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Abstract
There have been a number of papers on statistical questions concerning the sign
changes of Fourier coefficients of newforms. In one such paper, Linowitz and Thomp-
son gave a conjecture describing when, on average, the first negative sign of the
Fourier coefficients of an Eisenstein series newform occurs. In this paper, we correct
their conjecture and prove the corrected version.
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1 Introduction

For a Dirichlet character χ and a positive integer N , we will denote by Mk(N , χ)

the vector space of modular forms on �0(N ) of weight k, level N and character χ .
Let Ek(N , χ) be the subspace of Eisenstein series and Sk(N , χ) the subspace of cusp
forms. For a prime p, we let Tp be the pth Hecke operator.

Let H∗
k (N ) be the subspace of Sk(χ0, N ) of newforms with trivial character χ0.

Given a newform f ∈ H∗
k (N ), let λ f (p) be the eigenvalue of f with respect to the

Hecke operator Tp. The restriction to the trivial character ensures that the sequence
{λ f (p)} is real. Many authors have studied the sequence of signs of the Hecke
eigenvalues of f . For example, one could pose questions such as:

(i) Are there infinitely many primes p such that λ f (p) > 0 (or λ f (p) < 0)?
(ii) What is the first change of sign? More specifically, what is the smallest n ≥ 1

(or prime p) such that λ f (n) < 0 (or λ f (p) < 0)? This is an analogue of the
least quadratic non-residue problem.
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(iii) Given an arbitrary sequence of signs εp ∈ {±1}, what is the number of newforms
f (in some family) such that sgn λ f (p) = εp for all p ≤ x?

In the cusp form setting, questions (i) and (ii) are answered in [5, 6], and [9]. In this
paper, we focus on (iii). Kowalski et al. [6] obtained a lower bound for the proportion
of newforms f ∈ H∗

k (N ) whose sequence of eigenvalues λ f (p) has signs coinciding
with a prescribed sequence {εp}:
Theorem 1.1 (Kowalski, Lau, Soundararajan, Wu, 2010) Let N be a squarefree num-
ber, k ≥ 2 an even integer, and {εp} a sequence of signs. Then, for any 0 < ε < 1

2 ,
there exists some c > 0 such that

1

|H∗
k (N )|#{ f ∈ H∗

k (N ) : sgn λ f (p) = εp for p ≤ z, p � N } ≥
(1
2

− ε
)π(z)

for z = c
√
log kN log log kN provided kN is large enough. Here π(z) is the number

of primes less than or equal to z.

Now, let χ1, χ2 be Dirichlet characters modulo N1, N2 and for an integer k > 2, define
the following variant of the sum of divisors function:

σ k−1
χ1,χ2

(n) =
∑
d|n

χ1
(n
d

)
χ2(d)dk−1. (1.1)

Now assume that χ1 and χ2 are not simultaneously principal (mod 1). It is well known
(see, for example, [3]) that if χ1χ2(−1) = (−1)k , then the function

Ek(χ1, χ2, z) := δ(χ1)

2
L(1 − k, χ2) +

∑
n≥1

σ k−1
χ1,χ2

(n)qn,

is an Eisenstein series of weight k, level N1N2 and character χ1χ2. Here q = e2π i z

and

δ(χ1) =
{
1, if χ1 is principal

0, otherwise.

In 1977, Weisinger [11] developed a newform theory for Ek(N , χ) analogous to the
one developed by Atkin and Lehner [1] for cusp forms. In this theory, we have:

• The newforms of Ek(N , χ) are functions of the form Ek(χ1, χ2, z) for which
N = N1N2, χ = χ1χ2, and χ1, χ2 are primitive.

• The eigenvalue of Ek(χ1, χ2, z)with respect to theHecke operator Tp is σ k−1
χ1,χ2

(p).
In other words, the eigenvalues of this type of Eisenstein series coincide with its
Fourier coefficients.

By exploiting the analytical properties of σ k−1
χ1,χ2

(n), Linowitz and Thompson [8]
answered the three questions mentioned at the beginning of this article for Eisenstein
series newforms.
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Note that by (1.1), σ k−1
χ1,χ2

(n) ∈ R when χ1, χ2 are real characters. Since we want
Ek(χ1, χ2, z) to be an Eisenstein series, we exclude the case when χ1 and χ2 are
principal. We call these types of characters quadratic because for every fundamental
discriminant D, i.e., for each discriminant arising from a quadratic number field, we
can associate a real character definedbyχD(m) = ( D

m

)
. Therefore, countingEisenstein

series newforms of level N ≤ x is equivalent to counting fundamental discriminants
D1, D2 with |D1D2| ≤ x . Let

D := {(D1, D2) : |D1D2| ≤ x}.

Taking all of these facts into consideration, Linowitz and Thompson [8] showed:

Theorem 1.2 (Linowitz, Thompson, 2015) Let {p1, . . . , pk} be a sequence of primes
and {εp1 , . . . , εpk } ∈ {−1, 0, 1} a sequence of signs. Then,

1

|D |#{(D1, D2) ∈ D : sgn σ k−1
χ1,χ2

(pi ) = εpi , 1 ≤ i ≤ k}

−−−→
x→∞

∏
εpi =0
1≤i≤k

1

(pi + 1)2
∏

εpi 	=0
1≤i≤k

pi (pi + 2)

2(pi + 1)2
·

Now, let η(D1, D2) represent the smallest prime p such that sgn(σ k−1
χ1,χ2

(p)) = −1.
Linowitz and Thompson [8] then conjectured:

Conjecture 1.3 We have

∑
|D1D2|≤x η(D1, D2)∑

|D1D2|≤x 1
−−−→
x→∞ θ,

where

θ :=
∞∑
k=1

p2k (pk + 2)

2(pk + 1)2

k−1∏
j=1

2 + p j (p j + 2)

2(p j + 1)2
≈ 3.9750223902 . . . (1.2)

They gave a heuristic argument as evidence towards their conjecture, showing:

∑
|D1D2|≤x η(D1, D2)∑

|D1D2|≤x 1
−−−→
x→∞

∞∑
k=1

pk Prob(η(D1, D2) = pk)

=
∞∑
k=1

pk Prob(εpk = −1)
k−1∏
i=1

Prob(εpi = 0 or 1)

=
∞∑
k=1

p2k (pk + 2)

2(pk + 1)2

k−1∏
i=1

(
1

(pi + 1)2
+ pi (pi + 2)

2(pi + 1)2

)
,

where the last equality follows from Theorem 1.2. The problem with this argument
is that Theorem 1.2 fixes a set of primes and then lets x → ∞. In this argument we
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need to allow the primes to tend to infinity with x . The authors stated: “[W]e have
a good understanding of the effect of the small primes, but one would need to argue
that the primes after some cutoff point do not make much of an impact on the average.
Presumably, this would require using the large sieve”.

The goal of the present article is to correct their conjecture by proving the following
result:

Theorem 1.4 We have

∑
|D1D2|≤x η(D1, D2)∑

|D1D2|≤x 1
−−−→
x→∞ � · (1 − β) + α,

where

� =
∞∑
k=1

p2k
2(pk + 1)

k−1∏
j=1

p j + 2

2(p j + 1)
,

α =
∞∑
k=1

p2k
2(pk + 1)2

k−1∏
j=1

p j + 2

2(p j + 1)
,

and

β =
∞∑
k=1

pk
2(pk + 1)2

k−1∏
j=1

p j + 2

2(p j + 1)
·

Numerically,

� · (1 − β) + α ≈ 4.63255603509332 . . .

The numerical computation was done using Sage. We used RIF for interval arithmetic
and we truncated at k = 1000.

2 Main Tools

First we will need asymptotic estimates for some sets of fundamental discriminants.
It is well known (see, for example, [2]) that

∑
|D|≤x

1 ∼ x

ζ(2)
, (2.1)

where D runs over all fundamental discriminants with |D| ≤ x . Here ζ is the Riemann
zeta function. Now, let n1(m) be the smallest integer n ≥ 1 relatively prime tom such
that the congruence x2 ≡ n (mod m) has no solutions. Even though Vinogradov’s
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The first negative Fourier coefficient of an Eisenstein series 691

conjecture remains open, it is possible to show that large values of n1(p) are rare.
More specifically, using the large sieve, Linnik [7] showed that for all ε > 0, we have

#{p ≤ x : n1(p) > xε} 
ε 1.

Using similar ideas to the ones from Linnik’s paper, Erdős [4] obtained a result con-
cerning the average of n1(p) as p varies over prime numbers less than or equal to
x :

1

π(x)

∑
p≤x

n1(p) −−−→
x→∞

∞∑
k=1

pk
2k

, (2.2)

where pk is the kth prime and π(x) is the prime counting function. In a similar fashion,
Pollack [10] considered a variation of (2.2). We summarize his result in the following
theorem:

Theorem 2.1 (Pollack, 2012) For each fundamental discriminant D, let χD be the
associated Dirichlet character, i.e., χD(m) := ( D

m

)
. For each character χ , let nχ

denote the least n for which χ(n) /∈ {0, 1}. Finally, let n(D) := nχD . Then

(i) Uniformly in k such that the kth prime satisfies pk ≤ (log x)
1
3 , we have

#{|D| ≤ x : n(D) = pk} = pk
2(pk + 1)

k−1∏
j=1

p j + 2

2(p j + 1)

x

ζ(2)
+ O(x

2
3 ).

(ii) ∑
|D|≤x

n(D)>(log x)
1
3

n(D) = o(x).

Therefore, using (2.1), we have

∑
|D|≤x n(D)∑

|D|≤x 1
−−−→
x→∞ �, (2.3)

where

� :=
∞∑
k=1

p2k
2(pk + 1)

k−1∏
j=1

p j + 2

2(p j + 1)
≈ 4.9809473396 . . .

We will also need the following lemma from Linowitz and Thompson [8]:

Lemma 2.2 Let P(ε, p) denote the proportion of fundamental discriminants D with( D
p

) = ε. Then, we have

P(ε, p) =
{

p
2p+2 , if ε ∈ {±1}
1

p+1 , if ε = 0.
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3 Proof of Theorem 1.4

Let χ1, χ2 be Dirichlet characters associated with the fundamental discriminants D1
and D2. For a prime p,

σ k−1
χ1,χ2

(p) =
∑
d|p

χ1
( p
d

)
χ2(d)dk−1 = χ1(p) + χ2(p)p

k−1,

so that

sgn σ k−1
χ1,χ2

(p) =
{

χ1(p), if p|D2

χ2(p), otherwise.
(3.1)

Proof of Theorem 1.4 By (2.1),

∑
|D1D2|≤x

1 =
∑

|D1|≤x

∑

D2≤ x
|D1|

1 ∼ x

ζ(2)

∑
|D1|≤x

1

|D1| ·

Let A(x) := ∑
|D|≤x 1 and f (x) := 1

x . Since A(x) ∼ x
ζ(2) , then by partial summation

∑
|D1|≤x

1

|D1| = A(x) f (x) − A(1) f (1) −
∫ x

1
A(t) f ′(t)dt

∼ 1

ζ(2)
− 1 +

∫ x

1

dt

ζ(2)t

∼ log x

ζ(2)
· (3.2)

Hence ∑
|D1D2|≤x

1 ∼ x log x

ζ(2)2
· (3.3)

Now let us estimate the numerator. For the sake of simplicity, let η := η(D1, D2).
Then,

∑
|D1D2|≤x

η =
∑

|D1D2|≤x
η|D2

η +
∑

|D1D2|≤x
η�D2

η.

If η|D2, then by (3.1), η is the smallest prime p such that χ1(p) /∈ {0, 1}, and with
the notation of Theorem 2.1, this means that η = n(D1). Similarly, if η � D2, then
η = n(D2). Therefore,

∑
|D1D2|≤x

η =
∑

|D1D2|≤x
η|D2

n(D1) +
∑

|D1D2|≤x
η�D2

n(D2).
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Now,

∑
|D1D2|≤x

η�D2

n(D2) =
∑

|D1D2|≤x

n(D2) −
∑

|D1D2|≤x
η|D2

n(D2),

so that

∑
|D1D2|≤x

η =
∑

|D1D2|≤x

n(D2) +
∑

|D1D2|≤x
η|D2

n(D1) −
∑

|D1D2|≤x
η|D2

n(D2). (3.4)

By (2.3), we have

∑
|D1D2|≤x

n(D2) =
∑

|D1|≤x

∑

|D2|≤ x
|D1|

n(D2)

∼�
x

ζ(2)

∑
|D1|≤x

1

|D1|

∼�
x log x

ζ(2)2
, (3.5)

where the final estimate follows from (3.2). Now, by Lemma 2.2, the proportion of
fundamental discriminants such that p|D is 1

p+1 · Hence,
∑

|D1D2|≤x
η|D2

n(D1) =
∑

|D1|≤x

n(D1)
∑

|D2|≤ x
|D1|

n(D1)|D2

1

=
∑

|D1|≤x

n(D1)

n(D1) + 1

∑

|D2|≤ x
|D1|

1

∼ x

ζ(2)

∑
|D1|≤x

n(D1)

|D1|(n(D1) + 1)
·

To find an asymptotic for the last sum we again use partial summation. Let

B(x) :=
∑

|D1|≤x

n(D1)

n(D1) + 1
·

Then, by (i) of Theorem 2.1,

∑
|D1|≤x

n(D1)≤(log x)
1
3

n(D1)

n(D1) + 1
=

∞∑
k=1

pk≤(log x)
1
3

pk
pk + 1

#{|D1| ≤ x : n(D1) = pk}
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∼ α
x

ζ(2)

where

α =
∞∑
k=1

p2k
2(pk + 1)2

k−1∏
j=1

p j + 2

2(p j + 1)
·

Now, by (ii) of Theorem 2.1,

∑
|D1|≤x

n(D1)>(log x)
1
3

n(D1)

n(D1) + 1
≤

∑
|D1|≤x

n(D1)>(log x)
1
3

n(D1) = o(x).

Hence,

B(x) =
∑

|D1|≤x

n(D1)≤(log x)
1
3

n(D1)

n(D1) + 1
+

∑
|D1|≤x

n(D1)>(log x)
1
3

n(D1)

n(D1) + 1
∼ α

x

ζ(2)
·

Therefore,

∑
|D1|≤x

n(D1)

|D1|(n(D1) + 1)
= B(x) f (x) − B(1) f (1) −

∫ x

1
B(t) f ′(t)dt ∼ α

log x

ζ(2)
,

so that ∑
|D1D2|≤x

η|D2

n(D1) ∼ α
x log x

ζ(2)2
· (3.6)

Finally,

∑
|D1D2|≤x

η|D2

n(D2) =
∑

|D2|≤x

n(D2)
∑

|D1|≤ x
|D2 |

1

n(D1) + 1
·

To get an estimate for the inner sum, let

C(x) :=
∑

|D1|≤ x
|D2 |

1

n(D1) + 1
·
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Then, by (i) of Theorem 2.1,

∑

|D1|≤ x
|D2 |

n(D1)≤(log x)
1
3

1

n(D1) + 1
=

∞∑
k=1

pk≤(log x)
1
3

1

pk + 1
#{|D1| ≤ x

|D2| : n(D1) = pk}

∼ β
x

ζ(2)|D2|
where

β =
∞∑
k=1

pk
2(pk + 1)2

k−1∏
j=1

p j + 2

2(p j + 1)
·

On the other hand,

∑

|D1|≤ x
|D2 |

n(D1)>(log x)
1
3

1

n(D1) + 1
≤

∑

|D1|≤ x
|D2 |

1

(log x)
1
3 + 1

∼ x

|D2|ζ(2)((log x)
1
3 + 1)

≤ x

(log x)
1
3 + 1

= o(x).

Hence,

C(x) =
∑

|D1|≤ x
|D2 |

n(D1)≤(log x)
1
3

1

n(D1) + 1
+

∑

|D1|≤ x
|D2 |

n(D1)>(log x)
1
3

1

n(D1) + 1
∼ β

x

ζ(2)|D2| ·

From this we see that

∑
|D1D2|≤x

η|D2

n(D2) ∼
∑

|D2|≤x

β
n(D2)x

ζ(2)|D2| ∼ �β
x log x

ζ(2)2
, (3.7)

where the last estimate follows from partial summation and applying Theorem 2.1.
Therefore, plugging (3.5), (3.6) and (3.7) into (3.4) shows that

∑
|D1D2|≤x

η ∼ (� + α − �β)
x log x

ζ(2)2
·

This together with (3.3) completes the proof. ��
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Remark 3.1 We can give the following explanation of why Linowitz and Thompson’s
Conjecture 1.3 was slightly off from the correct number: the result from Theorem 1.2
is not uniform in k for the choice of the pk (we fix a set of primes beforehand), while

the result from Theorem 2.1 is uniform in k satisfying pk ≤ (log x)
1
3 . In order to make

Linowitz and Thompson’s heuristic argument rigorous we would first need to show
that Theorem 1.2 holds uniformly in k such that pk ≤ f (x) for some function f with
f (x) −−−→

x→∞ ∞. Then,

∑
|D1D2|≤x η(D1, D2)∑

|D1D2|≤x 1
=

∑
pk≤ f (x)

pk Prob(η(D1, D2) = pk)

+
∑

pk> f (x)

pk Prob(η(D1, D2) = pk)

−−−→
x→∞ θ + μ,

where θ is the conjectured constant (1.2) and

μ = lim
x→∞

∑
pk> f (x)

pk Prob(η(D1, D2) = pk).

Linowitz and Thompson conjectured that μ = 0, but according to Theorem 1.4, μ

does make a small contribution.
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