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Abstract: Popular word embedding methods such as GloVe and Word2Vec are related
to the factorization of the pointwise mutual information (PMI) matrix. In this paper, we
link correspondence analysis (CA) to the factorization of the PMI matrix. CA is a dimen-
sionality reduction method that uses singular value decomposition (SVD), and we show
that CA is mathematically close to the weighted factorization of the PMI matrix. In ad-
dition, we present variants of CA that turn out to be successful in the factorization of the
word-context matrix, i.e. CA applied to a matrix where the entries undergo a square-root
transformation (ROOT-CA) and a root-root transformation (ROOTROOT-CA). An empiri-
cal comparison among CA- and PMI-based methods shows that overall results of ROOT-
CA and ROOTROOT-CA are slightly better than those of the PMI-based methods.
Keywords: Word2Vec; GloVe; Variance stabilization; Overdispersion; Singular value de-
composition

1 Introduction

Word embeddings, i.e., dense and low dimensional word representations, are useful in var-
ious natural language processing (NLP) tasks (Jurafsky & Martin, 2023; Sasaki, Heinzer-
ling, Suzuki, & Inui, 2023). Three successful methods to derive such word representations
are related to the factorization of the pointwise mutual information (PMI) matrix, an im-
portant matrix to be analyzed in NLP (Alqahtani, Al-Twairesh, & Alsanad, 2023; Bae et al.,
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2021; Egleston et al., 2021). The PMI matrix is a weighted version of the word-context co-
occurrence matrix and measures how often two words, a target word and a context word,
co-occur, compared with what we would expect if the two words were independent. The
analysis of a positive PMI (PPMI) matrix, where all negative values in a PMI matrix are
replaced with zero (Algahtani et al., 2023; Turney & Pantel, 2010; Zhang, Palade, Wang,
& Ji, 2022), generally leads to a better performance in semantic tasks (Bullinaria & Levy,
2007), and in most applications the PMI matrix is replaced with the PPMI matrix (Salle,
Villavicencio, & Idiart, 2016).

The first method, PPMI-SVD, decomposes the PPMI matrix with a singular value de-
composition (SVD) (Levy & Goldberg, 2014; Levy, Goldberg, & Dagan, 2015; Stratos, Collins,
& Hsu, 2015; Zhang et al., 2022). The second one is GloVe (Pennington, Socher, & Manning,
2014). GloVe factorizes the logarithm of the word-context matrix with an adaptive gradi-
ent algorithm (AdaGrad) (Duchi, Hazan, & Singer, 2011). According to Shazeer, Doherty,
Evans, and Waterson (2016); Shi and Liu (2014), GloVe is almost equivalent to factorizing
a PMI matrix shifted by the logarithm of the sum of the elements of a word-context ma-
trix. The third method is Word2Vec’s skip-gram with negative sampling (SGNS) (Mikolov,
Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). SGNS
uses a neural network model to generate word embeddings. Levy and Goldberg (2014)
proved that SGNS implicitly factorizes a PMI matrix shifted by the logarithm of the num-
ber of negative samples in SGNS.

In this paper we study what correspondence analysis (CA) (Beh & Lombardo, 2021;
Greenacre, 2017) has to offer for the analysis of word-context co-occurrence matrices. CA
is an exploratory statistical method that is often used for visualization of a low dimen-
sional approximation of a matrix. It is close to the T-test weighting scheme (Curran, 2004;
Curran & Moens, 2002), where standardized residuals are studied, as CA is based on the
SVD of the matrix of standardized residuals. In the context of document-term matrices,
CA has been compared earlier with latent semantic analysis (LSA), where the document-
term matrix is also decomposed with an SVD (Deerwester, Dumais, Furnas, Landauer, &
Harshman, 1990; Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988). Although
CA is similar to LSA, there is theoretical and empirical research showing that CA is to be
preferred over LSA for text categorization and information retrieval (Qi, Hessen, Deoskar,
& Van der Heijden, 2023; Qi, Hessen, & Van der Heijden, 2023).

CA of a two-way contingency table is equivalent to canonical correlation analysis (CCA)
of the data in the form of indicator matrices for the row variable and the column variable of
the two-way contingency table (Greenacre, 1984). Stratos et al. (2015) proposed to combine
CCA with a square-root transformation of the cell frequencies of the contingency table. In
this paper we refer to this procedure as ROOT-CCA, to distinguish it from ROOT-CA intro-
duced later. Stratos et al. (2015) found that, on word similarity tasks, (1) the performance
of CCA is quite bad, but the performance of ROOT-CCA is a marked improvement, and
(2) ROOT-CCA outperforms PPMI-SVD, GloVe, and SGNS. However, CA has not yet been
linked to PMI-based methods.



A document-term matrix has some similarity to a word-context matrix, as they both
use counts. In this paper, mathematically, we show that CA is close to a weighted fac-
torization of the PMI matrix. We also propose a direct weighted factorization of the PMI
matrix (PMI-GSVD). Furthermore, we empirically compare the performance of CA with
the performance of PMI-based methods on a word similarity task.

In the context of CA, Nishisato, Beh, Lombardo, and Clavel (2021) point out, gener-
ally speaking, a two-way contingency table is prone to overdispersion. Overdispersion
may negatively affect the performance of CA (Beh, Lombardo, & Alberti, 2018; Nishisato
et al., 2021). To deal with this overdispersion, a fourth-root transformation can be used
(Field, Clarke, & Warwick, 1982; Greenacre, 2009, 2010). The fourth root transformation
has been widely discussed and applied (Downing, 1981; France & Heung, 2023; Kosten-
salo et al., 2023). Therefore, in addition to the word-context matrix, CA is also applied to
the fourth-root transformation of the word-context matrix (ROOTROOT-CA). Inspired by
ROOT-CCA, CA is also applied to the square-root transformation of the word-context ma-
trix (ROOT-CA). Recently, ROOT-CA has been explored in biology (Hsu & Culhane, 2023).
The difference between ROOT-CCA and ROOT-CA is discussed in Section 3.3.

In the following section, research objectives are presented. In Section 3 CA, the three
variants of CA, and the T-Test weighting scheme are introduced. The three PMI-based
methods are described in Section 4. Theoretical relationships between CA and the PMI-
based methods are shown in Section 5. In Section 6 we present two corpora to build word
vectors and five word similarity datasets to evaluate word vectors. Section 7 illustrates
the setup of the empirical study using these two corpora where CA, PMI-SVD, PPMI-SVD,
PMI-GSVD, ROOT-CA, ROOTROOT-CA, ROOT-CCA, SGNS, and GloVe are compared.
Section 8 presents the results for these methods on word similarity tasks. Section 9 con-

cludes and discusses this paper.

2 Research objectives

Considering the foregoing, this study focuses on word embeddings in NLP. The objective
is to explore the relationship between CA and PMI-based methods and compare the per-
formance in word similarity tasks. In addition, we explore the performance of variants of
CA, namely ROOT-CA and ROOTROOT-CA.

3 Correspondence analysis

In this section, first we describe correspondence analysis (CA) using a distance interpre-
tation (Benzécri, 1973; Greenacre & Hastie, 1987), which is a popular way to present CA.
Then we present CA making use of an objective function, thus making the later compari-
son with PMI-based methods straightforward. Third, we present three variants of CA in
word embedding. Finally, the T-Test weighting scheme (Curran, 2004; Curran & Moens,
2002) is described, as it turns out to be remarkably similar to CA.



A word-context matrix is a matrix with counts, in which the rows and columns are
labeled by terms. In each cell a count represents the number of times the row (target) word
and the column (context) word co-occur in a text (Jurafsky & Martin, 2023). Consider
a word-context matrix denoted as X having I rows (i = 1,2,---,I) and J columns (j =
1,2,---,J), where the element for row 7 and column j is z;;. The joint observed proportion

is pij = xij/x4+, where ”+” represents the sum over the corresponding elements and
Ty = ;>.;%j- The marginal proportions of target word ¢ and context word j are

pi+ = > ;pijand py; = >, p;j, respectively.

3.1 Introduction to CA

CA is an exploratory method for the analysis of two-way contingency tables. It allows to
study how the counts in the contingency table depart from statistical independence. Here
we introduce CA in the context of the word-context matrix X . In CA of the matrix X, first
the elements z;; are converted to joint observed proportions p;;, and these are transformed

into standardized residuals (Greenacre, 2017)

Pij — PitP+j 1)
VPPt
Then an SVD is applied to this matrix of standardized residuals, yielding
o ~ min(I—1,J-1)
% = é ORUikVjk )

where oy, is the kth singular value, with singular values in the decreasing order, and

[U1k, Uk, urg]t and [vig, vag, -+ ,vgk]T are the kth left and right singular vectors, re-

spectively. When X has full rank, the maximum dimensionality is min (I —1,J — 1),

where the ” — 1” is due to the subtraction of elements p;;p,;, that leads to a centering

of the elements of X as >, (pij — pi+p+;) = 0 = 3_;(pij — pi+p+;)- Multiplying the singular
!

_1 _1
vectors consisting of elements u;; and vj, by p; * and p , ?, respectively, leads to

min(/—1,J-1)
pii
1= > ok (©)
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where ¢, = p; *ujx and v = p+]?vjk. Scores ¢, k = 1,2,--- , K and vj;,,k = 1,2,--- | K

D=

provide the standard coordinates of row point 7 and column point j in K-dimensional
space, respectively, because of Y, pit¢ir, = >_; pjvjk = 0and 3=, piy 6% = D5 P47 = 1.
Scores ¢;rop,k = 1,2,--- K and v;,01,k = 1,2,---, K provide the principle coordi-
nates of row point ¢ and column point j in K-dimensional space, respectively. When
K < min(I — 1,J — 1), the Euclidean distances between these row (column) points ap-
proximate so-called x2-distances between rows (columns) of X. The squared y2-distance



etween rows ¢ and 7' o is
betw di of X

(m _ Py )2
2 Pit Py
Ojr = Z p+j7+ . (4)

J
and similarly for the chi-squared distance between columns j and j’. Equation (4) shows
that the x?—distance §;7 measures the difference between the ith vector of conditional
proportions p;;/pi+ and the i'th vector of conditional proportions p;/;/p;';, where more
weight is given to the differences in elements j if py; is relatively smaller compared to
other columns.

Although the use of Euclidean distance is standard in CA, Qi, Hessen, and Van der
Heijden (2023) show that for information retrieval cosine similarity leads to the best per-
formance among Euclidean distance, dot similarity, and cosine similarity. The superiority
of cosine similarity also holds in the context of word embedding studies (Bullinaria &
Levy, 2007). Therefore, in this paper we use cosine similarit}i to calculate tlhe similarity of

row points and of column points. It is worth noting that p; * in ¢ = p,,>u;; and p:j in

Vik = p:j vji, have no effects on the cosine similarity. Details are in Supplementary ma-
terials A. We coin scores w0,k = 1,2,--- , K and v;,o, k = 1,2,--- , K an alternative
coordinates system for CA directly suited for cosine similarity.

The so-called total inertia is

)2 min(I—1,J—1)

(Pij — Pi+P+j

Yy orel TS ©
Di+D+j k=1

This illustrates that CA decomposes the total inertia over min (I — 1, J — 1) dimensions.
The total inertia equals the well-known Pearson x? statistic divided by x4, so that the to-
tal inertia does not depend on the sample size ;. The relative contribution of cell (7, j) to
the total inertia is calculated as w/ > (i —pisp+3)” The relative contribution

PitP+j Pi+DP+j
of the ith row (jth column) to the kth dimension is calculated as u?, (vjz-k).

3.2 The objective function of CA

To simplify the later comparison of CA with the other models, we present the objective
function that is minimized in CA. The objective function is (Greenacre, 1984, pp. 345-349):

prpﬂ (

2
- e;oj) | (6)
Pi+D+j

where e; and o; are parameter vectors for target word ¢ and context word j, with respect to
which the objective function is minimized. The vectors have length X' < min ({ — 1,J —1).
We call the part of the formula to be approximated, i.e. (p;;/pi+p+; — 1), the fitting function
and the weighting part p;p;; the weighting function. Thus, according to (6), CA can
be viewed as a weighted matrix factorization of (p;;/pi+p+; — 1) with weighting function



Di+P+j-
The solution is found using the SVD as in Equation (2). The K-dimensional approxi-

mation of (pi;/pi+p+; — 1) is

— 1= Z OrikVik = €; 0j. )

pz+p+]

The matrix [e]

o0;] minimizes (6) amongst all matrices of rank K in a weighted least-squares
sense (Greenacre, 1984). The parameter vectors e; and o; can be represented, for example,
as

ei = [pino1, bino2, -, GikoK)" (8)

and

O] = [’Yj17’yj2) T /YjK]T (9)

As described above, this representation e; of target word ¢ has the advantage that the
x2-distance between target words i and i’ in the original matrix is approximated by the
Euclidean distance between e; and e;.

The parameters e; can be adjusted by a singular value weighting exponent p, i.e., e; =

[pino?, diaoh, -+ pixoh]T. Correspondingly, the alternative coordinate for the adjusted
row i by a singular value weighting exponent is [u;10%, ui20b, -, uix o7

3.3 Three variants of CA for word embeddings

We present three variants of CA. According to Stratos et al. (2015), word counts can be nat-
urally modeled as Poisson variables. The square-root transformation of a Poisson variable
leads to stabilization of the variance (Bartlett, 1936; Stratos et al., 2015). Stratos et al. (2015)
proposed to combine CCA with the square-root transformation of the word-context ma-
trix. Even though CA of a contingency table is equivalent to CCA of the data in the form of
an indicator matrix, we call the proposal by Stratos et al. (2015) ROOT-CCA, to distinguish
it from the alternative ROOT-CA, discussed later.

ROOT-CCA In ROOT-CCA, an SVD is performed on the matrix whose typical element
is the square root of x;; /. /Ti+21; = pij//Di+P+;, thatis

min(7,J)

\ / Z O UikVjk- (10)
pz-‘rp-l—j

The reason that Stratos et al. (2015) ignore p;p; in p;; — pi+p+; (compare Equation (2))
is that they believe that, when the sample size x . is large, the first part p;; /\/(pi+p+;) in

(pij — Pi+P+j)/\/ (Pi+D+j) dominates the expression.

ROOT-CA Inspired by Stratos et al. (2015), we present CA of the square-root transforma-
tion of the word-context matrix (ROOT-CA) (Bartlett, 1936, Hsu & Culhane, 2023). ROOT-



CA differs from ROOT-CCA in the following way. In the ROOT-CA, first we create a
square-root transformation of the word-context matrix with elements ,/z;;, and then we

perform CA on this matrix. Let pj; Z% = Z\/} Then ROOT-CA provides the
(%) 2 (%) *

decomposition
min(/—1,J-1)

Dij —Pi4 P4 — Z ORUiKVj k- (11)

N k=1

ROOTROOT-CA According to Stratos et al. (2015), word counts can be naturally mod-
eled as Poisson variables. In the Poisson distribution the mean and variance are identical.
The phenomenon of the data having greater variability than expected based on a statistical
model is called overdispersion (Agresti, 2007). In the context of CA, Nishisato et al. (2021)
point out, generally speaking, a two-way contingency table is prone to overdispersion.
Overdispersion may negatively affect the performance of CA (Beh et al., 2018; Nishisato et
al., 2021).

Greenacre (2009, 2010), referring to Field et al. (1982), points out that in ecology abun-
dance data is almost always highly over-dispersed and a particular school of ecologists
routinely applies a fourth-root transformation before proceeding with the statistical analy-
sis. Therefore we also study the effect of a root-root transformation before performing CA.
We call it ROOTROOT-CA. That is, ROOTROOT-CA is a CA on the matrix with typical

element /. /z;; (Field et al., 1982). Suppose p;;} =5 v ﬁ > \\//Ijr. Then, we have
iJ T4 ij ij

% sk min(I—1,J—1)
Pij — PPy Z

A/ pi+p+j k=1

Thus ROOT-CA and ROOTROOT-CA are pre-transformations of the elements z;; of the
original matrix by ,/z;; and /,/%;;j, respectively. CA is performed on the transformed

ORUikVjk, (12)

matrix.

3.4 T-Test

The T-Test (TTEST) weighting scheme, described by Curran and Moens (2002) and Cur-
ran (2004), focuses on the matrix of standardized residuals, see Equation (1). Thus it is
remarkably similar to CA, where the matrix of standardized residuals is decomposed. For
a comparison between CA and TTEST weighting in word similarity tasks, as we will carry
out below, the question is whether the performance is better on the matrix of standardized
residuals, or on a low dimensional representation of this matrix provided by CA.

Inspired by Section 3.3, we also explore the performances of the matrix STRATOS-
TTEST with typical element ,/p;;/,/pitp+; (compare Equation (10)), the matrix ROOT-

TTEST with typical element (p’{j —pj +p*+j) /1/Piy P’ ; (compare Equation (11)), and the

matrix ROOTROOT-TTEST with typical element (p; — pi1p7; ) /\/pi1p}; (compare Equa-
tion (12)).



4 PMlIl-based word embedding methods

4.1 PMI-SVD and PPMI-SVD

Pointwise mutual information (PMI) is an important concept in NLP. The PMI between
a target word ¢ and a context word j is defined as (Bullinaria & Levy, 2007; Jurafsky &
Martin, 2023; Levy & Goldberg, 2014; Levy et al., 2015):

PMI(7, j) = log —— Pz+p+] (13)
i.e. the log of the contingency ratios (Greenacre, 2009, 2017), also known as Pearson ratios
(Beh & Lombardo, 2021; Goodman, 1996), pi;/ (pi+p+;)- If pi; = 0, then PMI(¢, j) = log 0 =
—00, and it is usual to set PMI(7, j) = 0 in this situation.
A common approach is to factorize the PMI matrix using SVD, which we call PMI-SVD.
Thus the objective function is

2
Z <log L eiToj> . (14)
i Pi+D+j

In terms of a weighted matrix factorization, PMI-SVD is the matrix factorization of the PMI

matrix with the weighting function 1. The solution is provided directly via SVD. An SVD
applied to the PMI matrix with elements log (pi;/ (pi+p+;)) yields

min(/,J)

log Z Ok UikVjk (15)

pz-i-p-‘r]

where min(7, J) is the rank of the PMI matrix. The K-dimensional approximation of

log (pij/ (pivp+j)) is
K

Zakuzkv]k = e o; (16)
pz+p+J e
where the matrix with elements e/ 0; minimizes (14) amongst all matrices of rank K in
a least squares sense, where K < min(7,J). Both CA and PMI-SVD are dimensionality
reduction techniques making use of SVD.
The parameters e; and o; can be represented as

T
e; = [uj o1, uigog, -+, UiKOK] (17)

and

0; = [vj1,vj2, - VK]’ . (18)

Thus the Euclidean distance between target words i and 4’ in the original matrix is approx-
imated by the Euclidean distance between e; and e;. In practice, one regularly sees that
the parameters e; are adjusted by an exponent p used for weighting the singular values,

ie., e = |upol upoh, - uigo? T where p is usually set to 0 or 0.5 (Levy & Goldberg,
1 2 K y y g



2014; Levy et al., 2015; Stratos et al., 2015).

It is worth noting that the elements in the PMI matrix, where word-context pairs that
co-occur rarely are negative, but word-context pairs that never co-occur are set to 0 (Levy &
Goldberg, 2014), are not monotonic transformations of observed counts divided by counts
under independence. For this reason an alternative is proposed, namely the positive PMI
matrix, abbreviated as PPMI matrix. In the PPMI matrix all negative values are set to 0:

PPMI(4, j) = max (PMI(4, ), 0) (19)

In most applications, one makes use of the PPMI matrix instead of the PMI matrix (Salle
et al., 2016). We call the factorization of the PPMI matrix using SVD PPMI-SVD (Zhang et
al., 2022).

4.2 GloVe

The GloVe objective function to be minimized is (Pennington et al., 2014):

>~ f(wiy) (log ij — bi — 55 — €] 0;)” (20)

i.j
where

F) = (@ij/Tmax)” iz < fEmaX

otherwise
In addition to parameter vectors e; and o;, the scalar parameter terms b; and s; are referred
to as bias of target word ¢ and context word j, respectively. Pennington et al. (2014) train
the GloVe model using an adaptive gradient algorithm (AdaGrad) (Duchi et al., 2011).
This algorithm trains only on the non-zero elements of a word-context matrix, as f(0) = 0,
which avoids the appearance of the undefined log 0 in Equation (20).
In the original proposal of GloVe (Pennington et al., 2014), b; = log x;+ and then, due

to the symmetric role of target word and context word, s; = log x;. Shi and Liu (2014)
and Shazeer et al. (2016) show that the bias terms b; and s; are highly correlated with
log z;+ and log x;, respectively, in GloVe model training. This means that the GloVe
model minimizes a weighted least squares loss function with the weighting function f(z;;)
and approximate fitting function logz;; — logz; — logx; = log (vijx41/ (viyx4j)) —
log 1 = log (pi;/ (pi+p+;)) —log x4y

Pi+P+j

Z f(xij) <10g Py _ log x4 — eiToj> (21)
1]

4.3 Skip-gram with negative sampling

SGNS stands for skip-gram with negative sampling of word2vec embeddings (Mikolov,
Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). The algorithms used in SGNS are



stochastic gradient descent and backpropagation (Rong, 2014; Rumelhart, Hinton, & Williams,
1986). SGNS trains word embeddings on every word of the corpus one by one.
Levy and Goldberg (2014) showed that SGNS implicitly factorizes a PMI matrix shifted
by log n:
Dij

—logn ~ elo; (22)
Pi+D+j 8 !

log
where n is the number of negative samples. According to Levy and Goldberg (2014) and

Shazeer et al. (2016), the objective function of SGNS is approximately a minimization of
T

increasing weighting function of the observed co-occurrence count z;;, that we denote by

9(zij):

the difference between e; o; and log (pi;/ (pi+p+j) — log n), tempered by a monotonically

Di+DP+j

Z g(zi5) <log Py log n — e;froj> (23)
i?j

This shows that SGNS differs from GloVe in the use of n instead of x 1, and g(x;;) instead
of f(:L‘”)

5 Relationships of CA to PMI-based models

51 CA and PMI-SVD /PPMI-SVD

In this section, we discuss PMI-SVD and PPMI-SVD together, as PMI and PPMI are the
same except that in PPMI all negative values of PMI are set to 0.

CA is closely related to PMI-SVD. This becomes clear by comparing (p;;/ (pi+p+;) — 1)
in (6) with PMI(¢, j) = log (pij/ (pi+p+;j)) in (14). The relation lies in a Taylor expan-
sion of log (pi;/ (pi+p+;)), namely that, if = is small, log(1 + x) ~ z (Van der Heijden,
De Falguerolles, & De Leeuw, 1989). Substituting « with p;;/(pi+p+;) — 1 leads to:

pij . _Pij 4 (24)
Pi+P+j  Pi+P+j

~

lo

This illustrates that if (p;;/pi4+p+; — 1) is small, the objective function of CA approximates

.. 2
> pipii <log P 6?%) : (25)

i Di+D+j

From Equation (25) it follows that CA is approximately a weighted matrix factorization of
log (pij/ (pit+p+j)) with weighting function p; 1 p, ;. The Equation (24) can also be obtained
by the Box-Cox transformation of the contingency ratios, for example, Greenacre (2009)
and Beh and Lombardo (2024), and we refer to their work for more details.

Comparing Equation (25) with Equation (14), both CA and PMI-SVD can be taken as
weighted least squares methods having approximately the same fitting functions, namely
(pij/pi+p+j — 1) for CA and log (pij/ (pi+p+;)) for PMI-SVD. Both make use of an SVD.

10



However, they use different weighting functions, namely p; . p,; in CA and 1 in PMI-
SVD. It has been argued that equally weighting errors in the objective function, as is the
case in PMI-SVD, is not a good approach (Salle & Villavicencio, 2023; Salle et al., 2016).
For example, Salle and Villavicencio (2023) presented the reliability principle, that the ob-
jective function should have a weight on the reconstruction error that is a monotonically
increasing function of the marginal frequencies of word and of context. On the other hand,
CA, unlike PMI-SVD, weights errors in the objective function with a weighting function
equal to the product of the marginal proportions of word and context (Beh & Lombardo,
2021; Greenacre, 1984, 2017).

51.1 PMI-GSVD

The weighting function of PMI-SVD is 1 while in the approximate version of CA it is
pi+P+j. Therefore, we also investigate the performance of a weighted factorization of the
PMI matrix, where p;, p ; is the weighting function:

ZpH_p—H <10g 'pl] - GZTOJ'> . (26)
ij Pi+D+j

Similar with CA, we use generalized SVD (GSVD) to find the optimum of the objective
function (PMI-GSVD). That is, an SVD is applied as follows:

min(/,J)

Dij
VDitP4 log —2— = E ORUikVjk (27)
=1

Di+P+j

We call the matrix with typical element ,/p;;p1;log pif ’;H the WPMI matrix, also known

as the modified log-likelihood ratio residual (Beh & Lombardo, 2024).

5.2 CA and GloVe

Both CA and GloVe are weighted least squares methods. The weighting function in GloVe
is f(x;;), which is defined uniquely for each element of the word-context matrix, while the
weighting function p;, p, ; in CA is defined by the row and column margins.

In the approximate fitting function of GloVe, log (pi;/ (pi+p+;)) — log 44, the term
log x4 can be considered as a shift of log (p;;/ (pi+p+;)). And as we showed in Section 5.1,
the fitting function of CA is approximately log (pi;/ (pi+p+;)) when p;; is close to p;1p.;.
Thus, from a comparison of the objective functions of CA and GloVe, it is natural to expect
that these two methods will yield similar results if (p;;/p;+p+; — 1) is small.

In comparing the algorithms of these two methods, we find that CA uses SVD while
GloVe uses AdaGrad. These two algorithms have their own advantages and disadvan-
tages. On the one hand, the AdaGrad algorithm trains GloVe only on the nonzero ele-
ments of word-context matrix, one by one, while in CA the SVD decomposes the entire
word-context matrix in full in one step. On the other hand, the SVD always finds the

11



global minimum while the AdaGrad algorithm cannot guarantee the global minimum.

5.3 CA and SGNS

By comparing Equations (23) and (25), both the approximation of CA and of SGNS are
found by weighted least squares methods. The weighting function in SGNS is g(x;;),
which is defined for each element of word-context matrix where frequent word-context
pairs pay more for deviations than infrequent ones (Levy & Goldberg, 2014), while the
weighting function in CA is defined by the row and column margins, i.e. p;1p4 ;.

In the fitting function of the approximation of SGNS, log (pi;/ (pi+p+;)) — logn, the
term log n can be considered as a shift of log (pi;/ (pi+p+;)). As shown in Section 5.1, the
approximate fitting function in CA is log (p;;/ (pi+p+;)). Thus, considering the objective
function view, both the approximation of CA and of SGNS make use of the PMI matrix.

Although the approximate objective function of SGNS is similar to that of CA, the train-
ing processing for SGNS is different from that of CA. SGNS trains word embeddings on
the words of a corpus, one by one, to maximize the probabilities of target words and con-
text words co-occurrence, and to minimize the probabilities between target words and
randomly sampled words, by updating the vectors of target words and context words. In
contrast, CA first counts all co-occurrences in the corpus and then performs SVD on the
matrix of standardized residuals to obtain the vectors of target words and context words

at once.

6 Two corpora and five word similarity datasets

All methods are trained on two corpora: Text8 (Text8 dataset, 2006) and British National
Corpus (BNC) (BNC Consortium, 2007), respectively. Text8 is a widely used corpus in NLP
(Guo & Yao, 2021; Podkorytov, Bi$, Cai, Amirizirtol, & Liu, 2020; Roesler, Aly, Taniguchi, &
Hayashi, 2019; Xin, Yuan, He, & Jose, 2018). It includes more than 17 million words from
Wikipedia (Peng & Feldman, 2017) and only consists of lowercase English characters and
spaces. Words that appeared less than 100 times in the corpus are ignored, resulting in a
vocabulary of 11,815 terms.

BNC is from a representative variety of sources and is widely used (Raphael, 2023;
Samuel, Kutuzov, Qvrelid, & Velldal, 2023). Data cited herein have been extracted from
the British National Corpus, distributed by the University of Oxford on behalf of the BNC
Consortium. We remove English punctuation and numbers and set words in lowercase
form. Words that appeared less than 500 times in the corpus are ignored, resulting in a
vocabulary of 11,332 terms.

Following previous studies (Levy et al., 2015; Pakzad & Analoui, 2021), we evaluate
each word embeddings method on word similarity tasks using the Spearman’s correlation
coefficient p. We use five popular word similarity datasets: WordSim353 (Finkelstein et al.,
2002), MEN (Bruni, Boleda, Baroni, & Tran, 2012), Mechanical Turk (Radinsky, Agichtein,
Gabrilovich, & Markovitch, 2011), Rare (Luong, Socher, & Manning, 2013), and SimLex-
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999 (Hill, Reichart, & Korhonen, 2015). All these datasets consist of word pairs together
with human-assigned similarity scores. For example, in WordSim353, where scores range
from 0 (least similar) to 10 (most similar), one word pair is (tiger, cat) with human assigned
similarity score 7.35. Out-of-vocabulary words are removed from all test sets. Le., if either
tiger or cat doesn’t occur in the vocabularies of the 11,815 terms created by Text8 corpus,
we delete (tiger, cat). Thus for evaluating the different word embedding methods in Text8
277 word pairs with scores are kept in WordSim353 instead of the original 353 word pairs.
Table 1 provides the number of word pairs used by the datasets in Text8 and BNC.

Table 1: Datasets for word similarity evaluation.

Dataset Word pairs Word pairs in Text8  Word pairs in BNC
WordSim353 353 277 276
MEN 3000 1544 1925
Turk 287 221 197
Rare 2034 205 204
SimLex-999 999 726 847

After calculating the solutions for CA, PMI-SVD, PPMI-SVD, PMI-GSVD, ROOT-CA,
ROOTROOT-CA, ROOT-CCA, GloVe, and SGNS, we obtain the word embeddings. We
calculate the cosine similarity for each word pair in each word similarity dataset. For
example, for WordSim353 using Text8, we obtain 277 cosine similarities. The Spearman’s
correlation coefficient p (Hollander, Wolfe, & Chicken, 2013) between these similarities
and the human similarity scores is calculated to evaluate these word embedding methods.
Larger values are better.

7 Study setup

7.1 SVD-based methods

CA, PMI-SVD, PPMI-SVD, PMI-GSVD, ROOT-CA, ROOTROOT-CA, and ROOT-CCA are
SVD-based dimensionality reduction methods. First, we create a word-context matrix of
size 11,815x11,815 and 11,332x 11,332 based on Text8 and BNC, respectively. We use a
window of size 2, i.e.,, two words to each side of the target word. A context word one
token and two tokens away will be counted as 1/1 and 1/2 of an occurrence, respec-
tively. Then we perform SVD on the related matrices. We use the svd function from
scipylinalg in Python to calculate the SVD of a matrix, and obtain singular values oy,
left singular vectors wu;;, and right singular vectors v;,. We obtain the word embeddings
as e; = [uij10}, upoh, - - ,uikai]T.

The choices of the exponent weighting p and number of dimensions £ are important
for SVD-based methods. In the context of PPMI-SVD and ROOT-CCA p is regularly set
top = 0or p = 0.5 (Levy & Goldberg, 2014; Levy et al., 2015; Stratos et al., 2015). For
p = 0, we have the standard coordinates with UTU = VIV = I. For p = 0.5, we

have A;, = UkEkaT = (UkE,lf/ 2)(Vk2,1€/ 2)T. That is, the target words UkEIIC/ 2 and context

13



words VkE,lc/ ? reconstruct the decomposed matrix Aj. The two created word-context ma-
trices based on Text8 and BNC are symmetric, so the matrices to be decomposed are also
symmetric. For the SVD of a symmetric matrix, using the target words UkE}f/ ? for word
embeddings is equivalent to using the context words V}cEi/ ? for word embeddings. We
vary the number of dimensions & from 2, 50, 100, 200, - - -, 1,000, 2,000, - - -, 10,000.

7.2 GloVe and SGNS

We use the public implementation by Pennington et al. (2014) to perform GloVe and choose
the default hyperparameters. Pennington et al. (2014) proposed to use the context vectors
o; in addition to target word vectors e;. Here, we only use target word vectors e;, set
window size to 2 and set vocab minimum count to 100 for Text8 and 500 for BNC, in the
same way as for the SVD-based methods to keep the settings consistent. We vary the
dimension k of word embeddings from 200 to 600 with intervals of 100.

We use the public implementation by Mikolov, Sutskever, et al. (2013) to perform SGNS,
and use the vocabulary created by GloVe as the input of SGNS. We choose the default val-
ues except for the dimensions % of word embeddings and window size, which are chosen
in the same way as in GloVe, to keep the settings consistent.

8 Results

We make a distinction between conditions where no dimensionality reduction takes place,
and conditions where dimensionality reduction is used. For no dimensionality reduction
we compare TTEST, PMI, PPMI, WPMI, ROOT-TTEST, ROOTROOT-TTEST, STRATOS-
TTEST. For dimensionality reduction we first compare CA with the more standard meth-
ods PMI-SVD, PPMI-SVD, PMI-GSVD, GloVe, SGNS, and then compare variants of CA.

8.1 TTEST, PMI, PPMI, WPMI, ROOT-TTEST, ROOTROOT-TTEST, and STRATOS-
TTEST

First, we compare methods where no dimensionality reduction takes place. We show

the Spearman’s correlation coefficient p for the TTEST, PMI, PPMI, WPMI, ROOT-TTEST,
ROOTROOT-TTEST, and STRATOS-TTEST matrices in Table 2. The results for the five
word similarity datasets and the two corpora show that (1) either ROOT-TTEST or ROOTROOT-
TTEST is best, and (2) ROOT-TTEST is consistently better than PPMI, PMI, STRATOS-
TTEST, and WPML In the Total column of the block at the bottom of the table we pro-
vide the sum of p-values for all five datasets and two corpora. Overall, ROOT-TTEST and
ROOTROOT-TTEST perform best, closely followed by PPMI and TTEST. PMI follows at
some distance, and last, we find STRATOS-TTEST and WPMI.
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Table 2: Correlation coefficient p for fitting matrix.

Text8 BNC Total

TTEST 0588 0427 1.015

PMI 0587 0292 0.879

. PPMI 0.609 0505 1.115
WordSim353 oy 0233 0221 0.454
ROOT-TTEST 0.658 0.539 1.197
ROOTROOT-TTEST 0.646 0.495 1.141
STRATOS-TTEST 0438 0314 0.752

TTEST 0248 0260 0.509

PMI 0269 00224 0.494

PPMI 0253 0284 0.537

MEN WPMI 0132 0171 0.303
ROOT-TTEST 0.305 0.293 0.598
ROOTROOT-TTEST 0.317 0.263 0.580
STRATOS-TTEST  0.156 0.130 0.286

TTEST 0.619 0.649 1.268

PMI 0.629 0514 1.143

Turk PPMI 0.651 0.625 1.276
WPMI 0.343 0417 0.760
ROOT-TTEST 0.666 0.659 1.325
ROOTROOT-TTEST 0.667 0.616 1.283
STRATOS-TTEST 0561 0.525 1.086

TTEST 0392 0428 0.820

PMI 0335 0289 0.624

Rare PPMI 0328 0.363 0.691
WPMI 0252 0255 0.506
ROOT-TTEST 0.389 0477 0.866
ROOTROOT-TTEST 0.418 0.454 0.872
STRATOS-TTEST 0243 0.196 0.439

TTEST 0220 0230 0.450

PMI 0257 0.168 0.425

. PPMI 0251 0277 0.528
SImLex-999 \ypmr 0139 0.118 0.257
ROOT-TTEST 0276 0.280 0.556
ROOTROOT-TTEST 0271 0.239 0.509
STRATOS-TTEST ~ 0.181 0.125 0.306

TTEST 2067 1994 4.061

PMI 2078 1487 3.565

Total PPMI 2092 2054 4.146
WPMI 1.098 1.182 2280
ROOT-TTEST 2293 2249 4.542
ROOTROOT-TTEST 2319 2.067 4.386
STRATOS-TTEST 1579 1289 2.869
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8.2 CA, PMI-SVD, PPMI-SVD, PMI-GSVD, GloVe, and SGNS

Next, we compare CA (RAW-CA in Table 3) with the PMI-based methods PMI-SVD, PPMI-
SVD, PMI-GSVD, GloVe, and SGNS. Table 3 has a left part, where p = 0, and a right part,
where p = 0.5. As p does not exist in GloVe and SGNS, these methods have identical
values for p = 0 and p = 0.5. Plots for p as a function of k£ for SVD-based methods are in
Supplementary materials B.

Comparing the last block of Table 3 with the last block of Table 2 reveals that, overall,
dimensionality reduction is beneficial for the size of p, as CA, PMI-SVD, PPMI-SVD, PMI-
GSVD, ROOT-CA, ROOTROOT-CA, and ROOT-CCA do better than their respective coun-
terparts TTEST, PMI, PPMI, WPMI, ROOT-TTEST, ROOTROOT-TTEST, and STRATOS-
TTEST. For TTEST the improvement due to using SVD is less than for PMI, PPMI, WPMI,
ROOT-TTEST, STRATOS-TTEST; for WPMI and STRATOS-TTEST the improvement due to
using SVD is more than for TTEST, PPMI, ROOT-TTEST, and ROOTROOT-TTEST, which
is a result consistent for each corpus and each word similarity dataset.

For an overall comparison of the dimensionality reduction methods, we study the block
at the bottom of Table 3, which provides the sum of the p-values over the five word simi-
larity datasets. For both p = 0 and p = 0.5, among RAW-CA, PMI-SVD, PPMI-SVD, PMI-
GSVD, GloVe, and SGNS, overall PMI-SVD and PPMI-SVD perform best, closely followed
by SGNS. RAW-CA and PMI-GSVD follow at some distance, and last, we find GloVe. The
popular method GloVe does not perform well. Possibly the conditions of the study are
not optimal for GloVe, as the Text8 and BNC corpora are, with 11,815 and 11,332 terms
respectively, possibly too small to obtain reliable results (Jiang, Yu, Hsieh, & Chang, 2018).

As the focus in this paper is on the performance of CA, we give some extra attention
to RAW-CA and the similar PMI-GSVD. Even though CA and PMI-GSVD have the same
weighting function p;; p,;, and should be close when p;;/ (pi+p+;) — 1 is small (compare
the discussion around Equations (24, 25)) their performances are rather different. This
may be because there are extremely large values (larger than 35,000) in the fitting function
(pij/ (Pi+p+4) — 1) of CA, which makes the fitting function of CA not close to the fitting
function log (pi;/ (pi+p+;)) of PMI-GSVD.

When we compare PMI-GSVD with PMI-SVD, we are surprised to find that weighting
rows and columns appears to decrease the values of p. This is in contrast with the reliability
principle of Salle and Villavicencio (2023) discussed above.

We now discuss why PMI-SVD and PPMI-SVD do better than PMI-GSVD. It turns out
that the number and sizes of extreme values in the matrix WPMI decomposed by PMI-
GSVD are much larger than in PMI and PPMI, and this results in PMI-GSVD dimensions
being dominated by single words. We only include non-zero elements in the PMI matrix
as the PMI matrix is sparse: 94.2% of the entries are zero for Text8; for a fair comparison,
the corresponding 94.2% of entries in the PPMI and WPMI matrices are also ignored. Fol-
lowing box plot methodology (Dodge, 2008; Schwertman, Owens, & Adnan, 2004; Tukey,
1977), extreme values are determined as follows: let ¢; and g3 be the first and third sample

quartiles, and let f; = ¢1 — 1.5(¢3 — q1), f3 = ¢3 + 1.5(¢3 — ¢1). Then extreme values are de-
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Table 3: SVD: correlation coefficient p with p = 0, 0.5.

p=20 p=0.5
Text8 BNC Text8 BNC

k P k p total | & p k p total

RAW-CA 600 0.578 400 0465 1.043 | 9000 0.609 10000 0.498 1.107

PMI-SVD 400 0.675 600 0.628 1.303 | 400 0.683 500 0579 1.262

PPMI-SVD 400 0.681 700 0.628 1.309 | 200 0.694 2000 0.623 1.317

WordSim353 GloVe 200 0.422 600 0.522  0.943 | 200 0.422 600 0.522  0.943
SGNS 300 0.668 600 0.551 1.219 | 300 0.668 600 0.551 1.219

PMI-GSVD 700 0.512 600 0468 0.980 | 6000 0.548 3000 0449 0.997

ROOT-CA 300 0.668 400 0.623 1.291 | 500 0.688 900 0.657 1.345
ROOTROOT-CA | 200 0.692 200 0.635 1.327 | 300 0.697 400 0.630 1.327

ROOT-CCA 100 0.682 700 0.627 1.310 | 300 0.684 600 0.620 1.304

RAW-CA 300 0.223 600 0.293 0.516 | 7000 0.256 9000 0.299 0.556

PMI-SVD 800 0.328 700 0.393 0.721 | 600 0.317 2000 0.357 0.674

PPMI-SVD 800 0.336 500 0.394 0.730 | 800 0.324 1000 0.358 0.681

MEN GloVe 300 0.175 600 0.310 0.485 | 300 0.175 600 0.310 0.485
SGNS 400 0.295 400 0.333  0.627 | 400 0.295 400 0.333  0.627

PMI-GSVD 800 0.267 600 0.318 0.585 | 5000 0.256 3000 0.308 0.564

ROOT-CA 800 0.325 500 0.400 0.725 | 9000 0.324 800 0.374 0.698
ROOTROOT-CA | 600 0.340 400 0.396 0.735 | 1000 0.332 4000 0.359 0.690

ROOT-CCA 600 0.315 400 0.392  0.706 | 900 0.298 800 0.355 0.653

RAW-CA 400 0.549 100 0562 1.111 | 400 0.592 10000 0.588 1.181

PMI-SVD 100 0.656 50 0.652  1.308 | 300 0.677 500 0.661 1.338

PPMI-SVD 50 0.668 50 0.671 1.339 | 50 0.677 50 0.683 1.361

Turk GloVe 600 0.502 200 0.540 1.042 | 600 0.502 200 0.540 1.042
SGNS 200 0.651 300 0.650 1.302 | 200 0.651 300 0.650 1.302

PMI-GSVD 900 0.495 200 0.506 1.000 | 5000 0.563 10000 0.584 1.147

ROOT-CA 50 0.649 50 0.695 1.344 | 100 0.661 50 0.684 1.345
ROOTROOT-CA | 50 0.669 50 0.666 1.334 | 50 0.664 300 0.673 1.337

ROOT-CCA 50 0.633 50 0.672 1.305 | 100 0.665 100 0.678 1.343

RAW-CA 600 0.396 500 0.450 0.846 | 900 0.411 3000 0465 0.875

PMI-SVD 100 0476 700 0.480 0.957 | 300 0.471 5000 0464 0.936

PPMI-SVD 100 0.483 400 0470 0.952 | 100 0475 6000 0469 0.944

Rare GloVe 400 0.181 600 0.379 0.560 | 400 0.181 600 0.379 0.560
SGNS 600 0.456 200 0.532  0.988 | 600 0.456 200 0.532 0.988

PMI-GSVD 400 0.451 500 0418 0.869 | 900 0.431 600 0429 0.860

ROOT-CA 400 0.468 400 0.501 0.970 | 600 0.479 7000 0.526  1.006
ROOTROOT-CA | 100 0.503 500 0476 0.978 | 100 0.475 4000 0478 0.953

ROOT-CCA 200 0.469 200 0.505 0.974 | 600 0.469 900 0511 0.979

RAW-CA 4000 0.219 2000 0.322 0.541 | 8000 0.243 7000 0.327 0.571

PMI-SVD 700 0.310 900 0409 0.719 | 3000 0.315 900 0.372  0.687

PPMI-SVD 700 0.309 500 0.393 0.702 | 3000 0.308 500 0.368 0.676

SimLex-999 GloVe 500 0.148 500 0.255 0.403 | 500 0.148 500 0.255 0.403
SGNS 600 0.306 400 0.376  0.682 | 600 0.306 400 0.376  0.682

PMI-GSVD 900 0.272 4000 0.365 0.637 | 5000 0.271 3000 0.312 0.583

ROOT-CA 2000 0.295 900 0415 0.710 | 5000 0.309 2000 0.395 0.704
ROOTROOT-CA | 700 0.321 900 0410 0.731 | 700 0.317 900 0.376  0.693

ROOT-CCA 1000 0.294 1000 0.421 0.715 | 7000 0.303 2000 0.391 0.693

RAW-CA 1.965 2.092 4.057 2.111 2.178  4.290

PMI-SVD 2.445 2562 5.007 2.465 2433 4.897

PPMI-SVD 2.476 2556 5.033 2.478 2,501 4.979

total GloVe 1.427 2.006 3.433 1.427 2.006 3.433
SGNS 2.376 2442 4819 2.376 2442 4.819

PMI-GSVD 1.997 2.075 4.072 2.069 2.082 4.151

ROOT-CA 2.405 2.635 5.039 2.462 2.637 5.098
ROOTROOT-CA 2.525 2582 5.107 2.484 2515 4.999

ROOT-CCA 2.393 2.617 5.011 2417 2555 4.972
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Table 4: Text8: the number of extreme values

LTf1 GTf3 total
PMI 4335 27984 32,319
PPMI 0 27984 27,984
WPMI 1,038,236 345,995 1,384,231
TTEST 50,560 627,046 677,606
ROOT-TTEST 5985 448,860 454,845
ROOTROOT-TTEST 4942 396437 401,379
STRATOS-TTEST 0 400,703 400,703

0354 ®= guant  -@- ugric 1 ®= guant  -@- ugric
namo pngimage namo pngimage
avant buenos 1 o avant buenos

-®- garde aires -®- garde
finno —o— aloe ] finno —o— aloe

PPMI-SVD
PMI-GSVD

0 20 40 60 80 100 0 20 40 60 80 100 o 20 40 60 80 100

Figure 1: Text8: the contribution of the rows, corresponding to the top 10 extreme values,
to the first 100 dimensions of PMI-SVD, PPMI-SVD, PMI-GSVD.

fined as values less than f; (LT f;) or greater than f3 (GT f3). The first three rows in Table 4
show the number of extreme elements in the PMI, PPMI, WPMI matrices. The number of
extreme values of the WPMI matrix (1,384,231) is much larger than that of PMI and PPMI
(32,319 and 27,984). Furthermore, in WPMI the extremeness of values is much larger than
in PMI and PPMI. Let the averaged contribution of each cell, expressed as a proportion,
be 1/(11,815 x 11,815). However, in WPMI, the most extreme entry, found for (the, the),
contributes around 0.01126 to the total inertia. In PMI (PPMI) the most extreme entry is
(guant, namo) or (namo, guant) and contributes around 3.1 x 1075 (3.2 x 1075) to the total
inertia. Figure 1 shows the contribution of the rows for the corresponding to top 10 ex-
treme values, to the first 100 dimensions of PMI-SVD, PPMI-SVD, PMI-GSVD. The rows,
corresponding to the top extreme values in the WPMI matrix, take up a much bigger con-
tribution to the first dimensions of PMI-GSVD. For example, in PMI-GSVD, the “the” row
contributes more than 0.3 to the third dimension, while in PMI-SVD and PPMI-SVD, the
contributions are much more even. Thus the PMI-GSVD solution is hampered by extreme
cells in the WPMI matrix that is decomposed. Similar results can be found for BNC in

Supplementary materials C.

8.3 The results for three variants of CA

Now we compare the three variants of CA (ROOT-CA, ROOTROOT-CA, ROOT-CCA)
with CA-RAW and the winner of the PMI-based methods, PPMI-SVD.

First, in Table 3, the three variants of CA perform much better than RAW-CA in each
word similarity dataset and each corpus, both for p = 0 and p = 0.5. In the block at the
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Figure 2: Text8: the contribution of the rows, corresponding to top 10 extreme values, to
first 100 dimensions of RAW-CA, ROOT-CA, ROOTROOT-CA.

bottom of Table 3, overall, the performance of the three variants is similar, where ROOT-
CA outperforms ROOT-CCA slightly.

The lower part of Table 4 shows the number of extreme values of TTEST, ROOT-TTEST,
ROOTROOT-TTEST and STRATOS-TTEST matrices for Text8. Similar with PMI, PPMI,
WPMLI, 94.2% of entries are ignored. The number of extreme values of the TTEST matrix
(677,606) is larger than that of ROOT-TTEST, ROOTROOT-TTEST and STRATOS-TTEST
(454,845, 401,379, and 400,703). Furthermore, in TTEST the extremeness of the extreme
values is larger than those in ROOT-TTEST, ROOTROOT-TTEST, and STRATOS-TTEST.
For example, in TTEST the most extreme entry (agave, agave) contributes around 0.02117
to the total inertia, while in ROOT-TTEST, ROOTROOT-TTEST, and STRATOS-TTEST, the
most extreme entries (agave, agave), (pngimage, pngimage), and (agave, agave) contribute
around 0.00325, 0.00119, and 0.00017, respectively. Figure 2 shows the contribution of the
rows for the top 10 extreme values, to the first 100 dimensions of RAW-CA, ROOT-CA, and
ROOTROOT-CA (The corresponding plot about ROOT-CCA is in Supplementary materi-
als D). In RAW-CA, the rows, corresponding to top extreme values of TTEST, take up a big
contribution to the first dimensions of RAW-CA. For example, in RAW-CA, the “agave”
row contributes around 0.983 to the first dimension, while in ROOT-CA and ROOTROOT-
CA, the contributions are much smaller which also holds for ROOT-CCA. Similar results
can be found for BNC in Supplementary materials E. Thus, we infer that the extreme val-
ues in TTEST are the important reason that RAW-CA performs badly.

Second, in the rows of the block at the bottom of Table 3, the overall performances of
ROOT-CA, ROOTROOT-CA, ROOT-CCA are comparable to or sometimes slightly better
than PPMI-SVD. Specifically, ROOTROOT-CA and ROOT-CA achieve the highest p for
Text8 and BNC corpora, respectively. Based on these results, no matter what we know
about the corpus, ROOTROOT-CA and ROOT-CA appear to have potential to improve
the performance in NLP tasks.

9 Conclusion and discussion

PMI is an important concept in natural language processing. In this paper, we theoreti-
cally compare CA with three PMI-based methods with respect to their objective functions.
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CA is a weighted factorization of a matrix where the fitting function is (p;;/ (pi+p+;) — 1)
and the weighting function is the product of row margins and column margins p;p, ;.
When the elements in the fitting function (p;;/ (pi+p+;) — 1) of CA are small, CA is close

to a weighted factorization of the PMI matrix where the weighting function is the product
pi+p+;- Thisis because (pij/ (pi+p+;) — 1) is close tolog (pi; / (pi+p+;)) when (pi; / (pitp+5) — 1)
is small.

The extracted word-context matrices are prone to overdispersion. To remedy the overdis-
persion, we presented ROOTROOT-CA. That is, we perform CA on the root-root transfor-
mation of the word-context matrix. We also apply CA to the square-root transformation
of the word-context matrix (ROOT-CA). In addition, we present ROOT-CCA, described in
Stratos et al. (2015), which is similar with ROOT-CA. The empirical comparison on word
similarity tasks shows that ROOTROOT-CA achieves the best overall results in the Text8
corpus, and ROOT-CA achieves the best overall results in the BNC corpus. Overall, the
performance of ROOT-CA and ROOTROOT-CA is slightly better than the performance of
PMI-based methods.

Concluding, our theoretical and empirical comparisons about CA and PMI-based meth-
ods shed new light on SVD-based and PMI-based methods. Our results show that, regu-
larly, in NLP tasks the performance can be improved by making use of ROOT-CA and
ROOTROOT-CA.

In this paper, we explore ROOT-CA and ROOTROOT-CA, where ROOT-CA uses a
power of 0.5 of the original elements z;; while ROOTROOT-CA uses 0.25 of the original
elements z;;. Our aim was to study the performance of CA w.r.t. other methods, and
for this purpose, focusing on values 0.25 and 0.5 was sufficient. It may be of interest to
study a general power transformation z; (or other power versions such as (p;/ (pi+p+;))°)
where § could range between any two non-negative values (Beh & Lombardo, 2024; Beh,
Lombardo, & Wang, 2023; Cuadras & Cuadras, 2006; Greenacre, 2009). Here 0.5 and 0.25
are special cases of this general transformation.

Data availability

The Text8 corpus and BNC corpus that support the findings of this study are openly avail-
able by Text§ dataset (2006) and BNC Consortium (2007), respectively.
The five word similarity datasets for word similarity tasks are from https://github

.com/valentinp72/svd2vec/tree/master/svd2vec/datasets/similarities
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Supplementary A: An alternative coordinates system for CA

For row points i and i/, with coordinates o.¢;; and o1¢;/;, on dimension k in K —dimensional

space we have
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so the terms p, > drop out of the equation. A similar result is found for column points.

Supplementary B: Plots for p as a function of k& for SVD-based

methods

Plots are for p as a function of k for SVD-based methods.
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Supplementary C: BNC: the number and sizes of extreme values of
PMI, PPMI, and WPM]I, and plots showing the contribution of the
rows about PMI-SVD, PPMI-SVD, and PMI-GSVD

Table C.1, part PMI, PPMI, WPMI, shows the number of extreme values of PMI, PPMI,
WPMI matrices. We only include non-zero pairs of PMI matrix because the PMI matrix
is sparse: 84.1% of the entries are zero. The corresponding 84.1% of entries in PPMI and
WPMI are also ignored. The number of extreme values of WPMI matrix (2,525,345) is
much larger than that of PMI and PPMI (141,366 and 405,830). Furthermore, in WPMI
the extremeness of the extreme values is much larger than those in PMI and PPMI. For
example, where the average contribution of each cell is 1/ (11,332 x 11, 332), in WPMI
the most extreme entry (the, the) contributes around 0.01150 to the total inertia, while in
PMI (PPMI), the most extreme entry (ee, ee) contributes around 2.2 x 107¢ (2.7 x 107°)
to the total inertia. Figure C.1 shows the contribution of the rows, corresponding to top
10 extreme values, to the first 100 dimensions of PMI-SVD, PPMI-SVD, PMI-GSVD. The
rows, corresponding to the top extreme values of WPMI, take up a bigger contribution to
the first dimensions of PMI-GSVD. For example, in PMI-GSVD, the “the” row contributes
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Figure C.1: BNC: the contribution of the rows, corresponding to top 10 extreme values, to
first 100 dimensions of PMI-SVD, PPMI-SVD, PMI-GSVD.

ROOT-CCA

0.4

Figure D.1: Text8: the contribution of the rows, corresponding to top 10 extreme values, to
tirst 100 dimensions of ROOT-CCA.

more than 0.3 to the third dimension, while in PMI-SVD and PPMI-SVD, the contributions

are much smaller.

Table C.1: BNC: the number of extreme values

LTf GTf3 total
PMI 13,982 127,384 141,366
PPMI 0 405,830 405,830
WPMI 2,037,800 487,545 2,525,345
TTEST 334,512 1,480,336 1,814,848
ROOT-TTEST 35,418 927,470 962,888
ROOTROOT-TTEST 31,234 750,433 781,667
STRATOS-TTEST 0 1,173,717 1,173,717

Supplementary D: Text8: plots showing the contribution of the
rows about ROOT-CCA

Figure D.1 shows the contribution of the rows, corresponding to top 10 extreme values, to
tirst 100 dimensions of ROOT-CCA
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Figure E.1: BNC: the contribution of the rows, corresponding to top 10 extreme values, to
first 100 dimensions of RAW-CA, ROOT-CA, ROOTROOT-CA.

Supplementary E: BNC: the number and sizes of extreme values of
TTEST, ROOT-TTEST, ROOTROOT-TTEST, and STRATOS-TTEST,
and plots showing the contribution of the rows about RAW-CA,
ROOT-CA, ROOTROOT-CA, and ROOT-CCA

The bottom part of Table C.1 shows the number of extreme values of TTEST, ROOT-TTEST,
ROOTROOT-TTEST and STRATOS-TTEST matrices. Similar with PMI, PPMI, WPMI, 84.1%
of entries are ignored. The number of extreme values of TTEST matrix (1,814,848) is much
larger than that of ROOT-TTEST, ROOTROOT-TTEST and STRATOS-TTEST (962,888, 781,667,
and 1,173,717). Furthermore, in TTEST the extremeness of the extreme values is much
larger than in ROOT-TTEST, ROOTROOT-TTEST and STRATOS-TTEST. For example, in
TTEST the most extreme entry (kong, hong) or (hong, kong) contributes around 0.00965
to the total inertia, while in ROOT-TTEST, ROOTROOT-TTEST and STRATOS-TTEST, the
most extreme entries (colitis, ulcerative) or (ulcerative, colitis), (colitis, ulcerative) or (col-
itis, ulcerative), (hong, kong) or (kong, hong) contribute around 0.00047, 0.00003, and
0.00008 respectively. Figure E.1 shows the contribution of the rows, corresponding to top
10 extreme values, to first 100 dimensions of RAW-CA, ROOT-CA, and ROOTROOT-CA.
The corresponding plot about ROOT-CCA is in Figure E.2. In RAW-CA, the rows, corre-
sponding to top extreme values of TTEST, have a big contribution to the first dimensions
of RAW-CA, while in ROOT-CA and ROOTROOQOT-CA, the contributions are much smaller,
which also holds for ROOT-CCA.
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