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A B S T R A C T 

The identification of extragalactic fast optical transients (eFOTs) as potential multimessenger sources is one of the main 

challenges in time-domain astronomy. Ho we ver, recent de velopments have allo wed for probes of rapidly evolving transients. 
With the increasing number of alert streams from optical time-domain surv e ys, the ne xt paradigm is building technologies 
to rapidly identify the most interesting transients for follo w-up. One ef fort to make this possible is the fitting of objects to 

a variety of eFOT light curve models such as kilonovae and γ -ray burst (GRB) afterglows. In this work, we describe a new 

framework designed to efficiently fit transients to light curve models and flag them for further follow-up. We describe the 
pipeline’s workflow and a handful of performance metrics, including the nominal sampling time for each model. We highlight as 
examples ZTF20abwysqy, the shortest long gamma-ray burst disco v ered to date, and ZTF21abotose, a core-collapse supernova 
initially identified as a potential kilonova candidate. 

Key words: methods: data analysis – software: development – (transients:) gamma-ray bursts – (transients:) neutron star merg- 
ers – (transients:) black hole - neutron star mergers. 
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 I N T RO D U C T I O N  

he detection of GW170817 (Abbott et al. 2017a ) and its associated
lectromagnetic transients AT2017gfo (Smartt et al. 2017 ; Coulter
t al. 2017 ; Abbott et al. 2017d ) and GRB170817A (Goldstein et al.
017 ; Savchenko et al. 2017 ; Abbott et al. 2017c ) has accelerated the
eld of multimessenger astronomy. In particular, this single event
as increased our knowledge of the neutron star equation of state
Bauswein et al. 2017 ; Margalit & Metzger 2017 ; Annala et al.
018 ; Coughlin et al. 2018 ; Most et al. 2018 ; Radice et al. 2018 ;
ai, Zhou & Xu 2019 ; Coughlin et al. 2019a , b ; Dietrich et al.
020 ), the Hubble constant (Abbott et al. 2017b ; Hotokezaka et al.
018 ; Dietrich et al. 2020 ; Coughlin et al. 2020a , b ), and r -process
ucleosynthesis (Chornock et al. 2017 ; Cowperthwaite et al. 2017 ;
ian et al. 2017 ; Rosswog et al. 2017 ; Smartt et al. 2017 ; Coulter
t al. 2017 ; Kasliwal et al. 2019 ; Watson et al. 2019 ). Ho we ver, with
 E-mail: tylerpbarna@gmail.com 

m  

f  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
he third LIGO–Virgo observing run (O3) ending without a viable
ptical counterpart to a binary neutron star or neutron star–black
ole merger candidate (e.g. Andreoni et al. 2019, 2020 ; Goldstein
t al. 2019 ; Gomez et al. 2019 ; Lundquist et al. 2019 ; Coughlin
t al. 2019c ; Ackley et al. 2020 ; Anand et al. 2020 ; Antier et al.
020 ; Gompertz et al. 2020 ; Kasliwal et al. 2020 ), improving upon
he technology we use to efficiently identify transient candidates for
ollow-up is necessary as we look to the fourth Laser Interferometer
ra vitational-Wa ve Observatory–V irgo (Ligo-V irgo) observing run

O4) and beyond. 
During the down-time between the end of O3 and the start of O4,

 new framework for fast transient identification known as Zwicky
ransient Facility Realtime Search and Triggering (ZTFReST; An-
reoni et al. 2021 ) was developed. This framework has already
dentified at least seven confirmed afterglows and early identification
f a number of these sources has made it possible to carry out
ultiwavelength follow-up observations. The development of this

ramew ork w as moti v ated by searches for serendipitous kilonov ae in
© 2024 The Author(s). 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. A histogram of the number of candidates each day from 2021 
July to 2022 October. There were usually between 2 and 10 candidates 
analysed each day. The plotted line represents a kernel density estimation 
of the histogram data. The median number of daily candidates was 5. 
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ptical surv e y data, which rapidly fade in the optical and therefore
equire online frameworks to have hope for successful identifications. 

Following ZTFReST, the Nuclear-physics and Multi-Messenger 
strophysics (NMMA) framework (Pang et al. 2022 ) was introduced. 
here are a number of transient classes that possess similar features 

o kilonova at early times, making the optimization of follow-up 
bserv ations dif ficult. To address this, NMMA was de veloped, which
llows for Bayesian inference on electromagnetic (EM) observations 
o classify objects. In the event that another multimessenger event 
ccurs, NMMA also enables researchers to perform combined 
nalyses of EM and gra vitational wa ve (GW) signals to constrain
he Hubble constant and neutron star equation of state (EoS). 

In this paper, we describe an impro v ement of the ZTFReST
utomated infrastructure through the inclusion of multimodal EM 

ight curve fitting using NMMA rather than the optional kilonova 
odel fitting as described in Section 2 of Andreoni et al. ( 2021 ). In

ddition, we have developed an extension to the pipeline that allows 
or the light curve analyses to be easily accessed by the broader
ollaboration in a Slack channel as well as access to these analyses
ia Fritz. We describe the pipeline in Section 2 . Example results and
n assessment of NMMA is shown in Section 3 . We summarize our
onclusions and future outlook in Section 4 . 

 PIPELINE  F R A M E WO R K  

his online framework builds upon ZTFReST 

1 and NMMA 

2 in 
rder to deliver automated fitting of candidates on a regular basis.
dditional information regarding the methods underlying ZTFReST 

nd NMMA can be found in Andreoni et al. ( 2021 ) and Pang et al.
 2022 ), respectively. 

While NMMA and ZTFReST enable powerful analysis, they still 
equire manual input in order to initiate fitting new objects. Moreo v er,
he existing framework does not have native support for conducting 

ultiple analyses of the same object with different models. This 
nline framework seeks to make use of the tools provided by NMMA
nd ZTFReST to automatically perform fits of new candidates to 
ultiple models in a systematic fashion. This reduces the amount of

ime that needs to be spent initializing analysis of new candidates 
nd allows for researchers to focus on choosing the most promising
andidates for follow-up. 

.1 Candidates 

he goal is to identify rare transients like kilonovae and orphan 
fterglows (which occur when a GRB is not observed prior to the
fterglow; this is discussed further in Section 2.3 ) using multiband, 
nd potentially, multiwavelength or multimessenger data. The former 
s enabled by the use of alert streams of all-sky optical surv e ys such
s ZTF (Bellm et al. 2019 ; Graham et al. 2019 ; Masci et al. 2019 ;
ekany et al. 2020 ) and in the future, the Vera C. Rubin Observatory’s
e gac y Surv e y of Space and Time (LSST; Iv ezi ́c et al. 2019 ). In the
ase of ZTFReST (Andreoni et al. 2021 ), which relies on the ZTF
lert stream (Patterson et al. 2018 ), the alert stream from both public
nd pri v ate ZTF surv e ys (Bellm et al. 2019 ) is used. Fig. 1 shows the
istribution of daily candidates between 2021 July and 2022 October 
rom this alert stream. 

To identify rare and fast transients, we require a framework by 

hich the nature of the transients could be determined based on 

 The ZTFReST repository can be found here . 
 The NMMA repository can be found here . 

b  

w  

s  

a  
ime-series of photometric, multiband light curves. In this way, 
heir magnitude and colour evolution, in particular those that are 
apidly fading and/or reddening with no history of variability, can 
dentify them as being of significant interest. For the most interesting
bjects, potentially spectroscopic classification and a well-sampled, 
ultiwavelength light curve to characterize the system is then 

esired. 
To do so, we perform parameter estimation of the light curves

sing NMMA, which is designed for Bayesian inference on multi- 
essenger signals (Dietrich et al. 2020 ; Pang et al. 2021 , 2022 ; Tews

t al. 2021 ; Huth et al. 2022 ) and has been used to analyse GW170817
Dietrich et al. 2020 ); AT2020scz, the shortest long GRB (LGRB)
ver confirmed (Ahumada et al. 2021a ); GRB 211211A (Kunert et al.
023 ); and GRB 221009A (Kann et al. 2023 ), a hyper-luminous
RB, amongst others. 
We use the framework to obtain posteriors along with the log

ayesian evidence for the models presented below. A higher evidence 
alue suggests that the model is a more plausible descriptor of
he data. Conversely, a smaller value indicates that a model is less
ikely to accurately describe the data. Additionally, the log-likelihood 
atio of one model against another can be found by calculating the
ifference between the maximum log-likelihood of the two models. 
 positi ve v alue of this odds ratio would suggest the first model is a
etter fit, whereas a ne gativ e value would imply the latter model fits
he data better. 

.2 Data processing 

he bulk of our computing is done on the high-performance com-
uting (HPC) clusters maintained by the Minnesota Supercomputing 
nstitute (MSI). Data from the ZTF (Bellm et al. 2019 ; Graham et al.
019 ; Masci et al. 2019 ; Dekany et al. 2020 ) alert stream is initially
ownloaded on to a system at the California Institute of Technology
CalTech) that is referred to as schoty. The pipeline triggers a job
very half hour on MSI to download data from the schoty directory
hat contains ZTF observations. Upon detecting new light curve files, 
he pipeline will trigger a series of fits to four different models,
escribed in Section 2.3 , for each candidate. 
After completing fits of all detected light curves, the results will

e sent back to schoty. To make the fits easier to re vie w, the pipeline
ill remotely e x ecute a command to initiate a Slack bot script on

choty. This bot posts plots of each of the fits for the daily candidates
s well as their posteriors and Bayes evidence values on to a channel
MNRAS 531, 1084–1094 (2024) 
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n the GROWTH MMA Slack server. Since 2021 July, this bot has
uccessfully posted fits on a regular basis with only brief interruptions
ue to MSI or ZTF maintenance. 
Generally, this entire process takes on the order of 6 h at the

urrent level of detail. The rationale behind tuning the number
f live points to reduce the total e x ecution time is to allow for
utomating follow-up decisions in the future; this would require
he fits to be completed some time before observing targets for the
ext night are set. There are several projects currently in-progress
y members of the NMMA collaboration investigating methods by
hich the time required for fitting light curves can be reduced. One

ollaborator is investigating the use of machine-learning (ML) on a
ollection of simulated light curves with known parameters to train an
lgorithm that would associate features of a light curve with certain
arameter values. More generally, ML techniques represent an area of
evelopment that could enhance the speed and utility of the NMMA
ramework. 

.3 Light cur v e models 

here are a number of astrophysical processes that produce fast
ransients. In this work, we will focus on a handful of extragalactic
strophysical processes. For each model, both the explosion time
nd the distance is allowed to vary. We include Milky Way like host
xtinction (Fitzpatrick 1999 ) with R V = 3.1 and E ( B − V ) = 0.1 mag.

The first are kilonovae, the optical counterparts to binary neutron
tar or neutron star–black hole system mergers generated by the r -
rocess material that is produced in these events (Metzger 2017 ). In
ur analysis, we use a POSSIS -based (Bulla 2019 ) grid of kilonova
odels spanning the plausible binary neutron star parameter space

Dietrich et al. 2020 ). There are four parameters, the dynamical ejecta
ass M 

dyn 
ej , the disc wind ejecta mass M 

wind 
ej , the half-opening angle

 , and the observation angle � obs . Internal code for the pipeline
efers to this model as BU2019M . 

The second process are GRB afterglows. We use AFTERGLOWPY

Ryan et al. 2020 ), an open-source computational tool modelling
orward shock synchrotron emission from relativistic blast waves as
 function of jet structure and viewing angle. The model parameters
re the isotropic kinetic energy, E K,iso ; the jet collimation angle, θ c ;
he viewing angle, θv ; the circumburst constant density, n ; the spectral
lope of the electron distribution, p ; the fraction of energy imparted
o both the electrons, εe , and to the magnetic field, εB , by the shock.
his model is also called TRPI2018 in the code. 
The third process are supernovae. We use a model for SN

b/csupernov ae (Le v an et al. 2005 ) from the SNCOSMO package
Barbary et al. 2016 ) with the stretch and scale set to match the
ntrinsic (dereddened, rest frame) R -band luminosity of SN 1998bw
t maximum light. The absolute magnitude is the free parameter with
he largest effect on the quality of the fit. This is referred to as the
ugent-hyper model within the pipeline. 
The fourth process are shock cooling supernovae using a model

hat follows Piro, Haynie & Yao ( 2021 ). After shock breakout, the
adiation of shock heated material expands and cools, known as shock
ooling emission. The model considers extended material with mass
 e and radius R e , which is imparted with an energy E e as the shock

asses through it. Internally, this is called the Piro2021 model.
enerally, this paper refers to the nugent-hyper model as SNe

b/c or simply supernovae, while the Piro2021 model is referred
o as shock cooling or shock cooling SNe. 

In addition to the three non-kilonova models presented here, there
re several other source categories that can imitate kilonova light
urves, such as M dwarf flares and cataclysmic variables; modelling
NRAS 531, 1084–1094 (2024) 
hese sources with NMMA and integrating them into this pipeline is
n area for future work. 

 RESULTS  

e e v aluate the reliability of NMMA in reco v ering the different types
f transients discussed in Section 2.3 through the use of simulated
ight curves. We also highlight the performance of the pipeline for two
otable examples from the literature. Following this, the general daily
erformance of the automated pipeline infrastructure is summarized.

.1 Model reco v ery 

n important consideration for the utility of the framework is the
redicti ve po wer of the fitting – that is to say, how often it can
ccurately identify a candidate of a given type as such. Ideally, a
ilonova would always be best fit by a kilonova model as compared
o other analysed models, with the same being true of other transient
vent types. 

To e v aluate this, we used an existing NMMA tool that generates
n injection file of parameter values that fall within the defined prior
pace of the provided model. We then use this injection file to NMMA
o create a simulated light curve. By using a kilonova model to create
n injection, we can simulate a kilonova light curve that could be
lausibly observed. From there, we can apply the same multimodel
nalysis described abo v e to e v aluate ho w well NMMA is able to
eco v er the correct model. 

We created a sample of 100 simulated light curves for each
odel using the same priors used for this pipeline. To minimize

he dependence on observation cadences, we imposed a half day
adence in observations for all light curves and considered data from
 single ZTF filter, the g band. A realistic detection limit of 21.5 mag
as also imposed; all detections abo v e this limit up to 21 d from

nitial detection was considered in the analysis. We then fit each light
urve in the sample to each of the analysis models and e v aluated the
elative quality of the fits. This is accomplished by calculating the
dds ratios of the true model for each light curve and the three other
odels. If all three of these odds ratios are positive, that indicates

hat the true model is the best fit for the light curve. 
After noticing a high rate of failure for fitting shock cooling light

urv es, further inv estigation rev ealed that a majority of the shock
ooling light curves only had a handful of detected data points,
esulting in the analysis failing due to insufficient data. This prompted
he addition of a method to enforce minimum observing conditions
or injected light curves; a flag was added such that, if an injection
le produced a light curve that did not have at least three detections
ithin the first 3 d of observation, the injection was regenerated
ntil one was produced that met the defined observing condition. In
he case of the shock cooling model, this resulted in a noticeable
ifference in the distribution of the physical parameters associated
ith the model, implying that there are certain areas of the parameter

pace that correspond to shock cooling that would not be observable
ith a limiting magnitude of 21.5. 
We found that kilonova light curves were accurately identified 100

er cent of the time; this high rate of model reco v ery is likely due
o the even and frequent cadence of the observations in the data.
he characteristic rise of a kilonova is not necessarily likely to be
bserved in realistic observing conditions due to its short duration,
ut its presence in this sample is another potential factor causing
he identification of kilonova to be so reliable. SNe Ib/c were also
dentified correctly 100 per cent of the time, which is most probably
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Table 1. Results of model reco v ery and analysis with NMMA for the sample of simulated light curves described in Section 3.1 . Each row is the distribution of 
what per cent of each true model type was identified as the model listed in the column, such that each row will sum to 100 per cent. The diagonal cells show 

what per cent of each model was accurately identified as the correct model based on the Bayes evidence of the NMMA fits. Off-diagonal cells for each row will 
show what percentage of each model was incorrectly identified as a different transient type. 

True model Kilonova (per cent) GRB afterglow (per cent) Supernova (per cent) Shock cooling (per cent) 

Kilonova 100 0 0 0 
GRB afterglow 5 90 3 2 
Supernova 0 0 100 0 
Shock cooling 0 28 36 36 
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 confluence of the simplicity of the nugent-hyper model and 
haracteristic light curve shape. 

GRB afterglows are the first model with a sub-100 per cent 
eco v ery rate, being correctly identified 90 per cent of the time.
he 10 per cent of incorrect identifications are spread across the 

hree other models, with 5 per cent being identified incorrectly as
ilonovae and 3 per cent and 2 per cent being identified as SNe Ib/c
nd shock cooling SNe, respectively. 

The shock cooling model had the lowest rate of reco v ery, with
nly 36 per cent of light curves being correctly identified as such. An
qual number of shock cooling SNe were misidentified as SNe Ib/c, 
nd the remaining 28 per cent were incorrectly identified as GRB
fterglows. The summarized results of this model reco v ery can be
ound in Table 1 . 

.2 Time dependence of model reco v ery 

 complimentary topic of interest is how the quality of fitting might
hange o v er time, especially at early times where there is a paucity
f data. To investigate this further, a similar process was used as
escribed in Section 3.1 , but with the added complexity of performing 
 series of successive fits on each light curve with increasing amounts
f data in consideration. In other words, the same series of fits would
e conducted with the first 2 d of data from each light curve, then
or the first 3 d of data, and so on going out to 10 d from the initial
bservation of each light curve. A minimum of 2 d was selected to
llow for a sufficient number of detections such that NMMA could 
omplete its analyses. This generates a large volume of analyses, 
 v er 10 000 for a sample of 100 light curves of each of the models.
his, in turn, produces a large volume of data, both in total size and
umber of files, so the results are consolidated into a. csv file with
he best-fit light curve and its accompanying parameters for each 
nalysis. 

Upon initial e v aluation of the rate of correct identifications o v er
ime, it became apparent that the kilonova model was being identified 
orrectly essentially 100 per cent of the time, even when only 
rovided the minimum number of data points. This could be due to a
umber of factors: as mentioned abo v e, by observing kilono va early
n, the light curve captures their characteristic rise, which may result
n consistent identification early on. Most data from ZTF will be far
ess consistent in their observation cadence and it’s unlikely that they 
ill be possible to capture the early rise of kilonova with ZTF, so this

et of light curves is not necessarily informative of how well NMMA
ill be able to perform under realistic scenarios. Another possibility 

s simply Occam’s Razor – the kilonova model is less complex 
n comparison to the GRB model, so it is possible the kilonova
s preferentially chosen by the Bayesian inference performed by 
MMA; we are actively investigating the potential source of this. 
Regardless, in order to e v aluate the performance of NMMA in a
ore realistic manner, we make use of a feature already present in
MMA, which samples light curves on ZTF-like cadences. It also 
imulates variance in the ZTF limiting magnitude each night. To 
ccount for these changes, the observing condition for generation 
as loosened to only require a minimum of three observations 
ithin 5 d of the initial observation; this represents a source that

s well-observed by ZTF but still plausible. Even with this relaxed
equirement, some models saw a significant increase in the number 
f attempts required in order to generate a valid light curve. This
as most apparent with the shock cooling model, which could 

equire upwards of 200 attempts before generating a light curve 
hat met the conditions. This reinforces the notion that areas of the
arameter space, while physically possible, may result in objects that 
re unlikely to be observable by ZTF. 

From this new sample of light curves, the Bayes evidence was
ggregated at each time step for each combination of injected light
urve and fit model. The median value of the Bayes evidence for
ach model at each time step was taken, and then the odds ratio
as calculated between the true model and the other models in

onsideration. This can be seen in Fig. 2 . The primary tak eaw ay
rom this metric is the increase in the median odds ratio o v er time
or all models; with additional data, objects are better fit by their
rue model than by other models. This metric also suggested that all
our models were fairly consistent in being accurately identified from 

arly times, with the exception of the shock cooling model. Ho we ver,
 v aluating the results by finding the model with the highest odds ratio
or each light curve at each time step demonstrated a different result.

The kilonovae were still identified fairly reliably with the mini- 
um amount of data (2 d), suggesting that the characteristic rise may

lay a role in the rate of identification. There is a small, temporary dip
n the rate of correct identifications when considering a maximum 

ime of 3 d. This could be a result of small-number statistics, as this
nalysis only contains 100 light curves for each model, but it could
lso indicate there’s an intermediate amount of data where kilonovae 
an appear to resemble supernovae analytically. 

Supernovae demonstrated a high rate of misidentification with the 
inimal amount of data but rapidly increase in identification with 

n additional day of data, reaching 100 per cent identification by the
ime there was 5 d of data in consideration. It took somewhat longer
or GRB afterglows to reach a majority being correctly identified, 
hough it still demonstrates a positive trend. Regardless of the amount
f data, all shock cooling SNe were misidentified, with a majority
eing classified as the standard SN model. 
The low rate of reco v ery for the shock cooling model suggests

hat, while they were incorrectly identified, the individual odds ratios 
etween the best fit and the other fits are fairly small. The median
dds ratio values in the shock cooling sub-plot in Fig. 2 supports this,
ith none of the odds ratios exceeding 2.5 prior to the 10th day of
bservations, though they do trend positive. This suggests that there 
s some lo wer cut-of f for the odds ratio below which one cannot
onfidently assert the likelihood of one model o v er another. 
MNRAS 531, 1084–1094 (2024) 
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Figure 2. The median odds ratios of simulated light curves over time. Each sub-plot corresponds to the sample of light curves generated with the model listed 
in the sub-plot title (i.e. the true model). The different lines in each sub-plot represent the median odds ratio o v er time between the Bayes evidence of fits to the 
true model and fits to the other models. Generally, all models show a trend of odds ratios increasing o v er time, suggesting that NMMA analysis more strongly 
prefers the correct model as more data are considered. 
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While the rate of identifying kilonovae was fairly high, even with
he minimal amount of data, it’s worth noting the number of other
andidates that were incorrectly identified as kilonovae. With the
inimum amount of data, there were a larger proportion of light

urves that were incorrectly identified as kilonovae compared to
he number of correctly identified kilonovae. It is worth noting
hat this is a sample of an equal number of each model; the
ctual number of kilonovae in comparison to other transient types
ould be significantly lower with a more realistic sample of 

ransients. 
Inspecting the odds ratios between the best and next best fits for

oth the true kilonovae and the imposter kilonovae, many of the
mposter kilonovae had odds ratios that trended worse than the odds
atios of the true kilonovae, which represents a possible avenue for
 v aluating the merits of sources in the event multiple objects in a
iven night are best fit by a kilonova model. Confusion matrices
epresenting the transient identifications o v er time are shown in
ig. 3 . 

.3 Multi-armed bandit 

iven the time-sensitive nature of follow-up observation, we ex-
lored using concepts from statistics to optimize decision making.
e have implemented a multi-armed bandit (MAB) algorithm, which

s a strategy that uses a defined reward to make the optimal selection
rom a number of different possible choices. Slivkins ( 2024 ) provides
n e xtensiv e introduction to various MAB algorithms. 

In our case, the MAB selects the most likely kilonova from
n ensemble of candidates. For a given observing scenario, we
NRAS 531, 1084–1094 (2024) 
nclude nine candidates: one kilonov a, one GRB afterglo w, and one
upernova, generated using the same models as detailed in previous
ections. 

Light curves for each observing scenario are sampled on a ZTF-
ealistic cadence using the same functionality described abo v e,
hough we impose a broader requirement of eight g -band detections
ithin 18 d of the first detection to allow for the MAB to be run o v er
 longer period of time. Again, we use NMMA to fit each light curve
o each model; the results of these analyses are then used to e v aluate
 reward function. 

The reward is defined as the odds ratio of the kilonova model
nd the best non-kilonova model as well as an upper confidence
ound (UCB) term that allows for exploration of the parameter
pace. Essentially, this term prevents the algorithm from exclusively
electing a specific object unless the odds ratio continues to impro v e
ith additional observations or is markedly higher than odds ratios

or other objects at early times. The reward equation is given by 

 n ( t) = 

(
L ( t) n,KN − L ( t) n,non −KN 

) + 

√ 

2 ln ( t) 

N n ( t) 
, (1) 

here t is the time-step being e v aluated and the subscript n differen-
iates between candidates. The left most term is the odds ratio of the
ilonova model fit and the next best model fit. The right most term
s the UCB, where the numerator is two times the natural log of the
urrent time-step and the denominator is the number of times that
bject n has been selected by the MAB. 
Generally, the reward will be positive if the kilonova model is

he best fit and it will be ne gativ e if it is not. If multiple candidates
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Figure 3. A collection of confusion matrices denoting the distribution of the best fit models versus the true models of simulated light curves described in 
Section 3.2 . In each confusion matrix, the diagonal elements represent correct identifications and the off-diagonal elements are incorrect identifications; each 
row should sum to 100 per cent, representing the collection of simulated light curves for that model, and each column denotes the relative per cent of light curves 
identified as being best fit by a given model. Each matrix corresponds to fits done with data for each light curve from their initial detection up to the number of 
days listed in their respective titles. 
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Figure 4. The MAB reward, as calculated by equation ( 1 ), for the ensemble 
of observing scenarios, where the lines show the average value of the rewards 
for objects observed at that time-step and the shaded areas represent the 
95 per cent confidence interval. No supernovae were selected for further 
observation by the algorithm, so the rewards for supernovae are plotted as a 
single point at time-step 0. 
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av e a positiv e re ward, the candidate with the highest re ward will be
elected. In this case, ‘selection’ refers to being chosen for follow- 
p observation. The candidate with the highest reward is chosen for
bservation during the next observing period. Ideally, the MAB will 
uickly identify the correct candidate and continue to observe the 
ilonova, while the UCB term will allow for the consideration of
ther candidates if the odds ratios between the best candidates are 
imilar. 

Similar to Section 3.2 , each light curve is simulated in its entirety
efore being concatenated into an initial set of observations, namely 
hen there are a minimum of three observations for each candidate, 

epresenting time-step 0. After analysing these initial light curves, 
he reward is evaluated for each candidate. For the selected candidate, 
ny observations made in the interval spanning the next day from the
ull light curve are added to the concatenated light curve and the
nalysis is conducted with the additional data. 

To e v aluate the performance of the MAB algorithm, we ran the
lgorithm on 100 observing scenarios, using a time-step of 2 d for
alculation of the reward function and object selection and a total 
f seven time-steps. We found that the MAB was fairly ef fecti ve
n selecting kilonova candidates early and often. The kilonova was 
orrectly selected in all 100 observing scenarios at the first time step;
t the final time step, the kilonova was correctly selected in 93 of
he 100 observing scenarios. Across all time-steps, kilonovae were 
elected for observation 92.6 per cent of the time. In 80 of the 100
bserving scenarios, the kilonova was selected at every time-step. 
At all time-steps where the kilonova was not selected, the GRB

fterglow was selected instead; there were no cases of supernovae 
eing selected at any time-step. The rewards for the objects observed 
t each time-step are shown in Fig. 4 . This figure contextualizes
he lack of additional supernova observations given the significantly 
ower average reward when compared to the other candidate types. 

While the average GRB afterglow reward exceeds the average 
ilonov a re ward at time-step 2 and beyond, the rate of GRB afterglow
election peaked at 12 per cent (also at time-step 2), with an average
election rate of 7.4 per cent across all time-steps. Because of the
elati vely lo w selection rate for GRB afterglows, those that are
elected would tend to have higher reward values than the average 
ilonov a re ward. 
Even in cases where a GRB afterglow was chosen, the kilonova 

as still selected for a majority of the time-steps. Of the 20 observing

d

cenarios where the kilonova was not chosen every time-step, the 
RB afterglow was selected more than the kilonova only 7 times,

nd there were no scenarios where the GRB afterglow was selected
t ev ery time-step. F or GRB afterglows that were selected at least
nce, the average number of selections (out of a possible 7) was
.6, as compared to an average of 6.5 selections for all kilonova
elected at least once. This suggests that, even for scenarios where
ifferentiating between a kilonova and an imposter via photometric 
nalysis might be difficult, the MAB algorithm is unlikely to select
he incorrect candidate for follow-up observation more than the true 
ilonova. 
This initial study of the utility of MAB algorithms for optimizing

ollo w-up observ ation is promising, and we plan to integrate MAB
unctionality into the NMMA framework to allow for future analysis. 
articularly, we plan to e v aluate its performance across larger
amples of candidates, with additional classes of eFOTs, and using 
ata from multiple filters. 
MNRAS 531, 1084–1094 (2024) 
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Figure 5. The light curve of the ZTF20abwysqy and analyses of the object 
fit to the supernova and GRB afterglow models; non-detections are denoted as 
triangles, while detections are represented by circles. The dashed lines trace 
the best fits for each model, and shaded regions correspond to one standard 
deviation in estimated luminosity distance among the samples calculated for 
a given model fit. This object was initially suspected to be a supernova, but 
additional observations suggested it was the optical companion of a GRB. Its 
classification as a such was later confirmed in a follow-up study. 
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.4 ZTF20abwysqy 

TF20abwysqy, also known as AT2020scz, is an afterglow that
as identified as the optical companion of the GRB 200826A,
hich is noted in Ahumada et al. ( 2021b ) as the shortest LGRB
isco v ered, suggesting it may straddle the minimum conditions for
hich a successful collapsar can occur. While this was originally
etected by Fermi , follow-up observations with ZTF allowed for the
dentification of the optical counterpart (Andreoni et al. 2021 ). 

As detailed in Andreoni et al. ( 2021 ), ZTFReST can create light
urves both from ZTF alerts and forced photometry. These light
urves can then be fit by the pipeline. While X-ray observations
ith Swift would have ultimately identified ZTF20abwysqy as an

fterglow, the use of forced photometry with ZTFReST allowed
t to be recognized as a rapidly fading source more promptly and
oti v ated follo w-up observ ation. 
Analysis of ZTF20abwysqy was conducted using this pipeline

or both the supernova and GRB afterglow models; the results of
hese analyses is shown in Fig. 5 . Visual inspection of the fits to
TF20abwysqy suggests that the non-detections cannot entirely rule
ut the possibility of it being a supernova, there is a notable difference
n the Bayes e vidence v alues between the two. The odds ratio of the
NRAS 531, 1084–1094 (2024) 
ayes e vidence v alues between the GRB afterglo w model and the
upernova model is 19.77, which seems to fa v our the GRB afterglow
odel in comparison to the supernova model. In comparison, the

imulated light curves for GRB afterglo ws, sho wn in the upper-
ight sub-plot in Fig. 2 , had a median odds ratio of around 7.5
ith roughly the same amount of observations available for analysis

though the fits of ZTF20abwysqy benefit from limiting magnitude
easurements in the i and r bands as well as an additional data point

n the r band). This suggests that this pipeline and NMMA would
ave supported the idea of ZTF20abwysqy being a GRB afterglow
ather than a supernova at the time these observations were occurring,
hich could have moti v ated additional follow-up observation. 

.5 ZTF21abotose 

he primary goal of ZTFReST is to find kilonovae and GRBs, but
here are cases where other transients might appear to match the form
f a kilonova or GRB. Objects like ZTF21abotose exemplify both an
impostor’ among candidates and a potential avenue for expansion
f the pipeline. 
From initial ZTF observations, ZTF21abotose, also referred to as

N2021ugl, originally appeared to be a kilonova, but spectroscopic
nalysis of the object revealed it was actually a Type IIb supernova
Ridley et al. 2021 ), which occurs as a result of core collapse of
 massive star. More specifically, it was the signature of cooling
ollowing a shock breakout. When the core of a star collapses in
n itself, a shock propagates outward from the inner core. Once
his shock makes it to the surface of the star, it creates a spike in
uminosity separate from the ongoing supernova (Burrows, Hayes &
ryxell 1995 ; Campana et al. 2006 ; Janka et al. 2007 ). 
In the past, it has been challenging to observe shock breakout

v ents, as the y occur at the earliest stages of a core collapse super-
ov a. Observ ations of shock breakouts have largely been a result of
erendipitous observation at the time of explosion (Soderberg et al.
008 ). Now, with automated all-sk y surv e ys like those conducted
ith ZTF, the observation of shock breakouts have become much
ore pre v alent. In fact, they represent one of the primary classes

f transients that are detected by ZTFReST outside of the intended
argets. 

Analysis of ZTF21abotose with this pipeline was conducted for
oth the shock cooling and kilonova models, the results of which are
hown in Fig. 6 . Generally, there is significant o v erlap between the
est fits for both the kilonova and shock breakout models; only the
nal observed data point in the g band falls outside the projection of

he kilonova model fit, though this does not necessarily rule it out as
 potential kilonova. Inspection of the associated odds ratio between
he Bayes evidence values of the shock breakout and kilonova

odels is 1.55, which is notably lower than that of the one found
or ZTF20abwysqy abo v e. While the odds ratio for ZTF21abotose
lightly fa v ours the shock cooling model o v er the kilono va model,
his analysis does not strongly support one model o v er the other. 

Though detections of Type IIb SNe and other transients that
esemble kilonovae and GRBs are troublesome for our current
bjecti ves, their pre v alence in the ZTF data suggests a potential for
TFReST to be employed in aiding in the search of other transient
bjects. 

.6 General performance 

etween 2021 July and 2022 October, the pipeline e x ecuted on
54 d with a total of 2149 daily candidates, of which 517 (roughly
ne quarter) were unique candidates. Candidates were observed for
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Figure 6. The light curve of ZTF21abotose and fits to the kilonova and 
shock cooling supernova models. As in Fig. 5 , the lines for each model show 

the best fit, and the shaded regions represent one standard deviation of the 
estimated luminosity distance. This object was difficult to classify based on 
photometric analysis alone, but spectroscopic analysis ultimately confirmed 
its classification as a Type IIb supernova. 
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n average of just over four nights, with the maximum number of
bservations being 16. The average (median) number of candidates 
nalysed each day was 6.1 (5.0), and the average (median) number 
f unique candidates was 2.8 (2.0). A histogram of the number of
aily candidates during the analysis period is shown in Fig. 1 . 
Of the four models implemented on the MSI system, the shock 

ooling model remained non-functional for the duration of the 
nalysis period. The precise reason for this is unclear since it
s possible to run fits with the shock cooling model locally and
nvestigation is ongoing. Overall, 71 per cent of candidates had a 
uccessful fit to at least one model. That remaining 29 per cent could
ave been not fit for several reasons. Some candidates do not meet the
ltering requirements we impose, and even if they pass the filtering 
equirements, it is possible that NMMA may not be able to converge
n a solution. 
During the course of pipeline development, a manual time limit of

 h was imposed on all model fits so as to allow fits to be re vie wed
efore the next night of observing. Fig. 7 shows the distribution of
ampling times on a per-model basis, where sampling time refers to 
he amount of time in seconds required to complete an analysis using
MMA; there is a noticeable difference in the time required to fit the

upernova model as compared to the other models. The time required 
o complete analysis of a given candidate is a meaningful metric by
hich to e v aluate the feasibility of using this framework to inform
ollo w-up observ ation. Excessi vely long sampling times would result
n analyses not being completed prior to the next night of observing,
educing the utility of the frame work. Ho we ver, the results of the
nalysis period suggests the framework is able to complete most 
ndividual analyses within an hour. 

In total, the pipeline used roughly 4760 computing hours during 
he analysis period, which corresponds to an average (parallel) 
omputing time of just o v er 13 h d −1 . The supernov a, GRB afterglo w,
nd kilonova models made up 4 per cent, 37 per cent, and 59 per cent
f the computing time, respectively. Fig. 7 shows that the median
omputing time for the supernova model fits is on the order of
inutes, whereas the other two models generally take almost two 

rders of magnitude longer to complete. The supernova model is 
 less complex model with fewer parameters, so NMMA requires 
uch less time for likelihood e v aluations and converges faster. 
As shown in Fig. 8 , the cumulative computing time tracked fairly

losely with the cumulative number of candidates analysed with 
he exception of the supernova model. Beyond the first month, the
upernova model computing time grew very little, making up an 
ncreasingly small proportion of the cumulative computing time. 
his figure also demonstrates the framework’s relatively low usage 
f computing, requiring an average of just under 13.5 h of computing
ime per day, which is generally run in parallel so as to complete daily
nalyses within a few hours. 

Each of the models had similar maximum and minimum Bayes 
 vidence v alues. Ho we ver, the distribution of these Bayes e vidence
 alues dif fer. Fig. 9 demonstrates the relationship between sampling
imes and the resulting Bayes evidence. There was not a particularly
trong correlation between the Bayes evidence of supernova model 
ts and their sampling times, but significantly more of fits of this
odel had very negative Bayes e vidence v alues. This makes sense;
hile the lower dimensionality of the supernova model resulted 

n shorter sampling times, the other two models are more likely
o produce better Bayes e vidence v alues because there are more
arameters by which to fit the data; additionally, the ZTFReST 

lgorithm is designed for fast transients, which supernova are not. 
The kilonova and GRB afterglow models had a similar distribution 

f sampling times and Bayes evidence values; both indicate a general
rend of longer sampling times resulting in more ne gativ e Bayes
 vidence v alues, with the distribution of sampling times for the
ilono va model e xtending slightly further than that of the GRB
fterglow model. 

 DI SCUSSI ON  

n this paper, we have described a useful extension of the ZTFReST
ipeline that can be generalized for use with other data sets and
otential future functionality. We have e v aluated the general perfor-
ance of this pipeline as well as the performance of NMMA. As O4

ontinues and we look to future observing runs, this will provide an
pportunity to identify additional needs for enabling the automatic 
tting of fast transient light curves to inform follow-up observations 
f intriguing sources. 
The pipeline has demonstrated the ability to perform fits on a

aily basis without additional o v ersight. That being said, there are
 number of open questions and potential functionalities that can be
eveloped for the pipeline. 
One of the principal questions that must be answered as devel-

pment continues is how comparison between different fits can be 
uantified in a meaningful way. In order to properly inform auto-
ated follow-up observations, we must investigate what constitutes 
MNRAS 531, 1084–1094 (2024) 
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Figure 7. Distribution of fit sampling times by model. The x -axis corresponds to the time in seconds required to complete an analysis of a given model. Each 
box represents the inner quartile range of the data, with the line inside this box being the calculated median, and outliers are plotted as individual points. Note 
the log scaling of the x -axis; the median sampling time for the supernova model is roughly two orders of magnitude less than the median values of the GRB and 
kilonova models, due in part to the relative simplicity of the supernova model. 

Figure 8. The bar plot (left axis) represents the cumulative sampling time, in 
hours, on MSI between 2021 July and 2022 October. The total sampling time 
was roughly 4670 h. The line (right axis) represents the cumulative number 
of candidates, including candidates that were analysed on more than one day. 
The shaded regions on the plot represent periods where the pipeline was not 
consistently recei ving ne w data. For the left most three instances, this was 
due to ZTF being down for maintenance or service. The right most instance 
was a result of issues with the connection between MSI and schoty. 
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Figure 9. A contour density plot of the sampling times compared to the 
Bayes evidence by model. Generally, the supernova model completed fitting 
within minutes, whereas the median sampling times for the kilonova and GRB 

afterglow models were on the order of hours. Ho we v er, the superno va model 
demonstrated a much larger range in values for the Bayes evidence compared 
to the other models. Note that, while the contours may visually extend past 
the x-intercept, no fits took ne gativ e time to complete. This is also true for 
the y-intercept – the upper limit of the Bayes evidence is 0. 
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 significant enough difference in quality of fits between models
o moti v ate additional observ ation of a target. By expanding on the
odel reco v ery analyses discussed in Sections 3.1 and 3.2 to generate
 more e xpansiv e set of light curves, it should be possible to quantify
his difference. 

The use of NMMA in this pipeline demonstrates its ability to
erform comparative analysis of ZTF light curves to tentatively
dentify their transient type to moti v ate follo w-up observ ation.
eatures of this pipeline would be beneficial to integrate into NMMA

o increase its utility as a multipurpose analytical tool for MMA
cience. NMMA currently supports combined analysis of multiple
ransient models on a single light curve, but work is being done to
nable users to provide multiple models as part of a single command
hat will then perform independent analysis of the light curve to the
NRAS 531, 1084–1094 (2024) 
odels. By integrating features from this pipeline, NMMA could
hen rank the relative quality of the models in fitting the light curve.
xtending this further, it would then be possible to develop a built-

n method that performs this comparative analysis on multiple light
urves and e v aluate which is most likely to be the model of interest.

The work outlined in Section 3.2 also lays the groundwork for
nother addition to the NMMA framework. By generating a large
ample of light curves for various common transient sources and
sing NMMA to analyse their relative fit quality as additional
bservations are considered, this could form the basis for a ML
raining set using one of the several ML libraries available for PYTHON

o optimize the selection of a candidate from a set of multiple light
urves that would maximize the odds ratio for the transient type of
nterest to the user. This is a valuable prospect when one is limited
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n the number of candidates that can be triggered in a given night for
ollo w-up observ ation. 

During the course of this project, it became apparent that this
ody of analyses would be beneficial to make available to the 
roader collaboration outside of members of the Growth MMA 

lack server. As a result, an extension to the pipeline was made
uch that the analyses are now made available on Fritz, which is
n open-source platform for time domain astronomers. Along these 
ame lines, work is being done to develop an NMMA API to enable
MMA analyses to be requested an e x ecuted through Fritz. After

dding the aforementioned features to NMMA moti v ated by this
ipeline, they could also be made available through the API to enable
sers to leverage the power of NMMA in analysing light curves and
nforming follow-up observations while using Fritz. Extending the 
PI even further, it should be possible to automatically perform 

hese comparative analyses on new objects as they’re posted to Fritz. 
dding these features to NMMA will be a boon to researchers and

nable more productive time-domain astronomy. 
Most of the outstanding questions are statistical in nature. With 

dditional time and data, more definitive evaluations of fit quality 
ill be able to be made automatically as we determine statistically 

ignificant measures. One consideration is the current level of manual 
e vie w conducted prior to processing by the pipeline. As of this
riting, only a handful of the most promising targets are considered. 

t may pro v e beneficial to relax this filtering process and allow the
ipeline to e v aluate less promising targets. Statistical analysis of the
ifference in fit quality between these two groups could reveal a 
easure that could be added to the pipeline to automate this filtering

n the future. 
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