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Abstract
Short texts generated by individuals in online environments can provide social and behavioral scientists with rich insights 
into these individuals’ internal states. Trained manual coders can reliably interpret expressions of such internal states in text. 
However, manual coding imposes restrictions on the number of texts that can be analyzed, limiting our ability to extract 
insights from large-scale textual data. We evaluate the performance of several automatic text analysis methods in approxi-
mating trained human coders’ evaluations across four coding tasks encompassing expressions of motives, norms, emotions, 
and stances. Our findings suggest that commonly used dictionaries, although performing well in identifying infrequent cat-
egories, generate false positives too frequently compared to other methods. We show that large language models trained on 
manually coded data yield the highest performance across all case studies. However, there are also instances where simpler 
methods show almost equal performance. Additionally, we evaluate the effectiveness of cutting-edge generative language 
models like GPT-4 in coding texts for internal states with the help of short instructions (so-called zero-shot classification). 
While promising, these models fall short of the performance of models trained on manually analyzed data. We discuss the 
strengths and weaknesses of various models and explore the trade-offs between model complexity and performance in dif-
ferent applications. Our work informs social and behavioral scientists of the challenges associated with text mining of large 
textual datasets, while providing best-practice recommendations.
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Introduction

The rise of big data has confronted social and behavioral 
scientists with extensive amounts of text, challenging their 
conventional methodological approaches (Goldberg, 2015; 
Lupyan & Goldstone, 2019; Salganik, 2017). Ordinary 
individuals interacting in online spaces generate a growing 
amount of textual information about themselves and the social 
world (Golder & Macy, 2014). These short online-generated 
texts stem from real-life behaviors and social interactions 
and can be collected unobtrusively and in real time (Golder 
& Macy, 2014; Rauthmann, 2020), allowing us to overcome 
some of the limitations of other data collection methods (Rad-
ford & Lazer, 2019). These texts serve as a valuable resource 
for inference on internal human states such as character traits, 

individual norms, attitudes, opinions, values, sentiments, and 
motives (Boyd et al., 2015; Boyd & Schwartz, 2021; Evans & 
Aceves, 2016; Hoover et al., 2020).

Drawing inferences on internal states from texts is, in many 
ways, analogous to capturing constructs using questionnaires 
or experimental designs (Kennedy et al., 2022). The funda-
mental assumption here is that internal states manifest in the 
way individuals use language. Past research has demonstrated 
that this assumption holds in many cases, with speech and 
writing reflecting personality traits, sociodemographic char-
acteristics, personal values, and moral concerns (Boyd et al., 
2015; Matsuo et al., 2019; Schultheiss, 2013; Schwartz et al., 
2013; Tausczik & Pennebaker, 2010). Textual measures have 
mostly been validated against self-reports, showing different 
levels of correlation on a range of internal states (Boyd et al., 
2015; Kennedy et al., 2021; Koutsoumpis et al., 2022; Lykou-
sas et al., 2019; Malko et al., 2021; Matsuo et al., 2019; Mozes 
et al., 2021; Pellert et al., 2022).

Drawing inference from text, in general, hinges on 
another fundamental assumption: that the meaning conveyed 
in language can be interpreted and quantified (Ignatow, 
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2016). This assumption underlies the gold standard of quan-
titative text analysis in the social sciences (Iliev et al., 2015; 
Nelson et al., 2021; Tausczik & Pennebaker, 2010), which 
involves defining theoretical concepts of interest (Kennedy 
et al., 2022) prior to the selection of a textual corpus which 
will be analyzed with the help of multiple trained human 
coders (Krippendorff, 2004a). When the goal is inference 
on internal states, the assumption becomes more specific: 
external observers can use cues in verbal behavior to deduce 
individuals’ internal states (Koutsoumpis et al., 2022). On 
the one hand, understanding how certain states are reflected 
in language is a distinctly human ability (Iliev et al., 2015; 
Kennedy et al., 2022). On the other hand, psychological 
research has noted an asymmetry between how individuals 
perceive their own states and how external observers assess 
these very states (Vazire, 2010). This asymmetry can result 
in a higher correlation between textual features and observer 
reports than between textual features and self-perceptions 
of one’s traits and states (Koutsoumpis et al., 2022). Fur-
thermore, certain internal states appear to be reflected more 
clearly in text than others (Kennedy et al., 2021). Evaluating 
the construct validity of measurements extracted from text 
and relating them to alternative forms of measurement are 
still ongoing tasks.

Even with these limitations in mind, using texts for 
inference of internal psychological states can prove use-
ful in many applications (Dehghani et al., 2014; Hasan & 
Ng, 2014; Hoover et al., 2020; Kröll & Strohmaier, 2009; 
Liu et al., 2012; Pennebaker et al., 2015; Prabhakaran et al., 
2012; Schultheiss, 2013; Tay et al., 2020). Although infer-
ence of human analysts is not without its shortcomings 
(Song et al., 2020), when best-practice advice is followed, it 
provides us with a largely valid and reliable means of meas-
uring the presence of concepts of interest in texts (Krippen-
dorff, 2004a). However, when working with a large number 
of texts, manual coding quickly becomes resource-intensive 
and time-consuming. Instead of disregarding textual data 
that cannot be analyzed manually, researchers can utilize 
text mining techniques to extend their manual analyses to the 
entire large corpus of texts (Iliev et al., 2015; Kennedy et al., 
2022; Macanovic, 2022; Tausczik & Pennebaker, 2010).1

However, the proliferation and increasing availability 
of diverse text mining methods presents researchers with a 
number of challenging questions. Which method most accu-
rately approximates human coding for a given task? Can 
established dictionary methods be relied upon, or should 
we invest time in understanding complex large language 

models? How much can we trust accessible new implemen-
tations that require minimal technical knowledge on the part 
of researchers? How do our decisions at various analytical 
stages affect the performance of different methods? Here, we 
aim to provide comprehensive answers to these questions. 
Building on past research tackling some of the questions 
above (Barberá et al., 2021; Kusen et al., 2017; van Atteveldt 
et al., 2021; Yadollahi et al., 2018), we conduct a systematic 
survey aimed at social and behavioral scientists interested in 
using text mining to reliably extend manual coding of texts 
for various internal states. We examine methods of varying 
degrees of complexity and consider the impact of differ-
ent analytical choices. Further, we consider the trade-offs 
between complexity and transparency, and between conveni-
ence and performance. Our survey includes four applications 
of the inference of internal states from short texts with dif-
ferent levels of complexity.

We assess how several families of text mining methods 
perform against the gold standard of systematic coding car-
ried out by trained human coders (Bonikowski & Nelson, 
2022; Grimmer et al., 2022). We first consider a family of 
methods familiar to many researchers: dictionary methods 
that identify words relevant to the concept of interest in text. 
Here, we also present a novel approach for easy generation 
of custom dictionaries from manually coded data. Next, we 
discuss supervised machine learning classification methods 
that infer coding patterns from manually coded data and 
apply them to new texts. Finally, we explore the potential 
of the cutting-edge zero-shot classification approach which 
involves instructing large language models with simple text-
based instructions for coding. While dictionary methods 
remain the preferred method in social and behavioral sci-
ences, the latter approaches hold great potential for nuanced 
coding of internal states (Boyd & Schwartz, 2021; Rathje 
et al., 2023).

This paper is structured as follows: We first provide a 
brief outline of the analytical framework for automatic text 
analysis. Then, we discuss text preparation and describe 
various text mining methods. Finally, we evaluate the per-
formance of automatic methods against the gold standard 
of human manual coding on four datasets from online plat-
forms. The textual corpora in these datasets were, depending 
on their content, manually coded for motives, moral norms, 
emotional states, and hateful attitudes.

Analytical framework for automatic text 
analysis

In this section, we outline the framework for automatic text 
analysis, consider the characteristics of different text mining 
methods, and discuss how their performance can be com-
pared to human coding.

1 Text mining is a broad term denoting computer-assisted analysis of 
texts using techniques from natural language processing and machine 
learning (Hotho et al., 2005). We use this term interchangeably with 
“computational” or “automatic” text analysis.
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Step 1: Manual coding

The first step includes defining concepts of interest and 
determining a corresponding coding scheme that helps seek 
them in text (Kennedy et al., 2022; Krippendorff, 2004a). 
Next, researchers need to select a corpus of texts they want 
to analyze,2 and sample a subset that will be manually coded 
(Figueroa et al., 2012; Wang et al., 2022).3 Manual coding 
can involve either a small group of expert coders (Krippen-
dorff, 2004a) or a large number of less-trained crowd coders 
(Benoit et al., 2016; Marquardt et al., 2017). In either case, it 
is crucial that every text is independently coded by multiple 
coders (Barberá et al., 2021; Krippendorff, 2004a; Marquardt 
et al., 2017; van Atteveldt et al., 2021), with their agreement 
reported and held to a satisfactory standard (Krippendorff, 
2004b; Song et al., 2020).4 Both the sampling decisions and 
the level of coder agreement can impact the performance of 
automatic text analysis methods (Wang et al., 2022).

Step 2: Method choice

The next step is to choose a text mining method to analyze 
the whole textual corpus. We discuss several families of 
methods that can be used for this task.

Dictionary methods Dictionary methods use word lists (dic-
tionaries) to categorize texts. For instance, when identifying 
emotions in text, a dictionary would map words that corre-
spond to each emotion, such as joy or surprise. If available, 
researchers can use pre-existing dictionaries (ready-made dic-
tionaries [RMDs]), such as the widely used Linguistic Inquiry 
and Word Count (LIWC) dictionary (Pennebaker et al., 2015).

An alternative is to create a custom-made dictionary 
(CMD) suited for the particular coding scheme and dataset 
at hand (Bonikowski & Gidron, 2016; Macanovic, 2022; 
Nelson et al., 2021; Spörlein & Schlueter, 2021). We present 
a straightforward approach that uses manually coded data 
to automatically generate dictionaries using the concept of 
word keyness from computational linguistics (Gabrielatos, 
2018). To illustrate this procedure, consider the following 
example: If, in our sample of 1,000 manually coded texts, 
we have coded 100 texts for the emotion category of “joy,” 
we denote these 100 texts as the “target group” and the 

remaining 900 texts as the “reference group”. For instance, 
if the word “happy” occurs 20 times in the target group, but 
only 10 times in the reference group, we use a word keyness 
measure to assess the extent of the difference in word occur-
rence between the groups. We test two approaches: one using 
the likelihood ratio measure of statistical significance and 
the other using the %DIFF measure capturing the effect size 
of the difference (Gabrielatos, 2018).5 If we determine that 
“happy” occurs significantly more often in the target group, 
we include it as a dictionary entry for the category of “joy.” 
This simple approach can further be extended using more 
sophisticated methods of word selection (King et al., 2017) 
and dictionary expansion (Di Natale & Garcia, 2023; Garten 
et al., 2018).

SML classification methods Supervised machine learning 
(SML) classification methods use the manually coded sam-
ple as training data to identify patterns in text features (see 
Sect. "Step 3: Data representation") which correspond to 
different coding categories. These patterns are then used 
to automatically code new, unseen data (Aggarwal & Zhai, 
2012; Jurafsky & Martin, 2009; Nelson et al., 2021). We 
first consider a very simple SML model—logistic regres-
sion—which calculates the significance of each textual fea-
ture in determining whether a text belongs to a category or 
not (Jurafsky & Martin, 2009).6

We then assess two more complex algorithms. The ran-
dom forest (RF) algorithm relies on decision trees: algo-
rithms that iteratively infer which words are helpful in distin-
guishing between different coding categories (Aggarwal & 
Zhai, 2012; Rhys, 2020). RF operates under the assumption 
that the collective performance of multiple decision trees 
surpasses individual trees’ performance and, thus, averages 
many individual tree outputs to determine words relevant 
for each coding category (Rhys, 2020). As some of the cod-
ing schemes for internal states allow for several categories 
to co-occur in texts (e.g., both joy and surprise), we also 
consider a so-called multi-label RF algorithm that accounts 
for such co-occurrences (Tsoumakas & Katakis, 2007).7 A 
support vector machine (SVM) algorithm represents texts in 

2 Recent work by Bonikowski and Nelson (2022) and Hurtado Bodell 
and colleagues (2022) outlines some important considerations regard-
ing these choices. The main unit of analysis can be whole texts, sen-
tences, or segments of text (Barberá et al., 2021; Do et al., 2022).

3 Some methods do not require manually coded input to perform 
automatic coding, but should still be validated against a gold standard 
evaluated by humans (Grimmer & Stewart, 2013).
4 We discuss intercoder agreement measures in Appendix A. All 
appendices can be found at: https:// osf. io/ h2q5k.

5 Equations  1–3 in Appendix B provide more details on how these 
measures are calculated.
6 Since our implementations involve schemes where a text can be 
coded for multiple categories simultaneously (see Sect. "Case stud-
ies"), we fit separate logistic regression models for each category. In 
one implementation where a text can belong to only one of several 
categories, we fit a multinomial logistic regression.
7 We train separate RF and SVM models for each coding category 
of interest in applications where categories can co-occur across texts. 
For a comprehensive overview of other solutions for tackling co-
occurrence with SML algorithms, see Erlich and colleagues (2022).

https://osf.io/h2q5k
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a multidimensional space and identifies a multidimensional 
surface, or hyperplane, which best separates texts into dif-
ferent categories based on the words they contain (Aggarwal 
& Zhai, 2012; Rhys, 2020).

Finally, we evaluate the possibility of using transfer 
learning, a procedure where large language models (LLMs) 
that were already trained to learn text representations from 
large textual datasets (see Section "Step 3: Data representa-
tion") are adapted in order to perform specific tasks (Chae 
& Davidson, 2023; Do et al., 2022). When neural networks 
such as LLMs are used for text classification, they can be 
thought of as stacked linear regressions which iteratively 
process textual features and dynamically learn the weights 
that determine how important each feature is for predicting 
each coding category (Jurafsky & Martin, 2021). The final 
layer of the model (the classification head) then uses a logis-
tic function to transform these weights into a binary outcome 
denoting whether a text belongs to a category of interest or 
not. We evaluate BERT , RoBERTa, and BERTweet, power-
ful transformer LLMs that were pre-trained on large textual 
datasets. We perform fine-tuning, a procedure during which 
these models learn how to classify texts into categories 
of our interest based on manually coded examples. These 
models belong to the family of autoencoding transformer 
language models which are, in general, considered a suitable 
choice for text classification (Vaswani et al., 2018).

Zero‑shot classification More recently, certain generative 
LLMs have been noted to develop broad pattern recogni-
tion abilities during pre-training, which allows them to 
perform various tasks without any fine-tuning on manually 
coded data (Brown et al., 2020). Given the nature of the 
task, researchers have been using the category of autore-
gressive large language transformer models designed for 
text generation to perform zero-shot classification (Gilardi 
et al., 2023; Ollion et al., 2023). Although autoencoding 
models mentioned previously (e.g., BERT) appear to be 
more appropriate for classification (Minaee et al., 2021), 
here we also assess the performance of GPT-3.5-turbo and 
GPT-4, two powerful autoregressive generative models. 
Unlike the autoencoding models for classification that cal-
culate the probabilities of texts belonging to each coding 
category, generative models generate the coding category for 
each text when provided with a natural language instruction 
(i.e., a prompt).

Autoregressive generative models can, in general, be 
instructed by providing them with (1) a larger number of 
manually coded examples (fine-tuning, as discussed with 
regard to autoencoding models), (2) a few representa-
tive examples (i.e., few-shot learning), or (3) only coding 
instructions in natural language (i.e., zero-shot learning) 
(Liu et al., 2021). Recent work has highlighted, in particu-
lar,  the good performance of zero-shot classification on 

some tasks  (Brown et al., 2020; Chae & Davidson, 2023), 
suggesting that this approach could support social scientific 
inquiry while reducing the costs and effort associated with 
fine-tuning of large language models (Rathje et al., 2023). 
This is why we focus on zero-shot classification capabilities 
of generative models.

Step 3: Data representation

Before being fed into a text mining model, text needs to be 
pre-processed and converted into an appropriate input format 
(i.e., representation). In Fig. 1, we show the logic behind 
several approaches to text representation. Dictionary methods 
typically seek textual elements that match those contained 
in the dictionary (panel A in Fig. 1). These elements, often 
referred to as tokens, may comprise parts of a word, indi-
vidual words, or multiple words. For the sake of simplicity, 
we will refer to tokens as words unless otherwise specified.

Machine learning models require words to be transformed 
into a numerical representation that captures word frequen-
cies and/or relationships between words in each text. That 
is, a word needs to be represented as a point in a multi-
dimensional semantic space so that its relationships with 
neighboring words are captured in a systematic manner 
(Jurafsky & Martin, 2021). The simplest approach relies on 
discrete “bag-of-words” representations, where each text is 
represented as a vector of frequencies of individual words 
it contains (panel B in Fig. 1). As a result, a textual corpus 
is converted into a document-term matrix (DTM), where 
rows represent each text (document), columns denote words 
occurring across texts (terms), and cells count word occur-
rence frequencies within texts (Aggarwal, 2018).8

Although valuable in many applications, discrete rep-
resentations result in sparse vectors with many zero val-
ues (i.e., most words contained in a corpus appear in just 
a few texts) and disregard the context in which individual 
words appear (Jurafsky & Martin, 2021). This issue can be 
addressed by using distributed text representations. Such 
representations generate dense vectors that capture the con-
text of each word (Mikolov, Sutskever et al., 2013b).

They can be obtained using word embedding mod-
els which represent words in a high-dimensional space, 

8 We use this term frequency (TF) approach in main analyses. Alter-
natively, a DTM can be normalized by the relative frequency of 
word occurrences in all texts (Aggarwal, 2018). We discuss this TF-
IDF (term frequency-inverse document frequency) representation in 
Appendix C and show the results in Figures E5 and E6 in Appendix 
E. The unit being counted in a DTM does not have to be a word (or 
even any token) itself. For instance, one could represent texts as vec-
tors of word counts belonging to certain dictionary categories.
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positioning words appearing in similar contexts close to 
each other in this vector space (panel C in Fig. 1, with a 
three-dimensional vector space as an example) (Mikolov, 
Chen et al., 2013a; Mikolov, Sutskever et al., 2013b; Vas-
wani et al., 2018).

In addition to such representations9, newer large language 
transformer models are also able to capture the fact that the 
same word can appear across different contexts (e.g., tree 
bark compared to a dog’s bark) (Vaswani et al., 2018). Some 
embedding models can further combine individual word rep-
resentations to obtain representations for each sentence or 
text (panel D in Fig. 1).

In order to produce text representations, word embed-
ding models are pre-trained on large textual datasets. The 
BERT model we evaluate was trained on the 800-million 
word BookCorpus and the 2.5-billion-word English Wiki-
pedia corpus (Devlin et al., 2019); RoBERTa was trained on 
the same data, as well as the CC-News dataset containing 63 
million English news articles, the OpenWebText dataset con-
taining data from Reddit, and a subset of the CommonCrawl 
data (Liu et al., 2019); BERTweet was trained on a corpus of 
850 million English Tweets (Nguyen et al., 2020). The data 
that GPT-3.5-turbo and GPT-4 models were trained on is 

not fully disclosed, but it likely involves more data from the 
internet in addition to the English Wikipedia, two internet-
based book corpora, the CommonCrawl, and the WebText 
dataset (Brown et al., 2020).10

Here, we survey how text representations learned by these 
models can be used in conjunction with supervised classifi-
cation (to help the model map relationships between vectors 
and coding categories based on manually coded data) or to 
help the model generate coding categories in the zero-shot 
classification approach.

Before being transformed into a representation, text 
can be pre-processed in order to drop redundant informa-
tion. Usually, this includes lowercasing and removing 
punctuation. Next, one can choose to perform stop word 
removal—excluding short words that carry little meaning 
(e.g., “the”)—and text lemmatization—consolidating word 
forms and tenses into their root form.11 Past research has 
noted that pre-processing can significantly affect model 
performance, with optimal combination of steps depend-
ing on the particular application (Aggarwal, 2018; Denny 
& Spirling, 2018; Kern et al., 2016; Maier et al., 2018; Sun, 

Fig. 1  A visualization of different text representation methods

9 In Appendix C, we describe our evaluations of SML models trained 
on such word representations from word2vec and GloVe models. We 
show the results in Figures E5 and E6 in Appendix E.

10 We use “bert-base-uncased,” “roberta-base,” “bertweet-base,” 
“gpt-3.5-turbo-16k,” and “gpt-4” models. Also see Appendix B.
11 Lemmatization replaces different word forms with their dictionary 
forms (e.g., “caring” will result in “care”). A similar procedure called 
stemming removes word suffixes (e.g., “caring” will result in “car”).
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2012; Uysal & Gunal, 2014). Therefore, we experiment with 
multiple pre-processing steps where applicable (CMDs, 
logistic regression, RF, and SVM algorithms). When work-
ing with large transformer models for SML and zero-shot 
classification, we use the same pre-processing steps that 
were used during original model pre-training. In Table 1 we 
show combinations of methods and text representations we 
evaluate here. There are other possible combinations we do 
not survey (e.g., using dictionary output or distributed rep-
resentations as input for simpler SML methods or enriching 
dictionaries using distributed representations).

Step 4: Model parameter choices

We briefly discuss several challenging decisions related to 
model specification and present the choices we make in our 
systematic evaluation. Appendix C contains more details on 
the technicalities of our implementations.

Dictionary methods Researchers might be able to choose 
among several available RMDs in some applications, 
whereas others might call for theoretically informed man-
ual selection of words of interest for each category. When 
creating CMDs using our procedure, the first step entails 
establishing the cutoff values for the keywords that will be 
included in the dictionary. As we work with relatively small 
datasets, we set the p-value cutoff for the log-likelihood 
measure to 0.01, which is higher than the cutoffs in work 
handling corpora with millions of words (Pojanapunya & 
Watson Todd, 2018). When working with effect size meas-
ures, we set the cutoff to words in the top 20% of the distri-
bution of the %DIFF scores. Once the CMD is generated, 

researchers need to select the classification threshold, speci-
fying how many words from a dictionary category must be 
present in a text for it to be classified into the corresponding 
category. As we are working with short texts, we set this 
threshold to at least one word from a category. However, 
optimal parameter choices might differ depending on the 
specific application (also see Appendix F, where we vary 
word cutoffs and coding thresholds).

SML classification methods SML methods include numerous 
parameters which, if adjusted to the task at hand, could affect 
model performance. As these parameters are specific to each 
model, we do not discuss them in detail here and mostly 
rely on the default settings in the software implementations 
we use. Researchers can use automatic methods for hyper-
parameter tuning to seek the best parameter combination 
for each model and application (Feurer & Hutter, 2019). In 
our logistic regression analyses, we use ridge regression to 
prevent model overfitting due to the large number of tex-
tual features (Craig et al., 1998). Logistic regression outputs 
whether the text belongs to a category or not (0/1). When 
working with RF and SVM, we request models to output the 
probability of each text belonging to each category and clas-
sify texts into a category if this probability is above 0.5.12

When fine-tuning autoencoding transformer models 
(BERT, RoBERTa, and BERTweet) using our manually 
coded data, we modify both the model parameters and the 
classification part of the model (i.e., classification head) (C. 

Table 1  Tested representation and pre-processing combinations per method

Family Method (1)
List of tokens

(2) 
Discrete representation
(DTM)

(3)
Distributed representation

Dictionary methods RMD List of tokens
CMD (1) Lemmatization

(2) Stop word removal
SML Logistic regression (1) Lemmatization

(2) Stop word removal
(see Appendix C)

Random forest (RF) (1) Lemmatization
(2) Stop word removal

Support vector 
machines (SVM)

(1) Lemmatization
(2) stop word removal

Multilabel random for-
est (Multilabel RF)

(1) Lemmatization
(2) Stop word removal

Transformer models (1) BERT
(2) RoBERTa
(3) BERTweet

Zero-shot
classification

(1) GPT-3.5-turbo
(2) GPT-4

12 In one of our applications where a text can belong to one of the 
multiple categories, we classify it into the category it belongs to with 
the highest probability.
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Sun et al., 2019).13 We fine-tune each model for five epochs.14 
Then we transform the outputs of the classification head (log-
its) into probabilities (see Appendix B for details), applying 
the same classification logic as for the other SML methods.

Zero‑shot learning When evaluating GPT-3.5-turbo and GPT-
4, we use the OpenAI (the company developing these mod-
els) API to feed instructions to the model. Various strategies 
for designing these model instructions (i.e., prompts) exist 
(Liu et al., 2021; Wang et al., 2023). While there is evidence 
that different prompting strategies affect model performance 
(Abdurahman et al., 2023; Reiss, 2023), we chose to keep our 
prompts minimal. We provide the model with the text source 
and coding categories only and give it an instruction that it 
should be acting as “...a research assistant” (see Appendix B 
for details). We do not change other default parameters.

Step 5: Performance evaluation

The performance of text mining methods that use manually 
coded data as input should not be evaluated against the same 
data used when the model was built (or fine-tuned). Figure 2 
summarizes our evaluation procedure: After selecting the 
sample of texts and coding it manually (Fig. 2a), we des-
ignate a randomly selected portion of this sample (80%) as 
the “training” set that will be used to build or fine-tune our 
models. We reserve the remaining 20% of the sample as a 
“holdout” set for evaluating model performance against the 
gold standard of human coding (Fig. 2b) (Raschka, 2020). 
Since the performance of models trained on manually coded 
data can vary depending on the random selection of texts 
into the training set (James et al., 2013), we additionally 
implement a 10-fold cross-validation approach (Fig. 2c). The 
training data are randomly shuffled and split into 10 subsets, 
and each subset is then used to evaluate the model trained on 
the remaining nine subsets (James et al., 2013).

We average the performance of each model variation across 
10 validations to determine the best-performing variation within 
each family (CMD and SML methods). We then train this vari-
ation on the complete training dataset and evaluate its perfor-
mance on the holdout dataset. For models that are not trained 

Fig. 2  A schematic representation of our performance evaluation pro-
cedure. We first manually code a sample of texts (a) and then des-
ignate  80% of the sample  as the  "training dataset" and the remain-
ing  20% as the "holdout dataset" (b). We implement a 10-fold 

cross-validation approach (c) to choose the best-performing model 
variant within each method family before evaluating each family's 
performance on the "holdout dataset".

13 This approach has been shown to perform better than the compu-
tationally less intense procedure of fine-tuning only the upper model 
layers and the classification head (Lee et al., 2019).
14 During fine-tuning, the model processes texts in batches and 
updates parameters after each batch, completing an epoch once all 
training data are processed. We use a batch size of 8, with default val-
ues for other parameters (Devlin et al., 2019; Mosbach et al., 2021). 
See Appendix E and Figure E7 for a brief discussion on the impact of 
batch size and number of epochs on model performance on our tasks.
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on manually coded data (RMD and zero-shot classification), we 
only evaluate their performance on the holdout set, comparing it 
to the manually coded gold standard. The method that performs 
the best on the holdout set can then be used to automatically 
code new data (Fig. 2a, data that have not been manually coded).

The simplest measure of performance against the gold 
standard is accuracy. Accuracy measures the proportion 
of texts for which the coding done by the model matches 
human coding (Aggarwal, 2018). In some cases where texts 
can simultaneously belong to multiple categories, we also 
report subset accuracy, which denotes the share of texts 
for which all categories were predicted correctly (Nam 
et al., 2017). However, relying on accuracy only can mask 
poor performance on rarely occurring coding categories.15 
Therefore, we also report the F-score which captures suc-
cess in identifying the presence of coding categories. The 
F-score is a harmonic mean of precision (the percentage of 
texts the model identified as belonging to a category that 
actually belong to it as per the gold standard) and recall 
(the percentage of texts belonging to the category as per 
the gold standard that the model identified as such) (Aggar-
wal, 2018). A higher F-score indicates better predictions, 
with 1 indicating a perfect match to human coding. To 
evaluate the performance across multiple categories in our 
coding schemes, we report micro-averaged F-scores.16

Case studies

We use four datasets and coding schemes as case studies for 
our method comparison. These include a dataset of 2,000 
texts from an online marketplace coded for seven motives 
of their authors, two Twitter datasets containing 3,832 and 
24,783 texts and coded for moral norm expression and the 
presence of hate speech, respectively, and a dataset of 10,000 
Reddit posts coded for the expression of six different emo-
tions. We selected these datasets so as to cover a range of 
online platforms, average text lengths, sizes of manually 
coded datasets, and types of internal states in text. Table 2 
lists dataset details, and Table 3 presents information about 
coding categories and the ranges of intercoder agreement 
on each of them. In Appendix B, we provide details on the 
individual coding schemes and procedures.

In the first application with our own data, we investigate 
motivations to write feedback after engaging in a transaction 
in an online marketplace for illegal goods. Feedback plays 
an essential role in the functioning of large-scale online mar-
ketplaces. In this dataset, we seek cues left by feedback text 
authors as to why they chose to invest their time and effort 
to write a detailed report on their experience. We sample 
2,000 feedback texts and have each text coded independently 
by three trained coders. Our coding scheme includes seven 
coding categories capturing different motives for writing 
(Macanovic & Przepiorka, 2023). We refer to this dataset 
as the “Feedback data”.

In the second application, we use a set of tweets related to 
the 2016 presidential election in the United States collected 
by Hoover and colleagues (2020). This set is a segment of 
a larger corpus of tweets manually coded for the expression 
of moral sentiments of care, fairness, loyalty, authority, and 
purity as per Moral Foundations Theory (Garten et al., 2016; 

Table 2  Dataset information

a  The original election dataset coded by Hoover et al. (2020) contained 5,358 tweets. However, we were unable to retrieve all the original tweets 
via Twitter API; some of the tweets or accounts tweeting them appeared to be deleted at the time of our retrieval (third quarter of 2021).
b  The original dataset contains 58,011 coded tweets; we selected a random subsample for computational feasibility. We chose a sample of 10,000 
texts as an intermediate size between the smaller Feedback and Twitter datasets and the larger Hate speech dataset.
c  The original paper mentions 24,802 texts; we obtained 24,783 tweets from the publicly available dataset.
d  Multi-label implies that a single text can contain multiple categories at once; multi-class suggests a text can belong to only one of multiple categories.

Feedback data Election data Reddit data Hate speech data

Texts 2,000 3,832a 10,000b 24,783c

Avg. words 13.3
(SD = 11.9)

14.8
(SD = 6.7)

13.3
(SD = 6.8)

13.6
(SD = 7.0)

Coded for Motives Moral norms Emotions Hate speech
Categories 7 10 6 3
Classification problem Multi-labeld Multi-labeld Multi-labeld Multi-classd

Data source (Norbutas et al., 2020) (Hoover et al., 2020) (Demszky et al., 2020) (Davidson et al., 2017)
Platform Online market Twitter Reddit Twitter

15 For example, if only one out of 100 texts should be coded for a 
certain category, a method not coding any texts for it would already 
achieve almost perfect accuracy of 0.99.
16 This measure is calculated by computing precision and recall 
across all categories and calculating the harmonic mean of the two. 
As such, it is less sensitive to poor performance on infrequently 
occurring categories. Micro-averaged F-score is equal to accuracy in 
applications where texts can belong to only one category at a time. 
In Figure D1 in Appendix D, we report several alternative measures.
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Table 3  Coding categories, category prevalence, and coder agreement per category

a  The % of texts coded for the least and most frequently occurring coding categories, respectively
b  The lowest and highest values, respectively, of Fleiss’ kappa/PABAK across the categories in the coding scheme

Dataset Coding categories % of texts coded for
(min–max)a

Fleiss’ kappa
(min–max)b

PABAK
(min–max)b

Feedback data Reach out to the seller, Share objective  
facts, Express feelings, Help the seller,  
Avoid harming the seller, Help other  
buyers, Reward or punish the seller

3.70–69.80 .25–.53 .42–.90

Election data Care, Harm, Fairness, Cheating, Loyalty, 
Betrayal, Authority, Subversion, Purity, 
Degradation, Non-moral

2.11–56.24 .18–.45 .73–91

Reddit data Anger, Disgust, Enjoyment, Fear, Sadness, 
Surprise

1.34–40.08 .27–.53 .54–.95

Hate speech data Hate speech, Offensive language, Neither 5.77–77.43 .55 .72

Graham et al., 2013). These data offer valuable insights into 
the moral backdrop of public discussions during the tumul-
tuous 2016 presidential elections. We refer to them as the 
“Election data”.

In the third application, we select a random sub-
set of 10,000 forum posts (from the original dataset of 
58,011 posts) from Reddit, a large social platform. These 
Reddit posts were manually coded for 27 different emotions 
by Demszky and colleagues (2020). For simplicity, we com-
pile these emotions into six general categories as per the 
Ekman universal emotions categorization (Ekman, 1992). 
We refer to this dataset as the “Reddit data”.

Our final application includes a set of 24,783 tweets 
coded for the presence of hate speech, offensive language, 
or neither of the two by Davidson and colleagues (2017). 
Unlike the previous three datasets, where each text could 
contain multiple categories at once (multi-label classifica-
tion), in this scheme, each text could only be coded for one 
of the three categories (multi-class classification). We refer 
to this dataset as the “Hate speech data”.

Results

Overall performance

Table 4 shows the performance of the best-performing vari-
ation in each method family against the human-coded ref-
erence on the holdout dataset. In Appendix D, we report 
alternative performance measures. In Appendix E, we report 
extensive results on the performance of different model vari-
ations. We discuss micro-averaged F-scores unless other-
wise noted. Table 4 shows that fine-tuned transformer mod-
els outperform RMDs, CMDs, and zero-shot classification. 
CMDs take second place in all applications but the Hate 

speech one, where they are outperformed by zero-shot clas-
sification. Depending on the dataset, RMDs can perform 
better or worse than some CMD variants, but they are always 
outperformed by the best-performing CMD.

While the zero-shot approach relying on the more recent 
GPT-4 model outperforms RMDs and its predecessor (GPT-
3.5-turbo) in most cases, its performance falls short of trans-
former models fine-tuned with manually coded data. Nota-
bly, GPT-4 performs worse than an extensively validated 
RMD on the Election data. While the performance of zero-
shot classification can potentially be improved by adjust-
ing the prompt or providing several examples (few-shot 
learning), this requires additional considerations regarding 
prompt design and example selection (Abdurahman et al., 
2023; Chae & Davidson, 2023; Liu et al., 2021). These 
findings underscore some of the constraints of using read-
ily available RMD resources and zero-shot classification 
methods when assessing certain internal states within short, 
informal texts from online platforms.

The subset accuracy scores in Table 4 indicate the per-
centage of texts for which all categories were correctly pre-
dicted, indicating how successful each method is in captur-
ing category co-occurrence. Fine-tuned transformer models 
fare much better than all other methods when it comes to 
accurately predicting co-occurrences within texts.

To provide an intuitive interpretation of the F-scores above, 
in Fig. 3 we show how the best-performing model from each 
family fares in terms of identifying true positives (matching 
manual coding for a category) and avoiding false positives 
(identifying texts not manually coded for that category). Tak-
ing Feedback data as an example, human coders indicated the 
presence of 561 coding categories across 400 texts in the hold-
out dataset (with some texts containing multiple categories at 
once). The best-performing SML model (RoBERTa) correctly 
identified 401 of these texts (true positives), but incorrectly 
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flagged 68 texts for categories they were not coded for by the 
human coders (false positives). Overall, we see that, while 
they can perform well in terms of identifying true positives 
(Election and Reddit data), RMDs flag many more false posi-
tives than CMDs and SMLs (except in Feedback data). Nota-
bly, the best zero-shot classification model similarly returns 
almost twice as many false as true positives on some datasets 
(e.g., Feedback and Election data). It is this proneness to false 
positives that lowers the performance of zero-shot approaches 
relative to fine-tuned transformers.

Step 2: Method choice

Dictionary methods In Fig. 4, we show the performance 
of different dictionary method variations. We report the 
performance on the holdout set for RMDs. To illustrate 
the performance variation of different CMD variants, we 
report the averages across the 10 cross-validation rounds. 
In Appendix F we discuss the overlaps between words in 
different dictionaries.

On Feedback and Hate speech datasets, we evaluated only 
one RMD, as we failed to find more resources fitting these 
coding schemes. For the former, we create a dictionary from 
several existing resources (including the Moral Foundations 
Dictionary 2.0, the LIWC, and the words we find relevant 
based on our framework and experience with the data, see 
Appendix B). For the latter, we use the HurtLex dictionary 
of offensive, aggressive, and hateful words in English, using 
the insults and misogyny categories for offensive language 
and immigrant and xenophobia categories for hate speech 
(Bassignana et al., 2018). On the Election dataset, we evaluate 
the Moral Foundations Dictionary 2.0. (Frimer et al., 2017) 

and the enhanced Moral Foundations Dictionary (Rezapour 
et al., 2019). Both dictionaries performed rather well, with 
the former approaching the best-performing CMD variations, 
and both RMDs outperforming the worst-performing CMD.

On Reddit data, we compare three RMDs that can identify 
emotions of interest as per the coding scheme: the NRC emo-
tion dictionary (Mohammad & Turney, 2013), the WordNet-
Affect dictionary (Strapparava & Valitutti, 2004), and the 
EmoSenticNet dictionary (Poria et al., 2013). The WordNet-
Affect and EmoSenticNet dictionaries performed similarly 
to some of the CMDs with a lower performance. EmoSen-
ticNet performed the best on this dataset, while the NRC 
lexicon performed the worst. Overall, CMDs delivered better 
performance than RMDs. There is no clear case of either the 
statistical significance (Dictionary 2: log-likelihood) or the 
effect size measure (Dictionary 3: %DIFF) performing better 
overall. Rather, we find that the performance varies with the 
dataset and the pre-processing combination. Additionally 
tuning word selection or classification thresholds could lead 
to further improvements in CMD performance.

What distinguishes RMDs that performed well from those 
that did not? We find that RMDs perform rather well if they 
were created with a similar (or identical) coding scheme in 
mind and extensively validated, as was the case with the dic-
tionaries created to capture Moral Foundation Theory catego-
ries across many domains. For instance, the Moral Founda-
tions Dictionary 2.0 included many words that we selected for 
our CMDs. On the Reddit dataset, the worst-performing NRC 
lexicon created from the Macquarie Thesaurus (Mohammad 
& Turney, 2013) included many words related to general emo-
tion expression, but lacked those characteristic of the infor-
mal online context. On the other hand, EmoSenticNet and 
WordNet-Affect were both built on a large lexical database 

Table 4  Best-performing methods within each text mining method family

All performances are reported on the holdout dataset, which is identical for each method
a  In the Hate speech dataset, different categories cannot co-occur in a single text, which is why micro-averaged score and accuracy take the same 
values and the subset accuracy is not calculated

Feedback data Election data
Family Method F-score Acc. Subset acc. Method F-score Acc. Subset acc.
RMD Dict. 1 .329 .800 .152 Dict. 1 .492 .875 .312
CMD Dict. 2 .537 .806 .260 Dict. 3 .477 .879 .298
SML RoBERTa .779 .919 .562 RoBERTa .696 .939 .550
Zero-shot GPT-4 .499 .666 .032 GPT-4 .409 .836 .227

Reddit data Hate speech dataa

Family Method F-score Acc. Subset acc. Method F-score Acc. Subset acc.
RMD Dict. 1 .369 .734 .195 Dict. 1 .611 .611 NA
CMD Dict. 3 .501 .837 .376 Dict. 3 .845 .845 NA
SML RoBERTa .690 .927 .626 RoBERTa .907 .907 NA
Zero-shot GPT-3.5 .492 .861 .386 GPT-4 .897 .897 NA



2792 Behavior Research Methods (2024) 56:2782–2803

of English (Miller, 1998) and, thus, included more words that 
appear in our dataset. While NRC includes words such as 
“whimsical” or “pleased” in relation to “joy,” the other two 
RMDs also feature “cool” and “awesome.” Additionally, our 
CMD included the internet-specific “lol,” which is likely to be 
particularly relevant when analyzing Reddit posts.

SML methods In Fig. 5, we show the performance of various 
SML model variations averaged across 10 cross-validations. 
Fine-tuned transformer models consistently outperform sim-
pler SML algorithms. Among the transformer models, RoB-
ERTa outperforms BERT and BERTweet. However, the dif-
ferences in performance between transformer models tend to 
be small (especially on the Reddit and Hate Speech datasets 
with larger training datasets).17

Simpler SML models lag behind fine-tuned transformers in 
all datasets, although the gap is rather small in the Hate Speech 

dataset. Among them, logistic regression and RF implementa-
tions perform the best. On the Election and the Hate speech 
data in particular, simpler SML algorithms approach the 
performance of the more complex transformer models. Yet, 
Fig. 6 plotting subset accuracy (the share of texts for which all 
coding categories were predicted correctly) shows that logis-
tic regression performs rather poorly in identifying category 
co-occurrences. The multi-label RF algorithm, designed with 
co-occurrences in mind, outperforms RF only on the Election 
dataset. In Figure E4 in Appendix E, we see that the Election 
data show a more complex category co-occurrence pattern 
than the other two datasets. Therefore, in applications where 
capturing co-occurrences correctly (e.g., knowing that a text 
expresses both joy and surprise) is crucial to the research ques-
tion, algorithms designed to model category interdependence 
should be considered as well.

Zero‑shot classification In Fig. 7, we show the performance 
of zero-shot classification. The newer GPT-4 model per-
formed better than its predecessor, the GPT-3.5-turbo, on 

Fig. 3  Comparison of model performance in identifying true positives and raising false positives

17 In Figure E6 in Appendix E, we discuss the effects of varying 
these parameters in more detail.
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all datasets except the Reddit dataset. On the Hate speech 
dataset, GPT-4 in particular performs on par with fine-tuned 
transformer models, suggesting that zero-shot classification 
can handle some tasks rather well. Providing GPT-4 with 
more thorough instructions akin to those in extensive coding 
schemes could potentially lead to further improvement in its 
performance (see Figure E9 in Appendix E).

Step 3: Data pre‑processing

Dictionary methods In Fig. 8, we show the performance of 
CMDs built on differently pre-processed data. On the whole, 
CMDs built on data with stop words removed tend to per-
form better, whereas the effect of lemmatization depends 
on the dataset. Overall, the performance of Dictionary 3 
(%DIFF measure) appears more robust to variations in pre-
processing combinations.18

SML methods In Fig. 9, we show the effects of data pre-
processing on SML performance (excluding the transformer 
models with dedicated preparation pipelines). The perfor-
mance of SML classification methods appears robust to dif-
ferent pre-processing combinations. While it does appear 
that lemmatization improves model performance in most 
cases, performance differences remain relatively small. In 
Appendix E, we discuss several additional pre-processing 

steps and alternative text representations and evaluate how 
they affect model performance.

Performance per coding category

We now briefly reflect on the performance of different meth-
ods in coding for individual categories. In Fig. 10, we show 
the performance of the best-performing method from each 
family in identifying true positives (panel B) and avoiding 
false positives (panel C) in each of the coding categories on 
the Feedback data (in Appendix G, we do the same for the 
Election and Reddit datasets). In panel A, we show the prev-
alence of each category (% of texts coded for its presence) 
and the value of Fleiss’ kappa (intercoder agreement). We 
see that the best-performing transformer SML model fails 
to identify infrequently occurring categories altogether (i.e., 
categories 1, 4, and 5). The literature advises researchers to 
lower the classification probability threshold for infrequently 
occurring categories (Zou et al., 2016). However, we did 
not see an improvement upon doing so with the RoBERTa 
model on Feedback data.

Intercoder agreement seems to correlate with the success 
of the SML transformer models in identifying categories to 
a lesser extent: for instance, while categories 3 and 4 have 
similar levels of agreement, the more frequent category 3 
presents less of a challenge for the SML algorithm (but see 
Wang et al., 2022). In particular, we see that our best-per-
forming CMD identifies true positives on these rare catego-
ries much better than the SML method, but does so at the 
risk of identifying (many) false positives. The best zero-shot 
model similarly identifies some infrequent categories better 

Fig. 4  Performance of different dictionary method variations across four datasets

18 However, as we show in Figures F6 and F7 in Appendix F, Dic-
tionary 3 is more sensitive to the choice of a particular word cutoff 
criterion for the %DIFF measure. We suggest that researchers explore 
different cutoff parameters and manually screen included words when 
implementing our CMD creation procedure with %DIFF.
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than the SML, but can also flag many false positives. If iden-
tifying infrequent categories is important, complementing 
SML models with CMDs might prove fruitful. Zero-shot 
models might also be useful for exploring infrequent catego-
ries, but as they are rather nontransparent in their decisions, 
CMDs might be a more tractable choice in many cases.

Conclusions and final remarks

The ability to analyze large quantities of textual data becomes 
increasingly relevant in a world where individuals generate 
millions of texts every day. These texts, written in natural set-
tings, are an excellent source for inference on individual-level 
processes. We hope our survey will help social and behavio-
ral scientists navigate the rapidly changing landscape of com-
putational text analysis methods and identify best practices 
for their particular case studies. We provide concise advice 
on selecting methods that can reliably extend manual coding 
for different internal states onto large amounts of text, and 
highlight those cases where commonly used resources (such 
as the pre-existing dictionaries) and new, increasingly popu-
lar approaches (such as zero-shot classification with GPT 
models) might do well or fall short of our expectations and 
needs. Below, we summarize the main conclusions of our 
survey and outline the trade-offs that should be considered 
by researchers who are working with these methods.

Which method family compares to human coding the 
best? We find that fine-tuned transformer models achieve 

the highest performance compared to the gold standard of 
human coding on all of our tasks. These findings confirm 
recent suggestions on their potential in social science appli-
cations (Bonikowski et al., 2022; Do et al., 2022; Torres & 
Cantú, 2022; van Atteveldt et al., 2021; Widmann & Wich, 
2022). While transformers outperform simpler supervised 
algorithms and bag-of-words representations, some simple 
models such as logistic regression can perform quite well, 
particularly on tasks where coding categories rarely co-occur 
across texts. Finally, although zero-shot classification meth-
ods we tested were very easy to use, they did not perform as 
well as fine-tuned transformers. While they were successful 
in correctly identifying many coding categories, they also 
tended to be very sensitive and flagged many categories that 
should not have been flagged according to human coders. 
Dictionary methods tended to perform well on some (infre-
quent) categories, but also produced many false positives, 
even if tailored to a specific dataset and coding task (as was 
the case with the CMDs we tested). 

Risks and benefits of using dictionary methods We show 
that ready-made dictionaries can perform relatively well. 
This is especially the case for extensively validated domain-
specific dictionaries that match the coding categories well. 
At the same time, our results highlight the need for caution 
when using ready-made dictionaries from a different domain 
to code short, informal texts for some internal states (Jaidka 
et al., 2020). Custom-made dictionaries derived from manu-
ally coded data tend to outperform the ready-made ones. The 
use of custom-made dictionaries provides researchers with 

Fig. 5  Performance of different SML method variations across four datasets
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Fig. 6  Performance of different SML method variations across four datasets: Subset accuracy

Fig. 7  Performance of different zero-shot classification models across four datasets
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transparency regarding coding decisions and proves particu-
larly useful when identifying rare categories in text. How-
ever, like ready-made dictionaries, they lack the sensitivity 
of more advanced methods and, as a result, return many 

false positives. It is, therefore, crucial to validate dictionary 
analyses either through manual checks or, as we did, against 
a systematic manual coding reference (Grimmer et al., 2022; 
Grimmer & Stewart, 2013). Beyond this, dictionaries can 

Fig. 8  Performance of CMDs built on differently pre-processed text

Fig. 9  Performance of SML models built on differently pre-processed text
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also be used to seek new texts of interest in unstructured 
textual data (Eads et al., 2021; King et al., 2017).

Risks and benefits of using zero‑shot classification Recent 
work has suggested that autoregressive generative large 
language transformer models (such as GPT) outperform 
some humans in coding quality (Gilardi et al., 2023; Törn-
berg, 2023) and show great potential for the classification 
of internal states in text (Rathje et al., 2023). Implementing 
zero-shot classification is much less technically demanding 
than transformer fine-tuning. Chat wrappers around some 
proprietary models (e.g., GPT-3.5-turbo and GPT-4) provide 

an easy way to communicate with the model in natural lan-
guage, making the process even easier. Unlike open-source 
transformer models (such as BERT or RoBERTa), the use of 
these proprietary models is not free. However, if proprietary 
models excel in zero-shot classification, they have the poten-
tial to reduce the need for manual coding of hundreds or 
thousands of texts, thereby lowering the costs of reliable text 
analysis in the long term. We find, however, that zero-shot 
classification delivered lower performance and a stronger 
tendency for flagging false positives than fine-tuned autoen-
coding transformer models like RoBERTa. Recent studies 
suggest that adjusting prompting strategies or providing 

Fig. 10  Performance per coding category: Feedback data
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several high-quality examples can improve the classifica-
tion performance of generative models (Abdurahman et al., 
2023). Similarly, recent work suggests that fine-tuning the 
new generation of autoregressive generative models (such as 
GPT) calls for less manually coded data relative to models 
such as RoBERTa (Chae & Davidson, 2023).

We did find that zero-shot classification with recent GPT 
models delivered good performance when it came to detect-
ing hate speech in tweets and identifying certain emotions 
in Reddit posts. In line with some recent work, this sug-
gests that these models might be appropriate for certain 
tasks (Abdurahman et al., 2023; Rathje et al., 2023; Ziems 
et al., 2023). Still, on other tasks, the results of zero-shot 
classification with generative models need to be extensively 
validated (Kocoń et al., 2023; Ollion et al., 2023; Pangakis 
et al., 2023). Whereas we are optimistic and very excited 
about these new possibilities, given the current knowledge, 
we recommend using zero-shot classification with caution 
and validating the results against a reliable reference (Kris-
tensen-McLachlan et al., 2023; Pangakis et al., 2023; Ziems 
et al., 2023).

Some issues, however, remain, particularly when using 
proprietary models for scientific research (Ollion et al., 
2024). OpenAI, the company behind the GPT models, 
does not currently provide information on the full data 
used to train the latest models (Liesenfeld et al., 2023), 
nor does it enable their fine-tuning. Researchers can-
not access the internal architecture of such proprietary 
models, which further limits our understanding of their 
capabilities and classification decisions. Additionally, 
specific versions of GPT models are quickly deprecated 
(usually within a year of their release), creating chal-
lenges for reproducibility. Recent research suggests 
using open-source alternatives such as Meta’s LLaMA, 
Stanford Alpaca, Mistral, or BLOOM (Gao et al., 2023; 
Spirling, 2023; Touvron et al., 2023; Zheng et al., 2023) 
and only relying on proprietary models if the benefits of 
doing so are clear (Palmer et al., 2023).

Complexity‑performance trade‑offs While researchers 
can begin to unravel the coding decisions of fine-tuned 
transformer models using specialized tools (Kokhlikyan 
et al., 2020; Lundberg & Lee, 2017), this is more challeng-
ing than understanding the decisions of dictionaries and 
simpler supervised machine learning methods. In addition, 
transformer models have other shortcomings, including 
performance variability (Mosbach et al., 2021) and reli-
ance on “shallow” shortcuts for classification (Merchant 
et al., 2020). In some of our applications, the use of trans-
former models leads to relatively small improvements in 
performance compared to simpler methods. Moreover, 
despite their complexity, supervised models, in general, 
struggled to identify infrequently occurring categories. 

Our results suggest that simple custom-made dictionaries 
fare better on this task and could be used to supplement 
more complex methods in some cases.

Working with complex coding schemes Overall, we find 
that transformer classification models can tackle coding 
schemes of varying complexity well. In line with some 
recent research, we do find that it can be beneficial to use 
supervised machine learning models designed for category 
co-occurrence when working with particularly complex cod-
ing schemes (Erlich et al., 2022). Other methods, including 
dictionaries, logistic regression, and even zero-shot classi-
fication, tend to capture co-occurrence patterns less well.

What is the best way to prepare textual data? We find that 
stop word removal improved the performance of custom-
made dictionaries, but lemmatization seemed to matter 
to a lesser extent. Text preparation when using “bag-of-
words” representations with supervised machine learning 
models appeared to have a rather modest effect on model 
performance. Finally, we did not see any improvement upon 
using fine-tuned transformer models with pre-processing 
pipelines designed for short social media texts in particular 
(BERTweet). Our results, thus, echo the notion that there 
is no universally “best” approach to text pre-processing 
(Denny & Spirling, 2018), but also suggest that method 
choice matters more than specific pre-processing decisions 
taken when working with a particular method.

Before concluding, we emphasize that it is crucial to 
bear in mind the limitations of measuring concepts in text 
more generally. Although there is evidence that internal 
experiences are reflected in language use (Boyd & Pen-
nebaker, 2017; Tausczik & Pennebaker, 2010) and can be 
recovered by external observers (Koutsoumpis et al., 2022), 
there are still important factors to consider. First, not all 
internal states appear to be equally observable in text (Ken-
nedy et al., 2021). Second, it is still an open question to 
what extent manual coding for internal states accurately 
captures the intentions of the author, rather than manual 
coders’ subjective perceptions (Boyd & Schwartz, 2021; 
Kennedy et al., 2022; Koutsoumpis et al., 2022; Vazire, 
2010). There is still a need for extensive validation of the 
concepts extracted from text by manual coders against 
alternative measures including self-reports, observer 
reports, physical states, and actual behaviors (Amador 
Diaz Lopez et al., 2017; Bleidorn & Hopwood, 2019; Boyd 
& Schwartz, 2021; Kennedy et al., 2021; Lykousas et al., 
2019; Malko et al., 2021; Matsuo et al., 2019; Troiano 
et al., 2019; Vine et al., 2020). Finally, existing methods for 
measurement in text usually involve substantial simplifica-
tion. For instance, nuanced internal states are often reduced 
to binary indicators (e.g., whether the emotion of joy is 
present in the text or not). While such reductions facilitate 
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our analyses (including those relying on text mining), they 
can dispose of important details about the intensity with 
which individuals perceive and communicate their internal 
experiences.

Bearing these limitations in mind, we demonstrate how 
manual coding of internal states can be reliably extended 
across many texts using different text mining methods. 
While we examined method families separately for sim-
plicity and clarity, researchers can also effectively combine 
them. For example, dictionaries can be enhanced with the 
help of distributed representations (Di Natale & Garcia, 
2023; Garten et al., 2018; Mpouli et al., 2020), and dic-
tionary outputs can serve as input for supervised machine 
learning methods (Farnadi et al., 2021). We consider text 
mining methods as valuable tools that can augment our 
analytical capabilities, but are prone to replicating the 
shortcomings of our research procedures (Grimmer et al., 
2022). Therefore, it is important to rely on text-based 
measures that are rooted in theory and substantive knowl-
edge about the concepts of interest (Grimmer et al., 2022; 
Kennedy et al., 2022), evolve through engagement with 
textual data (Lazer et al., 2021; Nelson, 2017), and are 
built with consideration of potential structural biases inher-
ent in our data and computational methods (Bonikowski & 
Nelson, 2022).

Big textual data come with their own limitations for 
applications in social and behavioral sciences (Boyd & 
Schwartz, 2021; Kern et  al., 2016; Lazer et  al., 2021; 
Macanovic, 2022). Therefore, it could be beneficial to sup-
plement them with questionnaire, census, or experimental 
data (Boyd & Schwartz, 2021; Salganik, 2017; van Loon 
et al., 2020). Finally, as we have done in this survey, it is 
crucial to conduct transparent and reproducible text min-
ing analyses (Nelson, 2019) and validate model perfor-
mance against a reliable (human) reference (Bonikowski & 
Nelson, 2022; Grimmer et al., 2022; Grimmer & Stewart, 
2013; van Atteveldt et al., 2021). We conclude by reiterat-
ing the advice of Grimmer and colleagues (2021): despite 
the abundance of data and computational tools, we should 
not disregard the valuable lessons learned working with 
scarce data by prioritizing theory, sound research design, 
and good implementation.
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