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Twin semigroups and delay equations

O. Diekmann and S.M. Verduyn Lunel

Dedicated, with considerable but finite delay, to John Mallet-Paret
on the occasion of his sixtieth birthday

Abstract

In the standard theory of delay equations, the fundamental solution does

not ‘live’ in the state space. To eliminate this age-old anomaly, we enlarge

the state space. As a consequence, we lose the strong continuity of the so-

lution operators and this, in turn, has as a consequence that the Riemann

integral no longer suffices for giving meaning to the variation-of-constants

formula. To compensate, we develop the Stieltjes-Pettis integral in the

setting of a norming dual pair of spaces. Part I provides general theory,

Part II deals with “retarded” equations, and in Part III we show how

the Stieltjes integral enables incorporation of unbounded perturbations

corresponding to neutral delay equations.

1 Introduction

A delay equation is a rule for extending a function of time towards the future
on the basis of the (assumed to be) known past. The shift along the extended
function (i.e., the introduction of current-time-specific past) defines a dynamical
system. Delay equations come in two kinds: delay differential equations (DDE)
[12, 24] and renewal equations (RE) [13, 14, 15].

From a PDE oriented semigroup perspective, delay equations are eccentric:
one first constructively defines the semigroup and only then determines the
generator, in order to relate to an abstract ODE. Subsequently the development
of the qualitative theory can, in principle, follow the well-established path of
ODE theory, with the variation-of-constants formula as the key instrument to
relate solution operators corresponding to (slightly) different rules for extension
to each other. Concerning the function space that serves as the state space, this
entails two requirements

– the semigroup of operators defined by shifting along the extended function
should be strongly continuous, in order to employ the Riemann integral
when giving precise meaning to the variation-of-constants formula;

– to represent the rule for extension, one should be able to define the value
in the point of extension and to change it without changing the value in
nearby points.

(Incidentally, the so-called fundamental solution has as initial condition the
function that is trivial, except in the point of extension where it equals one.)
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Unfortunately, the obvious candidate function spaces satisfy one of these
requirements, but not both. The standard approach is to sacrifice the second
requirement and to make amends in one way or another. In [12] and [15] one
starts with the simplest rule for extension and a Banach space X on which the
semigroup is strongly continuous. The representation of the rule for extension is
facilitated by embedding the ’small’ space X into a ’big’ space X⊙∗, obtained as
the dual of the subspace X⊙ of X∗ on which the adjoint semigroup of operators
is strongly continuous. Perturbations are bounded maps from X into X⊙∗ and
the integral is now a weak-star Riemann integral taking values in X⊙∗. Since
one can show that the values belong to the image of X under the embedding,
they can be re-interpreted as elements of X .

The framework of the four spacesX , X∗, X⊙, X⊙∗ is stable under perturba-
tions at the generator level that are described by bounded maps from X to X⊙∗.
Thus sun-star calculus yields a satisfactory theory for semilinear problems (see
[36, 37] for an alternative approach using integrated semigroups).

As far as we know, this paper is the first attempt to develop the qualitative
theory when, instead of the second, we sacrifice the first requirement. Our way
of making amends is to define the integral in Gelfand-Pettis spirit.

Note on terminology: In the context of delay equations we call a space of func-
tions of one real variable (time) “small” if translation along an (extended) el-
ement is continuous and “big” if it is not. So the spaces of continuous func-
tions C

(
[−1, 0],Rn

)
and integrable functions L1

(
[−1, 0],Rn

)
are small, while

the spaces of bounded Borel measurable functions B
(
[−1, 0],Rn

)
and bounded

variation functions NBV
(
[−1, 0],Rn

)
are big.

The aim of the present paper is to establish the variation-of-constants for-
mula for a semigroup of linear operators {S(t)} on a big state space Y that
accommodates the fundamental solution. The motivation has four components:

– We anticipate that such a formula should hold; indeed, an integrated
version was verified in [12, Theorem III.2.16], so it seems merely a matter
of making sense of the integral.

– Strong continuity is a blessing, but the need to have it can be a curse;
already in 1953 Feller emphasized that measurability and integrability of
(in matrix inspired notation) t 7→ y∗S(t)y, for y belonging to Y and for a
sufficiently rich collection of y∗ in the dual space Y ∗, might be a natural
starting point for defining integrals [18]; more recently Kunze [32], building
on Feller’s ideas, emphasized that it is natural to work with a norming
dual pair of spaces, see the beginning of Section 2 below, such as B(E),
the space of all bounded measurable function on a measurable space E and
M(E), the space of all bounded measures on E, in the theory of Markov
processes; in delay equations the Markov process is trivial (just aging),
but numbers change; can one incorporate the change of numbers via the
variation-of-constants formula?

– For Renewal Equations corresponding to population models, the space
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NBV of normalized functions of bounded variation is a very natural state
space (see [19, Chapter XI]) with jumps capturing cohorts, cf. [27].

– This is a first step towards covering neutral delay equations in Part III.
Neutral delay equations correspond to unbounded (actually relatively
bounded) maps from X to X⊙∗ and as a consequence the spaces X⊙ and
X⊙∗ depend on the particular perturbation; this undermines the strength
(and beauty) of sun-star calculus.

We shall heavily exploit that the extension can be defined in terms of
the solution of a finite dimensional renewal equation, for which the powerful
(Lebesgue) integration theory of real valued functions provides a wealth of re-
sults. In other words, we exploit that the rule for extension is represented by an
operator with finite dimensional range (so abstract delay equations are not (yet)
included). But the variation-of-constants formula itself involves an abstract in-
tegral. To define it, we fine-tune the Pettis integral developed by Kunze [32] in
the context of a norming dual pair of spaces.

In Sections 2–4 we introduce twin semigroups defined on a norming dual pair
of spaces and we show how Retarded Functional Differential Equations (RFDE),
with the space of bounded measurable functions as the state space, fit into this
framework. In the second part, Sections 5–7, we deal with bounded finite rank
perturbations of twin semigroups and show that the theory covers both RFDE
and Renewal Equations (RE) with “smooth” kernels. In the third and final
part we turn to relatively bounded (but still finite rank) perturbations. We use
“cumulative output” [11] and the Stieltjes integral to extend our approach to
cover Neutral Functional Differential Equations (NFDE) and RE with bounded
variation kernels.

Part I: Twin semigroups

2 Twin semigroups on a norming dual pair

Conceptually, the linear space Y is the state space for the dynamical systems
that we want to study and the linear space Y ⋄ is an auxiliary space that helps us
to perform such studies. But this difference in role is more or less hidden in the
linear situation considered in this paper (it will clearly manifest itself in follow-
up work on nonlinear problems that we plan to do). A related remark is that
our formulation employs the field R of real numbers, even though conceptually
there is no difference with vector spaces over the field C of complex numbers
(also see the beginning of Section 5).

Two Banach spaces Y and Y ⋄ are called a norming dual pair (cf. [32]) if a
bilinear map

〈 · , · 〉 : Y ⋄ × Y → R
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exists such that, for some M ∈ [1,∞),

|〈y⋄, y〉| ≤M‖y⋄‖‖y‖

and, moreover,

‖y‖ = sup
{
|〈y⋄, y〉| | y⋄ ∈ Y ⋄, ‖y⋄‖ ≤ 1

}

‖y⋄‖ = sup
{
|〈y⋄, y〉| | y ∈ Y, ‖y‖ ≤ 1

}
.

So we can consider Y as a closed subspace of Y ⋄∗ and Y ⋄ as a closed subspace of
Y ∗ and both subspaces are necessarily weak∗ dense since they separate points.
The collection of linear functionals Y ⋄ defines a weak topology on Y , denoted by
σ(Y, Y ⋄). The corresponding locally convex topological vector space is denoted
by

(
Y, σ(Y, Y ⋄)

)
. While we denote the dual space of a Banach space Z by

adding a star, so by Z∗, we shall denote the dual space of such topological
vector spaces by adding an acute accent. A crucial point is that the dual space(
Y, σ(Y, Y ⋄)

)′
is (isometrically isomorphic to) Y ⋄ [41, Theorem 3.10]. So if a

linear functional on Y is continuous with respect to the topology induced by
Y ⋄, it can be (uniquely) represented by an element of Y ⋄. And please note the
symmetry: in the last five sentences one can replace Y and Y ⋄ by Y ⋄ and Y !

A twin operator L on a norming dual pair (Y, Y ⋄) is a bounded bilinear map
from Y ⋄ × Y to R that defines both a bounded linear map from Y to Y and a
bounded linear map from Y ⋄ to Y ⋄. More precisely,

L : Y ⋄ × Y → R (y⋄, y) 7→ y⋄Ly

is such that

(i) for some C > 0 the inequality

|y⋄Ly| ≤ C‖y⋄‖ ‖y‖ (2.1)

holds for all y ∈ Y and y⋄ ∈ Y ⋄;

(ii) for given y ∈ Y the map y⋄ 7→ y⋄Ly is continuous as a map from(
Y ⋄, σ(Y ⋄, Y )

)
to R and hence there exists Ly ∈ Y such that

〈y⋄, Ly〉 = y⋄Ly (2.2)

for all y⋄ ∈ Y ⋄;

(iii) for given y⋄ ∈ Y ⋄ the map y 7→ y⋄Ly is continuous as a map from(
Y, σ(Y, Y ⋄)

)
to R and hence there exists y⋄L ∈ Y ⋄ such that

〈y⋄L, y〉 = y⋄Ly (2.3)

for all y ∈ Y .
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So all three maps are denoted by the symbol L, but to indicate on which space
L acts we write, inspired by [18] which, in turn, is inspired by matrix notation,
either y⋄Ly, Ly or y⋄L. As a concrete example, consider the identity operator.
It maps (y⋄, y) to 〈y⋄, y〉, y to y and y⋄ to y⋄.

If our starting point is a bounded linear operator L : Y → Y then there
exists an associated twin operator if and only if the adjoint of L leaves the
embedding of Y ⋄ into Y ∗ invariant. We express this in words by saying that
L extends to a twin operator. Likewise, if our starting point is an operator
L : Y ⋄ → Y ⋄ then L extends to a twin operator if and only if the adjoint of L
leaves the embedding of Y into Y ⋄∗ invariant. So a twin operator on a norming
dual pair is reminiscent of the combination of a bounded linear operator on a
reflexive Banach space and its adjoint, whence the adjective “twin”.

The composition of bounded bilinear maps is, in general, not defined. But
for twin operators it is! Indeed, if L1 and L2 are both twin operators on the
norming dual pair (Y, Y ⋄), we define the composition L1L2 by

y⋄L1L2y := 〈y⋄L1, L2y〉. (2.4)

Note that this definition entails that L1L2 acts on Y by first applying L2 and
next L1, whereas L1L2 acts on Y ⋄ by first applying L1 and next L2.

Definition 2.1 A family {S(t)}t≥0 of twin operators on a norming dual pair
(Y, Y ⋄) is called a twin semigroup if

i) S(0) = I, and S(t+ s) = S(t)S(s) for t, s ≥ 0;

ii) there exist constants M ≥ 1 and ω ∈ R such that

|y⋄S(t)y| ≤Meωt‖y‖‖ y⋄‖;

iii) for all y ∈ Y , y⋄ ∈ Y ⋄ the function

t 7→ y⋄S(t)y

is measurable;

iv) for Reλ > ω (with ω as introduced in ii)) there exists a twin operator S(λ)
such that

y⋄S(λ)y =

∫ ∞

0

e−λty⋄S(t)y dt. (2.5)

Note that the combination of ii) and iii) allows us to conclude that the right
hand side of (2.5) defines a bounded bilinear map, but not that it defines a twin
operator. Hence iv) is indeed an additional assumption.

We call S(λ) defined on {λ | Reλ > ω} the Laplace transform of {S(t)}.
It actually suffices to assume that the assertion of iv) holds for λ = λ0 with
Reλ0 > ω. This assumption allows us to introduce the multi-valued operator

C = λ0I − S(λ0)
−1 (2.6)
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on Y and next define the function λ 7→ S(λ) by

S(λ) = (λI − C)−1 (2.7)

on an open neighbourhood of λ0. As Proposition A.2.3 of [22] shows, the func-
tion R is holomorphic with Taylor series given by

S(λ) =

∞∑

k=0

(µ− λ)kS(µ)k+1

and the resolvent identity

S(λ) − S(µ) = (µ− λ)S(λ)S(µ)

holds. In Proposition 5.2 of [32] these facts are used to prove that

Ω0 :=
{
λ | S(λ) is a twin operator and (2.5) holds

}

contains the half plane {λ | Reλ > ω}.
In Definition 2.6 of [31] Kunze calls C the generator of the semigroup pro-

vided the Laplace transform is injective and hence C is single-valued. Here we
adopt a more pliant position and call C the generator even when it is multi-
valued. Note that we might equally well call the operator C⋄, defined on Y ⋄ as
the inverse of the Laplace transform, but now considered as an operator map-
ping Y ⋄ into Y ⋄, the generator. As long as one realises that the two have the
same twin operator as their resolvent, this cannot lead to confusion. By com-
bining [31, Prop. 2.7] and [32, Thm. 5.4] one obtains that the twin semigroup
is uniquely determined by the generator if both C and C⋄ are single-valued.

Focusing on {S(t)}t≥0 as a semigroup of bounded linear operators on Y, we
now list some basic results from [32]. For completeness we provide proofs, even
though these are, in essence, copied from [32].

Lemma 2.2 The following statements are equivalent

1. y ∈ D
(
C
)
and z ∈ Cy;

2. there exist λ ∈ C with Reλ > ω and ω as introduced in ii) and y, z ∈ Y
such that

y = S(λ)(λy − z) (2.8)

3. y, z ∈ Y and for all t > 0

∫ t

0

S(τ)z dτ = S(t)y − y. (2.9)

Here it should be noted that item 3. includes the assertions

– the integral
∫ t

0 S(τ)z dτ defines an element of Y (even though at first it
only defines an element of Y ⋄∗);
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– the integral
∫ t

0
S(τ)z dτ does not depend on the choice of z ∈ Cy in case

C is multi-valued.

Proof. The observation y ∈ D
(
C
)
if and only if y = S(λ)ỹ and in that case

(λI − C)y = ỹ, establishes the equivalence of the items 1. and 2.
The integrals below derive their meaning by pairing the integrand with ar-

bitrary y⋄ ∈ Y ⋄. But in order to enhance readability, we do not actually write
these pairings. Let Reλ > ω. The identity

∫ t

0

e−λτS(τ)y dτ = S(λ)
(
y − e−λtS(t)y

)
(2.10)

follows straightforwardly by considering
∫ t

0 =
∫∞

0 −
∫∞

t
and next shifting the

integration variable in the second integral over t. If we multiply (2.10) by λ,
assume that 2. holds, and use (2.8) to rewrite λR(λ)y, we obtain

λ

∫ t

0

e−λτS(τ)y dτ = y + S(λ)
(
z − λe−λtS(t)y

)
.

Next use (2.10) with y replaced by z, as well as the fact that S(t) and S(λ)
commute, to arrive at

λ

∫ t

0

e−λτS(τ)y dτ = y +

∫ t

0

e−λτS(τ)z dτ − e−λtS(t)S(λ)(λy − z)

or, on account of (2.8)

λ

∫ t

0

e−λτS(τ)y dτ = y +

∫ t

0

e−λτS(τ)z dτ − e−λtS(t)y. (2.11)

The identity (2.11) does not involve any improper integral, so we can extend by
analytic continuation and, in particular, take λ = 0. This yields (2.9). Thus we
have proved that 2. implies 3.

Finally, assume that 3. holds. Then

λS(λ)y − y =

∫ ∞

0

λe−λτ
(
S(τ)y − y

)
dτ

=

∫ ∞

0

λe−λτ

∫ τ

0

S(σ)z dσ dτ

=

∫ ∞

0

∫ ∞

σ

λe−λτ dτ S(σ)z dσ

=

∫ ∞

0

e−λσS(σ)z dσ = S(λ)z

which amounts to (2.8) ⊔⊓

Lemma 2.3 For all t > 0 and y ∈ Y , we have
∫ t

0 S(τ)y dτ ∈ D
(
C
)
and

S(t)y − y ∈ C

∫ t

0

S(τ)y dτ. (2.12)
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Proof. Again we omit the pairing with y⋄. Yet, we keep in mind that the
integrals define elements in Y ⋄∗ for which we subsequently check that they are
represented by elements in Y . Since y ∈ (λI − C)S(λ)y we have

∫ t

0

S(τ)y dτ ∈

∫ t

0

S(τ)(λI − C)S(λ)y dτ

and
∫ t

0

S(τ)(λI − C)S(λ)y dτ = λ

∫ t

0

S(τ)S(λ)y dτ −

∫ t

0

S(τ)CS(λ)y dτ

= λ

∫ t

0

S(τ)S(λ)y dτ − S(t)S(λ)y + S(λ)y,

where we have used (2.9). Note that the right hand side is single valued. We
claim that the right hand side belongs to Y . This is clear for the last two terms.
Concerning the first, observe that (2.9) implies that t 7→ S(t)y is continuous if

y ∈ D
(
C
)
. Hence we can interpret the integral

∫ t

0 S(τ)S(λ)y dτ as a Bochner
integral of a continuous Y -valued function.

Since S(τ)S(λ) = S(λ)S(τ) and S(λ) is a twin operator we have

∫ t

0

S(τ)S(λ)y dτ = S(λ)

∫ t

0

S(τ)y dτ.

So the identity above can be written in the form

∫ t

0

S(τ)y dτ = S(λ)
(
λ

∫ t

0

S(τ)y dτ + y − S(t)y
)
.

Comparing this to (2.8) we conclude that
∫ t

0 S(τ)y dτ ∈ D
(
C
)
and that (2.12)

holds. ⊔⊓

In the proof of Lemma 2.3 we used the assumption that S(λ) is a twin
operator (cf. Definition 2.1, iv) to prove that the same is true for local integrals
of the orbit t 7→ S(t)y for arbitrary y ∈ Y . In Theorem 5.8 of [32] Kunze proves
that these two properties are equivalent.

In order to obtain information about the asymptotic behaviour of the twin
semigroup S(t), we adapt a result for strongly continuous semigroups from [2].
It was observed by Batty in [4] that in case σ(C)∩ iR = ∅, the asymptotic
behaviour actually follows from Korevaar’s proof of the Ingham theorem [33].
Here we adapt this argument from [4] to the case of twin semigroups.

Theorem 2.4 Let S(t) be a twin semigroup on a norming dual pair (Y, Y ⋄)
and assume that S(t) is bounded. If σ(C)∩ iR = ∅, then

‖S(t)C−1‖ → 0 as t→ ∞. (2.13)

As a consequence we have that S(t)y → 0 as t → ∞ for every y in the norm-
closure of D

(
C
)
.
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Proof. Let ΓR := {z ∈ C | |z| = R} and Γ−
R and Γ+

R denote the part of ΓR in
the, respectively, left and right closed half plane of C. Define Γ0 to be a path
in the intersection of ρ(C) and the open left half plane connecting iR and −iR
such that the closed contour Γ given by the union of Γ+

R and Γ0 does not encircle
any pole of (zI − C)−1.

From Cauchy’s Residue Theorem it follows that we can write

y⋄S(t)C−1y = −
1

2πi

∫

Γ

(
1 +

z2

R2

)
y⋄(zI − C)−1S(t)y

dz

z
, (2.14)

where the factor
(
1 + z2

R2

)
is chosen because for z ∈ ΓR the identity

∣∣1 + z2

R2

∣∣ = 2
∣∣Re z

∣∣
R

(2.15)

holds. Fix t ≥ 0 and observe that from the identity (2.10) we have for Re z ≥ 0

ezt
∫ t

0

e−zτy⋄S(τ)y dτ = y⋄(zI − C)−1
(
ezty − S(t)y

)
. (2.16)

Define the entire function gt : C → Y by

gt(z) :=

∫ t

0

e−zτS(τ)y dτ

and use (2.16) to deduce the identity

1

2πi

∫

Γ0

(
1 +

z2

R2

)
y⋄(zI − C)−1S(t)y

dz

z

=
1

2πi

∫

Γ0

(
1 +

z2

R2

)
ezty⋄(zI − C)−1y

dz

z

−
1

2πi

∫

Γ−

R

(
1 +

z2

R2

)
ezty⋄gt(z)

dz

z
. (2.17)

Since along Γ0 we have Re z < 0, it follows from the dominated convergence
theorem that the first integral on the right hand side of (2.17) tends to zero as
t→ ∞.

Using the fact that |y⋄S(t)y| ≤M‖y⋄‖ ‖y‖, we have for z ∈ Γ−
R,

∣∣ezty⋄gt(z)
∣∣ =

∣∣
∫ t

0

ez(t−τ)y⋄S(τ)y dτ
∣∣ ≤ M∣∣Re z

∣∣‖y
⋄‖ ‖y‖.

Similarly, for z ∈ Γ+
R

∣∣y⋄(zI − C)−1S(t)y
∣∣ =

∣∣
∫ ∞

0

e−zτy⋄S(t+ τ)y dτ
∣∣ ≤ M

Re z
‖y⋄‖ ‖y‖,

9



From the property (2.15) it follows that both the integral over Γ−
R in (2.17) and

the integral over Γ+
R in (2.14) are bounded. Using these estimates in combination

with the identities (2.14) and (2.17) yields

lim sup
t→∞

∣∣y⋄S(t)C−1y
∣∣ ≤ 2M

R
‖y⋄‖ ‖y‖. (2.18)

By letting R → ∞, we conclude (2.13).
Since C−1 has dense range in the norm-closure of D

(
C
)
, the final observation

follows from (2.13) and the fact that S(t) is bounded. ⊔⊓

In this paper we will see that our perturbation results are well suited to
verify the conditions of Theorem 2.4 in terms of the given data.

3 The subspace of strong continuity

We define the subspace X of Y by

X :=
{
y ∈ Y | t 7→ S(t)y is continuous

}
(3.1)

and note, first of all, that the semigroup property of {S(t)}t≥0 yields as an
equivalent characterization

X :=
{
y ∈ Y | lim

t↓0
‖S(t)y − y‖ = 0

}
. (3.2)

As S(t) maps X into X , the restriction

T (t) = S(t)
∣∣
X

(3.3)

defines a strongly continuous semigroup {T (t)}t≥0 on the Banach space X (X
is norm-closed in Y , see Theorem 3.1).

The main results of this section are the following theorems.

Theorem 3.1 The subspace X of strong continuity equals the norm closure of
D
(
C
)

X = D
(
C
)
.

Theorem 3.2 The generator A of the strongly continuous semigroup {T (t)}t≥0

on X is the part of C in X.

It should be noted here that, as we shall prove below, the generator A is
single-valued even if C is a multi-valued map.

In order to prove Theorems 3.1 and 3.2 we first provide an auxiliary result
that is of independent interest, cf. [8].
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Lemma 3.3 If y ∈ D
(
C
)
then

lim sup
h↓0

1

h
‖S(h)y − y‖ <∞.

Proof. By Lemma 2.2 we have for z ∈ Cy the identity

1

h

(
y⋄S(h)y − 〈y⋄, y〉

)
=

1

h

∫ h

0

y⋄S(τ)z dτ

and consequently

1

h

∣∣y⋄S(h)y − 〈y⋄, y〉
∣∣ ≤ 1

h

∫ h

0

Meωτ‖y⋄‖‖z‖ dτ

=M
eωh − 1

ωh
‖y⋄‖‖z‖.

It follows that
1

h
‖S(h)y − y‖ ≤M

eωh − 1

ωh
‖z‖

and so

lim sup
h↓0

1

h
‖S(h)y − y‖ ≤M‖z‖.

⊔⊓

Corollary 3.4 The domain of the generator C of the semigroup {S(t)}t≥0 sat-
isfies

D
(
C
)
⊂ X.

Lemma 3.5 For X defined by (3.1) we have

X ⊂ D
(
C
)
.

Proof. For arbitrary y ∈ Y

∥∥1
t

∫ t

0

S(τ)y dτ − y
∥∥ = sup

‖y⋄‖≤1

∣∣1
t

∫ t

0

(
y⋄S(τ)y − 〈y⋄, y〉

)
dτ

∣∣

≤
1

t

∫ t

0

‖S(τ)y − y‖ dτ.

If y ∈ X , then the integrand at the right hand side is a continuous function of
τ vanishing at τ = 0. It follows that in that case the right hand side converges
to zero for t ↓ 0. Since ∫ t

0

S(τ)y dτ ∈ D
(
C
)
,

cf. Lemma 2.3, we conclude that in any ǫ-neighbourhood of y ∈ X , there is
an element of D

(
C
)
. ⊔⊓
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By combining Corollary 3.4 and Lemma 3.5 we obtain a proof of Theorem
3.1. Note that the semigroups {S(t)}t≥0 and {T (t)}t≥0 are intertwined in the
sense that

S(t)y ∈ (λI − C)T (t)S(λ)y. (3.4)

Remark 3.6 It is unclear whether the converse of Lemma 3.3 holds:

lim sup
h↓0

1

h
‖S(h)y − y‖ <∞ =⇒ y ∈ D

(
C
)
?

In the rather special case that i) Y = Y ⋄∗ and ii) {S(t)}t≥0 as a semigroup of
bounded linear operators on Y ⋄ is strongly continuous, this does hold, see e.g.
Theorem 3.19 in Appendix II of [12].

Proof of Theorem 3.2. If y ∈ D
(
C
)
and z ∈ Cy ∩X then, by Lemma 2.2,

T (t)y − y =

∫ t

0

T (τ)z dτ

and it follows that t−1(T (t)y − y) → z for t ↓ 0. In particular this shows that
Cy ∩X is, when non-empty, a singleton. Moreover, Ay ∈ Cy.

Now assume that y ∈ D
(
A
)
and Ay = z ∈ X . Then

T (t)y − y =

∫ t

0

T (τ)z dτ

and we conclude from Lemma 2.2 that y ∈ D
(
C
)
and z ∈ Cy. ⊔⊓

Note on notation: the analogue of X at the ⋄ side we shall denote by X⊙.
So in this paper

X⊙ :=
{
y⋄ ∈ Y ⋄ | lim

t↓0
‖y⋄S(t)− y⋄‖ = 0

}
. (3.5)
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4 RFDE – Retarded Functional Differential

Equations

We adopt the standard notation xt(θ) = x(t + θ) and the only slightly less
standard notation

〈ζ, ϕ〉 :=

∫

[0,1]

dζ(σ)ϕ(−σ)

for ζ ∈ NBV
(
[0, 1],Rn×n

)
and ϕ ∈ B

(
[−1, 0],Rn

)
. An equation of the form

ẋ(t) = 〈ζ, xt〉 =

∫

[0,1]

dζ(σ)x(t − σ) (4.1)

is called a RFDE. If we pose an initial value problem, we require (4.1) to hold
for t ≥ 0 and supplement the equation by the initial condition

x(θ) = ϕ(θ), −1 ≤ θ ≤ 0, (4.2)

for a given function ϕ. The standard theory assumes that ϕ ∈ X with X =
C
(
[−1, 0],Rn

)
, but here we allow

ϕ ∈ Y = B
(
[−1, 0],Rn

)
. (4.3)

Concerning the given kernel ζ we assume that for i = 1, . . . , n

ζi ∈ Y ⋄ = NBV
(
[0, 1],Rn

)
, (4.4)

where ζi is the i-th row of the matrix ζ.
In Appendix B, it is shown that Y and Y ⋄ given by (4.3) and (4.4) form a

norming dual pair.
Once we solve (4.1)–(4.2), we can define a Y -valued function u : [0,∞) → Y

by
u(t)(θ) = x(t+ θ;ϕ), −1 ≤ θ ≤ 0, t ≥ 0 (4.5)

and bounded linear operators S(t) : Y → Y by

S(t)ϕ = u(t;ϕ) = x(t+ · ;ϕ). (4.6)

The initial condition (4.2) translates into

S(0)ϕ = u(0;ϕ) = ϕ (4.7)

and (4.6) reflects that we define a dynamical system on Y by translating along
the function ϕ extended according to (4.1). Below we show that {S(t)} is a
twin semigroup and we characterize its generator C. But first we present some
heuristics.

In order to motivate an abstract ODE for the Y -valued function u, we first
observe that the infinitesimal formulation of the translation rule (4.5) amounts
to the PDE

∂u

∂t
−
∂u

∂θ
= 0. (4.8)
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We need to combine this with (4.1), in terms of u(t)(0) = x(t), and we have to
specify the domain of definition of the derivative with respect to θ. The latter is
actually rather subtle. An absolutely continuous function has almost everywhere
a derivative and when the function is Lipschitz continuous this derivative is
bounded. Thus a Lipschitz function specifies a unique L∞-equivalence class by
the process of differentiation. But not a unique element of Y . In fact the set

Cψ =
{
ψ′ ∈ Y | ψ(θ) = ψ(−1) +

∫ θ

−1

ψ′(σ) dσ, ψ′(0) = 〈ζ, ψ〉
}

(4.9)

is, for a given Lipschitz continuous function ψ, very large indeed. Nota bene
that the condition ψ′(0) = 〈ζ, ψ〉 takes care of (4.1) and that, in the context of
the space Y , we can simply take this as the definition of ψ′(0) without having to
worry about an influence of this choice on ψ′(σ) for σ near zero (such in sharp
contrast to the space X of continuous functions). Anyhow, we define C as a
multi-valued, unbounded, operator on Y by

D
(
C
)
= Lip

(
[−1, 0],Rn

)
, Cψ given by (4.9). (4.10)

We claim that (4.1)–(4.2) and (4.5) correspond to

du

dt
∈ Cu. (4.11)

To substantiate this claim, we shall first derive (following essentially Section I.2
of [12]) a representation of the solution of (4.1)–(4.2) in terms of ϕ, ζ and the
resolvent ρ of ζ, next verify that {S(t)}t≥0 defined by (4.6) is a twin semigroup
and, finally, that C is the corresponding generator in the sense of (2.7)–(2.5).

Lemma 4.1 The solution of (4.1)–(4.2) is given explicitly by

x(t;ϕ) =
(
1 +

∫ t

0

ρ(σ) dσ
)
ϕ(0) +

∫ 1

0

{
ζ(t+ σ)− ζ(σ)+

∫ t

0

ρ(τ)
(
ζ(t− τ + σ)− ζ(σ)

)
dτ

}
ϕ(−σ) dσ, (4.12)

where the resolvent ρ of the kernel ζ is the unique solution of

ρ ∗ ζ + ζ = ρ = ζ ∗ ρ+ ζ (4.13)

and hence given by

ρ =

∞∑

l=1

ζl∗. (4.14)

Proof. (See Section I.2 of [12] for more detail). We integrate (4.1) from 0 to
t and interchange the order of the two integrals at the right hand side. This
yields

x = ζ ∗ x+ f (4.15)
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with

f(t) = ϕ(0) +

∫ t

0

(∫ 1

s

dζ(θ)ϕ(s − θ)
)
ds

= ϕ(0) +

∫ 1

0

(
ζ(t+ σ)− ζ(σ)

)
ϕ(−σ) dσ. (4.16)

The solution of (4.15) is given by

x = f + ρ ∗ f (4.17)

which leads, after another change of integration order, to (4.12). ⊔⊓

Please observe that x depends on the value of ϕ in θ = 0 and the L∞-
equivalence class to which ϕ belongs, but not on the precise point values of ϕ
in points θ < 0.

Corollary 4.2 The definition (4.6) amounts to

(
S(t)ϕ

)
(θ) =

∫ 1

0

Kt(θ, dσ)ϕ(−σ) (4.18)

with for σ > 0

Kt(θ, σ) = H(σ + t+ θ) +H(t+ θ)
{∫ t+θ

0

ρ(τ) dτ +

∫ σ

0

[
ζ(t+ θ + τ)

− ζ(τ) +

∫ t+θ

0

ρ(ξ)
(
ζ(t+ θ + τ − ξ)− ζ(τ)

)
dξ
]
dτ

}
(4.19)

and Kt(θ, 0) = 0. (Here H is the standard Heaviside function.)

Proof. For t+θ < 0 the second term in the expression for K does not contribute
and the first term yields

(
S(t)ϕ

)
(θ) = ϕ(t+ θ)

which is in accordance with (4.6) because of (4.2). Now assume that t+ θ ≥ 0.
Clearly the first term contributes a unit jump at σ = 0 and H(t+ θ) = 1. The

second factor has, as a function of σ, a jump of magnitude
∫ t+θ

0
ρ(τ) dτ at σ = 0,

but is otherwise absolutely continuous with derivative

ζ(t+ θ + σ) − ζ(σ) +

∫ t+θ

0

ρ(ξ)
(
ζ(t+ θ + σ − ξ)− ζ(σ)

)
dξ.

The jumps yield the first term at the right hand side of (4.12) evaluated at
t + θ and the absolutely continuous part yields the second term. ⊔⊓

Note that Kt is a bounded in the sense (cf. [31, Definition 3.2]) that for fixed
θ in [−1, 0] the function σ 7→ Kt(θ, σ) is of normalized bounded variation, while
for fixed σ ∈ [0, 1] the function θ 7→ Kt(θ, σ) is bounded and measurable.
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Corollary 4.3 The operator S(t) extends to a twin operator.

Proof. This is a general property of kernel operators. Explicitly we have

(
y⋄S(t)

)
(σ) =

∫ 1

0

y⋄(dτ)Kt(−τ, σ). (4.20)

⊔⊓

Theorem 4.4 The semigroup {S(t)}t≥0 defined by (4.18) is a twin semigroup.

Proof. With reference to Definition 2.1 we note that S(0) = I follows directly
from (4.18)–(4.19), while the semigroup property follows from the uniqueness
of solutions to (4.1)–(4.2) and the fact that S(t) corresponds to translation
along the solution (so essentially it follows from the corresponding property for
translation, and uniqueness of extension).

The exponential estimates ii) are well-established in the theory of RFDE,
for instance Sections I.5, IV.2 and IV.3 of [12] or the proof of Theorem 6.1.

Property iii), the measurability of t 7→ y⋄S(t)y, is a direct consequence of
the way Kt(θ, σ) defined in (4.19) depends on t.

It remains to verify that the Laplace transform defines a twin operator. By
Fubini’s Theorem, the Laplace transform is a kernel operator with kernel

∫ ∞

0

e−λtKt(θ, σ) dt.

⊔⊓

Theorem 4.5 The operator C defined by (4.9)–(4.10) is the generator (in the
sense of (2.7)) of {S(t)}t≥0 defined by (4.18).

Proof. Assume ϕ ∈ (λI − C)ψ. Then there exists ψ′ ∈ Y which is a.e.
derivative of ψ such that

λψ − ψ′ = ϕ, −1 ≤ θ < 0

λψ(0)− 〈ζ, ψ〉 = ϕ(0).

Solving the differential equation yields that

ψ(θ) = eλθ
{∫ 0

θ

e−λσϕ(σ) dσ + ψ(0)
}

(4.21)

and accordingly the boundary condition for θ = 0 boils down to

ψ(0) = ∆(λ)−1
[
ϕ(0) +

∫ 1

0

dζ(σ)e−λσ

∫ 0

−σ

e−λτϕ(τ) dτ
]

(4.22)

which requires that det∆(λ) 6= 0 with

∆(λ) = λI −

∫ 1

0

dζ(σ)e−λσ .
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Our claim is that the identity

ψ(θ) =

∫ ∞

0

e−λt
(
S(t)ϕ

)
(θ) dt

holds. To verify this, we first note that
∫ ∞

0

e−λt
(
S(t)ϕ

)
(θ) dt = eλθ

{∫ 0

θ

e−λσϕ(σ) dσ + x̄(λ;ϕ)
}

(where x̄(λ;ϕ) :=
∫∞

0 e−λtx(t;ϕ) dt, with x(t;ϕ) the solution of (4.1)–(4.2) given
by (4.17)) since

∫ ∞

0

e−λtx(t + θ;ϕ) dt =

∫ −θ

0

e−λtϕ(t + θ) dt+

∫ ∞

−θ

e−λtx(t+ θ) dt

= eλθ
{∫ 0

θ

e−λσϕ(σ) dσ + x̄(λ;ϕ)
}
.

So, since (4.21) holds, we need to check that ψ(0) = x̄(λ;ϕ). From (4.15) we
deduce that

x̄ = (1− ζ̄)−1f̄ .

Therefore, using the first representation of f in (4.16), it follows that

λf̄(λ) = ϕ(0) +

∫ ∞

0

λe−λt

∫ t

0

(∫ 1

s

dζ(θ)ϕ(s − θ)
)
dsdt

= ϕ(0) +

∫ ∞

0

e−λt

∫ 1

t

dζ(θ)ϕ(t − θ) dt

= ϕ(0) +

∫ 1

0

dζ(θ)

∫ θ

0

e−λtϕ(t− θ) dt

= ϕ(0) +

∫ 1

0

dζ(θ)e−λθ

∫ 0

−θ

e−λσϕ(σ) dσ

which equals the vector at the right hand side of (4.22) on which the matrix
∆(λ)−1 acts. Since

λζ̄(λ) =

∫ 1

0

dζ(θ)e−λθ ,

we arrive at the conclusion that indeed ψ(0) = x̄(λ;ϕ). ⊔⊓

It is a direct consequence of (4.10) that

X = D
(
C
)
= C

(
[−1, 0],Rn

)
. (4.23)

Clearly Cψ ∩ X is either empty or a singleton, cf. (4.9), and for the set to be
nonempty we need that ψ ∈ C1 and ψ′(0) = 〈ζ, ψ〉. So the generator A of the
restriction {T (t)}t≥0 of {S(t)}t≥0 to X is given by

D
(
A
)
=

{
ψ ∈ C1 | ψ′(0) = 〈ζ, ψ〉

}

Aψ = ψ′ (4.24)
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in complete agreement with the standard theory.
As S(t) maps Y into X for t ≥ 1, one might wonder whether we gained

anything at all by the extension from X to Y ? Already in the pioneering first
version of his book [23], Jack Hale emphasized that if one adds a forcing term
to (4.1), one needs

q(θ) =

{
1 θ = 0

0 −1 ≤ θ < 0
(4.25)

to describe the solution by way of the variation-of-constants formula. Indeed,
the solution of

ẋ(t) = 〈ζ, xt〉+ f(t), t ≥ 0

x(θ) = ϕ(θ), −1 ≤ θ ≤ 0
(4.26)

is explicitly given by

xt = S(t)ϕ+

∫ t

0

S(t− τ)qf(τ) dτ (4.27)

since (4.26) corresponds to the initial value problem

du

dt
∈ Cu+ qf, u(0) = ϕ, (4.28)

where u(t) = xt. (Incidentally, please note that the solution with initial condi-
tion q is the so-called fundamental solution, cf. [12, Section I.2].)

The integration theory of Section 5 provides a precise underpinning of the
integral in (4.27). In the original approach of Hale, the hidden argument θ in
(4.27) is inserted and thus the integral reduces to the integration of an Rn-
valued function. Note that evaluation in a point corresponds to the application
of a Dirac functional, so our approach yields, in a sense, a rather late theoretical
underpinning of Hale’s approach. The ⊙∗-calculus approach of [12] amounts,
for RFDE, to the observation just before Corollary 4.2 and its consequences.

More precisely, one embeds X into R
n × L∞

(
[−1, 0],Rn

)
, interprets q as

(1, 0), considers Rn × L∞
(
[−1, 0],Rn

)
as the dual space of Rn × L1

(
[0, 1],Rn

)
,

interprets the integral as a weak∗-integral and checks that the integral belongs to
the range of the embedding, so defines an element of X . As long as one restricts
attention to RFDE, the current approach has its more sophisticated integration
theory as a drawback and no clear advantage to compensate. However, this
changes when one extends the theory, as we shall do in Section 11, to neutral
equations. Neutral equations correspond to an unbounded change in the rule for
extension, even within a functional analytic framework where q is well-defined.
In the ⊙∗-setting this manifests itself in dependence of X⊙, and hence X⊙∗, on
the particular perturbation thus obstructing a satisfactory sun-star perturbation
theory for neutral equations. In contrast, the present approach allows us to keep
working with the norming dual pair Y and Y ⋄ and to develop a variation-of-
constants formula.
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At the end of Section 6 we shall briefly indicate how, alternatively, one can
use a perturbation approach to derive the results presented above.

As a final remark, we emphasize that the variation-of-constants formula
(4.27) is the key first step towards a local stability and bifurcation theory for
nonlinear problems, as shown in detail in [12].

Part II: Bounded perturbations

describing retarded equations

5 The variation-of-constants formula for forcing

functions with finite dimensional range

When the ultimate aim is to study nonlinear problems, one usually focuses
on real-valued functions and functionals. Spectral theory, on the other hand,
benefits from complexification. The formulation below considers real functionals
acting on a real vector space, but when Y , Y ⋄ is a norming dual pair, the same
holds for their complexifications.∗

Motivated by RFDE, in particular (4.27), we want to define an element u(t)
of Y by way of the action on Y ⋄ expressed in the formula

〈y⋄, u(t)〉 = y⋄S(t)u0 +

∫ t

0

y⋄S(t− τ)q f(τ)dτ, (5.1)

where

(i) (Y, Y ⋄) is a norming dual pair;

(ii) q ∈ Y ;

(iii) f : [0, T ] → R is bounded and measurable;

(iv)
{
S(t)

}
is a twin semigroup,

and where u0 (corresponding to ϕ in (4.27)) is an arbitrary element of Y . The
first term at the right hand side of (5.1) is no problem at all, it contributes
S(t)u0 to u(t). The second term defines an element of Y ⋄∗, but it is not clear
that this element is, without additional assumptions, represented by an element
of Y .

∗Complexification of a norming dual pair entails some subtle difficulties regarding the
choice of norms. These subtleties are explained in [12, Section III.7]. But when we deal
with function spaces, complexification can be represented by allowing the functions to take
values in C or Cn and subsequently the norm can be defined by copying the definition for
the real functions, while replacing the real absolute value by the complex modulus. In the
present paper the two relevant norms are the supremum norm and the total variation norm,
see Appendix B.
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Lemma 5.1 In addition to (i)-(iv) assume that
(
Y, σ(Y, Y ⋄)

)
is sequentially complete. (5.2)

Then

y⋄ 7→

∫ t

0

y⋄S(t− τ)q f(τ)dτ (5.3)

is represented by an element of Y , to be denoted as

∫ t

0

S(t− τ)q f(τ) dτ (5.4)

Proof. There exists a sequence of step functions fm such that |fm| ≤ |f | and
fm → f pointwise. Lemma 2.3 shows that

∫ t

0

S(t− τ)q fm(τ)dτ

belongs to Y (in fact even to D
(
C
)
). Since (see Definition 2.1(ii))

∣∣y⋄S(t− τ)qfm(τ)
∣∣ ≤Meω(t−τ)‖q‖ ‖y⋄‖ sup

σ
|f(σ)|,

the dominated convergence theorem implies that for every y⋄ ∈ Y ⋄

lim
m→∞

∫ t

0

y⋄S(t− τ)q fm(τ)dτ =

∫ t

0

y⋄S(t− τ)q f(τ)dτ.

The sequential completeness next guarantees that the limit too is represented
by an element of Y . ⊔⊓

In Section 8 we shall, as a step towards treating neutral equations, replace
f(τ) dτ by F (dτ) with F of bounded variation. Then approximation by step
functions no longer works. This observation motivates to look for an alternative
sufficient condition.

Lemma 5.2 In addition to (i)-(iv) assume that

a linear map
(
Y ⋄, σ(Y ⋄, Y )

)
→ R is continuous

if it is sequentially continuous. (5.5)

Then the assertion of Lemma 5.1 holds.

Proof. Again we are going to make use of the dominated convergence theorem.
Consider a sequence {y⋄m} in Y ⋄ such that for every y ∈ Y the sequence 〈y⋄m, y〉
converges to zero in R. Then for all relevant t and τ we have

lim
m→∞

y⋄mS(t− τ)q = 0

and consequently

lim
m→∞

∫ t

0

y⋄mS(t− τ)q f(τ) dτ = 0.
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So the linear map (5.3) is, in the sense described in (5.5), sequentially continuous
and therefore, by the assumption, continuous. Since

(
Y ⋄, σ(Y ⋄, Y )

)′
= Y,

we conclude that (5.3) is represented by an element of Y . ⊔⊓

In the next section we are going to use these results to show that a certain
type of perturbation of a twin semigroup yields again a twin semigroup and
then we will also need that with (ii) replaced by

(ii)
′
q⋄ ∈ Y ⋄,

we have that

y 7→

∫ t

0

q⋄S(t− τ)y f(τ) dτ (5.6)

is represented by an element of Y ⋄, to be denoted as

∫ t

0

q⋄S(t− τ) f(τ) dτ. (5.7)

Applying the two lemmas above, with the role of Y and Y ⋄ interchanged, we
find that this is indeed the case if either

(
Y ⋄, σ(Y ⋄, Y )

)
is sequentially complete. (5.8)

or

a linear map
(
Y, σ(Y, Y ⋄)

)
→ R is continuous

if it is sequentially continuous. (5.9)

In our treatment of delay differential equations we shall assume (5.2) and (5.9),
but in our treatment of renewal equations we shall assume (5.8) and (5.5).

This difference is a consequence of what we stated at the start of Section
2: we want that Y is the state space and Y ⋄ is an auxiliary space. For delay
differential equations we take Y = B([−1, 0]) and Y ⋄ = NBV ([0, 1]), while
for renewal equations we take Y = NBV ([0, 1]) and Y ⋄ = B([−1, 0]). So in
terms of the two function spaces involved, the assumptions are identical (and
these assumptions are substantiated in Appendix B), but because their roles are
interchanged the formulations are a mirror image of each other.

As in the next section we shall use both properties, we state

Definition 5.3 We say that a norming dual pair (Y, Y ⋄) is suitable for twin
perturbation if

(a) at least one of (5.2) and (5.5) holds; and

(b) at least one of (5.8) and (5.9) holds
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6 Finite dimensional range perturbation of twin

semigroups

In this section we consider the following situation:

– (Y, Y ⋄) is a norming dual pair that is suitable for twin perturbation, cf.
Definition 5.3;

– {S0(t)} is a twin semigroup on (Y, Y ⋄) with generator C0;

– For j = 1, . . . , n the elements qj ∈ Y and q⋄j ∈ Y ⋄ are given.

Our aim is to define constructively a twin semigroup {S(t)} with generator
C defined by

D
(
C
)
= D

(
C0

)
. Cy = C0y +

n∑

j=1

〈q⋄j , y〉qj . (6.1)

The first step is to introduce a n× n-matrix valued function k on [0,∞) via

kij(t) = q⋄i S0(t)qj . (6.2)

Note that, by assumption, t 7→ k(t) is locally bounded and measurable. With
the kernel k we associate its resolvent r. This is by definition the unique solution
of the matrix renewal equation

k + k ∗ r = r = k + r ∗ k (6.3)

or, equivalently,

r =

∞∑

j=1

kj∗, (6.4)

where k1∗ := k and km∗ := k ∗ k(m−1)∗ for m ≥ 2. Here ∗ denotes the usual
convolution product of functions.

In variation-of-constants spirit, (6.1) motivates us to presuppose that S(t)
and S0(t) should be related to each other by the equation

S(t) = S0(t) +

∫ t

0

S0(t− τ)BS(τ) dτ, (6.5)

where

By :=

n∑

j=1

〈q⋄j , y〉qj . (6.6)

By letting B act on (6.5) we obtain, for given initial point y ∈ Y , a finite
dimensional renewal equation. To formulate this equation, we first write (6.6)
as

By = 〈q⋄, y〉 · q (6.7)
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where q⋄ is the n-vector with Y ⋄-valued components q⋄j and similarly q is the
n-vector with Y -valued components qj and where · denotes the inner product
in Rn. We can factor (a rank factorization) B as B = B2B1 with B1 : Y → Rn

and B2 : Rn → Y defined by

B1y = 〈q⋄, y〉, B2x =

n∑

j=1

xjqj (6.8)

Now let (6.5) act on y ∈ Y and next act on the resulting identity with the
vector q⋄. This yields the equation

v(t)y = q⋄S0(t)y +

∫ t

0

k(t− τ)v(τ)y dτ, (6.9)

where v(t)y corresponds to q⋄S(t)y = B1S(t)y. The solution of (6.9) can be
expressed in terms of the resolvent r of the kernel k and the forcing function
t 7→ q⋄S0(t)y by the formula

v(t)y = q⋄S0(t)y +

∫ t

0

r(t− τ)q⋄S0(τ)y dτ. (6.10)

And now that v( · )y, representing q⋄S( · )y, can be considered as known, (6.5)
becomes an explicit formula

S(t) = S0(t) +

∫ t

0

S0(t− τ)q · v(τ) dτ. (6.11)

Please note that, with this definition of S(t), we do indeed have that

v(t)y = q⋄S(t)y

(compare (6.11) to (6.9)).
Formula (6.11) is well suited for proving, on the basis of Lemma 5.1 or

Lemma 5.2, that S(t) maps Y into Y . But not for proving that S(t) maps
Y ⋄ into Y ⋄. So even though this may seem superfluous, we now provide an
alternative dual constructive definition starting from the following equation

S(t) = S0(t) +

∫ t

0

S(t− τ)BS0(τ) dτ (6.12)

which is the variant of (6.5) in which the roles of S(t) and S0(t) are interchanged.
Let (6.12) act (from the right) on y⋄ ∈ Y ⋄ and next let the resulting identity
act on the vector q. This yields the equation

y⋄w(t) = y⋄S0(t)q +

∫ t

0

y⋄w(t− τ)k(τ) dτ, (6.13)

where y⋄w(t) corresponds to y⋄S(t)q. The formula

y⋄w(t) = y⋄S0(t)q +

∫ t

0

y⋄S0(t− τ)q r(τ) dτ (6.14)
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expresses the solution of (6.13) in terms of the forcing function y⋄S0(t)q and
the resolvent r of the kernel k. Next we rewrite (6.12) in the form

S(t) = S0(t) +

∫ t

0

w(t− τ) · q⋄S0(τ) dτ. (6.15)

Please note that indeed y⋄w(t) = y⋄S(t)q (compare (6.15) to (6.13)).
Of course we should now verify that the integrals in (6.11) and (6.15) do

indeed define the same object. Writing the integral in (6.11) as w0 ∗ v and the
integral in (6.15) as w ∗ v0, equality follows from (6.10) written in the form

v = v0 + r ∗ v0

and (6.14) written in the form

w = w0 + w0 ∗ r

since

w0 ∗ v = w0 ∗ (v0 + r ∗ v0) = w0 ∗ v0 + w0 ∗ r ∗ v0

= (w0 + w0 ∗ r) ∗ v0 = w ∗ v0.

Theorem 6.1 The combination (6.10)–(6.11) or, equivalently, the combination
of (6.14)–(6.15), defines a twin semigroup

{
S(t)

}
with generator C defined in

(6.1).

Proof. Since (Y, Y ⋄) is suitable for twin perturbation, we can use (6.11) and
either Lemma 5.1 or Lemma 5.2 to deduce that S(t) maps Y into Y . Similarly
we can use (6.15) and the observation concerning (5.6) to deduce that S(t) maps
Y ⋄ into Y ⋄. So

{
S(t)

}
is a twin operator.

With a view to deriving the semigroup property

S(t+ s) = S(t)S(s), t, s ≥ 0, (6.16)

we first formulate the auxiliary result

Lemma 6.2 The solution v( · )y of (6.9) has the property

v(t+ s)y = v(t)S(s)y (6.17)

Proof. From (6.9) it follows that

v(t+ s)y = q⋄S0(t)S0(s)y +

∫ s

0

k(t+ s− τ)v(τ)y dτ

+

∫ t

0

k(t− σ)v(s+ σ)y dσ

and by uniqueness (6.17) follows provided

q⋄S0(t)S0(s)y +

∫ s

0

k(t+ s− τ)v(τ)y dτ = q⋄S0(t)S(s)y.
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Noting that

k(t+ s− τ) = q⋄S0(t+ s− τ)q = q⋄S0(t)S0(s− τ)q,

we conclude from (6.11) that this identity does indeed hold. ⊔⊓

To verify (6.16), we start from (6.11) and write

S(t+ s)y = S0(t)S0(s)y +

∫ s

0

S0(t+ s− τ)q · v(τ)y dτ

+

∫ t

0

S0(t− σ)q · v(σ + s)y dσ

= S0(t)S(s)y +

∫ t

0

S0(t− σ)q · v(σ)S(s)y dσ

= S(t)S(s)y.

Both the property S(0) = I and the measurability, for all y ∈ Y , y⋄ ∈ Y ⋄,
of t 7→ y⋄S(t)y follow from (6.11) and the corresponding properties of {S0(t)}.

The exponential estimate for y⋄S0(t)y yields exponential estimates for both
the kernel k and the forcing function q⋄S0( · )y in the renewal equation (6.9).
Therefore, see Theorem A.7 with µ(dt) = k(t)dt, we obtain an exponential esti-
mate for the resolvent ρ(dt) = r(t)dt, and hence via (6.10) an exponential bound
for v(t)y. Finally, using (6.11) we obtain an exponential bound for y⋄S(t)y.

It remains to compute the Laplace transform, cf. (2.5). Since

∫ ∞

0

e−λty⋄S0(t)y dt = y⋄(λI − C0)
−1y, (6.18)

we obtain by Laplace transformation of (6.11) the identity

∫ ∞

0

e−λty⋄S(t)y dt = y⋄(λI − C0)
−1y + y⋄(λI − C0)

−1q · v̄(λ)y.

Laplace transformation of either (6.9) or (6.10) and (6.3) yields

v̄(λ)y =
[
I − q⋄(λI − C0)

−1q
]−1

q⋄(λI − C0)
−1y

=
[
I − k̄(λ)

]−1
q⋄(λI − C0)

−1y (6.19)

By combining the last two identities we arrive at

∫ ∞

0

e−λty⋄S(t)y dt = y⋄(λI − C0)
−1y + y⋄(λI − C0)

−1q ·

·
[
I − q⋄(λI − C0)

−1q
]−1

q⋄(λI − C0)
−1y. (6.20)

It remains to check that the right hand side of (6.20) is exactly y⋄(λI − C)−1y
when C is defined by (6.1). So consider the equation

(λI − C)η = y.
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By (6.1) this is equivalent to

(λI − C0)η = y + 〈q⋄, η〉 · q

and hence to

η = (λI − C0)
−1y +

n∑

j=1

〈q⋄j , η〉(λI − C0)
−1qj .

In particular,

〈q⋄k, η〉 = q⋄k(λI − C0)
−1y +

n∑

j=1

q⋄k(λI − C0)
−1qj 〈q

⋄
j , η〉

or, in vector form,

〈q⋄, η〉 = q⋄(λI − C0)
−1y + q⋄(λI − C0)

−1q〈q⋄, η〉.

Hence

η = (λI − C)−1y = (λI − C0)
−1y + (λI − C0)

−1q

×
(
I − q⋄(λI − C0)

−1q
)−1

q⋄(λI − C0)
−1y
(6.21)

and comparison with (6.20) shows that indeed
∫ ∞

0

e−λty⋄S(t)y dt = y⋄(λI − C)−1y. (6.22)

This completes the proof of Theorem 6.1. ⊔⊓

By combining Theorems 6.1 and 3.1 we see that perturbations of the form
(6.1) do not alter the subspaces of strong continuity.

Corollary 6.3 The subspaces X and X⊙ of strong continuity are the same for
{S0(t)} and {S(t)}.

The special representation of the perturbed semigroup S(t) given in respec-
tively (6.10)–(6.11) and (6.14)–(6.15) allows us to use Theorem 2.4 to derive a
result about the asymptotic behaviour of S(t) without using a spectral mapping
theorem, eventual compactness or eventual norm continuity of the semigroup
S(t).

Theorem 6.4 Under the assumptions of this section let k, given by (6.2), be
integrable. Suppose that S0(t) is bounded and that (λI − C0)

−1 is bounded for
Reλ ≥ 0. If

det
(
I − k̄(λ)

)
has no zeros for Reλ ≥ 0, (6.23)

then
‖S(t)C−1‖ → 0 as t→ ∞. (6.24)

As a consequence we have that S(t)y → 0 as t → ∞ for every y in the norm-
closure of D

(
C
)
.
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Proof. We first show that S(t) is bounded. From the half-line Gel’fand theorem,
see Theorem A.8, applied to the absolutely continuous measure µ(dt) = k dt,
it follows that the resolvent ρ(dt) = r dt is an absolutely continuous bounded
measure. Fix y in Y and y⋄ ∈ Y ⋄. From Theorem A.2 and (6.10) it follows that
v dt is a bounded measure and another application of Theorem A.2 shows that
y⋄S(t)y as defined via (6.11), is a bounded Borel function and hence S(t) is a
bounded twin semigroup.

If (λI−C0)
−1 is bounded for Reλ ≥ 0 and (6.23) holds, then it follows from

(6.19) and (6.21) that (λI − C)−1 is bounded for Reλ ≥ 0.
This completes the proof that S(t) is bounded and that σ(C)∩ iR = ∅.

So an application of Theorem 2.4 yields the proof. ⊔⊓

The following variant of Theorem 6.4 is motivated by RFDE and various
boundary value problems. See [29] for more information.

Theorem 6.5 Under the assumptions of this section let k, given by (6.2), be
of bounded variation with k(0) = 0. Suppose that S0(t) is bounded and that
(λI − C0)

−1 has a simple pole at λ = 0 but is otherwise bounded for Reλ ≥ 0.
Assume that

〈q⋄, P0q〉P0y = 〈q⋄, P0y〉P0q, (6.25)

where P0 : Y → Y denotes the spectral projection onto the eigenspace of C0 at
λ = 0. If

det
(
λI − k̂(λ)

)
has no zeros for Reλ ≥ 0, (6.26)

then
‖S(t)C−1‖ → 0 as t→ ∞. (6.27)

As a consequence we have that S(t)y → 0 as t → ∞ for every y in the norm-
closure of D

(
C
)
.

Proof. We first show that S(t) is bounded. Let µ(dt) = k dt and observe that

µ̂(λ) = k̄(λ) =
1

λ
k̂(λ).

So it follows from (6.23) and the half-line Gel’fand theorem, see Theorem A.8,
applied to µ, that the resolvent ρ is an absolutely continuous bounded measure
ρ = r dt. Fix y in Y and y⋄ ∈ Y ⋄. From Theorem A.2 and (6.10) it follows that
v dt is a bounded measure and another application of Theorem A.2 shows that
y⋄S(t)y as defined via (6.11), is a bounded Borel function and hence S(t) is a
bounded twin semigroup.

To show that (λI − C)−1 is bounded for Reλ ≥ 0 first observe that

(λI − C)−1y = λ
[
λI − k̂(λ)

]−1(
(λI − C0)

−1y − q⋄(λI − C0)
−1q (λI − C0)

−1y

+ q⋄(λI − C0)
−1y (λI − C0)

−1q
)
. (6.28)

Using the assumption on (λI − C0)
−1 we can write

(λI − C0)
−1y =

1

λ
P0y +H(λ)y,
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where P0 : Y → Y denotes the spectral projection onto the eigenspace of C0 at
λ = 0 and H(λ) : Y → Y is a bounded linear operator for Reλ ≥ 0. Using this
we can expand

− q⋄(λI − C0)
−1q (λI − C0)

−1y + q⋄(λI − C0)
−1y (λI − C0)

−1q

=

1

λ2
(
q⋄P0y P0q − q⋄P0q P0y

)

+
1

λ

(
q⋄ P0yH(λ)q + q⋄H(λ)yP0q − q⋄P0q H(y)y − q⋄H(λ)q P0y

)

+ q⋄H(λ)y H(λ)q − q⋄H(λ)q H(λ)y.

Condition (6.25) shows that the term λ−2 vanishes and since (λI −C0)
−1y has

a simple pole at λ = 0 and H(λ)y is bounded for Reλ ≥ 0, it follows from (6.28)
that (λI − C)−1 is bounded for Reλ ≥ 0.

This completes the proof that S(t) is bounded and σ(C)∩ iR = ∅. So an
application of Theorem 2.4 yields the proof. ⊔⊓

Note that condition (6.25) is automatically satisfied if the null space of C0

is one-dimensional. In general, the condition that λ = 0 is a simple pole of
(λI − C0)

−1 implies that the generalized null space of C0 equals the null space
of C0, but does not give any information about the dimension of the null space
of C0. In the example of RFDE, the null space of C0 is, as we show soon,
n-dimensional.

In Section 4 there was no need to use the perturbation approach developed
in this section. Yet, alternatively, we can first concentrate on the special case
ζ = 0, calling the corresponding twin semigroup {S0(t)} and its generator C0.
Next we define for i = 1, . . . , n elements qi ∈ Y and q⋄i ∈ Y ⋄ by

qi(θ) =

{
0 θ < 0

ei θ = 0,
(6.29)

where ei is the i-th unit vector in Rn and

q⋄i (θ) = ζi(θ), (6.30)

where ζi is the i-th row of the matrix valued function ζ. For the matrix k
introduced in (6.2) we find

kij(t) = q⋄i S0(t)qj =

∫ 1

0

ζi(dτ)χt−τ≥0ej = ζij(t). (6.31)

With the convention that ζ(τ) = ζ(1) for τ ≥ 1, we can also write (with y
corresponding to ϕ)

q⋄S0(t)y =

∫ t

0

ζ(dτ)y(0) +

∫ 1

t

ζ(dτ)y(t − τ)

= ζ(t)y(0) +

∫ 1

t

ζ(dτ)y(t − τ). (6.32)
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Comparing the right hand side to the right hand side of (2.5) on page 16 of [12],
we see that the RE (6.9) of the present paper is identical to equation (2.4a) on
page 16 of [12]:

ẋ(t) =

∫ t

0

ζ(θ)ẋ(t− θ) dθ + ζ(t)y(0) +

∫ 1

t

ζ(dτ)y(t − τ).

We conclude that v(·)y in (6.9) corresponds to ẋ in this equation.
Next apply to (6.11) the element of Y ⋄ that corresponds to the Dirac measure

in −θ ∈ [0, 1]. This yields

(
S(t)y

)
(θ) = y(t+ θ) +

∫ t

0

r(t − τ + θ) · v(τ)y dτ, (6.33)

where we adopted the convention that both y and q are extended by their value
in zero. It follows that

(
S(t)y

)
(θ) =

{
y(t+ θ), t+ θ ≤ 0

y(0) +
∫ t+θ

0 v(τ)y dτ, t+ θ ≥ 0.
(6.34)

Since

y(0) +

∫ t+θ

0

v(τ)y dτ = y(0) +

∫ t+θ

0

ẋ(τ ; y) dτ = x(t+ θ; y),

this corresponds exactly to (4.6). We conclude that the direct approach and the
perturbation approach are fully consistent.

We conclude by showing that the assumptions of Theorem 6.5 are satisfied
for RFDE. From (6.31) it follows that k is of bounded variation. Furthermore,

(
(λI − C0)

−1y
)
(θ) =

eλθ

λ
y(0) +

∫ 0

θ

eλ(θ−σ)y(σ) dσ

and P0 : Y → Y is given by
P0y = y(0)1,

where 1 ∈ Y denotes the function that is identically one.
Using (6.29) and (6.30), observe that

〈q⋄, P0q〉P0y = 〈ζ, I 1〉 y(0)1 = ζ(1)y(0)1

and
〈q⋄, P0y〉P0q = 〈ζ, y(0)1〉1 = ζ(1)y(0)1.

This shows that condition (6.25) is satisfied for RFDE. Therefore an application
of Theorem 6.5 yields that if

det
(
λI −

∫ 1

0

e−zσ dζ(σ)
)

has no zeros for Reλ ≥ 0,

then for y ∈ C
(
[−1, 0];Rn

)
we have S(t)y → 0 as t → ∞. Since for RFDE

S(1)y ∈ D
(
C
)
for every y ∈ B

(
[−1, 0];Rn

)
, we conclude that S(t)y → 0 as

t→ ∞ for every y ∈ B
(
[−1, 0];Rn

)
.
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7 RE - Renewal equations with “smooth” ker-

nels

The RE

b(t) =

∫ 1

0

k(a)b(t− a) da (7.1)

arises in the context of age-structured population dynamics. In that context,
b(t) is the rate at which newborn individuals are added to the population at
time t and

k(a) = F(a)β(a),

with F(a) the probability to survive to at least age a and β(a) the age-specific
fecundity (it is helpful to think in terms of mothers and daughters, with the
male subpopulation implicitly included via a fixed sex ratio). Note that we have
scaled the time variable such that the maximum age at which reproduction is
possible equals one. It is convenient to define k(a) = 0 for a > 1.

To facilitate statements and arguments based on the interpretation, we focus
in this section our attention on a scalar equation. Generalization to n-vector
valued functions b and n× n-matrix valued kernels k is straightforward.

We consider (7.1) as a rule for extending the function b and, to get started,
supplement it by prescribing the history of b at a particular time, say t = 0:

b(θ) = ϕ(θ), −1 ≤ θ ≤ 0. (7.2)

(Note that this leads to equation (7.7) below with f given by (7.8); even though
we have not yet specified assumptions concerning the kernel k and the initial
history ϕ, we like to mention already now that existence, uniqueness and reg-
ularity of a solution of this kind of linear Volterra integral equations is covered
extensively in [21]; also see Theorem A.9).

By translation along the extended function, i.e., by putting

T (t)ϕ = bt (7.3)

which is a shorthand for
(
T (t)ϕ

)
(θ) = b(t+ θ;ϕ) (7.4)

with b( · ;ϕ) the unique solution of (7.1)–(7.2), we define a dynamical system.
But what do we choose for the state space X on which the dynamical system

acts? Since b is a rate, we get numbers by integrating with respect to time. So
the interpretation suggests to take

X = L1
(
[−1, 0];R

)
(7.5)

as is indeed done in [15]. The bonus is that the semigroup {T (t)} defined by
(7.4) is strongly continuous. But when we compute the infinitesimal generator
A, we find (with AC standing for “absolutely continuous”)

D
(
A
)
=

{
ϕ ∈ AC | ϕ(0) =

∫ 1

0

k(a)ϕ(−a) da
}
, Aϕ = ϕ′ (7.6)
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showing that all information about the rule for extension is in the domain of A
and that the action of A only reflects the translation. The trouble with this is
that even small changes in the rule for extension correspond, at the generator
level, to unbounded perturbations.

In [15] it is shown how perturbation theory of dual semigroups, also known
as sun-star calculus, can be used to overcome this difficulty. Here we show that
the formalism of twin semigroups on a norming dual pair of spaces provides an
alternative approach. In Section 12 we shall show that this new approach allows
us to cover “neutral” RE as well, where the adjective neutral expresses that we
replace k(a)da by a measure.

Soon we will assume that k is a given bounded measurable function (defined
on [0,∞) but with support in [0, 1]), but for the time being, while discussing
the representation of the solution of (7.1)–(7.2), it suffices that k is in L1.
Combining (7.1) and (7.2) we obtain

b = k ∗ b+ f (7.7)

with

f(t) =

∫ 1

t

k(a)ϕ(t − a) da =

∫ 0

t−1

k(t− θ)ϕ(θ) dθ for t < 1 (7.8)

and, by definition, f(t) = 0 for t ≥ 1. In the theory of RE, cf. Section 4, in
particular, Lemma 4.1, [21] and Appendix A, the solution r of

k ∗ r + k = r = r ∗ k + k (7.9)

is called the resolvent of the kernel k, in particular since the solution of (7.7) is
given by

b = f + r ∗ f. (7.10)

Note that

r =

∞∑

j=1

kj∗. (7.11)

As we will establish soon, the resolvent plays the role of fundamental solution
in the present context. In order to have f(t) = k(t) we need to replace in
(7.8) ϕ(θ) dθ by the unit Dirac measure in zero. So we need to consider an
initial condition that is not an integrable function, but rather a measure. Now
recall that when working with continuous functions in the theory of delay dif-
ferential equations, one finds that the fundamental solution corresponds to a
discontinuous initial condition. Here the situation is reminiscent: while working
with integrable functions, we find that the resolvent corresponds to a measure
as initial condition (note that in the population dynamical context, the Dirac
measure in zero represents a cohort of newborn individuals). And our strategy
will be the same: enlarge the state space, even though this entails the loss of
strong continuity.
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In the tradition of delay equations we will represent measures by NBV
functions. So let now

Y = NBV
(
[−1, 0];R

)
(7.12)

but with the normalization convention that the elements are zero in the right
end point θ = 0. Let

Y ⋄ = B
(
[0, 1];R

)
(7.13)

with pairing defined by

〈y⋄, y〉 =

∫ 0

−1

y⋄(−θ) y(dθ) (7.14)

and let
k ∈ Y ⋄ (7.15)

be given. We still consider (7.7) but replace (7.8) by

f(t) =

∫ 0

t−1

k(t− θ)ψ(dθ) (7.16)

with ψ ∈ Y considered as the initial condition. (So in the population dynamical
context one should interpret ψ as the cumulative number of newborns, but
otherwise nothing changes. In particular there is still a population level birth
rate for t > 0. This will change in Section 12, where we work with cumulative
quantities throughout.) For given ψ ∈ Y equation (7.7) with f given by (7.16)
has a unique solution given explicitly by (7.10). We define

B(t) =

∫ t

0

b(τ) dτ, t > 0, (7.17)

B(θ) = ψ(θ), θ ≤ 0, (7.18)

(where we have suppressed the dependence of b on ψ in the notation) and next
S(t) : Y → Y by (

S(t)ψ
)
(θ) = B(t+ θ)−B(t). (7.19)

Note that we subtract B(t) in order to comply with the normalization that the
value in θ = 0 should be zero. It is very well possible to check that {S(t)} is a
twin semigroup on the norming dual pair (Y, Y ⋄) specified by (7.12) and (7.13)
and to determine the generator via the Laplace transform. Here, however, we
establish the relevant facts via the perturbation theory of Section 6. This allows
us to show that (6.9) and (7.7) are identical (in the sense that both the kernels
k and the forcing functions (q⋄S0(·)y and f , respectively) coincide; to call the
kernel in (7.1) k, introduces the risk of ambiguity when invoking Section 6, but
in fact there is, as shall show, no need to worry).

The twin semigroup {S0(t)} defined by

(
S0(t)ψ

)
(θ) =

{
ψ(t+ θ) t+ θ ≤ 0

0 t+ θ > 0
(7.20)
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corresponds to a kernel k that is identically equal to zero, and so to trivial
extension of the initial function. A straightforward calculation reveals that

∫ ∞

0

e−λt
(
S0(t)ψ

)
(θ) dt = eλθ

∫ 0

θ

e−λσψ(σ) dσ

and next that ∫ ∞

0

e−λty⋄S0(t)ψ dt = y⋄(λI − C0)
−1ψ,

where

D
(
C0

)
=

{
ψ | ∃ϕ ∈ Y | ψ(θ) =

∫ θ

0

ϕ(σ) dσ
}

C0ψ =
{
ϕ ∈ Y | ψ(θ) =

∫ θ

0

ϕ(σ) dσ
}
.

(7.21)

Note that when ϕ1 and ϕ2 both belong to C0ψ then – they are equal in θ = 0,
because of the normalization – they are equal in (−1, 0), because they are equal
almost everywhere in this interval and left (or, right, depending on the chosen
normalization) continuous – they might differ in θ = −1 – so if they differ, they
differ by a jump in −1 (representing a Dirac mass in -1).

The subspace of strong continuity is given by

X = AC0

(
[−1, 0];R

)

=
{
ψ | ∃ϕ ∈ L1

(
[−1, 0];R

)
| ψ(θ) =

∫ θ

0

ϕ(σ) dσ
}

(7.22)

according to Theorem 3.1 and the fact that NBV functions are dense in L1

(admittedly we ignore an isometric isomorphism when using the same symbol
X in (7.5) and (7.22)).

To capture the true rule for extension, we define q in Y by

q(θ) =

{
0 for θ = 0

−1 for − 1 ≤ θ < 0
(7.23)

(i.e., q is the Heaviside function that represents the Dirac measure in θ = 0)
and, inspired by (6.2), search for q⋄ in Y ⋄ such that

q⋄S0(t)q = k(t). (7.24)

It follows from (7.20) and (7.23) that

q⋄S0(t)q =

{
q⋄(t) for 0 ≤ t ≤ 1

0 otherwise

so we can in fact identify q⋄ and k.
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The perturbed semigroup is defined by (6.11) and this involves the solution
of (6.9), which is a RE with kernel k and forcing function

q⋄S0(t)ψ =

∫ 0

−1

k(−θ)
(
S0(t)ψ

)
(dθ) =

∫ −t

−1

k(−θ)ψ(t+ dθ)

=

∫ 0

t−1

k(t− σ)ψ(dσ)

which is exactly equal to f(t) defined in (7.16). We conclude that in the present
setting (6.9) is simply another way of writing (7.7) and that, accordingly, we may
replace v(τ)y in (6.11) by b(τ). It only remains to verify that (6.11) amounts
to (7.19).

With Y and Y ⋄ given by, respectively, (7.12) and (7.13), one can turn (6.11)
into a pointwise equality (just use step functions from Y ⋄ in the pairing that
provides the precise meaning of the integral). It reads

(
S(t)ψ

)
(θ) =

(
S0(t)ψ

)
(θ) +

∫ t

0

(
S0(t− τ)q

)
(θ)b(τ) dτ

with
(
S0(t)ψ

)
(θ) =

{
ψ(t+ θ) t+ θ ≤ 0

0 t+ θ > 0

and
∫ t

0

(
S0(t− τ)q

)
(θ)b(τ) dτ =

∫ t

0

−χt−τ+θ<0 b(τ) dτ

= −

∫ t

max{t+θ,0}

b(τ) dτ

=

∫ max{t+θ,0}

0

b(τ) dτ −

∫ t

0

b(τ) dτ.

On account of (7.17)–(7.19) we conclude that the twin semigroup defined by
(6.11) is equivalently described by (7.19).

In terms of B we can rewrite (7.1) as the delay differential equation

B′(t) =

∫ 0

−1

k(−σ)Bt(dσ). (7.25)

If we formally differentiate (7.19) with respect to t and next evaluate at t = 0,
we obtain for θ < 0

d

dt

(
S(t)ψ

)
(θ)

∣∣
t=0

= ψ′(θ)−B′(0) = ψ′(θ)−

∫ 0

−1

k(−σ)ψ(dσ)

which is completely in line with the characterization of the generator C in (6.1)
when (7.21), (7.23) and q⋄ = k are taken into account.
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Part III: Unbounded perturbations

describing neutral equations

8 Forcing functions with finite dimensional

range revisited

The aim of this section is to generalize the results of Section 5 in order to
prepare for (the analysis of) relatively bounded perturbations in Sections 9 and
10 below. We now consider linear functionals

y⋄ 7→

∫ t

0

y⋄S(t− τ)q F (dτ) (8.1)

for a given R-valued BV function F and ask: when is such a functional repre-
sented by an element of Y ?

The proof of Lemma 5.2 carries over verbatim if we replace f(τ) dτ by F (dτ).
The proof of Lemma 5.1, on the other hand, breaks down. To save the underlying
idea, we perform integration by parts and first rewrite (8.1) as

y⋄ 7→

∫ t

0

dσ
[
y⋄S(σ)q

]
F (t− σ) + F (t)〈y⋄, q〉 (8.2)

and next incorporate the last term into the first term by redefining y⋄S(σ)q as
zero for σ = 0. In (8.2) we can allow F to be a bounded measurable function,
but we have to require that for every y⋄ ∈ Y ⋄ the function

t 7→ y⋄S(t)q for t > 0

with value zero for t = 0, is of bounded variation. Once this is assumed, the
proof of Lemma 5.1 can be copied in order to show

Lemma 8.1 Let
{
S(t)

}
be a twin semigroup on a norming dual pair (Y, Y ⋄).

Assume (5.2) holds, i.e., assume that (Y, σ(Y, Y ⋄)) is sequentially complete. Let
q ∈ Y be given. For y⋄ ∈ Y ⋄ define

y⋄W (σ) =

{
0 for σ = 0

y⋄S(σ)q for σ > 0.
(8.3)

Assume that for all y⋄ ∈ Y ⋄ the function

σ 7→ y⋄W (σ)

belongs to NBVloc

(
[0,∞),R

)
. Let F : [0,∞) → R be locally bounded and mea-

surable. Then there exists u(t) ∈ Y such that for all y⋄ ∈ Y ⋄

∫ t

0

dσ
[
y⋄W (σ)

]
F (t− σ) = 〈y⋄, u(t)〉. (8.4)
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For completeness we also state

Lemma 8.2 Let
{
S(t)

}
be a twin semigroup on a norming dual pair (Y, Y ⋄).

Assume (5.5) holds, i.e., assume that a linear map
(
Y ⋄, σ(Y ⋄, Y )

)
→ R is

continuous if it is sequentially continuous. Let q ∈ Y be given. Let F : [0,∞) →
R be of locally bounded variation. Then there exists u(t) ∈ Y such that for all
y⋄ ∈ Y ⋄

∫ t

0

y⋄S(t− τ)q F (dτ) = 〈y⋄, u(t)〉. (8.5)

Lemma 8.3 Let
{
S(t)

}
be a twin semigroup on a norming dual pair (Y, Y ⋄).

Assume (5.8) holds, i.e., assume that (Y ⋄, σ(Y ⋄, Y )) is sequentially complete.
Let q⋄ ∈ Y ⋄ be given. For y ∈ Y define

V (σ)y =

{
0 for σ = 0

q⋄S(σ)y for σ > 0.
(8.6)

Assume that for all y ∈ Y the function

σ 7→ V (σ)y

belongs to NBVloc

(
[0,∞),R

)
. Let F : [0,∞) → R be locally bounded and mea-

surable. Then there exists u⋄(t) ∈ Y ⋄ such that for all y ∈ Y

∫ t

0

F (t− σ) dσ
[
V (σ)y

]
= 〈u⋄(t), y〉. (8.7)

Lemma 8.4 Let
{
S(t)

}
be a twin semigroup on a norming dual pair (Y, Y ⋄).

Assume (5.9) holds, i.e., assume that a linear map
(
Y, σ(Y, Y ⋄)

)
→ R is contin-

uous if it is sequentially continuous. Let q⋄ ∈ Y ⋄ be given. Let F : [0,∞) → R

be of locally bounded variation. Then there exists u⋄(t) ∈ Y ⋄ such that for all
y ∈ Y ∫ t

0

F (dτ) q⋄S(t− τ)y = 〈u⋄(t), y〉. (8.8)
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9 The main ideas explained by formula mani-

pulation

In Section 6 we perturbed the abstract ODE

du

dt
∈ C0u (9.1)

by adding at the right hand side a bounded finite rank perturbation. Here,
instead, we shall add a relatively bounded finite rank perturbation. Again we
introduce qj ∈ Y , j = 1, . . . , n, to span the range of the perturbation. But the
coefficients are now of the form 〈Q⋄

j , C0u〉 for given Q⋄
j ∈ Y ⋄ (so we use a capital

letter to alert the reader that the element of Y ⋄ does now act on C0u, rather
than on u itself). Thus the aim is to study

du

dt
∈ C0u+ q ·Q⋄C0u (9.2)

with

q ·Q⋄C0u =

n∑

j=1

〈Q⋄
j , C0u〉qj . (9.3)

We assume that C0 is the generator of a twin semigroup {S0(t)} and our
aim is to construct a twin semigroup {S(t)} with a generator that has D

(
C0

)

as its domain of definition and action given by the right hand side of (9.2).
The construction starts from the variation-of-constants formula (cf. (6.5))

S(t) = S0(t) +

∫ t

0

S0(t− τ)q ·Q⋄C0S(τ) dτ, (9.4)

or from the variant (cf. (6.12))

S(t) = S0(t) +

∫ t

0

S(t− τ)q ·Q⋄C0S0(τ) dτ (9.5)

in which the roles of {S0(t)} and {S(t)} are interchanged. Again the construc-
tion is based on solving a finite dimensional RE, but now this RE involves the
Stieltjes integral and a bounded variation kernel (or, equivalently, a measure,
cf. Appendix A).

To see how the Stieltjes integral might come in, please recall Lemma 2.3 and
note that this suggests to replace the second term at the right hand side of (9.5)
by ∫ t

0

S(t− τ)q · dτQ
⋄
(
S0(τ)− I

)

when indeed τ 7→ Q⋄
(
S0(τ) − I

)
y is (N)BV for all y ∈ Y . Another option,

again motivated by Lemma 2.3, is to integrate the second term at the right
hand side of (9.4) by parts while assuming that τ 7→ y⋄S0(τ)q is BV for all
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y⋄ ∈ Y ⋄. The point of both options is to “neutralize” the unbounded operator
C0 and the price we pay is that we have to work with Stieltjes integrals.

Define V0(t) : Y → Rn by

V0(t)y = Q⋄C0

∫ t

0

S0(σ) dσy

= Q⋄
(
S0(t)− I

)
y (9.6)

and define a Rn×n-valued kernel K by

K(t) = Q⋄
(
S0(t)− I

)
q (9.7)

or, in more detail,
Kij(t) = Q⋄

i

(
S0(t)− I

)
qj . (9.8)

If we first change the integration variable in (9.4) to σ = t−τ , next integrate
both sides of the equation with respect to time, and finally apply Q⋄C0 to both
sides, we obtain the equation

V (t) = V0(t) +

∫ t

0

K(dσ)V (t− σ) (9.9)

with

V (t) = Q⋄C0

∫ t

0

S(τ) dτ. (9.10)

Here (9.9) is short hand for

V (t)y = V0(t)y +

∫ t

0

K(dσ)V (t− σ)y (9.11)

which is, for given y ∈ Y , an equation for the Rn-valued function t 7→ V (t)y.
Introducing the notation (cf. Theorem A.2 while taking Theorem A.1 into
account to switch back and forth between measures and NBV functions)

(
K ⋆ V

)
(t) :=

∫ t

0

K(dσ)V (t− σ), (9.12)

we can write (9.9), and hence (9.11), in the even more compact form

V = V0 +K ⋆ V. (9.13)

Let R be the resolvent of K, i.e., the unique solution of (cf. Theorem A.7)

K +R ⋆ K = R = K +K ⋆ R, (9.14)

then the solution of (9.13) is given by

V = V0 +R ⋆ V0. (9.15)
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Define W0(t) : Y
⋄ → Rn by

y⋄W0(t) = y⋄S0(t)q, for t > 0, (9.16)

with value zero for t = 0, where we allow ourselves once more the freedom of
writing the element of Y ⋄, on which the operator acts, to the left of the operator
itself. By applying (9.5) to q we obtain the equation

W (t) =W0(t) +

∫ t

0

W (t− τ)K(dτ) (9.17)

and accordingly we find for

W (t) = S(t)q, for t > 0, (9.18)

with value zero for t = 0, the formula

W (t) =W0(t) +

∫ t

0

W0(t− τ)R(dτ). (9.19)

Again we abbreviate and write (9.17) as

W =W0 +W ⋆K (9.20)

and (9.19) as
W =W0 +W0 ⋆ R. (9.21)

(Please note a notational difficulty: in principle we would like to indicate by the
order of the factors in the product which of the two factors is considered as a
measure, but, on the other hand, we also want to indicate by the order how the
matrix acts on the vector. In (9.20) and (9.21) we sacrificed the first in order
to realize the second.)

Motivated by (9.4) we now define

S(t) = S0(t) +

∫ t

0

W0(t− τ) · V (dτ) (9.22)

by which we mean that

y⋄S(t)y = y⋄S0(t)y +

∫ t

0

y⋄W0(t− τ) · V (dτ)y.

This is compatible with the formula

S(t) = S0(t) +

∫ t

0

W (t− τ) · V0(dτ) (9.23)

that is motivated by (9.5). (Because of (9.15) and (9.21) the checking amounts
to verifying

W0 ⋆
(
V0 +R ⋆ V0

)
=

(
W0 +W0 ⋆ R

)
⋆ V0

39



which is a direct consequence of the associativity and distributivity of the ⋆-
convolution product.)

To make all this work, we need in any case that the kernel K defined by
(9.7) is of bounded variation. In the next section we shall indeed assume that
t 7→ K(t) belongs to NBVloc (note that (9.7) is compatible with K(0) = 0).
The formulas (9.22) and (9.23) are based on the additional assumption that for
all y ∈ Y the function

t 7→ V0(t)y = Q⋄
(
S0(t)− I

)
y belongs to NBVloc. (9.24)

Note that (9.15) guarantees that this property of V0 is inherited by V , making
also (9.22) well-defined.

In Section 12, when applying the theory to renewal equations involving a
measure as kernel, we shall find that this assumption indeed holds. But in
Section 11, when dealing with NFDE (neutral functional differential equations),
we shall need to replace (9.22) and (9.23) by their counterparts

S(t) = S0(t) +

∫ t

0

W0(dσ) · V (t− σ) (9.25)

and

S(t) = S0(t) +

∫ t

0

W (dσ) · V0(t− σ) (9.26)

that are obtained by partial integration. Note carefully that (9.25) and (9.26)
are based on the definition

W0(0) = 0 and W (0) = 0 (9.27)

and therefore both of these have a jump of size q in zero, cf. (9.16) and (9.17).
By this we mean that both y⋄W0(t) and y

⋄W (t) have 〈y⋄, q〉 as limit for t ↓ 0.
When working with (9.25) or (9.26), we replace the earlier additional assumption
(9.24) by the new additional assumption that for all y⋄ ∈ Y ⋄

the function t 7→ y⋄W0(t) = y⋄S0(t)q belongs to NBVloc, (9.28)

where we define the function to be zero at t = 0, cf. (9.27).

10 Relatively bounded finite dimensional range

perturbation of twin semigroups

Throughout this section we assume

• {S0(t)} is a twin semigroup with generator C0;

• the elements qj ∈ Y and Q⋄
j ∈ Y ⋄, j = 1, 2, . . . , n, are such that for

i, j = 1, . . . , n the function

t 7→ Kij(t) := Q⋄
i

(
S0(t)− I

)
qj (10.1)

belongs to NBVloc
(
[0,∞);R

)
and is continuous in t = 0.
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Moreover, we use the following notation and definitions

• R denotes the resolvent of K, i.e., the solution of (9.14). Note that R too
is continuous in t = 0.

• V0(t) : Y → Rn is for t ≥ 0 defined by

V0(t) = Q⋄
(
S0(t)− I

)
. (10.2)

• W0(t) : Y
⋄ → Rn is for t > 0 defined by

W0(t) = S0(t)q (10.3)

and W0(0) = 0.

• V (t) : Y → Rn is for t ≥ 0 defined by

V (t) = V0(t) +

∫ t

0

R(dτ)V0(t− τ). (10.4)

• W (t) : Y ⋄ → Rn is for t > 0 defined by

W (t) =W0(t) +

∫ t

0

W0(t− τ)R(dτ) (10.5)

and W (0) = 0.

We now formulate two theorems. The first will be used in Section 12 to deal
with neutral RE. As we show in the next section, the second covers NFDE.

Theorem 10.1 Let (Y, Y ⋄) be a norming dual pair such that (5.8) and (5.5)
hold. Assume that t 7→ V0(t)y belongs to NBVloc

(
[0,∞);Rn

)
for all y ∈ Y .

Then the same holds for the function t 7→ V (t)y and

S(t) = S0(t) +

∫ t

0

W0(t− τ) · V (dτ) (10.6)

defines a twin semigroup with generator C given by

D
(
C
)
= D

(
C0

)
, Cy = C0y + 〈Q⋄, C0y〉 · q. (10.7)

Theorem 10.2 Let (Y, Y ⋄) be a norming dual pair such that (5.2) and (5.9)
hold. Assume that t 7→ y⋄W0(t) belongs to NBVloc

(
[0,∞);Rn

)
for all y⋄ ∈ Y ⋄.

Then the same holds for the function t 7→ y⋄W (t) and

S(t) = S0(t) +

∫ t

0

W (dτ) · V0(t− τ) (10.8)

defines a twin semigroup with generator C given by (10.7).
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Proof of Theorem 10.1. We follow the lines of the proof of Theorem 6.1, but
adapt the details to the somewhat different situation. In order to show that

(y⋄, y) 7→

∫ t

0

y⋄W0(t− τ) · V (dτ)y

defines a twin operator, we have to verify

(i) for given y ∈ Y , the linear functional on Y ⋄ defined by

y⋄ 7→

∫ t

0

y⋄W0(t− τ) · V (dτ)y

is represented by an element of Y and

(ii) for given y⋄ ∈ Y ⋄, the linear functional on Y defined by

y 7→

∫ t

0

y⋄W0(t− τ) · V (dτ)y

is represented by an element of Y ⋄.

To verify (i) we invoke Lemma 8.2 and to verify (ii) we invoke Lemma 8.3. So
S(t) defined by (10.6) is a twin operator and we proceed by verifying properties
(i)–(iv) of Definition 2.1.

We start with the semigroup property (i). Clearly S(0) = S0(0) = I. To
verify the semigroup property, we first derive (10.9), i.e., we show that

{
V (t)

}

is a cumulative output family [11] for the semigroup
{
S(t)

}
.

Lemma 10.3 We have

V (t+ s)− V (t) = V (s)S(t). (10.9)

Proof. From (9.11) we deduce that

V (t+ s)y − V (t)y = f(t, y) +

∫ s

0

K(dσ)
[
V (t+ s− σ)y − V (t)y

]
(10.10)

with

f(t, y) = V0(t+ s)y − V0(t)y +

∫ t+s

s

K(dσ)V (t+ s− σ)y

+K(s)V (t)y −

∫ t

0

K(dσ)V (t− σ)y. (10.11)

We claim that
f(t, y) = V0(s)S(t)y. (10.12)

If the claim is justified, we can write (10.10) as

U(s)y = V0(s)S(t)y +

∫ s

0

K(dσ)U(s− σ)y (10.13)

42



with
U(s)y := V (t+ s)y − V (t)y. (10.14)

Comparing (10.13) to (9.11) we conclude that

U(s)y = V (s)S(t)y (10.15)

which, on account of (10.14), amounts to (10.9).
To verify the claim, we first rewrite (10.11) as

f(t, y) = V0(s)S0(t)y +

∫ t

0

[
K(s+ dτ) −K(dτ)

]
V (t− τ)y +K(s)V (t)y

and observe that we need to show that

V0(s)
[
S(t)y − S0(t)y

]
=

∫ t

0

[
K(s+ dτ)−K(dτ)

]
V (t− τ)y +K(s)V (t)y.

The left hand side equals

Q⋄
(
S0(s)− I

) ∫ t

0

S0(t− τ)qV (dτ)y

=

∫ t

0

Q⋄
(
S0(t+ s− τ) − I − S0(t− τ) + I

)
q V (dτ)y

=

∫ t

0

[
K(t+ s− τ) −K(t− τ)

]
V (dτ)y.

Partial integration shows that this is equal to the right hand side. ⊔⊓

To prove the exponential estimate (ii) for y⋄S(t)y, first note that the ex-
ponential estimates for y⋄S0(t)y directly yield exponential estimates for V0(t)y,
y⋄W0(t) and K(t). The exponential estimate for R(t) follows from Theorem A.7
and the exponential estimate for K(t). Using (10.4) the exponential estimate
for V (t) follows from the exponential estimates for V0(t)y and R(t) together
with Theorem A.3. The exponential estimate for y⋄S(t)y now follows from the
exponential estimates for y⋄W0(t) and V (t) and again Theorem A.3.

The proof of (iii) that t 7→ y⋄S(t)y is measurable follows from the measura-
bility of both t 7→ y⋄S0(t)y and, using Theorem A.2,

t 7→

∫ t

0

y⋄W0(t− τ) · V (dτ)y.

It remains to prove (iv). In order to compute the Laplace transform, we use
the notation

K̂(λ) :=

∫ ∞

0

e−λτ K(dτ) (10.16)

and note that, since K(0) = 0, we have

K̂(λ) = λK(λ) (10.17)
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with K(λ) :=
∫∞

0
e−λτK(τ) dτ .

The relation
V (λ) =

(
I − K̂(λ)

)−1
V 0(λ) (10.18)

can either be derived from (9.9) or from (10.4) in combination with (9.14). From
(10.2) we deduce that

V 0(λ) = Q⋄
(
S0(λ)− λ−1I

)
(10.19)

and from (10.1) that

K̂(λ) = λK(λ) = λQ⋄S0(λ)q − 〈Q⋄, q〉. (10.20)

Laplace transformation of (10.6) yields, when using (10.3),

S(λ) = S0(λ) + λS0(λ)qV (λ). (10.21)

Since S0(λ) is a bounded bilinear map from Y ⋄×Y to R and V (λ) is a bounded
linear map from Y to Rn, (10.21) defines a bounded bilinear map from Y ⋄ × Y
to R as well as a bounded linear map from Y to Y (a perturbation of S0(λ)
with an operator with range spanned by S0(λ)q). From (10.18) and (10.19) it
follows that V (λ) is defined in terms of functionals that belong to Y ⋄. Hence
(10.21) defines as well a bounded linear operator from Y ⋄ to Y ⋄. We conclude
that (10.21) defines a twin operator and thus verified (iv) of Definition 2.1.

We proceed by showing that the right hand side of (10.21) equals (λI−C)−1

with C defined in (10.7). By combining (10.21), (10.18), (10.19) and (10.20) we
find that

S(λ) = S0(λ) + λS0(λ)q
(
I + 〈Q⋄, q〉 − λQ⋄S0(λ)q

)−1

×Q⋄
(
S0(λ)− λ−1I

)
. (10.22)

The equation (λI − C)z = y can be rewritten in the form

(λI − C0)z = y + 〈Q⋄, C0z〉q.

So it follows that

z = (λI − C0)
−1y + 〈Q⋄, C0z〉(λI − C0)

−1q

and hence that 〈Q⋄, C0z〉 should satisfy the equation

〈Q⋄, C0z〉 = 〈Q⋄, C0(λI − C0)
−1y〉+ 〈Q⋄, C0z〉〈Q

⋄, C0(λI − C0)
−1q〉.

So necessarily

〈Q⋄, C0z〉 =
(
I − 〈Q⋄, C0(λI − C0)

−1q〉
)−1

〈Q⋄, C0(λI − C0)
−1y〉.

Using
C0(λI − C0)

−1 = λ(λI − C0)
−1 − I
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we find that

z = (λI − C)−1y

= (λI − C0)
−1y +

[
I + 〈Q⋄, q〉 − λ〈Q⋄, (λI − C0)

−1q〉
]−1

× λ(λI − C0)
−1q〈Q⋄, (λI − C0)

−1y − λ−1y〉

= (λI − C0)
−1y +

[
I − K̂(λ)

]−1

× λ(λI − C0)
−1q〈Q⋄, (λI − C0)

−1y − λ−1y〉 (10.23)

Since (λI −C0)
−1 = S0(λ) this is identical to the right hand side of (10.22). ⊔⊓

Proof of Theorem 10.2. We follow the lines of the proof of Theorem 10.1, but
adapt the details. In order to show that

(y⋄, y) 7→

∫ t

0

y⋄W (dτ) · V0(t− τ)y

defines a twin operator, we have to verify

(i) for given y ∈ Y , the linear functional on Y ⋄ defined by

y⋄ 7→

∫ t

0

y⋄W (dτ) · V0(t− τ)y

is represented by an element of Y and

(ii) for given y⋄ ∈ Y ⋄, the linear functional on Y defined by

y 7→

∫ t

0

y⋄W (dτ) · V0(t− τ)y

is represented by an element of Y ⋄.

To verify (i) we invoke Lemma 8.1 and to verify (ii) we invoke Lemma 8.4.
So S(t) defined by (10.6) is a twin operator and the verification of properties
(ii)–(iv) of Definition 2.1 proceeds as in the proof of Theorem 10.1. ⊔⊓

Exactly as in Section 6, the special representation of the perturbed semigroup
S(t) given in respectively (10.6) and (10.8) allows us to derive a strong result
about the asymptotic behaviour of S(t).

Theorem 10.4 Let K be given by (10.1) and let S(t) be given by (10.6) or
(10.8) with generator C given by (10.7). Suppose that S0(t) is bounded and that
(λI − C0)

−1 is bounded for Reλ ≥ 0. If

inf
Re z≥0

∣∣det
(
I − K̂(z)

)∣∣ > 0, (10.24)

then
‖S(t)C−1‖ → 0 as t→ ∞. (10.25)

As a consequence we have that S(t)y → 0 as t → ∞ for every y in the norm-
closure of D

(
C
)
.

45



Proof. We first show that the semigroup S(t) is bounded. From the half-
line Gel’fand theorem, see Theorem (A.8), it follows that the resolvent R of K
belongs to NBV

(
[0,∞);Rn

)
. Fix y ∈ Y and y⋄ ∈ Y ⋄. Since S0(t) is a bounded

semigroup, t 7→ V0(t)y and t 7→ y⋄W0(t) are bounded Borel functions on [0,∞).
Suppose S(t) is given by (10.6). From the assumption that t 7→ V0(t)y be-

longs to NBVloc
(
[0,∞);Rn

)
and the fact that t 7→ V0(t)y is bounded, it follows

from TheoremA.5 that t 7→ V (t)y defined by (10.4) belongs toNBV
(
[0,∞);Rn

)

as well. Therefore, it follows from Theorem A.2 that there exists M ≥ 0 such
that |y⋄S(t)y| ≤M‖y⋄‖ ‖y‖.

Suppose S(t) is given by (10.8). From the assumption that t 7→ y⋄W0(t)
belongs to NBVloc

(
[0,∞);Rn

)
and the fact that t 7→ y⋄W0(t) is bounded,

it follows from Theorem A.5 that t 7→ y⋄W (t) defined by (10.5) belongs to
NBV

(
[0,∞);Rn

)
as well. Therefore it follows from Theorem A.2 that there

exists M ≥ 0 such that |y⋄S(t)y| ≤ M‖y⋄‖ ‖y‖ and this proves that S(t) is
bounded.

Finally, the representation (10.23) implies that, under the assumptions of
the theorem, (λI − C)−1 is bounded, for Reλ ≥ 0. This completes the proof
that S(t) is bounded and that σ(C)∩ iR = ∅. So an application of Theorem
2.4 yields the proof. ⊔⊓

11 NFDE – Neutral Functional Differential

Equations

Much of our motivation for developing the abstract perturbation theory of Sec-
tion 10 came from our interest in the NFDE

d

dt

[
x(t) −

∫

[0,1]

dη(σ)x(t − σ)
]
=

∫

[0,1]

dζ(σ)x(t − σ), t > 0, (11.1)

with initial condition

x(θ) = ϕ(θ), −1 ≤ θ ≤ 0. (11.2)

Here both η and ζ belong to NBV
(
[0, 1],Rn×n

)
and ϕ ∈ B

(
[−1, 0],Rn

)
. So we

work with the norming dual pair

Y = B
(
[−1, 0],Rn

)
, Y ⋄ = NBV

(
[0, 1],Rn

)
(11.3)

with pairing

〈y⋄, y〉 =

∫

[0,1]

dy⋄(σ) · y(−σ). (11.4)

The rows of both ζ and η are considered as elements of Y ⋄. Concerning η we
additionally assume that

η is continuous at zero, (11.5)
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the idea being that we normalize the jump at zero and write its contribution
separately as the term x(t) at the left hand side of (11.1).

The special case that η in (11.1) is identically zero was considered in Section
4. Here we take the twin semigroup constructed in that section as our starting
point. In order to stay in line with the framework of Section 10, we add an
index zero when referring to this “unperturbed” semigroup S0(t):

S0(t) is defined by the right hand side of (4.18) (11.6)

with generator

D
(
C0

)
= Lip

(
[−1, 0],Rn

)

C0ϕ =
{
ϕ′ ∈ Y | ϕ(θ) = ϕ(−1) +

∫ θ

−1

ϕ′(σ) dσ, ϕ′(0) = 〈ζ, ϕ〉
}
. (11.7)

Equivalently
S0(t)ϕ = z(t+ · ;ϕ), (11.8)

where z is the unique solution of (11.1)–(11.2) with η = 0.
As in (6.29) we define, for i = 1, . . . , n, the elements qi ∈ Y by

qi(θ) =

{
0 θ < 0

ei θ = 0,
(11.9)

where ei is the i-th unit vector in Rn. The elements Q⋄
i of Y ⋄ are defined by

Q⋄
i (θ) = ηi(θ), (11.10)

where ηi is the i-th row of the matrix valued function η.
The aim of the present section is to show that, with these definitions, the

twin semigroup
{
S(t)

}
defined in Theorem 10.2 is exactly the semigroup of

solution operators of (11.1)–(11.2) (here, as detailed below, solution refers to
the integral equation obtained from (11.1)–(11.2) by integration with respect to
time; it is straightforward to prove existence and uniqueness of a solution for
this integral equation, cf. [24, Theorem 9.1.2]).

At a formal level this is immediate: if we rewrite (11.1) as

ẋ(t) =

∫

[0,1]

dη(σ)ẋ(t− σ) +

∫

[0,1]

dζ(σ)x(t − σ)

and proceed as in the formal derivation of (4.11) from (4.1), we obtain

du

dt
∈ C0u+ q · 〈Q⋄, C0u〉

by making the crucial observation that, on account of (11.10) and (11.5), the
value of

(
C0u

)
(0) is irrelevant when evaluating the second term at the right

hand side.

47



The rigorous proof of the general case, presented below, involves an unpleas-
ant amount of formula manipulation. We therefore first present the proof for
the relatively simple situation that the kernel ζ in (11.1) is identically zero. In
that case we have (

S0(t)y
)
(θ) = y(t+ θ), (11.11)

where by definition y(t) = y(0) for t ≥ 0. Hence

V0(t)y = Q⋄
(
S0(t)− I

)
y

=

∫

[0,1]

dη(σ)
[
y(t− σ)− y(−σ)

]

=

∫

(t,1]

dη(σ)y(t− σ) + η(t)y(0)−

∫

[0,1]

dη(σ)y(−σ). (11.12)

It follows that
K(t) = V0(t)q = η(t). (11.13)

Moreover

y⋄W0(t) = y⋄S0(t)q =

∫

[0,1]

dy⋄(σ)q(t − σ)

=

∫

[0,t]

dy⋄(σ) = y⋄(t) (11.14)

(where now y⋄(t) = y⋄(1) for t ≥ 1, by definition) and accordingly

∫ t

0

y⋄W0(dτ) · V (t− τ)y =

∫ t

0

dy⋄(dτ) · V (t− τ)y. (11.15)

Let, for θ ∈ [0, 1],

y⋄θ(σ) =

{
0, 0 ≤ σ < θ;

(1, 1, . . . , 1)T , θ ≤ σ ≤ 1.
(11.16)

The identity

y⋄θS(t)y = y⋄θS0(t)y +

∫ t

0

y⋄θW0(dτ) · V (t− τ)y

reads

(
S(t)y

)
(−θ) =

(
S0(t)y

)
(−θ) +

{
0 if θ 6∈ [0, t]

V (t− θ)y if θ ∈ [0, t]

= y(t− θ) + V (t− θ)y χ[0,t](θ). (11.17)

So in order to establish that the twin semigroup of Theorem 10.2 is indeed the
semigroup of solution operators of (11.1), for the special case ζ = 0, we need to
verify that

V (t)y = x(t)− y(0). (11.18)
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By elementary operations one derives from (11.1) the equation

x(t) − y(0) =

∫

[0,t)

dη(σ)
[
x(t− σ)− y(0)

]
+ V0(t)y (11.19)

with V0(t)y as specified in (11.12). From (11.13), (9.9) and (11.19) it follows,
by uniqueness, that (11.18) holds. This completes the proof in the special case
when ζ = 0.

For the general case we have to replace (11.11) by
(
S0(t)y

)
(θ) = z(t+ θ), (11.20)

with z the solution of (4.15), as given in (4.17) in terms of the resolvent ρ of ζ
and f defined by (4.16). So (11.12) is replaced by

V0(t)y =
(
η ⋆ z

)
(t) + g(t) (11.21)

with

g(t) =

∫

(t,1]

dη(σ)y(t − σ)−

∫

[0,1]

dη(σ)y(−σ). (11.22)

For y = q we have f = I and hence for t ≥ 0

z(t) = I +

∫ t

0

ρ(τ) dτ.

Since g(0) = 0 for y = q we find

K(t) = V0(t)q =

∫

[0,t]

dη(σ)
[
I +

∫ t−σ

0

ρ(τ) dτ
]

= η(t) +

∫ t

0

η(σ)ρ(t − σ) dσ. (11.23)

For t > 0

y⋄W0(t) = y⋄S0(t)q =

∫

[0,1]

dy⋄(σ)
[
I +

∫ t−σ

0

ρ(τ) dτ
]
χσ≤t(σ)

= y⋄(t) +

∫ t

0

y⋄(σ)ρ(t− σ) dσ (11.24)

(so note that t 7→ y⋄W0(t) is actually continuous in t = 0!) and accordingly

∫ t

0

y⋄W0(dτ) · V (t− τ)y

=

∫ t

0

y⋄(dτ) · V (t− τ)y +

∫ t

0

dτ
[∫ τ

0

y⋄(σ)ρ(τ − σ) dσ
]
· V (t− τ)y

=

∫ t

0

y⋄(dτ) ·
[
V (t− τ)y +

∫ t−τ

0

ρ(θ)V (t− τ − θ)y dθ
]

(11.25)

49



(where in the last step we have used integration by parts).
So, repeating the argument embodied in (11.16) and (11.17), we find that

the general version of (11.18) reads

V (t)y +

∫ t

0

ρ(θ)V (t− θ) dθ = x(t)− z(t). (11.26)

We rewrite (11.1)–(11.2) as

x = η ⋆ x+ ζ ∗ x+ f + g

with f given by (4.16) and g by (11.23). Subtracting

z = ζ ∗ z + f

we obtain (using (11.21) in the second step)

x− z = η ⋆ x+ ζ ∗ (x− z) + g

= η ⋆ (x− z) + ζ ∗ (x− z) + V0.

Applying ρ∗ to both sides and using (4.13) we find

ζ ∗ (x− z) = ρ ∗ η ⋆ (x − z) + ρ ∗ V0

and accordingly we can rewrite the equation for x− z in the form

x− z = η ⋆ (x− z) + ρ ∗ η ⋆ (x − z) + V0 + ρ ∗ V0. (11.27)

The general equation (9.9) amounts, when K is given by (11.24), to

V = η ⋆ V + η ⋆ ρ ∗ V + V0

= η ⋆ (V + ρ ∗ V ) + V0.

So
ρ ∗ V = ρ ∗ η ⋆ V + ρ ∗ η ⋆ ρ ∗ V + ρ ∗ V0

and

V + ρ ∗ V = η ⋆ (V + ρ ∗ V ) + ρ ∗ η ⋆ (V + ρ ∗ V ) + V0 + ρ ∗ V0. (11.28)

Comparing (11.27) and (11.28) we deduce from the uniqueness of a solution
that (11.26) holds.

We summarize our conclusions as

Theorem 11.1 The semigroup of solution operators of (11.1)–(11.2), with the
assumption (11.5), is identical to the twin semigroup of Theorem 10.2 when the
specifications (11.3), (11.4), (11.6)/(11.8),(11.7),(11.9), and (11.10) are made.

Motivated by Theorem 10.4 we add a result about the asymptotic behaviour
for t→ ∞.
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Theorem 11.2 Suppose that η has no singular part (see (A.5)). The semigroup
of solution operators of (11.1)–(11.2) restricted to C

(
[−1, 0];Rn

)
is asymptoti-

cally stable if the following two conditions are satisfied

(i) det
[
zI −

∫ 1

0 e
−zσdζ(σ)

]
6= 0 for Re z ≥ 0;

(ii) infRe z≥0

∣∣det
[
I −

∫ 1

0
e−zσdη(σ)

]∣∣ > 0.

Proof. The first condition and Theorem 6.5 imply that the unperturbed
semigroup {S0(t)} is bounded. Furthermore, in the present setting K = η
and the second condition is equivalent to (10.24). Since in the present setting
the norm closure of D

(
C
)
equals C

(
[−1, 0];Rn

)
, the result follows from an

application of Theorem 10.4. ⊔⊓

In contrast to RFDE, general NFDE do not have smoothing properties
and it is a delicate question whether the semigroup of solution operators of
(11.1)–(11.2) is asymptotically stable under the assumptions of Theorem 11.2 on
B
(
[−1, 0];Rn

)
. The solutions of NFDE with an absolutely continuous measure

ζ do become continuous and Theorem 11.2 can be used to study the asymptotic
stability of the semigroup on B

(
[−1, 0];Rn

)
.

As an illustration, consider the following NFDE

d

dt

[
x(t) −

∫ 1

0

a(s)x(t− s) ds
]
= −cx(t) (11.29)

with c > 0 and
∫ 1

0
|a(s)| ds < 1.

Note that c > 0 implies that the first condition in Theorem 11.2 is satisfied

and that
∫ 1

0
|a(s)| ds < 1 implies that the second condition in Theorem 11.2 is

satisfied as well. Therefore, the zero solution of (11.29) is asymptotically stable.

12 RE - Renewal equations with BV kernels

If a cell divides into two daugther cells after a cell cycle of fixed length, and we
take this length as the unit of time, we may replace (7.1) by

b(t) = 2b(t− 1) (12.1)

when mortality is negligible. More generally we may consider

b(t) =

∫ 1

0

L(da)b(t− a), (12.2)

where the model ingredient L specifies the age-specific expected cumulative

number of offspring. (The motivation for writing the L factor first is that in the
generalization to systems of equations, L is a matrix and b is a vector.)

The assumption
L is continuous in a = 0 (12.3)
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reflects that instantaneous reproduction by a newborn individual is impossible.
It turns out to be useful to extend the domain of definition of L via

L(a) = 0 for a ≤ 0 and L(a) = L(1) for a ≥ 1. (12.4)

In terms of B defined by (cf. (7.17))

B(t) =

∫ t

0

b(τ) dτ, t > 0, (12.5)

we can write (12.2) as the neutral delay differential equation

B′(t) =

∫ 1

0

L(da)B′(t− a) (12.6)

Provided B′ is of bounded variation and B′
t is normalized to be zero in zero, we

can rewrite (12.6) as

B′(t) =

∫ 0

−1

(
L(−σ)− L(1)

)
B′

t(dσ). (12.7)

To verify this transformation, we fix t and show that we can interpret (12.6)
and (12.7) as convolution of measures. Note that L(−·)−L(1) ∈ NBV

(
R
)
and

so by Theorem A.1 there exists a measure µ such that

L(a)− L(1) = µ
(
(−∞, a]

)
. (12.8)

Also note that we can normalize B′ such that B′(a) = 0 for a ≥ t and again by
Theorem A.1 there exists a measure ν such that

B′(a) = ν
(
(−∞, a]

)
. (12.9)

An application of (A.8) now yields

B′(t) =

∫ 1

0

L(da)B′(t− a) =

∫

R

L(da)B′(t− a)

=

∫

R

µ(da) ν
(
(−∞, t− a]

)

=

∫

R

µ
(
(−∞, t− a]

)
ν(da) (by (A.8))

=

∫

R

(
L(t− a)− L(1)

)
B′(da)

=

∫

R

(
L(−σ)− L(1)

)
B′

t(dσ) (with t− a = −σ)

=

∫ 0

−1

(
L(−σ)− L(1)

)
B′

t(dσ)
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and this shows that the equations (12.6) and (12.7) are equivalent.
Now recall the definition of Y , Y ⋄ and C0 in (7.12), (7.13) and (7.21), re-

spectively. It appears that the right hand side of (12.7) can be written as

〈Q⋄, C0Bt〉

when we define
Q⋄(θ) = L(θ)− L(1), 0 ≤ θ ≤ 1. (12.10)

Thus we are led to believe that the theory of Section 10 applies to equation
(12.6). The aim of this section is to show that this is indeed the case by elabo-
rating the details.

We supplement (12.6) by the initial condition

B(θ) = ψ(θ), −1 ≤ θ ≤ 0 (12.11)

with ψ ∈ Y , so in particular B(0) = ψ(0) = 0. Integrating both sides of (12.6)
with respect to time from 0 to t, we obtain first

B(t) =

∫ 1

0

L(da)
[
B(t− a)−B(−a)

]
(12.12)

and next, using (12.11),

B(t) =

∫

[0,t]

L(da)B(t− a) + f(t) (12.13)

with

f(t) :=

∫

(t,1]

L(da)ψ(t− a)−

∫

[0,1]

L(da)ψ(−a). (12.14)

The resolvent R of L is the solution of (cf. Theorem A.7)

R(a) =

∫

[0,a]

L(a− σ)R(dσ) + L(a) (12.15)

which is consistent with R(0) = 0 and shows that R, just like L (recall (12.3)),
is continuous from the right in a = 0. Because of this property of both R and
L we have ∫

[0,a]

L(a− σ)R(dσ) =

∫

[0,a]

L(dσ)R(a− σ).

We also note that in general, i.e., even for systems, so for functions taking values
in R

n, ∫

[0,a]

L(a− σ)R(dσ) =

∫

[0,a]

R(dσ)L(a− σ)

whenever R is the resolvent of L, cf. Theorem A.7. According to Theorem A.9
the solution of (12.13) is given by

B(t) = f(t) +

∫

[0,t]

R(da)f(t− a). (12.16)
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Starting from the initial condition (12.11) we thus provided a constructive def-
inition of B(t) for t > 0. Clearly the definition of the operators S(t) in (7.19)
extends to the current situation. We want to identify these operators with the
semigroup of Theorem 10.1 when Y , Y ⋄, {S0(t)}, C0, q and Q⋄ are given by,
respectively, (7.12), (7.13), (7.20), (7.21), (7.23) and (12.10).

In (9.6) a family of maps V0(t) : Y → R was defined by

V0(t)ψ = Q⋄
(
S0(t)− I

)
ψ. (12.17)

Our first step will be to spell out the right hand side for the current situation.

Lemma 12.1 Let V0 be defined by (12.17), then

V0(t)ψ =

∫ 0

−1

ψ(dθ)
[
L(t− θ)− L(−θ)

]
. (12.18)

Proof. Since

Q⋄
(
S0(t)− I

)
ψ =

∫ −t

−1

dθψ(t+ θ)
[
L(−θ)− L(1)

]

−

∫ 0

−1

ψ(dθ)
[
L(−θ)− L(1)

]
,

the claim follows from
∫ −t

−1

dθψ(t+ θ)
[
L(−θ)− L(1)

]
=

∫ 0

t−1

ψ(dσ)
[
L(t− θ)− L(1)

]

=

∫ 0

−1

ψ(dθ)
[
L(t− θ) − L(1)

]

(where in the last step we used (12.4)). ⊔⊓

Corollary 12.2 For the kernel K = V0( · )q, cf. (9.7), we find

K(t) = L(t) (12.19)

Lemma 12.3 Let f be defined by (12.14), then

f(t) = V0(t)ψ. (12.20)

Proof. Extending ψ by zero for positive arguments, we can write (12.14) as

f(t) =

∫ 1

0

L(da)
[
ψ(t− a)− ψ(−a)

]

and next use partial integration to obtain

f(t) = L(1)
[
ψ(t− 1)− ψ(−1)

]
+

∫ 0

t−1

L(t− θ)ψ(dθ)−

∫ 0

−1

L(−θ)ψ(dθ)

=

∫ 0

−1

[
L(t− θ)− L(−θ)

]
ψ(dθ) = V0(t)ψ.

⊔⊓
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Corollary 12.4 Let B be defined by (12.16) then, by comparing (12.16) to
(9.15), we find

B(t) = V (t)ψ. (12.21)

Theorem 12.5 Let {S(t)} be the twin semigroup defined by (9.22), then

(
S(t)ψ

)
(θ) = B(t+ θ)−B(t) (12.22)

holds for the special case of Y , Y ⋄, {S0(t)}, C0, q and Q⋄ considered in this
section.

Proof. By pairing with step functions from Y ⋄ we deduce from (9.19) the
pointwise definition

(
S(t)ψ

)
(θ) =

(
S0(t)ψ

)
(θ) +

∫ t

0

(
S0(t− τ)q

)
(θ)V (dτ)ψ. (12.23)

For t+ θ ≤ 0 we have (
S0(t)ψ

)
(θ) = ψ(t+ θ)

and
(
S0(t− τ)q

)
(θ) = −1 for 0 ≤ τ ≤ t. Hence

(
S(t)ψ

)
(θ) = ψ(t+ θ)− V (t)ψ = ψ(t+ θ)−B(t).

For t+ θ > 0 we have
(
S0(t)ψ

)
(θ) = 0 and

(
S0(t− τ)q

)
(θ) = −1 for t+ θ < τ ≤ t

(and zero otherwise), showing that (12.23) holds. ⊔⊓

An application of Theorem 10.4, note that S0(t) defined by (7.20) is bounded
and identically zero for t ≥ 1, yields the following asymptotic stability result.

Theorem 12.6 Suppose that L has no singular part (see (A.5)). The twin
semigroup {S(t)} defined by (12.22) is asymptotically stable if

inf
Re z≥0

∣∣det
(
I −

∫ 1

0

e−zτL(dτ)
)∣∣ > 0. (12.24)

13 Discussion

When supplemented by an appropriate initial condition, a delay equation has,
as a rule, a unique solution. The proof consists of formulating a fixed point
problem and verifying the conditions of the contraction mapping theorem. Next
a semigroup of solution operators is defined by translation along the constructed
solution.

In pioneering fundamental work [23], J.K. Hale developed the qualitative
theory of delay equations along the lines of the corresponding theory for ODE,
but with due attention for the infinite dimensional character of the state space.
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The variation-of-constants formula is an essential instrument for building such
a theory. This formula involves both the right hand side of the equation (corre-
sponding to the derivative of the point value in zero of the function that describes
the current state, taking values in Rn) and integration. If one wants to work
with the Riemann-integral, the state space needs to be such that the semigroup
is strongly continuous. If one wants that the right hand side of the equation
corresponds to a well-defined bounded operator on the state space, this space
needs to be such that point evaluation is well defined and that point values are
not constrained by values in nearby points. As explained in the introduction,
these requirements are incompatible. So a fundamental difficulty arises. (In our
opinion, the challenge arising from this difficulty actually gives the theory of
delay equations its charm.)

As far as we know, until now state spaces have been chosen such that one
can work with the Riemann integral. In [23] the semigroup is strongly contin-
uous and the difficulty is addressed by introducing the fundamental solution
(corresponding to an initial condition that does NOT belong to the state space)
and letting the formula define the point values of the function that represents
the state. In [12], first an auxiliary space is introduced. This is in fact a dual
space ‘containing’ the fundamental solution. Next one checks that the weak*
Riemann integral defines an element of the original state space. In [36, 37] in-
tegrated semigroups are used to avoid the need of considering elements that do
not belong to the state space.

Here we have chosen to work with a state space Y that is ‘big’ enough to
contain the fundamental solution. This has two consequences

i) we lose strong continuity of the semigroups on Y

ii) the dual space Y ∗ does not allow a characterization that enables to rep-
resent the adjoint semigroup in a manner that provides information via
formula manipulation.

To overcome these difficulties, we have in a first step singled out an explicitly
characterized subspace Y ⋄ of the dual space Y ∗ that is both rich enough and not
too rich. By this we mean that the combination of Y and Y ⋄ forms a norming
dual pair, i.e., an element of Y is completely determined by the action of the
elements of Y ⋄ on it and, vice versa, an element of Y ⋄ is completely determined
by the action of the elements of Y on it. Integrals of functions in either one
of these spaces are next defined by integrating (after requiring measurability)
the scalar functions obtained by pairing with elements of the other space. This
yields elements of, respectively, Y ∗ and Y ⋄∗ and a priori it is not guaranteed
that these are represented by elements of, respectively, Y ⋄ and Y . To verify
that actually they are, we equip both spaces with a second topology, the weak
topology generated by the other space. Viewed thus as locally convex spaces,
one space is the dual of the other and the verification reduces to checking the
continuity of linear functionals with respect to the right topology. This is where
the dominated convergence theorem and additional assumptions enter the story.
In this paper we developed the relevant linear theory and showed that, with
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appropriate choice of Y and Y ⋄, it covers perturbation theory for both delay
differential equations and renewal equations, not only in the retarded, but also
in the neutral case.

We plan to extend our work in several directions. We are confident that
equations with infinite delay can be dealt with in the spirit of [16] and that
the proofs in [12] of the Principle of Linearized Stability, the Centre Manifold
Theorem et cetera, generalize, mutatis mutandae, to the nonlinear version of
the present setting. But this has to be checked, with special attention for the
neutral case.

For Renewal Equations it is not yet entirely clear what exactly qualifies as
‘the nonlinear version of the present setting’. And, on top of that, in population
dynamical models with individuals characterized by a multi-dimensional vari-
able (e.g., age and size) that can assume a continuum of birth values, we have
to deal with an infinite dimensional Renewal Equation. Ideally, we connect the
modelling and bookkeeping approach of [13, 14] to our nonlinear extension.

Acknowledgement A referee provided detailed constructive feedback, lead-
ing to substantial improvement of the manuscript. We are most thankful to this
anonymous referee.

Appendix A Renewal equations and their resol-

vents

In this appendix E denotes the Borel σ-algebra on [0,∞). For E ∈ E , we call a
sequence of disjoint sets {Ej} in E a partition of E if ∪∞

j=1 Ej = E. A complex
bounded Borel measure is a map µ : E → C such that µ(∅) = 0 and

µ(E) =

∞∑

j=1

µ(Ej),

for every partition {Ej} of E with the series converging absolutely. In the fol-
lowing we will often omit the adjective ‘bounded’. The total variation measure
|µ| of a complex Borel measure µ is given by

|µ|(E) = sup
{ n∑

j=0

|µ(Ej)| | n ∈ N, {Ej} a partition of E in E
}
. (A.1)

The vector space of complex Borel measures of bounded total variation is de-
noted by M

(
[0,∞)

)
. Provided with the total variation norm given by

‖µ‖TV = |µ|
(
[0,∞)

)
, (A.2)

the vector space M
(
[0,∞)

)
becomes a Banach space.
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If needed or handy, we extend measures on [0,∞) to measures on R by
defining them to be zero on (−∞, 0), i.e., we define µ(E) := µ(E ∩ [0,∞)) for
every Borel set E ⊂ R.

Let f : [0,∞) → C. For a given partition {Ej} of [0, t] with Ej = [tj−1, tj)
and 0 = t0 < t1 < · · · < tn = t. we define Tf : [0,∞) → [0,∞] by

Tf(t) := sup
n∑

j=1

|f(tj)− f(tj−1)|, (A.3)

where the supremum is taken over n ∈ N and all such partitions of [0, t]. The
extended real function Tf is called the total variation function of f . Note that
if 0 ≤ a < b, then Tf (b)− Tf (a) ≥ 0 and hence Tf is an increasing function.

If limt→∞ Tf(t) is finite, then we call f a function of bounded variation.
We denote the space of all such functions by BV . The space NBV ([0,∞)) of
normalized functions of bounded variation is defined by

NBV ([0,∞)) = {f ∈ BV | f is continuous from the right on (0,∞)

and f(0) = 0 }.

Provided with the norm
‖f‖TV := lim

t→∞
Tf(t) (A.4)

the space NBV ([0,∞)) becomes a Banach space. More generally, we define for
−∞ < a < b < ∞, the vector space NBV

(
[a, b]

)
to be the space of functions

f : [a, b] → C such that f(a) = 0, f is continuous from the right on the open
interval (a, b), and whose total variation on [a, b], given by Tf (b) − Tf (a) =
Tf(b), is finite. Provided with the norm ‖f‖TV := Tf (b), the space NBV

(
[a, b]

)

becomes a Banach space. We extend the domain of definition of a function
of bounded variation by defining f(t) = 0 for t < 0 if f ∈ NBV ([0,∞)) and
f(t) = 0 for t < a and f(t) = f(b) for t > b if f ∈ NBV

(
[a, b]

)
.

The following fundamental result, see [20, Theorem 3.29] provides the corre-
spondence between functions of bounded variation and complex Borel measures.

Theorem A.1 Let µ be a complex Borel measure on [0,∞). If f : [0,∞) → C

is defined by f(0) = 0 and f(t) = µ([0, t]) for t > 0, then f ∈ NBV ([0,∞)).
Conversely, if f ∈ NBV ([0,∞)) is given, then there is a unique complex Borel
measure µf such that µf ([0, t]) = f(t) for t > 0. Moreover |µf | = µTf

.

Given a function f ∈ NBV
(
[a, b]

)
with corresponding measure µf , we define

the Lebesgue-Stieltjes integral
∫
g df or

∫
g(x) f(dx) to be

∫
g dµf . Thus, a

Lebesgue-Stieltjes integral is a special Lebesgue integral and the theory for
the Lebesgue integral applies to the Lebesgue-Stieltjes integral. We embed
L1

(
[0,∞)

)
into M

(
[0,∞)

)
by identifying f ∈ L1

(
[0,∞)

)
with the measure µ

defined by

µ(E) =

∫

E

f(x) dx or, in short, µ(dx) = f(x)dx.
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From the Radon-Nikodym theorem it follows that we can split a scalar-,
vector-, or matrix-valued Borel measure µ on [0,∞) into three parts, the abso-
lutely continuous part, the discrete part, and the singular part:

µ(dx) = b(x) dx+

∞∑

k=1

akδxk
(dx) + µs(dx), (A.5)

where b ∈ L1([0,∞)) represents the absolutely continuous part of µ, ak are
absolutely summable constants and δxk

denotes the Dirac measure at xk, and
µs denotes the singular part of µ.

In this appendix we collect some results about the convolution of a measure
and a function and the convolution of two measures needed to study renewal
equations. For details and further results we refer to [20, 21].

Let B
(
[0,∞)

)
denote the vector space of all bounded, Borel measurable

functions f : [0,∞) → R. Provided with the supremum norm (denoted by
‖ · ‖), the space B

(
[0,∞)

)
becomes a Banach space. With B

(
[a, b]

)
we denote

the Banach space of all bounded, Borel measurable functions f : [a, b] → R

provided with the supremum norm.

The half-line convolution µ ⋆ f of a measure µ ∈ M([0,∞)) and a Borel
measurable function f is the function

(µ ⋆ f)(t) =

∫

[0,t]

µ(ds)f(t− s) (A.6)

defined for those values of t for which [0, t] ∋ s 7→ f(t− s) is |µ|-integrable.

The following result can be found in [21, Theorem 3.6.1(ii)].

Theorem A.2 If f ∈ B
(
[0,∞)

)
and µ ∈M

(
[0,∞)

)
, then the convolution of f

and µ satisfies µ ⋆ f ∈ B
(
[0,∞)

)
and

‖µ ⋆ f‖ ≤ ‖µ‖TV ‖f‖.

The half-line convolution µ ∗ ν of two measures µ, ν ∈M
(
[0,∞)

)
is defined

as the complex Borel measure that to each Borel set E ∈ E assigns the value

(µ ∗ ν)(E) =

∫

[0,∞)

µ(ds)ν
(
(E − s)+

)
, (A.7)

where (E − s)+ := {e− s | e ∈ E} ∩ [0,∞) (cf. [21, Definition 4.1.1]).
If χE is the characteristic function of the set E, then

ν((E − s)+) =

∫

[0,∞)

χE(σ + s)ν(dσ),

since [0,∞) ∋ σ 7→ χE(σ + s) is the characteristic function of (E − s)+. It
follows from Theorem A.2 that s 7→ ν(E− s)+) belongs to B

(
[0,∞)

)
and hence
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the definition of the convolution of two measures µ ∗ ν : E → C given in (A.7)
makes sense. Furthermore, using Fubini’s Theorem, we have the following useful
identity

µ ∗ ν(E) =

∫

[0,∞)

µ(ds)ν
(
(E − s)+

)

=

∫

[0,∞)

∫

[0,∞)

χE(σ + s)µ(ds)ν(dσ)

=

∫

[0,∞)

µ
(
(E − σ)+

)
ν(dσ) (A.8)

The following result can be found in [21, Theorem 4.1.2].

Theorem A.3 Let µ, ν ∈M
(
[0,∞)

)
.

(i) The convolution µ ∗ ν belongs to M
(
[0,∞)

)
and

‖µ ∗ ν‖TV ≤ ‖µ‖TV ‖ν‖TV .

(ii) For any bounded Borel function h ∈ B
(
[0,∞)

)
, we have

∫

[0,∞)

h(t)
(
µ ∗ ν

)
(dt) =

∫

[0,∞)

∫

[0,∞)

h(t+ s)µ(dt)ν(ds).

LetMloc

(
[0,∞)

)
denote the vector space of local measures, i.e., set functions

that are defined on relatively compact Borel measurable subsets of [0,∞) and
that locally behave like bounded measures: for every T > 0 the set function µT

defined by
µT

(
E
)
:= µ

(
E ∩ [0, T ]

)
, E ∈ E

belong to M
(
[0,∞)

)
. The elements ofMloc

(
[0,∞)

)
are called Radon measures.

Since the restriction to [0, T ] of µ∗ν depends only on the restrictions of µ and ν
to [0, T ], we can unambiguously extend the convolution product toMloc

(
[0,∞)

)
.

The following corollary to Theorem A.3 can be found in [21, Corollary 4.1.4].

Corollary A.4 Let µ, ν, ρ ∈Mloc

(
[0,∞)

)
.

(i) The convolution µ ∗ ν belongs to Mloc

(
[0,∞)

)
and for any T > 0

‖µT ∗ νT ‖TV ≤ ‖µT ‖TV ‖νT ‖TV .

(ii) For any locally bounded Borel function h ∈ B
(
[0,∞)

)
, we have

(
(µ ∗ ν) ⋆ h

)
(t) =

(
µ ⋆ (ν ⋆ h)

)
(t).

(iii) (µ ∗ ν) ∗ ρ = µ ∗ (ν ∗ ρ).
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Using the one-to-one correspondence between complex Borel measures and
functions of bounded variation, see Theorem A.1, we can combine the above
results to obtain the following theorem.

Theorem A.5 If f ∈ NBV ([0,∞)) and µ ∈ M([0,∞)), then the convolution
of µ and f satisfies µ ⋆ f ∈ NBV ([0,∞)) and

‖µ ⋆ f‖TV ≤ ‖µ‖TV ‖f‖TV .

Proof. If ν is the unique complex Borel measure such that f(t) = ν
(
[0, t]

)
) for

every t ∈ [0,∞), then with E = [0, t]

µ ⋆ f(t) =

∫

[0,t]

µ(ds)f(t− s)

=

∫

[0,t]

µ(ds)ν
(
[0, t− s]

)

=

∫

[0,∞)

µ(ds)ν
(
(E − s)+

)

=
(
µ ∗ ν

)
(E), (A.9)

where we have used (A.8). Since µ ∗ ν ∈M
(
[0,∞)

)
, we can use (A.9) to define

g : [0,∞) → R by
g(t) = µ ⋆ f(t) = µ ∗ ν

(
[0, t]

)
. (A.10)

According to Theorem A.1, the function g belongs to NBV ([0,∞)). Finally,
the norm estimate follows from Theorem A.3(i). ⊔⊓

We also need the following result.

Theorem A.6 Let µ ∈M
(
[0,∞)

)
and let f : [0,∞) → C be a bounded contin-

uous function.

(i) If f(0) = 0, then µ ⋆ f is a bounded continuous function and

‖µ ⋆ f‖ ≤ ‖µ‖TV ‖f‖.

(ii) If µ has no discrete part, then µ ⋆ f is a bounded continuous function and

‖µ ⋆ f‖ ≤ ‖µ‖TV ‖f‖.

Proof. To prove (i), observe first that if f(0) = 0, then we can extend f to a
continuous function on R by defining f(t) = 0 for t < 0. From (A.6) we obtain

∣∣(µ ⋆ f
)
(t+ h)−

(
µ ⋆ f

)
(t)

∣∣ ≤
∫

[0,max{t,t+h}]

|µ|(ds)
∣∣f(t+ h− s)− f(t− s)

∣∣

≤ ‖µ‖TV sup
0≤σ≤max{t,t+h}

∣∣f(σ)− f(σ − h)
∣∣.

Since f is continuous, for any t ≥ 0 the right hand side converges to zero as
h→ 0, showing that µ ⋆ f is continuous.
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To prove (ii), we first write

(
µ ⋆ f

)
(t) =

∫

[0,t]

µ(ds)f(t− s)

=

∫

[0,t]

µ(ds)
(
f(t− s)− f(0)

)
+ µ

(
[0, t]

)
f(0). (A.11)

If g(s) = f(s)− f(0), then g(0) = 0 and

∫

[0,t]

µ(ds)
(
f(t− s)− f(0)

)
=

∫

[0,t]

µ(ds)g(t− s)

and by the first part it follows that this term is continuous. Since µ has no
discrete part, the function t 7→ µ

(
[0, t]

)
f(0) is also continuous. This shows

that µ ⋆ f is a bounded continuous function and the norm estimate follows
from the corresponding estimate given in Theorem A.2. ⊔⊓

Let γ be a real number. For µ ∈ Mloc

(
[0,∞);Cn×n

)
we define the local

measure µγ ∈Mloc

(
[0,∞);Cn×n

)
by

µγ(E) =

∫

[0,T ]

χE(s)e
−γs µ(ds), (A.12)

for T large enough to guarantee that E ⊂ [0, T ] and where χE denotes the
characteristic function of E.

We continue with the existence of the resolvent ρ of a complex Borel measure
µ supported on [0,∞). See [21, Theorem 4.1.5].

Theorem A.7 Suppose that µ ∈ Mloc

(
[0,∞),Cn×n

)
. There exists a unique

measure ρ ∈ Mloc

(
[0,∞),Cn×n

)
satisfying either one (and hence both) of the

following identities
ρ− µ ∗ ρ = µ = ρ− ρ ∗ µ (A.13)

if and only if det
[
I − µ({0})

]
6= 0.

Furthermore, if there exists a positive real γ such that the measure µγ is a
bounded Borel measure, then there exists α with α ≥ γ such that ρα is a bounded
Borel measure. Here µγ and ρα are defined as in (A.12).

Proof. Suppose that there exists a measure ρ such that ρ − µ ∗ ρ = µ, then(
δ0 − µ

)
∗
(
δ0 + ρ

)
= δ0, where δ0 denotes the Dirac measure with as its value

the identity matrix at zero. Therefore,

[
I − µ({0})

][
I + ρ({0})

]
= I

and hence det
[
I − µ({0})

]
6= 0.

Next assume that det
[
I − µ({0})

]
6= 0. We first show that if ρ exists such

that (A.13) holds, then it is unique. Indeed, if there exist ρ̂ such that ρ̂−µ∗ρ̂ = µ
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, then

ρ = µ+ ρ ∗ µ = µ+ ρ ∗
(
ρ̂− µ ∗ ρ̂

)

= µ+ ρ ∗ ρ̂−
(
ρ ∗ µ

)
∗ ρ̂

= µ+
(
ρ− ρ ∗ µ

)
∗ ρ̂

= µ+ µ ∗ ρ̂ = ρ̂.

Because of the uniqueness of the solution ρ ∈Mloc

(
[0,∞),Cn×n

)
, it suffices

to show that for each T ∈ (0,∞) there is a measure ρ̂ ∈ M
(
[0, T ]

)
satisfying

the resolvent equation on [0, T ]:

(
ρ̂− µ ∗ ρ̂

)
T
= µT =

(
ρ̂− ρ̂ ∗ µ

)
T
. (A.14)

Furthermore, if γ ∈ R and µ ∈Mloc

(
[0,∞),Cn×n

)
and ν ∈ M

(
[0, T ]

)
satis-

fies
ν − µγ ∗ ν = µγ , (A.15)

then ρT = ν−γ satisfies (A.14). Indeed

µγ ∗ ν
(
[0, t]

)
=

∫

[0,∞)

e−γsµ(ds) ν
(
[0, t− s]

)

= e−γt

∫

[0,∞)

µ(ds) ν−γ
(
[0, t− s]

)

= e−γt
(
µ ∗ ν−γ

)(
[0, t]

)
.

Fix T > 0 and assume at first that µ({0}) = 0. By replacing µ by µγ with
γ chosen appropriately, we can assume without loss of generality that

∣∣µ
∣∣([0, T ]

)
< 1. (A.16)

Using this fact, we have that the map

ρ 7→ µ+ µ ∗ ρ

defines a contraction on the Banach space M
(
[0, T ]

)
for every T > 0. The

Banach contraction principle implies that the restriction to [0, T ] of the solution
ρ of (A.13) is the unique fixed point of this map. Furthermore using the iteration
method to approximate the fixed point, we have the following representation for
ρ

ρ =
∞∑

j=1

µ∗j , (A.17)

where µ∗j denotes the j-times convolution of µ with itself.
Next assume that A=µ({0}) 6= 0. It follows from det

[
I − A

]
6= 0 that we

can rewrite the resolvent equation

ρ− µ ∗ ρ = µ
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as
ρ = A(I −A)−1δ + ν + ν ∗ ρ, (A.18)

where
ν = (I −A)−1

(
µ−Aδ

)
(A.19)

satisfies ν({0}) 6= 0. Also note from (A.18) that ρ
(
{0}

)
= A(I−A)−1. Therefore

it follows from representation (A.17) with µ = ν that in case A = µ
(
{0}

)
6= 0,

we have the following representation for ρ

ρ = A(I −A)−1δ +

∞∑

j=1

ν∗j , (A.20)

where ν is given by (A.19). This completes the proof of the first part of the
theorem.

Finally, we prove the exponential estimate for the resolvent by modifying
the above contraction argument. If there exists a positive real γ such that the
measure µγ is a bounded Borel measure, then we can modify (A.16) and replace
µ by µα with α ≥ γ chosen such that

∣∣µα
∣∣([0,∞)

)
< 1. (A.21)

so that the map ν 7→ µα + µα ∗ ν is a contraction in M
(
[0,∞)

)
. This proves

that ν ∈ M
(
[0,∞)

)
. Since ρα = ν the proof of the theorem is complete. ⊔⊓

To give the precise asymptotic behaviour of the resolvent ρ, i.e., the case
that α = γ in Theorem A.7, we have to impose additional conditions on µ, see
Theorem A.8. We first need some preparations.

The Laplace transform µ̂ : C → Cn×n of a matrix-valued Borel measure µ
on [0,∞) is given by

µ̂(λ) =

∫

[0,∞)

e−λt µ(dt) (A.22)

and defined for those values of λ ∈ C for which the integral converges absolutely.
The Laplace transform f̄ : C → Cn×n of a vector-valued Borel function

f : [0,∞) → Cn is given by

f̄(λ) =

∫

[0,∞)

e−λtf(t) dt (A.23)

and defined for those values of λ ∈ C for which the integral converges absolutely.
If µ ∈Mloc

(
[0,∞),Cn×n

)
and µ̂(λ0) exists for some λ0 ∈ C, then µ̂(λ) is de-

fined in the closed half plane Reλ ≥ Reλ0. Furthermore, if f ∈ B
(
[0,∞),Cn

)
,

then (
µ ⋆ f

)
(λ) = µ̂(λ)f̄(λ)

for all λ ∈ C for which both µ̂(λ) and f̄(λ) are defined.
The following result, the so-called half-line Gel’fand theorem (see [21, The-

orem 4.4.3 and Corollary 4.4.7]), gives a precise estimate for the growth of the
resolvent of µ.
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Theorem A.8 Suppose µ ∈ Mloc

(
[0,∞),Cn×n

)
has no singular part and is

such that µγ is a bounded Borel measure. Let ρ ∈ Mloc

(
[0,∞),Cn×n

)
denote

the unique solution of (A.13). If

det
(
I − µ̂(z)

)
6= 0 for Re z ≥ γ (A.24)

and
inf

Re z≥γ

∣∣∣ det
(
I − µ̂d(z)

)∣∣∣ > 0, (A.25)

or combined in one condition

inf
Re z≥γ

∣∣∣det
(
I − µ̂(z)

)∣∣∣ > 0, (A.26)

then ργ is a bounded Borel measure.

Let NBVloc
(
[0,∞);Cn

)
denote the vector space of complex Borel functions

f : [0,∞) → Cn such that for every T > 0 the function fT : [0,∞) → Cn defined
by

fT (t) :=

{
f(t), when 0 ≤ t ≤ T ;

f(T ), when t ≥ T.

belongs to NBV
(
[0,∞)

)
.

We conclude this appendix summarizing the results developed in this section
when applied to the renewal equation

x(t) =

∫

[0,t]

µ(ds)x(t− s) + f(t), for t ≥ 0, (A.27)

for various classes of forcing functions f .
The following theorem summarizes some relevant results [21, Theorem 4.1.7].

Theorem A.9 Let µ ∈Mloc

(
[0,∞),Cn×n

)
with det

[
I − µ({0}

]
6= 0.

(i) For every f ∈ Bloc

(
[0,∞),Cn

)
, the renewal equation (A.27) has a unique

solution x ∈ Bloc

(
[0,∞),Cn

)
given by

x = f + ρ ⋆ f,

where ρ satisfies (A.13) and is given by (A.17). Furthermore, if f is locally
absolutely continuous, then the solution x is locally absolutely continuous
as well.

(ii) If f ∈ NBVloc
(
[0,∞),Cn

)
, then x ∈ NBVloc

(
[0,∞),Cn

)
.

(iii) If f ∈ C
(
[0,∞),Cn

)
and f(0) = 0, then x ∈ C

(
[0,∞),Cn

)
.

(iv) If the kernel µ has no discrete part and if f ∈ C
(
[0,∞),Cn

)
, then x ∈

C
(
[0,∞),Cn

)
.
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Proof. Standard arguments show that the solution of the renewal equation
(A.27) is given by x = f + ρ ⋆ f , where ρ denotes the resolvent of µ given by
Theorem A.7. So (i) follows from Theorem A.2. To prove (ii), first note that it
follows from Theorem A.5 that x is locally of bounded variation. If f is locally
absolutely continuous, then f is the integral of a locally L1-function. Using the
representation x = f + ρ ⋆ f and Fubini’s Theorem, we derive that x is the
integral of a locally L1-function as well. Therefore it follows that x is locally
absolutely continuous. Furthermore, (iii) follows from Theorem A.6 (i). Finally,
if µ, ν ∈Mloc

(
[0,∞)

)
, then the discrete part of µ ∗ ν is given by the sum

(
µ ∗ ν

)
d
=

∞∑

k=1

∞∑

l=1

pkqlδtk+tl . (A.28)

In particular, we conclude that if either µ or ν has no discrete part, then
the convolution µ ∗ ν also has no discrete part. In particular, if µ has no
discrete part, then it follows from (A.13) that the resolvent ρ has no discrete
part. Thus (iv) follows from Theorem A.6 (ii) ⊔⊓

If the measure µ has no singular part, then an application of Theorem A.8
yields the following corollary.

Corollary A.10 Suppose that µ ∈ M
(
[0,∞);Cn×n

)
has no singular part and

satisfies

inf
Re z≥0

∣∣∣ det
(
I − µ̂(z)

)∣∣∣ > 0. (A.29)

(i) For every f ∈ B
(
[0,∞),Cn

)
, the renewal equation (A.27) has a unique

solution x ∈ B
(
[0,∞),Cn

)
given by

x = f + ρ ⋆ f,

where ρ satisfies (A.13). Furthermore, if f is absolutely continuous, then
the solution x is absolutely continuous as well.

(ii) If f ∈ NBV
(
[0,∞),Cn

)
, then x ∈ NBV

(
[0,∞),Cn

)
.

Appendix B The norming dual pair (B,NBV )

In the study of delay differential equations, the natural dual pair is given by

Y = B
(
[−1, 0],Rn

)
and Y ⋄ = NBV

(
[0, 1],Rn

)
(B.1)

with the pairing

〈y⋄, y〉 =

∫

[0,1]

y⋄(dσ) · y(−σ). (B.2)

Here Y is provided with the supremum norm and Y ⋄ with the total variation
norm (see (A.4)).
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In the study of renewal equations, the natural dual pair is given by

Y = NBV
(
[−1, 0],Rn

)
and Y ⋄ = B

(
[0, 1],Rn

)
(B.3)

with the pairing

〈y⋄, y〉 =

∫

[−1,0]

y(dσ) · y⋄(−σ). (B.4)

Returning to (B.1)–(B.2), we first make two trivial, yet useful, observations:
fix 1 ≤ i ≤ n and −1 ≤ θ ≤ 0,

∫

[0,1]

y⋄(dσ) · y(−σ) = yi(θ), (B.5)

if y⋄j (σ) = 0, 0 ≤ σ ≤ 1, j 6= i, and y⋄i (σ) = 0 for 0 ≤ σ < −θ and y⋄i (σ) = 1 for
σ ≥ −θ, and similarly

∫

[0,1]

y⋄(dσ) · y(−σ) = y⋄i (−θ), (B.6)

if yj(−σ) = 0, 0 ≤ σ ≤ 1, j 6= i, and yi(−σ) = 1 for 0 ≤ σ ≤ −θ and
yi(−σ) = 0 for σ > −θ. The point is that, consequently, in case of (B.1)–
(B.2), convergence in both

(
Y, σ(Y, Y ⋄)

)
and

(
Y ⋄, σ(Y ⋄, Y )

)
entails pointwise

convergence (in, respectively, B
(
[−1, 0],Rn

)
and NBV

(
[0, 1],Rn

)
).

In the first case, the dominated convergence theorem implies that, con-
versely, a bounded pointwise convergent sequence in B

(
[−1, 0],Rn

)
converges in(

Y, σ(Y, Y ⋄)
)
. For NBV

(
[0, 1],Rn

)
, this is not so clear. It is true that the point-

wise limit of a sequence of functions of bounded variation is again of bounded
variation (Helly’s theorem), but there is no dominated convergence theorem for
measures.

The purpose of this appendix is to show that the dual pairs given, respec-
tively, by (B.1) and (B.2) and by (B.3) and (B.4) are norming dual pairs suitable
for twin perturbation, cf. Definition 5.3.

Theorem B.1 The dual pair given by (B.1) and (B.2) is a norming dual pair,
i.e.,

‖y‖ = sup
{
|〈y⋄, y〉| | y⋄ ∈ Y ⋄, ‖y⋄‖ ≤ 1

}

‖y⋄‖ = sup
{
|〈y⋄, y〉| | y ∈ Y, ‖y‖ ≤ 1

}

such that (5.2) and (5.9) are satisfied, i.e.,

(i) (Y, σ(Y, Y ⋄)) is sequentially complete;

(ii) a linear map (Y, σ(Y, Y ⋄)) → R is continuous if it is sequentially contin-
uous.
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Before we can prove the theorem we need to present some notions from the
theory of Riesz spaces.

A Riesz space Y is a real vector space equipped with a lattice structure,
i.e., a partial ordering compatible with the vector space structure such that
each pair of vectors x, y ∈ Y has a supremum or least upper bound denoted by
sup{x, y} ∈ Y . For a given vector y in a Riesz space, the absolute value |y| ∈ Y
is defined by |y| = sup{y,−y}.

The Banach spaces Y = B
(
[−1, 0],Rn

)
and Y = NBV

(
[−1, 0],Rn

)
are Riesz

Banach spaces when the ordering is defined pointwise and componentwise, i.e.,
f ≤ g whenever

Pjf(θ) ≤ Pjg(θ) for each θ ∈ [−1, 0] and 1 ≤ j ≤ n,

where Pj : Rn → R denotes the projection onto the jth-coordinate of a n-
vector. The corresponding absolute value function |f | : [−1, 0] → Rn is defined
componentwise by

Pj |f |(θ) := sup{fj(θ),−fj(θ)} for θ ∈ [−1, 0] and 1 ≤ j ≤ n.

A sequence {fn} in a Riesz space Y is order bounded from above if there
is a g ∈ Y such that fn ≤ g. A sequence {fn} is called decreasing to zero if
infn≥1{fn} = 0 and n ≥ m implies 0 ≤ fn ≤ fm. Furthermore, a sequence {fn}
in a Riesz space Y converges in order to f ∈ Y if there is a sequence {gn} in Y
that is decreasing to zero and such that

|f − fn| ≤ gn, for all n ≥ 0. (B.7)

A linear functional Λ : Y → R on a Riesz space Y is σ-order continuous if
Λ(fn) → 0 in R for every sequence {fn} in Y that converges to zero in order.
The vector space of all σ-order continuous linear functionals is called the σ-order
continuous dual of Y , cf. [1, Definition 8.26].

The following result [1, Theorem 14.5] is an essential ingredient of the proof
of Theorem B.1.

Theorem B.2 The σ–order continuous dual of B
(
[−1, 0],Rn

)
is represented

by NBV
(
[0, 1],Rn

)
.

Proof. In the proof we use the fact that the norm dual of a Riesz Banach space
is again a Riesz Banach space (cf, [1, Theorem 9.27 and Theorem 14.2]). So, in
particular, if Λ is a bounded linear functional on B

(
[−1, 0],Rn

)
, then it has an

absolute value |Λ| in the norm dual of B
(
[−1, 0],Rn

)
. Let 1 ∈ B

(
[−1, 0],Rn

)

denote the function which is constant one in all components. Since the unit ball
in B

(
[−1, 0],Rn

)
coincides with the order interval [−1,1], i.e.,

[−1,1] =
{
f ∈ B

(
[−1, 0],Rn

)
| −1 ≤ f ≤ 1

}
,

we have that if Λ is a bounded linear functional on B
(
[−1, 0],Rn

)
, then

‖Λ‖ =
∥∥|Λ|

∥∥ = sup
f∈[−1,1]

∣∣|Λ|(f)
∣∣ = |Λ|(1). (B.8)
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Furthermore an order bounded sequence fn in B
(
[−1, 0],Rn

)
converges in

order to f if and only if

fn(x) → f(x), for all x ∈ [−1, 0]. (B.9)

Indeed if for some ǫ > 0 and x ∈ [−1, 0] we have that |f(x) − fn(x)| > ǫ, then
gn ≥ ǫχ{x}, but gn is a sequence decreasing to zero and this is a contradiction.

Step 1. We first show that if Λ is a bounded linear functional on B
(
[−1, 0],Rn

)
,

then the set function µΛ defined by

µΛ(A) = Λ(χA) for any Borel set A (B.10)

is a finitely additive signed measure of bounded variation.
Indeed from the linearity of Λ it is clear that µΛ is a finitely additive real-

valued set function. To see that µΛ is of bounded variation, let {E1, . . . , En} be
a partition of [−1, 0], then it follows from (B.8)

n∑

i=1

|µΛ(Ei)| =
n∑

i=1

∣∣Λ(χEi
)
∣∣ ≤

n∑

i=1

|Λ|(χEi
)

=
∣∣Λ

∣∣(
n∑

i=1

χEi

)
=

∣∣Λ
∣∣(1) = ‖Λ‖

which implies that µΛ is of bounded variation.
As a side remark we mention that the norm dual of B

(
[−1, 0],Rn

)
is actually

represented by the Riesz Banach space of all finitely additive signed measures
of bounded variation (cf. [1, Theorem 14.4]).

Step 2. We next show that µΛ is a Borel measure if and only if Λ is a σ-order
continuous linear functional. Assume first that Λ is σ-order continuous and let
{Ei} be a pairwise disjoint sequence of Borel measurable sets. Put

E =
∞⋃

i=1

Ei and Fn =
n⋃

i=1

Ei

and note from (B.9) that χFn
converges in order to χE . Since Λ is σ-order

continuous, it follows that

n∑

i=1

µΛ(Ei) = Λ(χFn
) → Λ(χE) = µΛ(E),

which shows that µΛ is σ-additive.
Conversely, assume that µΛ is a complex Borel measure. Let fn be a sequence

that converges to zero in order in B
(
[−1, 0],Rn

)
. This implies that fn is order

bounded and it follows from (B.9) that fn → 0 pointwise. Thus the Lebesgue
dominated convergence theorem implies that

Λ(fn) =

∫

[−1,0]

fn dµΛ → 0,

proving that Λ is σ-order continuous. ⊔⊓
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Proof of Theorem B.1. The proof consists of three parts.

Part I. In this part we prove that (Y, Y ⋄) is a norming dual pair. From
Theorem A.2 that it follows that for every y⋄ ∈ Y ⋄ and y ∈ Y

∣∣
∫

[0,1]

y⋄(dσ) · y(−σ)
∣∣ ≤ ‖y⋄‖ ‖y‖. (B.11)

By considering step functions for y⋄, i.e., Dirac point measures by Theorem A.1,
we obtain

‖y‖ = sup
x∈[−1,0]

|y(x)| = sup
{
|〈y⋄, y〉| | y⋄ ∈ Y ⋄, ‖y⋄‖ ≤ 1

}
. (B.12)

On the other hand, fix y⋄ ∈ Y ⋄ and let µ = µy⋄ be the corresponding Borel
measure according to Theorem A.1.

If P = {Ej}nj=1 is a partition of [−1, 0] into finitely many, pairwise disjoint,
measurable sets Ej , then

yP =

n∑

j=1

sgnµ(−Ej)χEj
(B.13)

is a bounded Borel function on [−1, 0] with norm ‖yP‖ ≤ 1. Furthermore,

〈y⋄, yP〉 =
n∑

j=1

|µ(−Ej)|, (B.14)

and taking the supremum over all such finite partitions P of [−1, 0] we arrive at

‖y⋄‖ = sup
{
|〈y⋄, yP〉| | P a finite partition of [−1, 0]

}
. (B.15)

This shows that the pair (Y, Y ⋄) is a norming dual pair.

Part II. In this part we prove that (Y, σ(Y, Y ⋄)) is sequentially complete.
Let {yn} be a Cauchy sequence in (Y, σ(Y, Y ⋄)). Since step functions belong
to Y ⋄ it follows that {yn(x)} is, for every x ∈ [−1, 0], a Cauchy sequence in R.
Since R is complete, we have that

lim
n→∞

yn(x) exists pointwise for x ∈ [−1, 0].

The pointwise limit of measurable functions is measurable, so it only remains
to check the uniform boundedness of the sequence. From the Cauchy property,
it follows that the sequence {yn} is bounded in (Y, σ(Y, Y ⋄)), i.e.,

sup
n

|〈y⋄, yn〉| <∞ for any y⋄ ∈ Y ⋄

and by considering the sequence {yn} in Y as a sequence in Y ⋄∗, the uniform
boundedness principle implies that

sup
n≥1

‖yn‖ is bounded.
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Therefore the sequence {yn} is bounded in the supremum norm and hence the
pointwise limit defines a bounded Borel function.

This shows that (Y, σ(Y, Y ⋄)) is sequentially complete.

Part III. In this part we prove that a linear map (Y, σ(Y, Y ⋄)) → R is
continuous if it is sequentially continuous. Let Λ : (Y, σ(Y, Y ⋄)) → R be a
sequentially continuous linear map. An application of Theorem B.2 shows that
in order to prove that Λ belongs to Y ⋄ it suffices to prove that Λ is σ-order
continuous.

Let {yn} a sequence in Y that converges to zero in order. To prove that
Λ(yn) → 0 we first observe that if yn → 0 in order then because of (B.9) yn
converges pointwise to zero. Hence yn → 0 in

(
Y, σ(Y, Y ⋄)

)
(see the discussion in

the paragraph before Theorem B.1). Since Λ is sequentially continuous it follows
that Λ(yn) → 0. This proves that Λ is σ-order continuous. Thus it follows from
the characterization of Y ⋄ in Theorem B.2 that Λ belongs to Y ⋄. This completes
the proof that Λ is continuous if it is sequentially continuous in (Y, σ(Y, Y ⋄)). ⊔⊓

Since reflection [0, 1] ∋ t 7→ −t ∈ [−1, 0] induces an isometric isomorphism,
it follows from Theorem B.1 that B

(
[0, 1],Rn

)
and NBV

(
[−1, 0],Rn

)
form a

norming dual pair as well. Furthermore note that, according to the definition,
(Y, Y ⋄) is a norming dual pair if and only if (Y ⋄, Y ) is a norming dual pair.
Therefore, we also have the following corollary to Theorem B.1.

Theorem B.3 The dual pair given by (B.3) and (B.4) is a norming dual pair
such that (5.5) and (5.8) hold, i.e.,

(i) a linear map (Y ⋄, σ(Y ⋄, Y )) → R is continuous if it is sequentially con-
tinuous.

(ii) (Y ⋄, σ(Y ⋄, Y )) is sequentially complete;

Note that if the dual pair is given by (B.3) and (B.4), then the weak topology
σ(Y, Y ⋄) on Y is strictly stronger than the weak∗ topology on Y as can be seen
from the fact that for every f ∈ C

(
[0, 1];Rn

)

〈f, δxn
〉 = f(xn) → f(x) = 〈f, δx〉 as n→ ∞ (B.16)

and hence δxn
→ δx in the weak∗ topology on Y if xn → x in [−1, 0], whereas

δxn
6→ δx in σ(Y, Y ⋄) since (B.16) does not hold for every f ∈ B

(
[0, 1];Rn

)
.

We end this appendix with some more detailed information about norming
dual pairs and their topologies. Given a norming dual pair (Y, Y ⋄), we call a
topology τ on Y consistent (with the duality) if Y ⋄ is the dual space of (Y, τ).
By the Mackey-Arens theorem [1, Theorem 5.112], a consistent topology τ is
finer than the weak topology σ(Y, Y ⋄) and coarser than the Mackey topology
τ(Y, Y ⋄), the finest topology on Y that preserves the continuous dual. Note
that the Mackey topology τ(Y, Y ⋄) allows the largest collection of continuous
functions on Y and all consistent topologies have the same bounded sets [1,
Theorem 6.30].
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Furthermore, if Y ⋄ = Y ∗, then the Mackey topology τ(Y, Y ∗) on Y corre-
sponds to the norm topology on Y , cf. [1, Corollary 6.23].

For the dual pair given by (B.1) and (B.2), the topological space (Y, τ(Y, Y ⋄))
has been studied in [5, 43] and plays an important role in the theory of Markov
processes, cf. [1, Chapter 19] and [34].

A topological space (Y, τ(Y, Y ⋄)) is called semi-bornological whenever full
and sequential continuity of its linear forms is equivalent, cf. [42, IV.3, p. 131].

The following result [5, Proposition E.2.4] shows that (5.2) and (5.9) hold
as well with respect to the Mackey topology.

Theorem B.4 Let

Y = B
(
[−1, 0],Rn

)
and Y ⋄ = NBV

(
[0, 1],Rn

)
.

The topological space (Y, τ(Y, Y ⋄)) is semi-bornological and τ(Y, Y ⋄)-sequentially
complete.

In this paper we have formulated our assumptions with respect to the weak
topology σ(Y, Y ⋄), but we could have formulated (5.2) and (5.9) or (5.5) and
(5.8) with respect to any consistent topology and hence, in particular, with
respect to the Mackey topology τ(Y, Y ⋄). This yields, strictly speaking, stronger
results. But we feel that the formulation in terms of the weak topology is easier
to digest by people working with delay equations.
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