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A B S T R A C T   

Annual average land-use regression (LUR) models have been widely used to assess spatial patterns of air 
pollution exposures. However, they fail to capture diurnal variability in air pollution and consequently might 
result in biased dynamic exposure assessments. In this study we aimed to model average hourly concentrations 
for two major pollutants, NO2 and PM2.5, for the Netherlands using the LUR algorithm. We modelled the spatial 
variation of average hourly concentrations for the years 2016–2019 combined, for two seasons, and for two 
weekday types. Two modelling approaches were used, supervised linear regression (SLR) and random forest (RF). 
The potential predictors included population, road, land use, satellite retrievals, and chemical transport model 
pollution estimates variables with different buffer sizes. We also temporally adjusted hourly concentrations from 
a 2019 annual model using the hourly monitoring data, to compare its performance with the hourly modelling 
approach. The results showed that hourly NO2 models performed overall well (5-fold cross validation R2 =

0.50–0.78), while the PM2.5 performed moderately (5-fold cross validation R2 = 0.24–0.62). Both for NO2 and 
PM2.5 the warm season models performed worse than the cold season ones, and the weekends’ worse than 
weekdays’. The performance of the RF and SLR models was similar for both pollutants. For both SLR and RF, 
variables with larger buffer sizes representing variation in background concentrations, were selected more often 
in the weekend models compared to the weekdays, and in the warm season compared to the cold one. Temporal 
adjustment of annual average models performed overall worse than both modelling approaches (NO2 hourly R2 

= 0.35–0.70; PM2.5 hourly R2 = 0.01–0.15). The difference in model performance and selection of variables 
across hours, seasons, and weekday types documents the benefit to develop independent hourly models when 
matching it to hourly time activity data.   
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1. Introduction 

Air pollution, including nitrogen dioxide (NO2) and particulate 
matter smaller than 2.5 μm (PM2.5), is one of the largest environmental 
risks to health (World Health Organization: WHO, 2022). Outdoor air 
pollution is estimated to have caused 4.2 million premature deaths 
worldwide in 2019 (World Health Organization: WHO, 2022). Research 
has shown relationships between exposure to polluted air and a large 

number of health outcomes (Landrigan et al., 2018). To determine 
human exposure, personal spatial information is usually combined with 
spatiotemporal data on air pollution concentrations (Molter et al., 
2010). Most epidemiological studies have estimated air pollution con
centrations annually (Shen et al., 2022; De Hoogh et al., 2016) or 
seasonally (Boniardi et al., 2019; De Hoogh et al., 2018), and have 
assigned concentrations to the residential address as exposure estimates. 
To do so, different statistical and physical models have been developed, 
land-use regression (LUR) models being the most used statistical ones. 
LUR models relate measured concentrations to environmental predictors 
of air pollution allowing the development of high spatial resolution 
maps of pollutants concentrations (Lu et al., 2020a). Furthermore, they 
have shown to perform well, to be time efficient and applicable for 
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long-term exposure assessment (Molter et al., 2010; Shen et al., 2022). 
However, mapping air pollution at residential addresses fails to 

capture time-activity patterns of the population (Lu et al., 2020a; Mölter 
et al., 2010). People spend time at other locations, including work, 
school, leisure time locations and commute. Moreover, annual and 
seasonal models do not capture diurnal variability in air pollution, as 
traffic and other sources and atmospheric conditions change during the 
day and pollutants concentrations have shown to vary in accordance to 
rush hours, night-time and daytime (Boniardi et al., 2019; Dons et al., 
2013; Lu et al., 2020b). Therefore, linking time activity data to annual 
average spatial concentration patterns is not optimal. Instead, linking 
the spatiotemporal variability of air pollution to human time and space 
activity patterns may improve our understanding of the health effects of 
air pollution. For this reason, there is a need to develop hourly air 
pollution models to capture diurnal variation of air pollution. Few 
studies have already done so (Lu et al., 2020b; Boniardi et al., 2019; 
Dons et al., 2013; Masiol et al., 2018; Weissert et al., 2020). However, 
developing hourly models can be highly time-consuming and hourly 
average concentration data is not always available, for example with 
filter-based PM2.5 measurements. 

Lu et al. (2020b) fitted independent LUR models for hourly NO2, NO 
and O3 concentrations in the Netherlands. They modelled hourly aver
ages, for each month and weekday type over a five-year period from 
2006 to 2011. Their models were built on a set of four preselected 
predictor variables identified in the development of annual average air 
pollution models. Their hourly models allowed for temporally varying 
predictors’ coefficients (Lu et al., 2020b). Dons et al. (2013) developed 
black carbon (BC) hourly LUR models for Belgium using different stra
tegies: by means of dummy variables, with dynamic dependent variables 
and with dynamic and static independent variables and using hourly 
concentrations to recalibrate the annual model. They found that inde
pendent hourly models had higher cross-validation R2, and lower root 
mean squared error (RMSE) than models developed with preselected 
predictors (Dons et al., 2013). Boniardi et al. (2019) developed BC 
morning rush hour models for a neighbourhood in Milan using only air 
pollution data from 7:00h to 9:00h on working days. Both studies found 
differences in the predictors selected during rush hours and other hours 
of the day (Boniardi et al., 2019; Dons et al., 2013). 

Other studies have used mobile or low-cost sensor fixed monitoring 
data to estimate hourly concentrations for small geographical areas, 
such as neighborhoods or counties. (Hankey et al., 2019; Masiol et al., 
2018; Yuan et al., 2024; Weissert et al., 2020). The study by Masiol et al. 
(2018) developed typical hourly LUR models for weekdays and week
ends, for the Monroe County (New York, USA) using the deletion/sub
stitution/addition (D/S/A) algorithm. They collected PM concentrations 
with low-cost monitors at 23 sites (LCMs) for 12 months. The study by 
Yuan et al. (2024) developed NO2 LUR models for the city of Amster
dam, using supervised linear regression (SLR), random forest (RF) and 
Geographical and Temporal Weighted Regression (GTWR). They 
modelled the typical hourly averages based on a 10-month mobile 
monitoring campaign. The studies by Van Den Bossche et al. (2020) and 
Patton (2014) developed a spatiotemporal LUR model, using dynamic 
hourly covariates and hourly averaged concentrations as inde
pendent/dummy variables. Both studies found that both temporal and 
spatial variables contributed significantly to the model performance. 
The study by Hankey et al. (2019) used mobile monitoring data to 
develop daytime average models, independent hourly models and a 
spatiotemporal model for UFP and BC in a rural Appalachian commu
nity. The spatiotemporal model performed worse than the daytime 
average model for both pollutants (Hankey et al., 2019). 

Finally, another approach to include temporal variability in LUR 
models is the temporal adjustment of an annual average model (Brauer 
et al., 2008; De Nazelle et al., 2013; Wu et al., 2011). By applying a 
temporal trend to spatially resolved air pollution predictions, annual 
LUR models are rescaled by a fixed ratio or difference. Temporal 
adjustment approaches have been considered time efficient methods to 

include temporal or diurnal variation in air pollution exposure (Brauer 
et al., 2008; De Nazelle et al., 2013; Stafoggia et al., 2022; Wu et al., 
2011). De Nazelle et al. (2013) adjusted an annual dispersion model to 
obtain hourly exposures for 36 subjects in Barcelona. Brauer et al. 
(2008) and Wu et al. (2011) adjusted an annual LUR model to obtain 
monthly exposure for pregnant women in Vancouver, Canada, and in 
Orange Counties, California, respectively. However, by employing such 
techniques, it is assumed that every location has the same temporal 
trend and that changes in pollution over time are spatially uniform. 

The aim of this study was to assess the performance of independent 
air pollution LUR models of hourly averaged concentrations for the 
Netherlands for two major air pollutants, NO2 and PM2.5. We did not 
model specific hours of specific days individually, but rather we 
modelled the spatial variation of the hourly concentrations averages 
across three years combined (2016–2019), two seasons (cold, warm) 
and two weekday types (weekdays, weekends). We used two modeling 
methods, supervised linear regression (SLR) and the machine-learning 
algorithm random forest (RF). Regression models were fitted sepa
rately for each hourly average, for each season and weekday type. Thus, 
differently from previous studies, 96 models were built, with possibly 
different predictors and regression coefficients. Since temporal adjust
ment needs low data and computational input, we attempted to use this 
approach at a larger scale in this study. We compared the performance of 
the temporal adjustment approach to obtain hourly surfaces with the 
specific hourly SLR and RF models. As annual air pollution maps have 
already been produced for the Netherlands, it was sufficient to apply a 
diurnal trend to the annual predictions to obtain typical hourly con
centrations, following the procedure operated in the ESCAPE project and 
by Gulliver et al. (2013). 

The results of the study will be used in the MOBI-AIR project which 
aims at linking high spatial resolution maps with hourly time-activity 
patterns (MOBI-AIR, 2023). MOBI-AIR will investigate whether match
ing the spatiotemporal variability of air pollution with human 
time-activity patterns leads to less biased results in health studies 
compared to the traditional exposure assessment model based on the 
residential address only. 

2. Methods 

2.1. Design 

Two different approaches were employed to obtain hourly concen
trations for the Netherlands. Firstly, in our main approach we developed 
hourly models based on monitoring data from the Netherlands, and two 
neighbouring countries, Belgium, and Germany, to augment the number 
of monitoring locations. We calculated the average hourly concentra
tion, for two seasons (cold and warm), for two weekday types (weekends 
and weekdays), over a three-year period, from 2016 until 2019. We 
modelled the hourly average concentrations for two pollutants, NO2 and 
PM2.5 with two approaches, supervised linear regression (SLR) and 
random forest (RF). The detailed technical implementations of SLR and 
RF can be found in Appendix A, section S1.1.1. To build the models 197 
predictors were used, including population density, roads, land use, 
satellite retrievals, and chemical transport model estimates variables 
with varying buffer sizes (Table S1). 

Secondly, we temporally adjusted the annual European model 
developed by Shen et al. (2022) to obtain hourly surfaces, for each 
season and weekday type. The temporal adjustment of annual average 
models is a widely used approach to temporally scale LUR models. In 
this study we compared the performance of our hourly LUR models with 
the temporal adjustment of the annual average European map. 

2.2. Monitoring data 

Hourly concentrations were downloaded from the European Envi
ronmental Agency (EEA) website for two pollutants: NO2 and PM2.5 
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(European Environmental Agency, 2020). Data was only used if more 
than 75% of the hourly observations were valid as defined by the EEA. 
We first looked at NO2 and PM2.5 patterns in the Netherlands for the year 
2019, and aggregated hourly concentration by month, weekend, and 
weekdays. Previous studies showed that air pollution concentration and 
its variability differed between weekdays and weekends and between 
different parts of the year, especially between summer and winter 
months (Boniardi et al., 2019; De Hoogh et al., 2018; Lu et al., 2020b). 
By looking at the shape and the values of the monthly median concen
trations and following the example of previous studies conducted in the 
Netherlands and elsewhere (Boniardi et al., 2019; De Hoogh et al., 
2018), it was decided to aggregate the observations into two seasons: a 
warm season, from April until September, and a cold one from October 
until March. 

For both NO2 and PM2.5 the mean concentration for each hour 
showed a large scatter across stations and hours. Moreover, the standard 
error (SE) of the mean varied a lot across months and stations, reaching 
high values, especially in the weekends, probably related to the small 
number of observations available to calculate time-specific averages. 
Thus, to reduce the SE and get more stable means, we aggregated hourly 
observations for a period of three years, from October 1, 2016 until 
September 30, 2019. This time frame was chosen to cover three full cold 
and warm seasons. In total, 26 stations were included for PM2.5 and 69 
for NO2, with three types of locations: background, traffic and industrial. 

Previous studies show that an increased number of observations 
provides more diverse monitoring data and allows the LUR models to 
better capture the relationships between predictors and pollutants, 
leading to improved performance and generalizability (Basagaña et al., 
2012). Thus, to increase the number of observations to be used in 
training the LUR models in this study, we added stations from neigh
bouring countries, namely Belgium and Germany. The final dataset 
contained averaged hourly concentrations for the three countries over a 
three-year period, aggregated by weekend/weekdays and warm/cold 
seasons. The total number of stations for NO2 and PM2.5 was 544 and 
227, respectively (Figures S1, S2). 

2.3. Predictor variables 

The predictors used in the study were the variables offered by Shen 
et al. (2022) for Europe-wide annual average air pollution models. They 
included several roads, land-use, population, satellite retrievals of NO2 
and PM2.5, and chemical transport model estimates. The few 
time-varying predictors were averaged seasonally to align with the ob
servations. These were temperature, precipitation, air pressure, wind 
speed, the satellite-derived seasonal tropospheric column density of 
NO2, and the concentrations, aggregated from monthly estimates from 
the chemical transport model, Danish Eulerian Hemispheric Model 
(DEHM). Different circular buffer sizes (ranging from 50 m to 10,000 m) 
were applied to the predictors to capture the dispersion of the pollutants. 
In total 197 predictors were used to develop the models (Table S1). None 
of the predictors varied on an hourly basis. 

2.4. Model development 

In this study we developed independent LUR models for each hourly 
average. Other studies have implemented different approaches to 
develop typical hourly LUR models. One approach is to include hourly 
dummy variables (Dons et al., 2013). However, dummy LUR models 
assume the same spatial pattern throughout the day and preserve the 
same model structure (Dons et al., 2013). Single-hour LUR models 
instead, are more flexible, allowing for different slopes and predictors 
selected across hourly models. This comes at the expense of not using 
information from consecutive hours. Consequently, to test whether un
realistic changes occurred from hour to hour, we evaluated spatial 
prediction maps of consecutive hours. 

To train the LUR models two algorithms were used: supervised linear 

regression (SLR) and random forest (RF), following the procedure used 
by Shen et al. (2022). Regression models were fitted separately for each 
hour of the day, for each season and for weekends and weekdays. Thus, 
for each pollutant, 96 models were built, with possibly different pre
dictors and regression coefficients. 

2.4.1. Supervised linear regression (SLR) 
SLR is a widely used and standardized approach to develop LUR 

models (Chen et al., 2021; De Hoogh et al., 2018; Eeftens et al., 2012). In 
this study, we followed the ELAPSE protocol (De Hoogh et al., 2018) 
similarly to Shen et al. (2022) to train the SLR models. For each model, 
firstly the predictor variable with the highest R2 value, and thus the one 
explaining the most variation in the concentrations, is added. In the 
following steps, additional predictor variables are considered for in
clusion in the model if they improve the adjusted R2, have the pre
determined direction of effect, and if their coefficient value is 
statistically significant (p < 0.1). For each hour, a different SLR was 
built, with possibly different predictor variables. 

2.4.2. Random forest (RF) 
RF is a tree-based machine learning method that employs an 

ensemble approach (Breiman, 2001). Previous studies (Chen et al., 
2019a, 2019b, 2020; Kerckhoffs et al., 2019, 2021; Lu et al., 2020a; Shen 
et al., 2022; Weissert et al., 2020) have demonstrated that RF performs 
similarly to linear regression in air pollution modeling. The advantage of 
RF is that it can handle non-linear associations, interactions between 
variables and highly correlated variables by randomly selecting a subset 
of variables in each split node of a tree. All variables in Table S1 were 
used to develop the models and variables’ importance was calculated. 
The ranger package version 0.12.1 in R was used to train RF. Detailed 
information on how the RF was trained can be found in Shen et al. 
(2022). 

2.5. Temporal adjustment 

To calculate hourly estimates, we used the correcting factors ob
tained from the annual European model developed by Shen et al. (2022) 
and the hourly observations. First, we calculated the overall annual 
average of monitored concentrations for the years 2016–2019 combined 
for all stations in the Netherlands, grouped by seasons, weekends and 
weekdays. Then, we computed the hourly average of monitored con
centrations for all stations, grouped by season, weekends and weekdays. 
Finally, we calculated the average difference in concentration between 
hourly means and annual averages, according to season and weekdays. 
This operation gave us the absolute difference correcting factor. Simi
larly, to obtain the ratio correcting factor, we divided the hourly means 
over the annual averages. We then added the resulting absolute differ
ence factor to all predictions from the 2019 annual European model 
(Shen et al., 2022), and multiplied for the ratio factor. With this pro
cedure we obtained hourly ratio and absolute difference temporally 
adjusted air pollution concentrations. In order to evaluate the perfor
mance of the temporal adjustment procedure, temporally adjusted 
concentrations at the monitoring sites were compared with the averaged 
measured concentrations at specific hours. 

2.6. Validation 

The R2 and the root mean squared error (RMSE) of the 5-fold cross- 
validation (CV) were used to evaluate the performance of the models. CV 
included new model development. Observations were grouped based on 
station location and then randomly subdivided into 5 groups of equal 
size. Four groups were used to train the model, and one to test it. The 5- 
fold CV R2 of the SLR and RF was calculated as an MSE-based R2. To 
evaluate the performance of the temporal adjustment approach we 
calculated the MSE-based R2, the correlation-based R2, and the corre
lation between temporally adjusted estimates and the observations. 
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Moreover, to compare model predictions, we estimated air pollution 
concentrations using the hourly models developed by SLR and RF at 
twenty thousand locations randomly selected from the residential ad
dresses of the BAG dataset. The BAG dataset contains all addresses from 
the Dutch address database. 

3. Results 

3.1. Air pollution diurnal patterns 

Figs. S3 and S4 display the NO2 and PM2.5 hourly distribution of the 
concentrations for all stations in the Netherlands, grouped by season and 
day of the week. The mean concentrations in the weekends and in the 
warm season were consistently smaller than the ones from the weekdays 
and the cold season. The different spatial patterns between hours and 
weekday type, supported the necessity to assess weekends and weekdays 
concentrations separately. To compare the concentrations diurnal pat
terns between the Netherlands, Belgium and Germany, we plotted the 
hourly averaged concentrations and the medians separately (Fig. 1, 
S5–S8) for each country for all stations, grouped by season, weekend and 
weekdays. All countries showed two peaks in the cold season, around 
8:00h and 18:00h, that reached similar concentration levels. The warm 
season also presented two peaks, with the second one being less pro
nounced. Moreover, they all showed lower concentrations in the 
weekends, both in the cold and warm season. For PM2.5, there were two 
peaks in the cold season, the first around 9:00h and the second around 
21:00h, for all three countries (Fig. 1; Fig. S6, S8). Even though the 
shape of the median concentration in the cold season was similar, 
Belgium had slightly higher values. In the warm season, all countries 
showed one peak in the morning, around 6:00h-7:00h, with lower 

concentrations compared to the cold season. There was no significant 
difference between weekends and weekdays for PM2.5, however for 
consistency with NO2 we kept the distinction between weekday type. 

The diurnal patterns of the pollutants concentrations at the mea
surement sites for the three countries combined are shown in Figs. S9 
and S10. For NO2 both the cold and warm season weekdays diurnal 
variation had two peaks. In the weekends the peaks were less pro
nounced compared to the weekdays, but the variation followed a similar 
pattern to the weekdays. The concentrations in the cold season were 
consistently higher than the ones in the warm season, and similarly 
weekdays concentrations were higher than weekends. For PM2.5 there 
was no clear difference between the weekdays and weekends diurnal 
concentrations. However, there were significant differences between 
seasons. In the cold season we could still distinguish two peaks, while in 
the warm season there was only one major peak. 

3.2. Hourly models performance 

The R2 for the linear models derived from 5-fold cross validation 
(CV) are summarized in Fig. 2 and Table 1. The corresponding RMSE is 
shown in Fig. S11. The hourly models showed pronounced diurnal dif
ferences in R2 values especially in the warm season (Fig. 2). The NO2 
models performed overall well (5-fold CV R2 range per hour: 0.50–0.78), 
while the PM2.5 models performed moderately (5-fold CV R2 range per 
hour: 0.24–0.62). Both for NO2 and PM2.5 the warm season models 
performed worse than the cold ones, and the weekends’ worse than 
weekdays’. The NO2 models that performed the worst were the ones 
between 11:00h and 16:00h in the cold season, and between 11:00h and 
18:00h for the warm season. The highest R2 were in the nighttime hours 
models. 
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Fig. 1. Medians of the hourly average NO2 and PM2.5 concentrations observed in μg/m3 from 2016 to 2019 for all stations in the Netherlands (NO2 = 69 stations; 
PM2.5 = 26 stations). Concentrations are averaged by season (cold = October till March, warm = April till September) and day of the week. (COLOR). 
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For PM2.5, the explained variance was lower from 15:00h to 20:00h 
in the cold season, and from 16:00h to 21:00h in the warm season, when 
it dropped below 0.3. In the cold season, the lowest R2 were found 
around 17:00h, while in the warm season we observed two drops: one 
around 00:00h and one in the afternoon around 18:00h. 

In the case of NO2, the models that performed the worst in both 
seasons were the late morning and early afternoon models. In the same 
time frame NO2 concentrations showed a higher variability across sta
tions (indicated by high RMSE). High RMSE values thus corresponded to 
lower R2 values, suggesting that the model had difficulty explaining the 
substantial fluctuations in NO2 levels (Fig. S11). On the other hand, for 
PM2.5, lower concentration variability corresponded to lower R2 values, 
implying that the model performed worse in capturing the limited var
iations in PM2.5 levels (Fig. S11). 

3.2.1. Comparison between SLR and RF 5-fold CV performance 
The performance of the RF and SLR models was similar and com

parable at all hours, with the RF 5-fold CV R2 being slightly higher for 
most hourly models. None of the differences in R2 between SLR and RF 
were statistically significant (t-test p > 0.05). In Fig. 2 the hourly R2 of 
SLR and RF are plotted showing similar diurnal trends. For NO2, RF 
performed overall slightly better than SLR. For PM2.5, RF improved 
models’ performance only slightly in the cold-weekdays, and more 
consistently in the weekends. The most significant improvement in 

performance was found on the cold-weekends, with a 4% increase in RF 
R2 compared to SLR (Table 1). 

3.2.2. SLR model structure 
The patterns of predictors selection for NO2 exhibit variations for 

different hours, seasons, and weekday types (Figs. S12, S13, S14, Section 
S2.1.1). During cold and warm season, weekdays and weekends models, 
roads and chemical transport model predictors were consistently cho
sen. Night-time hours models included prominently land use variables 
with larger buffer sizes, such as urban green, natural areas, and industry. 
In contrast, daytime hours selected more population-related predictors 
like residential areas and population density. In the weekday models, 
road predictors with small buffers demonstrated a consistent influence 
throughout the day, while larger buffer road predictors were chosen 
more frequently in the weekends. In the warm season, more variables 
were selected during the night-time models than in the daytime ones. 
Compared to the cold season models, the selection of industry predictors 
occurred more uniformly throughout the day. Additionally, natural 
areas were chosen with larger buffer sizes during early morning hours, 
in contrast to the cold season where they appeared in both morning and 
evening with small buffers. For both seasons, background land use 
predictors were selected until later morning hours (around 9:00h) in the 
weekends, with respect to weekdays. 

The selected predictors for PM2.5 are summarized in Figures S15, S16 

cold warm
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Fig. 2. R2 of the 5-fold cross-validation hourly models developed through supervised linear regression (r2_slr) and random forest (r2_rf) for NO2 and PM2.5, for cold 
and warm season, weekdays, and weekends. The NO2 models were built from monitoring data for the Netherlands, Belgium, and Germany, from 2016 to 2019 (N =
544 sites). The PM2.5 models were built from monitoring data for the Netherlands, Belgium, and Germany, from 2016 to 2019 (N = 227 sites). The scales of NO2 and 
PM2.5 are different to illustrate hourly differences between methods, seasons and weekday types per pollutant. Note: the R2 scale does not go from 0 to 1 to display 
fine differences in hourly R2. (COLOR). 

Table 1 
5-fold cross validation R2 of the NO2 and PM2.5 models developed through supervised linear regression (SLR) and random forest (RF). The mean_SLR and mean_RF 
columns show the mean R2 of the hourly NO2 and PM2.5 models averaged by season (warm and cold), weekdays (No) and weekend (Yes). The columns SD_SLR and 
SD_RF show the standard deviation of the hourly R2 values. The column Improvement shows the percentage increase in R2 in RF compared to SLR.  

Pollutant Season Weekend mean_SLR SD_SLR mean_RF SD_RF Improvement 

NO2 cold No 0.71 0.05 0.73 0.05 2% 
cold Yes 0.69 0.04 0.71 0.05 2% 
warm No 0.64 0.07 0.66 0.06 2% 
warm Yes 0.61 0.08 0.64 0.07 3% 

PM2.5 cold No 0.50 0.04 0.50 0.04 0%  
cold Yes 0.46 0.06 0.50 0.04 4%  
warm No 0.39 0.09 0.40 0.06 1%  
warm Yes 0.43 0.09 0.44 0.09 1%  
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and S17. The weekdays and weekends models were more similar 
compared to the ones for NO2. Chemical transport models and chemical 
retrieval variables were selected in both season and weekday types for 
most models. Road predictors with small buffers were selected in the 
daytime models, consistently in the weekdays and less in the weekends, 
both in the cold and warm season. Population predictors were selected 
until 9:00h and after 18:00h in the weekdays, while in the weekends 
they were present with different buffer sizes in almost every model. 

3.2.3. RF model structure 
Figs. S18 and S19 give the top-10 variables in reducing the mean 

squared error (MSE) the most for each RF hourly model. As all 197 
variables were kept to build RF models, variable importance is shared 
between highly correlated variables in different buffer sizes. Thus, it 
must be interpreted carefully. 

For NO2, most variables selected in the SLR had the highest variable 
importance in RF models. However, while in SLR the chemical transport 
model predictor was selected for almost all models, in RF it was present 
only for few models, from around 00:00h till 3:00h. Moreover, few land 
use predictors that were not selected in SLR were important for RF. For 
example, the total built-up area (tbu) predictor, which was not selected 
in the SLR, appeared quite consistently in the RF models. In the cold and 

warm weekdays, tbu was present with relatively large buffers from 
5:00h in the morning until evening rush hours, while in the cold and 
warm weekends from around 8:00h till 22:00h. Both in the warm and 
cold season, roads predictors were present with similar patterns. Small 
buffers appeared mostly in the daytime, earlier for the weekdays 
(around 5:00h and 6:00h) and later in the weekends (from 9:00h); larger 
buffers replaced them in the evening, around the evening rush hours for 
weekdays and around 20:00h-21:00h in the weekends. Finally, the 
warm season models also had residential areas predictors in the early 
afternoon, that were not present in the cold season. 

Estimates from chemical transport models and estimates from the 
satellite retrievals were present for the PM2.5 like in SLR models, how
ever, less consistently. In the warm season models, background land use 
variables were mostly present in the night-time, especially in the 
weekends, while in the cold season they were present with different 
buffer sizes throughout the day. Climate variables were present in the 
early afternoon hours in the cold season, while in the warm season 
mostly during the early morning and evening. 

3.2.4. Spatial patterns 
Fig. 3, S20, S21, S22 show the maps of predicted NO2 and PM2.5 

concentrations estimated with RF, at two spatial resolutions: the whole 

Fig. 3. Maps of predicted NO2 concentrations in μg/m3 for Amsterdam and surrounding area using RF, for different selected hours in the warm and cold season, 
weekdays and weekends. (COLOR). 
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of the Netherlands and the city of Amsterdam. Fig. 5 shows the spatial 
variation of NO2 for the city of Amsterdam for selected hours across the 
day. From the maps we could see a clear spatial variation, with the urban 
areas being more polluted compared to rural areas. In both season and 
weekday types, an increased concentration towards the roads was 
visible, with the road network being visible at all hours. However, the 
differences in concentration were more pronounced during daytime 
hours. Moreover, during weekdays a peak in concentrations was visible 
at rush hours around the road network. From the maps it was also 
possible to see the seasonal and day of the week component, with con
centrations in the warm season and weekends being lower and the dif
ference in concentrations being less pronounced, possibly due to the 
more uniform distribution of traffic during the day (Fig. 3; Fig. S20). 
Finally, NO2 concentrations were lower during night-time hours when 
spatial variation was also less pronounced. 

For PM2.5 there was also a spatial variation in concentrations, but 
less defined compared to NO2 (Figs. S21 and S22). Spatial patterns 

differed modestly between hours, seasons and day of the week, partic
ularly in the magnitude of the contrast. In the country level maps we 
could see that concentrations are higher in more populated areas, in the 
south and long the coast (Fig. S22). By looking at the maps for 
Amsterdam, the spatial patterns were less defined compared to NO2, 
probably due to the different characteristics of the pollutants (Fig. S21). 
PM2.5 concentrations are not only influenced by emission-related sour
ces but also meteorological factors. Moreover, PM2.5 can be suspended 
in the air for long periods of time and can travel long distances, 
contrarily to NO2, that reacts with other compounds rapidly after it is 
released and does not get transported as far from its source as PM2.5 
(Eeftens et al., 2012). 

3.3. Comparison of predictions of SLR and RF models at external 
locations 

The SLR and RF models were also evaluated by comparing 

Fig. 4. NO2 estimated concentrations in μg/m3 at twenty thousand randomly selected residential addresses across the Netherlands, for the cold and warm season, 
weekdays and weekends, using SLR in the first graph and RF in the second. 
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predictions of hourly concentrations at 20.000 Dutch residential ad
dresses. The diurnal variation in predicted concentrations is displayed in 
Fig. 4 for NO2 and 5 for PM2.5. The predictions from SLR and RF followed 
a similar trend and took on a similar range of values for NO2 and PM2.5. 
For PM2.5, the concentrations were slightly lower for RF compared to 
SLR. The predictions from both algorithms followed a diurnal trend 
similar to the one of the observations for the Netherlands (Figs. S3 and 
S4). Compared to the observations, the predictions took on slightly 
higher values and showed a greater hourly variation. This is possibly 
because the number of stations used to build the models was 227 for 
PM2.5 and 544 for NO2, while the predictions were made for 20.000 
locations, and thus possibly included more polluted or remote points. 

The correlation between predictions of the SLR and the RF modeling 
approach are shown in Figs. S23 and S24. For NO2, the correlation was 
high, in both the cold and warm season, ranging from 0.85 to 0.95. For 

PM2.5, the correlation was not as consistently strong as for NO2 (r =
0.21–0.8). In the cold season the correlation was the lowest around 
18:00h (0.21–0.51), while in the warm season around 21:00h 
(0.26–0.44). Around these hours both the SLR and the RF PM2.5 hourly 
models performed the worst (Fig. 2). The difficulties in capturing the 
limited variations in PM2.5 levels during these hours showed by the 
lower RMSE and lower R2, resulted in a less strong correlation between 
SLR and RF estimates. 

3.4. Temporal adjustment performance 

In Figs. S25 and S26 the correlation between the observations and 
the temporal adjusted estimates from the European annual average 
model is shown for both seasons and weekday types. For NO2 the graphs 
showed a good correlation in the cold season (r = 0.67–0.84) and in the 

Fig. 5. PM2.5 estimated concentrations in μg/m3 at twenty thousand randomly selected residential addresses across the Netherlands, for the cold and warm season, 
weekdays (0) and weekends (1), using SLR in the first graph and RF in the second. 
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warm one (r = 0.60–0.81). For PM2.5, the correlation was less evident 
than for NO2, in particular in the weekend hours, where it took on 
negative values. The correlation in the weekday hours ranged from 0.1 
to 0.37 in the cold season, and from 0.02 to 0.4 in the warm one. In the 
weekends instead, it ranged from − 0.14 – 0.39 in the cold season, and 
from − 0.33 – 0.25 in the warm one. This was in line with the results of 
the SLR and RF, with the PM2.5 models performing worse than the NO2 
ones, and thus predicting the concentrations less accurately. Moreover, 
the small negative correlations between the PM2.5 observations and 
temporal adjusted estimates, suggest that not only the temporal 
adjustment did not explain the variability in the data, but also made 
predictions in the opposite direction of the actual outcomes. 

Fig. S27 shows the hourly MSE-based R2 of the temporal adjustment, 
which were consistently lower that the ones from the SLR and RF 
especially in the night-time models. As the validation monitoring data 
were also used to develop the diurnal correction factors, the presented 
R2 values are too optimistic. Thus, because of the already lower R2, we 
conclude that independent LUR models outperformed temporal adjust
ment. The MSE-based R2 of NO2 (− 0.87 – 0.70) were higher than the 
ones for PM2.5 (− 0.68 – 0.15), most of which were below 0. The R2 of 
NO2 was especially low in the nigh-time hours. For PM2.5, the prevalence 
of negative R2, combined with the negative correlations, suggested that 
the models predicted worse than the average concentration, and some
times in the opposite direction. For NO2 instead, the relatively low R2 

and the high correlations could mean that while the model did not 
properly predict concentrations values, it mimicked the trend across 
stations. 

To gain more understanding of the temporal adjustment perfor
mance, we also calculated the correlation-based R2. The correlation- 
based hourly R2 ranged between 0.35 and 0.70 for NO2 and between 
0.01 and 0.15 for PM2.5 (Fig. S28). The R2 of NO2 was especially low in 
the nigh-time hours, when also the MSE-based R2 was the lowest. For 
PM2.5, the R2 was still very low, especially in the weekends. The negative 
correlations and the low R2, might indicate that the temporal adjusted 
annual model could not reproduce the diurnal variation at the Dutch 
measurement sites for PM2.5. 

4. Discussion 

We developed hourly models for NO2 and PM2.5 using monitoring 
data from the Netherlands, Germany, and Belgium, from hourly aver
ages over a three-year period (2016–2019) stratified by season and 
weekday type. The results of the study showed that it was possible to 
develop hourly models that performed well for NO2 and moderately well 
for PM2.5. RF and SLR performed similarly. Overall, the 5-fold CV R2 of 
the RF models was modestly higher for most hours. The performance of 
hourly models was better than that of the temporal adjustment of annual 
the average model. 

4.1. Difference in model performance and across hours for NO2 and 
PM2.5 

The differences in model structure and performance observed across 
different hours, highlighted the benefit of developing independent 
hourly models. Moreover, the variations in model performance between 
seasons and weekday types indicated the benefit of temporal models 
tailored to specific seasons and days of the week. One possible risk of 
developing single-hour models is that of obtaining unrealistic changes in 
spatial patterns from one hourly model to the following one. However, 
our results showed that predictors selected changed gradually during the 
day (Figs. S13, S14, S16, S17). Moreover, the spatial prediction maps, 
showed stable spatial patterns with concentrations gradually increasing 
and decreasing from 1 h to the next one (Fig. S29). 

For NO2, the models for most hours performed well. The models that 
performed the worst in both seasons were the late morning and early 
afternoon models. In the same timeframe NO2 concentrations showed a 

higher variability across stations, suggesting that the model had diffi
culty explaining the substantial fluctuations in NO2 levels. On the other 
hand, for PM2.5, lower concentration variability corresponded to lower 
R2 values, implying that the model performed poorly in capturing the 
limited variations in PM2.5 levels. Especially in the cold season, R2 drops 
happened around morning and evening rush hours. The study by Masiol 
et al. (2018) also found lower R2 for PM during rush hours. Their sug
gestion is that the emission of fresh carbonaceous particles during busy 
hours can affect both the way light interacts with particles in the air and 
the accuracy of reported measurements of particulate matter mass due 
to potential biases caused by the timing of measurements (Masiol et al., 
2018). Moreover, our PM2.5 models performed worse in the warm 
compared to the cold season. This was, potentially due to the presence of 
mechanisms unrelated to local sources that contribute to PM2.5 levels 
during summer, which are difficult to tackle with our statistical models 
(Masiol et al., 2018). 

Even though we did not observe a difference in performance in our 
Europe-wide annual modelling paper (Shen et al., 2022), in this study 
NO2 models performed better than the PM2.5 ones. This could be due to 
the following reasons. Firstly, the number of observations used to build 
the models was larger for NO2, possibly leading to more robust models. 
The influence of the number of monitoring stations may be more 
important in hourly models, because the process of calculating averages 
per hour, season and day of the weekend results in less robust averages. 
A second difference is the larger concentration variability between sta
tions and the more pronounced diurnal variation for NO2. Finally, as 
NO2 is more affected by local combustion sources than PM2.5, the 
available source-related predictors may be more explanatory. 
Contrarily, LUR models do not represent particle formation processes 
very well (Jones et al., 2020). 

Hourly LUR models have demonstrated to out-perform the temporal 
adjustment method. While the approach has been effective in predicting 
historical concentrations (Molter et al., 2010; Gulliver et al., 2013), it 
appeared to be less effective when extrapolating hourly concentrations 
from an annual model. This was evident from the R2 values, which 
indicated that the absolute concentrations values were more accurately 
predicted using specific hourly models. Thus, relying on hourly models 
proved to be a more reliable approach for accurately estimating con
centrations at different time intervals. This agrees with the comparison 
of BC models in Belgium (Dons et al., 2013). 

RF and SLR hourly models performed similarly, consistent with other 
studies (Chen et al., 2019a; Shen et al., 2022). Most variables selected in 
the SLR models had high variable importance in RF models, though 
often with different buffer sizes. Variables with different buffer sizes are 
highly correlated and therefore may result in very similar model pre
dictions, as documented by the high correlation between SLR and RF 
predictions and the similar model performance. A few land use pre
dictors were important for RF and were not selected in SLR. The small 
differences in variables entering the models is partly due to differences 
in how variables are selected in SLR and rated for importance in RF. 

4.2. Comparison with previous hourly modelling studies 

Spatiotemporal patterns were in line with previous studies. The 
diurnal NO2 variability across stations during all hours showed night- 
time lower concentrations corresponding to low traffic source in
tensity, and weekdays rush hours corresponding to air pollution peaks. 
For PM2.5 there was no clear difference between the weekdays and 
weekends diurnal concentrations while there were significant differ
ences between seasons. 

Previous studies have developed more temporally refined LUR 
models than the annual average through different approaches. Studies 
have modelled average hourly concentrations to account for diurnal 
variation in source strength and weather, based on fixed site routine 
monitoring (Lu et al., 2020b), low-cost sensor fixed site networks 
(Masiol et al., 2018; Weissert et al., 2020) and mobile monitoring 
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(Hankey et al., 2019; Van Den Bossche et al., 2020; Yuan et al., 2024). 
One approach, which is the one implemented in this study, is to develop 
independent LUR model for each typical hour (Dons et al., 2013; Lu 
et al., 2020b) using monitoring data. The other studies that have used 
this approach found that night-time models performed the worst, 
differently from our results. In the study by Dons et al. (2013), 48 hourly 
models for BC were built, for weekend and weekdays separately based 
on monitoring data. The R2 ranged from 0.07 to 0.8, with the night-time 
models performing the worst (Dons et al., 2013). Similarly, in the 
fixed-site routine monitoring study by Lu et al. (2020b) the NO2 hourly 
models performance was lower during the night-time for NO2 (hourly R2 

range: 0.39–0.89). Lu et al. (2020b) used preselected predictor variables 
to build the LUR models for all hours of the day. This choice comes with 
the advantage of assessing the relative importance of every variable in 
each model by comparing the coefficients. Both papers suggested that 
poor nigh-time models performance could be attributed to the lower 
pollutants concentration variation between locations during night-time, 
and to the inability of the preselected variables used to build the models 
to describe the night-time variations (Dons et al., 2013; Lu et al., 2020b). 
Our models, however, do perform well even in the evening hours, and 
indeed by looking at the concentrations variation in Figs. S3 and S4 the 
range of values taken by each boxplot is quite stable, especially in the 
weekends and especially for PM2.5. Moreover, by allowing each model to 
choose independent and possibly different variables, the variation in air 
pollution is likely better represented for each hour. With regards to 
variable selection, the study by Lu et al. (2020b) found that during 
weekdays there was a sharp increase in the importance value of 
short-range buffers in the daytime, and long-range buffer in nigh-time 
models. Similar trends were also observed in our models, which could 
be explained by diurnal variation of local source strength. 

In the mobile monitoring study by Yuan et al. (2024) the researchers 
found that NO2 hourly models performed overall well and similarly 
using different approaches (SLR validation R2 0.3–0.77; RF validation R2 

0.18–0.67; GTWR validation R2 0.32–0.82). However, models could 
only be developed for the daytime period, between 9:00h and 20:00h. 
Similarly to Dons et al. (2013) and Lu et al. (2020b), the study by Yuan 
et al. (2024) found that SLR performed better during morning hours. 
Masiol et al. (2018) developed typical hourly models for PM based on 23 
low-cost sensor sites, which performed well (average hourly R2 0.7). 
Hankey et al. also developed single-hour models for UFP (10-fold CV R2 

0.11–0.69) and BC (0.12− 0.57). The models that performed the best for 
BC were the morning and afternoon peak traffic models, when variation 
in concentrations could be better explained by the selected predictor 
variables (Hankey et al., 2019). The results from these studies revealed 
that different covariates were selected for each hourly model (Hankey 
et al., 2019; Masiol et al., 2018; Yuan et al., 2024). Similarly to our 
study, traffic related variables and average daytime traffic intensity 
were consistently identified across hours for NO2. Even though the 
studies using mobile monitoring successfully developed typical hourly 
LUR models and may better capture spatial air pollution variability 
compared to fixed monitoring sites, their applicability is still limited. 
Indeed, mobile monitoring studies measure air pollution only during 
daytime hours and are usually applied in a relatively small study area 
(Hankey et al., 2019; Yuan et al., 2024). 

Another approach is to add hourly dummy variables to an average 
LUR model (Dons et al., 2013). In the fixed-site monitoring based study 
in Flanders, the hourly dummy LUR model performed moderately well 
with a R2 of 0.44, but with only two traffic predictors (Dons et al., 2013). 
Even though the dummy models performed moderately, the same spatial 
pattern was assumed across all hours and the hourly concentrations 
were not independent of each other, violating the assumption of inde
pendence in linear regression (Dons et al., 2013). 

A third approach is that to include dynamic temporal covariates to 
account for temporal variability in air pollution. The study by Patton 
et al. (2014) developed a regression model (R2 0.43) for measured UFP 
using temporal (1 h resolution) and spatial variables (20 m resolution). 

The study by Van Den Bossche et al. (2020) also developed a LUR model 
with mobile monitoring data (R2 0.49), using hourly BC concentrations 
as an independent variable. These models however differ from our 
models in that they modelled the concentration at specific hours and 
thus needed to incorporate truly temporal variables. 

4.3. Strengths and limitations 

The main strength of this study is the inclusion of seasonal, diurnal 
and week variability in LUR models built with two algorithms, SLR and 
RF. In particular, our models took into consideration that sources of air 
pollution change on an hourly basis. Another strength of this study is the 
large number of locations used to train the SLR and RF models. Our 
independent hourly models did allow for different coefficients and 
different variables for each hour. Moreover, our models did not demand 
more data compared to the annual ones. Finally, the 5-fold CV R2 is 
comparable with the one found in the other studies which developed 
hourly models, especially for NO2. The good performance exhibited by 
our models suggests that the investment of time in their development is 
both feasible and valuable. 

The main limitation of this study is that we did not use dynamic 
covariates to develop the LUR models. While some predictors had a 
seasonal or monthly resolution, no predictor had an hourly one. How
ever, the study conducted in Belgium by Dons et al. (2013), which 
evaluated the performance of dynamic models for BC, found that adding 
dynamic covariates did not improve the performance of single-hour 
models with static covariates. In truly spatio-temporal models, where 
the aim is to model the concentration of a specific hour and date, tem
poral covariates on source strength (such as traffic intensity) and 
weather would be crucial. However, the aim of this study was to model 
the typical hourly average concentration. Moreover, most of the avail
able predictors used, such as land use and population variables, were not 
available with hourly resolutions. Another limitation of the predictors 
used in the study is that did not include traffic volume and heating 
predictors because they were not available for the entire study area. 
With regards to the temporal adjustment methodology, the limitation of 
our application is that we used the most straightforward approach to 
temporally adjust the annual LUR model. Other approaches have been 
explored, that take into consideration spatial variation across stations. 
However, in this study we calculated only one correcting factor for each 
hour, assuming the same spatial pattern across stations. 

In follow-up studies the same methodology could be used to predict 
hourly estimates of other pollutants. It would also be worthwhile to 
apply this approach in smaller study areas, where more detailed hourly 
information is available on predictors, and to compare our approach 
with other statistical approaches, including the dummy variable model, 
and the spatially and temporally refine temporal adjustment of the 
annual average. 

Finally, our results showed that night-time hourly LUR models, 
especially for NO2, performed better than daytime models. Future health 
studies using these hourly air pollution surfaces for exposure assessment 
in combination with time activity data should take this into account. At 
night, people are more likely to be at home in contrast to daytime hours 
when people are more mobile. Exposure miss-classification might 
therefore be higher during the day than during the night, affecting miss- 
classification of the overall exposure. However, the hourly R2 values 
were still high for the daytime models, and it is equally relevant to 
model the air pollution variation of the hours that people tend to spend 
at home. We thus hypothesize that exposure miss-classification will be 
more driven by errors in mobility data (i.e. how well can we simulate or 
characterize time activity of a population) than by errors in air pollution 
models. 

5. Conclusions 

In this study, we showed that hourly LUR models perform overall 
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well and that their performance is comparable with other studies. SLR 
and RF had similar 5-fold CV R2, and both outperformed the temporal 
adjustment approach. The differences in models’ performance and 
predictor variables selected across different hours, seasons, and week
day type has reinforced the importance of developing independent 
hourly models. Combining the NO2 and PM2.5 hourly models with 
hourly time-activity data will allow to develop dynamic exposure 
models. This will allow assessment of their added value in epidemio
logical studies compared to exposures assessed at the residential address 
only. 
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