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Abstract

BACKGROUND: Cortical microinfarcts (CMI) were attributed to cerebrovascular dis-

ease and cerebral amyloid angiopathy (CAA). CAA is frequent in Down syndrome (DS)

while hypertension is rare, yet no studies have assessed CMI in DS.

METHODS: We included 195 adults with DS, 63 with symptomatic sporadic

Alzheimer’s disease (AD), and 106 controls with 3T magnetic resonance imag-

ing. We assessed CMI prevalence in each group and CMI association with age,
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AD clinical continuum, vascular risk factors, vascular neuroimaging findings, amy-

loid/tau/neurodegeneration biomarkers, and cognition in DS.

RESULTS: CMI prevalence was 11.8% in DS, 4.7% in controls, and 17.5% in sporadic

AD. In DS, CMI increased in prevalence with age and the AD clinical continuum, was

clustered in the parietal lobes, andwas associatedwith lacunes and cortico-subcortical

infarcts, but not hemorrhagic lesions.

DISCUSSION: In DS, CMI are posteriorly distributed and related to ischemic but not

hemorrhagic findings suggesting theymight be associatedwith a specific ischemicCAA

phenotype.

KEYWORDS

Alzheimer’s disease, cerebral amyloid angiopathy, cerebral microbleeds, cortical microinfarcts,
Down syndrome, magnetic resonance imaging, neuroimaging, small vessel diseases

Highlights

∙ This is the first study to assess cortical microinfarcts (assessed with 3T magnetic

resonance imaging) in adults with Down syndrome (DS).

∙ We studied the prevalence of cortical microinfarcts in DS and its relationship with

age, the Alzheimer’s disease (AD) clinical continuum, vascular risk factors, vascular

neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition.

∙ The prevalence of corticalmicroinfarctswas 11.8% inDS and increasedwith age and

along the AD clinical continuum. Cortical microinfarcts were clustered in the pari-

etal lobes, andwere associatedwith lacunes and cortico-subcortical infarcts, but not

hemorrhagic lesions.

∙ In DS, cortical microinfarcts are posteriorly distributed and related to ischemic

but not hemorrhagic findings suggesting they might be associated with a specific

ischemic phenotype of cerebral amyloid angiopathy.

1 BACKGROUND

Cerebral cortical microinfarcts (CMI) are ischemic lesions that were

until recently invisible on magnetic resonance imaging (MRI) and

only detected in post mortem studies.1 However, the development

of 7T-MRI allowed their detection in vivo with ex vivo validation.2

More recently, guidelines for visual detection of CMI on 3T-MRI3

enabled their detection in large cohorts, linking CMI to vascu-

lar risk factors,4 cardiac dysfunctions,5,6 cerebral hypoperfusion,7,8

stroke, and vascular cognitive impairment.9 A few studies have

also suggested that CMI is a common feature of cerebral amyloid

angiopathy (CAA), together with cerebral microbleeds and superficial

siderosis.10–12

In Down syndrome (DS), there is a triplication of chromosome 21,

resulting in an overproduction of the amyloid precursor protein (APP),

which is coded in this chromosome, and increased amyloid beta (Aβ)
deposition in the brain parenchyma and capillaries.13 DS is a genetic

form of Alzheimer’s disease (AD) and is associated with a higher

CAA prevalence than the general population,14,15 but with a lower

prevalence of arterial hypertension, ischemic heart disease, athero-

matosis, and dyslipidemia.16–20 These features make DS a great model

for studying Aβ pathology as a possible cause of CMI, with a lesser

influence of vascular risk factors.

We hypothesize that, given the ubiquitous brain amyloidosis and

low prevalence of vascular risk factors in DS, CMI are related to CAA

pathology in this population. Our aimwas to characterize CMI in DS by

studying their prevalence, number, and spatial distribution of CMI in

this population, and their association with demographics, biomarkers,

and vascular risk factors, as well as the changes along the AD clinical

continuum in adults with DS.

2 METHODS

2.1 Study design and setting

This was a single-center cross-sectional study performed at Hospital

Sant Pau (Barcelona, Spain) and approved by the local ethics commit-

tee, following the Declaration of Helsinki. All participants and/or their

legally authorized representatives gavewritten informed consent.MRI
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data were acquired at Hospital del Mar and Hospital Clínic (Barcelona,

Spain), in the same period.

2.2 Participants

Participants were recruited between January 2011 and July 2021.

We included adults with DS of both sexes (+18 years), with available

volumetric T1-weighted (T1w) andT2*-weighted (T2*w: susceptibility-

weighted [SWI] or gradient-echo [GRE]) magnetic resonance images.

As comparative references we also included sporadic symptomatic AD

patients and cognitively unimpaired euploid controls with available

T1w and T2*wMRI sequences.

All participants were recruited from the Sant Pau Initiative on Neu-

rodegeneration (SPIN) and Down Alzheimer Barcelona Neuroimaging

Initiative (DABNI) cohort, established in 2011 and 2014 respectively,

for multimodal biomarker discovery and validation in different neu-

rodegenerative diseases that cause dementia.21 The DABNI cohort is

built on a population-based health plan to screen symptomatic AD in

adults with DS and aims to investigate the natural history of AD in DS

withmultimodal biomarkers.22

2.3 Clinical and neuropsychological evaluations
and study subgroups

To be included in the DABNI cohort, participants with DS underwent

intellectual disability (ID) assessment according to the Diagnostic and

StatisticalManual ofMental Disorders Fifth Edition (DSM-V), based on

caregivers’ reports and the IntelligenceQuotient score of the Kaufman

Brief Intelligence Test Spanish version.23 ID was categorized as mild,

moderate, severe, or profound. Cognitive assessment in participants

with DS was performed with the Cambridge Cognitive Examina-

tion for Older Adults With Down Syndrome (CAMCOG-DS) Spanish

version,24,25 and the modified Cued Recall Test (mCRT).26 In the

present study, the total CAMCOG-DS score (ranging 0–109) and the

mCRT’s total immediate recall score (ranging 0–36), were used as prox-

ies of global cognition and episodicmemory performance, respectively.

In both tests, higher scores indicate better cognition. Euploid par-

ticipants underwent the comprehensive neuropsychological battery

included in the SPIN cohort,27 and in the current study the Mini-

Mental State Examination (MMSE) was used as a measure of global

cognition.MMSEranges from0 to30,withhigher scores indicatingbet-

ter cognitive performance. Also, at the enrollment in SPIN or DABNI

cohorts, each subject (with a caregiver, when appropriate) undergoes

a structured questionnaire about previously diagnosed medical condi-

tions, among them arterial hypertension, diabetes mellitus type 2, and

dyslipidemia.

After independent neurological and neuropsychological evaluations

blinded to the biomarker data, each participant with DS was clinically

classified according to the presence of AD symptoms as asymptomatic

(aDS; absence of cognitive or functional impairment), prodromal AD

(pDS; when there was cognitive, but not functional, impairment), and

RESEARCH INCONTEXT

1. Systematic review: Cerebral cortical microinfarcts (CMI)

have been attributed to cerebrovascular disease and

cerebral amyloid angiopathy (CAA). CAA’s prevalence is

increased in Down syndrome (DS) while hypertension is

rare, but no studies have assessed CMI in this population.

Relevant publications are appropriately cited.

2. Interpretation: CMI prevalence was 11.8% in DS and

increasedwith age and along theAlzheimer’s disease clin-

ical continuum. CMI were predominantly located in the

parietal lobes, and were significantly related to ischemic

neuroimaging findings (lacunes and cortico-subcortical

infarcts), but not with vascular risk factors or hemor-

rhagic lesions, suggesting that CMI might be associated

with a specific ischemic phenotype of CAA in DS.

3. Future directions: From a neuroimaging perspective,

CAA has been largely recognized by its hemorrhagic

manifestations. Identifying new ischemic markers poten-

tially related to CAA helps characterize the spectrum of

neuroimaging findings associated with this entity.

AD dementia (dDS; when there was cognitive and functional impair-

ment). The classification was based on a consensus meeting.28 The

assessment of functional status for differentiating pDS and dDS was

based on anamnesis, the Dementia Questionnaire for People with

Learning Disabilities, and the Comprehensive Assessment for Demen-

tia in People with Down Syndrome and Others with Intellectual

Disabilities (CAMDEX-DS).29 Similarly, participants with sporadic AD

were also clinically divided into prodromal AD (pAD; cognitive, but

not functional, impairment) and AD dementia (dAD; cognitive impair-

ment impacting daily activities).21 Controls were divided into young

(age< 60 years) and old (age ≥ 60 years) to serve as control groups for

participants with DS and sporadic AD, respectively.

2.4 Image acquisition, preprocessing, and
automated quality control

3T-MRI data were acquired with a Philips Achieva scanner (Philips

Healthcare) at Hospital del Mar or a Siemens Prisma scanner (Siemens

Healthcare) at Hospital Clínic. Both imaging protocols included T1w

with 1.0 mm isotropic resolution, T2*w, and fluid-attenuated inversion

recovery (FLAIR) images. The acquisition parameters for each scanner

are provided in Table S1 in supporting information.

We used the quality assurance report provided by the Computa-

tional Anatomy Toolbox (CAT12; Christian Gaser and Robert Dahnke;

http://dbm.neuro.uni-jena.de/cat/) for Statistical Parametric Mapping

software (SPM12; http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)

to exclude participants with low T1w image quality that could impair
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ARANHA ET AL. 3909

F IGURE 1 Criteria for visual detection of cortical microinfarcts in 3Tmagnetic resonance imaging. FLAIR, fluid-attenuated inversion recovery;
MR, magnetic resonance

CMI’s visual detection (image quality rating ≤ 80%). Figure S1 in

supporting information shows the flowchart and the reasons for the

exclusion of participants. We also conducted a sensitivity analysis

of basic demographic and clinical characteristics between included

and excluded subjects with DS, and we found no statistically sig-

nificant differences between these samples (Table S2 in supporting

information).

Artifacts of magnetic field inhomogeneity were corrected in all

images using an N4 bias field correction pipeline30 available in the

Advanced Neuroimaging Tools software (ANTs, http://stnava.github.

io/ANTs/) tominimize the influence ofmanual windowing during visual

analysis. Within each subject, T2*w and FLAIR images were coregis-

tered to theT1w images using a rigid registration implemented inANTs

to ensure anatomical correspondence between all analyzed images.

2.5 MRI visual analysis

MRI visual analysis was performed by a board-certified neuroradiolo-

gist (MRA), blind to the participant’s group, between March 2022 and

March 2023. The rater was trained for CMI visual detection in 3T-MRI

on an official training program available at theUniversityMedical Cen-

ter (UMC) Utrecht. The program consists of a theoretical background,

training sessions on 7T and 3T-MRI, and a practical exam on 3T-MRI.

After each training case, an official score based on autopsy-validated

criteria9 was provided by UMC Utrecht and the case was discussed

with an assigned supervisor. After completion of the exam, the rater’s

scores were compared to the provided official scores and theDice sim-

ilarity index was calculated by the assigned supervisor. After training,

good reliability results were obtained (Dice similarity index= 0.83).

Images were analyzed using MeVisLab (MeVis Medical Solutions

AG; version 3.4.1). This study focuses on chronic CMI visual detec-

tion following autopsy-validated criteria9 (as in the training program)

that define chronic CMI as lesions restricted to the cortex and per-

pendicular to the cortical surface, ≤ 4.0 mm, visible in at least two

orthogonal planes, and distinct from microbleeds or enlarged perivas-

cular spaces (Figure 1). Chronic CMI candidates identified on T1w

images were simultaneously evaluated on T2*w to be differentiated

frommicrobleeds.When available, FLAIR images were also used to aid

chronic CMI identification. While the original criteria9 describe acute

CMI’s MRI signal characteristics for T2-weighted (T2w), FLAIR, and

diffusion-weighted imaging (DWI), the absence of these sequences for

all subjects in our dataset limited our ability to reliably analyze acute

CMI.

Other vascular neuroimaging findings, namely cerebral microb-

leeds, superficial siderosis, lacunar infarcts (chronic infarct [3 to

15.0 mm] in the territory of perforating arterioles), large cortico-

subcortical infarcts (≥5.0 mm), and white matter FLAIR hyperintensi-

ties (WMH) were rated as defined by the STRIVE guideline (Standards

for Reporting Vascular Changes on Neuroimaging).31 The interob-

server agreement for detection of these vascular neuroimaging find-

ings was assessed in a subset of subjects, with high reliability results

(Dice similarity index of 0.83, 1.00, 0.85, 1.00, and 1.00 for cerebral

microbleeds, superficial siderosis, lacunar infarcts, cortico-subcortical

infarcts, andWMH, respectively).

Those participantswith cerebralmicrobleeds and superficial sidero-

sis on MRI were further classified as having Probable CAA or Possible

CAA, according to themodified Boston criteria,32 regardless of the age

criterion included in the criteria set (> 55 years), as adults with DS

present CAA pathology before this age.14

2.6 Cerebrospinal fluid and plasma amyloid/
tau/neurodegeneration biomarkers acquisition and
analyses

A subset of participants underwent a cerebrospinal fluid (CSF) and/or

blood sampling (Table S3 in supporting information). Samples were
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TABLE 1 Demographic data, CMI prevalence, fluid AT(N) biomarkers, and cognitive performance in each study group.

YC (N= 76) All DS (N= 195) P value aDS (N= 126) pDS (N= 29) dDS (N= 40) P value

Demographics

Age (years) 52.6 [46.9; 56.2] 44.4 [35.0; 50.9] <0.001a 39.0 [30.0; 44.4] 49.6 [47.7; 52.3] 54.2 [49.0; 56.6] <0.001c

Sex (female) 69.7% 42.6% <0.001b 42.1% 44.8% 42.5% 0.964b

APOE ε4+ 34.7% 19.2% 0.013b 19.0% 26.9% 15.0% 0.483b

APOE ε2+ 5.3% 10.4% 0.288b 9.5% 23.1% 5.0% 0.061b

Hypertension 13.2% 2.1% 0.002b 0.8% 0.0% 7.9% 0.041b

Dyslipidemia 34.0% 19.2% 0.035b 15.1% 31.0% 23.7% 0.106b

D. mellitus 2 0.0% 3.1% 0.345b 3.2% 3.4% 2.6% 1.000b

CMI prevalence

Overall 2.6% 11.8% 0.031d 8.7% 6.9% 25.0% 0.012d

CSF and plasma biomarkers

CSF Aβ40 11.3 [9.8; 13.7] 11.2 [8.3; 14.4] 0.724a 11.6 [9.3; 15.1] 10.1 [7.2; 12.5] 11.1 [8.6; 13.2] 0.242c

CSF Aβ42 1.1 [1.0; 1.4] 0.7 [0.5; 0.9] <0.001a 0.9 [0.7; 1.3] 0.5 [0.4; 0.6] 0.5 [0.4; 0.6] <0.001c

CSF Aβ42/40 0.1 [0.1; 0.1] 0.1 [< 0.1; 0.1] <0.001a 0.1 [0.1; 0.1] <0.1 [< 0.1; 0.1] <0.1 [< 0.1;< 0.1] <0.001c

CSF p-tau 3.2 [2.6; 4.1] 4.4 [2.1; 10.7] 0.038a 2.6 [1.6; 4.2] 9.1 [5.0; 14.3] 14.3 [9.3; 18.2] <0.001c

Plasma p-tau 1.3 [1.0; 1.8] 1.5 [0.9; 2.4] 0.459a 1.1 [0.8; 1.6] 2.0 [1.3; 2.3] 2.4 [20; 3.9] <0.001c

CSFNfL 0.4 [0.3; 0.4] 0.5 [0.3; 0.8] <0.001a 0.3 [0.2; 0.5] 0.7 [0.6; 0.8] 1.1 [0.7; 1.6] <0.001c

PlasmaNfL 0.8 [0.6; 1.1] 1.2 [0.7; 2.0] 0.006a 0.9 [0.6; 1.3] 1.3 [1.2; 1.9] 2.5 [2.0; 3.9] <0.001c

NPS evaluation (DSwithmild andmoderate ID)

CAMCOG-DS – 73.5 [61.0; 83.8] <0.001a 80.0 [69.0; 86.0] 72.5 [63.0; 76.8] 57.0 [46.0; 68.5] <0.001c

mCRT – 34.0 [27.0; 36.0] <0.001a 36.0 [34.0; 36.0] 26.0 [20.8; 35.2] 18.5 [13.5; 24.8] <0.001c

MMSE 30.0 [29.0;30.0] – – – – –

OC (N= 30) All AD (N= 63) P value pAD (N= 43) dAD (N= 20) P value

Demographics

Age (years) 66.0± 5.0 70.1± 6.8 0.001e 70.3± 6.7 69.7± 7.0 0.747e

Sex (female) 46.7% 63.5% 0.189b 65.1% 60.0% 0.911b

APOE ε4+ 20.7% 54.5% 0.006b 62.2% 38.9% 0.181b

APOE ε2+ 10.3% 3.6% 0.335b 5.4% 0.0% 1.000b

Hypertension 38.5% 44.8% 0.838b 41.2% 50.0% 0.927b

Dyslipidemia 38.5% 60.0% 0.180b 61.1% 58.3% 1.000b

D. mellitus 2 7.7% 14.3% 0.670b 18.8% 8.3% 0.613b

CMI prevalence

Overall 10.0% 17.5% 0.543d 20.9% 10.0% 0.543d

CSF and plasma biomarkers

CSF Aβ40 13.0 [10.9; 15.7] 12.3 [10.9; 14.4] 0.606a 12.3 [11.4; 14.5] 12.6 [10.7; 14.3] 0.827a

CSF Aβ42 1.3 [1.1; 1.6] 0.5 [0.4; 0.6] <0.001a 0.5 [0.5; 0.6] 0.4 [0.4; 0.6] 0.029a

CSF Aβ42/40 0.1 [0.1; 0.1] <0.1 [< 0.1;< 0.1] <0.001a <0.1 [< 0.1;< 0.1] <0.1 [< 0.1;< 0.1] 0.025a

CSF p-tau 4.2 [3.3; 4.8] 10.6 [7.8; 16.2] <0.001a 10.1 [7.5; 13.8] 16.3 [9.3; 22.6] 0.028a

Plasma p-tau 1.0 [0.8; 1.5] 1.9 [1.5; 2.6] <0.001a 1.9 [1.5; 2.4] 1.8 [1.5; 2.8] 0.724a

CSFNfL 0.5 [0.4; 0.6] 0.9 [0.7; 1.1] <0.001a 0.8 [0.6; 1.0] 1.0 [0.8; 1.2] 0.067a

PlasmaNfL 1.1 [0.8; 1.3] 1.5 [1.2; 1.8] 0.010a 1.4 [1.0; 1.7] 1.8 [1.4; 2.6] 0.133a

(Continues)

 15525279, 2024, 6, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13797 by U

trecht U
niversity, W

iley O
nline L

ibrary on [03/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ARANHA ET AL. 3911

TABLE 1 (Continued)

OC (N= 30) All AD (N= 63) P value pAD (N= 43) dAD (N= 20) P value

NPS evaluation

MMSE 29.0 [29.0; 30.0] 26.0 [24.0; 27.0] <0.001a 27.0 [25.0; 28.0] 23.0 [19.5; 25.0] <0.001a

Note: Data presented as: %, median [interquartile range] or mean ± standard deviation. Not all subjects in each group have data on APOE haplotype, hyper-
tension, dyslipidemia, diabetes mellitus 2, CSF and plasma biomarkers, and cognition. The percentage in the table indicates the prevalence of each variable

among those subjects with available data (Table S2 in supporting information).

CSFAβ40andCSFAβ42expressed in .103pg/mL;CSFandplasmap-tauexpressed in0.101pg/mL;CSFNfL expressed in0.103pg/mLandplasmaNfLexpressed

in 0.101pg/mL.

Abbreviations: Aβ, amyloid beta; aDS, asymptomatic Down syndrome; APOE, apolipoprotein E; AT(N), amyloid/tau/neurodegeneration; CAMCOG-DS, Cam-

bridgeCognitive Examination forOlderAdultswithDownSyndrome (total score); CMI, corticalmicroinfarcts; CSF, cerebrospinal fluid; D.mellitus 2, diabetes

mellitus type 2; DS, Down syndrome; dDS, Down syndrome-relatedAlzheimer’s disease dementia; IQR, interquartile range;MMSE,Mini-Mental State Exam-

ination; mCRT, modified Cued Recall Test (total immediate recall score); NfL, neurofilament light; NPS, neuropsychological; OC, old controls; pDS, prodromal

Down syndrome-related Alzheimer’s disease; p-tau, phosphorylated tau 181, SD, standard deviation; YC, young controls.
aKruskall-Wallis test.
bChi-squared test.
cAnalysis of variance.
dFisher exact test.
et test.

processed and stored as previously described.33 CSF concentrations of

Aβ40, Aβ42, and phosphorylated tau 181 (p-tau181) were measured

with Lumipulse G600II automated platform (Lumipulse, Fujirebio-

Europe).21 CSF neurofilament light (NfL) concentration was quantified

with an enzyme-linked immunosorbent assay (ELISA; NF-Light Assay;

UmanDiagnostics), following the manufacturer’s recommendations.

CSF samples were analyzed at Hospital Sant Pau (Barcelona, Spain).

Plasma concentrations of p-tau181 andNfLweremeasuredwith single

molecule array (Simoa) technology (Quanterix) at the University of

Gothenburg (Gothenburg, Sweden) and Hospital Sant Pau, respec-

tively, following established protocols.22,34,35 Apolipoprotein E (APOE)

haplotype was determined by polymerase chain reaction amplification

of DNA from blood samples.36

2.7 Statistical analysis

Statistical analyses were conducted using R software (version 3.6.3,

www.R-project.org).

To compare the studygroups (DS, sporadicAD, and controls) regard-

ing sex;APOE ε4 andAPOE ε2 carriership; and the prevalence of arterial
hypertension, dyslipidemia, and diabetes mellitus type 2, chi-squared

test was used.

To assess CMI prevalence along the AD clinical continuum, Fisher

exact test was used. DS participants were divided into aDS, pDS, and

dDS, and sporadic symptomatic ADparticipantswere divided into pAD

and dAD.

To investigate the relationship of CMI prevalence and number

with age in each study group (DS, sporadic symptomatic AD patients,

and cognitively unimpaired controls), logistic regression and Poisson

regressionmodels were used, respectively.

Finally, to investigate the association between CMI and demo-

graphic data, neuroimaging findings, vascular risk factors, CAA diagno-

sis, fluid biomarkers, and neuropsychological data in DS, participants

were divided based onCMI presence. DS participantswith andwithout

CMI were compared for each variable using Fisher exact, chi-squared,

t test, analysis of variance, Mann–Whitney, and Kruskal–Wallis tests

when appropriate. Cohen d coefficient, rank-biserial coefficient, and

odds ratio (OR) were used as effect size measures when appropriate.

Data analysis was performed in April 2023, with significance set at

P< 0.05.

3 RESULTS

3.1 Participants and demographics

Table 1 summarizes the demographic data, CMI prevalence, fluid amy-

loid/tau/neurodegeneration (AT[N]) biomarkers, and cognitive perfor-

mance in each study group. A total of 364 participants were included:

195adultswithDS (126aDS, 29pDS, and40dDS), 63with sporadicAD

(43 pAD and 20 dAD), and 106 controls (76 young and 30 old controls).

Participants with DS were younger than young controls (44.4 [35.0;

50.9] vs. 52.6 [46.9; 56.2], years, P< 0.001) and had a lower proportion

of females (42.1% vs. 69.7%; P=0.001) andAPOE ε4 carriers (19.2% vs.

34.7%, P = 0.013). Participants with sporadic AD had a higher propor-

tion of APOE ε4 carriers than old controls (54.5% vs. 20.7%, P = 0.006;

Table 1).

In DS, the prevalence of arterial hypertension and dyslipidemia

was lower than in young controls (2.1% vs. 13.2% [P = 0.002] and

19.2% vs. 34% [P = 0.035], respectively), while the prevalence of dia-

betes mellitus type 2 in both groups was not different (P = 0.345;

Table 1).

3.2 CMI prevalence and number

The prevalence of CMI was 11.8% in DS overall compared to 2.6%

in young euploid controls (OR: 4.73; P = 0.031; Table 1). In DS, CMI
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3912 ARANHA ET AL.

F IGURE 2 CMI prevalence along the AD clinical continuum inDS andwith age in all study groups. AD, Alzheimer’s disease; aDS, asymptomatic
Down syndrome; CMI, cortical microinfarcts; dDS, Down syndrome-related Alzheimer’s disease dementia; DS, Down syndrome; pDS, prodromal
Down syndrome-related Alzheimer’s disease; sAD, symptomatic Alzheimer’s disease

prevalence increased along the AD continuum from 8.7% in aDS and

6.9% in pDS to 25% in dDS (aDS vs. dDS, OR: 3.48; P = 0.012; Table 1,

Figure 2A). In euploid individuals, the prevalence of CMI was 10.0% in

old controls and 17.5% in symptomatic sporadic AD (20.9% in pAD and

10% in dAD; OR: 1.74, P= 0.543; Table 1). The average number of CMI

per participant with CMI was nominally higher in DS than in controls

(3.1 vs. 1.0, d=0.570,P=0.132) and sporadicAD (3.1 vs. 2.0, d=0.340,

P= 0.866).

3.3 CMI prevalence and number with age

We found that CMI prevalence and number increase with age in DS

(P = 0.027 and P < 0.001, respectively), but not in AD (P = 0.940 and

P = 0.977, respectively) or euploid controls (P = 0.341 and P = 0.348,

respectively). Figure 2B shows the progression of CMI prevalencewith

age. For visualization purposes only, participants of each study group

were divided into age tertiles.

3.4 CMI topography

We identified 74 CMI in 23 adults with DS, mainly in posterior regions

and predominantly in the parietal lobes. In euploid participants, we

found 22 CMI in 11 sporadic AD patients and 5 CMI in 5 controls,

predominantly distributed along parasagittal lines in frontoparietal

regions (Figure 3).

3.5 CMI relationship with sex, APOE haplotype,
and vascular risk factors in DS

In DS, lacunes and cortico-subcortical infarcts were more prevalent

among participants with CMI than in those without CMI (P = 0.026

and P = 0.004, respectively). A trend toward a higher prevalence

of WMH (Fazekas ≥ 2) was also observed in participants with

CMI (P = 0.054). We found no associations of CMI presence with

lobar/infratentorial microbleeds, superficial siderosis, sex, APOE hap-

lotype, arterial hypertension, diabetes mellitus type 2, or dyslipidemia

(Table 2).

3.6 CMI relationship with fluid AT(N) biomarkers,
vascular neuroimaging findings, and cognitive
performance in DS

Fluid amyloid and tau biomarkers were not associated with CMI pres-

ence in the overall DS sample or each of the three clinical subgroups.

Plasma NfL concentration was higher in the overall sample of DS par-

ticipants with CMI than those without (P= 0.044), but such difference

was not observed within each stage of the AD clinical continuum

(Table 2).

We found no differences in neuropsychological scores between

participants with and without CMI (mild and moderate ID analyzed

separately; Table 2).

The relationship ofCMInumberwithdemographic data, neuroimag-

ing findings, fluid biomarkers, and neuropsychological data in DS and

sporadic AD is summarized in Table S4 in supporting information. Addi-

tionally, we analyzed the relationship between the volume of CMI and

vascular neuroimaging findings, fluid AT(N) biomarkers, and cognitive

scores in DS. These results are summarized in Table S5 in supporting

information.

The relationship of CMI presence to demographic data, neuroimag-

ing findings, fluid biomarkers, and neuropsychological data in sporadic

AD and euploid controls is summarized in Table S6 in supporting

information.
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ARANHA ET AL. 3913

TABLE 2 Cortical microinfarct’s relationship with demographic data, neuroimaging findings, fluid biomarkers, and neuropsychological data in
DS.

Down syndrome

CMI absent (N= 172) CMI present (N= 23) Effect size P value

Demographics

Age, years 43.9 [32.3;50.2] 49.9 [41.6;54.9] RB:−0.17 0.016a

Sex (female) 43.6% 34.8% OR: 0.45 0.075b

APOE ε4+ 19.3% 19.0% OR: 0.99 1.000b

APOE ε2+ 11.2% 4.8% OR: 0.40 0.703b

hypertension 2.3% 0.0% OR: 0 1.000b

Dyslipidemia 18.7% 22.7% OR: 1.28 0.773b

D.Mellitus 2 2.9% 4.5% OR: 1.58 0.521b

Neuroimaging findings

Lobarmicrobleeds 26.0% 36.4% OR: 1.62 0.316b

Superficial siderosis 5.4% 13.6% OR: 3.68 0.055b

Probable CAA 19.5% 31.8% OR: 1.92 0.262b

WMH (Fazekas≥2) 2.9% 13.0% OR: 4.94 0.054b

Lacunes 6.4% 21.7% OR: 4.02 0.026b

Cortico-subcortical Infarcts 1.7% 17.4% OR: 11.57 0.004b

CSF and plasma biomarkers

CSF Aβ40 11.8± 4.2 9.9± 3.1 D: 0.45 0.078c

CSF Aβ42 0.7 [0.5;0.9] 0.6 [0.4;0.9] RB: 0.88 0.343a

CSF Aβ42/40 0.1 [< 0.1;0.1] 0.1 [0.1;0.1] RB: 0.82 0.961a

CSF pTau 4.2 [2.1;10.7] 5.2 [3.4;10.7] RB: 0.67 0.515a

Plasma pTau 1.4 [0.9;2.3] 2.4 [1.1;3.7] RB: 0.73 0.247a

CSFNfL 0.5 [0.2;0.7] 0.9 [0.5;1.3] RB: 0.66 0.056a

PlasmaNfL 1.2 [0.7;1.2] 1.9 [1.0;3.4] RB: 0.67 0.045a

NPS evaluation

DS-mild ID (N= 54)

CAMCOG-DS 83.8± 7.6 86.3± 13.8 D:−0.27 0.650c

mCRT 36.0 [32.5;36.0] 36.0 [36.0;36.0] RB: 0.27 0.786a

DS-moderate ID (N= 87)

CAMCOG-DS 63.5 [54.2;72.8] 69.0 [57.0;72.0] RB: 0.39 0.511a

mCRT 33.0 [24.0;35.0] 28.5 [23.0;34.0] RB: 0.62 0.696a

Note: Data presented as: %, median [interquartile range] or mean ± standard deviation. CSF Aβ40 and CSF Aβ42 expressed in 0.103pg/mL; CSF and plasma

p-tau expressed in 0.101pg/mL; CSFNfL expressed in 0.103pg/mL and plasmaNfL expressed in 0.101pg/mL. Not all subjects in each group have data onAPOE
haplotype, hypertension, dyslipidemia, D. mellitus 2, CSF and plasma biomarkers, and cognition. The percentage in the table indicates the prevalence of each

variable among those subjects with available data (Table S2 in supporting information).

Abbreviations: aDS, asymptomatic Down syndrome; Aβ, amyloid beta; APOE, apolipoprotein E; CAMCOG-DS, Cambridge Cognitive Examination for Older

Adults with down Syndrome (total score); CSF, cerebrospinal fluid; CMI, cortical microinfarcts; D, Cohen d coefficient; DS, Down syndrome-related

Alzheimer’s disease dementia; D. mellitus 2, diabetes mellitus type 2; ID, intellectual disability; IQR, interquartile range; MMSE, Mini-Mental State Exami-

nation; mCRT, modified Cued Recall Test (total immediate recall score); NfL, neurofilament light; OR, odds ratio; pDS, prodromal Down syndrome-related

Alzheimer’s disease; p-tau, phosphorylated tau 181; RB, rank-biserial coefficient; SD, standard deviation.
aMann–Whitney test.
bFisher exact test.
ct test.
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F IGURE 3 Topographic distribution of cortical microinfarcts. CMI, cortical microinfarcts

4 DISCUSSION

This is the first study to assess CMI in adults with DS and their

association with age, sex, APOE haplotype, vascular risk factors, AD

clinical continuum, fluid AT(N) biomarkers, other vascular neuroimag-

ing findings, and cognition. We showed that the CMI prevalence in DS

increases with age and along the AD clinical continuum. In this pop-

ulation, CMI are predominantly located in the parietal lobes and are

associatedwith other ischemic neuroimaging findings, namely lacunes,

large cortico-subcortical infarcts, and WMH. However, they seem to

be unrelated to vascular risk factors or hemorrhagic CAA manifesta-

tions, that is, lobarmicroormacrobleeds and superficial siderosis in our

sample.

We provide the first assessment of CMI prevalence in DS.We found

a higher CMI prevalence in adults with DS compared to controls. In DS,

CMI prevalence increased along the AD clinical continuum. The CMI

prevalence in DS with prodromal AD and AD dementia was similar to

that in sporadic symptomatic AD despite the lower vascular risk fac-

tors in DS, suggesting a higher contribution of CAA, which has been

shown to be more prevalent in genetically determined AD than in spo-

radic AD.14 In euploid controls> 60 years, CMI prevalence was similar

to that of other studies in the general population.7,9,12,37–39 However,

studies in cohorts with a high burden of cerebrovascular disease and

vascular risk factors7,9,12,37–40 found a higher CMI prevalence in spo-

radic AD than we observed in our study, possibly due to the lower

prevalence of cerebrovascular disease and vascular risk factors among

our cognitively unimpaired controls.

The distribution of CMI in DS and euploid participants seemed to

differ. In DS, CMIweremostly concentrated in the parietal lobes, while

in euploid participants they were predominantly distributed along the

parasagittal lines in the frontoparietal regions, resembling watershed

areas. These differences might reflect distinct underlying mechanisms

of CMI genesis in DS and euploid participants. In DS, the ubiquitous

brain amyloidosis that leads to a higher CAA prevalence than in the

general population is the most likely cause of CMI.14 Yet, we observed

no associations between CMI and classic CAA hemorrhagic lesions

such as microbleeds or superficial siderosis. Instead, we found CMI

associatedwith other ischemic neuroimaging findings, namely lacunes,

cortico-subcortical infarcts, and WMH. Recently, Gokcal et al.41 have

also found an association of CMIwithWMHand lacunes in CAA. How-

ever, the relationship of CMI with CAA hemorrhagic manifestations

remains controversial. While studies have shown associations of CMI

with cerebral microbleeds10 and superficial siderosis,42 van den Brink

et al.12 reported a lack of relationship between CMI and hemorrhagic

findings in CAA. A recent neuropathological study has shown that

microbleeds and CMI likely result from two different pathological

mechanisms in CAA.11 This study has also shown that, while the

number of microbleeds detected on ex vivo 3T-MRI closely matches

the number of microbleeds detected in histopathology, the number of

CMI is largely underestimated in neuroimaging studies compared to

neuropathology analysis.11 Therefore, the lack of association between

these lesions in our study could be explained by a combination of

differences in their underlying pathology and in the sensitivity of in

vivoMRI in detectingmicroinfarcts andmicrobleeds.

Previous studieshave shownCMI tobeassociatedwithbrainhypop-

erfusion, mostly caused by carotid stenosis, which is rare in DS, given

the low prevalence of atherosclerosis in this population.8,43 Neverthe-

less, people with DS often present with arterial hypotension,44 which

could lead to brain hypoperfusion and be accounted as a potential

cause of CMI in this population.45 However, studies have shown that,

in the context of brain hypoperfusion, CMI are distributed in arterial

watershed zones,8,45,46 while in our group of adults with DS, CMI are

concentrated in the parietal lobes. Also, the role of neuroinflammation

in CMI genesis is not yet well established. A recent neuropathology

study found activatedmacrophages and astrocytes in chronic CMI, but

not in acute and subacute lesions, suggesting that neuroinflammation

might be more of a secondary response to CMI rather than a primary

causative factor.47
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ARANHA ET AL. 3915

In DS, we found no CMI association with fluid amyloid or tau

biomarkers. Although previous studies reported reduced CSF Aβ42
levels in subjects with acute CMI,48 data on the relationship between

chronic CMI and fluid AT(N) biomarkers are lacking. In sporadic CAA,

reduced CSF Aβ42 and Aβ40 concentrations have been reported.49

However, no association between CAA (defined by the fulfillment of

the modified Boston criteria) and CSF Aβ40 concentrations have been

observed (neither in sporadic nor in genetically determined forms of

AD).14 Therefore, in AD-relatedCAA, coreAD fluid biomarkers are not

good predictors of in vivo CAA diagnosis, and we are still lacking good

biomarkers for CAA beyond themanifestations found inMRI.

The main strength of our work is the large, well-characterized, and

population-based cohort of adults with DS with clinical and multi-

modal AD biomarkers, allowing us to analyze the relationship of CMI

with the AD clinical continuum, AT(N) biomarkers, vascular risk fac-

tors, and other neuroimaging findings. Despite basing our analysis on

well-established criteria for visual CMI detection on 3T-MRI, the low

sensitivity of in vivo neuroimaging for detecting CMI compared to

neuropathology limits our study. CMI detected by in vivo MRI reflect

only a fraction of the total CMI burden.11 The low rate of CMI detec-

tion through in vivo 3T-MRI limits the statistical analysis to a binary

approach according to the presence or absence of CMI, missing the

nuances of CMI load on the correlations with neuroimaging and fluid

biomarkers and neuropsychological evaluation. Also, the lack of DWI,

T2w, and FLAIR sequences for all subjects precluded the analysis of

acuteCMI, limiting our study to chronicCMI. Future studieswith larger

sample sizes and more sensitive methods for detecting CMI in vivo

would improve our understanding of the relationship of these lesions

to other biomarkers. Also, despite the intensive training of the study’s

CMI rater at the UMC Utrecht, the lack of a second rater for the sam-

ple included in the study is a limitation of our work. Additionally, the

imbalance in sample size between participants with prodromal spo-

radic AD and AD dementia, along with the limited age range in this

group, constrains our analysis of the age-related prevalence of CMI in

this subset of the study population. Last, the presence of motion arti-

facts in a population with intellectual disability and cognitive decline is

inevitable and decreases the sensitivity of visual analysis for detecting

CMI. Therefore, despite subjects’ inclusion based on the MRI quality,

some degree of motion artifact had to be tolerated to ensure sufficient

sample size.

In conclusion, our study in adults with DS showed that a subgroup

of individualswith dementia have corticalmicroinfarcts predominantly

located in the parietal lobes related to other ischemic but, seemingly,

not to hemorrhagic neuroimaging findings of CAA and might select a

subgroup of individuals a non-hemorrhagic CAA imaging phenotype.
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