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Abstract
Purpose: MR-STAT is a relatively new multiparametric quantitative MRI
technique in which quantitative paramater maps are obtained by solving a
large-scale nonlinear optimization problem. Managing reconstruction times is
one of the main challenges of MR-STAT. In this work we leverage GPU hardware
to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible
Bloch simulation toolbox is developed as part of this work that can be utilized
for other quantitative MRI techniques as well.
Methods: The Julia programming language was used to develop a flexible
yet highly performant and GPU-compatible Bloch simulation toolbox called
BlochSimulators.jl. The runtime performance of the toolbox is benchmarked
against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free)
modification of a previously presented (matrix-free) MR-STAT reconstruction
algorithm is proposed and implemented using the Julia language on GPU hard-
ware. The proposed algorithm is combined with BlochSimulators.jl and the
resulting MR-STAT reconstruction times on GPU hardware are compared to
previously presented MR-STAT reconstruction times.
Results: The BlochSimulators.jl package demonstrates superior runtime per-
formance on both CPU and GPU hardware when compared to other exist-
ing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free
MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows
for reconstructions of 68 seconds per two-dimensional (2D slice).
Conclusion: By combining the proposed Bloch simulation toolbox and the par-
tially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be
performed in the order of one minute on a modern GPU card. The Bloch simu-
lation toolbox can be utilized for other quantitative MRI techniques as well, for
example for online dictionary generation for MR Fingerprinting.
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1 INTRODUCTION

In recent years, new transient-state quantitative MRI
(“qMRI”) techniques like MR Fingerprinting1 (“MRF”)
and MR-STAT2 have emerged that drastically reduce
qMRI acquisition times. In MR-STAT, the qMRI problem
is posed as a large-scale nonlinear inversion problem.
Multiple quantitative tissue parameter maps (e.g. T1,T2)
are generated from a single-short scan by fitting a
Bloch-equation-based forward model to the measured,
transient-state k-space samples. A major challenge with
this technique is managing the reconstruction times and
memory requirements of the reconstruction algorithm.
In previous work, MR-STAT reconstruction times have
been accelerated by utilizing CPU-parallelization,3 sur-
rogate modeling4 as well as as algorithmic techniques
that rely on the assumption of Cartesian-based gradient
trajectories.4,5

Since GPU hardware has been demonstrated to result
in runtime performance gains in many different areas of
research, including the field of MRI reconstructions,6,7

it could be beneficial to implement (the computation-
ally demanding parts) of the MR-STAT reconstruction
algorithm on GPU hardware. However, implementing
such an algorithm in a low-level language like CUDA
C/C++ is challenging and time consuming, especially for
MRI researchers whose main area expertise typically does
not include low-level programming.

In this work, we utilized the Julia language program-
ming language8 to implement a GPU-accelerated adapta-
tion of the MR-STAT reconstruction algorithm. Julia is a
relatively new programming language that is free and open
source, and it is designed specifically for scientific pro-
gramming purposes. Together with the CUDA.jl package,9
one can use Julia to write functions that compile down to
native instructions to be executed on GPU hardware. We
will make use of these language features to implement cus-
tom kernels for the computationally demanding tasks of
the MR-STAT reconstruction algorithm.

One of those computationally demanding tasks is
the need to perform Bloch simulations in each voxel at
each iteration of the iterative reconstruction algorithm.
A new Julia Bloch simulation toolbox is developed that
is highly flexible in the sense that it allows users to
implement custom pulse sequences that can then be exe-
cuted on multiple hardware architectures (single CPU,
multithreaded CPU, distributed CPU as well as GPU)
using multiple numbers types (e.g., single- and dou-
ble precision) without code repetition. State-of-the-art
runtime performance is achieved with the toolbox, as
will be demonstrated through benchmarks against sev-
eral existing MR physics-based toolboxes10–13 written in

different programming languages as well as a neural
network-based surrogate modeling toolbox.14 Our Bloch
simulation toolbox is released as a stand-alone Julia
package called BlochSimulators.jl, available at https:/
/github.com/oscarvanderheide/BlochSimulators.jl. The
package could prove to be useful not only for MR-STAT
but also for other computationally demanding qMRI
techniques such as MRF. Another computationally
demanding task is the need to perform matrix-vector
products with the so called Jacobian matrix. In previ-
ous work,3 a matrix-free algorithm was proposed and
implemented on multi-CPU hardware to perform these
operations. In the current work, a partially matrix-free
variation of this algorithm is proposed and implemented
on GPU hardware using custom kernel functions written
in Julia. MR-STAT reconstructions are performed using
BlochSimulators.jl together with the proposed algorithm
and the runtimes are substantially reduced with respect to
previously proposed MR-STAT reconstruction techniques.

2 THEORY

In this section we first provide a high-level overview of
the MR-STAT reconstruction algorithm presented in Ref-
erence 3 and we list the computational bottlenecks that can
benefit from GPU acceleration.

Let di ∈ CNt be the vector of time-domain samples
measured at Nt sampling times t1, … , tNt during an
MR experiment using a receive coil with index i. The
time-dependent forward model si (after spatial discretiza-
tion) that is used to synthesize time-domain samples is
given by

si(t) =
Nv∑

𝑗=1
ci𝑗m(𝜽𝑗 , t)e−2𝜋ik(t)⋅r

𝑗ΔV , (1)

where Nv is the number of voxels within the field-of-view,
ΔV is the volume element for each voxel, r

𝑗
is the vector

of spatial coordinates for voxel 𝑗, ci𝑗 is the receive sensi-
tivity of coil i in voxel 𝑗, 𝜽

𝑗
is the vector of MR-relevant

biophysical tissue properties (e.g., T1,T2, 𝜌, … ) for voxel
associated with index 𝑗, k(t) is the k-space trajectory
and m is the complex transverse magnetization whose
time-varying behavior is obtained from Bloch simulations.
Define the vector si as

si ∶=
[
si(t1), … , si(tNt )

]
∈ C

Nt
.

Note that si depends on the tissue parameters 𝜽
𝑗

for all
voxels 𝑗. Concatenate all tissue parameters into a single
vector 𝜶 and concatenate the data vectors di and signal
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Algorithm 1. Minimize 𝜶 → 1
2
||d − s(𝜶)||22

Require: Initial guess 𝜶0
while not converged do

1. Evaluate forward model s at 𝜶
2. Compute residual: r = d − s
3. Compute gradient: g = Re

(
JHr

)
,

where J ∶= − 𝜕s
𝜕𝜶

4. Solve linear system: Re
(

JHJ
)

p = −g
5. Update parameters: 𝜶 = 𝜶 + p

end while

models si for all coils i into vectors d and s, respectively.
The parameter maps (contained in 𝜶) are then obtained
by numerically solving the inverse problem

𝜶
∗ = argmin

𝜶

1
2
||d − s(𝜶)||22. (2)

using the Gauss–Newton iterative algorithm as outlined
in Algorithm 1.

The computationally demanding steps of this iterative
algorithm are Steps 1, 3, and 4. In Step 1, Bloch simulations
must be performed in each voxel. In Step 3, the gradient
of the objective function is computed, which requires a
multiplication with the Jacobian matrix J whose columns
are given by partial derivatives of the forward model s
with respect to the tissue parameters in all voxels 𝜶. Com-
puting these partial derivatives of the forward model is
typically even more demanding than the Bloch simula-
tions themselves. In Step 4, a linear system involving the
Gauss–Newton matrix JHJ is numerically solved by an iter-
ative solver for linear least squares problems.15 This solver
requires repeated multiplications with J and JH .

The main aim of this work will be to accelerate
MR-STAT reconstructions by using Julia to perform each
of the following computationally demanding tasks on GPU
hardware:

(A) Bloch simulations (Step 1);
(B) Partial derivatives of the forward model s with respect

to 𝜶 (Step 3); and
(C) Matrix-vector products with J and JH (Step 4).

2.1 Bloch simulations

2.1.1 Numerical integration of Bloch
equations

In MRI, individual spin isochromats are modeled as
three-dimensional (3D) vectors M = (Mx,My,Mz) whose

dynamics are described by the Bloch equations:16

dM
dt

= (𝛾B(t) +D)M(t) + M0

T1
. (3)

Here 𝛾 is the gyromagnetic ratio, B(t) is a 3 × 3 matrix
containing the pulse sequence-dependent magnetic field
at each timepoint, D = diag(−1∕T2,−1∕T2,−1∕T1) con-
tains the longitudinal (T1) and transversal (T2) relaxation
times of the spin isochromat, and M0 = (0, 0,Mz,0) is its
equilibrium magnetization.

A commonly used method to numerically integrate
Equation (3) is to manually discretize the pulse sequence
in time, and subsequently, for each time-step, applying a
splitting method17 where first a 3D rotation is applied, fol-
lowed by decay and regrowth operations. That is, given M
at time t, the magnetization at time t + Δt is computed as

M(t + Δt) = eΔtDe−𝛾ΔtB(t)M(t) + (1 − e−1∕T1)M0. (4)

Here e−𝛾ΔtB(t) is the rotation operator, eΔtD the decay oper-
ator and (1 − e−1∕T1)M0 the regrowth term. We refer to
Reference 17 for more details on the splitting approach.

In the presence of spoiling gradients, the extended
phase graph (“EPG”) model18,19 may be more appropriate
signal model. In the EPG model, instead of keeping track
of individual spin isochromats, one tracks the dynamics
of so called configuration states. Like in the case of the
isochromat model, Bloch simulations can be performed by
repeatedly applying rotation, decay and regrowth opera-
tions but in addition, a spoiling operator is required that
shifts configuration states (see Reference 20 for a review of
the EPG framework).

2.1.2 BlochSimulators.jl

In this section we provide a high-level overview of the
design of BlochSimulators.jl: our Julia implementation of
a Bloch simulation framework with a focus on speed and
flexibility.

For both the isochromat and EPG models, func-
tions are written that implement the above-mentioned
rotation, decay, regrowth, and spoiling
(EPG only) operations. The functions are designed to
be both type-stable and nonallocating, and form the core
of the BlochSimulators.jl package. Type-stability allows
Julia’s just-in-time compiler to generate efficient machine
code without having to hard-code, for example, whether
single or double-precision number types are used. This
is useful because, for example, on GPU one might want
to perform computations using 32-bit (complex) floating
point numbers for performance reasons. On the other
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VAN DER HEIDE et al. 621

hand, when precision is more important than runtime
performance, one might want to use 64-bit floating point
numbers instead.

The operator functions are nonallocating in the sense
that relatively expensive heap allocations are avoided dur-
ing their execution. This is in general beneficial for run-
time performance. An important ingredient for achieving
non-allocating code is the StaticArrays package which
introduces arrays whose sizes are known at compile time
and thus allows them to be stack-allocated. In BlochSimu-
lators.jl, the isochromats and configuration state matrices
are stored using StaticArrays.jl.

Simulators for entire pulse sequences can in prin-
ciple be assembled by combining the individual opera-
tor functions. Because the individual operator functions
are type-stable and non-allocating, a proper combina-
tion of these functions should result in type-stable and
non-allocating sequence simulations as well.

In BlochSimulators.jl, we follow a convention where
computing the magnetization at echo times (without tak-
ing into account gradient encoding) is separated from
computing the magnetization at other readout times (with
gradient encoding) and evaluating the volume integral in
Equation (1). The reason for this separation is twofold.
Firstly, for some applications such as computing MRF dic-
tionaries, only the magnetization at echo times without
gradient encoding is needed. Secondly, when perform-
ing 2D scans, slice profile correction mechanisms typi-
cally involve a summation over multiple simulations per
voxel using either different locations of isochromats in the
slice-select direction or different effective radiofrequency
(RF) flip angles.21 After the net transverse magnetization
(i.e., after summation) in a voxel at some echo time t∗ has
been computed, a simplification of Equatio (4) allows the
net transverse magnetization at another time t during that
readout to be computed analytically as

M(t) = M(t∗)e−
t−t∗
T2 e−2𝜋i(t−t∗)ΔB0 e−2𝜋ik(t)⋅r

, (5)

where r is the spatial position of the voxel, k is the k-space
trajectory andΔB0 is the local off-resonance. The net mag-
netization in a voxel at other readout times can thus be
computed after the summation necessary for the slice pro-
file correction, therefore reducing the total number of
computations. The two different timescales (i.e., between
echo times and between sample points within a readout)
are illustrated in Figure 1. Note that Equation (5) assumes
there is no spin motion. Spin motion is currently not
supported by BlochSimulators.jl.

In order to compute the magnetization at echo
times for a particular sequence, a new custom Julia
struct (subtype of either IsochromatSimulator

F I G U R E 1 In BlochSimulators.jl a convention is followed
where at first only the magnetization at the different echo times is
computed. Equation (4) is used to propagate the magnetization state
from the ith echo time to the (i + 1)th echo time. Typically there are
RF excitations (indicated by the waveforms on the RF line) in
between echo times which may require multiple timesteps to be
properly simulated. Given the magnetization at the ith echo time,
the magnetization at the 𝑗th sample point of that readout (the blue
bar on the ADC line) is computed analytically using Equation (5).

or EPGSimulator) with fields that are necessary
to describe the pulse sequence (e.g., pulse repetition
time [TR], echo time [TE] and flip angles). Given the
sequence struct, a new method must be added to the
simulate_magnetization! function which uses the
fields of the struct, together with the above-mentioned
core operators, to implement the actual pulse sequence.
Similarly, for each type of gradient trajectory, a custom
Julia struct (subtype of AbstractTrajectory) must
be introduced. A graphical overview of the code struc-
ture underlying BlochSimulators.jl is shown in Figure 2.
Further details on the code structure, implementation
details and examples are provided in the online docu-
mentation available at (https://oscarvanderheide.github
.io/BlochSimulators.jl/dev/). Note that BlochSimulators.jl
does not provide a default time discretization step that
applies to all simulators. Each simulator comes with its
own (user-defined) discretization scheme instead that,
based on knowledge of the underlying pulse sequence,
may alternate between using Equation (4) with small
timesteps during RF excitation and the analytic update
step Equation (5) when no RF is applied.

2.2 Partial derivatives of the forward
model

To compute partial derivatives of the forward model with
respect to the tissue parameters 𝜶, we use the finite dif-
ference technique22 to compute the partial derivatives at
echo times first. The finite difference technique directly
translates the GPU acceleration from BlochSimulators.jl
to the partial derivative computations. Given the partial
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F I G U R E 2 Graphical
overview of the code structure
underlying the BlochSimulators.jl
package. For further details, we
refer to the online documentation
available at https:/
/oscarvanderheide.github.io
/BlochSimulators.jl/dev/.

derivatives at echo times, the partial derivatives at other
readout times are computed by manually differentiating
the analytical expression from Equation (5) and, again,
custom CUDA kernels are written in Julia to execute these
partial derivative computations on GPU hardware.

2.3 Matrix-vector products with J
and JH

Computing the gradient in step 3 of Algorithm 1 involves
a matrix-vector multiplication with JH . Numerically solv-
ing the linear system in step 4 of Algorithm 1 also involves
repeated multiplications with J and JH . In previous work,3
it was argued that storing J requires more computer
memory than typically available and a matrix-free imple-
mentation was proposed that computes the matrix-vector
products without having to store J into computer mem-
ory. However, this method requires recomputation of the
entries of J for each matrix-vector multiplication. While
memory-efficient, the method involves many redun-
dant computations. In this work, we propose a partially
matrix-free implementation instead, where at first only
the partial derivatives of the transverse magnetization at
echo times are computed and stored in computer memory.
For 2D MR-STAT reconstructions at clinically relevant

resolutions it should be possible to store these arrays on
modern GPU cards, see Supporting information S1.

Having stored arrays with partial derivatives at echo
times in memory, matrix-vector multiplications with J and
JH can be then performed in parallel by following slight
modifications of the algorithms presented in Reference 3:
instead of recomputing the partial derivatives at all read-
out times, the processes read in the partial derivatives
at echo times and then use Equation (5) (differentiated
w.r.t. the tissue parameters at hand) to compute the val-
ues at the remaining readout times. Pseudo-code for these
algorithms is presented in Algorithms 2 and 3. In this
pseudo-code, we assume for simplicity that only a single
tissue parameter per voxel is considered, that no coilmaps
are used in the reconstruction and that the same number
of samples is acquired during each readout.

CUDA kernels are written in Julia to perform the
partially matrix-free evaluation of Equation (1) and mul-
tiplications with J (Algorithm 2) and JH (Algorithm 3),
respectively.

With tasks A, B, and C being made GPU com-
patible (with the help of BlochSimulators.jl), we arrive
at a GPU-compatible, partially matrix-free MR-STAT
reconstruction algorithm. Example Julia code to per-
form a partially matrix-free MR-STAT reconstruction
on numerical phantom data with a Cartesian gradient
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VAN DER HEIDE et al. 623

Algorithm 2. Partially matrix-free, parallelized algorithm
for computing matrix-vector products Jx

Assumptions: Let {Nr,Ns,Nv} be the total number of
{readouts, samples per readout, voxels}.
Input:
- Matrix with partial derivatives at echo times ̃J ∈ CNr×Nv

computed with a sequence struct
- A trajectory struct describing the gradient trajec-
tory
- Input vector x ∈ RNv

Output:
- Matrix-vector product Jx stored in y ∈ CNrNs

Algorithm Kernel:
Let 1 ≤ t ≤ NsNr be the current process’ global index.
# Compute readout and sample indices
r, s = quotient(t,Nr), remainder(t,Nr)
for v = 1,… ,Nv do

# Load partial derivative at r-th readout
Jr,v = ̃J(r, v)
# Compute partial derivative at s-th sample point
Js,v = 𝜕to_sample_point(Jr,v, tra𝑗ectory, s,…)
# Multiply with input vector and accumulate
y(t) += Js,v ∗ x(v)

end for

trajectory on GPU hardware is available at https://github
.com/oscarvanderheide/mrstat.

3 METHODS

We benchmarked BlochSimulators.jl in terms of runtime
performance against several existing Bloch simulation
packages available online. Benchmarks were performed
on both CPU and GPU hardware, using both the isochro-
mat and EPG model. Secondly, we benchmarked the run-
time of the partially matrix-free MR-STAT reconstruction
algorithm on GPU against previously presented MR-STAT
reconstruction techniques. All CPU-based experiments
were performed on an Intel(R) Xeon(R) W-2245. The
GPU-based experiments were performed on an NVIDIA
RTX A5000 with 24 GB memory.

3.1 Performance benchmarks:
BlochSimulators.jl

Although users of BlochSimulators.jl are encouraged to
assemble their own simulators, example simulators are
provided as part of the source code (see the examples

Algorithm 3. Pseudo-code to compute JHy in partially
matrix-free, parallelized fashion

Assumptions: Let {Nr,Ns,Nv} be the total number of
{readouts, samples per readout, voxels}.
Input:
- Matrix with partial derivatives at echo times ̃J ∈
CNr×Nv computed with a sequence struct
- A trajectory struct describing the gradient trajec-
tory
- Input vector y ∈ CNrNs

Output:
- Matrix-vector product JHy stored in z ∈ CNv

Algorithm Kernel:
Let 1 ≤ v ≤ Nv be the current process’ global index.
# Initialize accumulator
tmp = 0
for r = 1,… ,Nr do#Load partial derivative at r-th read-
out

Jr,v = ̃J(r, v)
for s = 1,… ,Ns do

# Compute partial derivative
# at sth sample point
Js,v = 𝜕to_sample_point(Jr,v, tra𝑗ectory, s,…)
# Multiply with input vector and accumulate
tmp += conj

(
Js,v

)
∗ x(v)

end for
end for
z(v) = tmp

subdirectory). For some of these examples we performed
benchmarks against other online available Bloch simula-
tions toolboxes in terms of runtime performance. For each
of the benchmarked simulators we will describe their pur-
pose, limitations and provide some details on the bench-
mark setup. The scripts used for benchmarking are part
of the source code (see the benchmarks subdirectory).
Within these scripts, the accuracy of the simulators is
assessed using Julia’s isapprox operator. We also note
that BlochSimulators.jl contains unit tests for each of the
core operators (see test/runtests.jl).

3.1.1 “Generic2D/3D” simulator

First, we compared BlochSimulators.jl against an
isochromat-based Bloch simulator written in the C pro-
gramming language written by Hargreaves,10 available at
http://mrsrl.stanford.edu/~brian/blochsim/. The Harg-
reaves Bloch simulator takes as input a vector with time
intervals, together with RF and gradient values and for
each time interval it updates the x, y, and z components
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of a spin isochromat with given T1, T2 and off-resonance
values using Equation (4). One might use such an
isochromat simulator to simulate gradient-balanced pulse
sequences. In BlochSimulators.jl, a sequence simulator
called “Generic3D” was implemented that requires sim-
ilar input vectors and performs the same update steps.
For benchmarking purposes, simulations were performed
to generate dictionaries for 1000 up to 10 000 different
combinations of T1 and T2 values for a sequence with
1120 readouts. The simulations were performed on a sin-
gle CPU using both single- and double precision floating
point numbers. More details of the simulation setup are
described in Supporting Information S2 and the variable
flip angle train used in the simulations is depicted in
Figure S1. For the Generic3D simulator, we generated dic-
tionaries on the GPU as well using 10 000 up to 350 000
combinations of T1 and T2 values. The maximum num-
ber of 350 000 was chosen to be in the order of a typical
MR Fingerprinting dictionary size and requires 2.9 GB
of memory. The Generic3D simulator does not take into
account slice profile effects. For this purpose, a simulator
called Generic2D is also provided. During setup it requires
a vector of different z-locations. Within each voxel, it
performs multiple simulations, one for each different
z-location, and accumulates the resulting magnetization.
The Generic2D simulator is not benchmarked.

The Generic2D/3D (and the Hargreaves) simulators
are “generic” in the sense that they allow arbitrary RF and
gradient waveforms as inputs. The simulators, however,
are not feature-complete and, for example, assume there
is no motion during the sequence and also they do not
support diffusion and magnetization transfer effects.

3.1.2 “pSSFP2D/3D” simulator

Most pulse sequences are repetitive by nature. For
example, in most conventional MR sequences, only the
gradient encoding is different between different repe-
titions of the base sequence block. For transient-state
sequences as used in MR Fingerprinting or MR-STAT
the flip angle typically does change each TR but the
nominal RF excitation waveform is fixed throughout the
sequence. Whereas it would be possible to perform sim-
ulations for such a (transient-state) sequence with the
simulator from Hargreaves or the Generic3D simulator
from BlochSimulators.jl, runtime memory access could
be reduced by incorporating knowledge of the repeti-
tive nature of the sequence into the simulation code. For
example, instead of reading in from memory at each time-
point of the simulation the actual RF field during that
timepoint, the nominal RF waveform could be loaded
once up front and scaled with the desired flip angle each

TR instead. We take this approach with the “pSSFP3D”
(pseudo steady-state free precession23) sequence that is
provided as an example in BlochSimulators.jl. For this par-
ticular sequence implementation, the TR and TE remain
fixed throughout the sequence but the flip angle is allowed
to change each TR. The runtime for this sequence-specific
simulator was benchmarked using a similar setup as used
for the Hargreaves simulator and the Generic3D simulator.
The Generic3D simulator provides no support for motion,
diffusion, magnetization transfer effects or slice profile
effects. A “pSSFP2D” simulator is provided that supports
slice profile effects by summing up simulations with differ-
ent (user-provided) locations along the slice direction for
within each voxel.

3.1.3 “FISP2D/3D” simulator

For a third benchmark, we performed simulations for a
transient-state FISP-type sequence with time-varying flip
angles24 based on the EPG model (additional sequence
simulation details are provided in Supporting Information
S3). In BlochSimulators.jl, a sequence simulator “FISP2D”
was implemented for this purpose. The FISP2D simulator
assumes instantenous RF excitations and fixed TR and TE
throughout the sequence. Slice profile effects are approx-
imated using the partitioned EPG method,21 where mul-
tiple simulations are performed within a voxel, each with
(user-provided) flip angle scaling factors corresponding to
different positions along the slice direction. We compared
this against the FISP-type simulator from SnapMRF,12

an MR Fingerprinting dictionary simulation framework
that runs on GPU hardware and is written in native
CUDA, available at https://github.com/dongwang881107
/snapMRF.

It has been demonstrated that neural networks can be
trained to act as a surrogate model for Bloch simulations
with high accuracy and fast runtime performance.25 For
the fourth benchmark, we compare the FISP simulator
from BlochSimulators.jl against against the recurrent neu-
ral network proposed in Reference 26 (“RNN-EPG”) that
is trained to perform simulations for a FISP2D sequence.
We note that EPG-RNN was trained on sequences for
which the RF excitations always have the same phase.
The calculation of the response of configuration states to
an RF excitation then simplifies and the magnetization
can also be described using real numbers instead of com-
plex numbers. Using type-stability of BlochSimulators.jl’s
kernel function, together with Julia’s multiple dispatch
system, we could use the same FISP sequence implemen-
tation for both scenarios (RF excitations with constant
and time-varying phases). Furthermore, RNN-EPG com-
putes the partial derivatives of the magnetization with
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respect to T1 and T2, respectively, at the same time as
the magnetization itself. For a fair runtime comparison,
we used finite differences to compute the partial deriva-
tives with the FISP2D simulator from BlochSimulators.jl.
A FISP3D sequence that does not take into account slice
profile effects is also included in BlochSimulators.jl (not
benchmarked).

3.1.4 “pSSFP2D” + “Radial” simulator

For the final benchmark, we measure runtimes for evaluat-
ing the forward model (Equation 1) using both BlochSim-
ulators.jl and KomaMRI.jl. KomaMRI.jl is another Julia
Bloch simulation package that allows for evaluation of
the forward model (Equation 1) for arbitrary sequences
and it supports GPU hardware as well. Both toolboxes
were used to simulate the signal from a gradient-balanced,
transient-state sequence with golden angle radial read-
outs. Within BlochSimulators.jl, the pSSFP2D sequence
was used to simulate the magnetization at echo times
first. Subsequently, a radial trajectory implementation was
used to compute the magnetization at other readout times
and simultaneously perform the volume integration in
Equation (1). This radial trajectory stores the starting
position in k-space for each readout together with the
k-space step in between samples. As such, it provides
no support for spin displacement effects during readouts.
KomaMRI.jl does not offer sequence-specific simulators,
but does provide support for spin displacement through-
out the sequence as well as diffusion effects, for example.
The main purpose of this benchmark is to demonstrate
the potential runtime benefits of using sequence/trajectory
specific information in the simulations in situations where
these additional features are not considered necessary. We
performed signal simulations for a sequence of 500 TRs
with 10 000 up to 350 000 voxels using single precision
computations on GPU hardware. Additional simulation
details are provided in Supporting Information S4.

3.2 Performance benchmarks:
MR-STAT Reconstructions on GPU

The Julia GPU implementation of the partially matrix-free
MR-STAT reconstruction algorithm was benchmarked in
terms of runtime performance against the matrix-free dis-
tributed CPU implementation from Reference 3, a sparse
Hessian distributed CPU implementation from Refer-
ence 5 and a neural-network and ADMM implementation
from Reference 4. In all these previous reports, the same
2D in-vivo brain dataset obtained using a clinical 1.5T MR
System (Ingenia, Philips Healthcare) was reconstructed.

For this dataset, 1120 Cartesian readouts were acquired
with gradient-balanced, variable-flip angle sequence with
TE/TR = 3.8 ms/7.6 ms and a total scan time of 8.5 s. The
flip angle train and phase encoding order are depicted in
Figure S1. The field-of-view was set to 224 mm× 224 mm×
5 mm and the reconstructed resolution was 1 mm × 1 mm
× 5 mm. The partially matrix-free GPU implementation
will be used on this same dataset, using 10 outer itera-
tions of Algorithm 1 and a maximum of 20 inner iterations
(Step 4 of Algorithm 1) to reconstruct T1, T2 and proton
density (complex) maps. The quantitative maps will be
compared against the maps obtained using the algorithm
from Reference 3, which we consider to be the reference
implementation for the purpose of this work.

4 RESULTS

In Figure 3, CPU runtimes for Hargreaves’ simula-
tor and the Generic3D and pSSFP3D simulators from
BlochSimulators.jl are shown. The Generic3D simula-
tor outperforms Hargreaves’ simulator by approximately
33%, demonstrating the effectivenes of Julia’s Just-In-Time
compiler to generate efficient machine code. Additionally,

F I G U R E 3 Runtime performance comparison of Hargreaves’
C simulator (double precision only) and the Generic3D and
pSSFP3D simulators from BlochSimulators.jl (single and double
precision) on CPU.
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626 VAN DER HEIDE et al.

the pSSFP3D simulator is seen to be approximately 50%
faster than the Generic3D simulator which showcases
the benefit of exploiting the repetitive nature of a pulse
sequence to reduce runtime memory access. In BlochSim-
ulators.jl it is relatively easy to use its kernel functions
to assemble a simulator corresponding to a specific pulse
sequence. For the pSSFP3D simulator there is a perfor-
mance gain of approximately 20% when single precision is
used instead of double precision. For the Generic3D sim-
ulator, double precision is actually slightly faster, likely
due to different compiler optimizations being performed.
The Hargreaves’ simulator is hardcoded to double preci-
sion and therefore no single precision simulations were
performed.

The design of BlochSimulators.jl allows the Generic3D
and pSSFP3D sequence implementations to be directly
executed on the GPU and the runtime results are shown
in Figure 4. On the GPU we observe significant differences
between single and double precision with the single pre-
cision Generic3D and pSSFP3D simulators being approx-
imately six times and 15 times faster compared to their
double precision counterparts, respectively. Furthermore,
the single precision pSSFP3D simulator is approximately
five times faster than the single precision Generic3D sim-
ulator and performs simulations in 350 000 voxels in 0.22
s. Extrapolating the CPU runtimes for this simulator from

F I G U R E 4 Runtime performance comparison of the
Generic3D and pSSFP3D simulators from BlochSimulators.jl (single
and double precision), this time on GPU. The runtime performance
benefit of using single precision floating point numbers is more
pronounced on GPU hardware.

Figure 3 to 350 000 simulations would result in a runtime
of approximately 140 s. That is, the GPU results in a 600×
speedup in this scenario.

For the EPG benchmark we performed single precision
simulations on GPU hardware using the FISP2D simula-
tor from BlochSimulators.jl, SnapMRF12 and RNN-EPG.26

The results are displayed in Figure 5. Our FISP2D imple-
mentation (annotated with “complex” in Figure 5 to indi-
cate that the RF excitations can have varying phases)
is more than 50 times faster than SnapMRF. This dif-
ference may be explained by different design choices in
the implementation such as using shared memory to
store the configuration states, and further exemplifies the
ability of Julia’s compiler to generate efficient machine
code. When RF excitations are assumed to have constant
phase (annoted with “real” in Figure 5), the FISP2D run-
times decrease by approximately a factor of two. If we
use finite differences to compute partial derivatives with
respect to T1 and T2, the FISP2D simulator is as fast
as RNN-EPG.

In Figure 6 the runtimes for evaluating the for-
ward model Equation (1) using both KomaMRI.jl13

and BlochSimulators.jl are displayed. We observe
that BlochSimulators.jl is faster, with the speedup
factor depending on the number of voxels used in

F I G U R E 5 Runtime performance comparison of a variable
flip-angle FISP-type sequence. The EPG model is used for signal
simulations using an implementation from BlochSimulators.jl
(“FISP2D”), the native CUDA implementation from SnapMRF12

and RNN-EPG.26
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VAN DER HEIDE et al. 627

F I G U R E 6 Runtimes for evaluating the forward model
Equation (1) using both KomaMRI.jl and BlochSimulators.jl on a
gradient-balanced sequence with golden angle radial readouts.

the simulations. For a typical 2D phantom size of
2562 = 65 536 voxels BlochSimulators.jl is approximately
37.5 times faster whereas for 350 000 voxels it is
approximately 27.5 times faster.

Quantitative T1,T2 and proton density maps for the
in-vivo dataset reconstructed using the proposed partially
matrix-free MR-STAT reconstruction algorithm and the
reference implementation from Reference 3 are displayed
in Figure 7, together with absolute relative error maps.

The mean absolute relative errors in T1T2 and pro-
ton density are 0.3%, 0.69%, and 0.4%, respectively. These
small differences stem from finite differences being used
for partial derivative computations as compared to (hand-
written) forward mode automatic differentiation in the ref-
erence. Secondly, single precision computations are being
performed in the proposed GPU implementation while the
reference uses double precision.

In Table 1, reconstruction times for different MR-STAT
reconstruction techniques on the same dataset are
reported. The proposed partially matrix-free approach on
GPU resulted in a reconstruction time of 68 s, almost twice
as fast as the prior state-of-the-art.4 This reconstruction
required 621 MB of GPU memory was required to store the
magnetization at echo times as well as the partial deriva-
tives at each iteration. In Table 2 we further outline the
computationally demanding tasks of the reconstruction
algorithm and what percentage of the reconstruction time
is spent on these tasks. Matrix-vector multiplications with
J form the primary bottleneck, account for approximately
65% of the total reconstruction time.

5 DISCUSSION

In this work, we explored the potential of GPU hardware
for accelerating MR-STAT reconstructions. Rather than
using labor intensive programming language like CUDA
C/C++, the Julia programming language was used to write
GPU kernel functions instead. The standalone software
package BlochSimulators.jl that was developed as part of
this work can be used to perform Bloch simulations using
both the isochromat model and the EPG model. Sequence
specific simulators can be assembled that, for example,
exploit the repetitive nature of pulse sequences. The run-
time benchmarks demonstrated that the performance of
BlochSimulators.jl surpasses that of other Bloch simula-
tion toolboxes developed in static, compiled languages.
Besides using BlochSimulators.jl for forward model eval-
uations in MR-STAT, the package could be used, for
example, for online generation of MR Fingerprinting dic-
tionaries.

Although not demonstrated in the benchmarks,
BlochSimulators.jl also supports multithreaded and
distributed CPU computations. It also generalizes to dif-
ferent number types such as single- and double precision
but also to more exotic number types such as stochastic
variables from the Measurements.jl package that could
be used to propagate uncertainties in certain parameters
(e.g., flip angles) throughout the simulations.

We observed that the EPG-based FISP2D sequence
simulator from BlochSimulators.jl has similar runtime
performance as the recurrent neural network RNN-EPG.
At the same time, it does not require a training phase
and there is no loss of accuracy that is inherent to trained
networks. However, we still believe neural networks can
play an important role in MR-STAT reconstructions. The
RNN-EPG network was trained to be able to predict the
signal for a wide range of varying flip angle trains. For sce-
nario’s where the fixed flip angle trains are fixed, a different
network architecture25 with better runtime performance
may be more suitable and have better performance.

We released BlochSimulators.jl as a new toolbox
rather than modifying/extending existing toolboxes (e.g.,
BlochSim.jl,27 DECAES.jl,28 KomaMRI.jl,13 MRIEPG.jl,29

MRIReco.jl,30 MRIgeneralizedBloch.jl,31 and SpinDoc-
tor.jl32) to focus purely on runtime performance through
custom, sequence specific (GPU) kernels. As demon-
strated, our approach results in significantly faster run-
times as compared to KomaMRI.jl, which uses a generic
sequence format combined with array operations on CuAr-
rays for GPU support (resulting in many kernel launches
per simulation) instead.

BlochSimulators.jl currently lacks some features
which are available in other toolboxes such as a graph-
ical user interface,13 spin displacements during the
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F I G U R E 7 In vivo T1,T2 and proton density maps reconstructed using the proposed partially matrix-free MR-STAT reconstruction
algorithm on GPU hardware (left column) and the reference MR-STAT reconstruction from Reference 3 (middle column). The absolute
relative error maps together with mean absolute relative errors are shown in the right column. The in vivo data was acquired using a
gradient-balanced sequence with varying flip angles and Cartesian readouts.

T A B L E 1 Two-dimensioal in vivo MR-STAT reconstruction
times.

Method Hardware Time

Matrix-free3 96 CPUs 193 min

Sparse-Hessian5 96 CPUs 16 min

ADMM, neural network4 8 CPUs 2 min

Partially matrix-free 1 GPU 68 s

sequence,13 T∗2,28 diffusion,32 and magnetization trans-
fer.29,33 We envision that in the future the best features of
the currently separate toolboxes will be merged to arrive
at a feature-complete, yet highly performant and flexible
Julia Bloch simulation toolbox.

T A B L E 2 Breakdown of computationally demanding tasks
for a two-dimensional in vivo MR-STAT reconstruction with the
partially matrix-free algorithm executed on GPU hardware.

Task Time % of total

Forward model evaluation 6.22 s 9.1%

Partial derivatives at echo times 2.84 s 4.2%

Matrix-vector products with J 44.1 s 64.9%

Matrix-vector products with JH 9.1 s 13.5%

To evaluate the forward model Equation (1), we pro-
posed to first compute the magnetization at echo times
in all voxels, followed by computing the magnetization at
other readout times and evaluating the volume integral.
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VAN DER HEIDE et al. 629

For some intra-voxel effects such as simulating T∗2 decay
using multiple isochromats with different off-resonances
within a voxel, this separation cannot be applied. Another
important limitation is that for high-resolution 3D sim-
ulations, storing the magnetization at echo times in all
voxels may require more memory than what is currently
available on modern GPU cards. To deal with this lim-
itation, the total number of voxels could be partitioned
and the computations could be performed in batches (in
parallel if multiple GPU cards are available). This function-
ality, however, is not yet included in BlochSimulators.jl.

The proposed partially matrix-free algorithm on GPU
results in reconstruction times that are faster than the prior
state-of-the-art ADMM MR-STAT reconstruction tech-
nique4 (68 s vs. 2 min). An additional benefit is that, unlike
the ADMM method, no Cartesian-based gradient encoding
scheme is required and the proposed could therefore also
be applied for non-Cartesian MR-STAT reconstructions.34

The reported 2D in vivo reconstruction time of 68 s is
specific for the currently used acquisition and reconstruc-
tion setup. Increasing, for example, the number of samples
during the acquisition, the number of isochromats per
voxel (for slice profile correction purposes), or the number
of receive coils results in increased computation times.

Despite the speedup achieved in this work, recon-
struction times are still too long for online reconstruc-
tion in clinical practice. To further reduce reconstruction
times, matrix-vector products with the Jacobian J must
be further optimized, for example by incorporating the
difference GPU memory layers into the computations,
using reduced precision or adapting the sparse Hessian
technique.5 In addition, faster, sequence-specific neural
network architectures could be explored for accelerated
Bloch simulations.25 Automatic differentiation tools (e.g.,
Enzyme.jl35,36 and Zygote.jl37) could potentially be used to
accelerate derivative computations.
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only the codeś ease of download, quality of documenta-
tion, and ability to run, but did not consider scientific
accuracy or code efficiency.

DATA AVAILABILITY STATEMENT
The BlochSimulators.jl package is written in the open
source language Julia and is available online at https:/
/github.com/oscarvanderheide/BlochSimulators.jl. The
package is also registered in the General registry of Julia’s

package manager. The benchmarking scripts that were
used to generate Figures 3–6 are found in the benchmarks
folder of the repository. We used v0.2.7 of BlochSimula-
tors.jl (commit 737d40d) in all benchmarks. An example
implementation of the partially matrix-free MR-STAT
reconstruction algorithm on GPU hardware is available at
https://github.com/oscarvanderheide/mrstat. This code
uses simulated data from a numerical brain phantom and
assumes Cartesian readouts trajectories are used.

ORCID
Oscar van der Heide https://orcid.org/0000-0002-8451
-525X
Cornelis A. T. van den Berg https://orcid.org/0000-0002
-5565-6889
Alessandro Sbrizzi https://orcid.org/0000-0003-3276
-4542

REFERENCES
1. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance finger-

printing. Nature. 2013;495:187-192.
2. Sbrizzi A, Heide O, Cloos M, et al. Fast quantitative MRI

as a nonlinear tomography problem. Magn Reson Imaging.
2018;46:56-63.

3. Van der Heide O, Sbrizzi A, Luijten PR, Van den Berg CAT. High
resolution in-vivo MR-STAT using a matrix-free and parallelized
reconstruction algorithm. NMR Biomed. 2020;33:e4251.

4. Liu H, Van der Heide O, Mandija S, Van den Berg CAT, Sbrizzi A.
Acceleration strategies for MR-STAT: achieving high-resolution
reconstructions on a desktop pc within 3 minutes. IEEE Trans
Med Imaging. 2022;41:2681-2692.

5. van der Heide O, Sbrizzi A, van den Berg CAT. Accelerated
MR-STAT reconstructions using sparse hessian approximations.
IEEE Trans Med Imaging. 2020;39(11):3737-3748.

6. Stone SS, Haldar JP, Tsao SC, Hwu W-MW, Liang Z-P, Sutton
BP. Accelerating advanced MRI reconstructions on GPUs. Paper
presented at: Proceedings of the 5th Conference on Computing
Frontiers, Ischia, Italy; 2008:261-272.

7. Wang H, Peng H, Chang Y, Liang D. A survey of GPU-based
acceleration techniques in MRI reconstructions. Quant Imaging
Med Surg. 2018;8:196-208.

8. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh
approach to numerical computing. SIAM Rev. 2017;59:65-98.

9. Besard T, Foket C, De Sutter B. Effective extensible program-
ming: unleashing Julia on GPUs. IEEE Trans Parallel Distrib
Syst. 2018;30(4):827-841.

10. Brian H. Bloch equation simulator. Accessed January 25, 2023.
http://mrsrl.stanford.edu/brian/blochsim/

11. Stöcker T, Vahedipour K, Pflugfelder D, Shah NJ.
High-performance computing MRI simulations. Magn Reson
Med. 2010;64:186-193.

12. Wang D, Ostenson J, Smith DS. snapMRF: GPU-accelerated
magnetic resonance fingerprinting dictionary generation and
matching using extended phase graphs. Magn Reson Imaging.
2020;66:248-256.

13. Castillo-Passi C, Coronado R, Varela-Mattatall G,
Alberola-López C, Botnar R, Irarrazaval P. KomaMRI. jl: an

 15222594, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30074 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [07/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/oscarvanderheide/BlochSimulators.jl
https://github.com/oscarvanderheide/BlochSimulators.jl
https://github.com/oscarvanderheide/mrstat
https://orcid.org/0000-0002-8451-525X
https://orcid.org/0000-0002-8451-525X
https://orcid.org/0000-0002-8451-525X
https://orcid.org/0000-0002-5565-6889
https://orcid.org/0000-0002-5565-6889
https://orcid.org/0000-0002-5565-6889
https://orcid.org/0000-0003-3276-4542
https://orcid.org/0000-0003-3276-4542
https://orcid.org/0000-0003-3276-4542
http://mrsrl.stanford.edu/brian/blochsim/


630 VAN DER HEIDE et al.

open-source framework for general MRI simulations with GPU
acceleration. Magn Reson Med. 2023;90:329-342.

14. Liu F, Velikina JV, Block WF, Kijowski R, Samsonov
AA. Fast realistic MRI simulations based on generalized
multi-pool exchange tissue model. IEEE Trans Med Imaging.
2017;36:527-537.

15. Paige CC, Saunders MA. LSQR: an algorithm for sparse lin-
ear equations and sparse least squares. ACM Trans Math Softw.
1982;8:43-71.

16. Jaynes ET. Matrix treatment of nuclear induction. Phys Rev.
1955;98:1099-1105.

17. Willem V. MR Pulse Design through Optimal Control and Model
Order Reduction of the Bloch Equations. Master Thesis. Utrecht
University. 2015.

18. Jürgen H. Echoes—how to generate, recognize, use or avoid
them in MR-imaging sequences. Part I: fundamental and not so
fundamental properties of spin echoes. Concepts Magn Reson.
1991;3:125-143.

19. Jürgen H. Echoes—how to generate, recognize, use or avoid
them in MR-imaging sequences. Part II: echoes in imaging
sequences. Concepts Magn Reson. 1991;3:179-192.

20. Matthias W. Extended phase graphs: dephasing, RF pulses,
and echoes-pure and simple. J Magn Reson Imaging.
2015;41:266-295.

21. Lebel RM, Wilman AH. Transverse relaxometry with stimulated
echo compensation. Magn Reson Med. 2010;64:1005-1014.

22. Sbrizzi A, Bruijnen T, van der Heide O, Luijten P, van den
Berg CAT. Dictionary-free MR Fingerprinting reconstruction of
balanced-GRE sequences. 2017.

23. Assländer J, Glaser SJ, Hennig J. Pseudo steady-state
free precession for MR-fingerprinting. Magn Reson Med.
2017;77:1151-1161.

24. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR finger-
printing using fast imaging with steady state precession (FISP)
with spiral readout. Magn Reson Med. 2015;74:1621-1631.

25. Yang M, Jiang Y, Ma D, Mehta BB, Griswold MA. Game of learn-
ing Bloch equation simulations for MR fingerprinting. arXiv
preprint arXiv:2004.02270. 2020.

26. Liu H, Van der Heide O, Van den Berg CAT, Sbrizzi A. Fast and
accurate modeling of transient-state, gradient-spoiled sequences
by recurrent neural networks. NMR Biomed. 2021;34:e4527.

27. BlochSim.jl. Accessed December 4, 2023. https://github.com
/StevenWhitaker/BlochSim.jl

28. Jonathan D, Christian K, Alexander R. DECAES - DEcompo-
sition and component analysis of exponential signals. Zeit Med
Phys. 2020;30(4):271-278.

29. MRIEPG.jl. Accessed December 4, 2023. https://github.com
/felixhorger/MRIEPG.jl

30. Knopp T, Grosser M. MRIReco.Jl: an MRI reconstruction frame-
work written in Julia. Magn Reson Med. 2021;86(3):1633-1646.

31. MRIgeneralizedBloch.jl. Accessed December 4, 2023. https:/
/github.com/JakobAsslaender/MRIgeneralizedBloch.jl

32. Li JR, Nguyen VD, Tran TN, et al. SpinDoctor: a MATLAB tool-
box for diffusion MRI simulation. Neuroimage. 2019;202:116120.

33. Assländer J, Gultekin C, Flassbeck S, Glaser SJ, Sodickson DK.
Generalized Bloch model: a theory for pulsed magnetization
transfer. Magn Reson Med. 2022;87:2003-2017.

34. Van der Heide O, Sbrizzi A, Van den Berg CAT. Cartesian
vs radial MR-STAT: an efficiency and robustness study. Magn
Reson Imaging. 2023;99:7-19.

35. Moses W, Churavy V. Instead of rewriting foreign code for
machine learning, automatically synthesize fast gradients. In:
Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, eds.
Advances in Neural Information Processing Systems. Curran
Associates, Inc.; 2020:12472-12485.

36. Moses WS, Churavy V, Paehler L, et al. Reverse-Mode Automatic
Differentiation and optimization of GPU kernels via enzyme.
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis SC 21. Association
for Computing Machinery; 2021.

37. Innes M. Don’t unroll adjoint: differentiating SSA-form pro-
grams. CoRR. 2018:abs/1810.07951.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.
S1: Partially matrix-free 2D MR-STAT memory estimate
S2: Isochromat simulation details
S3: Extended Phase Graph simulation details
S4: Forward model simulation details
Figure S1: The time-varying flip angle train [top] and
phase encoding indices for the Cartesian trajectory [bot-
tom] used in the in-vivo MR-STAT data acquisition as well
as the dictionary/signal simulations.
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