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1   |   INTRODUCTION

Natural language processing (NLP) is a form of artifi-
cial intelligence (AI) that focuses on the computational 
analysis of spoken and written language to retrieve rel-
evant information or patterns. NLP is used increasingly 
in the medical domain to automatically extract data 

from electronic health records (EHRs), scientific arti-
cles, patients blog posts, audio recordings, or medical 
guidelines. AI gained momentum by introducing a new 
and generic model architecture in the seminal paper 
“Attention is all you need,” allowing pre-trained large 
language models (LLMs).1 After the implementation 
of ChatGPT by OpenAI as the first, large ready-to-use 
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LLM for the general public in November 2022,2 an 
ever-increasing number of users were seen, and appli-
cations were developed, including within the medical 
domain.3-5 LLMs can be best appreciated as a new class 
of NLP, typically trained on large data sets and used for 
both “passive” tasks (e.g., information extraction and 
pattern detection in texts) and more “active” tasks (e.g., 
text generation and transformation).6,7

In this review, we critically appraise the development 
of LLMs and introduce this rapidly expanding field for cli-
nician–scientists who are considering using these models 
in clinical or research settings. This hands-on overview 
aims to improve understanding and integration of LLMs. 
In addition to an introduction to the development his-
tory, key ingredients, and limitations, we present current 
LLM studies in epilepsy research and provide examples 
for future LLM applications in epilepsy care. Given the 
importance of “language input” for diagnosis, treatment 
evaluation, and patient management, LLMs seem partic-
ularly appealing for improving epilepsy care. Apart from 
a recently published commentary-including clarifying ex-
amples of how LLM can be used in epilepsy care—little 
of the current LLM literature has focused on the possible 
merits and flaws in epilepsy research.8 Finally, we reflect 
on how LLMs differ from traditional NLP applications, as 
we recently reviewed.9

2   |   DEVELOPMENT OF LARGE 
LANGUAGE MODELS

2.1  |  Historical overview: From text 
mining to transformers

2.1.1  |  What milestones have led to the 
development of LLMs?

NLP is rooted in 1950, with the development of the in-
famous “Turing test.” In this thought experiment, the 
British computer scientist Alan Turing assessed whether 
a machine could engage in a natural conversation indis-
tinguishable from human conversation. Turing's machine 
is generally conceived as a first attempt to generate nat-
ural language semi-automatically.10 It was not until the 
early 1990s that NLP algorithms further evolved with 
the availability of more powerful computers and access 
to large textual data sets. Machine learning (ML) models 
drove these NLP algorithms and could deduce linguistic 
patterns from text without following rules to break down 
text.11 Typically, these algorithms were trained on existing 
textual data to learn relevant patterns, and consequently 
used to make predictions on new, unseen data. Initially, 
these machine-based NLP algorithms were trained in a 

‘supervised’ manner: models trained on texts that were 
manually labeled with linguistic properties to produce 
similar linguistic labels for unseen text. Later, deep learn-
ing and artificial neural networks were introduced to im-
prove model performance and generalizability to large 
texts.12 This allowed the representation of words and 
sentences in a vector space, enabling the expression of 
the proximity of linguistic properties (e.g., semantics and 
syntax) in this space.13 The subsequent introduction of 
“self-supervised” LLMs was a game-changer for the field: 
it allowed models to learn patterns from large quantities 
of non-labeled text through self-adjustment and obviated 
human supervision.1 Because LLMs are generalizable to a 
variety of language comprehension and generation tasks, 
interest in these models increased rapidly, leading to the 
development of more sophisticated models primarily by 
large tech companies, such as Google, OpenAI, and Meta.

2.2  |  Mechanisms

2.2.1  |  What are the key ingredients of 
LLMs?

Most current LLMs have a so-called “transformer archi-
tecture.” Tokens are the elementary LLM's input and 
output language units. Tokens are generally—but not ex-
clusively—restricted to words, subphrases, or punctuation 
marks. This tokenization of language is needed for LLMs 
to operate efficiently and capture combined words, inten-
tionality, and grammar. For the readability of this section, 
we refer to “words” when we technically mean tokens. 
To read a text, a clinician extracts information from the 
direct context of words: preceding and following words, 
sentences, and even the entire paragraph. Transformers 
do something similar, but fast and on a massive scale. The 
mechanism allows the model to focus on some words more 
than others, depending on what makes sense in the con-
text. This allows the model to properly process individual 

Key points

•	 Although large language models (LLMs) are ap-
plied increasingly in medical care, few studies 
have applied this strategy in epilepsy care.

•	 Epilepsy care could benefit from integrating 
LLMs to accelerate diagnosis and to facilitate 
clinical evaluation and patient counseling.

•	 A stepwise introduction of LLMs into epilepsy 
care is proposed to avoid misinterpretation and 
inappropriate use in daily practice.
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words and the relationships between words, and the over-
all meaning of a sentence or paragraph. More technically, 
given a text as input, LLMs will first internally represent 
words into a vector by which a linguistic relation (e.g., 
semantic, syntax, grammar) between word positions is 
expressed as a numerical weight. This representation of 
a word position computed as the weighted relation to all 
other words is a vector.11 What makes attention so crucial 
for transformer-based LLMs? Attention enables the model 
to focus on different parts of a sentence and simultane-
ously skip both the non-informative information and ex-
traction of relevant information from each computational 
step (or “layer”) in the model, rather than looking at the 
last computation step only. By doing so, meaningful in-
formation typically stored in deeper model layers is used 
for improved model output.13 A self-attention mechanism 
was added subsequently to reduce the computational 
price and make LLMs less prone to forgetting information 
that is typically stored in the model (Figure 1; Box 1). The 
Bidirectional Encoder Representations from Transformers 
(BERT) model, developed by Google, was one of the first 
LLMs to incorporate this transformer architecture and at-
tention mechanisms.14 Later models adopted this archi-
tecture, such as the Generative Pre-Trained Transformers 
(GPT) developed by OpenAI.15

Compared to BERT, the self-attention mechanisms of 
GPT are slightly modified: each word position is related 
only to all preceding positions but not to succeeding ones. 
Because succeeding positions are ignored (masked), self-
attention in GPTs is called “masked self-attention.” GPTs 
are, therefore, “autoregressive”: they use only past posi-
tions to predict the coming “masked” word, as opposed to 
BERT, which uses past and succeeding positions because 
words are masked at random positions in a sentence. 
Several LLMs have been published, and although output 
generation has considerably improved, some limitations 
remain. Most notably, an autoregressive LLM like GPT 
still has difficulties completing complex (non-sequential) 
tasks. A linear way of thinking prevents these models 
from accessing information recursively, that is, making, 
planning, and memorizing necessary intermediate steps. 
However, the most recent versions of GPT incorporate 
new strategies for recursively accessing information.16

2.2.2  |  What is the scope of current LLM 
applications?

The current interest in LLM has resulted in the devel-
opment of many different, (non) open-source models 

F I G U R E  1   Simplified representation of the most essential LLM components. (A) Schematic illustration of a large language model 
(LLM), including the most commonly used model layers. (B) In the embedding layer, the linguistic relation between words (or tokens)—
curved lines—are represented in a vector in which a numerical weight is given to every relation (the darker the color, the more related the 
words are). (C) An essential component of LLM is attention (including self-attention and/or masked attention, depending on the type of 
model used). Attention enables retrieval of relevant information for the requested output from any layer in the model.
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over the last few years. In most cases, these models are 
pretrained on large quantities of text and typically dif-
fer in size and complexity, as expressed in their number 
of parameters (Table 1). More parameters correspond to 
superior learning and task-generation performances but 

come with a higher computational price. Recent studies 
suggest that increasing data heterogeneity and training 
length could improve LLM performance with smaller 
data sets. For example, the Large Language Model Meta 
AI (LLaMA), developed by Meta, outperforms GPT-3 on 
several benchmarks despite fewer parameters (13 billion 
vs 175 billion).17 This improved performance of smaller, 
often open-sourced LLMs is particularly appealing for 
resource-poor and underfunded research areas. A model 
can be improved to achieve the desired output in sev-
eral ways.15 For domain-specific LLMs, one can either 
fine-tune generic pretrained models on domain-specific 
texts18,19 or exclusively build an LLM on non-annotated 
domain-specific data-like medical texts.20 The latter strat-
egy is applied increasingly as it avoids the laborious work 
of supervised data labeling. In task-agnostic LLMs—mod-
els that are generic and not pretrained on domain-specific 
input—human feedback can be used for model alignment 
and reduction of toxic output.15

2.2.3  |  What is the influence of prompting on 
model output?

In addition to model characteristics, the output quality of 
LLMs depends on instructions or questions provided by 
their users. Minor differences in prompts, or the use of dif-
ferent versions of LLMs, may result in different outputs and 
could potentially limit the reproducibility of these models 
in (clinical) research.21 Prompt engineering is essential 
for gaining a desirable model output. For example, a zero-
shot approach (i.e., a single question) can be used when a 
straightforward answer or task is required, and no specific or 
up-to-date information is needed. In cases of more complex 
tasks, it might be necessary to guide the model by combin-
ing some examples (shots) of input–output for the desired 
output. This so-called, few-shot prompting improves model 
performance by using the capacity of LLMs to learn repeti-
tive patterns effectively, especially in situations with limited 
trained labeled data.22

2.2.4  |  What kind of medical tasks can LLMs 
perform?

From the capacity of LLMs to predict a next word in line, 
a wide range of text-related tasks emerge: text generation, 
transformation, and summarization but also information 
retrieval, conversation, and inferring (or combination). A 
clear and understandable prompt—a written (or spoken) 
instruction—is pivotal and crucial for output quality.23 
More recently we have seen LLMs performing increas-
ingly complex tasks in the medical domain. For example, 

BOX 1  A glossary of basic LLM concepts

Transformer: dominant architecture of current 
LLM in which different attention mechanisms are 
crucial for model output.
Attention: a key component of transformer-
based LLMs that allows extraction of information 
typically stored in different model layers. Self-
attention is a mechanism in which attention is 
focused selectively on the input sequence used for 
the model's output.
Pretraining: refers to the initial phase of model 
training. During this phase, the model learns to 
predict the next word in a sentence or fill in miss-
ing words based on the context of the surrounding 
words and capture the nuances of language and 
understand various linguistic patterns. Large-
scale pretraining enables the model to grasp gen-
eral language features and information. After the 
pretraining phase, the model can be fine-tuned on 
a smaller domain-specific data set to target a spe-
cialized task, such as medical text analysis.
Layer: an LLM is typically composed of different 
layers. Each layer is a computational step with 
unique properties to process input text and gener-
ate output.
Token: the basic units that LLM uses to process 
language. Tokenization is splitting texts into 
smaller units that an LLM can process. Tokens 
generally correspond to words, but can also be 
subphrases, word syllables, or punctuation marks 
depending on the type and size of the model. The 
memory of an LLM is often expressed in token 
limit, referring to the maximum number of tokens 
that can be processed.
Vector: a mathematical way to represent words 
(or tokens) with numerical weights that express 
the relation with other words in the given text.
Prompting: instructions or questions a user pro-
vides to shape a model's output relevant to the re-
quested task. Prompt engineering is the process of 
constructing effective prompts for LLM. Prompt 
strategy depends on the desired output and the 
model's available (labeled) data.
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an instruction-tuned Pathways Language Model (PaLM) 
variant could answer (complex) medical questions well 
but could not outperform clinicians on all topics.24 To bet-
ter understand and answer medical challenges, current 
work has been dedicated to improving models by incorpo-
rating not just language data, but also multimodal input 
from images, sensors, wearables, genomics, and so on, into 
a single model.25 With this, newer versions of Med-PaLM 
will be able to synthesize and communicate information 
from ancillary investigations like magnetic resonance im-
aging (MRI) scans, x-rays, electrocorticography (ECG), 
electroencephalography (EEG), mammograms, and 
more, to assist clinicians in diagnosing patients with a 
multimodal input. The multimodal input fits the latest 
tendency to fuse research fields, which were traditionally 
separate in approach and technique. Computer vision, 
speech recognition, robotics, image generation, speech 
synthesis, and even music generation use pretrained lan-
guage models with their data converted into one form of 
text or another.26

3   |   APPLICATIONS OF LLMs IN 
EPILEPSY CARE

3.1  |  Clinical challenges in epilepsy care

Recent progress in epilepsy classification and improved 
ancillary investigations have significantly narrowed the 

diagnostic gap in epilepsy. Efforts by the International 
League Against Epilepsy (ILAE) to refine the classifica-
tion of epilepsies and seizures are invaluable in evaluat-
ing individuals who are suspected of having seizures.27 
The updated ILAE classification  provides a clinical 
framework to better understand, counsel, and manage 
people with epilepsy (PWE). An intrinsic limitation of 
the current framework is the clinical variants and atypi-
cal presentations that do not adhere to a specific seizure 
category or epilepsy classification.28 Similarly, the on-
going development of neuroinflammatory, genetic, and 
structural biomarkers is pushing the diagnostic and 
treatment opportunities forward,29 but neglects an im-
portant source of data: the language used in the clinical 
setting by PWE. Language is widely acknowledged as an 
indispensable source of information in diagnosing epi-
lepsy—clinicians take history and distill relevant clini-
cal variables from a patient's narrative.30,31 The upsurge 
of NLP to systematically process textual data provides a 
unique opportunity to use this information source for 
clinical purposes, especially in more complex clinical 
cases.32-34 We recently reviewed the current literature 
in epilepsy research on NLP applications and summa-
rized the evidence for improving epilepsy diagnosis and 
management, in addition to the previously mentioned 
efforts.9 Considering the ever-growing use of “eHealth” 
in epilepsy care, including EHRs, online patient com-
munities, and the possibilities for digital interaction 
with clinicians, the availability of textual data will only 

Model
Base 
model Parameters # Domain

Open 
source

Release 
date

GPT-2 – 1.5B General Yes 11/2019

Bio_ClinicalBERT BERT .34B Medical Yes 2020

GPT-3 – 175B General No 6/2020

GPT-3.5 (ChatGPT) – 1.3B – 175B General No 11/2022

Claude – 52B General No 12/2021

BioMedLM – 2.7B Medical Yes 12/2022

LLaMA – 7.0B – 65B General Yes 2/2023

GPT-4 – – General No 3/2023

Cerebras-GPT GPT-3 .1B – 13B General Yes 3/2023

ChatDoctor LLaMA 7.0B Medical Yes 3/2023

Dolly 2.0 – 12B General Yes 4/2023

Open-Assistant – 13B General Yes 4/2023

PaLM 2 – 340B General No 5/2023

Med-PaLM 2 PaLM 2 340B Medical No 5/2023

Note: When a base model is given, the domain fine-tuned model will have the same number of 
parameters. Different versions of a model are indicated by multiple parameter numbers. “B” stands 
for “billion.” Current models are often (derivatives of) Bidirectional Encoder Representations from 
Transformers (BERT), Pathways Language Model (PaLM), Large Language Model Meta AI (LLaMA), and 
Generative Pretrained Transformers (GPT).

T A B L E  1   Overview of current LLMs 
models.
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increase.35 Yet, language yields rather “noisy” data in 
which relevant symptoms are sometimes difficult to ap-
prehend. LLMs open new opportunities to use raw tex-
tual data for improving epilepsy care and research but 
is used only limitedly in epilepsy research (Box 2). The 
next sections integrate a few examples and elaborate on 
possible research opportunities.

3.2  |  Bridging the current challenges 
with LLMs

3.2.1  |  Diagnosing epilepsy

A recent review discusses the automatic extraction 
of relevant clinical information from epilepsy-related 
EHRs, including diagnostic characteristics.36 The po-
tential promise of automatic extraction anticipates 
the power and ease of LLMs to do so. Even traditional 
ML approaches have shown potential. For example, 
Connolly and colleagues classified an NLP model to 
classify generalized, focal, or unclassified epilepsy in 
beyond-hospital patient notes.37 Fonferko-Shadrach 
and colleagues developed an extraction of epilepsy-
related clinical text software system to identify infor-
mation—demographics, diagnosis, pathology type, 
and medication use—from clinic-free texts, including 
letters.38 More recently a feasible NLP approach, with 
higher validated accuracies, was used to identify seizure 
types and frequencies from EHRs.39 Two recently pub-
lished diagnostic studies in epilepsy have implemented 
LLMs systematically in large data sets.40,41 Both studies 
applied an LLM approach to extract clinical informa-
tion on epilepsy outcomes from unstructured clinical 
notes. Xie and colleagues showed that an adapted BERT 
model outperformed more traditional (rule-based) 

BOX 2  Current LLM studies in epilepsy

The number of research articles on LLM appli-
cations in epilepsy is limited but is expected to 
increase rapidly. A PubMed literature search 
performed on December 6, 2023, revealed five 
original peer-reviewed research studies; two were 
published in the last 2 months (Appendix  S1). 
Methodological details, used models, and out-
come measures are presented (Table 2). Because 
two studies from the same research group greatly 
overlapped in methodology, data, hypothesis, and 
outcome measure,19 we presented only the most 
recent and clinically relevant study.40
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NLP methods in extracting information from clinical 
notes on seizure outcomes.40 Beaulieu-Jones and col-
leagues used a clinical-longformer model, similar to a 
BERT model, but with improved performances due to 
a more-efficient, self-attention mechanism.42 In doing 
so the authors revealed that unstructured clinical notes 
contain potentially valuable data that are typically ne-
glected in conventional case evaluation for seizure 
recurrence.41,43 This ability of LLMs to extract informa-
tion from clinical consultation, typically overlooked in 
conventional diagnostic decision models, has not yet 
been fully explored. For example, experienced and ex-
pressed emotions from clinicians and patients influence 
clinical decision-making,44 but are largely neglected as 
contributing variables in the diagnostic process. Patient 
conversations typically contain these data, which can be 
extracted with audio recordings and written transcripts. 
Pevy and colleagues used this approach and revealed 
that formulation efforts (i.e., hesitations, reformulations 
and syntactic repairs)—retrieved with an open-source 
NLP toolkit from spoken patient conversations—could 
help epileptologists to differentiate between epileptic 
and non-epileptic seizures.45 Considering the unique 
features and superior performance of LLMs in retriev-
ing hidden information from text, LLMs can identify 
overlooked or misunderstood clinical information to 
improve diagnostic performances of current clinical de-
cision models.

Finally, with the availability of (future) multi-model 
driven LLMs,25 the ability and performance to diagnose 
PWE by integrating all information available during con-
sultations will increase. This availability could include 
language sources like referral letters, patient question-
naires, audio-recorded anamnesis and hetero-anamnesis, 
EHR content, and (home) videos of seizures. Diagnostics 
such as genomics, imaging, raw EEG time series, and lab-
oratory tests can be added to the equation.

3.2.2  |  Personalized care and stratifying 
patient groups at risk

An ongoing challenge in epilepsy management is to tai-
lor treatment after clarifying the diagnosis. Information 
on treatment response, side-effects, and drug-resistance 
for the individual patient—combined with the doctor's 
knowledge on efficacy and potential side effects—would 
ideally guide these decisions.46 Even more, individual 
patient characteristics such as medical history, personal-
ity traits, genomics, and epilepsy traits may help to select 
the optimal therapy.47,48 A recent study reviewed the cur-
rent available clinical decision models in epilepsy man-
agement and concluded that the utility of these models 

remained to be determined.49 Modest sample size, lack of 
external validation, and statistical challenges contribute to 
the eventual clinical integration. From a data perspective, 
an additional limitation of these decision models is the re-
stricted use of structured texts or pre-defined clinical vari-
ables. Advanced NLP models like LLMs, however, allow 
the exploration of unstructured text to retrieve relevant 
clinical information. For example, Vulpius and colleagues 
showed that validating epilepsy diagnosis and stratifying 
patients into different epilepsy types from (unstructured) 
EHRs was feasible, using a named-entity recognition 
(NER) algorithm. By applying this text-mining approach, 
the algorithm was able to identify a cohort of PWE with 
a false discovery rate dropping to 4% in International 
Classification of Disease, Tenth Revision (ICD-10)–reg-
istered epilepsy patients and assign focal or generalized 
epilepsy type for 92% of those patients with an unspeci-
fied type.50 A forthcoming step in this process is forecast-
ing comorbidity, treatment complications, and disease 
outcomes based on available data. Domain-specific LLMs 
such as Foresight, a GPT-based model fine-tuned with 
information from EHRs, are now becoming available for 
medical forecasting in the individual patient.51 Models 
like Foresight are particularly appealing for improving fol-
low-up of complex cases of PWE, as they can extract lon-
gitudinal clinical information from unstructured EHRs. 
Temporal modeling of available (unstructured) EHRs 
could help predict therapy response and forecast refrac-
tory epilepsies and epilepsy-related comorbidities such as 
cognitive or behavioral deficits at later stages. This tempo-
ral profiling may lead to preventive actions and improved 
tailored counseling. It is notable that the application of 
LLM is not restricted to language. Wu and colleagues 
showed that with some model adjustments, EEG time-
series can be used in a BERT model to predict seizures in 
time-frequency domain.52 This explorative study may set 
an example in the epilepsy research field for integrating 
LLM models with neurophysiological measurements aim-
ing to forecast seizure risks in patients and/or outcomes of 
surgical and therapeutic interventions.

3.2.3  |  Improving patient knowledge and  
compliance

Non-adherence, intentional or non-intentional, is a 
severe problem in epilepsy care associated with in-
creased mortality, morbidity, and health care costs.54,55 
Education, behavioral, and mixed interventions are 
ways to improve adherence in PWEs.56 Time limitations 
in the outpatient department and/or non-availability 
of an epilepsy nurse consultant are restrictions to im-
plement face-to-face consultation. To this end, virtual 
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interactive sessions can help improve compliance and 
the avoidance of seizure triggers.57 Epilepsy-specific, 
LLM-trained chatbots would ideally fit in this regimen, 
being always available for PWE. Questions could range 
from lifestyle oriented (e.g., when am I allowed to drive 
again? What sports are considered as high risk?) therapy 
related (e.g., what do I have to do when I missed one dose 
of anti-seizure medication? Are my current complaints 
(known) side-effects?) to prognosis (e.g., when will I be 
declared cured?). Despite the appealing deployment of 
LLM-trained chatbots, the quality and applicability will 
depend on the quality of the underlying model and the 
information provided. This is a crucial issue, and further 
consideration is a necessity prior to implementation. 
Furthermore, LLMs could help to personalize current 
patient brochures to better highlight relevant complica-
tions based on the available clinical data, such as EEG 
outcomes (photosensitivity), type of genetic mutation 
(genotype–phenotype), choice of therapy (antiseizure 
medication, ketogenic diet, or vagus nerve stimulation), 
or comorbidities (organ-specific or development). In a 
recent study, Kim and colleagues evaluated the quality 
output of ChatGPT in answering commonly asked ques-
tions by PWE. The authors concluded that ChatGPT is 
a reliable tool for providing epilepsy-related informa-
tion, especially on lifestyle-related issues, and could as-
sist the epileptologist in the counseling and education 
of PWE.52,53

3.2.4  |  Outsourcing time-consuming 
clinical work

In addition to involvement in diagnosis, treatment, and 
patient education, LLMs can also take over more routine 
tasks of the clinician. Like other physicians, clinical epi-
leptologists or neurologists seeing PWE are coping with 
an increasing administrative load.58 Because LLMs excel 
in generating and transforming texts, they can assist in 
drafting medical letters. Creating textual (or graphic) 
patient information materials is a more complex task to 
improve personalized communication between involved 
(health) parties.4 Given the current limitations of LLMs, 
final output should be supervised and controlled by the 
responsible clinician.

4   |   DISCUSSION

We highlighted and introduced the most commonly used 
LLMs and elaborated on the challenges and opportuni-
ties of integrating generative AI models in epilepsy care 
and research. This critical review does not discuss the 

methodological issues of LLM studies systematically, 
which could have resulted in selection and information 
bias.

4.1  |  Current limitations of LLMs

4.1.1  |  What are the common pitfalls and 
biases of LLMs in the medical domain?

Like any other AI model, LLMs are not infallible, and er-
rors can arise for various reasons (Table 3). A particular 
challenge that current models face is to critically appre-
hend information, especially when tasks (or prompts) 
are more complex. This challenge could result in the in-
terweaving of errors and biases, and the use of faulty in-
formation, leading to incorrect conclusions by its users, 
especially when overly relying on these models (i.e., au-
tomation bias). Dratsch and colleagues demonstrated that 
this automation bias would likely influence radiologists’ 
performance when using automated decision-making 
software, especially when inexperienced.59 It is not un-
likely that a similar situation can arise when integrat-
ing LLMs into epilepsy care. Boßelmann and colleagues 
provided two illustrative clinical examples of epilepsy, in 
which ChatGPT provided incorrect suggestions for epi-
lepsy surgery and related a genetic variance incorrectly 
to epileptogenesis.8 Erroneous suggestions of LLMs can 
thus lead to inappropriate treatment strategies and incor-
rect diagnosis, particularly when the (professional) user 
is inexperienced or unable to critically apprehend the 
premises on which the model output is made. A solution 
is adding a probability score to the model output to clarify 
for the user the level of accuracy, ideally accompanied by 
relevant references. This also holds for the deployment of 
LLM-trained chatbots.

The output of current LLMs often appears overconfi-
dent due to two different phenomena: models are prone 
to “hallucinate” and “hedge.” Most LLMs are trained on 
a fixed data set at a certain time point with no access to 
recent and up-to-date information. Inaccessibility to re-
cent information or overrepresentation of outdated in-
formation can result in the fabrication of incorrect but 
plausible-sounding answers (i.e., hallucinations).60,61 
Hedging is the tendency of LLMs to give long-winded 
answers when trying to nuance the outcome and could 
lead to automation bias because users are more likely 
to trust weighted answers.3,18 Overconfidence of LLMs 
can be alleviated partially by improving the calibration 
of future models in which a better agreement is reached 
between the predicted and observed correctness of the 
model output, but this is currently limited.62 More recent 
ChatGPT versions already exhibit a reduced tendency 
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to hallucinate and hedge.2 From the user's perspective, 
several actions can be taken: give access to relevant in-
formation through an external search engine, fine-tune 
models to domain-specific, validated data sets, or pro-
vide relevant information with a prompt.16 It is import-
ant to note that when consecutive prompts are given, 
LLMs tend to forget information from previous inputs. 
As a result, applicability in longer medical conversa-
tions may be limited. These challenges are particularly 
crucial to consider in epilepsy care. PWE typically use 
different sources of information to inform themselves, 

but misinformation on epilepsy is abundant, especially 
on the non-(medically) moderated internet, including 
social media.63 Because generic LLMs, such as ChatGPT, 
typically use all available information for output gener-
ation, misinformation can be easily integrated into its 
responses. An approach to overcome this limitation in 
future epilepsy-specific LLM development is to build 
an epilepsy-data library of medically reliable sources.20 
Accuracy assessment is pivotal for LLM studies, albeit 
sometimes sparsely described. Because generative LLMs 
essentially learn probabilistic associations between 

T A B L E  3   List of LLM limitations and solutions.

Limitation Description Solution(s)

Limited world 
knowledge

LLMs do not know of recent events or expert topics Inserting relevant knowledge in prompt

Access to external search engines

Fine-tuning to new data

Knowledge bias Preference by LLMs for (incorrect) information because of, 
e.g., volume in training data

See “Limited world knowledge”

Better balanced training data

Hallucinations Fabrication of nonsensical and incorrect information by 
LLMs

See “Limited world knowledge”

Fine-tuning to reduce tendency for 
hallucinations

Hedging LLMs giving long-winded answers for nuanced topics See “Limited world knowledge”

Fine-tuning to reduce tendency for hedging

Limited context window LLMs forget previous input/output over longer conversations

Input sensitivity Small differences in input can lead to different outputs by 
LLMs

Prompt-engineering

Feedback through prompts

Instruction refusal LLMs may refuse to follow instructions in prompt Prompt engineering

Feedback through prompts

Fine-tuning to better follow instructions

Difficulty with complex 
tasks

LLMs may have difficulty with mathematical or other 
complex tasks

Integration with other tools

Feedback through prompts

Small working memory LLMs cannot retain much information while “thinking” Output intermediate steps

Autoregressive property GPT models cannot reevaluate previous output because of the 
forward nature of word prediction

Social bias LLMs may perpetuate harmful biases related to race, gender, 
disability, and so on, from their training data

Filtering of biased content from training 
data

Fine-tuning

Accessibility bias 
(language)

Limited LLM access for certain demographic groups because 
of lower performance in certain languages

Including more content of other languages 
in training data

Accessibility bias  
(commercialization)

Limited LLM access for certain demographic groups because 
of commercialization

Open-source initiatives that provide data 
and LLMs

Toxicity LLMs can produce toxic content that is prompted deliberately 
or non-deliberately by the user

Filtering of biased content from training 
data

Fine-tuning

External systems for censoring output

Censoring Censoring output could remove harmless output and ignore 
harmful output

Note: The limitations and solutions listed here are non-exhaustive and may not apply to all LLM models. In general, many of these limitations will likely be 
addressed by future generations of LLMs.
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words, it is important to understand how different fac-
tors contribute to inaccuracy. A lack of recent content 
or topic-related data affects pre-training and model out-
put and calls for model fine-tuning and external vali-
dation.24 In a study on predicting seizure recurrence in 
children, Beaulieu-Jones and colleagues, therefore, used 
a clinical-oriented LLM, supplied with extracted data 
from clinical notes, and tested model performance in an 
external cohort.41

4.1.2  |  Is censoring harmful output 
effective and needed?

LLMs are prone to perpetuate biases that are pre-
sented in training data. In addition to knowledge 
bias (Table  3), LLMs are susceptible to social biases. 
Underrepresentation of minorities and specific groups 
of people in training data could reinforce social biases 
related to gender, race, religion, and disability.64,65 An 
example of representational harm of specific groups 
is the tendency of (older) LLMs to unequally present 
gender representation among different occupations.66 
Recently studies have been published on different miti-
gation strategies to improve inclusivity and diversity in 
LLM.67 Allocation harm—referring to the unfair distri-
bution of resources and opportunities—can potentially 
arise when LLMs are used in decision-making that di-
rectly affects people, such as in health care or career 
opportunities.62,65 Venkit and colleagues demonstrated 
that LLMs like BERT and GPT-2 negatively scored sen-
tences if they contained disability-related words in the 
context of employment, being homebound, self-care, 
and physical abilities.64 PWE—who face disability-
related stigma in various contexts—could be particu-
larly at risk for negative influence from this allocation 
harm. LLMs exhibit lower performance when prompted 
in certain languages because some languages are over-
represented in the training data. This performance dis-
crepancy may lead to accessibility bias between people 
of different nationalities. Similarly, the performance of 
LLMs might be affected by formulation differences in a 
prompt due to age, educational background, or cognitive 
abilities.65 In the case of epilepsy, with a disproportional 
disease burden in people with cognitive impairments or 
in resource-poor areas, this could strengthen the knowl-
edge gap and access to a potential source of valuable 
information.68 One solution is to use the quality of the 
prompt and/or retrieved information as a proxy for the 
users' cognitive abilities and level of knowledge on epi-
lepsy and adjust the output accordingly to improve read-
ability and comprehension.

The issues raised contribute to a so-called alignment 
problem: do LLMs (continue) to align with human in-
terests and values? As LLMs continue to learn and adapt 
unpredictably once deployed, anticipating their behav-
ior might become challenging.69 This also includes the 
emergent abilities of larger LLMs, which cannot merely 
be extrapolated from performance of smaller models.70 
Both the alignment problems and “emergent risks” are 
currently addressed in safety discussions on LLMs and 
call for at least some form of control or censoring of out-
put. Several options exist, including some form of human 
intervention, for example, built-in ethical constraints, 
validating and verifying output generation, or switch-off 
procedures.71 Ethical and legal considerations need fur-
ther elaboration to ensure a solid integration into med-
ical care.72 Counterfactual fairness has been proposed 
as a built-in ethical criterion to evaluate the fairness of 
models’ output. For example, what would happen if the 
information was requested by an individual with a dif-
ferent background or (medical) situation?73 Also of con-
cern medical data need protection from unauthorized 
access. Recent studies have showcased unintentional 
and unauthorized output of LLMs due to memorized 
information including personal data, after a so-called 
prompt injection attack.74 Without thorough investiga-
tion and installment of preventive measures, pretrain-
ing on epilepsy text files with personal data is dangerous 
because models are vulnerable to leaks of sensitive in-
formation. Compliance with existing regulations is es-
sential (e.g., Accountability Act, Medical Device and 
General Data Protection Regulation).75 Guidelines are 
needed for clinical personnel before using LLM-driven 
medical tools in clinical decision-making.

4.2  |  Future developments and 
alternatives for LLMs

Large tech companies continue to release improved ver-
sions of LLMs that typically deal with the limitations we 
have discussed. Next to increased model parameters and 
output accuracy that we previously discussed (Table 1), 
token limit in LLMs continues to be improved. First-
generation LLMs typically contained a limit of 512 
tokens, thereby restricting prompt input and model 
output. Recent versions of LLaMA and ChatGPT extend 
token size up to 32 k, which allows modeling of a com-
plete patient track record. Another hurdle to overcome 
is generalizability to languages other than English. 
Models using cross-lingual, multitask fine-tuning, ex-
cellently perform tasks in languages to which they were 
never exposed and outperformed previous models that 
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relied on language-specific transfer learning.76,77 In ad-
dition, we expect a wide range of commercial activities 
from smaller commercial players to assist users in the 
best possible way. Assisted prompting, stepwise output 
generation, and coding are illustrative applications of re-
cently developed LLMs.78 Despite benchmark analyses 
in comparisons with older or competing LLMs, we ex-
pect that most of these models will be (at least partially) 
non-open sourced. Apart from preventing open science, 
this may limit potential censoring and adaptation for 
the public. We await more initiatives of the larger tech 
players in the field to launch open-source models such 
as LLaMA and Open-Assistant, as this would also accel-
erate our understanding of how LLMs work.17,79

A potential application in the medical domain of LLMs 
is integration into clinical decision-support systems.8 
LLMs could combine their medical content and capabili-
ties to extract and analyze patient data to provide clinical 
summaries, draft patient letters, and provide (supportive) 
advice on differential diagnosis and treatment options. A 
large health care software company is piloting the integra-
tion of LLM in hospitals across the United States.72 This 
integration may contribute to the future challenge of 
more (complex) health demands, fewer people employed 
in health care, and improved health care in resource-poor 
settings. In the case of epilepsy, this model could be of 
added value by evaluating different treatment options, ep-
ilepsy surgery planning, or complex genetic testing in 
search of an etiological (genetic) origin. Given the com-
plexity of most clinical questions—and the current chal-
lenges in output generation of LLMs—it is not likely that 
these models will soon function as completely autono-
mous agents. Finally, problems due to alignment and the 
emergent abilities inherent to LLMs call for exploring 
complementary and alternative approaches. A recent ex-
ample is cognitive emulation,* which aims to build a more 
understandable and controllable model that follows a 
more human way of reasoning and handling failure. 
Current efforts include a model architecture based on the 
“thinking fast and slow theory” to constrain AI systems to 
make decisions in a constrained, but more human-like 
and understandable environment.80

5   |   CONCLUSION

We provide an overview of LLMs’ current opportuni-
ties, challenges, and pitfalls. Although we used the field 
of epilepsy as an example, these insights can be easily 
adapted to any other field in clinical (neuro)sciences. 

Similarly, points raised in other domains advancing 
the integration of LLMs in clinical care—such as radi-
ology—should be considered a valuable source of in-
formation.4 A particular challenge here is the pace of 
model development. Current developers are improving 
model performance with an unprecedented speed, pro-
viding potential users with a variety of new options on 
an almost monthly basis. Most of these LLMs are closed-
sourced applications, so a thorough (academic) under-
standing remains limited. Recent jailbreak attempts 
have provided a better understanding of the robustness, 
reliability, and working mechanism of some LLMs,81-83 
but in-depth information on vector construction and at-
tention attribution remains partly unclear. Therefore, 
future debates in the scientific community should in-
clude whether these models are falsifiable.

The era of NLP has provided valuable tools for deriv-
ing information from unstructured text that can assist the 
clinician in daily practice.9,33,34 With the generative pos-
sibilities of modern LLMs, new possibilities arise to fur-
ther improve epilepsy care. Careful use and knowledge of 
possible biases are continuous challenges, especially for 
PWE, with limited possibilities for weighing the model's 
output. And yet, when used appropriately, LLMs provide 
an excellent opportunity for providing better patient edu-
cation and self-management behavior for PWE, especially 
in areas with limited access to health care. A proposition 
for the stepwise introduction of LLMs is to start with low-
stake situations (i.e., summarizing patient information, 
generating standard clinical content) rather than more 
complex clinical cases that include therapeutic advice.8 
Finally, throughout this review, we mentioned some con-
siderations for careful use of current LLMs for clinical 
assistance. We expect more-robust, domain-specific spe-
cialization of open-sourced medical LLMs soon, enabling 
further integration of LLMs in epilepsy care and research 
after careful ethical consideration and legal approval.84
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