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1G E N E R A L I N T R O D U C T I O N

short overview

In this chapter we introduce the basic information, ideas and notations
needed for the later chapters of the thesis. We will start by introducing the
field of Soft Condensed Matter field (SCM), discuss the main theoretical
toolbox that one uses in SCM, where we also give an example the toolbox
in action. In the second part of the chapter we cover the main element of
the thesis - the Electric Double Layer (EDL). After describing the origins
of EDLs together with briefly going through their history, we describe them
mathematically by introducing the governing equations in both static and
dynamic cases. At the end of the chapter we will also give a brief outline of
the whole thesis and describe how it is structured.



2 general introduction

1.1 soft condensed matter (scm)

General description of Soft Condensed Matter

The seemingly simple task of categorizing different sub-fields of physics
can quickly become complicated. Boundaries between them are often blurry,
making it difficult to isolate one field from another. Sometimes, one area of
physics serves as the foundation for another, as seen in how Quantum Field
Theory contributes to certain aspects of Cosmology. Additionally, there is the
complexity of discerning whether something constitutes a distinct sub-field
of physics, as is the case with Astrophysics, or simply functions as a toolbox,
as is the case with statistical physics or quantum mechanics.

Nevertheless, to see the big picture of physics, it is, in general, necessary
to understand the approximate boundaries between its sub-fields and the
toolboxes employed within each of them. Given the focus of this thesis on
Soft Condensed Matter (SCM) systems, we will only discuss the boundaries
and toolboxes relevant to SCM here.

Conveniently, almost all of this information is contained in the name of
the field itself. Starting with condensed matter, it tells us that SCM is
concerned with systems of “many” interacting constituents/particles. Here
the word “many” implies the presence of particles in large quantities such that
statistical physics methods are required to study the system, demonstrating
the need for a statistical physics toolbox in SCM. And while this property can
be attributed to any condensed matter system, what makes soft condensed
matter systems stand out is their interaction energy scale, with the word soft
denoting that the constituents of SCM systems have weak binding energies of
the order of the thermal energy at room temperature, which amounts to (tens
of) meV and can be relatively easily deformed by the external influence of
the same energy order [4, 5]. This is in contrast with the typical interaction
energies of the order of eV in Hard Condensed Matter (HCM) Systems [5],
therefore significantly higher energies are needed to influence the structure of
a HCM system (hence the names “hard” and “soft”). As a consequence, the
microscopic structure of HCM is usually much more strictly organized than
that of SCM systems, making it hard (or sometimes impossible) to predict
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macroscopic features of a SCM system based on its microscopic building
blocks [4].

At the same time, SCM system constituents are not only limited by the
interaction energy scales, but also their size. The typical building blocks
of SCM systems are of the mesoscopic scale i.e. larger than microscopic,
such as electrons, and smaller than macroscopic, such as stones, marbles or
grains of sand [6]. Stemming from the demand that the SCM system stays
classical rather than quantummechanical, the microscopic scale sets the lower
boundary for the size of an SCM system element. Mathematically speaking
the size of a building block should be much larger than its characteristic
thermal de Broglie wavelength. On the other end, if we keep increasing the
size of particles, they will inevitably get heavy enough such that thermal
collisions from the environment will fail to displace them in a meaningful
way to keep them spread throughout the system and they will sediment to
the bottom under the influence of the gravitational pull. This sets the upper
limit for the length scales of an SCM system building block. Thus, based
on the above restrictions we can roughly estimate the typical sizes of SCM
building blocks to range approximately between 1nm to 1µm [5].

A system satisfying all the requirements stated above, is considered to be a
SCM system and there are plenty of them surrounding us in our everyday life.
Some of the examples of SCM systems include emulsions (mixtures of two
immiscible liquids, such as oil and water, stabilized by an emulsifying agent.
Examples include mayonnaise, salad dressings, and milk), foams (whipped
cream, shaving cream, and foam cushions), gels (gelatin desserts, hair gel,
and toothpaste), paint, ketchup, soap bubbles, lipid bilayer of cell membranes
and the cytoskeleton within cells, polymers (for instance plastics, rubber,
and synthetic fibers like nylon and polyester), etc. [6].

Due to their diverse nature soft condensed matter (or simply soft matter)
systems showcase a wide range of behaviors. For example, SCM materials can
exhibit self-assembly capabilities, forming complex structures like colloidal
crystals or liquid crystal phases [4]. Furthermore, phase transitions within
soft matter, triggered by factors like temperature or pressure changes, result
in significant shifts in material properties, transitioning between liquid and
solid states or forming liquid crystal phases. Moreover, soft matter materials
demonstrate responsive behavior to external stimuli, like temperature or
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pH changes, making them useful for applications such as drug delivery and
tissue engineering. Additionally, the viscoelastic nature of certain SCM
systems allows for a blend of fluid-like flow and solid-like elasticity, seen
in materials such as polymer gels and biological tissues. They can also
exhibit nonlinear rheological behavior, with responses to stress deviating
from linearity, leading to phenomena like shear-thinning or shear-thickening.
Amidst thermal fluctuations, soft matter materials remain in continuous
motion, driven by molecular dynamics and interparticle forces, highlighting
their complexity and relevance across scientific research and technological
applications [7–10].

SCM Toolbox - Statistical Physics

Statistical physics offers an effective and practical way to understand
complex systems. Instead of tracking every single constituent particle of the
system, which would be challenging and time-consuming (if possible at all),
it focuses on the overall patterns and averages across all particles to give
conclusions about the macroscopic features of the system. By looking at these
averages, statistical physics helps us see the bigger picture and understand
how systems behave on a larger scale.

Imagine you are standing at the edge of a vast forest, observing the canopy
stretching out before you and trying to memorize the view to describe it
to a friend later. Rather than focusing on every single leaf and branch,
identifying their colors, how they move when the wind blows and how they
look under different light patterns that the shadows create, you concentrate
your attention on identifying broader patterns such as the distribution of
tree species, colors of the patches (rather than individual leaves) that they
form, the density of vegetation and the overall shape of the forest. This is an
effective approach, as this broad view provides insights into the forest as a
whole, without needing to analyze each individual component of it. Of course,
one could bring a pair of binoculars and start studying each individual leaf
and branch to then assemble the big picture of the forest, however, even
though it would lead to a precise result, this is going to be extremely time
consuming and a very challenging task or, most of the time, even a downright
impossible one.
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Similarly, in statistical physics, while studying a system we take a step
back from the microscopic details of individual constituent particles and focus
on broader statistical averages. By analyzing these statistical quantities, we
build a picture of how a system behaves on a larger scale, without getting
lost in the individual particle interaction intricacies.

Another good example would be how we calculate the temperature of a
body. For instance, think about a cup of hot tea left on the table. Over
time tea gradually cools down until it reaches room temperature. At a
microscopic level, tea consists of countless molecules in constant motion.
As these molecules collide with each other and with the walls of the cup,
they transfer energy to the surroundings, causing the temperature of the tea
to decrease. Similarly to the previous example, rather than tracking each
individual particle and its velocity evolution to predict how the temperature
changes over time, statistical physics does this by only considering the average
velocity (kinetic energy) of these molecules. This understanding helps explain
why the tea eventually reaches a thermal equilibrium with its surroundings.

It is also beneficial to quickly go through the mathematical details of the
above example by calculating the temperature of a body placed in an external
heat reservoir using Boltzmann and Maxwell statistical distributions [11].
Besides this derivation serving a purpose of demonstrating convenience of
statistical physics, we will also need the Boltzmann distribution later in the
thesis, thus deriving it here is beneficial for this reason as well.

The Boltzmann distribution, also known as the Gibbs distribution in
statistical mechanics, describes the relative probabilities of particles occupying
different energy states in a system at thermal equilibrium. To derive it we
consider system A submerged in a very large heat reservoir R. In thermal
equilibrium both the system and the reservoir are characterized by the
same temperature T , whereas their energies, E and Er respectively, are not
fixed and can vary from 0 to E0, where E0 is the energy of a combined
system+reservoir system, such that

E + Er = E0 = const. (1.1)

Considering that the reservoir is much larger than the system A by definition,
we can rewrite Eq.(1.1) as
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E

E0
=

(
1 − Er

E0

)
≪ 1. (1.2)

Given the system is in a state with a certain energy E, the reservoir can still
be in any of the numerous states Ωr(Er) such that the corresponding value
of Er satisfies Eq.(1.1). Additionally, taking into account that the reservoir
is equally likely to be in any one of these Ωr(Er) states, the probability of
finding it at energy Er would be proportional to the number Ωr(Er) itself

P (Er) ∝ Ωr(Er) ≡ Ωr(E0 − E), (1.3)

which can be expanded around Er = E0, i.e. E = 0 point. For convenience
we consider the logarithm of Eq.(1.3)

ln Ωr(Er) = ln Ωr(E0) +

(
∂Ωr

∂Er

)
Er=E0

+ . . . ≈ const − βrE, (1.4)

where
βr ≡ ∂Ωr

∂Er
(1.5)

and in equilibrium β = βr = 1/kBT , where kB is the so-called Boltzmann
constant. Now inserting Eq.(1.4) into Eq.(1.3) and normalizing by demanding
that the probabilities sum up to 1, we get the expression for the probability
of system A to be in a state with energy E at temperature T

P (E) =
e−βE∑
ms e−βE

. (1.6)

Here
∑

ms is the summation over all microstates available for the system A

while having temperature T . Eq.(1.6) is called the Boltzmann distribution
and describes the energy distribution of the system. It can now be used to
derive Maxwell’s distribution, which provides a statistical description of the
distribution of speeds of gas molecules in a gas at equilibrium at a given
temperature T . The Boltzmann distribution for the speed v of gas molecules
is given by

P (v) = 4π

(
m

2πkBT

) 3
2

v2e
− mv2

2kBT , (1.7)
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where m is the mass of the gas molecule, T is the temperature of the gas.
The typical velocity vt of a molecule will correspond to the maximum of P (v)

function
dP (v)

dv
= 0 → vt =

√
2kBT

m
, (1.8)

which at room temperature T = 300K for N2 gives vt ≈ 422m/s. This
derivation illustrates how the Maxwell velocity distribution provides a sta-
tistical description of the velocities of gas molecules in thermal equilibrium,
allowing us to conveniently derive macroscopic properties of a body such as
temperature by relying on particle velocity averages, rather than tracking
the motion and details of each individual molecule.

1.2 electric double layer (edl)

In this thesis we will be dealing with aqueous systems containing ions,
therefore in this section we will cover the basics of such systems.

Objects Submersed in Liquid

The presence of mesoscopic particles in a liquid can give rise to many
interesting collective phenomena such as pattern formation in liquids through
self-organization mechanisms [12–14], self-assembly of structures [4], elec-
trokinetic processes (e.g. matter transport, discussed in the final part of the
thesis) including streaming current, electrophoresis, electro-osmosis, etc. [15].
Studying behavior of such liquids and ions contained in them is one of the
central topics of soft condensed matter physics.

One particularly interesting topic of study in this area is the behavior of
liquid systems containing charged particles under the influence of externally
applied thermal scale electric field. To understand the importance of such
systems both in general and in life of all living organisms in particular, let
us consider the interaction of two oppositely charged particles with charges
q1 = q and q2 = −q in two different media - air and water. We know that
these charges interact with Coulomb interaction

F =
1

4πε0ε

q1q2
r2 , (1.9)
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where ε0 is the vacuum permittivity, ε is the relative dielectric constant of the
medium and r is the distance between the charges. We see that the force is
inversely proportional to the dielectric permittivity of the medium, therefore
large values of ε will significantly decrease the interaction force of the charges.
Comparing the dielectric constant of water εwater to that of air εair, we find
that εwater is approximately 80 times larger than εair. Consequently, the
forces between charges in water are correspondingly weaker by a factor of 80.
The high dielectric constant of water is attributed to the dipole nature of
water molecules, which also accounts for the ability of salts, being also polar,
to dissolve in water. Water molecules polarise and form a “hydration shell”
around the ions [16–18], which weakens the bond between the salt ions to
the extent that thermal energy becomes sufficient to dissociate the salt into
its constituent parts, allowing it to dissolve in water.

Since even the purest de-ionized water, which has a pH value of around 7,
contains some amount of salt, it is fair to state that water (and other liquids
with high dielectric constants) usually contains a large amount of free ions
that can be manipulated by externally applied electric fields.

Based on all the above and given that liquids such as water are found
everywhere around us and play important roles in our bodies, as well as
various industries, it is interesting to study how systems with such liquids
behave when exposed to external electric fields. Moreover, the application of
external electric fields is a convenient and versatile method for manipulating
these systems [19–21], further enhancing the scientific interest in their study.

A (Very) Brief History of Electric Double Layers (EDLs)

Due to the abundance of liquids in biological systems and nature overall, the
dissociation effect described above has far-reaching implications. Essentially,
any non-hydrophobic solid surface in contact with water will experience
this dissociation process, releasing ions into the liquid. These ions undergo
thermal collisions trying to disperse them uniformly in the water. However,
due to electric interactions, the ionized surface of the solid continues to
exert an attracting force on the ions, preventing their complete dispersion.
Consequently, a diffuse layer of charges accumulates at the surface, effectively
screening its electric potential. This layer, along with the ionized surface,
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constitutes an Electric Double Layer (EDL). Thus, any non-hydrophobic
object submersed into water gets an EDL around it. This is the reason,
why, for example, constituents of our cells can stay separated in an aqueous
environment [22–24], implying that all organic life on earth owes its existence
to EDLs! Interestingly, EDLs can be made to form even in some hydrophobic
cases as is in case of homogenized milk, where EDLs form around fat droplets,
prohibiting them to aggregate into a separate phase from the rest of the liquid.
In the unhomogenized milk straight from the cow there would eventually
be the phase separation between milk and fat. However, milk is usually
homogenized by breaking up fat clumps into many smaller ones (fat globules).
Stability of the solution is ensured by the charge carrying proteins attaching
to the membrane of the fat globules, leading to EDL formation around
globules and making them repel each other and not phase separate as a result
[25–28].

The initial concept of an EDL was introduced in 1853 by Helmholtz, who
showed that an electric double layer stores charge electrostatically, acting
like a molecular capacitor [29]. Importantly, however, in Helmholtz’s model
the charge stored in an EDL depends linearly on the applied voltage, leading
to a constant differential capacitance (ratio of rate of change of the stored
charge and the rate of change of the voltage applied to the surface). While
this model was able to describe the basics of EDLs well, it still needed a lot
of refinement, as it was not taking into account important effects such as
impurity of EDL structure, ionic entropy, ion adsorption to the surface, ion
size etc.

The first major improvements came from Louis Georges Gouy and David
Leonard Chapman, who independently observed variability of the differential
capacitance in 1910 and 1913, respectively [30, 31]. They pioneered the idea
of an EDL consisting of a diffuse layer of charges gathered at the electrode.
The distribution of charges was established to follow Maxwell-Boltzmann
statistics, decaying exponentially away from the electrode into the liquid
bulk.

Further refinements to the model were introduced by Stern, Grahame and
others. Stern came to the conclusion that an EDL can be described by a
mixture of Helmholtz’s and Gouy-Chapman’s ideas. Some ions of the EDL
get adsorbed to the surface of the electrode, forming a firm layer attached
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to it, like in Helmholtz’s model. However, the majority of ions stay close to
the electrode in the form of a Gouy-Chapman diffuse layer [32]. And in 1947
Grahame was the first one to suggest the impurity of an EDL, claiming, that
some ions can penetrate the Stern layer, though, this is not a very common
occurence [33].

While there are other notable improvements to the original Helmholtz’s
model of an EDL, in this thesis we are not going to delve into the such
details of EDL structure and we will treat EDLs within the Gouy-Chapman
framework.

1.2.1 Equilibrium EDL - Poisson-Boltzmann Distribution

A system allowing us to conveniently describe an EDL mathematically
consists of a semi-infinite 3D aqueous electrolyte of relative dielectric constant
ε at room temperature T being bounded by a macroscopic planar electrode
from one side while extending infinitely in the other direction, where we
assume translational invariance in the lateral directions. The electrolyte
consists of two types of monovalent point-like ions: cations (+) and anions
(−) characterized by valencies z± = ±1 and diffusion coefficients D±. The
total number of cations and anions is equal, hence the total system is
electroneutral. We fix the concentrations of ions at bulk concentration cs

far away from the electrode, which is blocking, so that no ion can penetrate
it and we exclude any chemical REDOX reactions. Thus c±(z → ∞) = cs.
We also exclude surface chemistry, so that an electrode submerged in liquid
would not acquire an EDL via the dissociation mechanism described above.
A schematic representation of the system is shown in Fig. 1.1.

Initially electrode is not charged and as a result the ions are spread evenly
by entropic forces across the bulk liquid, as seen in Fig. 1.1(a). If we now
apply a positive surface charge σc > 0 to the electrode, the negative charges
will get attracted to it and the positive ones repelled, such that they form an
EDL, as seen in Fig. 1.1(b).

In order to describe the EDL analytically, we need to connect the electric
potential to the charge distribution in the system. For this we recall the
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= 0z

= 0cσ

(a)

= 0z

0>cσ

(b)

Figure 1.1: Schematic representation of the aqueous 1:1 electrolyte of interest con-
taining a continuum solvent and two ionic species in a semi-infinite
system bounded from the left by a planar blocking electrode. The bulk
of the electrolyte is grounded so that Ψ (z → ∞) = 0. In (a) the elec-
trode is not charged σc = 0 and the ions are spread evenly across the
electrolyte, whereas in (b) a positive surface charge density σc > 0 is
applied to the electrode, leading to aggregation of a negative layer of
ions in its vicinity, forming an EDL.

Coulomb law describing electric field E ≡ −∇Ψ originating from a point
charge

−∇Ψ =
r̂

|r|2
e

4πεε0
, (1.10)
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where e is the elementary charge and r̂ is the unit vector. If we take the
divergence of the electric field, it becomes clear that the electric field is
sourced by the localized point charge ∇Ψ2 = −eδ(r)/εε0, where δ(r) is the
Dirac delta function. And as ∇Ψ ∝ e is a linear relation, for a collection of
charges the electric field will simply be a sum of electric fields created by the
individual charges

∇2Ψ = − e

εε0
ce(r), (1.11)

where ce(r) = c+(z) − c−(z) is the ionic charge distribution in the system.
This equation is called Poisson equation and describes the relation of the
electric potential to the charge distribution in the system.

This, however, is not enough to describe the system, as we have 3 unknown
functions Ψ , c+ and c− in this equation, so we need two additional relations
connecting electric potential to charge concentrations to close the system of
equations. For this we employ the aforementioned Boltzmann distribution of
Eq.(1.6), as it connects the distribution of ion con,

c±(z) = cs exp[∓βeΨ (z)], (1.12)

where β = 1/kBT . Eqs.(1.11) and (1.12), called Poisson-Boltzmann (PB)
equation, form a set of self-consistent equations, solving which gives us
analytical results for the distributions of ion concentrations and electric
potential in the system.

Poisson-Boltzmann Analytical Solution

For a general geometry the set of PB equations does not have an analytic
solution. However, in certain simple geometries like the single plate geometry
of Fig. 1.1(a) PB equations can, fortunately, be solved, shedding some light
on the EDL structure.

We start by inserting Eq.(1.12) into Eq.(1.11), leading to a second order
differential equation

d2Ψ (z)

dz2 =
2cse

ε0ε
sinh(−βeΨ (z)), (1.13)
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which needs two boundary conditions

Ψ (z)|z→∞ = 0, (1.14)

σc = −
∫ ∞

0
c(z)dz, (1.15)

where c(z) = c+(z) − c+(z) and σc = σ/e is the surface charge density on
the electrode. Both of the boundary conditions are constructed using the fact
that in equilibrium EDL fully screens electric potential of the electrode. The
first one describes the electric potential far away from the electrode, whereas
the second one equates the total excess charge gathered at the electrode to the
surface charge on the electrode, so that the total system stays charge neutral.
Eq.(1.15) can be further simplified by using Eq.(1.11), so that by combining
it with Eq.(1.13) and Eq.(1.14) we arrive at the system of equations that we
have to solve

∇2Φ(z) = κ2 sinh(Φ(z)), (1.16)

∇Φ(z)|z=0 = −4πλBσc, (1.17)

Φ(z)|z→∞ = 0, (1.18)

where we introduced a convenient re-scaled electric potential

Φ(z) ≡ eΨ (z)

kBT
(1.19)

and κ - a coefficient with dimensions of inverse length, physical meaning
of which is given below. Integrating the equations and using the boundary
conditions we arrive at the expressions describing the profile of the electric
potential as well as the concentration of charges

Φ(z) = 2 log
(

1 + γe−z/λD

1 − γe−z/λD

)
, (1.20)

c±(z) = cs

(
1 ∓ γe−z/λD

1 ± γe−z/λD

)2

, (1.21)
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where

γ =

√
1 + (y/2)2 − 1

y/2 , with y = −4πλBλDσc, (1.22)

where
λB =

e2

4πεε0kBT
(1.23)

is called the Bjerrum length and characterizes the solvent by denoting the
distance, over which the value of the electric interaction potential between
two dissolved unit charges e is equal to kBT . The second length scale

λD =

√
1

8πλBcs
, (1.24)

which can also be denoted as κ−1, is called the Debye length and is a
characteristic length of an EDL. It denotes how fast the exponents of the
electric potential and the charge concentration decay when moving away
from the electrode. The decay profile for the electric potential can be seen
in Fig. 1.2(a), which gets fully screened by the EDL as we get far away
from the electrode. A similar behavior can be seen in Fig. 1.2(b), where
due to the positive charge on the electrode the concentration of the negative
ions increases exponentially as we approach the electrode, whereas that of
the negative ions decreases. In the bulk, far away from the electrode, both
concentrations converge to the bulk concentration cs.

Grahame Equation

For future convenience here we also derive an expression describing how
the surface charge σ is connected to the magnitude of the electrode potential
Ψ0 explicitly.

For this we integrate the PB equation of Eq.(1.16) where we employ the
variable change s ≡ κz to arrive at

dΦ(s)

ds
= 2 sinh

(
Φ(s)

2

)
sgn(Φ(s)), (1.25)

where we now change the variable back to z

κ−1 dΦ(z)

dz
= 2 sinh

(
Φ(z)

2

)
(1.26)
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(a)

(b)

Figure 1.2: Profiles of (a) electric potential and (b) ion concentrations for a semi-
infinite system with a planar blocking electrode in contact with an
semi-infinite electrolyte. In (a) the potential decreases to 0 far away
from the electrode as it gets screened by the EDL. In (b) the charges
decrease exponentially with the distance from the electrode converging
to bulk density cs far away from it. Surface charge σ = 1.8 · 10−3C/m2

corresponds to the zeta potential of βeΨ0 = 1. As an electrolyte we
used water at room temperature T = 293K with dielectric constant
ε = 78.5. The bulk ionic concentration was taken to be cs = 0.93mM
corresponding to the Debye length of λD = 10nm.

and employ Gauss’ law for an infinite, charged plate

n̂ · ∇Ψ =
σ

εε0
, (1.27)
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where n̂ is the outer normal to the surface. This leads us to
eΨ0
kBT

= 2 sinh−1
(
2πλDλBσc

)
, (1.28)

called the Grahame equation, relating the surface charge σ to the surface
potential Ψ0.

1.2.2 Non-equilibrium EDL: Poisson-Nernst-Planck-Stokes equations

In contrast to the static analysis of Electric Double Layers, dynamic
electrochemical systems experience a far wider range of effects.

Langevin Force Balance Equation

The only equation that stays the same when we transition from the static
equilibrium case to the dynamic non-equilibrium case is the Poisson equation
(1.11), as the relationship between the charge distribution in the system with
the profile of the electric potential does not change, as long as retardation
effects can be ignored. The Boltzmann distribution, on the other hand,
being an equilibrium distribution is not directly applicable anymore. In
the dynamic case it gets substituted by the Nernst-Planck (NP) equation
describing the ion transport under the influence of external forces.

The reason for a wider range of effects in the dynamic case is the variety
of sources affecting ion movement in the system. To describe this, we employ
a force balance equation which we will now construct.

Consider a particle of mass m moving through a fluid. Since there is a
preferred direction in the system along the movement path of the particle,
the distribution of collisions with other particles across the surface of the
moving particle will be asymmetric and skewed towards the patch of the
particle surface that is at the forefront of the movement direction i.e. its
“front” part. This creates a friction force mξv(t) which is proportional to
the velocity of the particle and is characterized by the friction coefficient ξ.
Therefore in absence of external forces and thermal fluctuations the force
balance equation, called Langevin equation can be written as

m
dv±(t)

dt
= −mξv±(t), (1.29)
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bringing any particle to rest according to the solution v(t) = v0 exp(−ξt),
with v0 the initial velocity. In this thesis, however, we will be working with
charged particles moving in a fluid at room temperature T = 293K under
the influence of an external electric field, implying presence of additional
external force terms and fluctuations on the right hand side of the Langevin
equation (1.29).

First, as the fluid moves, advection of particles by the fluid can also be
considered as a force mξu, which is proportional to the fluid velocity. Since
we will be working at the room temperature, there will be a random thermal
force f (t) acting on the particle. And finally, external electric field will
subject ions to the electric force ∓e∇Ψ for charges ±e. Collecting these
terms in the Langevin equation results in

m
dv±(t)

dt
= −mξ(v±(t) − u) ∓ e∇Ψ + f (t), (1.30)

where the advection and random force terms will be discussed in more detail
below. In absence of thermal collisions the equilibrium velocity reached by
the ion is going to be

v± = ∓e∇Ψ/(mξ) + u (1.31)

when t ≫ ξ−1, independent of the initial velocity. For the typical parameter
values of this thesis the terminal velocity is of the order of ∼ 1mm/s.

Ionic diffusion

We start with the diffusive term due to thermal collisions f (t). As described
in the initial section of this chapter, the energy ranges of the systems that we
consider are such that thermal collisions in electrolyte play a role comparable
to that of the external forces applied to the system. Thermal collisions
can be described by a random force f (t) applied to ions. The main feature
of this force is that it has a zero mean ⟨f (t)⟩ = 0 (where ⟨. . .⟩ denotes an
ensemble average over the solved degrees of freedom), while having a non-zero
mean square amplitude ⟨fi(t)fj(t′)⟩ = 2mkBTξδijδ(t − t′), where δij is the
Kronecker-delta [34].

In order to find the effect of thermal collisions on the transport of the ions
in electrolyte we substitute the above force f (t) into the Langevin equation
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(1.30) assuming that no other external forces act on the ions, i.e. ∇Ψ = 0
and u = 0. The resulting equation

m
dv±(t)

dt
= −mξv±(t) + f (t) (1.32)

can be solved for v(t)

v(t) = v0 exp(−ξt) +
1
m

∫ t

0
dsf (s) exp(ξ(s − t)), (1.33)

however, in order for this solution to be useful, one needs to know the
properties of f (t). Due to its random nature, the only known characteristic
is its expectation value, thus, instead of studying v(t) we draw our attention
to ⟨v(t) · v(t′)⟩, which after performing some algebra can be shown to be

⟨v(t) · v(t′)⟩ = 3kBT exp(−ξ′|t − t′|))/m, (1.34)

which also satisfies the equipartition condition (m/2)⟨v(t′) · v(t′)⟩ = 3kBT /2
at equal state times, as it should if the coefficient of the random force
correlation function 2mkBTξ was chosen correctly. With this we can now
calculate the displacement of the ion from its origin R(t) at time t

R(t) = R(0) +
∫ t

0
dsv(s). (1.35)

Due to the nature of v(t) this translates into a zero mean displacement for
the ion

⟨R(t) − R(0)⟩ = 0, (1.36)

and in 3 dimensions a non-zero mean-squared displacement

⟨|R(t) − R(0)|2⟩ =
∫ t

0

∫ t

0
dsds′⟨v(t) · v(t′)⟩ ≈ 6Dt if t ≫ ξ−1. (1.37)

Here D ≡ kBT /(mξ) is defined as a diffusion coefficient of ions and has
dimensions of m2/s, implying that the typical time t it takes an ion to travel a
distance |R| from its origin at t = 0 under the influence of thermal fluctuation
is τ ∝ |R|2/D. Phenomenologically one can also determine ξ = 6πηa

m , where
a is the radius of ion and η the viscosity of the medium. From this we can
also get the famous Stokes-Einstein expression for the diffusion coefficient
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D =
kBT

6πηa
. (1.38)

A typical diffusion coefficient for a = 0.2nm and η = 1 mPa·s is D =

10−9m2/s. Equations (1.36) and (1.37) imply that the ion does get displaced
from its origin R(t = 0) on average, however, there is no preferred displace-
ment direction due to the random nature of f (t) force. All this indicates, that
the probability distribution p(R, t) of finding an ion at time t at a position R
relative to its origin at t = 0 should be a Gaussian distribution with variance
6Dt and zero mean and can be written as

p(R, t) =
1

(12πDt)3/2 e− |R|2
12Dt . (1.39)

Evolution of this probability distribution gives the desired equation of
motion of a particle undergoing diffusion due to thermal collisions

∂tp(R, t) = D∇2p(R, t), (1.40)

called the diffusion equation, which also yields Fick’s law J = −D∇p for the
diffusive flux.

Ion Advection and Fluid Flow

Now we turn our attention to the bulk fluid motion. As the liquid flows
within the system, ions are transported along with it, following the fluid
dynamics. Fluid flow is mathematically described in terms of velocity distri-
bution u(x, y, z, t) and two thermodynamic properties: pressure p(x, y, z, t)

and mass density ρm(x, y, z, t). The equation connecting these functions is
the Navier-Stokes equation

ρm
∂u
∂t

+ u · ∇u = η∇2u − ∇p − e(c+ − c−)∇Ψ , (1.41)

the most general equation governing the viscous fluid flow. It can be, however,
significantly simplified in many cases. Different layers of liquid can have
different velocities and if the difference is large enough for neighboring layers,
they can start mixing creating a turbulent flow. The viscosity of the fluid
is counteracting this effect by damping the fluid motion and if it is strong
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enough, the flow will be laminar. This competition is described by the
Reynolds number Re = uL/ν, where L is the typical linear size of the system
where the liquid is flowing and ν the kinematic viscosity. Thus, depending
on the scale of the system, the above term can be neglected. Throughout
this thesis we will be considering flows on a micrometer scale, where Re ≪ 1,
hence the flow will be laminar and instead of Navier-Stokes equation, liquid
flow will be governed by the incompressible Stokes equation

ρm
∂u
∂t

= η∇2u − ∇p − e(c+ − c−)∇Ψ ; ∇ · u = 0, (1.42)

where the continuity equation of fluid flow ∂ρm/∂t = −∇ · (ρmu) transforms
into ∇ · u = 0, because ρm = const., denoting incompressibility.

Ionic Flux - Nernst-Planck Equation

Having discussed the mechanisms of individual ion movement in the elec-
trolyte, we can now combine these results and write down an expression for the
ionic flux density in the electrolyte. We define ionic densities c± = pN±/V

and fluxes J± = c±v±, where N± is the number of negative and positive
ions in the unit volume V . We also assume absence of interparticle correla-
tions beyond mean field, allowing us to simply convert the above results for
individual ions into the equation of motion for ion concentrations. Such a
treatment is valid until we stay at low concentrations c± ≲ 1M, as for dense
electrolytes interparticle interactions become large enough to significantly
change the dynamics of ionic movement. In this thesis we stay in the dilute
regime, thus Eq. (1.31) can be written as

∂tc±(R, t) = D∇2c±(R, t). (1.43)

Recalling the continuity equation

∂tc± = −∇ · J±, (1.44)

we can interpret the left hand side of Eq.(1.43) as the contribution of diffusion
to the ionic flux, J± = −D∇c±. At the same time rewriting the ionic flux
in terms of individual ion velocity J± = v±c± allows us to insert Eq. (1.31),
describing the terminal velocity of ions when exposed to the electric field and
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fluid flow, into the continuity equation to obtain the diffusion-conduction-
advection equation

∂tc± = D

(
∇2c± ± ∇ ·

(
c±

e∇Ψ

kBT

))
− ∇ · (c±u), (1.45)

called Fokker-Planck or Smoluchowski equation. Comparing it to Eq.(1.44)
finally allows us to write the desired expression for the ionic flux in the system
as

J± = −D

(
∇c± ± c±

e∇Ψ

kBT

)
+ c±u, (1.46)

called Nernst-Planck equation, which in equilibrium, when ∂/∂t = 0, J± = 0
and u = 0, reads

∇c± ± c±
e∇Ψ

kBT
= 0,

and leads to the Poisson-Boltzmann distribution

c±(r) = cse∓βeΨ (r),

where c±,s is the bulk concentration of the ions.

Closed set of equations

Now we have all the necessary equations to describe the system. Interaction
of the electric potential with the distribution of ions in the system is governed
by the Poisson equation (1.11). How the ionic fluxes are driven by the electric
field, diffusion and advection is determined by the Nernst-Planck equation
(1.46), whereas fluid dynamics is described by the Stokes equation (1.42)
augmented by the incompressibility condition ∇ · u = 0. These equations,
collectively named Poisson-Nernst-Planck-Stokes (PNPS) equations, complete
a set of linear second-order differential equations for ρ±, J±, Ψ , u, and
p, describing the non-equilibrium dynamics of ion concentrations, electric
potential and fluid flow in an electrolytical system subjected to external
electric and mechanical forces
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∇2Ψ = − e

εε0
ce, (1.47)

ρm
∂u
∂t

= η∇2u − ∇p − e(c+ − c−)∇Ψ ; ∇ · u = 0, (1.48)

J± = −D

(
∇c± ± c±

e∇Ψ

kBT

)
+ c±u, (1.49)

that will be accompanied by the appropriate boundary conditions for a given
system.

1.3 summary and outlook

The introductory chapter covered two main topics. As the systems studied
in this thesis belong to the field of soft condensed matter, in the first part a
general overview of SCM was provided. The applicability of SCM methods
was discussed in terms of length and energy scales of the system of interest.
This was followed by the demonstration of statistical mechanics methods
as the main theoretical toolbox to describe and study SCM systems. By
employing ensemble averages of physical quantities of interest, rather than
having to track each individual constituent at every moment of time, it
becomes significantly easier to study systems with statistically large amounts
of constituent elements/particles.

In the second part of the chapter the main object of study in this thesis,
an electric double layer, was introduced. After covering its origins and
providing a brief history of how its theory was being developed in the 20th

century, the governing equations needed to describe a simple equilibrium
EDL mathematically were introduced in form of Poisson-Nernst-Planck non-
linear coupled differential equations. In the following section the theory was
extended to the non-equilibrium EDL. The governing set of equations was
updated to the dynamic Poisson-Nernst-Planck-Stokes system of equations,
with Stokes equation describing the fluid flow.
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This lays the foundation for the thesis, where systems with non-equilibrium
EDLs will be the central topic of study, thus, relying on the information
provided in this chapter.

The thesis is structured as follows. Chapter 2 covers the emergence of
Asymmetric Rectified Electric Fields (AREF) in an electrolytic cell consisting
of an asymmetric electrolyte with unequal ionic diffusion coefficients confined
between two blocking electrodes and driven by a harmonic voltage. Chapter 3
covers AREF in a similar system where the electrolyte is symmetric with equal
ionic diffusion coefficients, however in this case it is driven by a sawtooth-like
electric potential, opening possibilities for tuning AREF in experiments much
more flexibly, compared to the original version. Chapter 4 covers the the
emergence of a hysteresis voltammetry loop in a microfluidic conical channel
when driven by AC voltage and pressure, where the latter allows for the
tuning of the hysteresis. As described in more detail in the chapter, such
devices can be used in various neuromorphic computing applications, making
them very interesting to study. Each chapter has its own introduction and
summary. At the end of the thesis there is a summary of the whole thesis both
in English and Dutch, followed by the acknowledgements and bibliography.





2A S Y M M E T R I C R E C T I F I E D E L E C T R I C F I E L D S :
N O N L I N E A R I T I E S A N D E Q U I VA L E N T C I R C U I T S

abstract

Recent experiments [S. H. Hashemi et al., Physical Review Letters 121,
185504 (2018)] have shown that a long-ranged steady electric field emerges
when applying an oscillating voltage over an electrolyte with unequal mobili-
ties of cations and anions confined between two planar blocking electrodes.
To explain this effect we analyse full numerical calculations based on the
Poisson-Nernst-Planck equations by means of analytically constructed equiv-
alent electric circuits. Surprisingly, the resulting equivalent circuit has two
capacitive elements, rather than one, which introduces a new timescale for
electrolyte dynamics. We find a good qualitative agreement between the
numerical results and our simple analytic model, which shows that the long-
range steady electric field emerges from the different charging rates of cations
and anions in the electric double layers.
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2.1 introduction

Studying the response of an aqueous electrolyte to an externally applied
oscillating electric field is a very active research direction, as AC voltages
can be used to achieve various goals in a wide range of practical applications
in electrolytes. For example, an AC voltage can be used to drive electroki-
netic pumps [35, 36], induce fluid flow within microfluidic systems [37–40],
manipulate charged colloids in aqueous electrolytes [41–43], desalinate and
de-ionize the electrolyte using porous membranes [44–46], study the elec-
trolyte dynamics with impedance and dielectric spectroscopy [41, 47–51],
render memristive properties to aqueous electrolytes in confinement [52–54],
and study bioparticles [55, 56]. For various applications, one of the key
motivations to use AC electric fields over DC fields is to eliminate any net
current or net charge in the system due to the vanishing field when averaged
over a period. Here we will see, however, that the period-averaged current
and charge do not necessarily vanish.

The simplest geometry allowing the study of the basic physical effects in
an electrolyte under the influence of AC fields consists of a globally neutral
1:1 electrolyte of point-like ions confined between two blocking electrodes, to
which an AC voltage is applied. It is well known that in equilibrium or at low
frequencies a so-called Electric Double Layer (EDL) arises at the interface
between a charged solid (electrode, colloid, etc.) and an electrolyte. The
EDL consists of the surface charges of the solid and an oppositely charged
diffuse ionic cloud with an excess of counter-ions and a depletion of co-ions
[57]. The EDL has a characteristic thickness equal to the Debye length λD

of the order of 10 nm when the salt concentration in water is around 1 mM
at room temperature.

The behavior of the EDLs in this seemingly simple system can be described
by Poisson-Nernst-Planck (PNP) equations, which take the Coulomb interac-
tions into account as well as the diffusive and conductive properties of ions
dissolved in water, viewed as a dielectric continuum. In this planar geometry
the PNP equations form a system of coupled non-linear partial differential
equations, that has been solved analytically only perturbatively [58, 59] or in
terms of special functions [60]. Due to this, a large number of studies has
concentrated on the quasi-equilibrium approach and weak driving electric
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potentials [61–63]. In recent years, however, more studies have considered AC
potentials whose amplitude Ψ0 is well into the non-linear screening regime
Ψ0 ≳ β−1e ≈ 25mV, where e is the elementary charge and β−1 the product
of the Boltzmann constant and room temperature. Thorough reviews of the
response of an electrolytic cell to large applied DC and AC signals have been
presented in Refs. [64, 65]. The most notable effect appearing at these high
voltages is the presence of higher-order modes of the ion movement from the
pattern of the driving potential - e.g. a sinusoidal driving voltage does not
translate into (possibly phase shifted) sinusoidal ionic fluxes in the electrolyte
anymore, because higher-order harmonics appear.

The inspiration to study non-linear effects in systems driven by an AC
electric field has also come from experimental studies such as those in Refs.
[41, 42]. The authors considered a vertical system consisting of an aqueous
electrolyte confined between two horizontal blocking electrodes. The elec-
trolyte contained charged colloids that tend to sediment in the gravitational
field. However, it was observed that under the influence of a sufficiently
strong harmonic AC voltage applied between the electrodes, a fraction of
colloidal particles would float in the gravitational field rather than sediment
to the bottom electrode [66]. A similar method to employ an AC voltage to
generate non-zero steady effects has also been used in Ref. [67] to reverse
the flow of AC electroosmosis. The physical mechanisms behind these effects
remain somewhat unclear.

Observations such as the floating colloids and flow reversal mentioned
above led to an investigation whether the ionic response to an AC driving
voltage applied to the horizontal electrode could affect the ability of colloids to
counteract the gravitational force [66]. This study used the aforementioned
electrolytic cell model with blocking electrodes. It was discovered that
ions with unequal diffusion coefficients in an electrolytic cell driven by a
harmonic external potential can produce non-zero time-averaged electric
fields that extend from the electrodes well into the bulk of the electrolyte.
This phenomenon was called Asymmetric Rectified Electric Field (AREF)
[66]. Besides this effect being interesting on its own, it was also suggested
that the electric force exerted by this field could be responsible for keeping
the charged colloids afloat in a gravitational field in the experiments of
Ref. [41]. Therefore the AREF was investigated in more detail in follow-up
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papers concerned with the dependence on several system parameters [68] and
with perturbative solutions of the governing system of non-linear differential
equations [58], the latter even replicating the main characteristics of the
AREF structure analytically. Interestingly, however, the physical mechanism
responsible for AREF generation has not been discussed in any detail, except
perhaps for a toy model proposed in Ref.[68] that we will briefly discuss
at the very end of this study. It is also interesting to note that a recent
study regarding floating colloids under AC voltage in an electrolytic cell
[69] suggested that besides AREF, dielectrophoresis can also counter the
gravitational force depending on the parameters of the system. It is, however,
still not clear to what extent each of these two mechanisms is contributing
to the floating height of the colloids [69].

In this chapter we focus on AREF and numerically solve the PNP equations
and also construct an analytical expression based on an equivalent RC circuit,
modified, however, to take nonlinearities into account. This captures the
behavior of the AREF qualitatively, helping us to identify the core physical
mechanism responsible for the effect by reducing it to simple charging-
discharging processes of capacitors. The structure of this chapter is as
follows. In section 2.2 we introduce the system of interest together with
the PNP equations that govern the processes in the electrolytic cell. In
section 2.3 we describe and give an explanation of the AREF effect for a
particular set of system parameters, essentially reproducing, confirming, and
reformulating some earlier results. In section 2.4 we numerically study how
the AREF depends on the main system parameters. Then, in section 2.5
we solve the PNP equations to identify the equivalent circuit corresponding
to the electrolytic cell and use it to construct an analytic toy model in
section 2.6 that compares quite favourably to the numerical solutions of the
PNP equations. Finally, in section 2.7 we conclude and discuss our results.

2.2 poisson-nernst-planck equations

The system of interest consists of a 3D aqueous electrolyte of relative
dielectric constant ε at room temperature confined between two parallel
macroscopic planar electrodes at a distance L from each other, where we
assume translational invariance in the lateral directions. The electrolyte
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consists of two types of monovalent point-like ions: cations (+) and anions
(−) characterized by valencies z± = ±1 and diffusion coefficients D±. The
total number of cations and anions is equal, hence the total system is
electroneutral. The electrodes are blocking, so that no ion can leave the
electrolyte and we exclude any chemical REDOX reactions. The system is
driven by an AC voltage Ψ (t) = Ψ0eiωt applied to the left electrode placed in
the plane z = −L

2 , whereas the right one, placed at z = L
2 , is kept grounded.

Here ω is the imposed angular frequency and Ψ0 the amplitude. A schematic
representation of the system is shown in Fig. 2.1.

)tΨ(

Figure 2.1: Schematic representation of the aqueous 1:1 electrolyte of interest con-
taining a continuum solvent and two ionic species confined between two
parallel blocking electrodes separated by a distance L. The electrolyte
is driven by a time-dependent electric potential Ψ (t) applied to the
electrode at z = −L

2 , while the other one at z = L
2 is kept grounded.

We use the Poisson-Nernst-Planck (PNP) equations to study the system.
The first is the Poisson equation, which relates the local electric potential
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profile Ψ (z, t) to the local charge density e
(
c+(z, t)− c−(z, t)

)
, where c±(z, t)

denotes the concentration of cations (+) and anions (−) at position z and
time t. For |z| < L

2 the Poisson equation reads

∂2Ψ (z, t)

∂z2 = − e

ε0ε

(
c+(z, t) − c−(z, t)

)
, (2.1)

where ε0 is the permittivity of vacuum and ε = 80 represents water as
a structureless continuum. The ionic fluxes J±(z, t) contain a diffusive
contribution due to the gradients of ion concentrations and a conductive
contribution due to the potential gradient, jointly described by the Nernst-
Planck equation

J±(z, t) = −D±

(
∂c±(z, t)

∂z
± βec±(z, t)

∂Ψ (z, t)

∂z

)
, (2.2)

where we consider the diffusion coefficients to be spatially constant and
different for cations (D+) and anions (D−). Because we exclude any chemical
reaction in the system, the concentrations and fluxes are coupled by the
continuity equation

∂c±(z, t)

∂t
+

∂J±(z, t)

∂z
= 0. (2.3)

The PNP equations (2.1), (2.2) and (2.3) form a closed set for the concentra-
tions c±, the fluxes J± and the potential Ψ . Solving PNP equations explicitly
requires boundary and initial conditions, which we write as

Ψ (−L/2, t) = Ψ0eiωt, (2.4)

Ψ (L/2, t) = 0, (2.5)

J±(−L/2, t) = J±(L/2, t) = 0, (2.6)

c±(z, t = 0) = cs, (2.7)

where cs is the fixed initial average salt concentration, that is equal for both
ionic species in our symmetric 1 : 1 electrolyte. Due to Eq. (2.3) combined
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with boundary conditions Eq. (2.6) the number of cations and anions will be
conserved such that

1
L

∫ L/2

−L/2
c±(z, t) dz = cs. (2.8)

Here we note that for convenience during derivations below we use a complex
representation of physical quantities (like for the voltage in Eq. (2.4)), how-
ever, in numerical calculations we use sin(ωt) to drive the system (ensuring
that the system starts from equilibrium with Ψ (z, 0) = 0), therefore the
physical quantities will correspond to the imaginary part of derived complex
expressions. For given Ψ0, D±, ω and cs, Eqs. (2.1) – (2.8) complete the
system of non-linear coupled differential equations. We solve these equa-
tions numerically employing COMSOL® as a finite-element method solver
software.

Convenient insight into relevant system parameters can be obtained as fol-
lows. In static equilibrium, so for ω = 0, the applied potential Ψ (−L/2, t) =

Ψ0 (a constant), and J±(z, t) = 0, and in the linear regime with |βeΨ0| ≲ 1,
the EDLs get fully developed at the two electrodes and the NP equation (2.2)
can be integrated to obtain the Boltzmann distribution

c±(z) = c′
s

(
1 ∓ Ψ0βe sinh (κz)

2 sinh (κL/2)

)
, (2.9)

with κ−1 the characteristic Debye length of the equilibrium EDL given by

κ−1 =

√
εε0

2e2βc′
s

≡ λD. (2.10)

The concentration c′
s is an integration constant that is very close to cs in the

large L-limit of interest here, so throughout the chapter we set c′
s = cs in

the definition of λD. In this limit, as we will derive below, the characteristic
timescale of EDL formation [65, 70] is written as the RC time

τRC =
LλD

2D
=

L

2κD
. (2.11)

For future convenience we also define the Debye time

τD =
1

κ2D
= τRC

2
κL

, (2.12)
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during which the ions diffuse over a distance of the order of the Debye length
[65, 71]. Here the effective diffusion coefficient of the ions in the electrolyte
is given by

D =
2D+D−

D+ + D−
. (2.13)

For later reference it proves convenient to keep D fixed and to characterise
the asymmetry of D+ and D− by

δ ≡ D−
D+

, (2.14)

such that
D± =

D

2 (1 + δ∓1). (2.15)

Clearly, for equal diffusivities we have D = D+ = D−, however, for extremely
asymmetric diffusivities the effective diffusion coefficient is essentially twice
the smallest one.

For a few typical 1:1 electrolytes the asymmetry parameter δ is given in
Table 1. Although close-to-symmetric electrolytes with δ ≃ 1 exist according
to the table, others have some degree of mobility asymmetry up to δ ≃ 2
in the present examples. For simplicity we restrict attention to monovalent
ions here, however we note that the mobility asymmetry of multivalent ions
can be larger, for instance BeCl2 has δ = 3.44. Without loss of generality we
choose δ > 1 throughout this study, such that the negative ions will be the
faster ones, thus D− > D+.

2.3 asymmetric rectified electric field (aref)

2.3.1 AREF Description

According to Ref.[66], a mobility mismatch of ions, δ ̸= 1, can introduce
a long-range steady electric field upon AC driving. This also follows from
our numerical results. For convenience we define a standard parameter
set including an amplitude and frequency of the driving potential given
by βeΨ0 = 3 and ωτRC = 1, respectively. The standard system size is
characterized by κL = 50, and the standard diffusion coefficients are D+ =
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Salt Ions D+ D− δ

CsCl Cs+, Cl− 2.06 2.03 0.99

CsI Cs+, I− 2.06 2.05 1.00

KCl K+, Cl− 1.96 2.03 1.03

NaCl Na+, Cl− 1.33 2.03 1.53

LiI Li+, I− 1.03 2.05 1.99

×10−9m2/s

Table 1: Ionic mobility ratio δ = D−/D+ for various common aqueous 1:1 elec-
trolytes [72].

D−/δ = 1.09 · 10−9m2/s (resulting in D = 1.456 · 10−9m2/s) with δ = 2 by
default. The bulk concentration of ions is cs = 1mM, resulting in a Debye
length λD = 10−8m. Any deviation from this set will be explicitly stated.
The coordinate z is measured in terms of Debye length λD = κ−1 and ranges
from −L/2 to L/2. Our standard focus is also on the late-time limit-cycle
when all transients have decayed such that all time-dependence has the same
period as that of the driving potential, potentially, however, with higher-order
harmonics.

In Fig. 2.2 we plot for the standard parameter set, with asymmetries
δ = 1, 2 and 3.5, the late-time period-averaged position-dependent profiles of
(a) the dimensionless charge distribution ⟨c+ − c−⟩(z), (b) the electric field
⟨E⟩(z), and (c) the potential ⟨Ψ⟩(z). Here time-averaging is defined by

⟨f⟩(z) = 1
T

∫ t0+T

t0
f(z, t) dt, (2.16)

where t0 is the (sufficiently late) time at which we start averaging, T = 2π
ω

is the period of AC voltage, and f can be any of the functions that we
are considering - either the electric field E, the electric potential Ψ , or a
combination of the ion concentrations c±.
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For ω > 0, so for finite T , Fig. 2.2 shows for symmetric electrolytes (δ = 1)
that ⟨c+ − c−⟩ = ⟨Ψ⟩ = ⟨E⟩ = 0, meaning that charges are distributed
evenly across the system, as expected. However, if the ionic mobilities
become mismatched (δ = 2 and δ = 3.5), the average charge distribution
⟨c+ − c−⟩ becomes spatially non-uniform (see Fig. 2.2(a)), which, in turn,
gives rise to a non-zero time-averaged electric field and a steady non-uniform
electric potential, presented in Fig. 2.2(b) and Fig. 2.2(c), respectively. We
note in Fig. 2.2(c) that the time-averaged electrode potential is zero by
construction, as imposed by the boundary conditions. Nevertheless, the
steady electric field extends several Debye lengths into the electrolyte (in
the current case it is more than 5λD, however this can be even more, as
demonstrated in Ref.[68]). Fig. 2.2 gives a first clue of the underlying physics,
as we see that ⟨c+ − c−⟩ is negative in the vicinity of the surfaces and positive
a few Debye lengths away, showing that the faster anions manage to approach
the electrode in larger quantities, on average, than the slower cations.

Fig. 2.2(b) shows an example of the long-range steady electric field that
is referred to as Asymmetric Rectified Electric Field (AREF) in Ref.[66].
Parametric studies of AREF performed in Ref.[68] concentrate on two charac-
teristics of AREF - the position and the height of the largest peak of the con-
centration profile of the slower ions. Instead, here we use the spatio-temporal
average U of the (dimensionless) electric potential profile to characterize the
magnitude of AREF,

U ≡ βe
1
L

∫ L
2

− L
2

dz⟨Ψ⟩(z), (2.17)

which is a convenient integrated quantity to study numerically. Moreover,
for large L, the dimensionless quantity U is a measure for the time-averaged
electroosmotic (EO) mobility [73], as it plays the same role as the zeta
potential of charged surfaces; it is proportional to the physically measurable
EO mobility µEO. However, EO is not the focus of the current chapter and
can be explored in future studies. Finally, it is also interesting to note that the
period-averaged surface charge density on the electrodes, ⟨σ⟩ ∝ ⟨E|z=−L/2⟩
vanishes by Gauss law due to the electric neutrality of the system. This is also
clear from Fig. 2.2(b), where the curves of ⟨E⟩ approach zero at z = ±L/2.
Thus the layers of fast anions that we see at each of the electrodes in Fig. 2.2(a)
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(a) (b)

(c)

Figure 2.2: Dimensionless spatial profiles of the time-averaged (a) ionic charge density
⟨c+ − c−⟩/cs, (b) electric field βeκ−1⟨E⟩, and (c) electric potential βe⟨Ψ⟩
for an aqueous 1:1 electrolyte with Debye length λD = 10nm confined
between two planar electrodes at distance L = 50λD. The electrode
at z = L/2 is grounded, the one at z = −L/2 has an AC potential
Ψ0eiωt with amplitude Ψ0 = 3/βe = 75 mV and frequency ω = τ−1

RC
with RC-time τRC given by Eq. (2.11). The different colors represent
the three different mobility ratios δ = D−/D+ of the faster anions and
the slower cations.

essentially play the role of charged electrodes that are screened by the cloud
of slow cations.

2.3.2 AREF Mechanism

Here we discuss the mechanism for AREF generation. It is perhaps best
understood by tracking the number of ions gathering at one of the electrodes



36 aref: nonlinearities and equivalent circuits

(e.g. the one at z = −L/2) for the whole period T = 2π/ω. In the electrolytic
cell that we are considering with the driving voltage given by Eq. (2.4), in
the first half of the period T /2 the negative (faster) ions will gather at the
chosen electrode because it is positive, whereas in the second half the positive
(slower) ones will tend to get closer. If the frequency of the voltage is such
that the EDLs have enough time to develop (but not fully form) during the
T /2 time span, the faster ions will manage to gather at the electrode in
larger amounts. Therefore, if we average the number of ions at the electrode
over the whole period T , we will get an excess of faster ions at the electrode.
Exactly the same thing occurs at the opposite electrode, however with a
T /2 shift in phase. This is what we also observe in Fig. 2.2(a), where the
negative (faster) ions are accumulating at both electrodes on average in time.
Moreover, due to the global electroneutrality of the cell, the surface charge
on both electrodes is zero on average, such that the excess of the negative
ions at both electrodes is screened by the excess of the oppositely charged
ions located several Debye lengths away from the electrodes for the current
parameters, as seen in Fig. 2.2(a).

2.4 parameter dependence of aref

In this section we study the dependence of the numerically obtained AREF
magnitude U on the main system parameters.

2.4.1 Applied Voltage Amplitude

We start by studying the dependence of the space- and time-averaged
potential U as defined in Eq. (2.17) on the amplitude Ψ0 of the externally
applied AC potential. The range that we consider for the driving voltage
amplitude Ψ0 is limited from above by our point ion approximation, which
for cs = 1mM can become unrealistic due to strong ion crowding effects at
the electrodes [74–76]. This occurs beyond βeΨ0 ≈ 8, which is therefore the
upper limit that we consider.

Fig. 2.3 shows the dependence of U on Ψ0 for various driving frequencies for
our standard parameter set. For the full range of frequencies ωτRC ∈ [0.1, 10]
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Figure 2.3: Double-logarithmic representation of the period- and space-averaged
dimensionless potential U of Eq. (2.17) as a function of the driving
voltage amplitude for varying driving frequencies ω at our standard
parameter set (see text). The quadratic scaling U ∼ Ψ2

0 demonstrates
that AREF is a non-linear effect.

that we consider here, the slope of the double-logarithmic curves is essentially
identical to 2, i.e. U ∼ Ψ2

0 for all frequencies considered, which is in line
with the findings of Ref.[68]. It should be noted, however, as was also
demonstrated in Ref.[68], that the AREF scaling deviates somewhat from
Ψ2

0 at even higher voltage amplitudes Ψ0 > 10. This voltage range leads, at
least at low frequencies, to high ionic concentrations outside the regime of
applicability of the underlying point-ion model. For this reason we leave this
high-voltage regime out of the discussion in the current chapter. In the regime
of interest the scaling confirms that AREF is a non-linear screening effect
and motivates the study of its dependence on frequency, mobility asymmetry,
and system size in terms of the scaled form U/(βeΨ0)2 below.
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(a) (b)

(c)

Figure 2.4: Dimensionless and scaled period-averaged potential U/(βeΨ0)2 as ob-
tained from numerical late-time solutions of the PNP equations for the
standard parameter set (see text), in (a) as a function of the dimension-
less frequency ωτRC , in (b) as a function of the the mobility asymmetry
δ = D−/D+, and in (c) as a function of the dimensionless system size
κL, in all three cases in a double-logarithmic representation. In (a) we
see a collapse of the curves for several voltage amplitudes Ψ0. In (b)
and (c) we consider several dimensionless frequencies ωτRC and ωτD,
respectively.

2.4.2 Frequency

Fig. 2.3 already showed that U is relatively large at ωτRC ≈ 1 and con-
siderably smaller at ωτRC = 0.1 and 10. Here we study for several Ψ0 the
frequency-dependence of U as obtained from the numerical solutions of the
PNP equations in full detail for our standard parameter set. Fig. 2.4(a)
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shows U/(βeΨ0)2 as a function of ωτRC , featuring the expected collapse for
all Ψ0, a broad maximum at ωτRC ∼ 1, and an algebraic decay ∼ ω2 for
small frequencies ω. For frequencies ω in the ωτRC ∼ 1 − 10 range, the curve
shows an algebraic ∼ ω−2 decay, however, as the frequency ω gets increased
further, the slope of the curve becomes steeper (stronger decay) due to an
overscreening effect that starts to appear at the electrodes in this regime.

Qualitatively this frequency dependence can be explained by the mechanism
that we proposed above. In the low-frequency limit, the system is nearly
static and during the time span T /2 both ion species have enough time to
essentially fully build up an EDL at the corresponding electrodes. Thus
the number of ions in this fully developed EDL is the same for both half
periods, the average ionic charge and thus the potential at the electrodes
in the timespan T approaches zero, which agrees with the low-frequency
part of the curve in Fig. 2.4(a). In the high-frequency limit, on the other
hand, none of the ion species, not even the faster ones, has enough time
to develop the EDLs. Therefore no net accumulation of charge occurs at
the electrodes, yielding a decaying trend for U as the frequency increases.
The maximum of the effect is reached for intermediate frequencies of the
order of the characteristic RC time for EDL formation ωτRC ∼ 1. At these
frequencies the difference between the number of fast and slow ions gathering
at the electrodes in the T /2 timespan is largest.

2.4.3 Ion Mobility Asymmetry

The asymmetry of ion mobility, δ ̸= 1, is the main cause of AREF and
here we study how U depends on δ at fixed effective diffusion coefficient
D -such that τRC remains fixed if we vary δ for fixed L and λD. For our
standard parameter set Fig. 2.4(b) shows the δ-dependence of U/(βeΨ0)2 for
several driving frequencies ωτRC . Here we extend the interval for δ ∈ [1, 100]
far beyond the typical range for small ions to identify that apart from the
common monotonic increase of U with δ the curves are highly non-universal,
with a frequency-dependent asymptotic saturation of U at high δ that is
larger for higher frequencies whereas U is smaller for higher frequencies in
the low-δ regime, with a crossover at δ ≃ 20 − 30.
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These results can qualitatively be explained within the scope of our pro-
posed mechanism, where the large-δ limit proves helpful. Let us consider a
(late-time) period [t0, t0 + T ] and divide it into two half periods in which the
potential of the electrode at z = −L/2 is positive for t ∈ [t0, t0 + T /2] ≡ t+
and negative for the complementary interval t ∈ [t0 + T /2, t0 + T ] ≡ t−. In-
troducing the maximum of the (absolute) areal ionic charge on this electrode
during either of these periods as

Γ± = max
t∈t±

{∫ 0

−L/2
dz
(
|c+(z, t) − c−(z, t)|

)}
, (2.18)

we expect, for δ > 1, that Γ− > Γ+ since the faster anions can accumulate
faster in z ∈ [−L/2, 0] during t− than the slower cations can during t+ (for
simplicity we ignore the fact that the faster anions also deplete faster than
the slower cations, as depletion has a weaker contribution to the competition
of number of ions present at the electrode compared to the accumulation).

Now let us assess how δ affects the charge accumulation process. From
Eq. (2.15) we see for increasing δ at fixed D that cations will asymptotically
settle at a fixed diffusion coefficient limδ→∞ D+ → D/2 while the anions
become increasingly mobile. At finite frequency, their finite mobility sets a
limit for the amount of accumulation or depletion of cations at the electrode.
For anions, despite the fact that their diffusion coefficient becomes increasingly
faster, the equilibrium EDL configuration still imposes a limit to the anion
concentration close to the electrode. Taking this into account, it becomes
clear that limδ→∞ U ∝ Γ− − Γ+ → const, which is exactly what we see in
Fig. 2.4(b).

To explain the different saturation values of U in Fig. 2.4(b), we notice
that at the low (realistic) values of δ the value of U follows the logic of the
U (ω) curves - the maximum is achieved at around ωτRC ∼ 1. However, as
we increase δ, the hierarchy of the curves changes and in the δ → ∞ limit
U (δ) reaches higher values for higher frequencies ω. The number of charges
contained in a fully developed EDL only depends on the thermodynamic
properties of the electrolytic cell together with the magnitude of the applied
voltage, therefore, in the δ → ∞ limit anions will fully form an EDL irre-
spective of the (finite) voltage frequency ω. However, the concentration of
cations gathered at the electrode decreases with the frequency ω (as the
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higher the frequency ω, the less time there is for ions to gather), therefore
the saturation value of U , proportional to the difference in the number of
anions and cations gathered at the electrode, will increase with frequency,
which is again exactly what we observe in Fig. 2.4(b).

2.4.4 System Size

In Fig. 2.4(c) we plot U/(βeΨ0)2 as a function of the system size L (in
units of the Debye length) for our standard parameter set at a number of
dimensionless frequencies ωτD. Up to this point we used the dimensionless
combination ωτRC of Eq. (2.12) to characterize the frequency of the AC
voltage, which, however, is not convenient here since τRC itself depends on
the system size, according to Eq. (2.11). For the system sizes κL ∈ [10, 103]

that we consider here, we see that U peaks at larger κL for lower frequencies
ωτD, which corresponds in fact to a peak in the regime where ωτRC ∼ 1,
consistent with our earlier findings in Fig. 2.4(b). For κL ≫ 102 we observe
an algebraic decay U ∝ L−2, the exponent of which resembles that of the
decay U ∝ ω−2 that we found in Fig. 2.4(a). This similar decay is not
surprising since the key dimensionless parameter ωτRC is linear in both L

and ω. However, as we will see in section 2.6.2, the reason for this quadratic
algebraic decay U ∝ L−2 is a bit more subtle than it seems here.

2.5 equivalent circuit from linearized pnp equations

An alternative way of studying the system of interest involves the con-
struction of an equivalent RC circuit, rather than relying solely on the
numerical calculations [50, 77–80]. This convenient strategy of studying
electro-chemical systems has been employed in this field for many years; for
a historical overview on this matter we refer the reader to Ref.[81]. In the
present case we first construct an equivalent RC circuit corresponding to the
electrolytic cell in Fig. 2.1 in the linear regime for which Ψ0 ≪ 1/βe -we will
modify this model later to account for the intrinsically nonlinear character
of AREF. In the linear regime, a widely used scheme is a simple RC circuit
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with R and C elements connected in series [64, 65, 82]. However, as we will
now show, it is not entirely accurate at high frequencies where ωτRC > 1.

In order to determine an equivalent circuit for our model we study its
frequency response using the electrical impedance defined as

Z(ω) =
Ψ0 exp(iωt)

I(t)
, (2.19)

where I(t) is the current flowing through the external (electronic) system
due to the applied potential over the electrodes. The current is the time
derivative (indicated by a dot) of the charge Q(t) = Aσ(t) on the electrode
at z = −L/2 and can be calculated from the time-dependent potential profile
Ψ (z, t) using Gauss’ law as

I(t) = Q̇(t) = −Aε0ε
∂Ψ̇ (z, t)

∂z

∣∣∣∣∣
z=−L/2

, (2.20)

with A the surface area of the electrode. Within the linear regime the PNP
equations and boundary conditions of Eqs. (2.1) – (2.8) are well known to be
solvable analytically, resulting in

Ψ (z, t) =
Ψ0
2

(
1 −

sinh(kz) + iωτD cosh(k L
2 ) · kz

sinh(k L
2 ) + iωτD cosh(k L

2 ) · k L
2

)
eiωt, (2.21)

where we define the complex wavenumber

k =

√
κ2 +

iω

D
. (2.22)

Here D is the effective diffusion coefficient introduced in Eq. (2.13).
Inserting Eq. (2.21) together with Eq. (2.20) into Eq. (2.19) and also

assuming that the system is large, L ≫ κ−1, we obtain the explicit expression

Z(ω) ≈ R
1 + iωτRC

√
1 + iωτD

iωτRC(1 + iωτD)3/2 , (2.23)

where
R =

L

A
· 1

εε0Dκ2 =
L

A
· 1

2Dβe2cs
(2.24)
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is the resistance of the system and τRC , as defined in (2.11), the timescale
characterizing the EDL formation process. Note that Z(ω)/R depends only
on ωτRC and τRC/τD = κL/2.

There are several ways to plot the frequency dependence of the impedance
[47]. We will use the so-called Argand complex plane diagrams for the
complex impedance Z(ω) = Z ′(ω) + iZ ′′(ω), as represented by a parametric
(ω dependent) plot of (Z ′(ω),−Z ′′(ω)). The Argand diagram will also be
backed up with a Bode plot, describing how the impedance modulus |Z(ω)|
depends on the frequency ω. The combination of Argand diagram together
with a Bode plot often allows readily for an identification of a circuit, not
only of the linear elements included in the circuit but also how they should
be connected - either in series, parallel or combinations thereof. Usually the
frequency response plots mentioned above are unique for relatively simple
electric circuits [47]. Nonetheless, in order to ensure the robustness of the
chosen equivalent circuit configuration, it is a commonly employed strategy
to support its selection with physical considerations. This ensures that the
circuit mimics the behavior of the system it represents, as detailed in Ref.[48].
An electric circuit that produces similar Argand and Bode curves while also
possessing a configuration consistent with physical principles is denoted as
the equivalent electric circuit associated with the electrolytic cell.

We plot, for κL = 500, the Argand diagram of the dimensionless combina-
tion Z(ω)/R given by Eq. (2.23) in Fig. 2.5(a) and the corresponding Bode
plot in Fig. 2.5(b), in both cases with dots at three characteristic frequencies.
The Argand diagram features a vertical line at Z ′ = R in the low-frequency
limit, characteristic for a resistor R with a capacitor connected in series,
and a semi-circle with a maximum of −Z ′′ = R/2 at Z ′ = R/2 for higher
frequencies, characteristic for a parallel connection of a resistor R and a
capacitor. The Bode plot gives us similar clues, allowing us to identify the
electric response of the electrolytic cell with that of an equivalent circuit that
consists of a capacitor C2 in parallel with a resistor R and a capacitor C1 in
series, as illustrated in Fig. 2.7(a). The impedance Zc(ω) corresponding to
this circuit can easily be calculated and reads

Zc(ω) =
iωC1R + 1

iω
(
C1 + (iωC1R + 1)C2

) . (2.25)
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We note that the functional forms of Eqs. (2.23) and (2.25) are actually
slightly different, however with a remarkable agreement for our regime of
interest where C1 ≫ C2, which translates into κL ≫ 1 as we will discuss
in more detail below. In order to derive the expressions for the individual
elements C1, C2 and R of the circuit, we match the impedances of the
electrolytic cell and the circuit from Eqs. (2.23) and (2.25), respectively, by
considering the high- and low-frequency limits ωτRC → ∞ and ωτD → 0,
respectively. For R this yields the bulk resistance of the electrolyte given by
Eq. (2.24) and for the capacitances we find

C1 =
Aεε0κ

2 , (2.26)

C2 =
Aεε0

L
. (2.27)

Physically C1 corresponds to the net capacitance of the two fully developed
EDLs in series, i.e. at both planar electrodes, each with the linear-screening
capacitance Aεε0κ. Likewise, C2 corresponds to the capacitance of a dielectric
(water-filled) parallel-plate capacitor of size L without any ionic charge carriers
(and hence without any EDL).

We remarked already that the functional form of the impedances of the
cell and the effective circuit are not identical. Using the matching parameters
for R, C1, and C2 determined above, we compare in Fig. 2.6 the Argand
plots of the cell (solid lines) and the electric circuit of Fig. 2.7(a) (dashed
lines), for system sizes κL = 30, 100, and 1000. For all three system sizes the
agreement is rather good for all frequencies, especially for high frequencies
ωτD ≫ 1 where EDLs can hardly develop. For the two smaller systems
sizes deviations between the solid and dashed lines can be seen by eye at
higher frequencies, however their distinction is beyond the resolution of the
plot for κL = 1000. This can be quantitatively appreciated by the inset
of Fig. 2.6, where the maximum difference between unity and the ratios
Z ′/Z ′

c and Z ′′/Z ′′
c , defined as ∆Re(L) = max

ω
|Z ′(ω, L)/Z ′

c(ω, L) − 1| and
∆Im(L) = max

ω
|Z ′′(ω, L)/Z ′′

c (ω, L) − 1| are plotted as a function of system
size κL. Here we denote the real and imaginary parts of the circuit impedance
from Eq. (2.25) by Z ′

c and Z ′′
c , respectively. The inset of Fig. 2.6 clearly shows

an increasing agreement between the two frequency responses with increasing
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system size with differences decaying proportional to (κL)−1. Hence we can
faithfully use the circuit in Fig. 2.7(a) to represent the electrolytic cell for
κL ≫ 1.

Interestingly, the circuit of Fig. 2.7(b) can be shown to have an impedance
of the exact same functional form as Eq. (2.25), however with modified
elements C ′

1 = C1 + C2, C ′
2 = C2(C1 + C2)/C1, and R′ = RC2

1 /(C1 + C2)2.
This implies that the capacitor ratio of the two circuits is the same, C ′

2/C ′
1 =

C2/C1, and also that 1/C ′
1 + 1/C ′

2 = 1/C2. Since the difference between
the circuits becomes irrelevant in the limit C1 ≫ C2 of our main interest, we
focus on the circuit of Fig. 2.7(a) in the remainder of this work.

Let us return to the Argand diagram of Fig. 2.5(a), for which we already
discussed the vertical line at sufficiently low frequencies, which implies that
in this regime the equivalent circuit is the simple serial circuit shown in
Fig. 2.7(c), with R and C1 in series without the second capacitor C2 in
parallel. This simplified equivalent circuit has been used to model electric
cells in many studies before [64, 65, 82, 83], however the presence of the
semi-circle shows that the simplified circuit breaks down at high enough
driving frequencies. Interestingly, the crossover between the semi-circle and
the vertical line, i.e. the crossover regime for the (un)importance of C2 in
the equivalent circuit, does not occur at frequencies as high as ω ≃ 1/τD nor
at frequencies as low as ω ≃ 1/τRC , but rather at frequencies ω ≃ τ−1

s where
we introduce the intermediate characteristic time scale

τs =
√

τRCτD =

√
1
2Lκ−3

D
, (2.28)

where the label “s” stands for “series”. The simplified series approximation
shown in Fig. 2.7(c) only holds for ω ≲ τ−1

s . Physically, τs characterises the
timescale at which the imaginary part of the impedance (i.e. the capacitive
effects of the circuit) is minimized. This is clearly visible in Fig. 2.5(b), where
the phase angle ϕ = arctan −Z′′(ω)

Z′(ω) is seen to exhibit a minimum for ωτs ∼ 1.
We should note here though, that the presence of the additional τs and

τD timescales does not influence the characteristic charging time of the full
circuit and it matches that of an RC in series circuit. The reason for this
is that we work with large systems κL ≫ 1 which translates into C1 ≫ C2,
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meaning that the total charging time will be dictated by how fast the C1
capacitor is charged.

  0
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Figure 2.5: (a) Argand diagram and (b) Bode plot characterising the frequency-
dependence of the complex impedance of an electrolytic cell given by
Eq. (2.23), with system size κL = 500 for our standard parameter
set (see text). Characteristic frequencies corresponding to the (long)
RC-time τRC , the (short) Debye time τD, and the (intermediate) time
τs =

√
τRCτD (see text) are indicated with dots. The Bode plot also

features the frequency dependence of the phase shift, showing a minimum
at ωτs = 1.
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Figure 2.6: Argand diagrams for the complex impedance of the electrolytic cell
(solid lines) and the equivalent circuit (dashed lines) for system sizes
κL = 30, 100, 1000 and our standard parameter set (see text). The inset
shows the (small) maximum deviation of the ratios Z ′(ω)/Z ′

c(ω) and
Z ′′(ω)/Z ′′

c (ω) from unity as a function of system size κL, indicative of
the increasingly good agreement between PNP calculations of the cell
and the equivalent circuit for larger system sizes.

2.6 toy model

2.6.1 Modified linear circuit

Even though the mechanism of the AREF allows for a qualitative un-
derstanding of the numerical results of section 2.4, a more quantitative
explanation remains missing, for instance on the exponents characterising
the algebraic decay of the time- and space-averaged potential U at high and
low frequencies and the scaling with system size. For this reason we will now
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(a) (b)
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Figure 2.7: (a) Equivalent electric circuit corresponding to the electrolytic cell in
the linear regime for large system sizes L ≫ κ−1. (b) Alternative
version of the equivalent circuit with modified elements (see text). (c)
Simplified equivalent electric circuit corresponding to the low-frequency
case ωτRC ≪

√
κL/2. Here R and C2 correspond to the resistance and

capacitance of the cell at infinite frequency, respectively, and C1 is the
total capacitance of two fully developed electric double layers at the
electrodes, as described by Eqs. (2.24), (2.26), and (2.27).
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construct a simplified model of the electrolytic cell based on the equivalent
circuit of Fig. 2.7(a). This model will allow us to analytically calculate a
proxy of U , namely the period-averaged charge gathered in the EDL. As we
will see below, in the majority of cases this charge has a similar dependence
on the system parameters as U .

Clearly, however, due to the linear nature of the equivalent circuit, some
modifications are needed to account for the intrinsically non-linear nature
of AREF. For the clarity of explanation, we start by exploiting the mirror
symmetry of the geometry to concentrate only on the left half of the system
z ∈ [−L/2, 0], as the right half z ∈ [0, L/2] will be in exact anti-phase. In
our toy model we calibrate the time such that the electrode potential at
z = −L/2 is positive during t ∈ [0, T /2] and negative during t ∈ [T /2, T ],
with T = 2π/ω the period. We assume that the EDL of the left electrode
gets charged only by the fast anions in the first half of the period, while only
the slow cations charge the same electrode in the second half of the period.
This assumption significantly simplifies the treatment of the system, as it
clearly separates the timescales of EDL charging/discharging processes by
fast and slow ions, while allowing us to characterize the inherently non-linear
charging process by combining two separate linear equivalent circuits albeit
with different system parameters during the two half periods. Throughout
we use the equivalent circuit of Fig. 2.7(a), however with two different ionic
mobilities D±, and hence two different resistances R− for t ∈ [0, T /2] and
R+ for t ∈ [T /2, T ], which in analogy to Eq. (2.24), are given by

R± =
L

Aεε0D±κ2 . (2.29)

For Ψ (t) = Ψ0eiωt, by employing Kirchhoff’s equation and Laplace trans-
formation, it is straightforward to calculate the total electric charge Q±(t)
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on the two capacitors C1 and C2 for each of the two equivalent circuits, and
we find

Q±(t) =
Ψ0

1 + C2
1R2

±ω2 ×

((
C1 + C2 + C2

1C2R2
±ω2

)
sin(ωt) − C2

1R±ω cos(ωt)

)
, (2.30)

where we neglected all the transient terms, as we are interested in the
limit-cycle solutions. Here we note that C1 and C2 are thermodynamic
quantities that do not depend on the ionic transport properties such as
diffusion coefficient; they are given in Eqs. (2.26) and (2.27) and are the
same for both types of ions during each of the two half periods. For both
sets of circuit parameters we can then calculate the average charge {Q±} on
the capacitors in the interval t ∈ [t0, t0 + T /2], yielding

{Q±} =
2
T

∫ t0+T /2

t0
Q±(t) dt. (2.31)

We now chose t0 such that Q±(t) is positive for t ∈ [t0, t0 + T /2], which
is always possible because Q±(t) of (2.30) is a harmonic function with the
same frequency as the driving voltage. Inserting Eq. (2.30) into Eq. (2.31)
yields

{Q±} = QRef

ωR±C1

√√√√√1 +

(
C1 + C2 + ω2R2

±C2
1C2

)2

ω2R2
±C4

1(
1 + ω2R2

±C2
1 )

, (2.32)

with a convenient reference charge defined by QRef = (2/π)C1Ψ0 that is
identical in the circuits and the two half-periods. Following our convention
that D− > D+ we can then calculate the dimensionless period-averaged net
charge

Q′ =
{Q−} − {Q+}

QRef
, (2.33)
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which is a measure for the time-averaged excess charge that is accumulated
in a circuit with low resistance (corresponding to the fast anions charging
an EDL at a positive electrode potential) compared to the circuit with a
higher resistance (corresponding to the slower cations charging the EDL).
Below we will consider Q′ as a proxy for the space- and time-averaged
potential U of Eq. (2.17). Interestingly, one checks that Q′ only depends on
three dimensionless parameters that can be represented by C1/C2, R+/R−,
and 1

2ω(R+ + R−)C1, which are equal to the system size κL, the mobility
asymmetry δ, and ωτRC , respectively. These three parameters correspond
exactly to three of the four parameters on which U depends, the fourth
one being the amplitude of the driving potential βeΨ0. The disagreement
between the nonlinear dependence U ∝ Ψ2

0 that we identified earlier and the
independence of Q′ on Ψ0 is the price we pay for analysing the nonlinear
AREF phenomenon in terms of linear-circuit theory. The dependence of Q′

on κL, δ, and ωτRC will, however, be quite similar to the dependence of U

on these parameters, as we will discuss now.

2.6.2 Parameter dependence of the proxy Q′

In section IV we studied the dependence of U on several system parameters
numerically, using a standard reference set. Here we study to what extent
the analytical expression of Eq. (2.33) for the proxy Q′ gives similar results,
where we use the same standard parameter set.

First we study the frequency dependence. In Fig. 2.8(a) we plot Q′ as
a function of ωτRC , not only for the full RC-circuit of Fig. 2.8(b) but for
comparison also for the simplified circuit of Fig. 2.7(c), for which C2 = 0
as in an infinitely large system with κL → ∞. It is apparent that for
low to medium frequencies ω ≲ τ−1

s , as indicated by the vertical dashed
line, both curves are strikingly similar to each other and to the one for U in
Fig. 2.4(a), as all three share a broad maximum at ωτRC ∼ 1 and an algebraic
decay ∝ ω2 for small frequencies. However, at higher frequencies ωτRC ≫ 1
Fig. 2.8(a) shows a remarkable difference between the simplified and the
full circuit, the former showing a decay Q′ ∝ ω−1 and the latter a decay
Q′ ∝ ω−2. This can be attributed to C2 acting increasingly similar to a short
circuit or a wire as we increase the frequency. Hence, the high-frequency
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scaling of Q′ of the full circuit is clearly closer to that of U , although the
phenomenon of overscreening (that is obviously not included in the linear-
circuit theory) causes deviations of the algebraic high-frequency scaling of
U that is not included in Q′. Nevertheless, the overall agreement of the
frequency dependence of U and Q′ is comforting and supports our view of
the underlying mechanism. From this point onward we will only use results
based on the full circuit that includes both a finite C1 and C2.

Next we study the δ-dependence of Q′ for exactly the same parameters
as we used for U in Fig. 2.4(b), i.e. for our standard parameter set with
a fixed τRC . The resulting Q′ is plotted in Fig. 2.8(b) for δ ∈ [1, 100] for
various driving frequencies ωτRC . As was the case for U , we see that Q′ is
monotonically growing with δ until an asymptotic large-δ limit that is larger
for the higher frequencies than for the lower frequencies, which is the exact
opposite of the ordering of Q′ in the small-δ regime. Hence we see once again
that our modified linear circuits can catch some of the essential features of
AREF.

Finally, we study the system-size dependence of Q′ by plotting it in
Fig. 2.8(c) as a function of κL for several frequencies characterised by fixed
ωτD, again for the same parameters as we used for U in Fig. 2.4(c). We can
see that Q′ peaks at system sizes that vary from κL ≃ 20 at the highest
frequency to κL ≃ 100 at the lowest frequency, which corresponds, for
every frequency considered, to a peak at that system size where ωτRC ≃ 1.
This is very similar to our finding for the L-dependence of U in Fig. 2.4(a).
However, a key difference between Q′ and U involves their large-L scaling
behaviour, which is seen to be given by Q′ ∝ L−1 in Fig. 2.8(c) whereas
we found U ∝ L−2 in Fig. 2.4(c). As we mentioned earlier, changing the
system size affects the electrolytic cell in a similar way as changing the
driving frequency ω. However, in contrast to changing ω, which leaves the
geometrical characteristics of the electrolytic cell and, correspondingly, those
of the elements of the equivalent circuit unaffected, they change when κL is
increased. At larger system sizes κL ≳ 100, the impedance corresponding
to C2 grows and effectively closes the C2 branch of the full circuit for the
current, turning it into a simplified circuit of Fig. 2.7(c). This in turn implies
that the scaling of Q′ with L should be the same as with ω in the case
of a simplified circuit i.e. it should decay as L−1, which is exactly what
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(a) (b)

(c)

Figure 2.8: Dependence of the analytically calculated period-averaged charge differ-
ence Q′ given by Eq. (2.33) for our standard parameter set (see text) on
(a) the dimensionless frequency ωτRC, (b) the asymmetry of ionic mo-
bilities δ = D−

D+
= R+/R−, and (c) system size κL. In (a) Q′ is plotted

for the full equivalent RC circuit of Fig. 2.7(a) and for the simplified
one of Fig. 2.7(c). In (b) Q′ is plotted for several driving frequencies ω.
The effective diffusion coefficient D, and, consequently, the frequency ω,
is kept fixed along each curve. In (c) Q′ is plotted for several driving
frequencies ω. Both (b) and (c) are based on the full equivalent circuit.

we see in Fig. 2.8(c). The reason why we saw the decay U ∝ L−2 in the
PNP case is that increasing the system size of the electrolytic cell not only
reduces C2 to negligible magnitude for large κL, but also linearly decreases
the applied electric field at fixed Ψ0, which together result in U ∝ L−2 rather
than U ∝ L−1.
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We can conclude that the modified linear-circuit model captures quite a
few of aspects of the numerical PNP results of the AREF. The toy model
essentially suggests that the key ions are the ones closest to the electrode
(anions in one half of the period and cations in the other half). The time-
averaged result is dominated by the faster anions.

2.7 summary and discussion

We studied the static time-averaged electric field that arises in the AC-
driven electrolytic cell shown in Fig. 2.1 if the cations and anions have
unequal diffusion coefficients D+ < D−. We solved the governing non-linear
coupled Poisson-Nernst-Planck (PNP) equations numerically to study how
the magnitude of this so-called asymmetric rectified electric field (AREF)
depends on the main system parameters such as the amplitude of the applied
AC voltage Ψ0, the driving frequency ω, the ionic mobility asymmetry δ, and
the system size L. We also solved the linearized PNP equations analytically
and constructed an equivalent RC-circuit for the electrolytic cell. Based
on this circuit, which involves a capacitor C2 in parallel with a series of a
restistor R and a capacitor C1, we propose a modification that serves as our
toy model to describe and explain the physical mechanisms responsible for
the nonlinear AREF effect in terms of linear circuits. The key is to consider
two different resistances (R+ and R− associated with the different diffusion
coefficients D+ and D− of the cations and the anions, respectively) during
different phases of the driving voltage, with cations/anions dominating the
oscillating dynamics at negative/positive electrode potentials.

Let us for comparison briefly mention an appealing alternative toy model
for AREF, proposed in Ref.[66], in which the key idea is to consider two
point charges that oscillate in anti-phase with different amplitudes to mimic
the AC driving of a (monovalent) cation and anion with different mobilities.
Interestingly, the motion of these two ions is shown to create a non-zero time-
averaged electric field far from the oscillation origin, which is then considered
to be the analogue of AREF. While this picture is very appealing at first
sight and seems to capture the essential AREF physics, it would actually only
apply to a one-dimensional line of ions that connect the electrodes and that
interact with three-dimensional “1/r” Coulomb potentials. In the geometry
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of interest here, however, the analogue would be oscillating three-dimensional
planes of charge, which by Gauss law interact by one-dimensional Coulomb
potentials “|z − z′|” such that both species produce a spatially constant but
oppositely directed electric field that exactly cancels in a globally neutral
system. So despite its attractive appeal its predicted AREF is strongly
affected by the geometry of three-dimensional space.

The modified linear-circuit toy model proposed here, which is based on
the (dis-)charging of 3D capacitive EDLs in planar geometry, also has some
shortcomings. Nevertheless, it describes the scaling of the AREF magnitude
with several important system parameters quite well and reveals the physical
mechanism behind AREF generation. The asymmetry in the ion mobilities
introduces an asymmetry in the speed of the charging process of the EDLs
during the two half periods of negative and positive electrode potentials.
At driving frequencies ω of the order of the characteristic charging time
of EDLs in the system, ωτRC ∼ 1, the asymmetry causes a time-averaged
ionic charge distribution where the faster ions are on average closer to the
electrode and play the role of the surface charge in conventional EDLs, while
the slower ones play the role of the screening cloud. This results in a non-zero
time-averaged EDL-like AREF structure. Even though AREF is essentially
a non-linear screening phenomenon, we could gain some additional insight
from a linearized RC-circuit analysis where we considered the resistance R

to take different values R+ ∝ D−1
+ and R− ∝ D−1

− during different phases
of the AC-potential. Interestingly, our circuit analysis also yields a new
time scale τs =

√
τRCτD which implies the peculiar scaling τs ∝ L1/2 for

a given electrolyte. This time scale involves a key role for the dielectric
capacitor C2, even in the large-L regime of interest where the EDL capacitor
C1 = κLC2 ≫ C2. Physically τs corresponds to the timescale that separates
the low-frequency regime from the high-frequency one. When ωτs = 1 the
phase angle of the current in the full electric circuit (see Fig. 2.7(a)) has
a minimum. While C2 might be safely set to zero at correspondingly low
frequencies ωτs ≲ 1, it becomes increasingly important at higher frequencies.
The timescale τs therefore also defines the threshold between the regimes
in which the system can be treated as the simple RC circuit in series of
Fig. 2.7(c) at low frequencies ωτs ≪ 1 and the full circuit of Fig. 2.7(a) at
high frequencies ωτs ≫ 1.
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Finally, by studying the currents in the full electric circuit of Fig. 2.7(a) as
shown in Fig. 2.9, we can also give the Debye time τD an additional physical
interpretation. The currents in the C1 and C2 branches of the circuit of
Fig. 2.7(a) become approximately equal in magnitude when ωτD = 1 (for
κL ≫ 1). This means that τD corresponds to a timescale, at which the
EDLs are built to such an extent that the combined impedance of the EDL
capacitance and the bulk resistance of the cell becomes equal to that of the
capacitor created by the electrodes of the cell.

Figure 2.9: Dependence of the ratio of electric current magnitudes |I1/I2| in the
RC1 and C2 branches of the full circuit on the driving frequency ω, for
various ratios of C1/C2 for our standard parameter set (see text). We
clearly see that the currents have equal magnitude I1 = I2 for ωτD = 1,
independently of the ratio C1/C2.

Extensions of our work could possibly involve the inclusion of REDOX
or acid-base reactions, which would give additional time scales because of
the reaction rates. Other directions could involve AC-electroosmosis or
non-sinusoidal sawtooth-like potentials that break the symmetry between
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charging and discharging, in fact even for electrolytes with equal mobilities
of the cations and anions. We speculate that amplification or suppression of
the AREF effect is possible by tuning the combination of electrolyte, surface
chemistry, and driving potential.
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2.8 appendix

The goal of this Appendix is to construct a linear equivalent electric circuit
for the electrolytic cell of the main text in Chapter 2. For convenience we
briefly describe the system of interest here once again. It consists of a 3D
aqueous electrolyte of relative dielectric constant ε at room temperature
confined between two parallel macroscopic planar electrodes at a distance
L from each other, where we assume translational invariance in the lateral
directions. The electrolyte consists of two types of monovalent point-like ions:
cations (+) and anions (−) characterized by valencies z± = ±1 and diffusion
coefficients D±. The total number of cations and anions is equal, hence the
total system is electroneutral. The electrodes are blocking, so that no ion can
leave the electrolyte and we exclude any chemical REDOX reactions. The
system is driven by an AC voltage Ψ (t) = Ψ0eiωt applied to the left electrode
placed in the plane z = −L

2 , whereas the right one, placed at z = L
2 , is kept

grounded. Here ω is the imposed angular frequency and Ψ0 the amplitude.
The system is presented as a schematic image in Fig. 2.10).

As it was stated in the main text, we use the Poisson-Nernst-Planck (PNP)
equations to study the system.

∂2Ψ (z, t)

∂z2 = − e

ε0ε

(
c+(z, t) − c−(z, t)

)
, (A1)

J±(z, t) = −D±

(
∂c±(z, t)

∂z
± βec±(z, t)

∂Ψ (z, t)

∂z

)
, (A2)

∂c±(z, t)

∂t
= −∂J±(z, t)

∂z
. (A3)
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)tΨ(

Figure 2.10: Schematic representation of the aqueous 1:1 electrolyte of interest con-
taining a continuum solvent and two ionic species confined between two
parallel blocking electrodes separated by a distance L. The electrolyte
is driven by a time-dependent electric potential Ψ (t) applied to the
electrode at z = −L

2 , while the other one at z = L
2 is kept grounded.

The PNP equations Eqs. (A1), (A2) and (A3) form a closed set for the
concentrations c±, the fluxes J± and the potential Ψ . Solving PNP equations
explicitly requires boundary and initial conditions, which we write as

Ψ (−L/2, t) = Ψ0eiωt, (A4)

Ψ (L/2, t) = 0, (A5)

J±(−L/2, t) = J±(L/2, t) = 0, (A6)

c±(z, t = 0) = cs, (A7)
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where cs is the fixed initial average salt concentration, that is equal for both
ionic species in our symmetric 1 : 1 electrolyte. Due to Eq. (A3) combined
with boundary conditions Eq. (A6) the number of cations and anions will be
conserved such that

1
L

∫ L/2

−L/2
c±(z, t) dz = cs. (A8)

As the non-linear set of PNP equations can not be solved fully analytically,
in order to qualitatively understand physical processes taking place in the
electrolytic cell we employ a toy model relying on the combination constructed
by combining two simple linear electric circuits, as described in the main
text. In this appendix we will demonstrate how the equivalent electric circuit
is determined by deriving the frequency response of the electrolytic cell
with a harmonic voltage applied to it and then matching it to that of a
linear electric circuit. In order to do so we will use PNP equations to derive
an expression for the impedance Z(ω) of the system and determine the
corresponding equivalent circuit by matching the frequency response of the
circuit impedance Zc(ω) to Z(ω).

2.8.1 Linearising PNP Equations

If we were to construct an equivalent circuit that matched the frequency
response of the impedance Z(ω) derived from the non-linear PNP equations
exactly, we would need to employ non-linear circuit elements for it. This,
however, would not be of much use for us, as the main goal of constructing an
equivalent circuit is to simplify the system. On the contrary, if we linearise
the PNP equations, they can be easily solved analytically allowing us to
derive an expression for the electrolytic cell impedance Z(ω) to then match it
to the impedance of a linear electric circuit Zc(ω). In the following sections
we show how Z(ω) is derived from linearised PNP equations and construct
the corresponding equivalent circuit. But before we proceed with derivations,
we first simplify the equations and notation. We start by introducing the
following combinations for concentrations:

c+(z, t) − c−(z, t) ≡ q(z, t), (A9)
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c+(z, t) + c−(z, t) ≡ s(z, t). (A10)

We then also expand all the variables into Fourier modes

q(z, t) = cs

∞∑
n=−∞

qn(z)e
inωt, (A11)

s(z, t) = cs

(
2 +

∞∑
n=−∞

sn(z)e
inωt

)
, (A12)

Ψ (z, t) = A
∞∑

n=−∞
Φn(z)e

inωt, (A13)

where we will us A = Ψ0 for notational convenience in the intermediate steps.
We also introduced the 2cs term in Eq. (A12) to take the bulk concentration
into account and streamline the Fourier expansion.We also expand the driving
potential

Ψ (z = −L/2, t) = A
∞∑

n=−∞
an(z)e

inωt, (A14)

Ψ (z = L/2, t) = 0, (A15)

where an = a∗
−n coefficients are real and known, as the driving voltage is of

a defined form. Notice the difference between the system description and
this condition - instead of applying the driving voltage to one electrode while
having the other one grounded, in calculations we apply the driving voltage
(with opposite signs) to both electrodes simultaneously. It is easy to see,
that these conditions are equivalent, whereas having both electrodes driven
simplifies the expressions further in the calculations without affecting the
final result.

We now insert all the above into the PNP equations to rewrite them in
terms of Fourier modes. Eqs. (A11) and (A13) are inserted into the Poisson
equation
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∇2Ψ (z, t) = − e

ε0ε
q(z, t), (A16)

and equate the powers of exponents (i.e. frequencies) on both sides of the
equation. As a result we get

∇2Φn(z) = − ecs

ε0ε
qn(z). (A17)

Before inserting Fourier decompositions into the Nernst-Planck equations,
we rewrite them more conveniently.

J+(z, t)

D+
= −1

2

(
(s + q)′ + βe(s + q)Ψ ′

)
, (A18)

J−(z, t)

D−
= −1

2

(
(s − q)′ − βe(s − q)Ψ ′

)
, (A19)

where ′ denote the ∂z derivatives. Summing them up gives

J+(z, t)

D+
+

J−(z, t)

D−
= −1

2

(
2s′ + 2βeqΨ ′

)
, (A20)

whereas taking the difference gives

J+(z, t)

D+
− J−(z, t)

D−
= −1

2

(
2q′ + 2βesΨ ′

)
. (A21)

Now we sum both continuity Eqs. (A8) and insert Eq. (A20) into the sum to
get

1
2

(
1

D+
(ṡ + q̇) +

1
D−

(ṡ − q̇)

)
= s′′ + βe(q′Ψ ′ + qΨ ′′), (A22)

where q̇ ≡ ∂tq. We can rewrite this as

1
2

D+ + D−
D+D−

(
q̇

D− − D+

D+ + D−
+ ṡ

)
= s′′ + βe(q′Ψ ′ + qΨ ′′). (A23)
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Here we define the effective diffusion coefficient

D ≡ 2D+D−
D+ + D−

, (A24)

and another important combination of diffusion coefficients

B ≡ D+ − D−
D+ + D−

, (A25)

which vanishes when the mobilities of ions are equal. Using these variables
the expression becomes

1
D
(ṡ − Bq̇) = s′′ + βe(q′Ψ ′ + qΨ ′′). (A26)

Performing the same actions for the difference of fluxes we get

1
D
(q̇ − Bṡ) = q′′ + βe(s′Ψ ′ + sΨ ′′). (A27)

We now insert the Fourier expansions Eqs. (A13),(A12) and (A11) here
and again, equate equal frequencies on both sides of the equation. From
Eq. (A26) we get

cs

D

( ∞∑
n=−∞

inωsn(z)e
inωt − B

∞∑
n=−∞

inωqn(z)e
inωt

)
=

= cs

( ∞∑
n=−∞

s′′
n(z)e

inωt + βe

[ ∞∑
k=−∞

q′
k(z)e

ikωt
∞∑

m=−∞
Φ′

m(z)eimωt+

+
∞∑

k=−∞
qk(z)e

ikωt
∞∑

m=−∞
Φ′′

m(z)eimωt

])
.

(A28)

Grouping appropriate terms together gives
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1
D

∞∑
n=−∞

([
sn(z) − Bqn(z)

]
inω − Ds′′

n(z)

)
einωt =

=
∞∑

k=−∞

∞∑
m=−∞

βe

(
q′

k(z)Φ
′
m(z) + qk(z)Φ

′′
m(z)

)
ei(k+m)ωt.

(A29)

Since we equate terms with similar exponential factors on both sides of
the equation, this imposes a condition for indices: k + m = n → k =

n − m. Inserting this back into the equation and equating terms with similar
exponents gives

∞∑
n=−∞

(
1
D

[
sn(z) − Bqn(z)

]
inω − s′′

n(z)

)
=

=
∞∑

m=−∞
βe

(
q′

n−m(z)Φ′
m(z) + qn−m(z)Φ′′

m(z)

)
.

(A30)

Similarly, from Eq. (A27) we get:

∞∑
n=−∞

(
1
D

[
qn(z) − Bsn(z)

]
inω − Dq′′

n(z) − 2βeΦ′′
n(z)

)
=

=
∞∑

m=−∞
βe

(
s′

n−m(z)Φ′
m(z) + sn−m(z)Φ′′

m(z)

)
,

(A31)

where we can further rewrite the 2βeΦ′′
n(z) term. Poisson equation Eq. (A17)

can be rewritten in terms of Debye length κ2. From κ−2 = 1
8πλBcs

we get
λB = κ2

8πcs
. At the same time by definition λB = e2β

4πεε0
, giving e

εε0
= κ2

2βcse .
Inserting this into the Poisson equation gives:

∇2Φn(z) = − κ2

2βe
qn(z), (A32)

which gives 2βeΦ′′
n(z) = −κ2qn(z). Inserting this back into Eq. (A31) we

get:
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∞∑
n=−∞

(
1
D

[
qn(z) − Bsn(z)

]
inω − Dq′′

n(z) + κ2qn(z)

)
=

=
∞∑

m=−∞
βe

(
s′

n−m(z)Φ′
m(z) + sn−m(z)Φ′′

m(z)

)
.

(A33)

Denoting the right hand side of Eqs. (A30) and (A33) by F
(n)
q (z) and

F
(n)
s (z) respectively, we can conveniently write these equations as

− inω

D
Bqn(z) +

inω

D
sn(z) − s′′

n(z) = F (n)
q (z) (A34)

(
κ2 +

inω

D

)
qn(z) − inω

D
Bsn(z) − q′′

n(z) = F (n)
s (z). (A35)

Up to this point we were rewriting the initial equations in such a way that
the further treatment and linearization became more convenient. In order
to linearize Eqs. (A34) and (A35), we should identify the amplitude of the
driving voltage A as a small parameter compared to the thermal voltage
βeΨ0 = 1. Using this parameter we can expand all three quantities - Φn(z),
qn(z) and sn(z) as power series in A. This is allowed to do as deviations of all
three variables from their equilibrium conditions (when no voltage is applied
to the system) are caused by the applied driving voltage. Additionally, since
the applied voltage does not have a static part, the series will start with
terms linear in A. So we have

Φm(z) = AΦm,1(z) + A2Φm,2(z) + ... =
∞∑

l=1
AlΦm,l(z) (A36)

qm(z) = Aqm,1(z) + A2qm,2(z) + ... =
∞∑

l′=1
Al′qm,l′(z) (A37)

sm(z) = Asm,1(z) + A2sm,2(z) + ... =
∞∑

l′′=1
Al′′sm,l′′(z). (A38)
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We now insert this into the right hand side Eqs. (A34) and (A35).

F (n)
q (z) =

∞∑
m=−∞

βe

( ∞∑
l′=1

Al′q′
n−m,l′(z)

∞∑
l=1

AlΦ′
m,l(z)+

+
∞∑

l′=1
Al′qn−m,l′(z)

∞∑
l=1

AlΦ′′
m,l(z)

)
=

= A2
∞∑

m=−∞
βe

(
q′

n−m,1(z)Φ
′
m,1(z) + qn−m,1(z)Φ

′′
m,1(z)

)
+ O(A3).

(A39)
Similarly

F (n)
s (z) = A2

∞∑
m=−∞

βe

(
s′

n−m,1(z)Φ
′
m,1(z) + sn−m,1(z)Φ

′′
m,1(z)

)
+ O(A3).

(A40)
The LHS of Eqs. (A34) and (A35) with this expansion is trivial. Since we

are interested in linearized form of the equations, we only consider terms up
to a linear order in A on both sides. We end up with the following result:(

−B inω
D

inω
D

κ2 + inω
D −B inω

D

)
·
(

qn,1
sn,1

)
+

d2

dz2

(
qn,1
sn,1

)
= 0, (A41)

which, together with Poisson equation Eq. (A17) is the governing system of
equations for our system in the linear regime. As we said in the beginning,
we are interested in the frequency response of the electrolytic cell that we
are considering. We could continue the derivations with differing diffusion
coefficients to derive the proper response of the system, however, it has been
shown in Ref.[83] that the frequency response of the system change only very
weakly if we take both diffusion coefficients to be the same. And since it is
significantly easier to solve Eq. (A41) for D+ = D−, we will do so here. In
this case, B = 0 and the system becomes:(

0 inω
D

κ2 + inω
D 0

)
·
(

qn,1
sn,1

)
+

d2

dz2

(
qn,1
sn,1

)
= 0. (A42)
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Solving the Linearized PNP Equations

Now we can actually solve the system of equations Eq. (A42). Both
equations are ordinary differential equations, which can be easily solved to
give the general solutions:

qn,1(z) = Q1eknz + Q2e−knz (A43)

sn,1(z) = S1eknz + S2e−knz, (A44)

with

k2
n =

√
κ2 +

inω

D
. (A45)

We address the s solution first. Combining Eqs. (A6) and (A20) we get

s′ + βeqΨ ′ = 0 (A46)

Using Eqs. (A11) and (A38) this becomes

s′
n(z) |z=±L/2= 0, (A47)

up to linear order in A. Inserting Eq. (A44) here, we end up with S1 = S2 = 0,
giving s(z) = 0 as a result in linear regime. This simplifies the equations for
qn,1(z) and Φn(z). Due to symmetry of the system qn,1(0) = 0 in the middle
of the system. This gives Q2 = −Q1. Hence qn,1(z) = 2Q1 sinh(knz). As a
consequence

∇2Φn(z) = −2ecs

εε0
Q1 sinh(knz) ≡ G sinh(knz). (A48)

Integrating this expression twice gives us a solution for Φn(z)

Φn(z) = G

(
1
k2

n

sinh(knz) + P1z + P2

)
. (A49)

Using the boundary conditions at the electrodes Eqs. (A4) and (A5)

G

(
1
k2 sinh(−k

L

2 ) − P1
L

2 + P2

)
= Ψ0 (A50)
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G

(
1
k2 sinh(k L

2 ) + P1
L

2 + P2

)
= 0, (A51)

we see, that due to the simple harmonic nature of the driving potential,
boundary conditions for the electric potential Eqs. (A4) and (A5) allow us
to write

Ψ = A
∞∑

n=−∞
Φn(z)e

inωt =
Ψ0
2 Φ1(z)e

iωt ≡ Ψ0
2 Φ(z)eiωt, (A52)

i.e. only a single mode n = 1 survives and we can drop the subscript n from
now. Up to linear order in A this gives

q(z, t) = cs

∞∑
n=−∞

qn,1(z)e
iωnt = csq1,1(z)e

iωt ≡ csq(z)eiωt (A53)

s(z, t) = cs

(
2 +

∞∑
n=−∞

sn,1(z)e
inωt

)
=

= cs

(
2 + s1,1(z)e

iωt
)

≡ cs

(
2 + s(z)eiωt

)
.

(A54)

Summing Eqs. (A50) and (A51) equations gives

G

(
1
k2

[
sinh(−k

L

2 ) + sinh(k L

2 )
]
+ 2P2

)
= Ψ0 → GP2 =

Ψ0
2 , (A55)

since sinh(−k L
2 ) = − sinh(k L

2 ). And now taking the difference between them
gives

G

(
− 2

k2 sinh(k L

2 ) − 2P1
L

2

)
= Ψ0 (A56)

from where

GP1 = − 1
L

(
2G

k2 sinh(k L

2 ) − Ψ0

)
(A57)

In order to determine Q1 (contained in G), we now need to use the blocking
electrode boundary condition for the difference of fluxes Eq. (A21). Up to
the linear order in A it takes the following form
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q′(z, t) + βesΨ ′(z, t) |z=L/2= 0 →

→ csq′(z = L/2) + 2βecsΦ′(z = L/2) + O(A2) = 0.
(A58)

Inserting here q′(z) = 2Q1k cosh(kz) and Φ′(z) = G

(
1
k cosh(kz) + P1

)
we

get

kQ1 cosh(k L

2 ) + βeG

(
1
k

cosh(k L

2 ) + P1

)
= 0. (A59)

Inserting G = −2ecs
εε0

Q1 and combining similar terms, we end up with an
expression for Q1:

Q1 = −
1
2βek

iω
D · L

2 cosh(k L
2 ) +

κ2

k sinh(k L
2 )

Ψ0. (A60)

Using this expression, we also get:

GP1 =
iω
2D cosh(k L

2 )
iω
D · L

2 cosh(k L
2 ) +

κ2

k sinh(k L
2 )

Ψ0, (A61)

giving us together with Eq. (A49) the final expression for the potential

Φ(z) =

{
2ecs

εε0k2 ·
1
2βek · sinh(kz)

iω
D · L

2 cosh(k L
2 ) +

κ2

k sinh(k L
2 )

+

+
iω
2D cosh(k L

2 )
iω
D · L

2 cosh(k L
2 ) +

κ2

k sinh(k L
2 )

z +
1
2

}
Ψ0 =

=
Ψ0
2

(
κ2

k sinh(kz) + iω
D cosh(k L

2 ) · z
κ2

k sinh(k L
2 ) +

iω
D · L

2 cosh(k L
2 )

+ 1
)

,

(A62)

where in the first term we used that κ = 2e2βcs

εε0
. This can be further simplified

to

Φ(z) =
Ψ0
2

(
sinh(kz) + iωτ1 cosh(k L

2 ) · kz

sinh(k L
2 ) + iωτ1 cosh(k L

2 ) · k L
2
+ 1

)
, (A63)
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where τ1 ≡ 1
Dκ2 . As we will see in the coming section, these results allow us

to study the frequency response of the electrolytic cell, knowing which will
allow us to construct an equivalent electrical circuit.

2.8.2 Constructing Equivalent Circuit

Frequency Response of the System

In order to study the frequency response of an electrolytic system, we use
electrical impedance defined as

Z(ω) =
∆Ψ

I
, (A64)

where ∆Ψ is the total voltage drop over the system and I is the current
flowing through the system. Physically impedance acts like an effective
resistance of the whole cell.

There is a good reason why the impedance is used to study the frequency
response of an electrolytic system. Electrolyte consists of electrically neutral
molecules and mobile charges. When an external voltage is applied to it,
the mobile charges will rearrange in a specific way to screen the electric
field created by the external voltage. This process can be characterised by a
characteristic timescale. At the same time, molecules of the electrolyte will
reorient in the electric field created by the external voltage, further decreasing
the electric field inside the electrolyte. Depending on the molecule type, their
reorientation timescales are different. Therefore, we end up with different
timescales for the response of the system to an alternating driving voltage.
This implies, that the effective resistance of the system, impedance, will vary
depending on the frequency of the driving voltage. This, together with the
possibility to measure it experimentally, makes impedance a good candidate
for the frequency response study.

We will be using Argand Complex Plane plots for a complex impedance
Z(ω) = Z ′(ω) + iZ ′′(ω) (in conjunction with the Bode plot, which is dis-
cussed in the main text). In these parametric plots x axis represents the
real part of the complex number Z ′(ω), whereas y axis - the imaginary part
Z ′′(ω) with ω being the parameter. Argand diagram allows us to readily
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identify not only the linear circuit elements that should be included in the
equivalent electrical circuit, but also how they should be connected - in series,
or parallel.

To make matters clearer, let us consider two examples of Argand plots for
the simplest electrical circuits - RC circuit in series and in parallel. For the
series RC circuit, shown in Fig. 2.11(a) the impedance is

Z(ω) = R +
1

iωC
. (A65)

We see, that the real part Z ′(ω) = R does not depend on the frequency,
whereas the imaginary part Z ′′(ω) = 1

ωC is inversely proportional to ω. The
corresponding parametric curve will thus be a vertical line, as shown in
Fig. 2.11(c). On this plot, the absolute value of the impedance | Z(ω) |
at a given frequency ω is the distance from the origin of the plot to the
corresponding point on the vertical line. And the slope of the line connecting
these two points characterizes the ratio of the real and imaginary parts of
the impedance

φ = arctan
(

Z ′′(ω)

Z ′(ω)

)
. (A66)

For the parallel RC circuit, shown in Fig. 2.11(a), the impedance is also easy
to calculate

Z(ω) =
1

1
R + iωC

=
R

1 + (ωC)2 − i
ωR2C

1 + (ωC)2 (A67)

and produces a semi-circle curve on the frequency response plot stretch-
ing from point

(
Re(Z(ω)) = 0, Im(Z(ω)) = 0

)
when ω → ∞, to point(

Re(Z(ω)) = R, Im(Z(ω)) = 0
)

when ω → 0, as we see in Fig. 2.11(d).
Frequency response of the electrolytic cell impedance is more complicated.

Using the definition of impedance we get

Z(ω) =
∆Ψ

I
=

2
(
Φ(−L/2) − Ψ0/2

)
eiωt

Q̇(−L/2, t)
, (A68)

where
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(a) (b)

  0

  

(c)

  0
  

(d)

Figure 2.11: (a) RC electrical circuit connected in series. (b) RC electrical circuit
connected in parallel. (c) Argand diagram of series RC electrical circuit.
The parametric plot is a vertical line positioned at Re(Z(ω)) = R. The
imaginary part Im(Z(ω)) = 0 when ω → ∞ and Im(Z(ω)) → ∞ when
ω → 0. (d) Argand diagram examples for simple electrical circuits.
The parametric plot is a semi-circle. When ω → ∞, the real and
imaginary parts of the impedance take the values of Re(Z(ω)) = 0 and
Im(Z(ω)) = 0 respectively, whereas when ω → 0, then they are equal
to Re(Z(ω)) = R and Im(Z(ω)) = 0.

Q(−L/2, t) = S0σ(−L/2, t) = S0ε0εE(−L/2, t) = −S0ε0εΦ′(−L/2)eiωt

(A69)
is the charge on the left plate of the capacitor and σ(−L/2, t) the surface
charge at the same point. Thus
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Q̇(−L/2, t) = −iωS0ε0εΦ′(−L/2)eiωt. (A70)

Inserting this back into Eq. (A64) we get

Z(ω) =
2

S0εε0iω

sinh(kL/2) + iωτ1 cosh(k L
2 ) · k · (L/2)

k cosh(−kL/2) + iωτ1 cosh(k L
2 ) · k

=

=
2

S0εε0

tanh(kL/2) + iωτ1 · k(L/2)
iωk(1 + iωτ1)

.

(A71)

This can be simplified a bit more. We rewrite

kL = L

√
κ2 +

iω

D
= κL

√
1 + iωτ1 (A72)

and split the square root into real and imaginary parts

x ≡
√

1 + iωτ1 =

(√√√√√1 + ω2τ2
1 + 1

2 + i

√√√√√1 + ω2τ2
1 − 1

2

)
≡

≡ Re(x) + iIm(x),

(A73)

where we see, that Re(x) ≥ 1. Using tanh(kL/2) definition we write

tanh(kL/2) = 1 − e−kL

1 + e−kL
=

2
1 + e−kL

− 1. (A74)

Combining Eqs. (A73) and (A72) and inserting into Eq. (A74), we get

tanh(x) = 2
1 + e−κL(Re(x)+iIm(x))

− 1 =
2

1 + e−Re(x)κL · e−iIm(x)κL
− 1,

(A75)
from where it becomes clear, that the imaginary part does not affect the
modulus of the expression in the denominator and it is completely dictated
by the size of κL ≫ 1. Therefore we can expand Eq. (A75) to get

tanh(x) ≈ 1 − 2 · e−RκL · e−iIκL ≈ 1. (A76)
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This allows us to safely drop tanh(kL/2) term to arrive at

Z(ω) ≈ 1
S0εε0

· 2 + iωτ2
√

1 + iωτ1
iωκ(1 + iωτ1)3/2 , (A77)

where we also used, that τ2 = τ1 · κL = L
κD . This result allows us now to

study the frequency response of the electrolytic cell. The parametric plot
−Z ′′(ω) vs. Z ′(ω) is presented on Fig. 2.5(a).

Constructing Equivalent Electrical Circuit

Knowing the frequency response of the electrolytic cell, it can be recast
into an equivalent electrical circuit containing simple elements connected in
such a way, that the frequency response and hence the impedance of such
a circuit matches that of the cell. This is convenient, as equivalent circuits
are much easier to treat. Since we already know, how each linear circuit
element affects the Argand diagram, it is easy to identify, that the frequency
response of the electrolytic cell corresponds to an equivalent electrical circuit
presented in Fig. 2.7(a), or Fig. 2.7(b) (in the main text we discuss why we
chose the former over the latter one). Comparison of frequency response
plots between the electroytic cell (solid lines) and the electric circuit (dashed
lines) of Fig. 2.7(a) is presented in Fig. 2.6, where we see a good agreement
between the shapes of the two at different parameter sets.

Now that we have identified the equivalent electrical circuit, we also need
to determine expressions for the individual elements C1, C2 and R. For this
we need the expression for the equivalent circuit impedance as well. Using
the rules of impedance calculation for parallel and series connections, we can
easily get the expression for the total impedance

Z =
iωRC1 + 1

iω
(
C1 + C2(iωRC1 + 1)

) . (A78)

These two expressions for impedances - Eqs. (A77) and (A78) allow us now
to extract expressions for the equivalent circuit elements. In principle we
could directly compare them and try identifying the elements, however, since
these two functions can not be mapped 1 : 1 to each other, as seen in Fig. 2.6,
they can not be equated directly. Fortunately, the impedance expressions
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get significantly simplified in certain limiting cases, allowing us to derive
expressions for the linear elements of the equivalent circuit.

Equating the electrolytic cell impedance to the equivalent circuit one in
the limit of ω → ∞ we get

1
S0εε0

· L

iω
=

1
iωC2

, (A79)

giving us
C2 =

S0εε0
L

. (A80)

The second one is the limit of ω → 0. In this case we get:

2
S0εε0κ

=
1

iω(C1 + C2)
. (A81)

Inserting here Eq. (A80) we get

C1 =
S0εε0κ

2 − C2 =
S0εε0κ

2

(
1 − 2

κL

)
. (A82)

Finally, in order to get an expression for R, motivated by the shape of
the frequency response curve, we should compare the real parts of both
impedances in the infinite frequency limit. For future convenience, we
explicitly show the results for the real and imaginary parts of the equivalent
circuit impedance

Z ′(ω) =
RC2

1
(C1 + C2)2 + C2

1C2
2R2ω2 , (A83)

Z ′′(ω) = − C1 + C2 + C2
1C2R2ω2

ω

(
(C1 + C2)2 + C2

1C2
2R2ω2

) . (A84)

Doing the same for the electrolytic cell, equating the real parts and applying
ω → ∞ limit we get the following expression for R

R =
L

S0εε0κ
· 1(

1 − 2
κ2L

)2 . (A85)
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However, since in our case we are always interested in large systems, for
which κL ≫ 1, it makes sense to apply this limit to Eqs. (A80), (A87) and
(A85) expressions to get the final expressions for the equivalent electrical
circuit elements

C2 =
S0εε0

L
, (A86)

C1 =
S0εε0κ

2 , (A87)

R =
L

S0εε0Dκ2 =
L

2S0Dβe2cs
. (A88)

It is interesting to note, that these expressions have clear physical interpre-
tations. Capacitance C2 characterises a plate capacitor with size equal to
that of the system - L, i.e. C2 corresponds to the capacitor created by the
two blocking electrodes. Capacitance C1, on the other hand, characterises
the effective capacitor created by two plate capacitors connected in series
(introducing factor 2 in the numerator of Eq. (A87)). Size of each of these
capacitors is equal to the Debye length κ−1. Therefore, C1 describes two
EDLs, that are created at each electrode. Finally, resistance R characterises
the resistance of the bulk part of the system and is, consequently, proportional
to the system size L.

Knowing how the equivalent electrical circuit looks like and the expressions
for its constituent elements, we can use it to study the electrolytic cell more
conveniently. For example, one of the more interesting details about the
behavior of the electrolytic cell can be seen by comparing its frequency
response in Fig. 2.5(a) to that of the series RC circuit, plotted in Fig. 2.11(c).
As we see, for sufficiently low frequencies, the electrolytic cell starts to behave
like a series RC circuit. Since this is a convenient simplification of the
problem, it is interesting to see, at what frequencies that happens. For this
we need to find the extrema of the parametric curve of frequency response.
Taking derivatives of Eqs. (A83) and (A84) with respect to ω, dividing them
and equating the result to 0 gives us an equation for the extrema of the
parametric plot. We only consider positive frequency solutions
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ω1 =

√√√√ (C1 + C2)
(
C1 −

√
C2

1 − 8C1C2 − 2C2
)

2C2
1C2

2R2 , (A89)

ω2 =

√√√√ (C1 + C2)
(
C1 +

√
C2

1 − 8C1C2 − 2C2
)

2C2
1C2

2R2 . (A90)

As we said, we are interested in the large system limit κL ≫ 1. First we
insert Eqs. (A80), (A87) and (A85) expressions here. Then, we keep terms
up to the linear order in 1

κL in Eq. (A89) and 0th order terms in Eq. (A90).
This gives

ω1 ≈ Dκ2
√

2
κL

, (A91)

ω2 ≈
√

C1(C1 + C1)

2C2
1C2

2R2 =
1

C2R
= Dκ2. (A92)

The second solution of Eq. (A92) corresponds to the maximum on the semi-
circle of the frequency response plot, which is a well known timescale of
Eq. (2.12). It is the first solution that we are after - it represents a point
on the Argand plot Fig. 2.5(a), that denotes transition to the vertical line,
which, as we already know, corresponds to a series RC circuit. So, this point
determines the frequency, after which we can treat the electrolytic cell as a
series RC circuit. We can put the corresponding frequencies, together with
ωτRC = 1, on the Argand diagram, as seen on Fig. 2.5(a). All the timescales
are discussed in more detail in the main text.





3A S Y M M E T R I C R E C T I F I E D E L E C T R I C F I E L D S
F O R S Y M M E T R I C E L E C T R O LY T E S

abstract

In this chapter, building upon the discovery of asymmetric rectified electric
fields (AREF) in recent experiments [S.H. Hashemi et al., Physical Review
Letters 121, 185504 (2018)], we explore the generation of AREF by applying
a sawtooth-like voltage to 1:1 electrolytes with equal diffusion coefficients
confined between two planar blocking electrodes. This differs from an earlier
approach based on a sinusoidal AC voltage applied to 1:1 electrolytes with
unequal diffusion coefficients. By numerically solving the full Poisson-Nernst-
Planck equations, we demonstrate that AREF can be generated by a slow
rise and a fast drop of the potential (or vice versa), even for electrolytes
with equal diffusion coefficients of the cations and anions. We employ an
analytically constructed equivalent electric circuit to explain the underlying
physical mechanism. Importantly, we find that the strength of AREF can be
effectively tuned from zero to its maximal value by only manipulating the
time-dependence of the driving voltage, eliminating the necessity to modify
the electrolyte composition between experiments. This provides valuable
insights to control the manipulation of AREF, which facilitates enhanced
applications in diverse electrochemical systems.
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3.1 introduction

Studying the behavior of an aqueous electrolyte subjected to an externally
applied oscillating electric field often involves the use of alternating current
(AC) voltages. For instance, an AC voltage is commonly used in areas such
as induced charge electrokinetics [38, 76, 171–173], particle assembly in
electrolytes [174–181], AC electroosmosis [182–188], cyclic voltammetry [189–
194], batteries [196–203], sensing [183, 185, 195], and impedance spectroscopy
[47, 197–204]. One of the main reasons for choosing AC electric fields over
DC fields in various applications is to avoid any net current or net charge in
the system, since the field has a zero mean over one cycle.

A basic geometry that can capture many of the essential physical effects
of an AC field is a globally neutral 1:1 electrolyte of point-like ions confined
between two blocking electrodes and subjected to a harmonic AC voltage. If
the frequency of the AC voltage is relatively low or zero (as in equilibrium),
then a so-called Electric Double Layer (EDL), consisting of the surface charges
of the solid and a diffuse ionic cloud with opposite charge, will form at the
interface between a charged solid (electrode, colloid, etc.) and an electrolyte.
The EDL harbors a surplus of counter-ions and a reduced concentration
of co-ions compared to the bulk, thereby screening the electric field of the
electrode. The typical thickness of a fully formed EDL is equal to the Debye
length λD, which is about 10 nm for water with 1 mM salt concentration
at room temperature. One of the interesting recent findings in such a
(vertical) system with horizontal electrodes concerned colloids floating in the
gravitational field. Here, charged colloids suspended in an aqueous electrolyte
were confined between two horizontal blocking electrodes that were driven by
a harmonic AC potential. Contrary to intuition, rather than sedimenting in
the gravitational field the colloidal particles were observed to float against the
gravitational pull [41, 42]. This led to a theoretical investigation to elucidate
the source of the force that allows the colloids to withstand the gravitational
field. In Ref.[66] it was shown that period-averaged electrode charge is
not necessarily zero in the case of cations (+) and anions (-) with unequal
diffusion coefficients, D+ ̸= D−. The resulting period-averaged induced
electric field is therefore also non-zero and stretches from the electrodes well
into the bulk of the electrolyte. It was termed Asymmetric Rectified Electric
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Field (AREF). The electric force generated by AREF was proposed as a
mechanism that would enable the colloids to counteract the gravitational pull.
It is noteworthy that a recent study has proposed alternative mechanisms for
colloidal floating, including dielectrophoresis (DEP) or electrohydrodynamical
(EHD) mechanisms [69]. Interestingly, the predominant contribution of each
mechanism to the floating height of colloids remains a subject of investigation.

This paper focuses on AREF. The authors of the original study extensively
explored AREF from sinusoidal voltages by examining its space dependence
on various system parameters in Ref. [68], numerically solving the governing
system of non-linear differential equations in Ref. [58], and investigating
the application of AREF in reversing the flow of electroosmosis in Ref. [67].
Nevertheless, several aspects of the underlying physical mechanism of AREF
remained unclear. In our recent publication [1] we employ equivalent electric
circuits to devise a simplified toy model that qualitatively reproduce the
parameter dependencies of AREF, shedding light on the underlying physical
mechanism. It was explained how the asymmetry of ion diffusion coefficients
in the electrolyte can create AREF. However, the scope of manipulating AREF
is constrained by the rather limited range of ion diffusion coefficients and their
disparities. Furthermore, experimental studies on AREFs necessitate altering
electrolytes for each new experiment, demanding a significant investment
of time and effort. To address these challenges, we opted to study one and
the same electrolyte, for simplicity a symmetric 1:1 electrolyte with equal
ion diffusion coefficients D ≡ D+ = D−, and instead study the possibility
of introducing the necessary asymmetry for AREF generation through the
functional form of the driving potential. A convenient form that is both
asymmetric and periodic, yet averages to zero over time, is the so-called
“sawtooth” potential

Ψ (t) =
2Ψ0
π

∞∑
n=1

(−1)n+1 sin (nωt)

n
, (3.1)

where Ψ0 > 0 is the amplitude and T = 2π/ω the period the of the driving
voltage Ψ (t). In Fig. 3.1(a), where we plot two periods of Ψ (t) given by
Eq. (3.1) as a function of the dimensionless time t/T , we see that the
sawtooth function rises steadily towards its maximum Ψ0 and then drops
“instantaneously” to its minimum −Ψ0. This slow rise and fast drop breaks
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the symmetry of the charging and discharging processes at the electrodes,
as we will see. At the same time, the (absolute) areas S1 and S2 under the
curve are equal, S1 = S2, resulting in a period-averaged applied potential
equal to zero, i.e. there is no direct bias of the voltage.

While the full sawtooth function is indeed a very convenient candidate
for the time-dependence of the driving voltage, it is less attractive for the
numerical study that we undertake in this work, not only because of the
large number of required harmonic “modes” in Eq. (3.1) but also because of
the discontinuity of the full potential. It turns out that the essence of the
creation mechanism of AREF can be studied in full detail by avoiding the
sharpest feature of the full potential and keeping only the first two terms
in the sawtooth series of Eq. (3.1). Thus, henceforth the driving voltage of
interest is given by

Ψ (t) =
2Ψ0
π

2∑
n=1

(−1)n+1 sin (nωt)

n
, (3.2)

which is plotted in Fig. 3.1(b). One checks that the role of the second harmonic
term is to break the symmetry between rising and lowering voltages. All
numerical results in this paper will be based on this “two-term” sawtooth
function, that captures the key physics even though its actual amplitude is
only ∼ 0.9Ψ0. However, for convenience and clarity we will refer to the full
sawtooth function when explaining and discussing the AREF mechanism.

This paper is structured as follows: In Section 3.2, we present the system of
interest along with the Poisson-Nernst-Planck (PNP) equations that control
the processes in the electrolytic cell. In Section 3.3 we explain how AREF
effects are generated under the influence of the sawtooth driving potential for
a specific set of system parameters. In Section 3.4, we use numerical methods
to investigate how the AREF varies with the main system parameters. Finally,
in Section 3.5 we sum up and discuss our results.

3.2 poisson-nernst-planck equations

The system of interest, schematically illustrated in Fig. 3.2, is essentially
the same electrolytic cell as the one considered in our previous paper [1],
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(a)

(b)

Figure 3.1: Two periods of (a) the full sawtooth voltage Ψ (t) based on Eq. (3.1) and
(b) the two-term sawtooth voltage based on Eq. (3.2). Both voltages
have a period T , feature an asymmetry between (slow) rising and (fast)
lowering voltages, and average out to zero during a period. The two-term
sawtooth avoids sharp transitions, rendering itself more convenient for
numerical calculations.
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therefore its description and the notation we use will follow Ref. [1] very
closely. The cell comprises a three-dimensional aqueous electrolyte with a
relative dielectric constant ϵ at room temperature, confined between two
parallel macroscopic planar electrodes separated by a distance L. We assume
translational symmetry in the lateral directions. Apart from the continuum
solvent, the electrolyte is composed of two types of monovalent point-like ions:
cations (+) and anions (−) with valencies ±1 and equal diffusion coefficients
D± ≡ D. The total number of cations and anions is equal, ensuring overall
electroneutrality in the system. The electrodes are blocking, preventing ions
from leaving the electrolyte, and we exclude any chemical REDOX reactions.
The system is subjected to the AC sawtooth voltage of Eq. (3.2) containing
only two terms in the series, applied to the left electrode placed in the plane
z = −L

2 , whereas the right one, situated at z = L
2 , remains grounded. The

imposed angular frequency is denoted by ω, and Ψ0 represents the amplitude
of the applied voltage.

We study this system in terms of the the Poisson-Nernst-Planck (PNP)
equations. The ionic fluxes, denoted as J±(z, t), comprise a diffusive compo-
nent arising from ion concentration gradients and a conductive component
resulting from the potential gradient. These aspects are collectively described
by the Nernst-Planck equation given by

J±(z, t) = −D

(
∂c±(z, t)

∂z
± βec±(z, t)

∂Ψ (z, t)

∂z

)
, (3.3)

where c±(z, t) represent the concentrations of cations (+) and anions (−) at
the position z and time t and Ψ (z, t) the local electrostatic potential. Here
e is the elementary charge and β−1 the product of the Boltzmann constant
and the temperature. Eq. (3.3) also assumes spatially constant diffusion
coefficients. Given the absence of chemical reactions in the system, the
concentrations and fluxes are connected through the continuity equation

∂c±(z, t)

∂t
+

∂J±(z, t)

∂z
= 0. (3.4)
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)tΨ(

Figure 3.2: Schematic illustration of the aqueous 1:1 electrolyte under consideration,
comprising a continuous solvent and two ionic species, enclosed between
two parallel blocking electrodes with a separation distance L. The ions
in the electrolyte are driven by the time-dependent electric sawtooth
potential Ψ (t) of Eq. (3.2) applied to the electrode at z = −L

2 , while
the opposite electrode at z = L

2 remains grounded.

The local potential profile Ψ (z, t) is connected to the local charge density
e
(
c+(z, t) − c−(z, t)

)
through the Poisson equation, which for |z| < L

2 reads

∂2Ψ (z, t)

∂z2 = − e

ϵ0ϵ

(
c+(z, t) − c−(z, t)

)
, (3.5)

where ϵ0 is the permittivity of vacuum and ϵ = 80 represents water as a
structureless continuum.

The PNP equations (3.3), (3.4), and (3.5) form a closed set that fully
describes the time-dependent profiles of the concentrations c±, the fluxes J±,



86 aref for symmetric electrolytes

and the potential Ψ . The explicit solution of the PNP equations requires
boundary and initial conditions, for which we take

Ψ (−L/2, t) =
2Ψ0
π

(
sin (ωt) − 1

2 sin (2ωt)

)
, (3.6)

Ψ (L/2, t) = 0, (3.7)

J±(−L/2, t) = J±(L/2, t) = 0, (3.8)

c±(z, t = 0) = cs for z ∈ [−L/2, L/2]. (3.9)

Here cs represents the constant initial salt concentration, which is identical
for both ionic species in the 1 : 1 electrolyte of interest and thus satisfies
global charge neutrality. As implied by Eq. (3.4) coupled with the boundary
conditions specified in Eq. (3.8), the total number of anions and cations in
the system is conserved such that

1
L

∫ L/2

−L/2
c±(z, t) dz = cs (3.10)

is satisfied at all times t ≥ 0. For a given set of parameters Ψ0, ω, D, cs, and
L Eqs. (3.5) – (2.8) constitute the system of non-linear coupled differential
equations. We employ the finite-element solver of COMSOL® to numerically
solve these equations.

Convenient insight into relevant dimensionless system parameters can be
obtained as follows. In the static (low-frequency) limit equilibrium holds, such
that the applied potential Ψ (−L/2, t) = Ψ0 is a time-independent constant
and J±(z, t) = 0. In the linear-screening regime with |βeΨ0| ≲ 1, the EDLs
get fully developed at the two electrodes and the NP equation (3.3) can be
integrated to obtain the Boltzmann distribution

c±(z) = c′
s

(
1 ∓ Ψ0βe sinh (κz)

2 sinh (κL/2)

)
, (3.11)

with κ−1 the characteristic Debye length of the equilibrium EDL given by

κ−1 =

√
ϵϵ0

2e2βc′
s

≡ λD. (3.12)
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The concentration c′
s is an integration constant that is very close to cs in

the large L-limit of interest here, so throughout the paper we set c′
s = cs in

the definition of λD. In this limit, as we have shown before in Ref.[1], the
characteristic timescale of EDL formation [65] is written as the RC time

τRC =
LλD

2D
=

L

2κD
. (3.13)

For future convenience we also define the Debye time

τD =
1

κ2D
= τRC

2
κL

, (3.14)

during which the ions diffuse over a distance of the order of the Debye length
[65, 71].

For the convenience of numerical investigation of AREF, we establish a
standard parameter set that includes the (dimensionless) amplitude and
frequency of the driving potential, denoted as βeΨ0 = 3 and ωτRC = 1,
respectively. The standard (dimensionless) system size is fixed at κL =

50. We note that this standard parameter set is physically realistic, as it
corresponds for an aqueous 1:1 electrolyte with a salt concentration cs =

1 mM to a Debye length λD = 10 nm and hence a system length L = 500 nm,
and with a typical diffusion coefficient D = 1.09 µm2/ms we find τRC = 2.3 µs
and hence a driving period T = 14.4 µs. Any deviation from this standard
set will be explicitly stated. All measurements are performed in the late-time
limit-cycle regime, when all the transient effects have vanished. This way
all the time-dependencies in the system have the same period as that of the
driving voltage, with at most a phase difference as we will see.

3.3 aref from sawtooth potentials

Most of the previous work on AREF concentrated on asymmetric elec-
trolytes containing ions with unequal diffusion coefficients driven by a har-
monic (single-frequency sinusoidal) voltage [41, 42, 58, 66–69, 205]. To
appreciate the differences of AREF between these asymmetric electrolytes
and the systems of interest here consisting of a symmetric 1:1 electrolyte (with
equal diffusion coefficients) driven by the sawtooth potential of Eq. (3.6), we
briefly recall the mechanism of AREF in the asymmetric case.
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As was discussed in Ref.[1], the mechanism behind the creation of AREF in
a system with an asymmetric electrolyte relies on the concentration difference
of the faster (more mobile) ions gathering at the electrodes during a half-
period T /2 and the slower (less mobile) oppositely charged ions during
the complementary half period, an effect that is particularly strong for
intermediate driving frequencies ωτRC ∼ 1. As a result, in the vicinity of
both electrodes the period-averaged concentration of the faster ions exceeds
that of the slower ions, and the resulting period-averaged charge distribution
e⟨c+ − c−⟩(z) in the electrolyte was found to be nonzero and results in a
nontrivial period-averaged electrostatic potential ⟨Ψ⟩(z) and an associated
period-averaged electric field (AREF) ⟨E⟩(z) = −d⟨Ψ⟩(z)/dz. Here we
defined the period-average of a function f(z, t) as

⟨f⟩(z) = 1
T

∫ t0+T

t0
f(z, t) dt, (3.15)

where t0 is the (sufficiently late) time at which we start averaging. Because
of the symmetry and equivalence between the two electrodes, at least at the
period-averaged level, we find (for the asymmetric electrolyte with sinusoidal
driving) perfect mirror symmetry with respect to the midplane for the
period-averaged potential, so ⟨Ψ⟩(z) = ⟨Ψ⟩(−z), and likewise for the ionic
concentrations and the charge density. The electric field, by contrast, exhibits
perfect anti-mirror symmetry with respect to the midplane, thus ⟨E⟩(z) =
−⟨E⟩(−z) [1]. As a consequence of this symmetry, it was found in Ref.[1]
that a convenient integral quantity to characterize (the strength of) AREF
was the time- and space-averaged (dimensionless) electric potential U ≡
βe 1

L

∫ L
2

− L
2

dz⟨Ψ⟩(z). An additional consequence of these (anti-)symmetries
combined with global charge neutrality was a vanishing period-averaged
surface charge density ⟨σ⟩ on both electrodes at z = ±L/2, such that not
only ⟨Ψ⟩(±L/2) = 0 but also ⟨E⟩(±L/2) = 0 for asymmetric electrolytes
with symmetric driving voltages.

Compared to the case of asymmetric ion diffusion coefficients that we just
discussed, the system of a 1:1 electrolyte with equal ionic diffusion coefficients
driven by the asymmetric sawtooth voltage has a different mechanism for
AREF creation. This is immediately apparent from Fig. 3.3(a), that shows
the numerical solution of the PNP equations of the period-averaged charge
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density profile ⟨c+ − c−⟩(z) for our standard parameter set. At the left
electrode placed at z = −L/2 we see a period-averaged accumulation of
negative ionic charge, whereas on the opposite side at z = L/2 an equal but
opposite (positive) charge density accumulates in the vicinity of the electrode.
Clearly, this charge density profile is anti-symmetric with respect to mirroring
in the midplane, ⟨c+ − c−⟩(z) = −⟨c+ − c−⟩(−z), which contrasts the mirror
symmetry we encountered earlier in the cases of unequal ionic mobilities.
Such an antisymmetric period-averaged charge distribution creates a perfectly
mirror-symmetric AREF ⟨E(z)⟩, as also shown in Fig. 3.3(b), where we notice
that the electric fields at z = ±L/2, so at the electrodes, do not vanish. This
implies by the Gauss law that the period-averaged surface charge ⟨σ⟩ on the
electrodes is non-zero in this case. At the same time we see in Fig. 3.3(c) that
the period-averaged potential profile ⟨Ψ⟩(z) follows the anti-mirror-symmetry
of the charge distribution. As a consequence, its spatial average U will be
identically zero, which implies that, unlike in Ref.[1], it cannot be used as
a measure for the AREF strength. Instead, it is now natural to use the
time-averaged surface charge density ⟨σ⟩ on the electrodes for this purpose,
or rather its dimensionless version

σ′ ≡ ⟨σ⟩
σm

=
βeκ−1⟨E⟩(z)

4π sinh(βeΨ0/2)

∣∣∣∣
z=−L/2

, (3.16)

where we introduced the Gouy-Chapman surface charge density σm =

e(κ/λB) sinh(βeΨ0/2) ≈ 7.6 mC/m2 at the static voltage βeΨ0 = 3 as
a reference, with the Bjerrum and Debye length set to λB = e2/4πϵ0ϵkBT ≃
0.72 nm and κ−1 ≃ 10 nm, respectively.

To understand the mechanism behind AREF in the present system, we
will use the so-called equivalent circuit corresponding to the system that we
are studying. It is well known that several aspects of electrolytic systems
can often be approximated by equivalent electronic circuits [50, 77–80], with
Ref.[81] providing a historical overview on this matter. As was shown in
Ref.[1], the system in Fig. 3.2 can in the linear screening regime βeΨ0 ≪ 1
be approximated by the circuit shown in Fig. 3.4(a), where the capacitors C1
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(a) (b)

(c)

Figure 3.3: Time-averaged dimensionless spatial profiles of the (a) ionic charge den-
sity ⟨c+ − c−⟩/cs, (b) electric field βeκ−1⟨E⟩, and (c) electric potential
βe⟨Ψ⟩ in a 1:1 aqueous electrolyte confined between two planar electrodes
separated by distance L = 50λD. The electrode at z = L/2 is grounded,
whereas the one at z = −L/2 is driven by an AC Sawtooth potential of
Eq. (3.6) with amplitude Ψ0 = 3/βe = 75 mV. Three different driving
frequencies ωτRC = 0.1, 0.22, 1 with RC-time τRC given by Eq. (3.13)
are denoted with different colors.

and C2 and the resistor R take, for an electrolytic system of lateral area A,
the form

C1 =
Aϵϵ0κ

2 ; C2 =
Aϵϵ0

L
, (3.17)

R =
L

A
· 1

ϵϵ0Dκ2 =
L

A
· 1

2Dβe2cs
. (3.18)
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(a) (b)

Figure 3.4: (a) Equivalent electric circuit corresponding to the large electrolytic cell
with L ≫ κ−1 in the linear regime. Resistance and capacitance of the
cell at infinite frequency are denoted by R and C2 respectively, whereas
the total capacitance of two fully developed electric double layers at the
electrodes is denoted by C1, as described by Eqs. (3.17) and (3.18). (b)
Simplified equivalent electric circuit corresponding to the low-frequency
case ωτRC ≪

√
κL/2 with C = C1.
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Physically R corresponds to the Ohmic resistance of the homogeneous aqueous
electrolyte with monovalent charge carriers of concentration 2cs and mobility
βD, and C1 represents the capacity of the EDLs at the electrodes - it is the
net capacity of the two fully developed EDLs in series, each with the linear-
screening capacitance Aϵϵ0κ. Similarly, C2 represents the purely dielectric
capacitance of a water-filled parallel-plate capacitor without any ionic charge
carriers and characterized by the size L and area A.

Despite the circuit of Fig. 3.4(a) being only a quantitative mapping in
the case of the linearized PNP equations valid at small driving potentials, it
was demonstrated in Ref.[1] that a lot of qualitative information can still be
extracted even in the non-linear regime of interest here. At the same time,
Ref.[1] also showed that for low frequencies ωτs ≲ 1, where τs =

√
τRCτD, the

circuit of Fig. 3.4(a) can be successfully approximated by a simplified circuit
shown in Fig. 3.4(b), which will be employed in this paper. Following the
derivations in Ref.[1], and setting C = C1, we first analytically calculate the
charge Q(t) accumulated in the capacitors of the circuit when the sawtooth
driving voltage of Eq. (3.1) is applied, yielding

Q(t) =
2Q0
π

∞∑
n=1

(−1)n+1

n
√
(nωRC)2 + 1

cos (nωt + φn), (3.19)

where Q0 = Ψ0C is a reference charge and φn = arctan(1/(nωRC)) the
n-the phase angle. In Fig. 3.5 we plot two periods of Q(t)/Q0 as a function
of (dimensionless) time t/T for the same driving as in Fig. 3.1(a) (so for all
harmonic modes rather than only two) for driving frequency ωτRC = 1. The
phase shift between voltage and charge is evident. The plot identifies the
two (dimensionless) times t1 and t2 in between which Q(t) > 0, and likewise
the interval between t2 and t3 = t1 + 1 during which Q(t) < 0. The plot
also shows the maximum q1, the minimum q2, and the integrated (absolute)
surface areas S3 and S4 under the curve of Q(t)/Q0. We see for the present
example that while the curve corresponding to the area S3 has a higher
amplitude than that of the area S4, so |q1| > |q2|, the base of S4 is actually
wider, ∆t1 ≡ t2 − t1 < ∆t2 ≡ t3 − t2. In the linear response regime this is
such that S3 = S4 when S1 = S2 in Fig. 3.1(a), which implies a vanishing
period-averaged charge on the capacitor in this linearized case.
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However, as we will see in more detail in Section 3.4 below, the electrolytic
system of interest is in the non-linear screening regime with a nonzero period
averaged (dimensionless) surface charge on the left electrode σ′ ∼ Ψ3

0 . This
is a consequence of a nontrivial rescaling of the time-dependent electrode
charge σ(t), that causes the analogues of the extrema q1 and q2 of the charge
curve to scale non-linearly with the voltage amplitude. In turn, this causes a
nontrivial relation between the amplitude difference ∆q ≡ |q1| − |q2| and the
base width difference ∆t ≡ |∆t1 − ∆t2|, leading to a non-zero time-averaged
area ∆S = S3 − S4 ̸= 0 and consequently to a non-zero time-averaged surface
charge σ′ with a sign that depends on the system parameters, as we will see
in section 3.4 below.

3.4 parameter dependence of aref

In this section we study the dependence of the numerically obtained time-
averaged surface charge σ′, defined in Eq. (3.16), on the main system pa-
rameters. We recall that all numerical calculations are performed using the
two-term truncation of Eq. (3.2). The key results are presented in Fig. 3.6,
where we show that σ′ ∝ Ψ3

0 , and in Fig. 3.7, where we plot σ′/(βeΨ0)3, in (a)
and (c) as a function of the driving frequency for different driving amplitudes
(a) and different phase angles ∆ϕ between the two sinusoidal terms of the
two-term sawtooth function in Eq. (3.2) (c) as we will see in more detail
below, and in (b) as a function of system size at driving several frequencies.
In all cases shown in Fig. 3.7, we see variations over an order of magnitude
and even changes of the sign, which testify for the substantial tunability
of AREF. However, we also see in Fig. 3.6 that the order of magnitude of
σ′ is at most of the order of 10−3, such that the period-averaged surface
charge ⟨σ⟩ is at least three orders of magnitude smaller than the typical static
Gouy-Chapman surface charge density σm at Ψ0 = 75 mV as defined below
Eq. (3.16) for our system parameters. This does not imply, however, that
AREFs are a mere quantitative effect without qualitative consequences, since
the force that is exerted by an AREF on a (colloidal) body also depends
on its net charge (which should therefore be large enough for AREF to be
physically relevant, we estimate typically three orders of magnitude larger
than the unit charge for the present (typical) parameters). Therefore, we will
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Figure 3.5: The time-dependent charge Q(t) (in units of Q0) as defined in Eq. (3.19)
stored in the capacitor of the linear equivalent circuit of Fig. 3.4(b) as a
function of time for the full sawtooth potential Ψ (t) of Eq. (3.1). The
asymmetry in the driving potential introduces not only an asymmetry of
the positive and negative charge amplitudes, |q1| ̸= |q2|, but also of the
time interval that the charge is positive or negative, t2 − t1 ̸= t3 − t2.
For linear circuits, or linear screening, this translates into a vanishing
period-averaged charge since S3 = S4 identically. In the non-linear case
of the electrolytic cell at high voltages, however, this condition gets
violated and results in a non-zero period-averaged surface charge σ′ on
the electrodes.

investigate, discuss, and interpret the dependence of AREF on the system
parameters in more detail below.

3.4.1 Applied Voltage Amplitude

Similarly to Ref.[1], the range that we consider for the driving voltage
amplitude Ψ0 is limited from above by the point ion approximation, which
even for cs = 1mM can become unrealistically high within the point-ion limit
due to strong ion crowding effects that take place in actual electrolytes at the
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3

1

Figure 3.6: Period-averaged dimensionless surface charge σ′ of Eq. (3.16) plotted
in the double-logarithmic representation against the driving voltage
amplitude for varying driving frequencies ω at our standard parameter
set (see text). The cubic scaling σ′ ∼ Ψ3

0 demonstrates that AREF is a
non-linear effect.

electrodes [74–76]. This occurs beyond βeΨ0 ≈ 8 − 9, which is therefore the
upper limit that we consider in Fig. 3.6, where we plot, for various driving
frequencies, the dependence of σ′ on Ψ0 for our standard parameter set. The
slope of the double-logarithmic curves is essentially identical to 3 across the
range of frequencies ωτRC ∈ [0.2, 1] that we consider here, i.e. σ′ ∝ Ψ3

0 . This
non-linear scaling confirms that AREF is a non-linear screening effect in
the present case of a symmetric electrolyte driven by the sawtooth voltage,
very similar to the earlier case of a sinusoidal voltage driving an asymmetric
electrolyte as studied in Refs.[1, 66, 68]. This entices the further study
of its dependence on frequency, the phase shift between the two harmonic
modes of the driving voltage, and the system size in terms of the scaled form
σ′/(βeΨ0)3 below.
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3.4.2 Frequency

In Fig. 3.7(a) we plot σ′/(βeΨ0)3 as a function of the dimensionless fre-
quency ωτRC for our standard parameter set at a number of voltage ampli-
tudes Ψ0. As expected, the curves essentially collapse for all Ψ0 and decay to
zero in the high and low frequency limits. We assign the irregularities in the
graph for the lowest voltage in the high-frequency regime ωτRC ∼ 2 − 3 as
numerical artefacts without any significant physical meaning, stemming from
the small numbers involved. Interestingly, however, in the frequency range
ωτRC ∼ 0.1 − 2 where the graphs are smooth, the average surface charge
curves exhibit a change of sign while featuring both a positive maximum at
ωτRC ∼ 1 and a negative minimum at ωτRC ∼ 0.3. The mechanism that
generates such curves can be best understood in the context of an “area
competition” between S3 and S4 under the Q(t) curve for the equivalent
circuit in Fig. 3.5, as we discussed above, but now with the time-dependent
surface charge density σ(t) obtained from the nonlinear PNP equations being
the analogue of the capacitor charge Q(t) in the linear circuit.

Depending on the parameter range, the σ(t) analogue of either ∆q or ∆t

dominates during a period of the (late time) voltage and charge oscillation,
determining the the sign of the time-averaged charge. To check this statement,
we calculate (the analogues of) ∆q and ∆t for the numerical results of σ(t)

(driven by the two-term sawtooth function) and plot their ratio ∆q/∆t as
a function of the dimensionless frequency ωτRC in Fig. 3.8. Interestingly,
comparing this ratio to the σ′(ω) curve in Fig. 3.7(a), we see a remarkable
similarity in the shape of the curves, which suggests that a nontrivial com-
petition between the amplitudes of the time-dependent surface charge and
the duration of the time-interval of its positive and negative sign is indeed
able to explain the nontrivial non-monotonic shape of the σ′(ω) curve of
Fig. 3.7(a).

3.4.3 System Size

Fig. 3.7(b) shows the dependence of σ′/(βeΨ0)3 on system size L (in units
of the Debye length) for various driving frequencies ωτD for our standard
parameter set. Rather than using the dimensionless combination ωτRC of
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(a) (b)

(c)

Figure 3.7: Numerically obtained period-averaged dimensionless surface charge
σ′/(βeΨ0)3 from late-time solutions of the PNP equations for the stan-
dard parameter set (see text) plotted against (a) the dimensionless
frequency ωτRC for several voltage amplitudes, (b) the dimensionless
system size κL for several dimensionless driving frequencies ωτD , and
(c) the driving frequency ωτRC for several phase shifts ∆ϕ of Eq. (3.20).
In (a) we see a collapse of the curves for several voltage amplitudes Ψ0.

Eq. (3.13) to characterize the frequency of the driving voltage, here we use
ωτD defined in Eq. (3.14) as this combination does not depend on L. The
maximum σ′ for the relatively large system sizes of interest, say in the range
of κL ∈ [10, 103], occur at larger κL for lower frequencies ωτD, and one
checks that they all correspond to the regime where ωτRC ∼ 1. This agrees
with our findings of Fig. 3.7(a). In fact, the dependence of σ′ on frequency
in Fig. 3.7(a) and on L in Fig. 3.7(b) are very similar, which in retrospect is
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Figure 3.8: Ratio of the amplitude difference and time difference ∆q/∆t for the
numerical solution σ′ as a function of dimensionless frequency ωτRC .
Plotted for the standard parameter set (see text), however with βeΨ0 = 7
to minimize the numerical noise seen at higher frequencies in Fig. 3.7(a).
The shape of the ∆q/∆t(ω) curve is remarkably similar to that of the
σ′(ω) curve in Fig. 3.7(a).

not surprising since the key dimensionless parameter ωτRC is linear in both
L and ω.

3.4.4 Phase Shift

As was mentioned in the introduction, the main advantage of using a
sawtooth function to drive a symmetric electrolyte in the system of Fig. 3.2
compared to driving an asymmetric electrolyte with a sinusoidal voltage like
in Ref.[1], is that one can manipulate AREF by simply altering the sawtooth
potential without having to change the electrolyte properties (which would
require the electrolyte to be changed in different experiments). As we are
using the two-term sawtooth voltage of Eq. (3.6), it is thus interesting to see
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whether the AREF can be amplified or suppressed by shifting the relative
phase ∆ϕ between two sinusoidal terms away from zero. For this reason we
consider the modified driving potential

Ψ (t) =
2Ψ0
π

(
sin (ωt) − 1

2 sin (2ωt + ∆ϕ)

)
, (3.20)

which is identical to Eq. (3.2) for the case ∆ϕ = 0. We note that a
nonzero phase shift keeps the period-averaged driving potential equal to
zero while it does affect the rate of voltage change substantially and the
maximum/minimum voltage during a period somewhat. We plot this driving
potential in Fig. 3.9(a) at phase shifts ∆ϕ/π = 0, 0.2, 0.5, and 0.8 in the
panels I through IV, respectively, together with the charge Q(t) accumulated
in the capacitor of the equivalent circuit of Fig. 3.4(b) in Fig. 3.9(b). As
we see in Fig. 3.9(a), any of the three nonzero phase shifts increases the
maximum and decreases the minimum of the driving voltage, resulting in an
increase of ∆q in the corresponding plots of Q(t) in Fig. 3.9(b). At the same
time, while ∆t changes with ∆ϕ, it does not get affected by the non-linearity
of AREF, thus it does not influence the surface charge dependence on the
phase shift σ′(∆ϕ). On this basis, one could expect a strong effect of ∆ϕ on
the average surface charge σ′ in the non-linear electrolytic cell.

This strong effect of the phase shift is indeed confirmed by Fig. 3.7(c),
where we plot σ′/(βeΨ0)3 as a function of the dimensionless frequency ωτRC

for our standard parameter set at ∆ϕ/π = 0, 0.2, 0.5, and 0.8. We see that
as we shift the phase the AREF effect can actually increase by as much as an
order of magnitude, reaching its highest values at ∆ϕ = 0.5π. At the same
time, we see that it only changes sign with frequency for the case ∆ϕ = 0.
Increase of ∆q with phase shift is well reflected in Fig. 3.10, where we plot σ′

as a function of the phase shift ∆ϕ at a fixed frequency of ωτRC = 1. As we
see, the average surface charge has a maximum at ∆ϕ = 0.4π and a minimum
at ∆ϕ = 1.4π, where it also has the opposite sign.

3.4.5 Sawtooth AREF vs. Symmetric AREF

Here we briefly compare the spatial dependence and the magnitude of
AREF in the present case of a symmetric electrolyte with equal ionic diffusion
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III IV

(a)

I II

III IV

(b)

Figure 3.9: (a) Two-term sawtooth voltage of Eq. (3.20) for phase shifts ∆ϕ/π equal
to (I) 0, (II) 0.2, (III) 0.5, and (IV) 0.8, and (b) the resulting charges
accumulating in the capacitors of the equivalent circuit of Fig. 3.4(b).



3.4 parameter dependence of aref 101

Figure 3.10: Dimensionless and scaled period-averaged surface charge σ′/(βeΨ0)3

as obtained from numerical late-time solutions of the PNP equations
for the standard parameter set (see text) as a function of the phase
difference ∆ϕ between the two sinusoidal terms of the two-term sawtooth
potential of Eq. (3.2) at ωτRC = 1. For these parameters the period-
averaged surface charge has a maximum at ∆ϕ = 0.4π and a minimum
(of opposite sign) at ∆ϕ = 1.4π.

coefficients driven by a sawtooth voltage with the more conventional case of
an asymmetric electrolyte (with different ionic diffusion coefficients) driven
by a sinusoidal voltage. We focus on the period-averaged electric field profile
shown in Fig. 3.3(b) for the present standard parameter set and the equivalent
plot shown in Fig.2(b) of Ref. [1] for identical system parameters (βeΨ0 = 3,
ωτRC = 1, κL = 50) at a ratio of ionic diffusion coefficients equal to 2 and
3.5. A striking difference, discussed briefly before, concerns the differences in
mirror symmetry with respect to the midplane. Also, for the case of sawtooth
driving we see two AREF peaks (a minimum and a maximum) of the same
order of magnitude in the Debye-length vicinity of the electrodes, whereas
in the case of the asymmetric electrolyte we only obtain a single peak (a
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minimum at one electrode and a maximum at the other in agreement with
the mirror anti-symmetry). We also note that the scale of the AREF peaks
is roughly an order of magnitude larger in the asymmetric case compared to
the sawtooth case, however, the latter spreads almost twice as deep into the
bulk of the electrolyte.

3.5 summary and discussion

In this work we investigate the time-averaged static electric field generated
within the electrolytic cell depicted in Fig. 3.2 when exposed to a sawtooth-
shaped AC potential, under the condition of equal diffusion coefficients for
monovalent cations and anions, i.e., D+ = D−. We numerically solve the
coupled non-linear Poisson-Nernst-Planck (PNP) equations for ionic diffusion
and migration in the cell to examine the dependence of the magnitude
of the emerging asymmetric rectified electric field (AREF) on key system
parameters. These parameters include the amplitude Ψ0 of the applied AC
sawtooth voltage, the driving frequency ω, the phase shift ∆ϕ between the
lowest two harmonic modes of the driving potential, and the system size
L, where we note that these system parameters can all be externally tuned
without requiring a change of the electrolyte.

The asymmetry in the rate of change of the driving sawtooth voltage
induces, despite the equal diffusion coefficients of the cations and anions and
despite a zero period-averaged applied voltage, a nonzero period-averaged
electrode charge ⟨σ⟩ that is responsible for a nonzero period-averaged asym-
metric rectified electric field (AREF) between the electrodes. While AREF
fundamentally represents a non-linear screening phenomenon that we find to
be proportional to Ψ3

0 , we could still obtain additional insights by conducting
an analysis using the linear RC-circuit of Fig. 3.4(b) that was also used and
derived in Ref.[1]. The analytic expression for the time-dependent charge
Q(t) on the capacitor of this circuit, in particular the difference between (i)
the maximum and the minimum of this charge (represented by ∆q) and (ii)
the duration of the time-interval of positive and negative charge (represented
by ∆t), provides a clue on the physics of the nonlinear phenomenon of AREF.
These nonzero differences have opposite effects on the the period-averaged
charge, which cancels identically even for nonzero ∆q and ∆t in the case of
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linear circuits. However, this cancellation is no longer exact in the nonlinear
case of the PNP equations, where an intricate competition between ∆q (fa-
voring a net positive charge for our parameter choices) and ∆t (favoring a net
negative charge) depends sensitively on the system parameters. For driving
frequencies ω that are of the same order as the inverse of the characteristic
RC-time of electric double layers, i.e., when ωτRC ∼ 1, this competition
between ∆q and ∆t induces the most prominent period-averaged distribution
of ionic charges, which, consequently, results in the largest non-zero AREF
structure. The dependence on the system size L is largely reflected by the
dependence on the RC-time -which also depends on L. A relatively strong
AREF effect of an order of magnitude can be induced by a phase difference
∆ϕ = π/2 between the two modes of the driving voltage in the two-mode
approximation.

Finally, we noted that a recent investigation on floating colloids subjected
to AC voltage within an electrolytic cell [69] proposed that apart from AREF
also dielectrophoresis (DEP) might also play a role in counteracting the
gravitational forces on the colloids, depending on the system parameters.
However, the relative contribution of each of these mechanisms to the floating
height of the colloids remains an open question. It may well be possible to
separate the contributions of the two mechanisms by employing sawtooth
potentials, which we have shown here offer substantial opportunities for
tuning AREF without the need to change the electrolyte or the colloidal
suspension. We hope that this work stimulates experimental work along
these lines to manipulate a given electrolyte externally.
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abstract
A hitherto unexploited characteristic feature of emerging iontronic devices

for information processing is the intrinsic mobility of the medium (water),
containing charge carriers (ions), which therefore not only responds to voltage
but also to pressure. Here we study a microfluidic memristor, in the form of
a conical channel, exposed to simultaneously applied time-dependent voltage
and pressure drops, through numerical solutions of the Poisson-Nernst-Planck-
Stokes equations for ion and fluid transport. We show that the channel’s
memristive properties can be enhanced, reduced or instantaneously reset by
a suitable pressure, and we leverage this finding by two examples of time
series processing of simultaneously applied voltage and pressure pulses. We
not only show that the distinction between different voltage time series can
be improved by enhancing the conductance response with corresponding
pressure pulses, but also that the bandwidth of information transfer through
the channel can be doubled by letting the pressure pulses represent a second
independent time series.
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4.1 introduction

Memristors (memory-resistors) exhibit a conductance that depends on
past current or voltage inputs [84, 85]. They have drawn significant inter-
est, predominantly driven by their ability to emulate neuronal processes
in neuromorphic (brain-inspired) circuits [98, 133, 135], which has led to
the employment of memristive devices for information processing [136]. For
instance, they can emulate weights in neural networks [137] or circumvent
the von Neumann bottleneck by co-locating memory and processing as in
the brain [112]. These forms of neuromorphic computing are considered
to be promising candidates for addressing the unsustainably rising energy
consumption and the unmanageably large amounts of generated data [134,
136]. For these reasons a diversity of solid-state memristors has by now been
explored as possible promising circuit components for neuromorphic and
analog computations [85–91, 98, 133, 135].

However, these solid-state memristors for neuromorphic circuits also re-
veal some fundamental disparities with the brain, which employs ions and
molecules in an aqueous environment rather than electrons and holes in a
solid semiconductor, thereby utilising chemical regulation as well as multiple
information carriers in parallel. These fundamental differences result in
tangible challenges, e.g. the fast dynamics of solid-state devices makes them
less suited for processing time series with comparatively slower timescales
such as biological signals [143]. In order to address this disparity, devices have
been proposed that feature electrochemical coupling between (fast) electrons
in metallic/semiconducting materials and (slow) dissolved ions/protons [90,
93–98, 138–142]. Interestingly, an emerging class of memristors even operates
solely on the basis of aqueous electrolytes without any electronic component
[53, 92, 100–111, 145–147]. Various functionalities have recently been ex-
tracted from these fluidic iontronic devices, for instance features of synaptic
plasticity [148, 149], chemical regulation [53, 145], theoretical proposals of
neuron-like spiking [54, 144, 150], implementations for traditional truth ta-
bles [151–153], and initial demonstrations of neuromorphic computing [123].
While these results are promising, the advancement of aqueous neuromorphic
devices is still in the early stages and more work is required to convert the
unique features of iontronics to tangible benefits [154–156].
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In this chapter we study iontronic memristors in the form of microfluidic
conical channels and leverage the unique property of iontronics that the
charge-carrying medium (water) is mobile itself. In response to an applied
DC voltage drop, it is well established experimentally and theoretically
that conical channels with charged channel walls (i) exhibit ionic current
rectification, i.e. the channel conductance depends on the magnitude and
the polarity of the applied (static) voltage [114–120], and (ii) act as a
pressure-gated transistor because a simultaneously applied pressure drop
can strongly affect the electric current [113, 121, 122]. These effects were
both quantitatively explained by a theoretical model that describes how the
conductance stems from a voltage-dependent steady-state salt concentration
profile in the conical channel [122]. This concentration polarisation not only
depends on the polarity of the applied voltage but also on the net fluid flow
with pressure-induced (Poiseuille-like) and voltage-induced (electro-osmotic)
contributions [122]. Recently also the timescale for the voltage-induced
build up of concentration polarisation was identified [54], which provided
a quantitative explanation for experimentally found memristive effects in
conical channels [101–110, 146, 149]. In this chapter we combine these
theoretical insights [54, 122] to show that pulsatile pressure drops can be
combined with AC voltages to not only amplify and reset the memristive
properties of a microfluidic conical channel, but also to increase its signalling
bandwidth. Although pressure sensors have been integrated into a solid-
state device to induce resistive switching [157], pressure sensitivity is not an
intrinsic feature of solid-state devices, which usually only allow for pressure
signaling via connections to dedicated sensors [132, 158, 159]. In contrast,
fluid flow, and hence pressure sensitivity, is an inherent property of fluidic
iontronic memristors, therefore the features we present here represent results
that we believe will be of relevance across the various emerging iontronic
devices.

This chapter will be divided in two parts. Section 4.2 will be devoted to
the basics of transport phenomena in microfluidic channels. We will begin by
briefly arguing the choice of micrometer scale for microfluidic systems and
introducing the equations that we will be using to study such systems. We
then give explicit examples of the coupled matter transport in a cylindrical
channel. After covering the basics we extend the transport effects to a conical
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channel and discuss them in both DC and AC cases, where in the latter case
we introduce the notion of memristors. After laying the necessary foundation
in section 4.2, section 4.3 will be devoted to studying the pressure gated
memristor. Namely, how its memristive effects can be enhanced or suppressed
by tuning pressure, while demonstrating potential of such a memristor as a
useful tool for neuromorphic computing applications.

4.2 transport phenomena in microfluidic channels

Microfluidic channels, such as the cylindrical one shown in Fig. 4.1, offer
excellent opportunities to study coupled transport of matter where, for
example, a pressure difference between the reservoirs can create a significant
electric current and an electric potential difference can create a significant
fluid flow, when the walls of the channel are charged. This is due to the fact,
that at this scale surface effects like the influence of the surface charge on
the matter transport become significant compared to the volumetric effects.

We use the PNPS equations introduced in section 1.2.2 to describe transport
processes in microfluidic channels (where now instead of c, used in the previous
chapters and denoting ion concentrations, we use ρ in this chapter):

∇2Ψ = − e

εε0
ρe, (4.1)

ρm
∂u
∂t

= η∇2u − ∇p − e(ρ+ − ρ−)∇Ψ ; ∇ · u = 0, (4.2)

J± = −D

(
∇ρ± ± ρ±

e∇Ψ

kBT

)
+ ρ±u. (4.3)

We recall that Ψ is the electrostatic potential, ρe = ρ+ − ρ− the ionic charge
densities, J± the ionic fluxes, p pressure, η and u - fluid viscosity and velocity
respectively.
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Figure 4.1: Schematic (not to scale) of an azimuthally symmetric cylindrical channel
of length L and radius R, connecting two bulk reservoirs of an aqueous
1:1 electrolyte with equal ionic bulk concentration 2ρb. The channel walls
carry a negative surface charge density σ. A constant potential drop ∆V

and pressure drop ∆P are simultaneously applied across the channel,
inducing an electrolyte volume flow Q and an ionic charge current I that
we calculate on the basis of Poisson-Nernst-Planck-Stokes equations.

4.2.1 Transport in a Cylindrical Channel

To gain a clearer understanding of the coupled nature of transport phenom-
ena in microfluidic channels we begin by examining the simplest scenarios
within a long azimuthally symmetric cylindrical channel of length L and
radius R depicted in Fig. 4.1. It is described in terms of axial and radial
coordinates x and r. The cylindrical channel connects two reservoirs at
x < 0 and x > L. The system is filled with an incompressible 1:1 aqueous
electrolyte with ionic bulk concentration 2ρb in the reservoirs. A uniform
surface charge density σ (which will be assumed to be negative throughout
this chapter) is imposed on the channel walls, which are assumed to be
impermeable, effectively excluding Faradaic processes. Consequently, mobile
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cations and anions accumulate to form an electric double layer within the
channel. Additionally we assume the channel to be long L ≫ R, where
R ≫ λD.

Poiseuille Flow

One of the simplest matter transport effect is the so-called Pouseuille flow,
where the electrolyte is pushed through the cylindrical channel of Fig. 4.1
by applying a pressure difference to the reservoirs (the potential difference
is kept zero in this case ∆V = 0). We assume P = ∆P in the left reservoir,
whereas the right one is at P = 0. The pressure difference will generate
liquid flow, whose profile can be calculated using Stokes equation (4.2) with
no body force η∇2ux(r) − ∇p(r) = 0. Since dp/dx = −∆p/L =const., the
Stokes equation in cylindrical coordinates reduces to

1
r

∂r

(
r∂rux(r)

)
= −1

η

dp(x)

dx
, (4.4)

which after double integration yields

ux(r) =
r2

4η

dp(x)

dx
+ C1 ln r + C2, (4.5)

where C1 and C2 are integration constants. Using the no-slip boundary
condition ux(r = ±R) = 0, we arrive at the Pouseuille flow profile

ux(r) = − 1
4η

dp(x)

dx
(R2 − r2), (4.6)

characterized by the parabolic shape and peaking at the center of the chan-
nel r = 0. Poiseuille flow, while being an example of matter transport, is
still not an example of a coupled matter transport, as the unit of pres-
sure [energy/volume] directly corresponds to that of the fluid transport -
[volume/time].

Electroosmosis

Another simple case of matter transport takes place when we apply a
potential difference ∆V between the reservoirs, which, due to presence of ions
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in the electrolyte will drive electric current through the cylindrical channel.
However, it is the presence of EDLs at the walls of the channel that makes
matter transport more interesting in this case. The excess of counterions in
the EDLs breaks the balance of mobile ion numbers in the channel. This
allows the potential difference ∆V to create a net ion current along the
channel, which, in turn, drags the fluid along, creating a fluid flow. Thus the
applied electric potential difference does not only drive an electric current in
the system but also a fluid flow. This is precisely an example of a coupled
transport phenomenon, as the unit of electric force source, the potential
difference [energy/charge], does not only create an electric current with the
unit of [charge/time], but also a fluid flow with the unit of [volume/time].

In this case combining the Stokes equation with the Poisson equation leads
to

η∇2u = εε0(∇2Ψ )E, (4.7)

where E = (Ex, 0, 0) = −∇Ψ , which in conjunction with the symmetry and
incompressibility arguments similar to those that we used in the Poiseuille
flow case results in u = (ux(r), 0, 0). Integrating the equation twice yields

ux(r) =
εε0Ex

η
(Ψ (r) − Ψ (R)), (4.8)

where Ψ (R) is the surface (zeta) potential, whereas Ψ (r) is the PB potential
in the cylindrical case. Here we assumed a thin-EDL limit R ≫ κ−1, for which
the curvature of the channel can be neglected and ∂2

r Ψ + (1/r)∂rΨ ≈ ∂2
r Ψ

in the EDL at the wall. From Eq. (4.8) it is clear that the velocity of the
fluid is only going to vary in the vicinity of the walls, as far from the walls
R − r ≫ κ−1 the electric potential vanishes Ψ (r) = 0 due to being screened
by the EDLs. In the bulk of the channel fluid thus reaches the so-called “slip
velocity”

ux,s = −εε0Ψ (R)

η
Ex (4.9)

Due to the flow profile being flat in the channel while slipping at the walls,
the Electroosmotic flow is called a “Plug Flow”.
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Streaming Current

One might wonder here, if an external electric field can drive not only
the electric current in the channel, but also the fluid flow, can the external
pressure be driving the electric current alongside pushing fluid through the
channel? The answer turns out to be positive, as if we look at the Poiseuille
flow at the walls, its velocity is non-zero ux|r→R = − 1

4η
dp
dxR2. Therefore the

ions in the EDL get dragged along the flow creating the so-called streaming
current

Is = −2π

∫ R

0
drrεε0ux(r)∇2Ψ =

πεε0R2

2η

dp

dx
Ψ (R) (4.10)

where we used Poisson and Stokes equations, together with the thin-EDL
limit and Ψ (R) = 0 due to screening. This is another example of a coupled
transport. Thus, we see, that in microfluidic devices, where surface effects
play a comparable role to that of the volume effects, a variety of interesting
matter transport phenomena arise.

Note on Voltammetry in the Cylinder

Finally, it is also important to note here, that the electric current created
in the above transport phenomena has a linear dependence on the applied
potential difference ∆V , ensuring the ohmic reponse of the channel to the
applied voltage, as seen in Fig. 4.2, where the steady state current amplitude
depends on the driving voltage in a linear way, characteristic for the Ohm’s
law V = IR, with R being resistance of the system.

4.2.2 Transport in a Conical Channel

After getting a general idea about the simplest cases of transport phenom-
ena in the cylindrical channel, we now turn our attention to a conical channel
shown in Fig. 4.3. In contrast to the cylindrical case, the conical channel
breaks the symmetry of the system by having unequal base and tip radii
Rb > Rt.
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Figure 4.2: Current-voltage relation for a cylindrical channel of length L = 9.8 µm,
radius Rb = 441 nm at room temperature T = 293 K, containing a
1 : 1 electrolyte with viscosity η = 1 mPas, mass density ρm = 1 kg/L,
dielectric constant ε = 80, default bulk salt concentration ρb = 1 mM
with a Debye screening length λD ≃ 9.8 nm and ionic diffusion coefficient
D = 1 µm2/ms. The surface charge applied to the blocking walls of the
channel is set to σ ≈ −3.4 mC/m2. We impose a static voltage in the
range of V = (−1, 1)(V) and pressure that scales linearly with voltage
and has a magnitude of P = ∓60(mbar) at V = ±1(V). We observe a
linear current-voltage relation corresponding to the Ohmic case.

Static Voltage and Pressure

As it was briefly mentioned in the introduction, it is well established
experimentally and theoretically that when a conical channel with charged
walls is driven by an applied DC voltage drop, it (i) exhibits ionic current
rectification [114–120], implying that the channel conductance depends on
the magnitude and the polarity of the applied (static) voltage. At the same
time it also (ii) acts as a pressure-gated transistor because a simultaneously
applied pressure drop can strongly affect the electric current [113, 121, 122].
These effects were both quantitatively explained by a theoretical model that
describes how the conical channel conductance change stems from a voltage-
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Figure 4.3: Schematic (not to scale) of an azimuthally symmetric conical channel of
length L, base radius Rb, and tip radius Rt < Rb, connecting two bulk
reservoirs of an aqueous 1:1 electrolyte with equal ionic bulk concentration
2ρb. The channel walls carry a negative surface charge density σ. A
static potential drop ∆V and pressure drop ∆P are simultaneously
applied across the channel, inducing an electrolyte volume flow Q and an
ionic charge current I that we calculate on the basis of Poisson-Nernst-
Planck-Stokes equations, yielding a pressure-tunable electric conductance
g = I/V .

dependent steady-state salt concentration profile buildup in it [122]. This
concentration polarisation not only depends on the polarity of the applied
voltage but also on the net fluid flow with pressure-induced (Poiseuille-like)
and voltage-induced (electro-osmotic) contributions [122]. Here we are going
to briefly outline the main findings of Ref. [122] and explain the mechanisms
behind both of the observed effects.

The system of interest, illustrated in Fig. 4.6, with experimentally realistic
parameters, comprises a long azimuthally symmetric conical channel, with
axial and radial coordinates x and r, of length L = 9.8 µm, a base radius
Rb = 446 nm in the plane x = 0, and a tip radius Rt = 98 nm in the plane
x = L. Its cross section radius reads R(x) = Rb − (x/L)(Rb − Rt) for
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(a) (b)

(c)

Figure 4.4: In (a) we plot the dimensionless cross-sectional average of the salt density
ρ̄s(x) along the rescaled channel coordinate x/L for V = 1(V) voltage
and three different pressures P = −500, −60, 0(mbar). The density curve
at high pressure is the closest to the flat dashed line of homogeneous
salt distribution along the channel. Significantly more homogeneity is
introduced at zero pressure, whereas the highest level of inhomogeneity
is achieved at a certain intermediate pressure P = −60(mbar). In (b)
the current-voltage relation in the same channel is plotted. Pressure
scales linearly for each value of voltage P = ∓(500, 60, 0)(mbar) when
V = ±1(V). Similarly to (a) the highest level of current rectification is
observed at the intermediate pressure, whereas in the high-pressure case
the IV relation is linear. In (c) the current is plotted against pressure
magnitude for V = 1(V). We see a linear change in current at large
pressures, however, as we approach the optimal pressure at around
P = −60 (mbar), the current magnitude quickly drops forming a sharp
minimum. For parameters see text.

x ∈ [0, L]. The channel connects two incompressible aqueous 1:1 electrolyte
reservoirs at x < 0 and x > L, each at equal ionic bulk concentration
2ρb at room temperature T = 293 K, viscosity η = 1 mPas, mass density
ρm = 1 kg/L, dielectric constant ε = 80, default bulk salt concentration
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ρb = 1 mM and ionic diffusion coefficient D = 1 µm2/ms. The walls of
the channel carry a homogeneous surface charge density σ, such that the
pointlike and mobile cations and anions form an electric double layer in the
channel. The channel walls are blocking and we exclude Faradaic processes.
The surface charge is set to σ ≈ −3.4 mC/m2, which yields an equilibrium
zeta potential of 40 mV to mimic a silica surface in contact with an aqueous
1 : 1 electrolyte with a Debye screening length λD ≃ 9.8 nm [124]. Note
that the channel dimensions, which are in the regime of weak double-layer
overlap since λD ≪ Rt, satisfy Rt/Rb = 0.22, found to be optimal for
current rectification [122]. On the far side of both reservoirs we impose
fixed ionic bulk concentrations of ρ± = ρb = 1 mM. We impose a static
voltage V = 1(V) and pressure P = −500, −60, 0(mbar) at the far side of
the reservoir connected to the base, while the far side of the tip reservoir is
grounded and at (arbitrary) reference pressure zero. This will be a standard
set of parameters that we will use throughout this chapter, unless stated
otherwise.

The above-mentioned channel features lead to an electric potential profile
Ψ (x, r, t), a pressure profile p(x, r, t), a fluid flow with velocity field u(x, r, t),
and ionic fluxes J±(x, r, t). To resolve the fluid and ionic dynamics in
the channel we solve the full set of Poisson-Nernst-Planck-Stokes (PNPS)
equations for diffusive, conductive, and advective transport

∇2Ψ = − e

ε0ε
(ρ+ − ρ−

)
, (4.11)

∂ρ±
∂t

= −∇ · J±, (4.12)

J± = −D

(
∇ρ± ± ρ±

e∇Ψ

kBT

)
+ uρ±, (4.13)

η∇2u = ∇p + e(ρ+ − ρ−)∇Ψ ; ∇ · u = 0. (4.14)

The Poisson Eq. (4.11) accounts for electrostatics. The conservation of ions is
ensured through the continuity Eq. (4.12), while the ionic fluxes are assumed
to be described by the Nernst-Planck Eq. (4.13), which combines Fickian
diffusion, Ohmic conduction, and Stokesian advection. Finally the force
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balance on the (incompressible) fluid is described by the Stokes Eq. (4.14).
To close the system of Eqs (4.11)-(4.14) we impose no-slip, no-flux, and Gauss’
law boundary conditions on the walls of the system, i.e. u = 0, n · J± = 0,
and n · ∇Ψ = −σ/ε0ε, respectively, with n the wall’s inward normal vector.
The PNPS equations can be solved numerically using finite-element methods
of COMSOL® to reproduce the results of Ref. [122], albeit for a different
parameter set, presented in detail above.

The conductance of the conical channel can only be varied by changing the
amount of charge carriers (ions) inside the channel. Therefore, to uncover the
reason for the pressure sensitivity of the conductance, ref. [122] employed the
cross-sectional averaged salt concentration ρ̄s(x), where ρs(x, r) ≡ ρ+(x, r) +

ρ−(x, r). It is a measure for the salt concentration at position x and when
averaged laterally, ⟨ρ̄s⟩ determines the conductance of the channel g. From
numerical calculations it was established that the radial variation of the salt
concentration inside the channel (outside of EDLs) is weak, agreeing with
Ref.[170], making ρ̄s(x) an appropriate choice for the task at hand. In Ref.
[122], the PNPS system of equations was solved for salt concentration profiles
both analytically (within approximations) and numerically. Here, however,
we are only going to re-create and discuss the numerical results (albeit for
our parameter set) of Ref. [122], in order to explain the main findings.

We start with the density profiles. In Fig. 4.4(a) the re-scaled average
density profile ρ̄s(x)/2ρb is plotted as a function of x coordinate in the
channel for three values of pressure from the standard parameter set P =

−500, −60, 0(mbar) at V = 1(V) voltage. We see that when the pressure
magnitude is high, P = −500(mbar), the density profile is deviating only
a bit from the bulk density at the tip of the channel. If we remove the
pressure completely P = 0(mbar), there is a more pronounced deviation of
the density profile from the bulk density. However, the largest deviation is
seen when the pressure has an intermediate value P = 60(mbar) (for the
standard parameter set).

As the change in the average salt density ρ̄s(x) inside the channel gets
reflected in the conductance of the channel g, any change in ρ̄s(x) leads to
the deviation of the current-voltage IV curve from the Ohmic linear relation,
resulting in electric current rectification as seen in Fig. 4.4(b), where we plot
the magnitude of the electric current flowing through the channel against the
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amplitude of the driving voltage. Three curves are plotted for different values
of pressure, which is scaled linearly with voltage amplitude in such a way
that it reaches P = −500, −60, 0(mbar) at V = 1(V) voltage. We see that
while the high-pressure curve is clearly linear i.e. Ohmic, when there is no
pressure applied to the channel there is some degree of current rectification
to be seen. However, as one could have expected from the salt concentration
profiles of Fig. 4.4(a), the maximal current rectification is achieved at the
intermediate pressure, for which the density profile deviated the most from
the bulk density.

According to Ref.[122] this happens due to a competition between the salt
fluxes at the tip and at the base. Salt fluxes created by the electric field
are determined by the (ρ+ − ρ−)

e∇Ψ
kBT term of Eq. (4.3) i.e. by the density of

the excess free charge carriers and the strength of electric field. The former
scales inversely proportional to the circumference of the channel cross section
∼ 1/R(x), as the excess of ions is only observed in the EDLs, which are
located along the circumference of channel’s cross section. On the other hand,
the number of the electric fieldlines within the cone is conserved, resulting in
their density, and as a consequence the strength of the electric field, to scale
as the inverse of the surface area of channel cross-section i.e. as ∼ 1/R(x)2.
Thus, if the system is driven by a positive voltage and the surface charge is
negative, the ionic charge in the EDL will be positive and the salt current
going out of the tip will be stronger than the one entering the base, leading
to the depletion of ions close to the tip of the channel, as seen in Fig. 4.4(a).
Reversing the sign of the driving voltage will lead to accumulation rather
than depletion of salt close to the tip of the channel.

The reason why the salt depletion/accumulation is the strongest at a
certain intermediate pressure is, however, connected to the coupled matter
transport. Earlier in this chapter we saw that besides creating an electric
current, the laterally applied voltage also creates a fluid flow. Therefore,
according to Ref.[122], whatever salt profile was built up by the applied
voltage keeps getting flushed by the electroosmotic flow generated by the
same voltage. Therefore, if alongside the voltage the system is also driven by
pressure with its modulus tuned such that it creates a Poiseuille counterflow
of the same magnitude as the electroosmotic one, there will be no net fluid
flow in the system and the salt profile will have the optimal conditions to
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fully develop, as there will be no flow flushing it continuously. Precisely
for this reason we see the highest deviation from the bulk density at the
intermediate value of P = −60(mbar), for V = 1(V) as in this case the net
fluid flow Q defined as

Q(t) =
∫ R(x)

0
u(x, r, t) · x̂2πrdr (4.15)

in the system approximately vanishes. For the further discussions on the
optimal fluid flow for a given voltage and derivation of its expression, as well
as the optimal dimensions of the channel we refer the reader to Ref.[122].
Presence of an optimal pressure for current rectification also explains its the
sensitivity with respect to the applied pressure amplitude. In Fig. 4.4(c),
where the current amplitude is plotted against the pressure amplitude for
a voltage of V = 1(V), we see a linear increase in current at large pressure
amplitudes, however, as we approach the optimal pressure at around P = −60
(mbar), the current magnitude quickly drops forming a sharp minimum.

Harmonic Voltage with No Pressure

The salt concentration buildup does not, however, take place instanta-
neously. For a purely voltage driven process, the typical salt concentration
polarisation timescale was found to be well-estimated by [54, 125]

τ =
L2

12D
, (4.16)

which results in a voltage-dependent conductance memory retained over a
time ∼ τ . Here τ = 8.33 ms for the present parameters.

The conductance memory was found to influence the voltammetry in a
conical channel driven by time-dependent applied voltage, revealing the
emergence of a hysteresis loop [54, 100–111] as plotted in Fig. 4.5. We see,
that for every value of voltage there are two corresponding values of the
electric current magnitude, forming two hysteresis loops which interstect at
the origin when V = 0 and I = 0. In the above studies the system was driven
by a harmonic voltage drop given by V (t) = V0 sin(ωt) at the judiciously
chosen frequency of ω/2π = 25 Hz, where ωτ ≃ 1.3 is close to unity and
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therefore close to the optimal frequency for observing hysteretic properties
[160]. In short emergence of the hysteresis loop can be explained as follows:
as the voltage changes, the salt profile has to adjust to it accordingly, however,
due to frequency being comparable to the characteristic time τ , there is not
enough time for salt to fully form its profile that would correspond to the
instantaneous voltage value. Thus, depending on the direction of voltage
change, whether it is going from the negative values to the positive ones
or the other way around, the salt profile ends up being different at the
same instantaneous voltage value. This results in two values of channel
conductance and, consequently, of the electric current magnitude (as a result
of current rectification) for the same instantaneous voltage value, leading to
the hysteresis loop that we observe in the plot.

Figure 4.5: Current-voltage hysteresis loop of a conical channel for the same pa-
rameters as in Fig. 4.4 with the difference that voltage is harmonic
V = V0 sin(ωt) and pressure is assumed to be zero. Here ω/2π = 25 Hz
is judiciously chosen so that ωτ ≃ 1.3 is close to unity maximizing the
hysteretic properties of the IV curve [160]. We see that the memory of
conductance turns the Ohmic curve of Fig. 4.2 into a hysteresis loop
with a pinch at the origin. Devices producing such curves are called
memristors (memory-resistors) [84, 85].
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Devices producing hysteresis loops that are pinched in the origin, i.e.
I = 0(A) when V = 0(V), similar to Fig. 4.5, are called memristors (memory-
resistors) [84, 85] due to the memory of the system resistance (conductance).
Such devices have recently gained a lot of attention due to their ability
to simulate neuromorphic processes, as we mentioned in the introduction.
Therefore, amplifying their “memristance”, which we characterize by the area
enclosed by the hysteresis loop, can lead to improvements in neuromorphic
computing.

Up to this point studies on conical channels in the dynamic case have
concentrated only on the voltage as a driving force [54, 100–111], however, as
we saw in the previous section with the static voltage, adding pressure as a
second driving force can amplify/suppress the current rectification. Therefore,
we want to see, whether the results of the static case with pressure being able
to amplify/suppress the current rectification could be employed to achieve the
same effect with the memristance when the harmonic voltage is augmented
by the harmonic pressure. This is what we are going to investigate in the
following section.

4.3 harmonic voltage and pressure - tuning cone con-
ductance

Combining the results of the previous section, we now make both voltage
and pressure time-dependent to see, if the pressure sensitivity can be carried
over to the time-dependent case amplifying/suppressing memristance and
how this sensitivity can be employ to achieve various interesting effects like
memory reset and information transfer.

Of particular interest here is the time-dependent electric current I(t) =

2πe
∫ R(x)

0

(
J+(x, r, t) − J−(x, r, t)

)
· x̂rdr, with x̂ the unit vector in the pos-

itive x-direction, and volume fluid flow Q(t), driven through the channel
by a simultaneously applied time-dependent potential V (t) and pressure
P (t). Numerically we find that the capacitance of the channel is so small
that the x-dependence of I(t) is negligible (see Appendix 4.5). The charge
flux J+ − J−, from which the current follows, depends on the channel salt
concentration ρ+ + ρ−, which can be (dynamically) increased or decreased
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Figure 4.6: Schematic (not to scale) of an azimuthally symmetric conical channel of
length L, base radius Rb, and tip radius Rt < Rb, connecting two bulk
reservoirs of an aqueous 1:1 electrolyte with equal ionic bulk concentra-
tion 2ρb. The channel walls carry a negative surface charge density σ.
A time-dependent potential drop V (t) and pressure drop P (t) are si-
multaneously applied across the channel, inducing an electrolyte volume
flow Q(t) and an ionic charge current I(t) that we calculate on the basis
of Poisson-Nernst-Planck-Stokes equations, yielding a pressure-tunable
time-dependent electric conductance g(t) = I(t)/V (t), that can be used
to transfer information.
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by (simultaneously) applied potential and pressure drops [54, 122]. As it was
already mentioned, for a purely voltage driven process, the typical salt con-
centration polarisation timescale was found to be τ = 8.33 ms for the present
parameters, which results in a voltage-dependent conductance memory re-
tained over a time ∼ τ . However, steady-state salt concentration polarisation
also strongly depends on the fluid flow field [122], which develops much faster
as we will see. Therefore we expect that the dynamic voltage-dependent
conductance can be tuned by a quasi-instantaneous response of the fluid flow
to an applied pressure drop P (t). To investigate the resulting interesting
interplay between voltage and pressure drop V (t) and P (t), we numerically
solve the PNPS equations using finite-element methods of COMSOL® .

We first study harmonic voltage- and pressure drops given by V (t) =

V0 sin(ωt) and P (t) = P0 sin(ωt) at the judiciously chosen frequency of
ω/2π = 25 Hz, where ωτ ≃ 1.3 is close to unity and therefore close to
the optimal frequency for observing memristive properties [160]. We fix
V0 = 1 V and consider a variety of pressure amplitudes P0. In Fig. 4.7(a)
we plot the limit cycle of the parametric I(t)-V (t) curve for P0 = 0 (red)
and P0 = −60 mbar (blue). For both pressures the current-voltage relation
features a characteristic pinched hysteresis loop, with a closed loop at either
voltage polarity and a crossing in the origin [130]. However, the total area
of the closed loop, a measure for the strength of the memristive effect, is
seen to be much more pronounced for the non-zero pressure drop. The inset
of Fig. 4.7(a) quantifies this by showing the P0-dependence of the area of
the hysteresis loop, featuring a well-defined peak at about P0 = −60 mbar,
where the area is enhanced by a factor larger than three compared to that
at P0 = 0; by contrast, the area is reduced compared to P0 = 0 for P0 > 0
and P0 < −140 mbar, where a strong fluid flow washes out salt concentration
polarisation and hence any significant conductance memory [121, 122]. Note
that the zero-flow condition, Q = 0 as indicated in the inset at P0 ≃
−82 mbar, is close to the maximum, however not spot on. Nevertheless, the
basic intuition that a static pressure washes out concentration polarisation
or cancels the electro-osmotic fluid flow, thereby enhancing concentration
polarisation, as detailed in section 4.2.2 and Ref. [122], largely carries over
to the time-dependent regime. This is because the typical timescale for
developing a Poiseuille-like velocity profile in a cylinder of radius R, as
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(a)

(b)

Figure 4.7: Current-voltage hysteresis loops of a conical channel, for our standard
parameter set (see text), driven by a harmonic voltage drop (amplitude
V0 = 1 V and frequency 25 Hz) combined with a simultaneously applied
pressure-drop.(a) The pressure drop is also harmonic with amplitudes
P0 = −60 mbar (blue) and P0 = 0 (red), the inset showing the depen-
dence of the area enclosed by the hysteresis loop on P0. (b) The applied
pressure P (t), shown in the inset, equals P0 sin(ωt) with P0 = −60 mbar
as in (a) if V (t) > 0 and a constant −120 mbar if V (t) < 0, such that
the memristive response at V (t) > 0 is reset into an Ohmic response at
V (t) < 0.

obtained from Stokes’ Eq. (4.2), is given by τ ′ = R2/(η/ρm), which equals
τ ′ = 0.2 µs for R = Rb and is therefore many orders of magnitude smaller than
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τ and 1/ω. Therefore the fluid flow is essentially established instantaneously
with pressure and acts very similar to a quasi-static flow [131].

Interestingly, besides allowing for manipulations of the memristance of a
conical channel by applying pressure drops, the major difference between the
characteristic timescales τ for ionic relaxation and τ ′ ≪ τ for momentum
relaxation allows also for applications of pressure as a memory reset tool. This
is illustrated in the current-voltage characteristic of Fig. 4.7(b) for the same
system parameters and the same sinusoidal voltage V (t) as in Fig. 4.7(a),
however with a sinusoidal pressure P (t) = P0 sin(ωt) with P0 = −60 mbar
only if V (t) > 0, and a constant pressure P (t) = −120 mbar if V (t) < 0, as
plotted in the inset. This protocol for P (t) reduces the flow and thus enhances
the conductance memory (as shown in Fig. 4.7(a)) only for V (t) > 0, while it
increases the flow and washes out the concentration polarisation for V (t) < 0,
when it turns the channel essentially into an Ohmic conductor without
conductance memory. Therefore, the pressure-induced flow for V (t) < 0 acts
as a memory eraser. The time-scale of the memory reset process is of order
τ ′ and is therefore essentially instantaneous on the relevant memristive and
electric time scales τ .

Inspired by Refs. [123, 126, 128, 129], where memristors were shown to
distinguish time series in the form of voltage pulses, we now study simulta-
neously applied voltage- and pressure pulses of magnitude V0 = ±1 V and
P0 = ∓60 mbar, which we expect to optimise the electric response on the
basis of our results of Fig. 4.7, and we show this to yield and enhanced
response compared to only voltage pulses with P0 = 0. We focus on trains of
four of these pulses, all four of equal duration τ/8 and all four preceded by
a zero-voltage and zero-pressure interval of duration τ/8, such that a train
of four pulses together takes a total time τ . By assigning a binary “0” and
“1” to a negative and positive pulse, respectively, a train of four pulses can
represent any of the 16 binary numbers between 0000 and 1111. For each
of the 16 possible trains, described by block signals V (t) and P (t), we solve
the PNPS Eqs. (4.1)-(4.2) for our standard parameter set and calculate the
electric conductance g(t) = I(t)/V (t) of the channel at 4t/τ = 0, 1, 2, 3, and
4, so at the end of each pulse and at the start, to find g(0). In Fig. 4.8(a)
we plot the resulting normalised channel conductance g(t)/g(0) for the two
pulse trains representing 0000 and 1111, both at P0 = −60 mbar (solid lines)
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Figure 4.8: Relative channel conductance g(t)/g(0) at 4t/τ = 0, 1, 2, 3, 4 during a
train (of duration τ) of four voltage pulses, in (a) for the extremes of four
positive (1111) and four negative (0000) voltage pulses, without (dashed
line) and with (solid line) a simultaneously applied train of four pressure
pulses and in (b) for all 16 combinations of four positive/negative voltage
pulses with negative/positive simultaneous pressure pulses leading to a
relatively wide range of 16 distinguishable conductances after the fourth
pulse (see text).

and P0 = 0 (dashed). We observe, in agreement with our earlier findings,
that negative/positive voltages increase/decrease the channel conductance,
both for finite and zero pressure. However, the effect of the carefully chosen
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finite pressure P0 = −60 mbar considerably increases the range of achieved
conductances. In Fig. 4.8(b) we again show g(t)/g(0) at the very end of each
of the four pulses, but now only for P0 = −60 mbar and for all 16 possible
trains. We see that each train, i.e. each bit string, is mapped onto a unique
conductance g(τ )/g(0) that lies in between the two extreme ones of 0000
and 1111 (shown already in Fig. 4.8(a)). The 16 unique conductances shown
in Fig. 4.8(b) are considerably closer to each other if only voltage pulses are
used (see Appendix 4.5), therefore the pressure pulses significantly enhance
the channel’s capacity for distinguishing these time series.

Clearly, the pressure-induced widening of the conductance window en-
hances the separation of the different conductances g(τ )/g(0), which should
facilitate their mutual distinction in conductance measurements of experimen-
tal realisations of these channels. In line with Ref. [123], where a colloid-filled
tapered microchannel was employed as a synaptic device for reservoir comput-
ing with voltage-only pulses, an enhanced window of conductances and longer
trains could be employed to increase the performance and computational
capacity of the device or to decrease the number of required channels per
computation.

Instead of tuning the channel conductance by applying the pressure pulses
according to the voltage pulses, we can also decouple voltage and pressure sig-
nals and use them as independent driving forces, for instance as independent
(but simultaneous) pulses of magnitude ±(V0, ±P0). Fig. 4.9(a) explicitly
shows that in this case only two rather than four pressure- and voltage
pulses are required to arrive at 16 combinations. For all 16 combinations we
calculate the conductance after the first and second block pulse using the
same pulse and train protocol as before, however with slightly longer pulses
and separation intervals of 0.15τ (rather than τ/8 in Fig. 4.8(b)) such that
the present train of two pulses only takes a time 0.6τ (rather than τ). The
result is shown in Fig. 4.9(b) and indeed reveals 16 distinct values of the
conductance after the second pulse, with a window and a degree of separation
that is very similar to that of Fig. 4.8(b). Apart from a similar resolution
as obtained for the 4-pulse trains, the shorter duration of the 2-pulse train
implies an increased bandwidth of the channel caused by the simultaneous
transmission of an electric and a mechanical (or acoustic) signal. We stress
that our findings on manipulation and signalling with pressure pulses should
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Figure 4.9: (a) Representation of all 16 possible combinations of independent 2-
pulse trains of voltage and pressure of total duration 0.6τ . (b) Relative
channel conductance g(t)/g(0) at t/τ = 0.3 and 0.6 for all 16 possible
voltage-pressure trains leading to 16 different resulting conductances at
t = 0.6τ .
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apply to any conical channel as this concerns merely intrinsic features of such
a device. Therefore, these results represent a significant step beyond the use
of pressure pulses as sensory input [159].

4.4 summary and discussion

In conclusion, we theoretically predict on the basis of conventional trans-
port theory for aqueous electrolytes in a conical microfluidic channel, that
pulsatile flow driven by a time-dependent pressure drop can be exploited to
modify and enhance the time series processing of iontronic memristors. We
show how pressure pulses can either enhance the distinction of voltage signals
or be used as an independent second input to achieve simultaneous electrical
and mechanical time series processing, consequently doubling the channel
information processing bandwidth. The classification of such time series was
already shown to be applicable for iontronic fluidic reservoir computing [123]
and therefore our results here offer a direct relevance to future development
of iontronic computing. No specific features are taken into consideration
apart from the standard properties of conical channels, rather our results are
an intrinsic feature that should materialise in any of the widely available ex-
perimental realisations of conical channels [119–121, 161–168]. Consequently
we provide a clear experimentally accessible method of exploiting the unique
feature of a mobile medium (water) into tangible information processing
benefits.
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4.5 appendix

4.5.1 Divergence-free time-dependent currents and flow

The electric current I(t) and the volumetric fluid flow Q(t) through the
conical channel described in the main text and schematically shown in Fig.1
are defined in terms of the radially integrated x-components of the ionic
fluxes J±(x, r, t) and the fluid velocity u(x, r, t), such that(

Q(t)

I(t)

)
=
∫ R(x)

0

(
u(x, r, t) · x̂

e
(
J+(x, r, t) − J−(x, r, t)

)
· x̂

)
2πrdr. (B1)

Strictly speaking these expressions depend on the position in the channel
x ∈ [0, L], where we recall that the radius of channel is given by R(x)

that decreases linearly from a base radius Rb at x = 0 to a tip radius
Rt at x = L with L the length of the channel (see also main text). The
incompressibility condition of the flow, ∇ · u = 0 as imposed in Eq. (4.2),
combined with the no-slip and no-flux boundary conditions guarantee that
Q(t) is independent of x. To a high degree of accuracy this is confirmed by
our solutions of the PNPS equations, that we present in the main text and
here for our standard parameter set given by L = 9.8 µm, Rb = 446 nm,
Rt = 98 nm and an aqueous electrolyte with Debye length λD = 9.8 nm
and ionic diffusion coefficient D = 1 µm2/ms such that memristor retention
time equals τ = 8.33 ms according to Eq.(5). For periodic driving by a
simultaneous pressure P (t) = P0 sin(ωt) and voltage V (t) = V0 sin(ωt), with
V0 = 1 V, P0 = −60 mbar, and frequency ω/2π = 25 Hz, we show the
resulting (limit cycle of) Q(t) at many positions between x/L ∈ [0.3, 1] in
Fig. 4.10(a). The collapse of these curves, which is excellent for 0.5 < x/L < 1
for all times, is the hallmark for incompressibility of the flow, and the small
deviations from collapse in the wider part of the channel at x/L < 0.5 can
be attributed to the finite grid of the numerical calculations. For the same
system parameters and driving, we plot the electric current I(t) for the same
set of positions in the channel in Fig. 4.10(b). Interestingly, whereas some
degree of x-dependence of I(t) could in principle be possible, the essentially
perfect collapse of all curves indicates that the (differential) capacity of the
channel is apparently so small that no sign of a net charge build up can be
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detected anywhere in the channel. We conclude, therefore, that we can speak
of the fluid flow Q(t) and the current I(t) through the channel, rather than
of their local analogues that depend (weakly if at all) on the position in the
channel.

4.5.2 Pressure-induced widening of the conductance window

In Fig. 4.8 of this chapter we consider the time-dependent channel conduc-
tance g(t) due to simultaneously applied sequences of voltage and pressure
block pulses, each of duration τ/8 and magnitude ±(V0, P0) with V0 = 1 V
and either P0 = −60 mbar or P0 = 0. Here a single block pulse −(V0, P0)

can represent a binary “0” and +(V0, P0) a binary “1”. If each of these
pulses is preceded by a period τ/8 with zero voltage and pressure, a train
of four pulses takes a time τ and can represent any of the 16 binary num-
bers between 0000 and 1111, where the latter is represented for the case
P0 = −60 mbar in Fig. 4.11(a). For our standard parameter set, and for
V (t) and P (t) representing the “1111” signal of Fig. 4.11(a), we solve the
PNPS equations and calculate the time-dependent current I(t), from which
the time-dependent channel conductance g(t) = I(t)/V (t) follows. Here
we use small and short voltage “read” pulses in between the block “write”
pulses, such that V (t) and I(t) are not strictly zero and g(t) is also (nu-
merically) well defined during several short time intervals in between the
block pulses. In Fig. 4.11(b) we plot (dark blue line) the relative channel
conductance g(t)/g(0) associated with the 1111 signal of Fig. 4.11(a). We
see a progressive reduction of g(t) during the block pulses and a tendency to
relax back towards g(0) in between the block pulses. This effect is attributed
to ionic depletion and re-accumulation in the channel upon applying positive
and zero voltages, respectively, occurring on the time scale τ so only taking
place partially during the pulses and their intervals of duration τ/8. The
five connected light blue dots in Fig. 4.11(a) represent g(t)/g(0) at t = 0
and at the very end of the n-th pulse for n = 1, . . . , 4 at times t = nτ/4,
showing a steady decrease with n towards g(τ )/g(0) ≃ 0.8.

In Fig. 4.8(b) of this chapter we present the channel conductance g(t)

for 4t/τ = 1, 2, 3, 4, so directly after each of the four pulses of the train,
not only for the 1111 signal shown in Fig. 4.11(a) but for all 16 possible
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(a)

(b)

Figure 4.10: Time dependence of (a) the volumetric flow Q(t) and (b) the electric
current I(t) during the limit cycle of a periodically driven conical
channel as obtained at different positions x ∈ [0, L] in the channel for
our standard parameter set (see text). The flow and current are driven
by a simultaneously applied drop of the voltage V (t) = V0 sin(ωt) and
pressure P (t) = P0 sin(ωt) with V0 = 1 V, P0 = −60 mbar and driving
frequency ω/2π = 25 Hz.

trains at P0 = −60 mbar. In Fig. 4.11(b) we present the same plot for
the case with voltage pulses without simultaneous pressure pulses, so for
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Figure 4.11: (a) Example of an external driving signal, representing the bit-string
1111 and consisting of a train of 4 block pulses +(V0, P0) of positive
voltage V0 and negative pressure P0, each of duration τ/8 and separated
by an interval τ/8 with τ the typical retention time of salt in the
channel. The magnitude of voltage and pressure ensure ideal conditions
for salt depletion, which implies for our standard parameter set and
the present case of V0 = 1 V that P0 = −60 mbar. (b) Evolution
of the normalized channel conductance g(t)/g0 (dark blue) under the
influence of the driving of (a) that lowers the salt concentration in the
channel, with g0 = g(0) the initial equilibrium conductance at zero
voltage and zero pressure. The connected light blue dots represent the
(scaled) conductance at the very end of each block pulse, which are
time-separated by τ/4.

P0 = 0. This explicitly shows that the window of g(t) with voltage-only
pulses is substantially narrower than with pressure pulses of magnitude
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Figure 4.12: Relative channel conductance g(t)/g0 at 4t/τ = 0, 1, 2, 3, 4 for all 16
combinations of trains (of duration τ) of four voltage pulses (V0 = ±1 V,
duration τ/8) without pressure (P0 = 0). The scale of the plot is
identical to the scale of Fig. 4.8(b) of this chapter to emphasize the
relatively narrow conductance window in the absence of pressure pulses.

P0 = −60 mbar. The ordering of g(t) at zero and at finite pressure remains
the same, however, and one checks by a comparison with Fig. 4.8(a) of this
chapter that the window of the conductance is set by the two extreme pulses
representing 0000 and 1111, both for zero and for the nonzero pressure. Thus,
without pressure the resulting 16 conductances at the end of the train are
packed in a significantly narrower range, making it harder to resolve them.
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E N G L I S H S U M M A RY

Studying the response of an aqueous electrolyte to an externally applied
oscillating electric field is a very active research direction, as AC voltages can
be used to achieve various goals in a wide range of practical applications in
electrolytes. For example, an AC voltage can be used to drive electrokinetic
pumps, induce fluid flow within microfluidic systems, manipulate charged
colloids in aqueous electrolytes, desalinate and de-ionize the electrolyte using
porous membranes, study the electrolyte dynamics with impedance and
dielectric spectroscopy, render memristive properties to aqueous electrolytes
in confinement, induced charge electrokinetics, particle assembly in elec-
trolytes, AC electroosmosis, cyclic voltammetry, batteries, sensing and study
bioparticles.

One of the key motivations to use (alternating) AC electric fields over
(direct) DC fields is to eliminate any net current or net charge in the system
due to the vanishing field when averaged over a period. In chapters 2
and 3 we will see, however, that the period-averaged current and charge
do not necessarily vanish. The motivation for our study stems from recent
experiments [S. H. Hashemi et al., Physical Review Letters 121, 185504
(2018)] that have shown the existence a long-ranged steady electric field
that emerges when applying an oscillating voltage Ψ (t) = Ψ0eiωt over an
electrolyte with unequal mobilities of cations and anions confined between
two planar blocking electrodes at a distance L from each other. To explain
and quantify this asymmetric rectified electric field (AREF) as a function of
many system parameters (such as amplitude and frequency of the voltage,
system size), in Chapter 2 we analyse full numerical calculations based on
the Poisson-Nernst-Planck equations by means of analytically constructed
equivalent electric circuits. Surprisingly, we find that the equivalent circuit
corresponding to the above electrolytic cell has two capacitive elements, rather
than only one, which introduces a new timescale for electrolyte dynamics.
We find good qualitative agreement between the numerical results and our
simple analytic model, which shows that the long-range steady electric field
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emerges from the different charging rates of cations and anions in the electric
double layers (EDLs).

We consider large systems κL ≫ 1 (with κ−1 the Debye length) to avoid the
EDL overlap and voltages of the order of at most several times the thermal
voltage Ψ0 ≤ 200mV in order for the point-ion approximation, that we use
throughout the thesis, to be applicable. For such systems we find that AREF
is maximized at ωτRC ∼ 1, where the RC time τRC is the characteristic
buildup time of an EDL.

In Chapter 3 building upon the findings and results of Chapter 2, we
explore the generation of AREF by applying a sawtooth-like voltage to 1:1
electrolytes with equal diffusion coefficients confined between two planar
blocking electrodes. This differs from the case of Chapter 2 based on a
sinusoidal AC voltage applied to 1:1 electrolytes with unequal diffusion
coefficients. By numerically solving the full Poisson-Nernst-Planck equations,
we demonstrate that AREF can be generated by a slow rise and a fast drop
of the potential (or vice versa), even for electrolytes with equal diffusion
coefficients of the cations and anions. Similarly to Chapter 2, we employ an
analytically constructed equivalent electric circuit to explain the underlying
physical mechanism. Importantly, we find that the strength of AREF can be
effectively tuned from zero to its maximal value by only manipulating the
time-dependence of the driving voltage, eliminating the necessity to modify
the electrolyte composition between experiments. This provides valuable
insights to control the manipulation of AREF, which facilitates enhanced
applications in diverse electrochemical systems.

Finally, in Chapter 4 we study a microfluidic conical channel exposed to
simultaneously applied time-dependent voltage and pressure drops through
numerical solutions of the Poisson-Nernst-Planck-Stokes equations for ion
and fluid transport. Such channels are known to exhibit memristive proper-
ties when subjected to an AC driving voltage in the form of a hysteresis in
the current-voltage curve. The intrinsic mobility of the medium (water) of
dissolved ions in aqueous electrolytes, which therefore not only respond to
voltage but also to pressure, is the characteristic feature of emerging iontronic
devices for information processing that has been hitherto unexploited. We
show that the channel’s memristive properties can be enhanced, reduced or
instantaneously reset by a suitable pressure, and we leverage this finding



4.5 appendix 139

with two examples of time series processing of simultaneously applied voltage
and pressure pulses. We not only show that the distinction between different
voltage time series can be improved by enhancing the conductance response
with corresponding pressure pulses, but also that the bandwidth of infor-
mation transfer through the channel can be doubled by letting the pressure
pulses represent a second independent time series.





N E D E R L A N D S E S A M E N VAT T I N G

Het bestuderen van de reactie van een waterig elektrolyt op een extern
aangelegd oscillerend elektrisch veld is een zeer actieve onderzoeksrichting,
aangezien wisselspanningen kunnen worden gebruikt om verschillende doelen
te bereiken in een breed scala van praktische toepassingen in elektrolyten.
Bijvoorbeeld, een wisselspanning kan worden gebruikt om elektrokinetische
pompen aan te drijven, vloeistofstromen op te wekken binnen microfluïdische
systemen, geladen colloïden te manipuleren in waterige elektrolyten, het
elektrolyt te ontzilten en te de-ioniseren met behulp van poreuze membranen,
de elektrolytdynamica te bestuderen met impedantie- en dielectrische spec-
troscopie, memristieve eigenschappen te geven aan waterige elektrolyten in
een poreus materiaal, geïnduceerde ladingelektrokinetica, deeltjesassemblage
in elektrolyten, wisselstroomelektroforese, cyclische voltammetrie, batterijen,
sensoren en het bestuderen van biodeeltjes.

Een van de belangrijkste motivaties om (alternerende) AC-elektrische
velden te gebruiken in plaats van (directe) DC-velden is om eventuele netto
stromen of netto ladingen in het systeem te elimineren als gevolg van het
verdwijnen van het veld wanneer gemiddeld wordt over een periode. In
hoofdstukken 2 en 3 zullen we echter zien dat de periode-gemiddelde stroom
en lading niet noodzakelijk verdwijnen. De motivatie voor onze studie komt
voort uit recente experimenten [S. H. Hashemi et al., Physical Review Letters
121, 185504 (2018)] die hebben aangetoond dat er een lange-dracht stabiel
elektrisch veld ontstaat wanneer een oscillerende spanning Ψ (t) = Ψ0eiωt

wordt aangebracht over een elektrolyt met ongelijke mobiliteiten van katio-
nen en anionen ingesloten tussen twee vlakke blokkerende elektroden op een
afstand L van elkaar. Om dit asymmetrische gelijkgerichte elektrische veld
(AREF) te verklaren en kwantificeren als een functie van vele systeempa-
rameters (zoals amplitude en frequentie van de spanning, systeemgrootte),
analyseren we in hoofdstuk 2 volledige numerieke berekeningen gebaseerd op
de Poisson-Nernst-Planck-vergelijkingen door middel van analytisch gecon-
strueerde equivalente elektrische circuits. Tot onze verrassing vinden we
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dat het equivalente circuit dat overeenkomt met de bovengenoemde elek-
trolytische cel twee capacitieve elementen heeft, in plaats van slechts één, wat
een nieuw tijdsschaal voor elektrolytdynamica introduceert. We vinden een
goede kwalitatieve overeenstemming tussen de numerieke resultaten en ons
eenvoudige analytische model, wat laat zien dat het lange-drachts stabiele
elektrische veld voortkomt uit de verschillende laadsnelheden van kationen
en anionen in de elektrische dubbellagen (EDL’s).

We beschouwen grote systemen κL ≫ 1 (met κ−1 de Debye-lengte) om
de overlap van de EDL te vermijden en spanningen van de grootteorde van
hooguit van enkele malen de thermische spanning Ψ0 ≤ 200mV om de punt-
ionbenadering, die we gedurende de hele these gebruiken, van toepassing te
laten zijn. Voor dergelijke systemen vinden we dat AREF gemaximaliseerd
wordt bij ωτRC ∼ 1, waarbij de RC-tijd τRC de karakteristieke opbouwtijd
is van een EDL.

In hoofdstuk 3, voortbouwend op de bevindingen en resultaten van hoofd-
stuk 2, onderzoeken we de opwekking van AREF door een zaagtandachtige
spanning toe te passen op 1:1 elektrolyten met gelijke diffusiecoëfficiënten
ingesloten tussen twee vlakke blokkerende elektroden. Dit verschilt van het
geval van hoofdstuk 2 gebaseerd op een sinusvormige AC-spanning toegepast
op 1:1 elektrolyten met ongelijke diffusiecoëfficiënten. Door de volledige
Poisson-Nernst-Planck-vergelijkingen numeriek op te lossen, demonstreren we
dat AREF kan worden gegenereerd door een langzame stijging en een snelle
daling van de potentiaal (of vice versa), zelfs voor elektrolyten met gelijke
diffusiecoëfficiënten van de kationen en anionen. Net als in hoofdstuk 2,
maken we gebruik van een analytisch geconstrueerd equivalent elektrisch
circuit om het onderliggende fysische mechanisme te verklaren. Belangrijk
is dat we vinden dat de sterkte van AREF effectief kan worden afgestemd
van nul tot zijn maximale waarde door alleen de tijdsafhankelijkheid van de
aandrijfspanning te manipuleren, waarbij de noodzaak wordt geëlimineerdom
de samenstelling van het elektrolyt tussen experimenten te wijzigen. Dit
biedt waardevolle inzichten om de manipulatie van AREF te controleren,
wat verbeterde toepassingen in diverse elektrochemische systemen mogelijk
maakt.

Ten slotte, in hoofdstuk 4 bestuderen we een microfluïdisch kegelvormig
kanaal dat tegelijkertijd wordt blootgesteld aan een tijdsafhankelijke spanning
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en drukval door numerieke oplossingen van de Poisson-Nernst-Planck-Stokes-
vergelijkingen voor ion- en vloeistoftransport. Dergelijke kanalen vertonen
memristieve eigenschappen wanneer ze worden onderworpen aan een AC-
aandrijfspanning in de vorm van een hysterese in de stroom-spanningscurve.
De intrinsieke mobiliteit van het medium (water) van opgeloste ionen in
waterige elektrolyten, die daarom niet alleen reageren op spanning maar
ook op druk, is het karakteristieke eigenschap van opkomende iontronische
apparaten voor informatieverwerking dat tot nu toe onbenut is gebleven.

We laten zien dat de memristieve eigenschappen van het kanaal kunnen
worden verbeterd, verminderd of onmiddellijk kunnen worden gereset door
een geschikte druk, en we maken gebruik van deze bevinding met twee voor-
beelden van tijdsreeksverwerking van tegelijkertijd aangebrachte spannings-
en drukpulsen. We tonen niet alleen aan dat het onderscheid tussen verschil-
lende spanningsreeksen kan worden verbeterd door de geleidingsrespons te
verbeteren met overeenkomstige drukpulsen, maar ook dat de bandbreedte
van de informatieoverdracht door het kanaal kan worden verdubbeld door de
drukpulsen een tweede onafhankelijke tijdsreeks te laten vertegenwoordigen.
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