
(n¼ 400,962), and available beta values were merged into
a data table. IDAT files for TCGA samples were down-
loaded from https://portal.gdc.cancer.gov; processed as
outlined previously; and filtered for primary, non-
pancreatic neoplasms (n ¼ 3708 remaining).

Quality Control and Batch Effect

Average methylation (beta value) was calculated for
all filtered probes. Bisulfite conversion scores were
calculated by dividing the minimal intensity for the
red channel by the maximum intensity of the green
channel for Bisulfite Conversion II control probes. Tumor
purity was predicted using the Bioconductor package
RFpurify.12 Batch effect was evaluated by analyzing tis-
sue types that were obtained from 2 or more studies.
Average methylation values, conversion scores, and tu-
mor purities were compared, and graphically inspected
by UMAP.13

Unsupervised Analysis

To improve clustering and because of computational
considerations, unsupervised analysis was performed on
a reduced dataset filtered for the n ¼ 5000 most variable
CpG sites across the training set (as ranked by variance).
Unsupervised analysis using all probes did not reveal
major differences in clustering (Supplementary
Figure 1). The R package umap was used for dimen-
sionality reduction with UMAP with n_neighbours ¼ 15
and min_dist ¼ 0.2.

Classifier Development and Validation

Figure 1A shows an overview of the classifier devel-
opment. Samples were randomly assigned to the training
and test cohort stratified by tumor type (50/50 ratio;
Figure 3A) using the R package caret.14 All models were
trained on a reduced dataset using the 5000 most
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variable probes as input with 10-fold cross-validation
and n ¼ 3 repetitions per fold. To account for uneven
distribution across the different tumor types, the
upSample function was used to upsample all classes to
the same number of cases. Neural network, random
forest and XGBoost algorithms were trained on the
training cohort using the R package Keras,15 random-
Forest,16 and xgboost,17 respectively. Samples of the test
cohort were at no point used for variable selection or
model building. Random forest model was trained with
default parameters: trees ¼ 500, mtry ¼ sqrt(5000).
XGBoost machines were trained with the following pa-
rameters: nrounds ¼ 100, max_depth ¼ 6, eta ¼ 0.3,
gamma ¼ 1, colsample_bytree ¼ 1, min_child_weight ¼ 1,
subsample ¼ 1. The neural network model was trained
for n ¼ 50 epochs with a 4-layer structure. Layers 1–3
used 64 neurons with relu activation, the last layer
softmax activation. RMSProp was used as the optimizer,
categorical crossentropy as the loss function, and accu-
racy as the optimization metric. The highest score was
used to assign samples to a class (majority vote). One-
way analysis of variance was used to assess the differ-
ence in model accuracies, considering a P < .05 statisti-
cally significant. Classifier performance for different
probability score thresholds was assessed by calculating
the proportion of predictable cases and accuracy for
every cutoff. Confusion matrices were calculated for all 3
models, and the clustering of misclassification of the best
performing classifier was visualized using UMAP.

Figure 1B shows an overview of the detection of
nonpancreatic entities. First, the best performing model’s
classification results were assessed in an extended
cohort of n ¼ 3708 nonpancreatic neoplasms. Second, all
samples of the TCGA and pancreatic cohorts were
randomly assigned to a training and test set (50/50
split). A logistic regression model using the score and
label of the best performing model was trained to
differentiate between pancreatic and nonpancreatic (ie,
outlier) samples and evaluated in the test set. Finally,
model performance in terms of accuracy and drop-out
was calculated for different thresholds of logistic
regression probability scores. Student t test was used to
compare random forest model probability scores distri-
bution between the pancreatic and nonpancreatic co-
horts. A P < .05 was considered statistically significant.

Additional Analysis

Furthermore, we performed 3 additional subanalyses
with (1) MiNEN (n ¼ 7), (2) matched primary and
metastatic cases (n ¼ 5), and (3) matched FNA and
resection specimens (n ¼ 4). The MiNEN tumors’ rela-
tionship to other tumor types using reduced dataset (n ¼
5000 most variable CpG sites) was visualized using
UMAP, and entropy scores and mean probability scores per
tumor type were evaluated. For the matched primary and
metastatic cases and matched FNA and resection
specimens, correlations between classifier probability
scores in comparison with nonmatched cases were
evaluated.
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Supplementary Figure 1. Primary pancreatic dataset projected onto the UMAP using all probes.
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Supplementary Figure 2. Additional un-
supervised analysis of pancreatic dataset.
ESTIMATE and ABSOLUTE tumor cell
purity using the DNA methylation-based
“RFPurify” method projected over UMAP
and per pancreatic tumor type showing
lower tumor purity for pancreatic ductal
adenocarcinoma compared with other
tumor types (A-D). Average methylation
and conversion score projected over
UMAP and per pancreatic tumor type
showing lower genome-wide methylation
in pancreatoblastoma (E-H).
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Supplementary Figure 3. Tissue types were projected onto the UMAP. Showing no difference in clustering between fresh-
frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) tissue.
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Supplementary Figure 4. Batch effect analysis. Number of samples per source, density plots, mean beta values, conversion
scores, and dimensionality reduction through UMAP for normal pancreatic tissue (A-E), pancreatic neuroendocrine tumor (F-J),
acinar cell carcinoma (K-O), and solid pseudopapillary neoplasm (P-T). Results show some differences between sources in the
density plots, mean beta values, conversion scores, and UMAP across tumor types. Batch effect analyses revealed small but
consistent differences regarding beta values distribution and conversion scores across tumor types. This effect was strongest
in normal pancreatic and solid pseudopapillary neoplasm samples, and may suggest batch effects. However, classifier per-
formance seems not to be influenced by the origin of a sample. This implies robustness of the classifier toward minor technical
differences resulting from specimen selection and reagent handling. *P < .05; **P < .01; ***P < .001.
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Supplementary Figure 5. Analysis of MiNEN. Dimensionality reduction through UMAP showing (n ¼ 7) MiNENs samples tend
to cluster with acinar cell carcinomas and pancreatoblastomas (A). Random forest model probability scores of MiNENs show
higher entropy as compared with nonmixed tumors (B). Random forest model probability scores of MiNENs and TCGA
samples show higher entropy as compared with primary pancreatic neoplasms (C). Distribution of the mean random forest
model probability scores show high scores for the corresponding tumor type, and divergent scores for MiNEN (D). Comparing
the MiNENs probability scores for acinar cell carcinoma and pancreatoblastoma with that of acinar cell carcinoma and
pancreatoblastoma, shows that MiNENs fall between pancreatoblastoma and acinar cell carcinoma (E).
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Supplementary Figure 6. Analysis of matched primary and metastatic cases. Comparison of the unfiltered beta values of the
primary and matched metastasis cases show some correlation (A). When quantifying the correlation between the beta values a
significantly higher correlation between beta values of matched cases as compared with the nonmatched cases is seen (paired
T-test: P < .01; 95% confidence interval, -0.15 to -0.04) (B). When analyzing the correlation between the samples, it becomes
apparent that in most cases the matched primary sample shows superior correlation to its matched metastases sample as
compared with other cases. The metastatic acinar cell carcinoma (Figure 5, case 1) shows highest correlation with a primary
PNET sample (C).
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Supplementary Figure 7. Analysis of matched FNA and resection specimen cases. The unfiltered beta values of the FNA and
resection specimen cases show high correlation (A). When quantifying the correlation between the beta values a significant
higher correlation between beta values of matched cases as compared with the nonmatched cases is seen (paired T-test P <
.001; 95% confidence interval, -0.33 to -0.20) (B). When analyzing the correlation between the samples, it becomes apparent
that in all instances the resection specimen samples show superior correlation to their matched FNA sample as compared with
other cases (C).
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Supplementary Table 1.Overview of Histopathologic Challenging and Misdiagnosed Clinical Cases and Samples Used
Additional Analysis Including, Source, Array Type, Tumor Type, Location, and Sample Type

Source Sample name Array type Tumor type Location Sample Type
In pancreatic

dataset

Histopathologic challenging and misdiagnosed clinical cases (Figure 5)
UMCU UMCU_ACC1_M EPIC ACC Bone metastasis FNB No
UMCU UMCU_ACC1 EPIC ACC Primary Resection Yes
UMCU UMCU_SPN1 EPIC SPN Primary Resection Yes
UMCU UMCU_ACC2_M EPIC ACC Liver metastasis Resection No

Analysis on MiNEN
UMCU UMCU_MiACCNET1 EPIC MNEN Primary Resection No
Benhamida Mixed_ACC1 EPIC MiNEN Primary Resection No
Benhamida Mixed_ACC2 EPIC MiNEN Primary Resection No
Benhamida Mixed_ACC3 EPIC MiNEN Primary Resection No
Benhamida Mixed_ACC4 EPIC MiNEN Primary Resection No
Benhamida Mixed_ACC5 EPIC MiNEN Primary Resection No
Benhamida Mixed_ACC6 EPIC MiNEN Primary Resection No

Analysis on matched primary and metastatic cases
UMCU UMCU_panNET6 EPIC PNET Primary Resection Yes
UMCU UMCU_panNET6_M EPIC PNET Liver metastasis Resection No
UMCU UMCU_panNET5 EPIC PNET Primary Resection Yes
UMCU UMCU_panNET5_M1 EPIC PNET Liver metastasis FNB No
UMCU UMCU_panNET5_M2 EPIC PNET Liver metastasis Resection No
UMCU UMCU_ACC1 EPIC ACC Primary Resection Yes
UMCU UMCU_ACC1_M EPIC ACC Bone metastasis FNB No
UMCU UMCU_MiACCNET1 EPIC MiNEN Primary Resection No
UMCU UMCU_MiACCNET1_M EPIC MiNEN Metastasis FNA No

Analysis on matched FNA and resection specimens
UMCU UMCU_panNET7_b EPIC PNET Primary FNA No
UMCU UMCU_panNET7 EPIC PNET Primary Resection Yes
UMCU UMCU_panNET8_b EPIC PNET Primary FNA No
UMCU UMCU_panNET8 EPIC PNET Primary Resection Yes
RB RB_ACC1_b EPIC ACC Primary FNA No
RB RB_ACC1 EPIC ACC Primary Resection Yes
RB RB_SPN1_b EPIC SPN Primary FNA No
RB RB_SPN1 EPIC SPN Primary Resection Yes

ACC, acinar cell carcinoma; FNA, fine-needle aspiration; FNB, fine-needle biopsy; MiNEN, mixed neuroendocrine–nonneuroendocrine neoplasm; PNET,
pancreatic neuroendocrine tumor; RB, Radboud UMC; SPN, solid pseudopapillary neoplasm; UMCU, University Medical Center Utrecht.
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