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Abstract 

Orphan diseases, exemplified by T-cell prolymphocytic leukemia, present inherent challenges due to limited data 
availability and complexities in effective care. This study delves into harnessing the potential of machine learning 
to enhance care strategies for orphan diseases, specifically focusing on allogeneic hematopoietic cell transplantation 
(allo-HCT) in T-cell prolymphocytic leukemia. The investigation evaluates how varying numbers of variables impact 
model performance, considering the rarity of the disease. Utilizing data from the Center for International Blood 
and Marrow Transplant Research, the study scrutinizes outcomes following allo-HCT for T-cell prolymphocytic leu-
kemia. Diverse machine learning models were developed to forecast acute graft-versus-host disease (aGvHD) occur-
rence and its distinct grades post-allo-HCT. Assessment of model performance relied on balanced accuracy, F1 score, 
and ROC AUC metrics. The findings highlight the Linear Discriminant Analysis (LDA) classifier achieving the highest 
testing balanced accuracy of 0.58 in predicting aGvHD. However, challenges arose in its performance during multi-
class classification tasks. While affirming the potential of machine learning in enhancing care for orphan diseases, 
the study underscores the impact of limited data and disease rarity on model performance.
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Introduction
T-cell prolymphocytic leukemia (T-PLL), constitut-
ing about 2% of mature lymphocytic leukemias in 
adults, exemplifies an orphan disease. These rare con-
ditions, marked by their scarcity and a restricted 

patient population [2], present substantial challenges 
in research, diagnosis, and treatment [11]. The scar-
city of data and resources for orphan diseases often 
hinders the development of effective care strategies. 
Hematopoietic stem cell transplantation (HSCT) is a 
commonly used therapeutic approach for treating vari-
ous hematological disorders, including leukemia and 
lymphoma [6]. However, HSCT comes with a consid-
erable risk of complications, and graft-versus-host dis-
ease (GvHD) is one of the most significant challenges 
faced by HSCT patients [10]. GvHD occurs when the 
donor’s immune cells recognize the recipient’s tissues 
as foreign and initiate an immune response against 
them [10]. The severity of GvHD can range from mild 
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skin manifestations to life-threatening multiorgan dys-
function [10]. Therefore, accurate prediction of GvHD 
occurrence and severity is crucial for timely interven-
tion and tailored treatment strategies [18].

In recent years, machine learning (ML) techniques 
have shown great promise in various healthcare domains, 
including disease prediction, diagnosis, and personalized 
treatment [7, 11, 14]. For instance, studies have dem-
onstrated the effectiveness of ML models in predicting 
post-transplant complications and refining treatment 
approaches in hematopoietic cell transplantation [1, 18]. 
Additionally, ML has been explored for predicting acute 
GvHD, a common complication post allogeneic HCT 
and organ transplant [5, 18]. These studies have utilized 
various ML methods, such as decision trees, random for-
ests, and neural networks, achieving significant advance-
ments in patient care and treatment outcomes. However, 
despite these advancements, there remains a research 
gap in applying ML techniques to orphan diseases such 
as T-cell prolymphocytic leukemia [11]. While AI has 
shown promise in predicting and managing common dis-
eases, limited research has been conducted in the context 
of orphan diseases.

This study aims to explore the potential of ML in 
improving orphan disease care, specifically focusing on 
allogeneic hematopoietic cell transplantation (allo-HCT) 
for T-cell prolymphocytic leukemia. By leveraging ML 
models, the study aims to enhance the prediction of acute 
GvHD grades following allo-HCT, which can aid in better 
patient management and treatment decisions [10, 18].

Acute GvHD can be classified into four grades based on 
clinical and histopathological criteria, commonly referred 
to as grades 1 to 4, as described by [8]. These grades rep-
resent: grade 1 (skin involvement), grade 2 (gastroin-
testinal tract involvement), grade 3 (liver involvement), 
and grade 4 (multiorgan involvement) [16]. Each grade 
presents unique challenges and requires tailored man-
agement strategies. Accurately predicting acute GvHD 
grades can aid in early intervention and guide personal-
ized treatment approaches, ultimately improving patient 
outcomes. Several studies have investigated biomark-
ers and predictive models for acute GvHD [1, 12, 18]. 
In the present study, which is a part of the HTx project 
(EU Horizon 2020 funded project 2019-2024), we applied 
artificial intelligence as a tool to examine individualized 
predictions by searching complex relationships from 
high-dimensional data. The primary aim of HTx is to cre-
ate a framework for the Next Generation Health Tech-
nology Assessment (HTA) to support patient-centered, 
societally oriented, real-time decision-making on access 
to and reimbursement for health technologies through-
out Europe. To achieve the goals, we apply application of 
machine learning in this context to potentially advance 

orphan disease care and contribute to the understanding 
and treatment of rare conditions.

Materials and methods
Study design
This study was meticulously crafted to forecast the 
occurrence of aGvHD post-allo-HCT, focusing its predic-
tive efforts on patients diagnosed with T-PLL.

The primary objective centered on developing robust 
predictive models tailored to anticipate and comprehend 
the onset of aGvHD in this specific cohort. By harness-
ing a nuanced understanding of this critical complication 
post-allo-HCT, the study aimed to contribute valuable 
insights into the prognosis and management of aGvHD 
in T-PLL patients.

Underpinning this endeavor was the utilization of 
advanced machine learning techniques, strategic cura-
tion of relevant features, and the adoption of a diverse 
range of classification algorithms. This methodological 
amalgamation aimed to not only forecast aGvHD onset 
but also delineate key contributing factors and patterns 
specific to T-PLL, fostering more informed clinical inter-
ventions and personalized patient care strategies.

Source of data
Data utilized in this study were obtained from the Center 
for International Blood and Marrow Transplant Research 
(CIBMTR) [4]. The dataset comprised clinical variables 
along with detailed information regarding acute GvHD 
grades [13].

Predictors
Initially, the raw dataset comprised 241 instances and 
encompassed 37 features. Supplementary Table  S1 
provides a comprehensive breakdown of the feature 
details. This dataset spanned data collected from 2008 to 
2018. At the initial stage, a deliberate selection process 
excluded specific variables from the dataset. Variables 
were either identified as response variables or deemed 
irrelevant to the core research inquiry. Detailed informa-
tion about the all variables and their status of inclusion 
is presented in Supplementary Table S1. This meticulous 
curation resulted in the identification of 11 informative 
features essential for baseline predictions.

Outcome
The main focus of this study was to predict the emer-
gence of aGvHD (grades 2 to 4) within 100 days following 
allo-HCT, named ‘response_0to1_vs_2to4’, based on the 
100 day marker ‘d100aGvHD24’. This condition, a nota-
ble complication post-transplant, presents considerable 
challenges in patient care and management. Predicting 
the timing and severity of aGvHD enables clinicians to 
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anticipate and effectively manage potential complica-
tions, ultimately enhancing patient outcomes and their 
post-transplant quality of life.

In addition to predicting aGvHD occurrence (grades 
2 to 4), two supplementary response variables, namely 
‘response_0to2_vs_3to4’ and ‘response_0and1_vs_2_
vs_3and4,’ were introduced in this study. These variables 
were carefully crafted based on 100-day marker variables, 
d100aGvHD24 and d100aGvHD34, with the explicit pur-
pose of capturing the diverse patterns and varying grades 
of acute GvHD following allo-HCT.

The response  variable, ‘response_0to2_vs_3to4’, was 
designed to discern and classify patients based on their 
likelihood of experiencing milder (grades 0 to 2) versus 
more severe (grades 3 to 4) acute GvHD. This distinction 
holds clinical significance as it aids in identifying patients 
at higher risk of developing severe complications post-
transplantation, enabling tailored intervention strategies 
to mitigate potential adverse outcomes.

Similarly, the response  variable, ‘response_0and1_
vs_2_vs_3and4’, aimed to categorize patients into groups 
based on different combinations of acute GvHD grades 
(0, 1, 2, 3, or 4). This nuanced categorization allows for 
a more comprehensive understanding of the spectrum of 
acute GvHD severity and patterns, facilitating targeted 
therapeutic approaches and personalized patient care 
strategies.

By including these additional response variables, the 
study not only predicts the onset of aGvHD but also 
offers a more nuanced and granular assessment of the 
severity and patterns of this condition post-allo-HCT. 
This nuanced understanding is instrumental in tailor-
ing patient care and interventions, thereby potentially 
improving clinical outcomes and patient well-being fol-
lowing transplantation.

Missing data and data splits
The dataset underwent further preprocessing, involving 
the removal of instances with missing responses, result-
ing in a refined dataset size of (216, 14) with 216 instances 
and 14 columns, consisting of 11 features and 3 response 
variables. To handle missing values within numeric fea-
tures, mean imputations was adopted, wherein missing 
values were replaced with the respective means. Impor-
tantly, imputation was performed separately for the 
training and testing datasets to prevent any inadvertent 
data leakage. The division of data into training and test-
ing subsets was accomplished through stratified k-fold 
cross-validation, employing a value of k set to 4. Where, 
in each iteration of 4-fold cross-validation:

•	 Each fold comprises approximately 216/4 = 54 
instances.

•	 3 folds (approximately 162 instances) are used for 
training.

•	 1 fold (approximately 54 instances) is used for test-
ing.

Before training, only the training data was balanced using 
RandomOverSampler with a random state set to seed. 
The seed and code can be found in the supplementary 
document. This process ensures comprehensive and 
unbiased assessment of model performance across differ-
ent subsets of the data.

Statistical methods
Prediction models
The study embraced a diverse array of machine learning 
algorithms to comprehend and predict aGvHD follow-
ing allo-HCT. The analysis and modeling were conducted 
using Python programming language. This included the 
utilization of three distinct models known for their effi-
cacy in classification tasks from sklearn [15]:

•	 Linear Discriminant Analysis (LDA): LDA is a statis-
tical technique emphasizing the linear combination 
of features to differentiate between classes, particu-
larly efficient when classes are well-separated or nor-
mally distributed.

•	 k-Nearest Neighbors (KNN): KNN operates by clas-
sifying data points based on the majority class among 
their k-nearest neighbors in the feature space, mak-
ing it a versatile and intuitive classification algorithm.

•	 Multilayer Perceptron (MLP): MLP, a type of arti-
ficial neural network, is adept at learning complex 
relationships within data by utilizing multiple layers 
of nodes, making it highly effective in nonlinear clas-
sification tasks.

The selection of these models was strategic, each offer-
ing distinct advantages in capturing different facets of 
the complex interactions influencing aGvHD prediction. 
By leveraging these varied algorithms, the study aimed 
to comprehensively explore and assess the predictive 
capabilities concerning acute GvHD post-allo-HCT. The 
machine learning models used in this study for predicting 
GvHD were implemented based on the code available in 
the GitHub repository [3].

Feature selection
Subsequently, feature selection techniques were applied 
to the subset of 11 features to enhance the model’s pre-
dictive performance and interpretability. The SelectK-
Best method from [15], which uses mutual information 
as the score function to assess statistical dependence 
between each feature and the target variable (in this case, 
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the acute GvHD grade), was leveraged to identify the 
most informative features. This process allowed for the 
selection of the top k features with the highest mutual 
information scores, clearly indicating their relevance in 
predicting the target variable. Additionally, SelectKBest 
was employed to determine the optimal number of fea-
tures that resulted in the best model performance for 
each classification task. The models were then ranked 
based on their performance, and the top three models are 
presented, along with the respective number of features 
used in each.

Performance metrics
For model evaluation, several performance metrics were 
employed, including training and testing balanced accu-
racy, testing F1 score, and testing Receiver Operating 
Characteristic Area Under the Curve (ROC AUC).

The F1 score was used to evaluate model performance 
in both binary and multiclass classification scenarios. In 
binary classifications such as ‘response_0to1_vs_2to4’ 
or ‘response_0to2_vs_3to4’, a weighted average F1 score 
was computed, considering class imbalances within the 
dataset. Meanwhile, in multiclass classification scenarios 
like ‘response_0and1_vs_2_vs_3and4’, a macro-average 
F1 score was utilized to weigh each class equally in the 
evaluation.

ROC AUC, on the other hand, quantified the model’s 
ability to distinguish between classes, providing crucial 
insights, especially in scenarios with multiple classes or 
imbalanced distributions. This metric assessed the mod-
els’ performance across different class predictions, com-
plementing the F1 score evaluations.

These diverse metrics collectively offered insights into 
the models’ performance, accounting for various aspects 

such as class imbalances, model generalization, and class-
wise distinctions, enabling a comprehensive evaluation of 
the model’s predictive capabilities.

In summary, the study utilized a robust methodology 
to analyze the outcomes of allo-HCT in patients with 
T-cell prolymphocytic leukemia. The dataset underwent 
preprocessing steps to address missing data, handle cat-
egorical variables, balance class distribution, standard-
ize features, detect and remove outliers, and perform 
feature selection. Two new response variables were cre-
ated to capture different acute GvHD grades, and only 11 
relevant features were selected for baseline prediction. 
Multiple machine learning models were constructed and 
evaluated using various metrics, focusing on the selected 
informative features, to predict acute GvHD grades.

Results
This study presents the performance analysis of vari-
ous models on three distinct response variables: 
‘response_0to1_vs_2to4’ (class distribution: [0: 114, 1: 
83]), ‘response_0to2_vs_3to4’ (class distribution: [0: 
172, 1: 25]), and ‘response_0and1_vs_2_vs_3and4’ (class 
distribution: [0: 114, 1: 58, 2: 25]). Each model was sub-
jected to training and testing using different numbers of 
features. The obtained results are depicted in Fig. 1 and 
Tables 1, 2, and 3, along with Supplementary Figures S1, 
S2, and S3 illustrating the performance of various ML 
models with significant features corresponding to differ-
ent feature quantities.

Discussion
For the response variable, ‘response_0to1_vs_2to4’, three 
feature sets (Supplementary Figure S1) and models were 
evaluated, namely KNN, LDA, and MLP. The results 

Fig. 1  Performance of different machine learning models over different feature numbers for each response variable
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are shown in Table 1. With a feature count of five, LDA 
achieved a balanced accuracy of 0.56, an F1 score of 0.57, 
and a ROC AUC of 0.59. Comparable performance met-
rics were observed for MLP and KNN.

When the feature count was increased to six, the mod-
els exhibited consistent performance for training, albeit 

with minor fluctuations in balanced accuracy, F1 score, 
and ROC AUC. However, MLP demonstrated a almost 
perfect balanced accuracy of 0.91 during training, sug-
gesting potential overfitting as when the trained MLP 
model was tested using a test set, the best balanced accu-
racy it reached was 0.52 (see Table 1).

Table 1  Model Performance Comparison with Varying Features for acute GvHD grades 0 to 1 vs 2 to 4

Model Number of 
features

Training Balanced 
accuracy

Testing Balanced 
accuracy

Testing F1 score Testing 
ROC 
AUC​

KNeighborsClassifier 5 0.73 0.55 0.57 0.56

LinearDiscriminantAnalysis 5 0.58 0.56 0.57 0.59

MLPClassifier 5 0.59 0.53 0.55 0.59

KNeighborsClassifier 6 0.73 0.53 0.55 0.56

LinearDiscriminantAnalysis 6 0.59 0.56 0.57 0.58

MLPClassifier 6 0.58 0.57 0.58 0.58

KNeighborsClassifier 8 0.75 0.52 0.53 0.57

LinearDiscriminantAnalysis 8 0.61 0.58 0.59 0.59

MLPClassifier 8 0.91 0.52 0.53 0.55

Table 2  Model Performance Comparison with Varying Features for acute GvHD grades 0 to 2 vs 3 and 4

Model Number of 
features

Training Balanced 
accuracy

Testing Balanced 
accuracy

Testing F1 score Testing 
ROC 
AUC​

KNeighborsClassifier 5 0.95 0.56 0.77 0.60

LinearDiscriminantAnalysis 5 069 0.57 0.75 0.60

MLPClassifier 5 0.67 0.57 0.75 0.59

KNeighborsClassifier 6 0.93 0.52 0.72 0.60

LinearDiscriminantAnalysis 6 0.70 0.57 0.73 0.60

MLPClassifier 6 0.85 0.52 0.76 0.55

KNeighborsClassifier 9 0.94 0.52 0.73 0.53

LinearDiscriminantAnalysis 9 0.71 0.58 0.74 0.58

MLPClassifier 9 1.00 0.49 0.78 0.50

Table 3  Model Performance Comparison with Varying Features for acute GvHD grades 0 and 1 vs 2 vs 3 and 4

Model Number of 
features

Training Balanced 
accuracy

Testing Balanced 
accuracy

Testing F1 score Testing 
ROC 
AUC​

KNeighborsClassifier 5 0.51 0.36 0.35 0.50

LinearDiscriminantAnalysis 5 0.34 0.38 0.35 0.54

MLPClassifier 5 0.34 0.37 0.36 0.55

KNeighborsClassifier 6 0.52 0.35 0.34 0.49

LinearDiscriminantAnalysis 6 0.34 0.40 0.38 0.56

MLPClassifier 6 0.34 0.45 0.42 0.56

KNeighborsClassifier 7 0.52 0.32 0.31 0.52

LinearDiscriminantAnalysis 7 0.34 0.41 0.38 0.55

MLPClassifier 7 0.35 0.40 0.38 0.55
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Similar patterns were observed for the response vari-
able, ‘response_0to2_vs_3to4’; see Supplementary Figure 
S2 for selected variables and Table 2 for the results. LDA 
demonstrated a balanced accuracy of 0.69 during training 
with five feature values. This performance was sustained 
as the feature count increased to six and nine, with LDA 
maintaining robust performance across different feature 
counts. Moreover, MLP and KNN displayed comparable 
performance levels across various feature counts. Specifi-
cally, KNN and MLP demonstrating impressive balanced 
accuracy above 0.90 during training.

Regarding the response variable, ‘response_0and1_
vs_2_vs_3and4’, the model’s performance noticeably 
diminished compared to the previous response vari-
ables; see Supplementary Figure S3 for selected variables 
and Table  3 for the results. All three models encoun-
tered challenges in attaining highly balanced accuracy, 
F1 score, and ROC AUC values. MLP demonstrated the 
highest performance among the models tested, achiev-
ing a balanced accuracy of 0.45, an F1 score of 0.42, and a 
ROC AUC of 0.56 with six features.

To summarize, selecting the response variable and the 
number of features substantially influence the model’s 
performance (Fig.  1). Generally, on average all models 
showcased superior performance. However, MLP exhib-
ited signs of overfitting in certain instances showing that 
MLP could be too complex a model to be used with a 
small dataset. The findings underscore the criticality of 
feature selection and engineering in enhancing the pre-
dictive capabilities of the models.

While the model’s current performance might not be 
optimal, there’s room for improvement. Machine learn-
ing models possess the capacity to enhance their pre-
dictive capabilities, indicating their potential to directly 
assist in predicting acute GvHD. The ability to accurately 
identify the specific grade of acute GvHD following allo-
HCT can have significant implications for treatment 
decisions and patient management. Different grades of 
acute GvHD may require tailored treatment approaches, 
such as immunosuppressive therapy or targeted interven-
tions, to improve outcomes and reduce complications.

Conclusion
In conclusion, this study highlights the potential of 
machine learning models in predicting acute GvHD 
grades following allo-HCT for T-PLL. The results dem-
onstrate that machine learning algorithms, such as KNN, 
LDA, and MLP classifiers, can achieve varying degrees 
of accuracies ranging from 0.32 to 0.58 in predicting the 
occurrence of acute GvHD and its grades. These models, 
trained using carefully selected features, provide valuable 
tools for clinicians to make informed treatment decisions 
and improve patient management.

The rarity of T-cell prolymphocytic leukemia poses 
challenges in gathering sufficient data for analysis and 
prediction modelling. However, applying machine 
learning techniques provides a valuable tool for lev-
eraging the available data and extracting meaning-
ful insights. Using feature engineering techniques and 
various machine learning algorithms, researchers can 
uncover patterns and relationships within the data that 
may not be readily apparent through traditional sta-
tistical approaches. Moreover, it should be noted that 
simpler machine learning methods often perform as 
well with small datasets than complex models, as seen 
from this study.

The need for such tools becomes evident when consid-
ering the complexity and heterogeneity of acute GvHD. 
This condition can manifest differently and affect multi-
ple organs, making accurate prediction and classification 
crucial for appropriate management. Machine learning 
models hold the capability to amalgamate an array of 
clinical, treatment, socio-economic predictors, alongside 
donor specifics and transplant intricacies, offering a com-
prehensive evaluation of acute GvHD’s risk and severity. 
This personalized approach can enhance treatment strat-
egies, improve patient outcomes, and reduce the burden 
on healthcare resources.

However, it is crucial to acknowledge the limitations of 
this study, including the small dataset size, lack of holis-
tic data, and the need for validation on larger cohorts. 
The rarity of T-cell prolymphocytic leukemia poses chal-
lenges in obtaining extensive data for training and testing 
the models. Collaboration among research institutions 
and the establishment of data-sharing initiatives can 
address these limitations and facilitate the development 
of more robust and accurate machine-learning models.

Additionally, the insights from the study on steroid-
refractory intestinal aGvHD contribute to our under-
standing of complex immune-related conditions [9]. 
Steroid-refractory aGvHD remains a frequently fatal 
condition with limited knowledge about the mecha-
nisms driving resistance to steroid treatments in the 
gut mucosa. The study’s analysis of gene expression 
profiles in rectosigmoid biopsies provides valuable 
molecular insights. The decreased expression of inhibi-
tory genes (PDL1, IDO1, TIGIT) in steroid-refractory 
aGvHD indicates a disruption in immune regulation, 
likely contributing to the resistance to steroid treatment. 
This emphasizes the need for innovative approaches to 
tackle immune-related challenges [17]. Incorporating 
the insights from both studies, it becomes evident that 
a comprehensive understanding of immune regulation, 
stress responses, and environmental factors of both the 
patient and the donor is essential for developing more 
effective therapeutic strategies and improving patient 
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outcomes in complex immune-related conditions such as 
aGvHD.

Nonetheless, this research sheds light on the poten-
tial of machine learning to improve orphan disease care. 
With continued efforts to collect and share data on rare 
diseases, the availability of more extensive and com-
prehensive datasets could enhance the performance of 
machine learning models in this domain. Collabora-
tive initiatives and data-sharing platforms are crucial 
for overcoming the limitations posed by data scarcity in 
orphan disease research.

Overall, this study serves as a steppingstone in explor-
ing the application of machine learning in orphan disease 
care. Further research and advancements in data collec-
tion, feature engineering, and model development are 
necessary to unlock the full potential of machine learning 
in improving outcomes for patients with orphan diseases 
like T-cell prolymphocytic leukemia.
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