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Abstract
Synthesizing results across multiple studies is a popular way to increase the robustness of scientific findings. The most well-
known method for doing this is meta-analysis. However, because meta-analysis requires conceptually comparable effect sizes 
with the same statistical form, meta-analysis may not be possible when studies are highly diverse in terms of their research 
design, participant characteristics, or operationalization of key variables. In these situations, Bayesian evidence synthesis may 
constitute a flexible and feasible alternative, as this method combines studies at the hypothesis level rather than at the level of 
the effect size. This method therefore poses less constraints on the studies to be combined. In this study, we introduce Bayesian 
evidence synthesis and show through simulations when this method diverges from what would be expected in a meta-analysis 
to help researchers correctly interpret the synthesis results. As an empirical demonstration, we also apply Bayesian evidence 
synthesis to a published meta-analysis on statistical learning in people with and without developmental language disorder. We 
highlight the strengths and weaknesses of the proposed method and offer suggestions for future research.

Keywords Research synthesis · Bayes factor · Robustness · Conceptual replications · Experimental psychology · 
Informative hypotheses

Introduction

Science is by nature a cumulative endeavor, in which we 
build upon results from previous studies to inform theory 
and generate new hypotheses. However, a great challenge 
in building theories is the high prevalence of conflicting 
results in psychological research, caused in part by small 
sample sizes and reliance on null hypothesis significance 
testing (e.g., Button et al., 2013; Open Science Collabo-
ration, 2015; Van Calster et al., 2018). A commonly used 
method to help remedy this issue is to increase the robust-
ness of scientific findings by means of meta-analysis (e.g., 
Cooper et al., 2019; Lipsey & Wilson, 2001). In a meta-
analysis, the researcher quantitatively summarizes results 
across studies by computing a weighted mean effect size and 

corresponding confidence intervals to investigate whether 
there is evidence for an effect when all studies are taken 
together. Meta-analysis therefore helps mitigate the issue of 
underpowered studies, as a small effect may be statistically 
non-significant in each individual study, but significant when 
all these studies are combined. Furthermore, it can be inves-
tigated whether there is significant heterogeneity in effect 
sizes across studies, and if so, which study-level variables 
can explain part of this variation (e.g., Berkey et al., 1995; 
van Houwelingen et al., 2002). This way, meta-analysis can 
help explain conflicting results in the literature and contrib-
ute to more coherent theories.

Although meta-analysis is a powerful and versatile 
method for aggregating multiple studies, conducting a meta-
analysis is sometimes challenging or even impossible for the 
set of studies a researcher wishes to combine. As studies 
are combined at the level of the effect size, meta-analysis 
requires the effect sizes across studies to be conceptually 
comparable and have the same statistical form (Lipsey & 
Wilson, 2001). These requirements are unlikely to be met 
if studies differ considerably regarding research design, 
operationalization of key variables, and statistical models 
used. For example, when studies have measured variables 
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on different scales (e.g., continuous vs. binary), transforma-
tions are needed to translate the effect sizes into one com-
mon effect-size metric. Although such transformations exist 
(see, e.g., Cooper et al., 2019; Lipsey & Wilson, 2001), 
they do not exist between all effect-size metrics and many 
of these transformations “make strong or even untenable 
assumptions” (van Assen et al., 2022, p. 1), begging the 
question of whether effect sizes that require such transfor-
mations should be combined in the first place. Furthermore, 
even small differences in design often result in different 
population effects being estimated, which means their effect 
sizes cannot be directly compared or aggregated (Morris & 
DeShon, 2002, and references cited therein). Finally, meta-
analysis is impossible when studies have measured different 
parts of a larger overarching hypothesis. Such a situation is 
illustrated by Kevenaar et al. (2021), who investigated chil-
dren’s self-control ratings obtained from multiple inform-
ants across four different cohorts. The authors wanted to 
test the overarching hypothesis that children themselves 
report most problem behaviors, followed by their mothers 
and fathers, and that teachers report the fewest problems. 
However, in each cohort, ratings from only two or three 
(non-overlapping) informant groups were available, making 
it impossible to investigate the hypothesis of interest using 
meta-analysis.

In situations where meta-analysis is difficult or impos-
sible, Bayesian evidence synthesis (BES) may provide a 
feasible and flexible alternative (Klugkist & Volker, 2023; 
Kuiper et al., 2013). As we will further elaborate below, 
BES consists of three steps. First, in each study, statisti-
cal hypotheses are formulated that reflect the theories of 
interest, but that incorporate data and design characteris-
tics unique to that study. Then, Bayes factors are computed 
to quantify the evidence for the hypotheses in that study. 
Finally, the study-specific Bayes factors are aggregated to 
determine which hypothesis best accounts for each study’s 
results when all studies are considered simultaneously. Cru-
cially, BES poses less constraints on the studies to be com-
bined than meta-analysis because studies are combined at 
the hypothesis level rather than at the level of the effect size. 
The effect sizes across studies therefore do not need to have 
the same statistical form. In addition, BES allows for differ-
ences in study design and operationalization of variables, 
as the study-specific hypotheses do not have to be identical. 
The key idea is that if the study-specific hypotheses test the 
same underlying (i.e., latent) effect, the Bayes factors for 
these hypotheses can be meaningfully combined. BES is 
thus a flexible tool that allows the aggregation of highly 
diverse studies. However, in contrast to meta-analysis, BES 
is solely concerned with hypothesis testing. It does not allow 
researchers to estimate the size of an effect or test whether 
there is systematic heterogeneity in effect sizes across stud-
ies. In addition, unlike meta-analysis, BES is not intended 

to increase the statistical power for detecting an effect (as 
will become clear in the remainder of this paper and is also 
explained in Klugkist and Volker, 2023). For these reasons, 
meta-analysis will be the preferred method when studies 
have similar designs and measures. However, hypotheses can 
often be tested in many different ways (e.g., experiments, 
tests, surveys, vignette studies) with many different models 
or parameter estimates (e.g., logistic regression, multilevel 
models, ANOVA). Hypotheses are often assumed to hold 
regardless of these (sometimes arbitrary) design choices, as 
long as all outcomes are considered to measure the same 
underlying (latent) construct and the sample is considered 
to be drawn from the population of interest. In such situa-
tions, BES can provide us with the global support for each 
hypothesis across all available studies. In addition, as we 
will further explain below, BES allows for (i) formulating 
and testing informative hypotheses that unlike the conven-
tional null hypothesis can directly test a specific hypothesis, 
and (ii) evaluating multiple (i.e., 2+) hypotheses simulta-
neously, which allows researchers to directly compare all 
hypotheses of interest.

The goal of the current paper is to introduce BES as an 
alternative to meta-analysis when the latter is difficult or 
impossible and to assess how BES performs in comparison 
to meta-analysis under various conditions. This will help 
researchers who are familiar with meta-analysis to correctly 
evaluate BES results and to understand when and why these 
results may diverge from what would be expected in a meta-
analysis. To investigate the performance of BES in compari-
son to meta-analysis, we conducted a Monte Carlo simula-
tion study in which we mimicked various scenarios that may 
be relevant to applied researchers. To also provide readers 
with a real-world example, we included an empirical dem-
onstration in which we applied BES to a published meta-
analysis on statistical learning in people with and without 
developmental language disorder (Lammertink et al., 2017). 
Before we turn to the simulation study, we will first explain 
BES in more detail.

Bayesian evidence synthesis

As mentioned above, BES proceeds in three steps: (i) formu-
lation of study-specific hypotheses, (ii) evaluation of these 
hypotheses in each study separately using Bayes factors, and 
(iii) the aggregation of these study-specific Bayes factors 
to yield the support for the overall theory over all studies 
combined. We now explain each step in turn.

Formulation of study‑specific hypotheses

In the null hypothesis significance testing (NHST) frame-
work, a null hypothesis ( H0 : no effect) is tested against the 
complement hypothesis (not H0 ). However, in the context of 
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BES, it is also possible to evaluate informative hypotheses 
that represent an explicit theory or expectation by posing 
constraints on model parameters (e.g., Hoijtink, 2012; Klug-
kist et al., 2011; van de Schoot et al., 2011). For instance, 
in an experimental design, specific conditions are included 
because it is a priori expected that in certain conditions par-
ticipants will score higher or lower than in other conditions. 
This expectation can be represented by order constraints on 
the means and could, for example, lead to the informative 
hypothesis Hi ∶ 𝜇1< 𝜇2 < 𝜇3 (where �j is the mean of the 
jth group or condition). Finding support for Hi (or not) is 
then more informative than the evaluation of the usual null 
(all means equal) and complement (not all means equal). 
Order constraints are just one example of useful constraints 
to represent specific expectations. Also fitting in the frame-
work of informative hypothesis evaluation are equality con-
straints (e.g., � = 0.5 , or, �1 = �2 ), range constraints (e.g., 
−0.1 < 𝜇 < 0.1 , or, 𝜇1 > (𝜇2 + 0.5) ) and constraints on func-
tions of parameters (e.g., (𝜇1 + 𝜇2)∕2 > 𝜇3 , or, 𝜇1 > 3𝜇2 ). 
A special hypothesis is the unconstrained hypothesis which 
poses no constraints on the parameters (in the examples 
above, this means that all means can take on any value). As 
we explain below, this hypothesis is used in the computation 
of Bayes factors comparing two informative hypotheses. In 
addition, the unconstrained hypothesis is often included in 
the set of hypotheses under consideration to avoid choosing 
between different competing hypotheses when none of these 
hypotheses represent the data well (Hoijtink et al., 2019).

In the context of BES, it is furthermore possible to for-
mulate study-specific hypotheses that test the overarching 
theory while also incorporating data characteristics and 
research methodology unique to that study. For example, 
say that two studies have investigated the effect of age 
on willingness to take risks where one study has meas-
ured the participant’s age in years and the other study 
has divided the participants into three age groups. The 
overarching hypothesis is that age decreases the will-
ingness to take risks. This theory can be translated into 
the study-specific hypothesis Hi,1 ∶ 𝛽age < 0 in Study 1, 
where �age is the regression estimate for the effect of age 
on willingness of taking risks; and into Hi,2 ∶ 𝜇1 > 𝜇2 > 𝜇3 
in Study 2, where �j is the mean willingness to take 
risks in the jth age group. Another example is provided 
by the study of Kevenaar et al. (2021) that was briefly 
mentioned above, where the authors wished to aggregate 
four cohort studies that provided ratings of children’s 
self-control problems by different informants. One of 
the overarching hypotheses the authors wished to test 
was Hi ∶ 𝜇self > 𝜇mother > 𝜇father > 𝜇teacher . However, as 
the cohort studies obtained ratings from different sets of 
informants, the authors specified three different study-spe-
cific hypotheses, namely Hi,1 ∶ 𝜇mother > 𝜇father > 𝜇teacher ; 

Hi,2 ∶ 𝜇self > 𝜇mother ; and Hi,3 ∶ 𝜇mother > 𝜇teacher . The idea 
here is that these study-specific hypotheses should receive 
the most support in each study if Hi is true because these 
hypotheses are all compatible with Hi even though they 
only test part of it.

Hypothesis evaluation using the Bayes factor

The relative support for a given hypothesis (or model) can 
be expressed with the Bayes factor (BF). Note that in the 
Bayesian testing framework, a hypothesis is formulated 
as a statistical model; throughout the remainder of this 
paper we will therefore use the terms hypothesis and model 
interchangeably. The BF comparing hypotheses Hi and H

i′
 

is given by

where P(X|Hi) and P(X|H
i�
) denote the marginal likeli-

hood of the observed data under hypothesis Hi and H
i′
 , 

respectively (Kass & Raftery, 1995). These marginal likeli-
hoods are defined as the product of the likelihood function, 
P(X|�,H) , and the prior, P(�|H) , integrated with respect to 
the parameter vector � . The BF can be directly interpreted 
as the evidence in the data for hypothesis Hi versus the evi-
dence in the data for hypothesis H

i′
 . As such, a BF

ii�
= 10 

for example indicates that hypothesis Hi receives 10 times 
more support than hypothesis H

i′
.

Calculation of the BF based on its mathematical definition 
presented in Eq. 1 is typically difficult. However, building on 
work by Klugkist et al. (2005), Gu et al. (2018) showed that the 
BF comparing a hypothesis Hi to the unconstrained hypothesis 
Hu can be approximated by the Savage-Dickey density ratio in 
Eq. 2 for equality-constrained hypotheses (e.g., � = 0 ) when 
(i) using normal approximations of the prior and posterior dis-
tributions of the unconstrained hypothesis, (ii) centering the 
prior distribution on the boundary of the hypotheses under 
consideration, and (iii) using a fraction b of the information 
in the data to construct a proper prior distribution. This yields

where fi0 is the density of the unconstrained posterior dis-
tribution Pu(� = B

i0
|X) (denoted fit) and ci0 is the density of 

the adjusted unconstrained prior distribution p∗
u
(� = B

i0
|Xb) 

(denoted complexity) evaluated at the location of the hypoth-
esized values B

i0
.

For inequality-constrained hypotheses (e.g., 𝛽 > 0 ), BFiu 
can be approximated by

(1)BF
ii�
=

P(X|H
i
)

P(X|H
i�
)
=

∫ P
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X|�,H

i
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,
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=

fi0
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=
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|X)
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(� = B

i0
|Xb)

,
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where the fit ( fi1 ) is the proportion of the unconstrained 
posterior distribution that is in line with hypothesis Hi , and 
the complexity ( ci1 ) is the proportion of the unconstrained 
prior distribution for Hu in line with hypothesis Hi . For the 
computation of BFiu for hypotheses with both equality and 
inequality constraints see Gu et al. (2018, p. 241).

The BF comparing two informative hypotheses Hi and 
H

i′
 is then given by

The support expressed by the BF thus balances the fit 
and complexity of the hypotheses under consideration. The 
fit of a hypothesis is a measure of how well the hypothesis 
describes the observed data, while the complexity indi-
cates how specific (parsimonious) the hypothesis is. The 
higher the fit, and the lower the complexity, the higher the 
BF in favor of the hypothesis at hand relative to an alterna-
tive hypothesis. This means that whenever two hypotheses 
have an equal fit, the most parsimonious hypothesis will be 
preferred. However, even when a given hypothesis Hi has a 
lower fit than an alternative hypothesis H

i′
 , Hi will still be 

preferred if the decrease in complexity for Hi compared to 
H

i′
 is larger than the decrease in fit. When evaluating the 

set of hypotheses under consideration, it is thus important 
to consider how the relative complexities of these hypoth-
eses will influence the results. The most specific (least com-
plex) hypotheses are equality-constrained hypotheses (e.g., 
�1 = �2 ). The least specific (most complex) hypothesis is 
the unconstrained hypothesis Hu which poses no constraints 
on the parameter values. The unconstrained hypothesis will 
therefore only be preferred if none of the other hypotheses 
provide a good fit to the data. Note that per their definition, 
the complexity and fit of Hu are always 1, which means there 
is an upper limit of BFiu that is determined by the com-
plexity of Hi (Klugkist & Volker, 2023). For example, the 
hypothesis H1 ∶ 𝛽 > 0 has a complexity of 0.5 since this 
hypothesis covers half of the unconstrained prior distribu-
tion. This means that BF1u has an upper limit of 2: when the 
fit of H1 is perfect, BF1u = 1∕0.5 = 2 . In contrast, when test-
ing a hypothesis against its complement or against another 
constrained hypothesis, the resulting BF does not have an 
upper limit. If a researcher is interested in only one informa-
tive hypothesis, then testing against the complement is the 
most powerful, because the two hypotheses cover mutually 
exclusive regions of the parameter space (Klugkist & Volker, 
2023). Note, finally, that when testing an equality-con-
strained hypothesis (e.g., H0 ∶ �1 = �2 ), the unconstrained 

(3)BFi1u
=

fi1

ci1

=

∫
�∈B

i1

Pu(�|X)��

∫
�∈B

i1

p∗
u

(
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)
��

,

(4)BF
ii�
=

BF
iu

BF
i�u

=
f
i
∕c

i

f
i�
∕c

i�

.

hypothesis Hu is statistically equivalent to the complement 
hypothesis Hc (not H0 ; Hoijtink et al., 2019).1 We will fur-
ther illustrate the interplay between the fit and complexity of 
the hypotheses under consideration in the simulation results.

When comparing a set of hypotheses, it is useful to trans-
late the BFs into posterior model probabilities (PMPs; Kass 
& Raftery, 1995). PMPs facilitate interpretation as they have 
values between 0 and 1 (with values closer to 1 indicating 
more support) that add up to 1 over all hypotheses under 
consideration; they thus express the relative support for each 
of the tested hypotheses. Translating BFs into PMPs is sim-
ple, given that the BF is a multiplicative factor that trans-
forms the prior odds of two hypotheses (i.e., the ratio of the 
probabilities of each hypothesis before any data is collected) 
into the posterior odds (i.e., the ratio of the probabilities of 
each hypothesis after seeing the data), as shown in Eq. 5:

The PMP for hypothesis Hi can thus be computed as

where P(Hi) is the prior model probability of hypothesis Hi 
with i = 1, 2, …, m. Typically, equal prior probabilities are 
assigned to each hypothesis, which means that each hypoth-
esis receives a prior model probability of 1/m.

Synthesis of Bayes factors

Once the study-specific BFs (or PMPs) are obtained, the 
final step is to aggregate them to yield the joint support for 
each hypothesis across all studies. The joint support for each 
hypothesis is obtained by updating the model probabilities 
with each new study. In other words, the posterior model 
probability of study k can be used as the prior model prob-
ability for study k+1. Irrespective of the order of the studies, 
this process can be repeated for a total of K studies, assum-
ing all studies are independent (Kuiper et al., 2013). The 
aggregated PMP for hypothesis Hi is then given by

(5)
P(Hi)

P(Hu)
× BFiu =

P(Hi|X)
P(Hu|X)

.

(6)PMP(Hi) =
P(Hi) × BFiu∑m

i=1
P(Hi) × BFiu

,

(7)PMP(Hi)
K =

P0(Hi) ×
∏K

k=1
BFk

iu
∑m

i=1
P0

�
Hi

�
×
∏K

k=1
BFk

iu

,

1 As explained in Hoijtink et al. (2019, Footnote 1) this is “because, 
loosely spoken, among the infinite number of possible combinations 
of values for μ1, μ2, and μ3 that are in agreement with  Hu, μ1 = μ2 = 
μ3 has a ‘zero probability’ of occurring.” So whether μ1 = μ2 = μ3 is 
included in the hypothesis (as in  Hu) or not (as in  Hc) will not affect 
the Bayes factor.
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where P0(Hi) indicates the prior model probability for 
hypothesis Hi before any study has been conducted. The 
numerator represents the joint probability of the data from 
all studies under the assumption that the constraints of the 
target hypothesis hold separately in each study, whereas the 
denominator sums the joint probabilities of the data under 
each of the hypotheses under consideration. The aggregated 
PMP therefore provides the joint evidence for a hypothesis 
in each study relative to the other hypotheses considered. 
Note that in order to compute the aggregated PMP it is not 
necessary for the study-specific BFs to have used the same 
priors for the model estimates. BES assumes that studies 
provide independent pieces of evidence, which means that if 
the prior used within a study is deemed appropriate to esti-
mate the parameters and/or compute the BFs, then the evi-
dence from this study can be aggregated with the evidence 
from other studies regardless of whether these other studies 
used the same prior on the model estimates (see Klugkist & 
Volker, 2023).

With equal prior model probabilities for each hypothesis 
(i.e., P0(Hi) = 1/m), Eq. 7 can be rewritten as

where PMP(Hi)
k is the posterior model probability of 

hypothesis Hi in study k . When only two hypotheses are 
tested, this formula simplifies to

Note that with equal prior model probabilities, the infor-
mation provided by the aggregated PMP is the same as the 
product of Bayes factors.

Difference with meta‑analysis

As mentioned above, the aggregated PMPs obtained by BES 
give the relative joint probability of the data from all stud-
ies under the assumption that the constraints of the target 
hypothesis hold in each study separately. The aggregated 
PMP can therefore be used to indicate which hypothesis 
best describes each study. This is different from inferences 
based on data-pooling techniques such as meta-analysis, 
which indicate whether the target hypothesis is supported 
by the pooled data. In a meta-analysis (e.g., Hedges & Olkin, 
1985; Hedges & Vevea, 1998), it is assumed that for a set 
of k = 1,… ,K independent studies, the observed effect in 
study k is given by

(8)PMP(Hi)
K =

∏K

k=1
PMP(Hi)

k

∑m

i=1

∏K

k=1
PMP(Hi)

k
,

(9)PMP(Hi)
K =

∏K

k=1
PMP(Hi)

k

∏K

k=1
PMP(Hi)

k +
∏K

k=1
(1 − PMP(Hi)

k)
.

(10)yk ∼ N
(
�k, vk

)
,

where �k is the (unknown) true effect, and vk is the sampling 
variance (which is assumed to be known). Since most meta-
analyses are based on sets of studies that are not identical, it 
is typically assumed that there is variability among the true 
effects. If this variability is not systematic (i.e., between-
study differences do not systematically predict effect size), 
then this variability can be modeled as purely random with 
the random-effects model given by

that is, the true effects �k are assumed to be normally dis-
tributed with mean � and variance �2 . In contrast to BES, 
where the model parameters are estimated independently in 
each study and are therefore allowed to vary, meta-analysis 
assumes that the mean population effect � is identical for 
each study. To yield a better estimate of this common popu-
lation parameter, a weighted average of the observed effect 
sizes yk is computed, with weights typically equal to the 
inverse variance (i.e., 1∕[vk + �̂2] , where �̂2 denotes the esti-
mate of �2 ). Inferential tests and confidence intervals then 
indicate whether the estimated common population param-
eter significantly differs from zero.

It can sometimes happen that BES does not yield the 
same results as data-pooling techniques like meta-analysis, 
as for example illustrated by Regenwetter et al. (2018), who 
used both BES (which they called the “group BF”) and a 
data-pooling technique (i.e., BFs computed on the pooled 
data which they called the “pooled BF”) in the context of 
aggregating single participant data. Diverging results may, 
for example, occur when the hypothesis best supported by 
the aggregated data is not well supported in any of the indi-
vidual studies. Another example of when the methods may 
not converge on the same hypothesis is when a given hypoth-
esis, Hi , describes most studies reasonably well but provides 
a very poor fit for a few studies that are better described 
by other hypotheses. In this case, Hi will typically not be 
selected as the best hypothesis by BES but might still be 
selected as the best hypothesis by data-pooling techniques. 
Although both meta-analysis and BES can thus be used for 
testing hypotheses across multiple studies, the results may 
sometimes differ because the methods answer a different 
synthesis question. This will be further illustrated in the 
simulation study.

Simulation

In the simulation study, we evaluated the performance of 
BES compared to meta-analysis as a function of true popu-
lation effect size, total sample size per study, level of vari-
ability among the study-specific true effects, and number 

(11)�k ∼ N
(
�, �2

)
,
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of studies. We also assessed how much influence one study 
with an extremely small sample size or opposite effect size 
has on the aggregated result. For BES, we show how the 
results depend on which hypotheses are considered. The 
simulation was conducted in R (R Core Team, 2021, Version 
4.1.0). All R scripts, simulated datasets, and (supplemen-
tary) figures are available in the Open Science Framework 
repository at https:// osf. io/ gbtyk/.

Data generation

We used the standardized mean difference as an effect size 
as this is a very common effect-size metric in meta-analyses 
of experimental studies. For each artificial study, k , with 
k = 1,… ,K , we generated data for a total of N participants 
divided equally across two groups, which we refer to here as 
the experimental group and the control group. Let �E

k
 be the 

N∕2 × 1 vector of outcomes for the experimental group and �C
k
 

the N∕2 × 1 vector of outcomes for the control group. Assum-
ing normality of the data, these outcomes can be generated as

where �k is the true standardized mean difference for study k . 
Given the relatively large amount of heterogeneity in effect 
sizes found in psychological meta-analyses (Linden & Höne-
kopp, 2021; van Erp et al., 2017), we modeled variability 
among the study-specific true effect sizes by sampling them 
from a normal distribution, that is,

where � is the true mean population effect size and �2 is the 
true between-study variance in effect sizes. After simulat-
ing the data, we estimated the standardized mean difference 
�̂k and its variance vk following standard formulas, that is,

and

The different simulation conditions were created by vary-
ing the true mean population effect size ( � ), the true between-
study standard deviation ( � ), and the total sample size per 
study ( N ). For �, we chose a small ( � = 0.2 ) and medium 
effect ( � = 0.5 ), given that small-to-medium effect sizes are 
the most common in the field of psychology (Lovakov & 
Agadullina, 2021; Open Science Collaboration, 2015). We 
also included a null effect ( � = 0) to investigate the behavior 

(12)�
E

k
∼ N

(
�
k
, 1
)
and �

C

k
∼ N(0, 1),

(13)�k ∼ N
(
�, �2

)
,

(14)�̂k =
Y
E

k
− Y

C

k√
(SD2

1
+ SD2

2
)∕2

(15)vk =
4

N
+

�̂2
k

2(N − 2)
,

of BES when the null hypothesis is true. For � , we chose 
the first ( � = 0.1) and third quartile ( � = 0.3 ) of estimated 
� values found in 189 meta-analyses of standardized mean 
differences published in Psychological Bulletin (van Erp 
et al., 2017), thus representing relatively small and relatively 
large variation in effect sizes within the field of psychology. 
Finally, for N we chose a range between 20 and 200 with 
a step size of 20. The lower limit represents the absolute 
minimal sample size typically considered for experimental 
studies in psychology, whereas the upper limit represents 
the maximum sample size found in ~ 80% of 2642 experi-
mental studies collected by Lovakov & Agadullina (2021). 
For each of the 3 ( � ∈ {0, 0.2, 0.5} ) x 2 ( � ∈ {0.1, 0.3} ) x 10 
( N ∈ {20, 40,… , 200} ) = 60 conditions, we simulated a set 
of K = 30 studies. We ran 1000 replications per condition, 
yielding a total of 60 x 30 x 1000 = 1,800,000 simulated 
datasets. To investigate the effect of the number of studies, 
we synthesized the first two studies of each replication by 
means of meta-analysis and BES and then cumulatively 
added one study at a time until all K = 30 studies were syn-
thesized. This way, we could directly investigate the effect of 
adding more studies to the existing set of studies.2

We also investigated how many studies one needs to still 
yield aggregated support for the target hypothesis  when 
one study provides strong evidence against this hypoth-
esis. This may for example happen when one of the stud-
ies is underpowered (and therefore provides more support 
for the null hypothesis), or when one of the studies is sampled 
from a population with an opposite effect size (e.g., when 
this is the only study investigating older participants, and 
the effect turns out to be reversed for older vs. younger par-
ticipants). To investigate this, we focused on the subset of 
studies with � = 0.5 and N = 140 , such that all studies had 
sufficient power to detect the true population effect; detect-
ing a standardized mean difference of 0.5 with 80% power 
requires a total sample size of 128 (calculation performed 
with G*power; Faul et al., 2007). Then, we replaced the first 
study in each replication by a newly simulated study with a 
total sample size of N = 30 (representing an underpowered 
study) or by a newly simulated study with a population effect 
of � = −0.5 (representing a study that tested a sample from 
a different population).

2 Alternatively, we could have iteratively resampled a new set of 
studies for each value of k. Note, however, that since we conducted 
1000 replications per simulation condition, the mean and variance 
of the observed effect sizes very closely reflect the values we speci-
fied when generating the data. The results would therefore be virtu-
ally identical if we had resampled a new set of studies for each value 
of k. Here, we chose to cumulatively add the K studies because this 
nicely shows what happens if new studies are added to the existing 
set of studies. This is fitting in the context of research synthesis since 
all systematic reviews, including meta-analyses, are advised to be 
updated (more or less) regularly as new evidence becomes available 
(Garner et al., 2016).

https://osf.io/gbtyk/
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Meta‑analysis

Given that effect sizes in psychology are typically assumed 
to be heterogenous, we conducted a random-effects meta-
analysis (henceforth meta-analysis) with the widely used 
rma() function from the metafor package (Viechtbauer, 
2010). This function fits a random-effects model using a two-
step approach. First, the amount of between-study variance 
(i.e., �2 ) is estimated using a restricted maximum likelihood 
estimator (Raudenbush, 2009; Viechtbauer, 2005). Then, the 
average true effect is estimated via weighted least squares, 
with weights equal to the inverse variance. Once the param-
eter estimates have been obtained, confidence intervals are 
computed based on a standard normal distribution.

Bayesian evidence synthesis

For BES, we formulated our hypothesis of interest as 
H1 ∶ 𝛿 > 0 . This hypothesis can be tested against three pos-
sible alternative hypotheses, namely the null hypothesis, 
H0 ∶ � = 0 , the complement hypothesis, H

c
 : not H1 (in this 

case 𝛿 < 0 ), and the unconstrained hypothesis, H
u
∶ � (i.e., 

� can take on any value). We tested H1 against each of these 
alternative hypotheses in turn to demonstrate how the indi-
vidual characteristics of each alternative hypothesis affect 
the results. In practice, however, researchers may often want 
to test multiple hypotheses simultaneously (for examples of 
empirical studies that used BES to test multiple hypotheses 
simultaneously, see Kevenaar et al., 2021; Veldkamp et al., 
2021; Zondervan‐Zwijnenburg, Richards et  al., 2020a, 
Zondervan-Zwijnenburg, Veldkamp et al., 2020b) and we will 
show how to do this in the empirical demonstration. Never-
theless, it may sometimes happen that researchers are only 
interested in testing a hypothesis H

i
 against H

c
 , for exam-

ple when there are two competing theories that make oppo-
site predictions, and the null hypothesis is considered very 
unlikely. Likewise, a researcher may opt to only test H

i
 against 

H
u
 when Hi is the only theoretically relevant hypothesis.
To obtain the study-specific PMPs for H1 we used the 

R-package bain (Gu et  al., 2020), which computes the 
approximate adjusted fractional BFs given in Eqs. (2–4) 
based on the effect size estimates ( ̂�

k
 ), their variance ( v

k
 ) and 

the study-specific sample size, and translates these BFs into 
PMPs (see Eq. 6). We assumed equal prior probabilities for 
each hypothesis and used bain’s default priors for the effect-
size estimates. After computing the study-specific PMPs, we 
calculated the aggregated PMPs according to Eq. (9).

Performance measure

We compared meta-analysis and BES by looking at the pro-
portion of times H1 was “accepted” across simulations. In 

theory, we cannot accept H1 within the frequentist frame-
work (we can only reject H0 ), but we considered the meta-
analysis results to be compatible with H1 if the meta-analytic 
effect size was positive and the lower bound of the confi-
dence interval (CI) was greater than zero. We calculated the 
H1 acceptance rate based on both 95% CIs (as this is what is 
typically reported in the literature) as well as 90% CIs (given 
that H1 is a directional hypothesis).

For BES, we adopted the decision rule used by Klaassen et al. 
(2018) who considered a hypothesis H

i
 the best of a set of m 

hypotheses if the evidence for H
i
 was at least m − 1 times (with a 

minimum value of 2) stronger than for any other hypothesis. This 
ensures that the aggregated PMP of the best hypothesis is at least 
.50 when all hypotheses are equally likely a priori. Since we only 
tested two hypotheses at a time, this means that we accepted H1 if 
its aggregated PMP was at least twice as high as for the alternative 
hypothesis (i.e., BF1. = 2 ), corresponding to an aggregated PMP of 
.67 or higher for H1 , and .33 or lower for the alternative hypothesis.

The advantage of this decision rule is that it considers 
the number of hypotheses under consideration. The larger 
the number of hypotheses, the less support any one hypoth-
esis will receive (Hoijtink et al., 2019), meaning that using 
the same cut-off point for comparing two or three (or more) 
hypotheses is not appropriate. However, which value of the 
aggregated PMP can be seen as “strong” evidence remains a 
question for future research and will likely vary as a function 
of the research field, the number of hypotheses evaluated, 
and the characteristics of the hypotheses under considera-
tion. Although often-cited guidelines in the literature con-
sider a BF of 10 to provide strong evidence (corresponding 
to a PMP of .91; Jeffreys, 1961), these guidelines were made 
for evaluating the unconstrained hypothesis against the null 
hypothesis in a single study and do not necessarily generalize 
to the context of evaluating other, or multiple, hypotheses 
across studies.

To investigate the sensitivity of the results to the employed 
decision rule, we also used a cut-off value of .91 for the 
aggregated PMP, as shown in Figs. S1 to S4 (available at 
https:// osf. io/ gbtyk/). These figures show that this higher cut-
off value mainly affects the results when testing against H

u
 . 

We will come back to this finding in the Discussion.

Results

In Figs. 1, 2 and 3 we show the H1 acceptance rate across 
simulation replications as a function of (i) the synthesis 
method (meta-analysis vs. BES), (ii) the total sample size per 
study, (iii) the between-study standard deviation � , and (iv) 
the number of studies synthesized. We show separate lines 
for the synthesis of 5, 10, and 30 studies, as these represent 
the first, second, and third quartile of the number of effect 
sizes synthesized per meta-analysis in 747 meta-analyses 

https://osf.io/gbtyk/
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reported in Psychological Bulletin (van Erp et al., 2017).3 
In these figures, the true mean population effect size � is 
0, 0.2 and 0.5, respectively, representing a null, small, and 
medium effect. Note that when the true effect is zero (Fig. 1), 
a low H1 acceptance rate indicates better performance of the 
method. Finally, in Fig. 4, we focus on the subset of stud-
ies with � = 0.5 and N = 140 and show how including one 
underpowered study or one study with an opposite popula-
tion effect influences the results.

Null effect ( ı = 0)

Figure 1 shows the results when the null hypothesis is 
true. Note that in this figure the H1 acceptance rate 
runs from 0 to 0.5, rather than to 1. As expected, H1 is 
accepted in less than 5% of the meta-analyses based on 
95% CIs, and less than 10% of the meta-analyses based 
on 90% CIs, irrespective of sample size, number of stud-
ies and � values (although the H1 acceptance rate slightly 
increases when between-study variance is large and few 
studies are combined). For BES, the results depend on 
the alternative hypothesis. When testing against H0 , H1 is 
consistently rejected when there is relatively little varia-
tion (i.e., � = 0.1) in population effect sizes across stud-
ies. In contrast, when there is relatively large variation in 
population effect sizes (i.e., � = 0.3), the H1 acceptance 
rate slightly increases with larger sample sizes, espe-
cially when combining less than 30 studies. This can be 
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Fig. 1  H1 acceptance rate for random-effects meta-analysis (M-A) 
with either 95% or 90% confidence intervals and Bayesian evidence 
synthesis (BES) as a function of the between-study standard deviation 
in population effect sizes � , total sample size per study, and number 

of studies when the overall mean population effect size is zero. Note 
that for BES, H1 ( � > 0) is tested against three alternative hypotheses: 
H0 ( � = 0), H

c
 ( � < 0), or H

u
 ( �)

3 Although it is uncommon to see meta-analytic papers with only five 
studies, many meta-analytic papers report on separate meta-analyses 
for different outcome measures (e.g., the 747 meta-analyses collected 
by van Erp et al. were published in only 61 papers). A set of five stud-
ies per meta-analytic outcome is not uncommon, as illustrated by the 
fact that 25% of the meta-analyses reported by van Erp et al. synthe-
sized five studies or less.
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explained as follows: When the between-study variance in 
true effect sizes is large, there will be more studies with 
true-positive effects as well as with true-negative effects. 
Positive effects support the hypothesis of interest H1 (espe-
cially when the sample size is large), whereas (large) nega-
tive effects do not support the alternative hypothesis H0. 
Therefore, the H1 acceptance rate increases with larger 
sample sizes when there is large between-study variation 
among the true effects. However, this trend is countered by 
combining more studies, as the true effect of most studies 
will be near the mean population effect size ( � = 0 ). With 
more studies, the aggregated support for H0 will eventually 
outweigh the few studies that support H1.

When testing H1 against H
u
 , we expect H

u
 to receive more 

support than H1 when H1 is not true, as is the case here. We 
see that H1 is indeed rejected at least 80% of the time when 
we combine five studies, and almost 100% of the time when 
we combine 30 studies. When we use a higher cut-off value 
for accepting H1 , we reject H1 more often: When the cut-off 

value is .91, we consistently reject H1 regardless of � value, 
sample size or number of studies combined (see Fig. S1 at 
https:// osf. io/ gbtyk/).

Finally, when testing H1 against H
c
 , the H1 acceptance 

rate is around .50, which is to be expected since the true 
mean population effect (i.e., � = 0 ) is on the boundary of the 
considered hypotheses. This shows the importance of includ-
ing all relevant hypotheses: When the true hypothesis (in 
this case H0) is not in the set of considered hypotheses, one 
runs the risk of selecting a hypothesis that provides a poor 
fit to the data.

Small effect ( ı = 0.2)

Figure 2 shows the results when the mean population effect 
is small (i.e., � = 0.2 ). Note that this represents a situation in 
which all studies are underpowered, as detecting a standard-
ized mean difference of 0.2 with 80% power would require a 
total sample size of 788 per study (calculation performed with 
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Fig. 2  H1 acceptance rate for random-effects meta-(M-A) with either 
95% or 90% confidence intervals and Bayesian evidence synthesis 
(BES) as a function of the between-study standard deviation in popu-
lation effect sizes � , total sample size per study, and number of stud-

ies when the overall mean population effect size is 0.20 (i.e., a small 
effect). Note that for BES, H1 ( � > 0) is tested against three alterna-
tive hypotheses: H0 ( � = 0), H

c
 ( � < 0), or H

u
 ( �)

https://osf.io/gbtyk/
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G*power; Faul et al., 2007). Given the prevalence of small-to-
medium effects and the rarity of sample sizes over 200, this 
is expected to be a typical situation in the field of experimen-
tal psychology (see Linden & Hönekopp, 2021; Lovakov & 
Agadullina, 2021; Open Science Collaboration, 2015).

When the mean population effect is small, the H1 accept-
ance rate is rather low for meta-analysis when combining 
less than 30 studies, especially when variation among the 
true effects is large. However, for both small and large � val-
ues, the H1 acceptance rate increases when combining more 
studies. This exemplifies how meta-analysis helps mitigate 
power issues, especially when combining a relatively large 
number of studies.

For BES, the results again depend on the alternative 
hypothesis. When testing against H0 and between-study var-
iation is small, the H1 acceptance rate is very low. This is 
because underpowered studies each provide stronger evidence 
for H0 than for H1 , and BES answers the question of which 
hypothesis best describes each individual study, rather than 

which hypothesis best describes the pooled data. Moreover, 
combining more studies only strengthens, rather than weak-
ens, the support for H0 , as the more studies we combine that 
all show support for H0, the more confident we become that 
H0 best describes each individual study (Klugkist & Volker, 
2023). In other words, BES does not solve power issues when 
testing against the null. That said, the H1 acceptance rate does 
slightly increase with larger sample sizes, even though stud-
ies with N = 200 are still very underpowered (recall that a 
minimum sample size of N = 788 is needed here).

A different picture emerges for testing against H0 when 
between-study variation is large. Here we see that the H1 
acceptance rate increases more steeply as a function of sam-
ple size. As in Fig. 1, this is because large between-study 
variance in true effects yields effect sizes that are further 
from the mean effect in both directions, and positive effects 
provide support for H1 whereas (large) negative effects do not 
provide evidence for H0 . We also see that when � is large, 
support for H1 starts to increase again with a greater number 
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Fig. 3  H1 acceptance rate for random-effects meta-analysis (M-A) 
with either 95% or 90% confidence intervals and Bayesian evidence 
synthesis (BES) as a function of the between-study standard deviation 

in population effect sizes � , total sample size per study and number 
of studies when the overall mean population effect size is 0.50 (i.e., a 
medium effect). Note that for BES, H1 ( � > 0) is tested against three 
alternative hypotheses: H0 ( � = 0), H

c
 ( � < 0), or H

u
 ( �)
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Fig. 4  H1 acceptance rate for random-effects meta-analysis (M-A) 
with either 95% or 90% confidence intervals and Bayesian evidence 
synthesis (BES) as a function of the between-study standard deviation 
in population effect sizes � and number of studies (between 2 and 30). 
The lines represent three scenarios: (i) all studies had an N of 140 and 

a � of 0.5 (grey solid line); (ii) same as the grey line but the first study 
had an N of 30 (blue short-dashed line); (iii) same as the grey line but 
the first study had a � of – 0.5 (red long-dashed line). Note that for 
BES, H1 ( � > 0) is tested against three alternative hypotheses: H0 ( � = 
0), H

c
 ( � < 0), or H

u
 ( �)

of studies once the study-specific sample sizes become large 
enough (i.e., when N > 120).

When testing against H
c
 , BES consistently yields evi-

dence in favor of H1 , almost regardless of sample size or the 
number of studies combined. This is not surprising, given 
that positive effects will always render more evidence for 
H1 (i.e., � > 0) than for H

c
 (i.e., � < 0), even when they are 

small. This shows that testing against H
c
 is a very powerful 

strategy whenever the null hypothesis is not of interest or is 
considered very unlikely.

Finally, testing against H
u
 yields a similar pattern of 

results as meta-analysis when between-study variation is 
small, in that the H1 acceptance rate quickly increases as 
a function of sample size and the number of studies (with 
the exact H1 acceptance rate depending on the employed 
decision rule, cf. Fig. 2 and Fig. S2). In contrast, the H1 
acceptance rate remains low when between-study variation 
is large, as large variation around a small mean effect will 

yield at least some studies that provide very strong evidence 
against H1 . In contrast, all studies are in line with H

u
 by 

definition. H
u
 will therefore typically receive more evidence 

than H1 when the true mean effect is small and between-
study variance is large. Moreover, the aggregated support 
for H1 decreases, rather than increases, with the number of 
studies in this situation; with more studies, there is a higher 
chance that some of these studies provide strong evidence 
against H1 , which decreases the aggregated support for H1.

Medium effect ( ı = 0.5)

Figure 3 shows the results when all studies are drawn from a 
population with a medium mean effect (i.e., � = 0.5 ). Here, 
we see that the H1 acceptance rate is very high across all syn-
thesis methods. We still need some power in the individual 
studies when testing against H0 with either meta-analysis 
or BES, but once the total sample size per study is larger 
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than 60, the H1 acceptance rate is above .80 regardless of 
between-study variation, alternative hypothesis tested, or 
number of studies combined.

Effect of one study with a small sample size 
or opposite effect size

In Fig. 4, we show the subset of studies for which � = 0.5 
and N = 140 (grey line) and compare this to the same 
subset of studies for which the first study is replaced by a 
newly simulated study with a very small total sample size 
(i.e., N = 30 , blue line) or with an opposite mean popula-
tion effect (i.e., � = −0.5 , red line). Whereas including one 
underpowered study hardly has an effect on the H1 accept-
ance rate (and no effect whatsoever when combining at least 
five studies), including a study with an opposite population 
effect drastically decreases the H1 acceptance rate for both 
meta-analysis and when testing against H

u
 with BES (but 

not when testing against H0 or H
c
 ). This effect is countered, 

however, by combining more studies.
For meta-analysis, approximately ten studies that support 

H1 need to be included to again yield aggregated support for 
H1 at least 80% of the time. When testing against H

u
 with 

BES, one needs to include at least 15 studies that support 
H1 when between-study variation is small, and at least 30 
studies when between-study variation is large (more studies 
are needed when using a higher cut-off value for accepting 
H1 , see Fig. S4). In other words, testing against H

u
 is the 

most sensitive to including studies that show strong support 
against the hypothesis of interest. Again, this is not surpris-
ing given that Hu is always true and therefore describes each 
study well, whereas H1 in this case provides a very poor fit 
to one of the included studies. However, since H1 is more 

parsimonious than Hu , we eventually still obtain more aggre-
gated support for H1 if we combine enough studies.

Empirical demonstration

The data for this demonstration come from a meta-analysis 
on auditory verbal statistical learning in people with and 
without developmental language disorder (DLD), previously 
known as specific language impairment (SLI; Lammertink 
et al., 2017). In this study, ten effect sizes from eight studies 
were analyzed by means of a random-effects meta-analysis 
to investigate whether people with DLD show a statisti-
cal learning deficit compared to people without DLD. An 
important feature of this meta-analysis was that only effect 
sizes were included that came from non-overlapping partici-
pant samples. This was important given that BES relies on 
the assumption that studies provide independent pieces of 
evidence for the hypotheses under consideration.

Prior to conducting the meta-analysis, Lammertink 
et al. (2017) computed a standardized mean difference 
(SMD) for each study based on summary or test statistics 
reported in the primary studies (i.e., means and stand-
ard deviations per group or an F-/t-statistic). The over-
all standardized mean difference between participants 
with and without DLD was 0.54, which was significantly 
different from zero (p < .001, 95% confidence interval 
[0.36, 0.71]). The authors therefore concluded that there 
is a robust difference between people with and without 
DLD in their detection of statistical regularities in the 
auditory input, congruent with the hypothesis that people 
with DLD are less effective in statistical learning.

Below we demonstrate how BES can be performed on 
the effect sizes included in this meta-analysis. For illustra-
tive purposes, we show how to test H1 (SMD > 0; that is, 
participants without DLD score higher on statistical learn-
ing than participants with DLD) against each alternative 
hypothesis ( H0 , Hc

 , H
u
 ) in turn, like we did in the simula-

tions. Afterwards we show how multiple hypotheses can be 
tested simultaneously and how a different type of hypothesis 
(i.e., a range-constrained hypothesis) can be formulated. 
Note, however, that if we were to perform BES on this set 
of studies for an empirical paper, we would probably only 
test H1 against H0 , as these seem to be the two hypotheses 
of interest and Hc is theoretically very unlikely.

We start by specifying the effect size, variance, and total 
sample size per study as computed by Lammertink et al. 
(2017; see https:// osf. io/ 4exbz/).

ES <- c(0.48, 1.05, 0.3, 0.85, 0.17, 0.36, 0.79, 0.68, 0.2, 1.12)
var <- c(0.04, 0.15, 0.05, 0.08, 0.1, 0.1, 0.1, 0.08, 0.09, 0.16)
N <- c(113, 28, 115, 79, 40, 40, 40, 49, 44, 28)

Table 1  Study-specific and aggregated posterior model probabilities 
for H1 against each of the alternative hypotheses ( H0 , Hc

,H
u
 ) for the 

studies reported in the meta-analysis by Lammertink et al. (2017)

Note. aLow variability (X = 2) condition. bMid variability (X = 12) 
condition. cLow variability (X = 24) condition

Study PMP10 PMP1c PMP1u

1. Evans et al. (2009) .77 .99 .66
2. Evans et al. (2010) .94 >.99 .67
3. Lukacs & Kemeny (2014) .29 .91 .65
4. Mayor-Dubois et al. (2014) .95 >.99 .67
5. Hsu et al. (2014)a .20 .70 .58
6. Hsu et al. (2014)b .35 .87 .64
7. Hsu et al. (2014)c .88 .99 .67
8. Haebig et al. (2017) .84 .99 .66
9. Grunow et al. (2006) .22 .75 .60
10. Torkildsen (2010) .95 >.99 .67
Aggregated PMP > .99 >.99 > .99

https://osf.io/4exbz/
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This is all the information we need to compute the study-
specific PMPs with the bain package.4 Note that bain() 
always returns three different sets of PMPs: PMPa contains 
the PMPs of the hypotheses specified by the user, PMPb 
adds the unconstrained hypothesis Hu to the set of specified 
hypotheses, and PMPc adds H

c
 , that is, the complement of 

the union of the hypotheses specified by the user. To test H1 
separately against both Hc and Hu , we therefore only need 
to specify H1 in the call to bain(), as PMPb will then test H1 
against H

u
 , and PMPc will test H1 against H

c
 . In contrast, to 

test H1 against H0 , we must specify both hypotheses; PMPa 
then contains the result we need. The code below computes 
the study-specific PMPs.

library(bain)

PMP10 <-c(); PMP1c <-c(); PMP1u <-c()

for(i in 1:length(ES)){
  SMD <- ES[i]
  names(SMD) <- "SMD"

# test H1 against H0
  res1 <- bain(SMD, 

hypothesis = "SMD > 0; SMD = 0",
n = N[i],
Sigma = var[i]) 

  PMP10[i] <- res1$fit["H1","PMPa"]

# test H1 against Hc/Hu
  res2 <- bain(SMD, 

hypothesis = "SMD > 0",
n = N[i],
Sigma = var[i]) 

  PMP1c[i] <- res2$fit["H1","PMPc"]
  PMP1u[i] <- res2$fit["H1","PMPb"]
}

Now that we have computed the study-specific PMPs, we 
can compute the aggregated PMP for H1 against each of the 
alternatives with the code below (corresponding to Eq. 9).

BES10 <- prod(PMP10)/(prod(PMP10) + prod(1-PMP10))
BES1c <- prod(PMP1c)/(prod(PMP1c) + prod(1-PMP1c))
BES1u <- prod(PMP1u)/(prod(PMP1u) + prod(1-PMP1u))

Table 1 shows the individual PMPs for H1 for each 
study as well as the aggregated PMP. We do not show 
the (aggregated) PMPs for the alternative hypotheses, as 
these are simply 1-PMP1. . The results show that regard-
less of the considered alternative hypothesis, we obtain 
overwhelming evidence in favor of H1 , congruent with 

the result from the meta-analysis reported by Lam-
mertink et al. (2017). Notably, we see that this is the 
case despite variation in the study-specific PMPs across 
the alternative hypotheses. Due to the relatively small 
sample sizes per study, H0 receives more evidence than 
H1 in those studies where the estimated effect size is 
small (note that each study only had 36–79% power to 
detect a medium effect). In contrast, H

c
 never receives 

more evidence than H1 , since all effect sizes are posi-
tive and thus provide no evidence in favor of a negative 
effect size. Finally, H1 receives more support than H

u
 in 

each study, but the maximum study-specific PMP is .67, 
as this is the upper limit of PMP1u given the complexity 
of H1 (see Introduction). Despite these differences in the 
study-specific PMPs, the aggregated evidence across all 
studies is clearly in favor of H1 with all aggregated PMPs 
being greater than .99.

As mentioned above, it is also possible to test multiple 
hypotheses simultaneously. For example, if we were to test 
H1 , H0 , and H

u
 simultaneously, we would run the following 

code to compute the study-specific PMPs.

PMP1 <- c(); PMP0 <- c(); PMPu <- c()

for(i in 1:length(ES)){
  SMD <- ES[i]
  names(SMD) <-"SMD"
  res <- bain(SMD, 

,
 N[i],

 var[i]) 
  PMP1[i] <- res$fit["H1","PMPb"]
  PMP0[i] <- res$fit["H2","PMPb"]
  PMPu[i] <- res$fit["Hu","PMPb"]
}

The aggregated PMPs are then computed according 
to Eq. (8). In the code below, BES1 gives the evidence 
in favor of H1 relative to both H0 and H

u
 , BES2 gives 

the evidence for H0 relative to both H1 and H
u
 , and 

BESu gives the evidence for Hu relative to both H1 
and H0.

sum_of_products <- prod(PMP1) + prod(PMP0) + prod(PMPu)

BES1 <- prod(PMP1)/sum_of_products
BES0 <- prod(PMP0)/sum_of_products
BESu <- prod(PMPu)/sum_of_products

The results show that also when we test H1 , H0 and H
u
 simul-

taneously, H1 (aggregated PMP = .995) clearly receives more 
support than both the null hypothesis (aggregated PMP < .001) 
and the unconstrained hypothesis (aggregated PMP = .005).

4 Note that for multiple-parameter hypotheses (i.e., hypotheses that 
involve more than one effect, such as two main effects and an interac-
tion), bain requires the variance–covariance matrix of the parameter 
estimates rather than just the variance of each estimate.
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Finally, to illustrate that different types of hypotheses can be 
formulated and tested, we now show with the code below how to 
evaluate a range-constrained hypothesis (i.e., H1 : 0.5 < SMD < 
0.8) against its complement (not H1 ). H1 now tests a more specific 
hypothesis than before: Whereas before we only tested whether 
DLD had a negative effect on auditory verbal statistical learning, 
we now test whether this is a medium negative effect.

# study-specific PMPs
PMP1c <- c()
for(i in 1:length(ES)){
  SMD <- ES[i]
  names(SMD) <- "SMD"
  res <- bain(SMD, 

hypothesis = "0.5 < SMD < 0.8",
n = N[i],
Sigma = var[i]) 

  PMP1c[i] <- res$fit["H1","PMPc"]
}

# aggregated PMP
BES1c <- prod(PMP1c)/(prod(PMP1c) + prod(1-PMP1c))

In line with the conclusion from the meta-analysis, there 
is compelling evidence that there is a medium negative effect 
of DLD on statistical learning when this hypothesis is tested 
against its complement (aggregated PMP > .99).

To facilitate the use of BES for new users, we have con-
verted the code in this empirical demonstration into a wrap-
per function called bes(), which can be downloaded from our 
OSF page (https:// osf. io/ gbtyk/). Note, however, that this is 
not a general function for BES, as it can only handle single-
parameter hypotheses; it uses bain and bain’s default priors 
for the parameter estimates to compute the study-specific 
PMPs; and it assumes equal prior model probabilities.

Discussion

In the current study we introduced Bayesian evidence syn-
thesis as a flexible alternative to meta-analysis for situations 
in which meta-analysis is difficult or impossible. When the 
set of studies a researcher wishes to combine is heterogene-
ous in terms of research design, participant characteristics 
or operationalization of key variables, it may not be possible 
to combine these studies by means of meta-analysis. In these 
situations, BES can be applied to investigate which hypoth-
esis receives the most aggregated support across studies. As 
explained in the Introduction, the main advantage of BES is 
that it poses less constraints on the studies to be combined, 
as support for each hypothesis is first estimated in each study 
separately. This means that as long as each study provides 
independent evidence for the same overarching theory, BES 
allows for differences in the parameter estimates across stud-
ies and for study-specific hypotheses that include design and 
data characteristics unique to that study. Additional benefits 

of BES are that it allows for (i) testing multiple hypotheses 
simultaneously, and (ii) formulating and testing informative 
hypotheses that, unlike the conventional null hypothesis 
( H0 : no effect) and its complement (not H0 ), can directly 
test a specific theory or expectation. BES comes with the 
disadvantage, however, that unlike meta-analysis, it is only 
concerned with hypothesis testing and therefore does not 
allow for quantifying the effect size or the level of hetero-
geneity among effect sizes across studies. In addition, given 
that BES is still a relatively novel technique, no methods cur-
rently exist within the context of BES to deal with dependent 
effect sizes, assess and correct for publication bias, or test 
study-level predictors of degree of evidence across studies 
(analogous to meta-regression). Further developing BES is 
part of our research agenda, so future developments of the 
method may address some of these issues.

The goal of our simulation study was to compare the 
performance of BES and meta-analysis to illuminate 
under which conditions the two methods behave similarly 
and under which conditions their results diverge. Results 
were expected to sometimes differ, given that BES and 
meta-analysis answer a slightly different synthesis ques-
tion: Whereas meta-analysis indicates whether the target 
hypothesis is supported by the pooled data, BES indicates 
the hypothesis that best describes each study. The results 
showed that in most scenarios, BES behaves similar to 
meta-analysis, in that the acceptance rate of the correct 
hypothesis increases with larger sample sizes and more 
studies. The two main exceptions were (i) when all indi-
vidual studies were underpowered and (ii) when the true 
parameter value was on the boundary of the tested hypoth-
eses. We will now discuss both situations in turn.

When all individual studies are underpowered, testing 
against the null or the unconstrained hypothesis can be prob-
lematic. As underpowered studies each provide more evidence 
for the null hypothesis than for the hypothesis of interest, BES 
only aggravates this issue as combining more studies will then 
increase our confidence that the null hypothesis best describes 
each individual study. Similarly, we saw that if studies are 
underpowered and there is large variation in study-specific 
parameter values, the unconstrained hypothesis will typically 
receive more evidence than the hypothesis of interest as the 
unconstrained hypothesis always describes the data well, 
whereas the hypothesis of interest will then provide a poor fit 
to at least some of the studies. This is an important limitation 
of BES, as underpowered studies are prevalent in the field of 
experimental psychology and one of the goals of synthesiz-
ing multiple studies may therefore be to reduce power issues. 
On the other hand, we found that including one underpow-
ered study hardly impacted the results, even when combining 
as few as three studies. This suggests that power issues are 
mainly a problem when all or most studies are underpowered, 
but future studies should further investigate this.

https://osf.io/gbtyk/
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When testing a target hypothesis against its complement 
when the true parameter value is on the boundary of these 
hypotheses, BES can yield strong support for either hypoth-
esis (in the simulation, the target hypothesis was accepted 
in approximately 50% of the simulation replications). This 
issue extends beyond BES, as strong support for either 
hypothesis can already be found within a single study. How-
ever, BES does not help in solving this issue. Three potential 
solutions are discussed by Volker (2022), namely testing 
against an equality-constraint hypothesis (e.g., H0 ) instead 
of or in addition to the complement, evaluating a hypothesis 
with a boundary on the minimum relevant effect size, or 
testing against both the complement and the unconstrained 
hypothesis in turn and see if both render support for (or 
against) the target hypothesis. We are currently still investi-
gating which solutions work best in this scenario.

An additional finding was that testing against the 
unconstrained hypothesis was the most sensitive to the 
cut-off value used for accepting the hypothesis of interest 
(cf. Figs. 1, 2, 3 and 4 to Figs. S1-S4 on https:// osf. io/ 
gbtyk/). Because the PMP testing a hypothesis H

i
 against 

the unconstrained hypothesis H
u
 within a single study has 

an upper limit that is determined by the complexity of 
H

i
 , multiple studies will need to be combined to reach 

an aggregated PMP that is above this upper limit, even 
when all studies provide a perfect fit for H

i
 . This is not the 

case when testing against the null or complement hypoth-
esis, as these PMPs do not have an upper limit. This once 
again shows the importance of considering both the fit and 
complexity of the hypotheses under consideration when 
interpreting the results. It also shows that it may be inap-
propriate to use the same cut-off values across different 
(sets of) hypotheses to decide what constitutes “strong” 
evidence for a hypothesis.

Regarding this last point, it is also important to note that 
using any kind of cut-off value for the aggregated PMP may 
give way to publication bias and questionable research prac-
tices in the same way as has been described for p values 
(e.g., Ioannidis, 2005; John et al., 2012; Simmons et al., 
2011). In this study, we only used a cut-off value so that we 
could compute a common performance measure for meta-
analysis and BES. However, when conducting BES, using 
a cut-off value is not strictly necessary because PMPs are 
interpretable by themselves. For a single study, a PMP of 
.90 means there is a conditional error probability of 10% 
that one of the other considered hypotheses is more appro-
priate (Hoijtink et al., 2019). The interpretation of an aggre-
gated PMP is a bit more complicated, however, as differ-
ent scenarios can result in the same aggregated PMP. For 
instance, when half of the studies support one hypothesis 
and half of the studies support the alternative hypothesis 
to the same degree (e.g., with study-specific PMPs of .90 
vs .10), this leads to an aggregated PMP of .50 for both 

hypotheses. However, if all study-specific PMPs are .50 for 
both hypotheses, this also leads to an aggregated PMP of 
.50. In both cases we would conclude that neither hypoth-
esis is a good description of all studies, but in the first case 
this is because the support for the hypotheses varies across 
studies, whereas in the second scenario there is no strong 
support for either hypothesis in any study. For this reason, it 
is important to always interpret the aggregated PMP in rela-
tion to the study-specific PMPs (cf. Kevenaar et al., 2021). 
If the study-specific PMPs show large variation, researchers 
may then try to explain this variation based on study char-
acteristics. Of course, researchers may already expect vari-
ation in study-specific PMPs based on certain study charac-
teristics a priori and may therefore not be very interested in 
the global support for a hypothesis. In that case, researchers 
could opt to perform multiple Bayesian evidence syntheses 
on specific subsets of studies.

Finally, we would like to point out a few limitations of 
the current study and provide some suggestions for future 
research. Because we wanted to show when BES results 
diverge from what researchers may expect based on meta-
analysis, we focused on simple situations in which both 
methods are feasible. Therefore, we only considered sin-
gle-parameter hypotheses and evaluated only two hypoth-
eses at a time, and we did not vary data characteristics 
across studies such as different operationalizations of key 
variables. However, some of these factors were investi-
gated by Volker (2022), who showed how the performance 
of BES varies as a function of the complexity of the study-
specific hypotheses by varying the operationalization of 
key variables across studies. Volker also investigated 
how BES behaves for single- versus multiple-parameter 
hypotheses and when hypotheses are only partially correct 
(rather than either correct or incorrect). A second limita-
tion is that we only looked at the acceptance rate as a 
performance measure. We did this to have a comparable 
performance measure for both BES and meta-analysis, but 
for BES it is more insightful to look at the value of the 
aggregated PMP directly, as this may show more nuanced 
differences than what we were able to show here. How-
ever, we refer the reader to Klugkist and Volker (2023) and 
Volker (2022) for partially similar simulation conditions 
where the authors did report the value of the aggregated 
BFs/PMPs. Future research could test how the number of 
considered hypotheses affects the BES results and develop 
guidelines for interpreting the value of the aggregated 
PMP that take the complexity of the tested hypotheses into 
account. Moreover, BES would greatly benefit from meth-
ods that allow for testing study-level predictors of degree 
of support and from methods that can handle dependent 
effect sizes. Finally, future studies may further explore 
possible solutions to deal with underpowered studies in 
the context of BES.

https://osf.io/gbtyk/
https://osf.io/gbtyk/
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Recommendations

Based on this study, we provide the following recommenda-
tions for potential users of BES:

• BES can be considered as a possible alternative to 
meta-analysis if model estimates across studies cannot 
be converted into a comparable measure, or if hetero-
geneity in the study designs or samples calls into ques-
tion whether the effect sizes test the same underlying 
true effect, and, therefore, whether these effect sizes 
can be meaningfully aggregated or compared. Sec-
ondly, BES can be considered if the researcher wishes 
to evaluate an informative hypothesis directly (rather 
than only rejecting the null hypothesis or not), or if 
there are more than two competing hypotheses and the 
researcher wishes to evaluate all relevant hypotheses 
simultaneously.

• As BES provides joint support for a hypothesis rela-
tive to the other hypotheses considered, it is important 
to include all plausible hypotheses. It is also generally 
recommended to either include the unconstrained or 
the complement hypothesis to avoid choosing between 
hypotheses that do not represent the data well (i.e., the 
best hypothesis out of a set of bad hypotheses is still a 
bad hypothesis).

• When (some of) the studies are underpowered, it is 
important to be aware that BES is not a data-pooling 
approach and thus, does not increase power by aggregat-
ing studies. When equality-constrained hypotheses (e.g., 
H0 ) are deemed sufficiently unlikely, one can evaluate 
the informative hypothesis of interest against its comple-
ment; the comparison that is least affected by low power.

• When interpreting the strength of support for a hypoth-
esis, it is important to acknowledge that the complexity 
of the hypotheses under consideration impact the degree 
of (study-specific) support for each hypothesis, as well as 
the number of studies needed to achieve a certain level of 
aggregated support (see Volker, 2022). More generally, 
it is advised to always examine and report the individual 
study results in addition to the aggregated results from 
BES.

• If researchers are primarily interested in study-level fac-
tors that affect the support for a given hypothesis, then 
there are currently two options: (i) decide a priori which 
study-level factors are expected to impact the support 
for the hypotheses of interest and then perform BES on 
specific subgroups of studies, or (ii) try to detect patterns 
post hoc by carefully examining the study-specific PMPs.

On a final note, we would like to stress once more 
that BES is a relatively novel technique that is still under 

development. Some of the limitations mentioned in this 
paper may therefore be addressed by future developments of 
the method. Likewise, as we further investigate the behavior 
of BES under different circumstances, the current recom-
mendations may be adjusted.
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