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Pathogenic germ line heterozygous variants in MECOM (myelodysplastic syndrome[MDS]1 and EVI1
complex locus) are associated with an autosomal dominant bone marrow failure (BMF) disorder
characterized by radioulnar synostosis (RUS) often accompanied by amegakaryocytic thrombocyto-
penia (RUSAT2; Mendelian Inheritance in Man number 616738). MECOM is a transcription factor that
is essential for hematopoietic stem cell self-renewal, and the loss of MECOM decreases absolute long-
term hematopoietic stem cell numbers.1 Several differentially spliced transcripts are encoded by the
MECOM locus resulting in MDS1, MDS1-EVI1, and EVI1 isoforms. It has been demonstrated that these
isoforms are involved in their own transcriptional regulation through distinct promoter regions and have
an effect on the maintenance and transformation of hematopoietic stem and progenitor cell
populations.2

Individuals with MECOM-associated syndrome display variable clinical presentations ranging from no
hematological manifestations to severe BMF with or without skeletal abnormalities.1,3 Other features
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include clinodactyly, cardiac and renal malformations, hearing loss,
and B-cell deficiency. Most individuals eventually progress to
pancytopenia and require hematopoietic stem cell transplants at
relatively young ages.3-5 Skeletal abnormalities, particularly RUS,
are seen predominantly in individuals with missense variants within
the eighth and ninth zinc finger motifs of MECOM.4,6 However,
there are reports of affected individuals with premature termination
variants or constitutional deletions with skeletal involvement.7,8

Clinical and genomics data from germ line MECOM variant carriers
were collected from the Centre for Cancer Biology (Adelaide,
Australia), Peter MacCallum Cancer Centre (Melbourne, Australia),
Radboud University Medical Center (Radboud, The Netherlands).
All procedures in this study involving human participants were
performed in accordance with the Declaration of Helsinki. Studies
were approved by institutional human research ethics committees
and/or institutional research boards. All participants signed an
informed consent form to share genomics and protected health
information.

Here we report 15 cases (3 families and 5 de novo) of MECOM-
associated syndrome, with onset of symptoms varying from in
utero to late adulthood (Figure 1A-F). Our cohort represents the
spectrum of this syndrome with individuals presenting with (1)
classical RUSAT, (2) BMF (ranging from mild to severe) without
RUS, and (3) RUS without hematological manifestations. Detailed
information on clinical history and classification of germ line
MECOM variants as per the American College of Medical
Genetics guidelines are included in supplemental Information,
Table 1, and supplemental Table 1.

Herein, we show that part of the variability in hematological pre-
sentation may be attributable to spontaneous reversion of germ line
variants observed in some affected individuals. Our study identifies 7
of 15 affected individuals who show spontaneous resolution, allevi-
ation of hematological symptoms, or late onset of hematological
manifestation of MECOM-associated syndrome. For 4 of 6 individ-
uals (3-II-4, 4-II-4, 5-II-1, and patient 11), amelioration of symptoms
appears associated with somatic genetic rescue, in the form of copy
neutral loss of heterozygosity of chromosome 3q encompassing
MECOM (Figure 1H; supplemental Figures 2-4; supplemental
Information), thereby duplicating the residual wild-type allele in an
expanding clone. A chromosomal rearrangement involving the
MECOM locus was detected by fluorescence in situ hybridization in
a small subset of cells in 7-II-1. However, the consequence of this
event at the cell differentiation/fitness level remains to be estab-
lished. For 2 of 6 individuals, an explanation for mild presentation or
symptom resolution remains enigmatic: 2-II-6 displayed spontaneous
resolution of hematopoietic symptoms, whereas 4-II-1 has been free
of hematological symptoms for most of her life. Longitudinal analysis
of variant allele fractions in both these individuals showed no evi-
dence of allelic imbalance (supplemental Figures 5 and 6). Somatic
genetic rescue has been reported in several genetic diseases
including skin disorders (eg, ichthyosis with confetti9 and epi-
dermolysis bullosa10) and BMF syndromes (eg, Fanconi anemia,11

Diamond Blackfan anemia,12 Wiskott-Aldrich syndrome,13 and dys-
keratosis congenita14), with only 1 report in MECOM-associated
syndrome.15 Spontaneous normalization of blood counts and
absent/mild hematopoietic involvement in carriers have been
described in the literature; however, there has been limited
information/follow-up as to the mechanism.3,6,16,17
3438 RESEARCH LETTER
Most reported MECOM cases have had allogeneic bone marrow
transplants at relatively young ages, which could explain relatively
low frequency of progression to myeloid malignancy in 5% of
patients (3 adult MDS cases and 1 pediatric acute myeloid leu-
kemia of 80 individuals18).3,5,8 The findings of aplasia with
dysplastic features in 1-II-5 and MDS in 5-II-1 adds 2 more cases of
myeloid dysplasia in MECOM-associated syndrome. Notably, all 3
older individuals within our cohort (4-II-1, 4-II-4, and 5-II-1) dis-
played somatic variants in known age–related clonal hematopoiesis
genes (supplemental Figure 7). Acquisition of somatic variants in
genes such as ASXL1, DNMT3A, and TET2 have been linked with
improved hematopoietic stem cell fitness and self-renewal.19 Both
3-II-4 and 4-II-4 also had transient 20q loss events (a common
karyotypic abnormality observed in myeloid disorders and aging
population20) in their surveillance marrows. Intriguingly, 4-II-1 and
5-II-1 also have somatic ETV6 variants, which is not usually
reported in an age-related context. Although the presence of such
somatic alterations likely improves hematopoietic output, it may
also signify an elevated risk of myeloid malignancy development,
particularly with advancing age. Consistent with this, in addition to
clonal haematopoiesis, 4-II-4 is beginning to exhibit dysplastic
features in >1 lineage (supplemental Figure 2).

In the dynamic hematopoietic environment, demand-adapted
hematopoiesis can drive mosaicism down 2 roads: clonal evolu-
tion through the acquisition of deleterious variants leading to
cancer; or alternatively, revertant mosaicism resulting in partial/
complete rescue of phenotype. Somatic genetic rescue is an
important factor to consider in scenarios such as carriers with mild
phenotype, selection of tissue sources for identification of causa-
tive lesion in individuals in remission, and use of patient-derived cell
lines for drug screening. Understanding the mechanisms of rever-
tant clonal selection in vivo and in vitro will open windows for
rational correction and selection protocols for effective therapeutic
intervention in inherited BMF disorders such as MECOM-
associated syndrome.

Strikingly, there were 12 pregnancy losses of a total of 16 preg-
nancies in 5 mothers for whom detailed information regarding
pregnancies was available (supplemental Table 2) within our
cohort. This is a higher rate of loss (75%) than expected preg-
nancy outcomes in the general population (15%-25%) as well as
other inherited BMF syndromes (12%-20%).21,22 We observed
recurrent pregnancy losses (including late losses) in 1-I-2, 4-II-1,
and 5-II-1, all of whom are carriers of MECOM variants (Figure 1).
4-I-2, who tested negative for the MECOM variant and whose
husband (4-I-1) displayed MECOM-associated phenotype, expe-
rienced stillbirth at 8.5 months of gestation (4-II-3), raising the
possibility that pregnancy loss can also occur from MECOM-
associated complications intrinsic to the developing fetus. Her
remaining 3 children displayed symptoms of MECOM-associated
syndrome with 2 testing positive for the variant, whereas the third
could not be assessed due to unavailability of samples. However,
we were unable to ascertain the MECOM status for the fetus. It is
also worth noting that 2-I-2 and 3-I-2 (both wild-type for MECOM)
have also experienced pregnancy losses. We cannot comment on
whether ≥1 individuals are gonadal mosaics for the MECOM
variants because we are unable to determine the MECOM
status of the fetuses due to unavailability of material for genetic
testing.
9 JULY 2024 • VOLUME 8, NUMBER 13
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Figure 1. Pedigrees, phenotypes, and genotypes of families and individuals carrying rare germ line MECOM variants. (A-F) Pedigrees with germ line MECOM

variants. Affected individuals (gray),MECOM mutation carriers (+), MECOMWT (−). (G) X-ray images from 3-II-4 demonstrating RUS and absent patella. (H) Copy neutral loss of

heterozygosity in 3-II-4 across chromosome 3q encompassing the MECOM germ line variant and leading to somatic genetic rescue. (I) Distribution of germ line MECOM variants

(NM_004991.4) visualized using ProteinPaint web application. AA, aplastic anemia; ECT, ectopic pregnancy; FDIU, fetal death in utero; SAB, spontaneous abortion; TOP,

termination of pregnancy.
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Table 1. Genotypes and phenotypes of affected individuals carrying rare germ line MECOM variants

Patient

ID

cDNA

(NM_004991.4)

Protein

(NP_004982.2) Sex

Age at

presentation HSCT (age)

Somatic

genetic

rescue

Additional somatic genetic

changes

Hematopoietic

abnormalities (age at

diagnosis) Skeletal abnormalities

Cardiac/vascular

abnormalities Other abnormalities

1-I-2 c.2577+4A>T p.(Arg830Serfs*21)
p.(Val831Cysfs*11)

F 15 y Haploidentical
HSCT (36 y)

Not
detected

None detected Pancytopenia and anemia
(15 y)

Short stature,
brachydactyly, short toe,
proximal placement of
hallux, short proximal
phalanx of hallux, short
proximal phalanx of fifth
finger, and cholelithiasis

Ventricular septal defect

1-II-5 c.2577+4A>T p.(Arg830Serfs*21)
p.(Val831Cysfs*11)

F In utero NA N Not analyzed Aplasia with dysplastic
features (in utero)

Preaxial polydactyly,
supernumerary ribs, and
coronal cleft vertebrae

None reported Fetal Hydrops,
splenic hemosiderin
deposition, and
small placenta

2-II-6 c. 1174delT p.(Cys392Alafs*29) F 9 mo N Not
detected

None detected • Thrombocytopenia
and transient low
relative B-cell
numbers (9 months)

• Hypocellular bone
marrow with
complete absence
of megakaryocytes,
dyserythropoiesis
and left shifted
granulopoiesis with
abnormal
granulation

• Spontaneous
recovery (3 y)

Not present Mild aortic root dilatation Congenital hearing loss

3-II-4 c.2873_2875delTTA p.(Phe958_Ser959del
insCys)

M Birth N cnLOH
chr3q

Transient del(20q) • Neonatal
thrombocytopenia
managed with
multiple platelet
transfusions
followed by
spontaneous
recovery

• Subsequent mild
pancytopenia and
hypocellular bone
marrow

Proximal RUS, hypoplastic
thumbs, short, broad
fingers, short fifth digits,
and coalition of right
capitate and hamate, and
bilateral absent patellae

Mild mitral valve prolapse

4-II-4 c.816dupT p.(Pro273Serfs*2) M Birth N cnLOH
chr3q

Transient del(20q)
ASXL1 p.(Arg860Glufs*7)
ASXL1 p.(Leu775*)

• Pancytopenia
• Aplastic anemia

(11 y)

Club foot and small patellae Aortic root dilatation
progressing to aortic
aneurysm and mitral valve
defect

4-II-1 c.816dupT p.(Pro273Serfs*2) F 59 y N Not
detected

DNMT3A p.(Leu504Trpfs*147)
ETV6 p.(Ser139Tyrfs*14)
TET2 p.(Cys973*)
TP53 p.(Ala276Asp)

• Mild intermittent
thrombocytopenia
and neutropenia

• Hypocellular bone
marrow

Small patellae Aortic root dilatation Bicornuate uterus, mild
sensorineural hearing
loss, cataract (50 y), and
bilateral scarring of
kidneys with normal
function

5-II-1 c.2889C>G p.(Asn963Lys) F Childhood
(exact age
unknown)

N cnLOH
chr3q

ASXL1 p.(Gly646Trpfs*12)
SETBP1
p.(Ser869Asn) EZH2
p.(Tyr733Phe)
EZH2
p.(Cys609_Ser610delinsTyr)
ETV6 p.(Arg369Trp)

• Aplastic anemia in
childhood

• Diagnosed with
myelodysplastic
syndrome (40 y)

Clinodactyly in fingers and
toes

None reported Hearing impairment, locally
recurrent anal squamous
cell carcinoma,
gynecological warts,
cataracts, and glaucoma

F, female; HSCT, haematopoietic stem cell transplant; M, male; MUD, matched unrelated donor; N, no; NA, not applicable; VSD, ventricular septal defect; Y, yes.
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Table 1 (continued)

Patient

ID

cDNA

(NM_004991.4)

Protein

(NP_004982.2) Sex

Age at

presentation HSCT (age)

Somatic

genetic

rescue

Additional somatic genetic

changes

Hematopoietic

abnormalities (age at

diagnosis) Skeletal abnormalities

Cardiac/vascular

abnormalities Other abnormalities

6-I-1 c.2905C>T p.(Arg969Cys) M 4 y N Not
detected

Not analyzed No abnormalities Bilateral RUS-surgically
corrected at age 4

None reported

6-II-1 c.2905C>T p.(Arg969Cys) M 2 y N Not
detected

Not analyzed No abnormalities Bilateral RUS and clubfeet Small patent ductus
arteriosus/patent
foramen ovale,
hemodynamically not
significant

Slightly cupped ears with
borderline normal hearing

Patient 7 c.2813G>A p.(Arg938Gln) M 34 y N Y None detected • Thrombocytopenia
diagnosed at birth

• Mild
thrombocytopenia
and macrocytosis
without anemia
(33 y)

Presumed bilateral RUS
(limited ability to pronate
arms bilaterally), bilateral
club foot, Perthes-like hip
disease,
endochondromata, and
ecchondromata

None Small kidneys without
structural deficits,
nonspecific punctate foci
of T2/FLAIR
hyperintensity in the
peripheral/subcortical
white matter slightly
greater than expected for
patient’s age

Patient 8 c.2776T>C p.(Cys926Arg) F 27 y N Not
detected

Not analyzed Severe thrombocytopenia
and mild leukopenia

Clinodactyly of the thumb,
short toe, unfused
vertebral arch L5, coxa
valga, and cam deformity

None reported

Patient 9 c.3106C>T p.(Arg1036*) M 19 y N Not
detected

Not analyzed Thrombocytopenia Marfanoid habitus, tall
spindly fingers,

hypoplastic thumbs, and
adducted toes

None reported

Patient 10 c.1696G>T p.(Glu566*) F Birth MUD (11 mo) Not
detected

Not analyzed • Thrombocytopenia
diagnosed at birth

• Progressive
pancytopenia (9
mo)

• Profoundly
hypocellular marrow
(9 mo)

Retrognathia Patent foramen ovale and
pulmonary branch
stenosis (resolved
without intervention at 2
y)

Congenital conductive
hearing in loss both ears,
with cleft palate
(corrected at 7 mo)

Patient 11 c.2813G>A p.(Arg938Gln) F 17 y N Y Not analyzed • Mild leukopenia and
thrombocytopenia

• Hypocellular
marrow with
absence of
megakaryocytes

Right-sided RUS,
camptodactyly of the fifth
fingers, brachydactyly of
the first toes, and
scoliosis

Bicuspid aortic valve Congenital mixed hearing
loss, bilateral relatively
small kidneys without
structural defects, from
age 18 onwards, chronic
mild renal insufficiency
(stage 2)

Patient 12 Complete loss of
MECOM gene

F In utero N N Not analyzed Hypocellular bone marrow Micrognathia At autopsy: ductus
arteriosus type II with
VSD.

Pericardial fluid and ascites

Generalized edema
hygroma colli
nuchal translucency
cleft palate,
simple ears,
lung hypoplasia due to
pleural fluid, and

unilateral renal agenesis

F, female; HSCT, haematopoietic stem cell transplant; M, male; MUD, matched unrelated donor; N, no; NA, not applicable; VSD, ventricular septal defect; Y, yes.
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Cardiac and vascular abnormalities including atrial septal defect,
ventricular septal defect, and patent ductus arteriosis have been
reported in MECOM-associated syndrome. However, there has
only been 1 report each of aortic coarcatation and aortic root
dilatation.3,23 We have observed 3 cases of aortic dilatation, with 1
progressing to an aortic aneurysm reaching the threshold for sur-
gical correction in our cohort of 15 cases.

Overall, this report adds to the breadth of disease presentations in
MECOM-associated syndrome and expands age of onset varying
from in utero to late adulthood with at least 1 individual being in
relatively good health well into their sixties. It is becoming
increasingly clear that the complex disease presentations of
MECOM-associated syndrome are primarily driven by genomic
location and the nature of the germ line variants, and these pre-
sentations are further complicated by mechanisms such as somatic
genetic rescue and, possibly, somatic compensation by other
genes. The clinical presentation and threshold of somatic genetic
rescue required for phenotypic improvement/reversion is likely
dictated by how severe the impact on protein function/output is in
each affected individual. The prevalence of somatic genetic rescue
provides a rationale for gene-corrected autologous transplantation
or direct gene editing approaches as potential treatments for the
hematopoietic phenotype of MECOM-associated syndrome in the
absence of matched donors. The presence of clonal hematopoiesis
of indeterminate potential in the older individuals, and the finding of
additional cases of myeloid dysplasia in our cohort warrant
consideration of surveillance particularly in older carriers. Given the
high rate of pregnancy losses in these families, they should be
considered for counseling for reproductive planning and the use of
preimplantation genetic diagnosis to reduce the risk of future
pregnancy losses. Moreover, the variability of presentation can
make accurate genetic diagnosis challenging, and the notable
prevalence of somatic genetic rescue reiterates the importance of
using DNA from nonhematopoietic tissue such as hair follicles or
skin fibroblasts for genetic testing.
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