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Abstract

Models have become a key component of scientific hypothesis testing and cli-

mate and sustainability planning, as enabled by increased data availability and

computing power. As a result, understanding how the perceived ‘complexity’
of a model corresponds to its accuracy and predictive power has become a

prevalent research topic. However, a wide variety of definitions of model com-

plexity have been proposed and used, leading to an imprecise understanding of

what model complexity is and its consequences across research studies, study

systems, and disciplines. Here, we propose a more explicit definition of model

complexity, incorporating four facets—model class, model inputs, model

parameters, and computational complexity—which are modulated by the com-

plexity of the real-world process being modelled. We illustrate these facets with

several examples drawn from ecological literature. Overall, we argue that pre-

cise terminology and metrics of model complexity (e.g., number of parameters,

number of inputs) may be necessary to characterize the emergent outcomes of

complexity, including model comparison, model performance, model transfer-

ability and decision support.
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1 | INTRODUCTION

In environmental and climatological research, models
are increasingly used to understand changes in ecosystem
services and their relationship with climate, define global
policy goals, and plan and prioritize climate mitigation
actions in the face of rapid climate change (Geary
et al., 2020; Meehl et al., 2014). Transformative advances
in computing and processing power have expanded our
modelling capabilities, making it possible to integrate
physical, chemical, and biological processes that both
influence and respond to climate and biosphere dynamics
at global scales (Bonan & Doney, 2018; McCrea
et al., 2023; Yeager & Danabasoglu, 2014). These
advancements have enabled quantitative environmental
models to incorporate data from formerly disparate fields
including climatology, hydrology, cryology, atmospheric
sciences, marine sciences, ecology, biogeochemistry, and
socioeconomics to simulate and predict the future state of
our planet and its people (Dietze et al., 2018; Solé &
Levin, 2022). Beyond improving our understanding of the
earth system, model results also underpin major interna-
tional environmental policy and decision-making efforts
such as the UN's 17 Sustainable Development Goals and
the Paris Climate Agreement (IPCC, 2023; The Sustain-
able Development Goals Report 2022, 2022). Despite the
ubiquity of modelling in research, management, and
decision-making, there is a lack of common terminology
in how models are described. This represents a gap in
understanding among the diverse interdisciplinary com-
munity that relies on model results and outcomes.

A notable example is the inconsistent use of the terms
‘simple’ or ‘complex’ to describe models across the cur-
rent scientific literature. Typical definitions of model
complexity often include some combination of the num-
ber of parameters or inputs to a model, the class of
model being employed, the model's computational
demand, and the complexity of the natural processes a
model represents (Evans et al., 2013; Ward et al., 2014).
However, despite the number of papers that mention
model complexity, we currently lack a consistent termi-
nology that can be used to make robust comparisons
between models and studies, facilitate the transfer of
models to new contexts, or communicate model results
across disciplines. Moreover, there has been an under-
standably narrow focus on complexity as it relates to a
model's final structure. Here, we provide a more holistic
approach to define the complexity of a model's entire
construction, including the model's mathematical struc-
ture and individual components (e.g. parameters and
inputs), as well as its applications and the natural pro-
cesses the model represents. As environmental modellers
begin to reckon with the ‘cost’ of model complexity

throughout the research process (e.g., analysis time,
model transferability, predictive capacity, etc.), the wide
variety and vagueness of current definitions presents a
barrier to collective understanding and inhibits our abil-
ity to address complexity during model development and
application. Clear and consistent terminology for describ-
ing model complexity offers a way to characterize choices
made during model development and a way to compare
models for various applications or intended outcomes,
from theory and hypothesis generation to prediction and
forecasts.

Modellers commonly attempt to make generalizations
about predictive performance and its relationship with
complexity, especially in considering trade-offs between

TABLE 1 Examples of minimum metrics that may be reported

or compared when analysing model complexity.

Recommendations for reporting model complexity by
facet

Model Class
Complexity (2.1)

• Provide a detailed model description
including (but not limited to) whether
a model is mechanistic, statistical or
hybrid, which parameters are being
used to represent natural phenomena,
and justification of selected model
construction(s) where applicable

• Link to a model description paper and
share code through an open source
software repository

Parameter
Complexity (2.2)

• Report number of parameters used in
the model

• Report number of fitted parameters
estimated for the model

• Describe how model parameters were
estimated

• Publish parameter values and
uncertainties, either within
manuscripts or supplemental
information

Input
Complexity (2.3)

• Report number of inputs used in the
model

• Report type of inputs used in the
model (e.g., ‘raw’ collected data,
modelled or gridded data products,
forecasts or ensemble products, etc.)

• Make input data available in an open-
source repository

Computational
Complexity (2.4)

• Report model computation times and
system specifications

• Report computation times for
estimating parameters and
uncertainties

• Report number of ensemble members
and uncertainties when using
ensemble approaches
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being overly simplistic or unnecessarily complicated
when representing the broad range of real-world pro-
cesses and their myriad interactions (e.g., weather and
climate forecasting in Scher and Messori (2019); ecologi-
cal processes in Evans et al., 2013; Ward et al., 2014). This
trade-off between overfitting and underfitting (e.g., the
bias–variance trade-off) likely has important implications
for the generalizability of models (Belkin et al., 2019;
Briscoe & Feldman, 2011; Geman et al., 1992). In ecology,
for instance, an increasing body of literature suggests that
‘simple’ models may perform as well as or better than
more complex, highly parameterized models, particularly

when predicting future conditions (Chevalier &
Knape, 2020; Merow et al., 2014; Ward et al., 2014).
‘Complex’ models can be overfit to existing data at the
expense of predictive power and may be worse at predict-
ing novel conditions (Evans et al., 2013; Yates
et al., 2018). Conversely, simple models may fail to
encompass some variation in the response variable, alter-
ing model-driven insight and resulting in worse predic-
tions (Boettiger, 2022). However, a lack of terminology
for defining models as simple or complex prevents a
robust analysis of the impact of the bias–variance trade-
off on the generalizability and predictability of models.

FIGURE 1 Model complexity can be decomposed into multiple components. (a) Model class (teal) complexity describes the complexity

of the formulaic representation of ecological, chemical, climatological or other processes, including statistical models (left bubble, showing a

linear model) and mechanistic models (right bubble, showing a Lotka–Volterra model). (b) Parameter complexity (green) comprises several

components of complexity, including the number of parameters within a model (left bubble) and the nature of the relationship between

driver and response variables (right bubble). (c) Input complexity (purple) defines the complexity of the variables functioning as inputs to

the model, such as climatological drivers (left bubble) and initial ecosystem conditions in dynamical models (right bubble). (d) Computation

complexity (pink) includes concepts such as the time required to complete a model simulation (left bubble) and the computing resources

required to run the model, such as cloud computing resources (right bubble). (e) Process complexity (cyan) refers to the complexity of the

system that is being modelled. While not a facet of model complexity, the underlying ecological process complexity defines and shapes the

facets of model complexity.
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In this paper, we identify multiple facets of model
complexity, discuss how more explicit terminology
regarding model complexity may benefit the broader sci-
entific modelling community and offer recommendations
for incorporating more precise definitions of model com-
plexity into model descriptions and comparisons
(Table 1). The taxonomy we propose will be useful in two
ways: (1) it provides a structure to describe choices made
during model development and (2) it introduces consis-
tent language for comparing model complexity across
studies and intended applications. In practice, we view
our proposed facets as a way to improve technical coher-
ence so that researchers and practitioners may communi-
cate effectively about different sources of model
complexity and address their accompanying challenges.
We outline four facets of model complexity (Figure 1)
that together form a conceptual framework to facilitate a
systematic assessment of a given model's complexities
and outputs. While we delineate between these facets of
model complexity, we also separately consider how the
complexity of the natural process being modelled itself
influences how complex a model needs to be to ade-
quately represent reality. By doing so, we distinguish
between complexity derived from the model itself, in
which decisions about parameters, inputs, data, or struc-
ture are weighed by modellers and complexity derived
from the process being modelled, which the modeller
cannot influence. Further, we provide examples from the
ecological literature associated with each facet as well as
a case study (Box 2) to illustrate how different types of
complexity impact model development and interact with
one another. While model complexity is relevant to the
whole of the scientific modelling community, we
approach this topic from the perspective of quantitative
ecology, a field that offers a wide variety of examples con-
trasting ‘simple’ and ‘complex’ models. Finally, we offer
a brief set of recommendations to continue building upon
this foundation.

2 | FACETS OF COMPLEXITY

Model complexity is often treated as a static, singular
property despite arising from multiple sources during
model development. These sources include model class
(e.g., mechanistic vs. statistical), parameters, inputs and
computation, all of which are moderated by the underly-
ing complexity of the natural process being modelled. We
maintain that each of these sources, which we describe
as ‘facets’, introduces complexity to a model as a result of
choices and trade-offs made during model development.
A model's complexity, therefore, can be defined through
these facets both individually and by the way they

interact with one another. Though our list of facets is not
exhaustive, our aim is that the sources of complexity out-
lined here will spark greater discussion in the scientific
community about how we define, confront, and commu-
nicate about model complexity. We define each facet in
more detail below.

2.1 | Model class complexity

One key facet of model complexity is model class
(Figure 1a), which we define as the mathematical ‘scaf-
folding’ that determines a model's overall structure and
shapes how a model's parameters and inputs interact.
The choice of model class entails trade-offs of generality,
realism, and precision (Box 1), which are interlinked
with how complex we perceive a model to be
(Levins, 1966). Two general classes of model structure are
statistical models (also colloquially interchanged with
the terms correlative, data-driven, empirical, phenomeno-
logical or pattern-based models) and mechanistic
models (colloquially interchanged with the term process-
based): see Box 1 for definitions (Bolker, 2008). Statistical
models seek to best quantify correlations between inputs
and outputs within the domain of provided data, which
may or may not be indicative of causal relationships
between variables. Mechanistic models intend to mathe-
matically represent, at least in an abstracted sense, the
hypothesized processes occurring in nature, with state
variables and parameters corresponding to the measures
of traits and rates as they exist in the physical world.
Here, we describe model class complexity to introduce
how the model class may be associated, and potentially
conflated, with other facets of complexity.

While model class is often referenced as a major
determinant of model complexity, neither statistical nor
mechanistic models are inherently more simple or com-
plex. Some environmental scientists have posited that sta-
tistical models offer a more ‘simple’ alternative to heavily
parameterized mechanistic models, and that the per-
ceived added complexity when using mechanistic models
(e.g., quantifying associated ecological traits and rates
beyond the target variable) can decrease predictive capac-
ity (Fordham et al., 2018; Perretti et al., 2013; Ward
et al., 2014). The choice of statistical approach is vital, as
some statistical models may provide linearized
(i.e., ‘simplified’) estimates of relationships, which may
have highly non-linear, idiosyncratic structures in reality
or anticipate a highly non-linear (i.e., ‘complex’) relation-
ship between variables that could be neatly approximated
with more straightforward representations (Merow
et al., 2014). Yet the legacy of ecology is also rich in
mechanistic models that fall under the many definitions
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of ‘simple’ (e.g., few parameters or inputs, as detailed
below; Levene, 1953; Macarthur & Wilson, 1967). Addi-
tionally, statistical models are not inherently ‘less’ com-
plex, as they span many types of phenomenological
modelling techniques and inputs. Thus, we contend that
statistical models cannot be generally described as more
complex than mechanistic models, or vice versa. For
example, Coelho et al. (2019) proposed that while mecha-
nistic models are often colloquially thought of as more
complex, this can block the advancement of theory devel-
opment in ecology and evolution.

Certain modelling approaches have also blended ele-
ments of both statistical and mechanistic models to form
‘hybrid’ approaches that leverage both abundant empiri-
cal data and established quantitative theory (Buckley
et al., 2011; Peterson et al., 2015; Read et al., 2019), fur-
ther muddying the typical distinction between these two
model types. Mechanistic and statistical models can also
be linked together in a hierarchical structure (Laubmeier
et al., 2020), or a mechanistic model can be updated or
calibrated using new information from statistical models
(Fer et al., 2018; LeBauer et al., 2013). Hybrid approaches
have been proposed as a means for efficiently capturing
real environmental processes (Buckley et al., 2023;
Tourinho & Vale, 2023; Zurell et al., 2016) without the
high parameterization of purely mechanistic models,
which may add complexity (see ‘Parameter Complexity’).

As a result, neither mechanistic nor statistical models
are universally more complex than the other; rather, the
complexity of both model classes should be evaluated
based upon the set of facets unique to each model,
described below. Mechanistic and statistical models differ
in structure, which influences how other facets jointly
determine complexity: these two classes differently shape
how parameters and inputs are related, which in turn
determines the computational capacity necessary for the
model to run. Since model class dictates a model's overall
structure, though not necessarily the total number or type
of parameters or inputs in a model, we consider it a sepa-
rate facet of model complexity from the others we define.
Comparisons of models of different classes instead should
be grounded in how statistical, mechanistic, and hybrid
models yield accurate predictions or generate knowledge
of underlying processes (Tourinho & Vale, 2023).

BOX 1 Definitions of important terms.
Definitions are consistent with
(Dietze, 2017)

• Model: A model is a simplified representation
of a system or process. Here, we specifically
consider quantitative models, which represent
the system or process via one or more equa-
tions with a quantitative set of inputs and out-
puts. Models may be stochastic, deterministic,
or intermediate and may be statistical,
mechanistic, or intermediate (see below).

• Parameter: Parameters describe the relation-
ship between inputs and outputs of a model.
When performing model fitting, parameters
are the quantities that are being estimated.

• Input: Inputs are variables that are supplied
to a model. When a model is used for predic-
tion, the inputs are supplied to the model to
predict the outputs. Inputs can be broadly
divided into two classes: drivers and initial
conditions. Drivers (also called boundary
conditions) are variables that are considered
outside of the system being modelled. For
example, climatic variables are drivers of eco-
system function. Initial conditions are states
that must be mathematically defined in the
case of dynamic models. Typically, initial con-
ditions are the value of the output variable of
interest for the first time step in dynamical
systems.

• Model class: Model class refers to whether a
model is statistical or mechanistic or a hybrid
incorporating features of each. Statistical
models, such as linear regression, aim to cap-
ture correlative relationships between inputs
and outputs without describing the physical or
environmental processes underlying the rela-
tionship. When we refer to ‘statistical’ models,
we also include machine learning and deep
learning, as much like traditional statistical
models, they employ a data-driven approach
that does not attempt to capture underlying
processes. Mechanistic models, such as
many Earth system models (e.g., CESM,
MIROC-ESM), mathematically imbed our
knowledge of the physical or ecological system
into a set of equations describing the mecha-
nisms giving rise to observed relationships.

• Natural process: The naturally occurring pro-
cesses that are being represented in a model.

While not a component of model complexity,
real-world processes that are influenced by
many earth system components or emerge
from interactions between different compo-
nents may lead to higher parameter, input,
model class and/or computational complexity.
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2.2 | Parameter complexity

Another common criterion by which models are classi-
fied as either simple or complex is the number and
nature of parameters represented within a model
(Figure 1b; Chevalier & Knape, 2020; Gerber &
Kendall, 2018). Here, we define a parameter as a model
value that can be estimated from data or prior knowledge
and is used to quantify (in part or fully) the relationship
between a driver and a response (Box 1). When classify-
ing model complexity, the number of parameters
included in a model is considered most often. For exam-
ple, a statistical model such as a linear regression has at
least two parameters: an intercept and a slope. Model
complexity increases with each additional parameter
(either including more covariates or representing interac-
tions between covariates), up to hundreds (e.g., general
circulation models predicting global climate patterns;
Dunne et al., 2012) or even millions of parameters
(e.g., >10 million parameters in large language models
and other deep learning models; Hirn et al., 2022;
Rostami et al., 2023). In one application of parameter
complexity, Clark et al. (2020) used the number of
parameters to demonstrate that a model of intermediate
complexity (i.e., an intermediate number of parameters)
produced the best out-of-sample predictions of species
abundances within a grassland plant community. Simi-
larly, Chevalier and Knape (2020) used increasing param-
eter number (i.e., adding environmental covariates and
random site effects to a linear model) as a means to
compare the complexity of different forecasts of bird
abundance and found that the simplest model, an
intercept-only model, where the intercept is a summation
of climate effects on the bird populations, produced, on
average, the most accurate forecast across species, sites
and years.

Increasing the number of parameters has several
important implications for a model's complexity. It does
so directly, by increasing the potential for overfitting, and
indirectly, by increasing the number of sources of uncer-
tainty associated with these parameter values. Conse-
quently, several reviews use the number of parameters to
describe model complexity when highlighting the risk of
overfitting models to data (Dietze, 2017; Geary
et al., 2020; Merow et al., 2014; Rastetter, 2017). Parame-
ter number is relevant for traditional model fitting as
model comparison metrics often penalize statistical
models based on the number of fitted parameters through
degrees of freedom or likelihoods. However, users of
process-based models often fit only a subset of all avail-
able parameters based on model sensitivity or data
availability. As a result, many parameters may remain as

constants or may be constrained by outside data, making
analogous methods for penalizing based on the number
of parameters difficult (although methods exist for reduc-
ing process-based model complexity using emulation;
Ratto et al., 2012). In addition, the number of parameters
being fit, as opposed to left as constants, in process-based
models is often not reported, which can have implica-
tions for parameter identifiability and complexity. For
example, when parameters are correlated with each
other, multiple possible combinations of values of param-
eters can lead to an equally good fit, leading to equifinal-
ity (Luo et al., 2009). Altogether, these factors render
comparisons of parameter complexity across model clas-
ses difficult without explicit documentation of parameter
complexity.

These concepts have also appeared in empirical com-
parisons of model performance. For example, Rostami
et al. (2023) compared the predictive accuracy of 12 deep
learning models trained to classify images of pollen grains
to their respective species. The authors found that when
sufficiently large datasets are available, models with larger
numbers of parameters (which they defined as more com-
plex) had higher prediction accuracy than simpler models.
However, when fewer data are available, the authors note
that the extreme number of parameters in their most com-
plex models (20–80 million parameters) would increase
the risk of overfitting and reduce predictive accuracy.

Beyond the total number of parameters included in a
model, the estimability of parameters can also influence
model complexity. Estimating parameters from dynamic
time series data—such as parameters for growth rates or
extinction likelihoods of populations—can be difficult
given that modelled process variation and unmodelled
noise may operate at different temporal scales or experi-
ence time lags (Holmes et al., 2007; Lindley et al., 2003).
For example, a complex model could be one with a noisy
lag structure in the data that are difficult to estimate
(Merow et al., 2014). Additionally, the parameter distri-
butions (e.g., linear, exponential, quadratic) and drivers
selected during estimation can modulate a model's over-
all complexity. For example, linear relationships tend to
be the most simple to identify and evaluate, as the rate of
change between variables does not depend on the value
of either variable (Ruel & Ayres, 1999). In contrast,
models may be more sensitive to parameters that govern
non-linear relationships, increasing the ability to overfit
data. A more detailed example of these considerations
can be found in Box 2. While a simple definition of
parameter complexity may be elusive, reporting metrics
of parameter complexity can provide a more accurate and
robust understanding of the implications of parameter
complexity (Table 1).
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2.3 | Input complexity

Another facet of model complexity concerns the model
inputs (Figure 1c). Model inputs include drivers and ini-
tial conditions (Box 1), along with any other information
that must be provided to the model in order for it to gen-
erate estimates of the state variable(s) and parameters.
Input complexity touches on a diverse range of aspects,
relating to the origin (e.g., models or observations) and
nature of the input variables. Input complexity is related
to parameter complexity in that an increase in the num-
ber of drivers will typically entail an increase in the
number of parameters (Box 2). However, we separate
input complexity from parameter complexity since the
nature of given inputs places demands on modellers that
necessarily increase complexity. For instance, some data
may be challenging to collect due to physical constraints
(i.e., effort or time required for collection) or complexity
of the natural process being measured (see Section 3.4
Ecological Processes). As a result, estimating these inputs
may require specialized methods or calibration, require
representation by proxy rather than direct measurement
or the input itself may be modelled or forecasted rather
than directly measured, necessitating inclusion of speci-
fied uncertainties (Chadwick et al., 2023). For example,
snow leopards (Panthera uncia) are elusive and difficult
to monitor, and therefore proxies such as ungulate bio-
mass have been tested in combination with camera-trap
data to estimate home range size (Mccarthy et al., 2008).
Often, model complexity is defined partially in terms of
the number of drivers in a model (Perretti et al., 2013;
Wood et al., 2020), but the complexity of the inputs them-
selves is often overlooked. Some input variables can be
physically measured in the field or the lab (e.g., current
air temperature), whereas others are necessarily from
models (e.g., historical 2-m air temperature from climate
reanalyses). Key features of input data are the spatial and
temporal resolution, which can range across orders of
magnitude. Higher spatial or temporal resolution usually
entails higher complexity by representing more heterogeneity
in space and time and requiring increased storage, memory,
and/or computational power (see ‘Computational Complex-
ity’). This in turn may demand more time from researchers
to process and analyse larger volumes of data (Jain
et al., 2022). For specific cases, new methods are being intro-
duced to effectively handle large datasets (Fer et al., 2018).

Other practical complexities relate to the infrastruc-
ture to read input files. Ideally, input data that conform
to community standards (e.g., CF-conventions for
NetCDF-files, or more specifically for ecological forecast-
ing the EFI community standards, Dietze et al., 2023) can
reduce the complexity of required data processing or
curation. Also, the different licenses of data can

BOX 2 Facets of model complexity
illustrated via an eco-epidemiological case
study

Chronic wasting disease (CWD) is a contagious
prion disease affecting animals within the family
Cervidae (e.g., deer), causing irreversible and
fatal neurological damage. It can only be diag-
nosed during autopsy, posing real-time chal-
lenges for disease and wildlife ecologists when
building forecasts to evaluate different manage-
ment intervention scenarios. The ecological pro-
cesses driving CWD transmission are notoriously
complicated to describe accurately (Ladeau,
2010), as they depend on animal traits (e.g., age
and sex), spatial aggregation and transmission
events occurring even after host death (Miller &
Conner, 2005).

Beyond the underlying ecological process
complexity, modelling CWD transmission and
forecasting outbreaks across space and time is
technically difficult from a modelling workflow
perspective. This historically led to debate
among researchers and managers on how to
select contextually appropriate levels and layers
of model complexity, as highlighted in a 2010
Ecology forum (Heisey et al., 2010a, 2010b;
Hodges, 2010; Ladeau, 2010; Lavine, 2010;
Lele, 2010; Waller, 2010). Below, we include
where we believe our proposed model complex-
ity facets might have improved clarity and
allowed for important nuance to emerge, which
are important for tackling the challenges from a
multidisciplinary approach. The forum focused
on the value of model complexity in CWD
research and management, spurred by a ‘com-
plex’ model first published by Heisey et al. in
Ecological Monographs (2010) that used a hierar-
chical Bayesian semiparametric nested model
approach. The forum broached both gritty tech-
nical details and philosophical discourse to cri-
tique Heisey et al.'s article, with the forum's
other authors making arguments about the
validity of each layer of complexity in the model.
While this forum was extremely informative,
many of the arguments for or against model
complexity discussed were not mutually exclu-
sive and could have potentially led to more
emergent discussion if the model complexity
had been defined more explicitly via partition-
ing into distinct facets.

MALMBORG ET AL. 7 of 16Meteorological Applications
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Model class complexity
Heisey et al. (2010a) presented a predomi-

nantly mechanistic, hierarchical Bayesian model
to forecast outbreaks and identify the driving eco-
logical processes, arguing that CWD manage-
ment requires a process-based approach to link
relevant ecological traits to expected outcomes.
However, the authors were criticized for selecting
this process-rich, mechanistic model (often con-
sidered more complex) over statistical models
that did not attempt to explain as many unobser-
vable processes (Lele, 2010). One of the main
conclusions that emerged from this back-
and-forth discussion was that it is best to pick an
approach that relies on the least number of
untested assumptions about underlying processes
(Ladeau, 2010) when balancing model class com-
plexity and performance, and those hybrid
models, or multi-model inference, are likely
needed to reach parsimony (Waller, 2010).

The tension between mechanistic and statisti-
cal models is not unique to this forum, but the
forum's take-home messages fall victim in a man-
ner similar to the historical debates about model
class complexity. If the forum had identified
which mechanisms were critical to include for
capturing the underlying ecological processes
(i.e., perhaps through nested scenario modelling)
and where simpler phenomenological patterns
would suffice, this might have addressed the
underlying concerns more effectively and miti-
gated much discussion. Heisey et al.'s hierarchi-
cal model approach is indeed well-suited for this
type of selection since it marries different model
classes, as noted by Waller. However, the discus-
sion between model class and parameter com-
plexity was understandably muddled at times, as
they are intricately related. This detracted from
the important distinction of how and where pro-
cess and mechanism are best justified to model
underlying ecological processes, and using dis-
tinct facets to guide discussion could have
improved clarity.

Parameter complexity
One of the most controversial aspects of Hei-

sey et al. (2010a) model was the seemingly high
dimensionality of their parameter space, which
was being fit to limited observational data. How-
ever, Heisey et al. noted in their article that iden-
tifying model complexity based on the number of
parameters in their model was misleading, as not
all of their parameters were independent due to
spatial dependencies. Other forum authors

challenged the underlying hypotheses/processes
in the Heisey et al. model, arguing that since the
model relied on potentially inestimable parame-
ters, it would ultimately produce misleading pre-
dictions (Lele, 2010). Heisey et al. explained in
their rejoinder that while using frequentist statis-
tical methods they would have fixed, large
parameter spaces to fit. Due to their hierarchical
Bayesian approach, the parameter complexity of
their model was not pre-determined and was
simpler than the readers might have originally
thought (Heisey et al., 2010b).

Heisey et al. and the other forum contributors
had insightful discussions about the intricacies of
parameter complexity and thoroughly explained
the technical and philosophical reasoning behind
decisions and critiques. This is not terribly surpris-
ing, given that reporting parameter complexity
decisions is already integrated within model litera-
ture culture. However, using distinct facets of
model complexity would have allowed the forum
members (and the readers) to identify where
trade-offs may be needed between these specific
facets, as opposed to lumping all of the critiques
mostly into parameter-focused discussions.

Input complexity
CWD transmission is difficult to forecast in

large part due to the high-dimensional input data
that spans gaps in space and time (Farnsworth
et al., 2005). This is especially true for integrating
spatial data of cervid demographics and temporal
infection dynamics with minimized uncertainty
(Heisey et al., 2010a). Heisey et al. point out that
what must be modelled suffers from an ‘inverse
problem’: the idea that the observed data
(i.e., hunter harvest data) is used to extract the
traditional model ‘input’ as a parameter. Essen-
tially, a major barrier of this work is estimating
latent transmission processes and rates, which
they approached using their hierarchical Bayes-
ian model framework. As both Heisey et al. and
LaDeau discuss, the input data required for the
model may be beyond the capabilities of the
managers to collect. Thus, the complexity of the
input data practically put the utility of the model
in question for future applied use, which was elo-
quently captured by LaDeau: ‘Are the efforts of
designing models to more accurately characterize
our understanding of processes and data mecha-
nisms wasted if they cannot be used to manage
the epidemic?’

However, much of the discussion did not cen-
ter on this particular nuance and instead focused
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complicate the use of certain datasets since data can be
released under restrictive conditions that should be con-
sidered and respected.

A further complication related to input data is the distri-
bution of data over time or space, which could be irregular.
Gaps in time series or non-uniform spatial distribution, that
are often resulting from the deployment of the measure-
ment networks or malfunctioning of equipment, are typical
examples that models are faced with. Gaps in time series
require gap-filling strategies (e.g., Lucas-Moffat et al., 2022
show this for gas exchange measurements over vegetated
surfaces), and the non-uniform distribution of measure-
ment networks might require different weighting or extrap-
olation strategies. Specifically, gaps that are not randomly
distributed (e.g., data on small-bodied organisms may be
sparse relative to large-bodied organisms due to differences
in detection ability) can be more accurately filled by model-
ling the relevant ecological process (Bowler et al., 2023;
Taugourdeau et al., 2014). However, the inclusion of models
and interpolation for gap-filling increases overall model
complexity as both the number of steps required to estimate
the data and the overall uncertainty in the data increase.

For input complexity, as in all facets of complexity,
there are trade-offs between model complexity and usabil-
ity. To help model developers and model users make sensi-
ble choices about which variables to include or not,
sensitivity studies or feature importance analyses can pro-
vide useful information. Marolla et al. (2021) created near-
term forecasts and explanatory models of rock ptarmigan
population monitoring data from high-arctic Svalbard and
found that including additional ecological input data sub-
stantially improved model performance. Similarly, Tra-
montana et al. (2016), who modelled carbon and energy
exchange over ecosystems using a machine learning
approach with remote sensing data, tested how model per-
formance increases when adding meteorological data sets
(including ERA-Interim, Dee et al., 2011). These examples
illustrate how the input complexity can be systematically
assessed, which can then inform selecting the appropriate
input complexity level.

2.4 | Computational complexity

Another key aspect of model complexity is computational
complexity (Figure 1d). This relates to the software

on what amounts to critiques of parameter com-
plexity. While important to discuss, distinguish-
ing between parameter and input complexities
would be particularly useful here. Doing so
would separate the spatial processes associated
with CWD and the statistical methods needed to
model around the data gaps (Hodges, 2010) from
issues around parameterization. Similar to the
discussions on model class and parameter com-
plexity, this supports how the facets relate to and
interact with one another while allowing model-
lers to independently improve either or both
without conflating the two.

Computational complexity
Heisey et al.'s model required significant com-

puting power, which was acknowledged by
(Hodges, 2010), who jokingly commented about
the week-long run times. While discussed in the
forum, it was the least critiqued facet of the
model's complexity. However, the forum's
authors approached this topic from a research
standpoint, with little input from potential model
end-users. Therefore, it is conceivable that practi-
tioners with different priorities, such as managers
using forecasts to apply CWD interventions, may
be more concerned with computational complex-
ity (due to constraints with time or personnel
expertise). Additionally, if the model is altered by
other research groups and becomes more com-
plex, having access to appropriate computational
power could be the difference between being able
to use the model or not.

Overall, the importance of computational
complexity is acknowledged in the forum, but the
details of which are only briefly eluded to. Having
space set aside to explicitly report and discuss this
type of complexity would be especially beneficial
for translation of this research to other fields of
study or in applied settings in the future.

Conclusion
This case study exemplifies how these rigorous

discussions about model complexity could be more
informative for a broader swath of readers by
implementing facets of model complexity as
anchors for discussion. This strategy is not just ben-
eficial to disease ecologists: similar discourse across
disciplines, especially at the climate–environment
interface, could benefit from compartmentalizing
model complexity using the four facets we outline
in this paper. This would allow researchers to iden-
tify trade-offs more clearly between different types
of model complexity that are often conflated but
are not mutually exclusive, improving our

fundamental understanding of nature and increas-
ing model utility in applied settings.
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required to construct and execute a model, the cyberin-
frastructure necessary to run it, and the amount of time
needed for completion (Green et al., 2005). Such aspects
of complexity are not always intrinsic to the model but
may be defined by the data, the degree of rigour taken for
model fitting and validation and how the model is
employed. Nonetheless, computational needs have long
been considered in ecology (Wiegert, 1975) and are an
important consideration when evaluating trade-offs
between models.

There are several aspects of a model workflow, which
may determine the computational time. For statistical
models, fitting relationships between parameters and
response(s) can be time-consuming, especially when
there are many parameters (or hyperparameters) to be
fitted or relationships between predictors and responses
are non-linear (‘Parameter Complexity’). In some
process-based models, parameters that are not defined by
prior or current observations may require numerical solu-
tion (‘guess-and-check’) methods such as maximum like-
lihood estimation, which can be computationally costly.
For instance, numerical weather prediction—a notori-
ously complicated set of procedures—has historically
relied on numerical methods for estimating certain
parameters in differential equations (Bauer et al., 2015).
In other situations, state variable uncertainty estimation
in process-based models is achieved via ensemble-based
approaches (i.e., running the process model for hundreds
or even thousands of independent simulations), which
increases the computational complexity of the modelling
workflow, but not of the model itself.

Similarly, the posterior distribution of hierarchical
models often must be approximated numerically via Mar-
kov Chain Monte Carlo (MCMC) algorithms or advanced
techniques such as inverse nested Laplace approxima-
tion. For all of these model fitting procedures, the num-
ber of observations used to fit the model can influence
computation time, with larger numbers of observations
leading to longer computation times (Guihenneuc-
Jouyaux & Rousseau, 2005), although nested Laplace
approximation has the potential to reduce computational
burden (Rue et al., 2009). Model validation can also be
resource intensive, especially when model predictions
need to be tested separately across spatial and temporal
domains (e.g., via leave-one-out cross-validation, Cho
et al., 2020). For the case of forecasting species abun-
dance in an ecosystem, Perretti et al. (2013) describe the
potentially lengthy computation time of highly parame-
terized mechanistic models as one reason to instead try a
model-free forecasting method.

In some cases, the computational complexity can be
controlled by the model user by switching certain mod-
ules on or off (Smallman et al., 2021), or by adjusting the

number of ensembles in a forecasting model. In such a
setting, the larger number of ensembles typically
increases execution time and thus the model complexity.
In some cases, parallelization is a possibility, but this
might involve the use of additional libraries (e.g., Dask,
MPI, OpenMP) and thereby introduce additional com-
plexity. Being able to adjust a model's settings such as the
number of ensemble members provides the modeler con-
trol over the computational complexity, but having to
make this decision each time in itself also contributes
to a model's complexity from the user perspective.

3 | ECOLOGICAL PROCESSES

Models serve as simplified representations of real-world
processes (Box 1), and the real-world complexity of the
natural process (i.e., ecological process) being modelled
has implications when drawing conclusions about model
complexity. For example, consider a hypothetical case
where the population of an R-selected species, tadpoles
in a lake, depends exclusively upon two factors: repro-
ductive rate and water temperature. In this case, a model
that also includes a third driver (e.g., fish density) may be
overly complex. Conversely, in a case where fish popula-
tions and aquatic vegetation play important roles in
determining tadpole populations, a model that only
includes reproductive rate and water temperature could
instead be overly simple.

In reality, quantifying all relevant inputs and parame-
ters for any real-world ecological process is impossible, or
nearly so. Consequently, efforts have been made to gener-
alize the real-world complexity of the variable being
modelled in other ways. Literature across economics,
meteorology and, more recently, ecological forecasting
suggests that variables that are aggregated over larger
spatial, temporal, or taxonomic scales may be more pre-
dictable (Hoffmann et al., 2015; Levin, 1987; Lewis
et al., 2023; McLeod & Leroux, 2021; Noda, 2004;
Wedi, 2014 and references therein). That is, models per-
form better when they predict a ‘simpler’ variable that
averages across the variability of sub-components
(e.g., total phytoplankton biomass rather than the bio-
mass of an individual species of phytoplankton). Addi-
tionally, some attempts have been made to describe
different types of variables as generally being simpler or
more complex (Soares & do Carmo Calijuri, 2021). For
example, does complexity increase hierarchically from
physical variables to chemical variables to biological vari-
ables, which are shaped in part by physics, chemistry,
and ecology? To more quantitatively analyse the com-
plexity of time series data, statistical entropy metrics have
been developed (e.g., permutation entropy, multiscale
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entropy) that define complexity as the extent to which
patterns re-appear in data (Bandt & Pompe, 2002). Ulti-
mately, these continued efforts to identify axes of varia-
tion that characterize the complexity of ecological data
highlight the important role that real-world ecological
complexity can play in the interpretation and formula-
tion of model complexity.

4 | CONCLUSION

Across a broad range of ecological studies, the concept of
model complexity is commonly used to guide decisions about
model development and selection and explain model out-
comes and performance. Yet definitions of model complexity
are inconsistent, preventing the scientific community from
making direct comparisons between models or effectively
communicating and acting on model outcomes. Given that
consistent terminology is critical for advancing research
directives across disciplines (Lélé & Norgaard, 2005;
Robinson et al., 2016), defining model complexity may be
particularly important within ecology and climatology, where
interdisciplinary collaboration is increasingly the norm
(Goring et al., 2014).

Delineating between different aspects of model com-
plexity provides several benefits to the environmental
modelling community. First, we aim for our definitions
to assist hypothesis generation. Models represent our cur-
rent understanding of how ecosystems function and are
explicit representations of quantifiable scientific hypothe-
ses (Dietze et al., 2013; Lewis et al., 2023). Therefore,
additional nuance describing model complexity may help
guide the hypotheses we make, as well as help us reject
or reimagine unsupported hypotheses. While our ideas
on this topic are shaped by the authors' perspectives from
predictive modelling in ecology, models used for theoreti-
cal and phenomenological approaches may have different
relationships with complexity. For instance, Edmonds
(2017) encourages modellers to think of models as tools
for specific applications and lays out five model purposes
(prediction, explanation, theoretical exposition, descrip-
tion and illustration) with different motivations and asso-
ciated needs for development. In thinking of models as
tools for each of these purposes, we anticipate that these
distinctions will also enable us to pinpoint common
sources of complexity that arise when using particular
methods or when working within specific ecosystems.
Instead of asking ‘is this model simple or complex?’ the
more comprehensive distinctions of model complexity
outlined here allow us to ask questions about which types
of models or which natural processes are more likely to
be associated with each facet of complexity and how we
might address those complexities. The categories we have

specified, while distinct from one another, are also inter-
related, whereby increased complexity in one class may
propagate to additional complexity in another facet
(e.g., higher input resolution requiring more computational
power). Identifying patterns in these relationships will
enable us to tackle the broader fundamental questions
about predictability and generality in ecology.

Second, more unified definitions of complexity,
whether arising from the number of parameters, type of
input data used, computational costs, or chosen model
help us better navigate the model selection process. By
evaluating model complexity in a holistic fashion, we are
more likely to be aware of our models' flaws or shortcom-
ings, helping us to settle for ‘good enough’ models rather
than continuing towards an unachievable ‘perfect’
model. Identifying aspects of model complexity in com-
peting models is an opportunity to examine pros and
cons of using different models in different contexts
(Rostami et al., 2023) and provides additional metrics by
which to evaluate trade-offs when deciding which models
to use. As such, these facets of complexity act as a way to
discern where additional complexity may be useful or
may be mitigated during model development.

Beyond choosing a model for a single application, pat-
terns in model complexity may also help make models
more transferable when adapting an existing model to a
species, ecosystem, geographic region, or management
context. Indeed, it has been proposed that, structurally,
simpler models (e.g., models of a particular class or
models with fewer parameters) may be more transferable
than highly parameterized models, since those more
complex models are more likely to include time- or
location-specific information (Lewis et al., 2023;
Wenger & Olden, 2012). For out-of-sample predictions,
process-based models are thought to perform better than
empirical models (Lewis et al., 2023), but these models
may come at the cost of additional parameter, input or
computational complexity, and it remains unknown how
model class and other aspects of model complexity inter-
act to influence the transferability of various ecological
models. Being aware of which aspects of complexity are
present or that arise when adapting existing modelling
frameworks to new applications may facilitate these
transfers to new contexts, revealing relationships
between model complexity and performance, as well as
showing how ‘good enough’ models may be improved
for different scenarios.

Lastly, these distinct facets could make translation of
models and their results more approachable across the
systems or fields in which they are employed. When
engaging in coproduction or interdisciplinary research, it
is critical to develop shared concepts and goals that can
span a team's respective disciplines to avoid the barriers
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introduced by linguistic divides (Dietze et al., 2018;
Eigenbrode et al., 2007; Read et al., 2016). Shared termi-
nology offers us a foundation from which to better com-
municate model outcomes and trade-offs, particularly
when moving models from initial development to appli-
cation. A common lexicon for model complexity may also
serve to confront underlying assumptions about ‘simplic-
ity’ and ‘complexity’ held by researchers from different
disciplines, easing collaboration among scholars who
may typically use different types of models or models
with different applications in mind.

Our attempt to refine our notions of model complex-
ity is not exhaustive, but we hope that this initial discus-
sion of the facets of complexity prompts an ongoing,
informed conversation on how we describe and compare
models in the future. We have taken care not to imply a
hierarchy among our defined facets of complexity.
Though appealing, we feel that establishing a hierarchy
may not be generalizable and, depending on the specific
case or modelling approach, may be challenging or even
impossible. Indeed, it is likely that any hierarchy that
arises may only be evaluated based on the scientific ques-
tions or aims of a given project. Ultimately, we strove to
provide a framework that is more generalizable and
holistic to reduce collective uncertainty about how com-
plexity is defined or derived when using models and
reporting their outcomes.

5 | RECOMMENDATIONS

We conclude this paper with recommendations to build
upon the foundation we provide for describing model
complexity (Table 1). First, we suggest researchers and
model developers describe their model in terms of multi-
ple facets of complexity where possible. Specifically defin-
ing multiple facets of complexity, rather than terming a
model ‘simple’ or ‘complex’, will enable readers to better
understand the model's behaviour, outputs, advantages,
and limitations. For applications beyond research, we
assert that identifying model complexities explicitly will
allow practitioners to make better judgements about
which models to use for different applications or manage-
ment scenarios, streamlining the model development to
model implementation pipeline. Second, we recommend
that researchers report metrics associated with each facet
of complexity where applicable. At a minimum, this
should include reporting a description of the model class
(e.g., maximum entropy machine learning model), the
number and source of inputs (e.g., whether inputs are
themselves modelled data products), the number of
parameters in the model, the computational time
required to fit or run the model, along with specifications

of the hardware on which the model was run (computer
processor, central processing unit or graphics processing
unit set-up, RAM per node and parallelization;
Tredennick et al., 2016). Computationally expensive
models or models with many parameters or inputs may
require appropriate expertise or infrastructure to run,
and reporting on computational times and capacities
required for using individual models will allow modellers
to account for trade-offs when deciding between different
methods. We also suggest that researchers publish code,
model data, and metadata in open source repositories
(e.g., GitHub, the Environmental Data Initiative reposi-
tory, etc.) and use consistent conventions when doing so
(e.g., using Ecological Metadata Language (EML), Eco-
logical Forecasting Initiative community standards, etc.).
These recommendations align with efforts that address
the ongoing reproducibility crisis in science, mirroring
suggested best practices for managing and reusing data-
sets and code, such as providing clear documentation and
metadata (Goodman et al., 2014; Wilkinson et al., 2016).
Lastly, we hope that the community continues to refine
the distinctions we have provided, especially with per-
spectives from fields beyond ecology that reflect the
diverse community developing and engaging with
models.

The historical lack of formal definitions of model
complexity is a barrier to model comparison, transferabil-
ity, and operationalization. In particular, as research
teams broaden participation to tackle interdisciplinary
projects, a unified understanding of modelling terms and
ideas that are descriptive and approachable will prove
essential. While we approached this task from the per-
spective of quantitative ecology, we see these distinct
facets of model complexity as applicable broadly among
modellers. In opening this conversation to other model
developers and users, we hope to draw attention to the
missing ideology in climate and environmental modelling
and create opportunities for more discussions on this
topic.
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