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Abstract Non‐Newtonian fluid flow within porous media, exemplified by polymer remediation of
contaminated groundwater/aquifer systems, presents complex challenges due to the fluids' complex rheological
behavior within 3D tortuous pore structures. This paper introduces a pore‐scale flow simulator based on the
OpenFOAM open‐source library, designed to model shear‐thinning flow within porous media. Leveraging this
developed solver, extensive pore‐scale flow simulations were conducted on μ‐CT images of various real and
synthetic porous media with varying complexity for both power‐law and Cross‐fluid models. We focused on the
macroscale‐averaged deviation between bulk viscosity and the in‐situ viscosity, commonly denoted by a shift
factor. We provided an in‐depth evaluation of the shift factor's dependency on the fluid's rheological attributes
and the rock's pore space complexity. The least‐squares fitted values of the shift factor fell in the range of 1.6–
9.5. Notably, the most pronounced shift factor emerged for extreme flow behavior indices. Our findings
highlight not just the critical role of rheological parameters, but also demonstrate how the shift factor fluctuates
based on tortuosity, characteristic pore length, and the cementation exponent. In particular, less porous/
permeable systems with smaller characteristic pore lengths exhibited larger shift factors due to higher variations
of shear rate and local viscosity in narrower flow paths. Additionally, the shift factor increased as rock became
more tortuous and heterogeneous. The introduced pore‐scale simulation proves instrumental in determining the
macroscopic averaged shift factor. This, in consequence, is vital for precise computations of viscosity and
pressure drop when dealing with non‐Newtonian fluid flow in porous media.

1. Introduction
The flow of polymeric liquids within porous materials has significant relevance across various applications,
including polymer flooding in hydrocarbon reservoirs (Kamal et al., 2015; Mohsenatabar Firozjaii &
Saghafi, 2020), remediation of contaminated aquifer systems (Gastone et al., 2014; Skauge et al., 2018), treatment
of contaminated surface site formations (Zhong et al., 2011), enhancing the hydraulic fracturing performance
(Hauswirth &Miller, 2014), and fiber molding (Li et al., 2016). Polymeric solutions stand out as a notable subset
of non‐Newtonian fluids. Understanding the interplay between pressure drop and flow rate for diverse fluid
compositions and velocity spectra is vital, especially when predicting groundwater and crude oil extraction rates
from subsurface reservoirs or designing industrial operations that require the flow and transportation of non‐
Newtonian fluids through porous matrices. However, due to complex interactions, the flow dynamics of poly-
mer solutions in porous media remain somewhat elusive, largely attributed to the intricate design and morphology
of pore spaces coupled with the fluid behavior. These factors raise difficulty in describing flow physics,
consequently hindering accurate predictions of macroscopic pressure drops.

Contrasting Newtonian fluids, the viscosity of non‐Newtonian fluids shifts based on the exerted force ‐ more
precisely, the viscosity solely depends on the shear rate during steady, simple shear flow. Thus, stress and strain
rate exhibit a nonlinear relationship (Bird et al., 1987). Broadly, non‐Newtonian fluids can be segmented into two
categories (Muljadi et al., 2016); the first encompasses rheopectic and thixotropic fluids where viscosity is time‐
dependent concerning the applied force, and the second consists of dilatant (or shear‐thickening), pseudoplastic
(or shear‐thinning), and Bingham fluids where viscosity remains time‐invariant. Shear‐thinning fluids, charac-
terized by a decreasing viscosity with escalating shear rates, are perhaps the most ubiquitous non‐Newtonian
fluids, finding extensive practical applications. The challenge of modeling non‐Newtonian flow is amplified
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when confined to the intricate pore spaces of porous materials. For cases where the correlation between fluid
velocity and the hydraulic gradient is linear, as seen with Newtonian fluid dynamics, Darcy's law is the applied
phenomenological equation to describe steady‐state flow through porous media under low Reynolds number (Re)
conditions. Yet, as the Re increases, nonlinearities emerge. The roots of such nonlinear patterns can be traced back
to factors like microscale drag forces (Zhang et al., 2019), inertial effects (Hassanizadeh & Gray, 1987), and low
Re turbulence (Levy et al., 1999). A common approach adopted in the literature for the laminar flow of non‐
Newtonian fluids through a porous medium is to use the Darcy equation with all non‐Newtonian effects
combining into a single viscosity parameter termed the porous media viscosity (Dybbs & Edwards, 1984; Sor-
bie, 1991). The porous medium viscosity is a function of the so‐called porous medium shear rate, which is
typically defined based on the superficial fluid velocity and the characteristics of the medium (Eberhard
et al., 2019; Sorbie, 1991).

Numerous studies have investigated non‐Newtonian fluids through porous media, including experimental studies
(Chase & Dachavijit, 2003; Chauveteau, 1982; Comba et al., 2011; Comiti et al., 2000; Ferreira &Moreno, 2019;
Koh et al., 2017; Perrin et al., 2006; Rodríguez de Castro & Radilla, 2017a), theoretical modeling (Hayes
et al., 1996; Kozicki & Tiu, 1988; Liu & Masliyah, 1999; Shende et al., 2021), and pore network simulation (An,
Sahimi, & Niasar, 2022; An, Sahimi, Shende, et al., 2022; Balhoff & Thompson, 2006; Sahimi, 1993). These
approaches have notable limitations and challenges, for example, the difficulty associated with running lab ex-
periments in real porous rocks under diverse boundary conditions and complications in solving the differential
equations analytically. Even for the flow of simple non‐Newtonian fluids, such as Carreau and Cross fluid
models, in basic configurations like circular tubes and slits, analytical expressions to correlate flow rate to
pressure drop were obtained not long ago (Liu & Masliyah, 1999). Comprehensive investigations and reviews of
non‐Newtonian flow through porous media can be found in Chhabra (2006) and Sorbie (1991).

Experimental investigations have highlighted that the behavior of the viscosity of the bulk non‐Newtonian fluid
differs from that within porous media (Tosco et al., 2013). In order to account for such discrepancies, researchers
have introduced a shift or scaling factor (Hauswirth et al., 2020; Sorbie et al., 1989; Willhite & Uhl, 1988). This
factor has proven instrumental in fitting experimental data (Sheng, 2010). Previous research has shown that the
shift factor is influenced by both the rheological properties of the fluid and the intrinsic properties of the porous
medium, such as tortuosity (Tosco et al., 2013; Zhang et al., 2019). Values for this shift factor, as documented by
several researchers, typically range between 1 and 15 (Hauswirth et al., 2020; Jithin et al., 2018; Tosco
et al., 2013). On macroscopic scales, several studies have proposed semiempirical equations for the shift factor
when considering non‐Newtonian fluid models—predominantly the power‐law model—as they move through
porous materials, based on the capillary‐bundle models of porous media (Christopher & Middleman, 1965;
Eberhard et al., 2019; Hirasaki & Pope, 1974; Sorbie et al., 1989; Teeuw & Hesselink, 1980). Knowing the bulk
rheological characteristics of the fluid, the permeability of the porous media, and the shift factor is required for the
macroscale description of the dependence of pressure drops on flow velocity. These semiempirical models,
however, do not provide insights into the relationship between the shift factor (as a macroscale‐averaged
parameter) and the microscale parameters such as pore geometry and topology.

Over the past two decades, pore‐scale direct simulation based on 3D high‐resolution μ‐CT images has emerged a
powerful technique to investigate flow and transport processes in complex porous materials, particularly when
laboratory experiments are unaffordable due to cost or complexity (Bultreys et al., 2016; Mostaghimi et al., 2013;
Qajar et al., 2021; Raeini et al., 2012; Saxena et al., 2017). Due to the challenges in regard to lab experiments and
analytical approaches, many studies have focused on pore‐scale direct non‐Newtonian flow simulations (Fadili
et al., 2002; Sochi, 2015; Talwar & Khomami, 1992; Tembely et al., 2019; Tosco et al., 2013) and pore‐scale
network modeling (Balhoff et al., 2012; Fadili et al., 2002; Lopez et al., 2003; Pearson & Tardy, 2002).

In a pioneering work, Sorbie et al. (1989) utilized network modeling with a 2D capillary array and the Carreau
fluid model to simulate polymer flow in porous media. They obtained shift factors ranging from 1.2 to 1.67 for the
network and pointed out larger ones for more heterogeneous networks. Tosco et al. (2013) used SEM images of
natural unpacked sand grains (porosity range of 0.4–0.5) to perform numerical flow simulations for both New-
tonian and non‐Newtonian fluids using CFD code ANSYS Fluent based on a finite volume discretization. By
testing various shear‐thinning fluid models (Cross, Ellis, and Carreau models), they evaluated the interplay of
porous media and fluid properties on equivalent viscosity and macroscopic pressure gradient and found that the
shift factor and the inertial coefficient were dependent on both the porous medium and fluid properties. However,
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their study was primarily for 2D image slices, putting aside the 3D pore‐space connectivity. Jithin et al. (2018)
employed the lattice‐Boltzmann method to simulate the Carreau–Yasuda fluid flow within both idealized and
stochastically reconstructed pore structures. They assessed the impacts of flow and geometric parameters and
found that the shift factor was influenced by multiple parameters, including porosity, permeability, tortuosity, and
percolation threshold. Zhang et al. (2019) conducted a 3D microscale flow simulation using OpenFOAM in a
rough fracture for Cross shear‐thinning fluids with varying rheological parameters and over a range of flow
regimes. They showed that the shift factor was intertwined with fluid rheology and fracture aperture variation.

Further, Rodríguez de Castro and Agnaou (2019) examined the Herschel–Bulkley and the Carreau fluid flow in
various media, highlighting the interaction of yield stress and pore morphology on the shift factor's relationship
with flow rate. In particular, Rodríguez de Castro and Radilla (2017b) conducted experiments with xanthan gum
solutions as shear‐thinning fluids to understand how fluid rheology impacts flow rate and pressure drop in glass
sphere packs. In a more recent exploration, Hauswirth et al. (2020) used the LBM approach to simulate Cross‐
fluid flow through synthetically created porous media. They found good agreement between the simulation
and experimental results and estimated the values of the shift factor for different sphere‐pack models. This study
also contrasted the performance of the LBM solver against the OpenFOAM simulator. Yet, amidst these strides, a
discernible gap exists: the dynamics of complex non‐Newtonian fluids flowing through real porous structures,
especially sedimentary rocks, remain largely underexplored. Our current study seeks to bridge this gap by
examining complex rheological models, like the Cross‐fluid model, along with the simple power‐law model,
within real‐world sandstone and carbonate samples.

Modeling non‐Newtonian flow in porous media presents inherent complexities where not only the individual
properties of the fluid and the porous medium are essential, but there is also the need to describe the shift factor—a
shared property of both elements. Historically, correlations for the shift factor have relied heavily on the capillary
bundle model of porous media. However, its application to complex real‐world porous rocks remains a matter of
debate, underscoring the need for more exhaustive studies. Furthermore, most semi‐empirical models, rooted in
the assumption of a constant tortuosity, deduce that the shift factor's variation arises solely from the fluid's
rheological properties, like the flow behavior index. This is further emphasized by the predominant literature
focus on the power‐law rheological model, which assumes a straightforward linear correlation between non‐
Newtonian viscosity and shear rate in a log‐log scale. Such an assumption may be inaccurate for many non‐
Newtonian fluids, such as polymeric solutions, which often deviate from the power‐law behavior. Conse-
quently, there is a need for more accurate and realistic models. While numerous research studies over the past
decade have aimed to determine the shift factor via microscale flow simulations, the predominant focus has been
on idealized 2D/3D structures. This leaves a knowledge gap regarding the applicability of these findings to real
3D porous materials, highlighting the need to critically assess the shift factor in real porous microstructures. The
work presented in this study should be understood concerning the lack of sufficient and accurate research on the
shift factor for real 3D microstructures, and it attempts to provide insight into the interplay between the shift
factor, pore structures, and fluid characteristics. To achieve this, we have performed a large number of 3D pore‐
scale flow simulations, employing both Newtonian and non‐Newtonian fluids, to probe the shift factor's
dependence on fluid rheology and rock pore space characteristics. A numerical solver based on the OpenFOAM
finite volume library has been developed to map the flow of non‐Newtonian fluids—specifically the power‐law
and Cross models—in porous media and compute the shift factor. To validate our approach, we have leveraged μ‐
CT images of various consolidated and unconsolidated porous media. The study also examines the implications of
pore space complexities on the shift factor, considering attributes such as tortuosity, characteristic pore length,
and cementation exponent. Our simulations span a wide shear rate spectrum in the low (creeping) flow regime.

2. Theoretical Background
In this section, we first introduce the local governing and constitutive equations for non‐Newtonian fluid flow
through the pore space of porous materials. Then, we present the numerical techniques used for solving the
governing equations and calculating the required parameters from pore‐scale flow simulations.

2.1. Rheological Behavior of Polymeric Fluids

The flow resistance to the shear rate of simple fluids is characterized by a physical property known as viscosity,
which is independent of the shear rate and is only a function of temperature and pressure (Bird et al., 2002). Unlike
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Newtonian fluids, a constant viscosity parameter cannot describe the rheological behavior of complex fluids, such
as polymeric liquids. A simple common approach to describe the non‐Newtonian viscosity, neglecting time‐
dependent effects, is to use the generalized Newtonian fluid model (Bird et al., 2002):

τ = μ(γ̇) γ̇ (1)

where τ is the shear stress, that is, the shearing force per unit area, γ̇ is the shear rate, that is, the rate of deformation
or velocity gradient, and µ(γ̇) is the non‐Newtonian viscosity, which is a function of shear rate. Several empirical
non‐Newtonian viscosity functions, also known as the constitutive rheological equations, have been proposed, of
which the simplest one is the two‐parameter power‐law model (Bird et al., 1987):

μ(γ̇) = Kγ̇n− 1 (2)

where K is the flow consistency index, and n is the power‐law index (or the flow behavior index). The power‐law
expression describes the linear portion of the log‐log plot of the viscosity versus shear rate curves, known as the
viscosity (or flow) curves. In this study, we focus on the cases where n is less than one, that is, the cases where the
viscosity decreases with increasing shear rate. This rheological behavior, known as shear‐thinning or pseudo-
plastic, is the most common behavior on non‐Newtonian fluids, such as a majority of polymer solutions (Darby
et al., 2017).

In practice, however, more accurate constitutive rheology models are required for polymeric fluids (Darby
et al., 2017). Hauswirth et al. (2020) reported some well‐known examples of non‐Newtonian rheological models.
In this study, we consider the four‐parameter Cross‐fluid model given by Sochi (2010):

μ(γ̇) = μ∞ +
μ0 − μ∞
[1 + (mγ̇)n]

(3)

where μ0 is the zero‐shear‐rate viscosity, μ∞ is the infinite‐shear‐rate viscosity, and m is a time constant (Tosco
et al., 2013). It is worth noting that the exponent n in the power‐law model has the same meaning as the n in the
Cross equation.

2.2. Governing Equations for Flow of Non‐Newtonian Fluids in Porous Media

In the recent two decades, direct modeling has attracted much attention for computing single‐ and multiphase flow
in porous media (Blunt et al., 2013). In this approach, the fundamental equations of fluid mechanics, namely the
continuity and momentum equations, are directly applied to the pore space of porous media derived from
binarized digitized images. For the flow of non‐Newtonian incompressible fluids through the pore space of porous
materials at steady‐state conditions, the governing equations are the continuity and momentum equations given by
Bird et al. (1987):

∇ .v = 0 (4)

ρv .∇v = − ∇p + ∇ .τ (5)

where v is the velocity vector, p is pressure, and ρ is fluid density. The common boundary conditions (BCs) used
in the literature are the no‐slip condition, where the fluid velocity is set to zero on grain boundaries. To determine
velocity distribution from Equations 4 and 5 with proper BCs, one must use proper models for the shear stress in
terms of velocity gradients (shear rate) and fluid properties. The generalized Newtonian fluid model (Equation 1)
is usually used because of its simplicity. In addition, it is required to use empirical expressions for the non‐
Newtonian viscosity, for example, Equation 2 or 3.

Once pressure and velocity fields are computed from pore‐scale flow simulations, obtained by solving Equa-
tions 4 and 5 on the pore space region of a porous medium, one can determine the macroscale‐averaged pa-
rameters (permeability and shift factor) discussed in the following. Permeability is defined by Darcy's law, which
describes a linear relationship between pressure drop and superficial velocity for the laminar flow of Newtonian
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fluid through a fully saturated porous medium (Darcy, 1856). The one‐dimensional Darcy's equation along the x‐
direction is given by:

−
∂p
∂x
=
μ
k
u0 (6)

where u0 is the x‐component of superficial velocity, k is the permeability of the porous medium, μ is the fluid
viscosity, and ∂p/∂x is the pressure gradient along the x‐axis. When the velocity of the fluid increases, the flow
regime will eventually deviate fromDarcy's law due to the inertial effects. The velocity corresponding to the onset
of the non‐Darcy flow (nonlinear relationship between the pressure gradient and the superficial velocity) is
commonly referred to as the critical velocity.

For the laminar flow of non‐Newtonian fluids in porous media, a modified Darcy's law can be adapted in
combination with the generalized Newtonian fluid model (Equation 1). The adopted approach assumes that the
same equations used for Newtonian flow can be utilized for non‐Newtonian flow, provided that the constant
viscosity μ is replaced by μpm, the porous medium viscosity, which depends on the properties of the porous
medium and the flowing fluid (Bird et al., 1987; Sorbie, 1991). For the case of non‐Newtonian flow, Equation 6 is
written as:

−
∂p
∂x
=
μpm ( γ̇pm)

k
u0 (7)

where γ̇pm is the porous medium shear rate, defined as the average shear rate that the fluid experiences when
flowing through the pore space of the porous medium (Pearson & Tardy, 2002). The porous medium viscosity is
used to describe the observed macroscopic rheology of the non‐Newtonian fluid in a porous medium (Tosco
et al., 2013). The rheological constitutive models are modified to incorporate the effects of the porous medium on
flow. For example, the power‐law (Equation 2) and Cross fluid (Equation 3) models for a non‐Newtonian fluid
flow in a porous medium are modified as:

μpm ( γ̇pm) = Kγ̇
n− 1
pm (8)

μpm ( γ̇pm) = μ∞ +
μ0 − μ∞

[1 + mnγ̇npm]
(9)

2.3. The Capillary‐Bundle Model Approach

The bundle‐of‐capillary‐tubes model is one of the most common approaches widely used to model flow and
transport in porous media. For the flow of Newtonian fluid in a bundle of capillary tubes with different radii, the
equivalent or hydraulic radius, Req, is defined from a combination of Darcy's and Poiseuille's laws as follows
(Eberhard et al., 2019; Rodríguez de Castro & Agnaou, 2019):

Req =

̅̅̅̅̅̅̅
8kτ
ϕ

√

(10)

where ϕ is porosity and τ is tortuosity, defined as the ratio of the actual flow path inside a porous medium to the
length of the porous medium (Ghanbarian et al., 2013). Theoretically, for Newtonian fluid flow through a straight
bundle of capillaries of uniform diameter, the shear rate at the wall of the capillary tube (denoted by γ̇w,NF) is given
by Chauveteau and Zaitoun (1981), Sorbie et al. (1989), and Willhite and Uhl (1988):

γ̇w,NF =
4
̅̅̅
8

√
u0
̅̅̅̅̅̅
kϕ

√ (11)

For the flow of non‐Newtonian fluids through a porous medium, the common approach in the literature is to
define the porous medium shear in terms of fluid superficial velocity and properties of the medium (Lopez
et al., 2003; Perrin et al., 2006; Sorbie, 1991; Sorbie & Huang, 1991; Valvatne et al., 2005), given by:
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γ̇pm = α
u0
̅̅̅̅̅̅
kϕ

√ (12)

where α is a constant empirical value known as a shift or scaling factor. Fundamentally, the shift factor is related
to the deviations observed between the viscosity curves (rheograms) of the bulk fluid and those of the fluid within
the porous medium (Zhang et al., 2019). The shift factor is basically an averaged macroscopic property, which,
unlike permeability, is a function of both the rheological properties of the fluid and the intrinsic properties of the
porous medium, for example, the tortuosity (Lopez et al., 2003; Pearson & Tardy, 2002; Sorbie et al., 1989; Tosco
et al., 2013).

Several authors have developed analytical and semi‐empirical equations for shear rate for the simplest case of
laminar flow of power‐law fluids through simplified geometries such as tubes, slits, bundles of capillary tubes,
and more complicated porous media such as packed beds (Berg & van Wunnik, 2017; Sorbie et al., 1989; Tosco
et al., 2013; Zhang et al., 2019). For example, the corresponding equation to Equation 12 for power law flow is
given by Bird et al. (2002) and Willhite and Uhl (1988):

γ̇w,PL = (
3n + 1
4n

)
4
̅̅̅
8

√
u0
̅̅̅̅̅̅
kϕ

√ (13)

where γ̇w,PL is the shear rate at the wall of the straight capillary tube for the power‐law flow. Based on the capillary
bundle model of porous media and the Blake‐Kozeny equation, the following general model can be proposed for
power‐law fluid flow in a porous medium:

μpm = K[C(
3n + 1
4n

)

D u0
̅̅̅̅̅̅
kϕ

√ ]

n− 1

(14)

where C and D are constants whose values were reported differently in the literature, as shown in Table 1. The
general expression of shift factor α derived based on the capillary bundle model is given by:

α = C(
3n + 1
4n

)

D

(15)

Table 1 shows the expressions for α based on different investigators. Based on this model, the shift factor is only a
function of the power‐law index, as evident from Table 1. The derivation of expressions given in Table 1 was
based on some preliminary assumptions. First, an equivalent capillary tube radius (Equation 10) was used.
Second, to account for the tortuous flow paths, a constant value was replaced for the tortuosity. For example, the
tortuosity of the flow paths through the packed beds of spherical particles has been widely reported to be 25/12
(Christopher & Middleman, 1965; Willhite & Uhl, 1988).

2.4. Characterization of Pore Structure Complexity

In this study, we consider the following characteristics of a porous medium as indicators of the medium's pore
complexity:

Table 1
The Values of Constants C and D in Equation 14 and the Corresponding Formulas of Calculating Shift Factor α for the
Power‐Law Flow Through Porous Media Based on the Capillary Bundle Model

C D Formula of α α (n = 1) References

12̅̅̅̅̅̅
150

√ 1 12̅̅̅̅̅̅
150

√ ( 3n+14n ) 12̅̅̅̅̅̅
150

√ ≈ 0.9798 Christopher and Middleman (1965)

4̅̅
8

√
n

n − 1 4̅̅
8

√ ( 3n+14n )
n
n− 1 4̅̅

8
√ e− 0.25 ≈ 1.1014 Savins (1969)

12̅̅̅̅̅̅
150

√
n

n − 1 12̅̅̅̅̅̅
150

√ ( 3n+14n )
n
n− 1 12̅̅̅̅̅̅

150
√ e− 0.25 ≈ 0.7631 Hirasaki and Pope (1974)

4̅̅
8

√ 1 4̅̅
8

√ ( 3n+14n ) 4̅̅
8

√ ≈ 1.4142 Teeuw and Hesselink (1980)
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The square root of permeability (√k) is a common characteristic length scale of a porous medium (Kece-
cioglu & Jiang, 1994; Ward, 1964). It can be argued that the more microporous the porous medium
(usually carbonate rocks), the less the permeability and hence the smaller characteristic length.

The product of the formation factor and porosity, F . ϕ, is a measure of the electrical tortuosity of a porous
medium (Clennell, 1997; Ghanbarian et al., 2013; Torquato, 2002). A physical meaning can be associated
with F . ϕ so that for a bundle of straight capillary tube model, F . ϕ = 1. The more tortuous the pore
space, the greater the value of F . ϕ.

The cementation exponent, mc, is determined from the Archi equation (Clennell, 1997):

F = ϕ− mc (16)

For a bundle of straight capillary tubes,mc= 1 (Glover, 2009). For real rocks, the cementation exponent varies for
different rock types and practically ranges between 1.5 and 4 (Archie, 1942). For a simple case of spherical rock
grains, Sen et al. (1981) found from the analytical investigation the cementation exponent is equal to 1.5. For
consolidated rocks, mc is usually around 2 (Torquato, 2002). In general, more heterogeneous porous rocks have
higher values of mc. Glover (2009) argued that the pore space connectivity depends on the porosity and the
cementation exponent.

2.5. Conditions of Laminar Non‐Newtonian Flow in Porous Media

This study considers the laminar flow of non‐Newtonian fluids through porous media. A common approach in the
literature is to use Reynolds numbers to identify the creeping (laminar) flow and mark the beginning of the inertial
flow regime (Koch & Hill, 2001; Sederman et al., 1998). For simple grain‐based models of porous materials, the
onset of inertial effects for the flow of Newtonian fluids is usually expressed in terms of Reynolds numbers based
on the mean grain diameter as a characteristic length (Arbabi & Sahimi, 2024). For more complex systems, such
as natural rock materials, a common approach is to define the Reynolds number as follows (Beavers & Spar-
row, 1969; Muljadi et al., 2016; Wood et al., 2020)

ReNewtonian =
ρu0

̅̅̅
k

√

μ
(17)

In Equation 17, μ is the fluid viscosity and the square root of permeability is used as the characteristic pore length.
The problem is much more complicated when dealing with non‐Newtonian flow through porous materials.
Several approaches have been used to define the critical Reynolds numbers to indicate the end of the creeping
flow (Chhabra, 2006) in non‐Newtonian flow. Over the past several decades, a considerable amount of experi-
mental and theoretical research has focused on determining the pressure drop of non‐Newtonian fluid flow
through porous media and estimating the limits of creeping flow regime mainly by assuming the power‐lawmodel
(Comiti et al., 2000; Morais et al., 2009; Sabiri & Comiti, 1995). In this study, we adopted a unified definition for
the Reynolds number, denoted by ReNon‐Newtonian, which is applicable to both the power‐law and Cross‐fluid
models in identifying the onset of inertial flow effects. In this approach, ReNon‐Newtonian is obtained by modi-
fying Equation 17 to incorporate the porous medium viscosity instead of Newtonian viscosity, as given by
Equation 18:

ReNon‐Newtonian =
ρu0

̅̅̅
k

√

μpm ( γ̇pm)
(18)

It is noted that similar approaches were used in the literature to define the Reynolds number for non‐Newtonian
flow in porous media (Shende et al., 2022; Zhang et al., 2019).

3. Materials and Methods
3.1. Description of μ‐CT Images and Pore‐Space Complexity

The Newtonian and non‐Newtonian flow simulations were applied on 3D voxelized pore space images
of four samples obtained from the open‐access μ‐CT image library available at the Imperial College
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London website (https://www.imperial.ac.uk/earth‐science/research/research‐groups/pore‐scale‐modelling/mi-
cro‐ct‐images‐and‐networks/). The images used in this study are (a) a synthetic silica sample named A1, (b)
the Bentheimer sandstone, (c) a sandstone named S1, and (d) the Estaillades carbonate (Figure 1). Table 2
reports the image dimension and voxel size used in flow simulations. The single‐phase Newtonian fluid
flow was first simulated to obtain permeability (k) and electrical formation factor (F), as given in Table 2.
Only the values of k and F along the x‐axis were considered in this paper. As evident from Figure 1, the
samples display diverse levels of complexity in their pore space. Table 2 reports the values of the indicators
used in this study to quantify the complexity of the samples' pore space. It is noted that the values of the
cementation exponent were calculated using the Archie equation.

3.2. Pore‐Scale Flow Simulations and Solver Development

We used the poreFoam software package (https://github.com/ImperialCollegeLondon/poreFoam‐singlePhase)
developed by Raeini et al. (2012) to directly solve Equations 4 and 5 with proper BCs on the voxelized pore space
extracted from μ‐CT images of porous media. The poreFoam numerical solver is an open‐source CFD software
based on the OpenFOAM finite volume library (Shams et al., 2018). The continuity and momentum equations are
coupled using the PIMPLE algorithm—a combination of PISO and SIMPLE algorithms. The time differential,
∂(…)/∂t, is solved with an implicit, first‐order accurate Euler scheme. The first‐order accuracy in time is deemed
sufficient given that we are interested only in the steady‐state solution (Angrand et al., 1985). The divergence
operator, ∇.(…), is discretized with a Gauss scheme and interpolated using a second‐order accurate self‐filtered
central difference scheme (Hafez & Kwak, 2003; Jasak, 1996).

This study modified the poreFoam single‐phase solver to model the non‐Newtonian flow in porous media. In all
simulations, the BCs at the pore‐solid interface were set to be a no‐slip (zero normal and tangential velocity). In
addition, constant pressure BCs at the inlet and outlet faces of the images were used, whereas no‐slip BCs were
applied on the remaining faces. The criterion used for the steady‐state convergence is ε ≤ 10− 6 where

ε =
⃒
⃒ ui − ui+1

⃒
⃒

| ui|
(19)

Figure 1. Examples of 2‐D binarized images of (a) synthetic silica A1, (b) Bentheimer sandstone, (c) sandstone S1, (d) Estaillades carbonate, and (e) a beadpack sample
(see Table 2 for image properties) used in this study.

Table 2
The Image Properties and the Calculated Parameters From Single‐Phase Newtonian Flow Simulations

Sample Image size (voxels) Voxel size (μm) ϕ (− ) k (D) F (− ) Characteristic length (μm)a F . ϕ mc
b

Beadpack 300 × 300 × 300 2 0.364 6.233 4.456 2.497 1.622 1.479

Synthetic silica A1 300 × 300 × 300 3.85 0.428 9.316 4.439 3.302 1.899 1.756

Bentheimer 400 × 400 × 400 3.0035 0.215 3.621 14.792 1.891 3.187 1.755

Sandstone S1 300 × 300 × 300 8.683 0.141 2.645 36.348 1.616 5.107 1.831

Estaillades 400 × 400 × 400 3.31136 0.081 0.289 150.310 0.534 12.209 1.997
acomputed by √k. bmc = − log (F)/log (ϕ).
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In Equation 19, ui and ui+1 are velocities at time steps i and i+ 1, respectively. Shear thinning fluids properties for
power‐law and Cross‐fluid models were set in the transport properties. Special attention was paid to the
convergence condition using the Courant (or CFL) number (Weller et al., 1998). Following a sensitivity analysis,
we set the maximum allowed Courant number equal to 0.4 for the solution of Newtonian fluids to converge.
Regarding the power‐law and Cross‐fluid models, we set the Courant number limit equal to 0.0001. In both
Newtonian and non‐Newtonian cases, the time step was chosen to honor the Courant number limit.

The pore‐scale flow simulations were conducted for several pressure gradients across the sample. From simu-
lations, we obtained superficial velocity, u, from the input data of macroscopic pressure drop (Δp) across a
domain of length L with the assumption of (∂p/∂x) ≈ (Δp/L). We only considered the data on the x‐axis. To
determine the shift factor, the following procedure was adopted in this study:

1. The permeability of the porous medium, k, is obtained by Darcy's law (Equation 6) using the superficial
velocity and pressure drop data provided from the pore‐scale flow simulations for Newtonian fluids.

2. Flow simulations of non‐Newtonian fluids are performed, and μpm is determined from Equation 7 for various
pressure drops and flow rates. The simulations are terminated when a deviation from the decreasing trend in
the μpm‐u or μpm‐γ̇pm curve (e.g., see Figures 6 and 7) is observed at high flow rates, indicating reaching the
critical velocity at which the inertial flow regime begins.

3. The shift factor (α) is calculated in terms of simulation data of μpm (from step 2), flow velocity (u), sample
permeability (k) and porosity (ϕ), and the power‐law index, n, by the least‐square matching using the func-
tional relationship between μpm and u in Equation 20 or Equation 21. We used the CurveExpert software
(https://www.curveexpert.net/) for the purpose of curve fitting.

Power‐law model: μpm ( γ̇pm) = K(α
u
̅̅̅̅̅̅
kϕ

√ )

n− 1

(20)

Cross‐fluid model: μpm ( γ̇pm) = μ∞ +
μ0 − μ∞

[1 + mn(α u̅̅ ̅̅
kϕ

√ )
n
]

(21)

In this study, the numerical simulation work was implemented on two workstations. A summary of hardware and
simulation times for the developed solver is reported in Table 3. Each simulation was carried out in parallel with
several processors, depending on the complexity of the sample. The simulation time was varied depending mainly
on the applied pressure gradient. With increasing the pressure gradient, the simulation time became larger. For
instance, for non‐Newtonian fluid flow through the Estaillades sample (image size of 4003 voxels) at u= 0.195 m/
s, the most challenging case, the run time was about 10 hr.

4. Solver Verification: Flow of Non‐Newtonian Fluids Through a Sphere Pack
To verify the results of pore‐scale flow simulations of power‐law flow (K = 0.3 Pa.s with varying n) in a bed of
uniformly‐sized random spherical particles, we extensively performed simulations of power‐law flow on the μ‐
CT image of a beadpack sample named Finney packing of spheres (Finney & Bernal, 1970; Teeuw & Hesse-
link, 1980). The beadpack image was retrieved from the Digital Rocks Portal archive (http://www.digital-
rocksportal.org/projects/47). Figure 1e shows a 2D slice through the 3D segmented image of the sample with the
properties reported in Table 2. It is interesting to mention that from Table 2, a perfect agreement is observed

Table 3
Computational Resources Used in This Study and Simulation Times

Manufacturer CPU characteristics
# of
CPUs

# of
cores

RAM
(GB)

Simulation time, minimum/
maximum (min)

Supermicro
Computer Inc.

Intel® Xeon® Processor, Supermicro, CPU E5‐2650 v3 @ 2.3 GHz 2 40 192 15/4,500

ASUSTek
Computer Inc.

Intel® Xeon® Processor, ASUSTek, CPU E5‐2696 v4 @ 2.2 GHz 2 88 128 15/2,200
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between the analytical cementation exponent value obtained by Sen et al. (1981) and that obtained by the nu-
merical simulation.

The comparison of pore‐scale simulations of power‐law flow through the beadpack sample and the semi‐
analytical solutions (Equation 14 and Table 1) is shown in Figure 2 in terms of μpm against the intuitive
porous medium shear rate, defined by γ̇pm = u/√(kϕ) for different flow behavior indices (n = 0.2, 0.4, 0.6, and
0.8). The calculated shift factor for each n is also shown in Figure 2. The mean shift factor for the power‐law flow
with varying flow behavior index through the beadpack sample is 1.57 ± 0.03. It is worth mentioning that the
power‐law equation represents a linear relation in the log‐log plot of the porous medium viscosity versus shear
rate. The deviation from the straight line at high flow rates (corresponding to high shear rates) observed in the
simulation data of Figure 2 marks the start of the inertial flow effects. For low values of n (i.e., for the cases of
n = 0.2 and 0.4), numerical results show a deviation from the linear relationship (creeping flow region) at
extremely low flow rates, probably due to the importance of the interaction between the fluid and the pore walls,
which violates the assumptions of the linear Darcy's law model (Sochi, 2010). Using black solid lines, we also
show the model data (Equation 14) based on the estimated (fitted) shift factor value in Figure 2.

The numerical results in Figure 2 were found to be in good agreement with the semi‐analytical models (Equa-
tion 14 and Table 1). A close look at Figure 2 reveals that the numerically simulated μpm varies quite a bit and is in
between the results of the C‐M (Christopher and Middleman) and T‐H (Teeuw and Hesselink) models, except for
n= 0.2 where the simulation data is between C‐M and Savins models. It can be argued that as the power‐law index
increases, the numerical results are closer and match the T‐H model. It is interesting to check the numerical solver

Figure 2. Comparison of semi‐analytical models (Equation 14) of the power‐law fluid flow in a beadpack with our pore‐scale
numerical simulation results in terms of porous medium viscosity, μpm, as a function of the intuitive porous medium shear
rate, defined by u/√(kϕ). Note that the value of K (the flow consistency index) was taken to be 0.3 Pa.sn. The values of ϕ and
k are reported in Table 2.
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for n = 1, for which the power‐law model (Equation 8) reduces to the Newtonian fluid model with K = μ. It is
noted that all the models given by Equation 14 reduce to μpm = K for n = 1. From the simulation, the numerical
results for n = 1 were found to be 0.29 Pa.s in the creeping flow regime, which is in excellent agreement with the
semi‐analytical model. In spite of the fact that all the models in Equation 14 give the same porous medium
viscosity for n = 1, the values of α are different for various models, as indicated in Table 1. As mentioned before,
for the flow of Newtonian fluids in a straight bundle of uniform capillaries, the shear rate at the wall of the
capillary tube is given by Equation 11. In this case, the equivalent shift factor is equal to (4/√8) ≈ 1.4142, which
is the same as the shift factor value obtained by the T‐H model for n = 1 (see Table 1).

Figure 3 compares the calculated shift factor (α) values from pore‐scale flow simulations and those from the semi‐
analytical models for different values of the power‐law index. For the cases where the power‐law indices are equal
to 0.2 and 0.4, the numerical values of the shift factor are relatively close to those obtained by the C‐M model.
This is while for the other cases (n = 0.6 and 0.8), an excellent agreement was observed for the numerical values
of α and those calculated by the T‐H model.

5. Model Validation: Comparison to Experimental Data
To evaluate the model performance and identify any discrepancies for improvement, we compared the predictions
generated by the model with experimental results. Limited experimental data on the shift factors are accessible for
comparison. In this study, experimental data collected from two relevant literature cases (Chauveteau, 1982;
Rodríguez de Castro & Radilla, 2017b) were used to validate the predictive capabilities of the developed
computational model. The experimental setups involved flooding xanthan polymer solutions through packed beds
of glass spheres under various conditions. The Carreau model (Equation 22) was used to calculate the shift factor
(Bird et al., 1987):

μpm ( γ̇pm) = μ∞ + (μ0 − μ∞) [1 + (λγ̇pm)
2
]

n− 1
2

(22)

Figure 3. Comparison of the calculated α values from pore‐scale flow simulations for different values of n with those
obtained for semi‐analytical models (Equation 14 and Table 1).
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where μ0, μ∞, and n are similar to those in the Cross‐fluid model, and λ is a time constant. In Equation 22, γ̇pm is
given by Equation 12. Table 4 reports the numerical values of Carreau's parameters used in the simulations for
comparison with the experimental data. We utilized Porous Microstructure Generator (PMG) software (Daniel
et al., 2023) to generate beadpack numerical models. The grain diameter and porosity of the generated models
closely matched or were identical to those of the physical models utilized in the experiments. It is important to
highlight that the shift factor was calculated using the same method described in Section 3.3, which involved
performing a least‐square fit of the simulation data using Equation 22.

Table 5 presents the computed permeability and shift factor values for each numerical model (porous medium and
fluid system) alongside the corresponding experimental values of these parameters. Due to variations in
permeability and other crucial factors like tortuosity between the physical and numerical beadpack models, there
are discrepancies between the experimental and estimated values of the shift factor, although the trends of changes
remain consistent across the permeability range. In order to ensure a reasonable comparison between the
experimental and simulation results, the shift factor values are normalized by porosity and permeability, taking
the form of α/√(kϕ), as illustrated in Figure 4. We observed a strong agreement between the experimental and

Table 4
The Values of Parameters in the Carreau Model Used in the Simulations for Comparison With the Experimental Data

μ∞ (Pa.s) μ0 (Pa.s) λ (− ) n (− ) References

0.004 0.008 0.011 0.185 Chauveteau (1982)

0.180

0.175

0.160

0.130

0.110

0.080

0.0011 0.0056 0.85 0.66 Rodríguez de Castro and Radilla (2017b)

0.0235 0.58

0.0399 0.52

Table 5
The Experimental and Calculated Values of Permeability and Shift Factors for Each Porous Medium‐Fluid System

Particle diameter (μm) Porosity Power‐law exponent kexp (D) αexp ksim (D) αsim References for experimental data

8–15 0.41 0.08 0.11 1.75 0.22 2.69 Chauveteau (1982)

10–20 0.41 0.11 0.21 1.25 0.26 2.35

20–30 0.41 0.13 0.67 1.10 2.28 2.26

40–50 0.41 0.16 2.43 1.05 3.92 2.15

80–100 0.40 0.175 8.51 1.40 15.57 2.44

200–250 0.40 0.18 36.5 1.70 113 2.60

400–500 0.40 0.185 139 1.70 362 2.56

3,000 0.34 0.66 5,168 1.7 9,830 3.2 Rodríguez de Castro and Radilla (2017b)

0.58 2.0 3.72

0.52 1.1 2.42

4,000 0.35 0.66 9,626 1.8 13,211 3.12

0.58 3.1 3.46

0.52 1.9 2.33

5,000 0.34 0.66 13,172 2.1 13,838 2.74

0.58 4.5 3.21

0.52 1.9 2.32
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simulation findings for the experimental data reported by Chauveteau (1982), where permeability ranged between
∼10 mD and ∼140 D (Figure 4a). For the models featuring very high permeability values (Figure 4b) as utilized
by Rodríguez de Castro and Radilla (2017b), we noticed a lack of satisfactory agreement by the explanation that
the discrepancies may arise due to the departure from Darcy's law under high permeability conditions and the
influence of tortuosity on the shift factor. It is noted that the dashed lines depicted in Figure 4 represent the
prediction range at a 90% confidence interval, determined by employing the root mean square of the residual
between experimental and simulation data as the measure of uncertainty (Longo et al., 2013). Based on the
satisfactory match with the experimental results, the developed solver exhibits promising predictive capabilities
for modeling the flow of non‐Newtonian fluids through porous materials.

6. Results and Discussion
Table 6 gives the values of parameters of the power‐law and Cross‐fluid models used in our pore‐scale flow
simulations. The numerical values of the parameters of the rheological models were chosen based on the data

reported in the literature for the Xanthan gum solutions (Sochi, 2010; Soto
Caballero et al., 2016; Tosco et al., 2013; Zhong et al., 2013). Flow simu-
lations for various pressure drops and flow rates were performed for different
values of the rheological parameters of the shear‐thinning fluid (Table 6). It is
worth mentioning that the initial Newtonian flow simulations were performed
with a constant viscosity of 0.001 Pa.s (i.e., μ0 = μ∞ = 0.001 Pa.s in accor-
dance with the data given in Table 6).

6.1. The Onset of Inertial Flow Effects

In this study, the simulations were performed until a critical condition marked
the beginning of the inertial flow regime. As outlined in Section 2.5 in detail,
Equation 18 was used as an appropriate definition for the Reynolds number
for the flow of non‐Newtonian fluid through porous media. To indicate the
transition from the creeping to inertial flow regimes, we define a pressure
drop ratio as:

PDR =
(Δp/l)creeping
(Δp/l)apparent

(23)

Figure 4. A comparison between the experimental and simulated values of α/√(kϕ); The experimental data of (a) and (b) were obtained from Chauveteau (1982) and
Rodríguez de Castro and Radilla (2017b), respectively. The solid gray line indicates the equidistant line from both the x‐ and y‐axes. The dashed lines illustrate the
prediction range at the confidence level of 95%.

Table 6
Values of Parameters in the Power‐Law and Cross‐Fluid Models of
Shear‐Thinning Fluids Used in Our Simulations

Rheological model K (Pa.sn) μ∞ (Pa.s) μ0 (Pa.s) m (− ) n (− )

Power‐law model 0.3 – – – 0.1

0.31

0.62

0.8

Cross‐fluid model – 0.001 3.52 10.1 0.1

0.31

0.62

0.8

1 0.1

5

10.1

20
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where (Δp/l)apparent is the apparent pressure drop and (Δp/l)creeping is the pressure drop for the creeping flow
regime.

Figure 5 illustrates the dimensionless pressure drop ratio (PDR) for Bentheimer and Estaillades as functions of
Reynolds numbers (Equations 18 and 23) for the flow of Newtonian fluid and non‐Newtonian fluids (n= 0.62 and
0.8) depicting the transition from creeping to inertial flow regimes. Muljadi et al. (2016) adopted the transition
point for the creeping flow regime as the point at which the pressure drop resulting from the linear Darcy's law fell

Figure 5. The ratio of pressure drop at creeping flow to the apparent pressure drop as a function of Reynolds number depicting
the transition from the creeping to inertial flow regimes for Bentheimer and Estaillades samples for flow of Newtonian,
power‐law, and Cross fluids.
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below 99% of the overall pressure drop despite the sufficiency of 95% for
engineering purposes. As evident from Figure 5, regarding the Newtonian
fluid model, the critical Reynolds numbers at which the inertial effects begin
took place at 6 × 10− 3 and 8.5 × 10− 5 for Bentheimer and Estaillades,
respectively. Our results are in good agreement with the estimation given by
Muljadi et al. (2016).

A comparison between the Newtonian and non‐Newtonian flow in Figure 5
shows that there are significant fluctuations before the onset of the inertial
flow regime for the non‐Newtonian flow, particularly for the Cross‐fluid
model, so it is challenging to choose a clear cutoff (such as 99% or 95%
adopted by Muljadi et al. (2016)) to determine the end of the creeping flow

regime. Regarding the power‐law curves of Figure 5, we used a cutoff value of 95%, whereas a cutoff of 90% was
used for the Cross‐fluid model due to larger fluctuations. In this respect, the estimated critical Reynolds numbers
for all samples for the non‐Newtonian fluids with n = 0.62 are shown in Table 7.

From Figure 5, based on the definitions of the Reynolds numbers given by Equations 18 and 23, the critical
Reynolds numbers for the non‐Newtonian flow are smaller than those of the Newtonian flow by three to six orders
of magnitude, representing the importance of rheological effects inside the pore space of porous media. The
critical Reynolds number for the Cross‐fluid flow in the Bentheimer sandstone is substantially higher than that in
the Estaillades carbonate. However, a similar behavior was not observed for the power‐law fluid flow in these two
rock types, as evident from Figure 5 and Table 7, highlighting complex interactions between the rheological
behavior and the pore space complexity; hence, forecasting faces challenges.

Table 7 shows that the critical Reynolds numbers, ReNon‐Newtonian, for the Cross‐fluid model are one to three
orders of magnitude larger than those for the power‐law model. Furthermore, from Table 7, it can be seen that the
critical Reynolds numbers for Estaillades are considerably smaller than the other samples, while the synthetic
silica A1 has the lowest values of the critical Reynolds number. Consequently, the more complicated rock
samples in terms of rock type, characteristic pore length, and tortuosity showed a smaller critical Reynolds
number for the non‐Newtonian flow.

6.2. Effects of the Non‐Newtonian Flow Behavior Index

Porous medium viscosity is computed using the modified Darcy's law (Equation 7) for different non‐Newtonian
fluids, porous samples, and flow rates. The influence of the power‐law (flow behavior) index (n) on the porous
medium viscosity (μpm) versus the intuitive porous medium shear rate in the x‐direction, defined by (γ̇pm = u/
√(kϕ)), is illustrated in Figures 6 and 7 for the power‐law and Cross‐fluid models, respectively. As evident from
the figures, a similar trend was observed for all cases, that is, the μpm decreased with increasing the flow rate
before a critical velocity at which flow converted from Darcy to non‐Darcy due to the inertial effects. The figures
indicate that the value of porous medium viscosity significantly changes with the flow behavior index. A close
look at Figures 6 and 7 reveals some important points, as summarized below.

For both the power‐law and Cross fluids, the porous medium viscosity decreases as the shear rate increases
due to the shear‐thinning effects before it begins to increase at high flow rates due to the inertial effects.

Regarding the power‐law fluid case, Figure 6 reveals that the fluids with lower power‐law indices show a
greater change in porous‐medium viscosity with changing shear rates. This is similar to the behavior of the
power‐lawbulk viscosity (Frankland, 2012). This iswhile, according to Figure 7,we see a reverse behavior
for the Cross‐fluid model where porous‐medium viscosity varies significantly with the increase of the
power‐law index. It is worth mentioning again that for the power‐law flow with low power‐law indices
(n = 0.1 and 0.31), we see a deviation from the linear relationship (laminar region) at extremely low flow
rates, probably due to the importance of the interaction between the fluid and the pore walls (Sochi, 2010).

Figure 6 shows that the porous medium viscosity decreases by increasing the power‐law index up to a certain
intuitive shear rate (corresponding to a certain superficial velocity). A reverse trend is observed after that
certain shear rate. The behavior of the Cross‐fluid model is in the opposite direction compared to the
power‐law fluid flow through the samples (Figure 7). In other words, the porous medium viscosity in-
creases by increasing the power‐law index up to a certain shear rate before further reverse behavior.

Table 7
The Estimated Critical Reynolds Number (Onsets of the Inertial Flow
Regime) for the Samples Used in This Study for the Cases Where n = 0.62

Sample Power‐law modela Cross‐fluid modelb

Synthetic silica A1 2 × 10− 6 2.1 × 10− 5

Bentheimer 3.5 × 10− 9 1.4 × 10− 6

Sandstone S1 1.2 × 10− 7 1 × 10− 6

Estaillades 8 × 10− 9 3.3 × 10− 8

aBased on the 95% cutoff limit. bBased on the 90% cutoff limit.
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As outlined in Section 3.3, the shift factor (α) was calculated by matching the functional relationship between μpm
and u, Equations 18 and 19, and the simulation data (i.e., the data given in Figures 6 and 7). Tables 8 and 9 report
the calculated values of the shift factor for different values of the power‐law index, n, for both the power‐law and
the Cross‐fluid models, respectively. The shift factor data was calculated based on the best fit with the model with
a coefficient of determination (R squared) greater than 0.98. For each sample, we found the maximum α for the
extreme values of n (i.e., 0.1 and 0.8); a decrease in α was observed for the intermediate values of n. Figure 8
illustrates examples of good matches between shear‐thinning fluid simulations for n = 0.62 and the model based
on the fitted shift factor values, given in Tables 8 and 9, for the synthetic silica A1 and Estaillades samples. The
results obtained here clearly show that the shift factor increases by increasing the complexity of the porous
medium–or, more strictly, the pore space complexity–of the medium. This issue will be discussed in detail later in
Section 6.5.

It may be helpful to look at the μpm‐γ̇pm curves for a fixed n vale but varying rock complexity. Figure 9a illustrates
simulated porous medium viscosity versus intuitive porous medium shear rate (γ̇pm = u/√(kϕ)) for different
samples but for a fixed value of the flow behavior index (n = 0.62), suggesting that μpm changes with the pore
structure for a given flow or shear rate. This confirms that the shift factor varies with types of porous media (pore‐

Figure 6. The results of pore‐scale flow simulations in terms of porous medium viscosity (μpm = k/u · Δp/L) versus the intuitive porous medium shear rate (γ̇pm = u/
√(kϕ)), for the power‐law rheological model for different values of the flow behavior index.
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Table 8
The Estimated Shift Factor (α) From Curve Fitting for Different Values of the Flow Behavior Index, n, for the Power‐Law
Model

Synthetic silica A1 Bentheimer Sandstone S1 Estaillades

n α R2 α R2 α R2 α R2

0.1 1.7031 0.9941 2.6467 0.9671 3.1700 0.9987 5.5391 0.9782

0.31 1.6219 0.9992 2.3949 0.9951 2.9457 0.9991 5.1063 0.9965

0.62 1.6097 1.0000 2.3762 0.9996 3.1468 1.0000 5.5395 1.0000

0.8 1.7109 0.9997 2.4427 0.9954 3.6597 0.9998 6.2647 0.9998

Note. The coefficient of determination (R2) for all cases is also reported.

Figure 7. The results of pore‐scale flow simulations in terms of porous medium viscosity (μpm = k/u · Δp/L) versus the intuitive porous medium shear rate (γ̇pm = u/
√(kϕ)), for the Cross fluid rheological model for different values of the flow behavior.
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space complexity). Figure 9b shows the porous medium viscosity curves for all samples for n= 0.62 when plotted
against γ̇pm = αu/√(kϕ), representing that all the viscosity curves of different pore structures coincide with each
other. It is evident that the shift factor is a strong function of the pore space complexity and rock type. Our results
in Figure 9b are in good agreement with the results published by Tosco et al. (2013) (see Figure 7 of this
reference) for the same rheological model (the Cross model with the same parameters) but different porous media.
This agreement revealed that the deviations from the decreasing trend in the μpm‐γ̇pm curves observed in this study
were due to the onset of the inertial flow effects.

6.3. Effects of the Time Constant on the Shift Factor

Figure 10 illustrates the effects of the time constant of the Cross‐fluid model (m) on the porous medium viscosity
versus the intuitive porous medium shear rate. Similar behavior was found for all samples where μpm decreased
with increasing the time constant at all shear rates. Table 10 summarizes the calculated values of the shift factor
for different values of the time constant, m, for the Cross‐fluid model.

Table 11 summarizes major statistics (the mean and coefficient of variation) for the simulated shift factor values
for different values of flow behavior index, n, and the time constant of the Cross model, m. The coefficient of
variations data indicates that the variability of the shift factor is higher by changing the flow behavior index
compared to the variability due to the time constant. Hence, it can be argued that the flow behavior index is a more
important rheological parameter affecting the shift factor.

6.4. Effect of Flow Behavior Index on the Shift Factor

So far, we have found that the shift factor significantly varies with different pore structures. Figure 11 illustrates
the calculated shift factor (α) using the pore‐scale flow simulations for different flow behavior indices and various
samples with varying pore‐space complexity, representing that the larger values of α correspond to extreme

Table 9
The Estimated Shift Factor (α) From Curve Fitting for Different Values of the Flow Behavior Index, n, for the Cross‐Fluid
Model

Synthetic silica A1 Bentheimer Sandstone S1 Estaillades

n α R2 α R2 α R2 α R2

0.1 2.4493 0.9980 3.2312 0.9980 7.3645 0.9950 9.0683 0.9984

0.31 1.8241 0.9992 2.7751 0.9992 4.2816 0.9970 7.1815 0.9985

0.62 1.8020 0.9988 2.7415 0.9983 3.9704 0.9949 6.9616 0.9966

0.8 1.8416 0.9987 2.8532 0.9975 3.9682 0.9937 7.0768 0.9944

Note. The coefficient of determination (R2) for all cases is also reported.

Figure 8. The simulation data of μpm versus γ̇pm and the model based on the fitted shift factor, given in Tables 8 and 9, for the
synthetic silica A1 and Estaillades for the power‐law and Cross‐fluid models with n = 0.62.
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values of flow behavior indices. An increasing trend in the shift factor from synthetic silica A1 to Estaillades
carbonate can be seen in Figure 11, suggesting a direct dependency between the shift factor and the rock
complexity. For each sample, the power‐law model indicates a large variation in shift factor with respect to the
flow behavior index. This is while the Cross model shows approximately the same shift factor for different flow
behavior indices except for the lowest value of n (n = 0.1).

6.5. Effects of Rock Pore Complexity on the Shift Factor

Utilizing pore‐scale flow simulations provides a unique opportunity to assess the key parameters influencing the
complexity of pore space and their impact on the shift factor, which is typically inaccessible through traditional
methodologies like laboratory experiments. This section provides the relationship between pore space complexity
and the shift factor, utilizing data presented in Figures 12 and 13, which highlight variations for the power‐law and
the Cross‐fluid models. Key observations are as follows:

Impact of porosity on shift factor: A clear negative correlation exists between the shift factor and porosity. As the
porosity increases, the shift factor significantly reduces. Highly porous rocks exhibit reduced disparity between
the bulk and in‐situ porous medium viscosities. The underlying reasoning is the probability of a more homog-
enous viscosity distribution in materials with high porosity. Conversely, rocks with low porosity showcase an
elevated shift factor. Such a phenomenon is attributed to the dominance of narrow flow channels and a consequent
wide range of shear rates and local viscosities.

Tortuosity's role: A trend emerges when analyzing the shift factor, α, against F.ϕ. The latter serves as a proxy for
the tortuosity of pore space. Higher tortuosity corresponds to an increase in the shift factor. This is particularly
evident for the Estaillades carbonate sample. Its F.ϕ values entirely surpass those of other samples, as noted in
Table 2. In fact, the peak in the shift factor is linked to this sample, underscoring the profound influence of
tortuosity.

Cementation exponent: A rising trend in the cementation exponent correlates with an upswing in the shift factor.
This hints at the fact that samples exhibiting greater heterogeneity and reduced pore space connectivity show
significantly increased shift factors.

Characteristic pore length: Rocks characterized by smaller characteristic pore lengths (analogous to lower
permeability) show a larger shift factor. Given this trend, carbonate rocks, often characterized by a substantive
microporosity, tend to have shift factors exceeding those observed for sandstones in most cases.

For the power‐law fluid flow, the general expressions of the shift factor α based on the capillary bundle model and
assuming a constant value for the tortuosity illustrate that α is a function of the fluid rheology (here, the power‐law
index). However, the literature and also the findings of this work show that α is a function of both the fluid
rheology and the pore space complexity. Hence, in line with Equations 12 and 14, it is argued that the coefficient

Figure 9. Variations of porous medium viscosity (μpm) with porous medium shear rate (γ̇pm) (a) without and (b) with shift
factor for samples with various complexities. The pore‐scale numerical simulation data are for the Cross‐fluid model with
n = 0.62.
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Figure 10. The results of pore‐scale flow simulations in terms of porous medium viscosity (μpm = k/u · Δp/L) versus the intuitive porous medium shear rate (γ̇pm = u/
√(kϕ)), for the Cross fluid rheological model for different values of the time constant.

Table 10
The Estimated Shift Factor (α) From Curve Fitting for Different Values of the Time Constant, m, for the Cross‐Fluid Model

Synthetic silica A1 Bentheimer Sandstone S1 Estaillades

m α R2 α R2 α R2 α R2

1 2.5889 0.9975 3.3399 0.9978 8.4393 0.9929 9.5139 0.9974

5 2.4520 0.9981 3.2115 0.9980 7.7077 0.9942 9.1735 0.9979

10.1 2.4493 0.9980 3.2312 0.9980 7.3645 0.9950 9.0683 0.9984

20 2.3820 0.9981 3.1829 0.9980 7.1623 0.9964 9.0046 0.9985

Note. The coefficient of determination (R2) for all cases is also reported.
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C in the shift factor equation (Equation 15) is not a constant value and is generally a function of the flow behavior
index and the pore space complexity. Based on the calculated shift factor using the pore‐scale flow simulations, it
is possible to estimate the coefficient C. Regarding the Teeuw and Hesselink (T‐H) model as the closest model to
the simulation data found in Section 4, the calculated C for each sample, from the simulation data, is reported in
Table 12. Note that the value of C is equal to√2 ≈ 1.41 from the T‐H model for the spherical packs, assuming the
capillary bundle model. Balhoff and Thompson (2006) have reported experimental values of C for various non‐
Newtonian fluids and unconsolidated porous media (packed beds), indicating that it is in the range of 0.8–1.67. It
is evident from Table 12 that the values of C for less complex sandstones are close to the results obtained for the
unconsolidated porous media, while complex porous media, including carbonate rocks in particular, have
significantly higher values of C and hence the shift factor. A close inspection of the effects of fluid rheology and
rock types reveals that the value ofC increases as the flow behavior index or the complexity of the porous medium
increases. Similar results were obtained by Cannella et al. (1988), using an experimental study of Xanthan
rheology in a network of capillary tubes with varying tube radii and interconnectivity. In this study, we found that
for Sandstone S1 and Estaillades carbonate, the values of C are higher than those predicted from the bundle‐of‐
capillary‐tube models (see Table 1), while synthetic silica A1 shows considerably low values for C and Ben-
theimer sandstone exhibits an intermediate behavior.

6.6. Discussion: Comparison With Literature

Figure 14 shows the pressure gradient against Darcy's velocity, derived from pore‐scale flow simulation, and
contrasts it with results from the Cross‐fluid model, both with and without incorporating the shift factor, for
Bentheimer and Estaillades samples. As observed in Figure 14, the Cross‐fluid model aligns well with simulated
data at lower Darcy velocities, indicating a Newtonian fluid behavior at these velocities. However, as the velocity
amplifies, a noticeable disparity emerges between the simulated pressure gradient and the Cross model results that
exclude the shift factor. This deviation is particularly pronounced for the Estaillades carbonate sample,

Table 11
The Arithmetic Means and Coefficients of Variation of the Calculated Shift Factor for Different Power‐Law Indices (for Both
the Power‐Law and Cross‐Fluid Models) and for Different Time Constants of the Cross‐Fluid Model

Sample

α (varying flow behavior index) α (varying the time constant)

Mean Coefficient of variation

Mean Coefficient of variationPower‐law Cross Power‐law Cross

Synthetic silica A1 1.6614 1.9793 0.0319 0.1585 2.4681 0.0352

Bentheimer 2.4651 2.9003 0.0504 0.0778 3.2414 0.0212

Sandstone S1 3.2306 4.8962 0.0939 0.3374 7.6685 0.0732

Estaillades 5.6124 7.5721 0.0856 0.1323 9.1901 0.0247

Figure 11. Values of shift factor for different samples and flow behavior indices.
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emphasizing that an accurate shift factor becomes increasingly critical for samples with elevated pore‐space
complexity. Consequently, the shift factor is indispensable for precisely forecasting the macroscopic pressure
differential in non‐Newtonian fluid flow within porous rocks.

Table 13 compares the calculated shift factor in this work and those reported in the literature for the Cross‐fluid
model with exactly the same parameters. Tosco et al. (2013) used 2D SEM images of unpacked sand grains with
high porosity and permeability and computed the shift factor. Their results show a relatively similar trend;
reduced shift factor for the cases with higher porosity and or permeability, as also evident from the results of
Zhang et al. (2019). Nonetheless, we observe some anomalies in data reported by Tosco et al. (2013), which
suggests the potential for a non‐dimensional analysis scheme with experimental data to develop a relationship that
connects the macro and/or microscale properties of the porous media to the shift factor. Furthermore, what is
interesting from the data in Table 13 is that the shift factors obtained by Tosco et al. (2013) and Zhang et al. (2019)
are in the same range as those calculated in our studies despite wide discrepancies among porous media, rep-
resenting that the fluid rheology, here the flow behavior index, has a much more significant effect on the shift
factor than the porous media properties.

Figure 12. Variations in average shift factor as functions of porosity, the product of formation factor and porosity (as an indication of pore tortuosity), the cementation
exponent, and the characteristic pore length for the power‐law fluid model.
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7. Summary and Conclusions
In this work, we developed a numerical solver based on the OpenFOAM finite volume library to simulate the flow
of non‐Newtonian fluids in porous media. Our primary objective was to bridge the gap between the behavior of
fluids at the macroscopic level and their complex interactions within the complex pore spaces of diverse porous
rocks. Our conclusions shed light on various aspects of non‐Newtonian fluid flow and its implications for porous

Figure 13. Variations in average shift factor as functions of porosity, the product of formation factor and porosity (as an indication of pore tortuosity), the cementation
exponent, and the characteristic pore length for the Cross‐fluid model.

Table 12
The Calculated Coefficient C in the Shift Factor Equation (Equation 15) Based on the Results Obtained by the Pore‐Scale
Flow Simulations for the Power‐Law Fluid Flow and the Teeuw and Hesselink Model

n Synthetic silica A1 Bentheimer Sandstone S1 Estaillades

0.1 0.52 0.76 1.34 1.76

0.31 0.86 1.50 1.98 3.57

0.62 0.99 1.45 1.93 3.40

0.80 1.13 1.58 2.41 4.15
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media, contributing to a deeper understanding of this complex phenomenon. While most previous studies have
focused on the impact of rheological parameters on flow in porous structures, we have paid particular attention to
the influence of pore microgeometry and macroscale rock properties. The main conclusions can be summarized as
follows:

We found that the shift factor (α), a crucial parameter to accurately predict pressure gradients in non‐
Newtonian fluid flow in porous media, is significantly influenced by the flow behavior index (n).
Interestingly, the maximal shift factor values were observed at extreme n values, while intermediate
values of n led to a reduction in α. This dynamic underscores the importance of considering the interplay
between flow behavior and pore structure complexity when evaluating the shift factor's impact.

At a given porous medium shear rate or flow rate, the porous medium viscosity decreased by increasing the
complexity of the pore space.

The shift factor decreased by increasing the porosity and the characteristic pore size. However, it increased
by increasing pore tortuosity and heterogeneity and decreasing pore connectivity.

Despite the simplicity of the capillary bundle model, this approximation can correlate the viscosity of non‐
Newtonian fluids in porous materials, provided that proper coefficient values are used, for example, from
pore‐scale flow simulation.

Finally, we remark on the applications and limitations of the methods and results achieved by this work. The
method adopted in this study and, in general, the pore‐scale simulation approach is a strong, versatile alter-
native to laboratory tests and analytical methods. This technique allows exploring various fluid models, a wide
range of flow rates and pressures, and different 3D microstructures. This study showed that the pore‐scale
simulation approach is useful in accurately predicting pressure drop in the flow of non‐Newtonian fluids
through porous materials by calculating an accurate shift factor for a given fluid‐porous medium system.
However, the effectiveness of this method depends on knowing detailed information about the pore space of the
medium, which can be obtained through high‐resolution 3D microtomography imaging. This limitation restricts
the applicability of the pore‐scale numerical simulation to μ‐CT images of complex tight porous media. The
abundance of micro‐ and nanopores combined with pore structure complexity is a critical issue that needs
further investigation. Another issue of worthy further investigation is evaluating the computational performance
of the proposed solver for simulating non‐Newtonian flow in large data sets where massive parallel computing
is required.

Figure 14. Plots of pressure gradient against Darcy's velocity for Bentheimer sandstone and Estaillades carbonate samples.
The pore‐scale numerical simulation data are for the Cross‐fluid model with n = 0.62.
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