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1
Introduction

I n the face of climate change, an energy transition is taking place, which af-
fects the way the world produces and consumes energy. Electricity and heat
generation are responsible for a large share of the world’s total greenhouse gas

emissions (World Resources Institute 2022). The electrification of heat demand
and transportation is an important part of the global effort to reduce the carbon
footprint of our energy use.

With the increasing reliance on electricity for our energy needs, the strain on the
electrical grid increases as well. At the same time, the growing share of renewable
sources in electricity generation changes the characteristics of the supply. These
parallel developments require large investments in all levels of the electrical grid
to accommodate the transition (Enexis 2024; Liander 2023; Stedin 2024; TenneT
2024a,b). Besides that, more efficient use of the grid is required.

It is essential to manage the supply and demand of electricity. Supply and demand
should align as well as possible, both in time and location. We think scheduling
approaches have a role to play in this. The efficient planning of scarce resources,
which lies at the heart of operations research and scheduling, is a key issue here. In
this thesis, we will consider the application of scheduling techniques to problems
that are inspired by the challenges posed by the energy transition.

1.1. Energy transition

T he main driver behind the energy transition is the commitment to reduce
greenhouse gas emissions. A reduction of overall energy consumption con-
tributes to this goal. Moreover, it requires a transition away from the use

of fossil fuels, while the consumption of energy from renewable sources will grow.
Especially for heating and transportation, fossil fuels are currently being used as
the main source of energy, but increasingly a move towards electricity is taking

3
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Figure 1.1: Average hourly demand in the Netherlands. Times are in Coordinated
Universal Time (UTC). Data from ENTSO-E (2024).

place. This is exemplified by the increasing number of heat pumps installed, and
the growth of the number of electric vehicles.

This development is clearly visible in the statistics on energy use in the Nether-
lands. While the total demand for energy is showing a downward trend (CBS
2023), the demand for electricity does not (CBS et al. 2024). This trend is ex-
pected to continue in the (near) future (PBL et al. 2022). An increasingly large
share of our energy demand is met by renewable sources. In the Netherlands, this
share rose from 13% in 2021 to 15% in 2022 (Brandenburg et al. 2023). If we only
consider the generation of electricity, these percentages are even higher: 33.4%
and 39.8%, respectively.

These developments come with a set of complicated challenges. They cause a
change in the patterns of usage and generation. In Figure 1.1, we show the aver-
age electricity demand in the Netherlands for January and July. These patterns
are representative of the average demand on winter and summer days, respectively.
A coal- or gas-fired power plant can match these patterns closely. Some renew-
able energy sources, such as wind and solar power, that depend on the weather
conditions for their production, cannot, however. See for example the production
curve of solar panels in Figure 1.2. Whereas historically power production was
largely controllable, this is no longer the case for an increasingly large share of the
energy sources that are used to satisfy electricity demand. As a result, the peaks
in electricity consumption and production do not match without intervention. The
weather dependence of most renewable sources causes the supply to be uncertain
and variable. Furthermore, the production of electricity is no longer limited to
a few large power stations, but happens all across the grid. All of these factors
together make clear that operating the electrical grid is becoming more and more
challenging.

Grid operators are already forced to limit the number of new connections to the
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grid that they can accommodate. See Figure 1.3 for an overview of these limita-
tions in the Netherlands, in January 2024. Large investments in the expansion and
adaptation of the electricity grid are unavoidable. This is an expensive operation,
that takes a long time to complete.

Again, other efforts can and have to be made as well to align electricity supply
and demand better, both on the (inter)national and the local level. One way to
bridge the gap between supply and demand is storing electrical energy. However,
the capacity for this is currently very limited. Storing electrical energy will be part
of the solution, as storage capacity will increase in the future, but for reasons of
efficiency, it remains preferable to use the electricity when it is generated, without
the need for storage in between. Therefore, electricity supply and demand should
be roughly equal over time. This should be the case at all times, at all points in
the grid.

Traditionally, electricity demand is treated as a given, which has to be met by
controlling the generation of electricity. Recently, approaches to control (part of)
electricity demand have gained increased attention. Demand response aims to
shift demand in time to better match the supply. Through the development of
new technologies, it is also becoming more realistic to implement such approaches,
for example by using smart appliances and energy management systems. As the
supply becomes less controllable, due to the increasing share of intermittent re-
newable energy sources, more and more attention is directed towards controlling
the demand with demand response.

The balancing of supply and demand not only guarantees stable operation of the
grid on a global level, but may also reduce the need for upgrading cables on a local
level.

1.2. Scheduling

S cheduling problems have been a prominent research topic for decades. The
handbook on scheduling by Pinedo (2016) defines scheduling as follows:

“Scheduling is a decision-making process that is used on a regular ba-
sis in many manufacturing and services industries. It deals with the
allocation of resources to tasks over given time periods and its goal is
to optimize one or more objectives.”

From this definition, we can extract a number of properties that characterize
scheduling problems:

• Scheduling problems are optimization problems. Meaning that, for a given
objective function, the goal is to find the solution that minimizes the value
of that function.

• Scheduling problems concern the planning (scheduling) of tasks over time.

• Scheduling problems deal with the allocation of resources to these tasks.
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From this general description, it should be clear that a wide range of scheduling
problems exists. Examples range from the scheduling of processors in computing
to the scheduling of shifts for personnel in hospitals.

1.2.1. Scheduling problems
Many classical scheduling problems, that are among the most widely studied, are
based on a machine scheduling model. In these models, we need to find a schedule
for the processing of a number of tasks (n) on a number of machines (m) that
optimizes a given objective, while respecting any additional constraints imposed
by the particular problem. To classify these problems, the three-field notation was
introduced by Graham et al. (1979): α|β|γ, where

α represents the machine environment, e.g. 1 for a single machine.

β represents the job characteristics present in the problem. E.g. rj means that
each job has a release date rj , which is the earliest time it can be processed.

γ represents the objective function that should be minimized. For example,
Cmax indicates that the maximum completion time (known as the makespan)
should be minimized.

In the traditional machine scheduling problems, tasks are usually assigned to a
single machine, and a machine can process a single task at a time. The concept
of machines can be generalized to that of (cumulative) resources, where a task re-
quires a given number of units of one or more resources to be completed. Multiple
tasks can consume these resources simultaneously, as long as the total availability
of that resource is not exceeded. This is the setting of the Resource Constrained
Project Scheduling Problem (RCPSP). The RCPSP considers the scheduling of
projects that each consist of a number of tasks that require resources to be com-
pleted. The three field notation has been extended for this type of problem as
well, and the standard RCPSP is denoted by PS|prec|Cmax. This problem and its
variants have been extensively studied in recent years. The surveys by Hartmann
and Briskorn (2010, 2022) provide a good overview.

Taking one step further in the direction of problems encountered in the context
of balancing electricity supply and demand, we can consider these resources as
continuously-divisible, rather than divided in discrete units. The Cumulative
Scheduling Problem (CuSP) introduced by Baptiste, Pape, and Nuijten (1999),
which can be denoted by PS, Co|rj , dj |−, is an example which serves as the basis
for the problems we will be studying in Chapter 2 and 3.

1.2.2. Solution approaches
For some classical scheduling problems, polynomial time algorithms exist. These
algorithms are tailored to the specific problem and exploit problem-specific in-
formation to find the optimal solution in the fewest steps possible. A well-known
example is Smith’s rule for 1||

∑
wjCj , which puts job starts in order of decreasing

ratio of weight to processing time (Smith 1956). Many scheduling problems, how-
ever, are NP-hard. Therefore, other solution methods have been developed.
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There is a large range of possible solution methods for solving these problems.
Broadly, they can be divided into three groups: exact methods, heuristic meth-
ods, and metaheuristics. The first one includes techniques such as dynamic pro-
gramming, mixed-integer linear programming and branch-and-bound. All of these,
given enough time, guarantee that the optimal solution is found. Heuristic meth-
ods do not, but aim to find good solutions more quickly. A heuristic usually ‘cuts
some corners’, using problem-specific information, to find a solution that is ‘good
enough’. Metaheuristics, such as local search or evolutionary algorithms, are higher
level procedures that aim to quickly find good solutions, without exploring the en-
tire search space. Metaheuristics may exploit problem-specific information when
evaluating potential solutions or identifying promising areas of the search space,
but the general procedure is applicable to a wide range of problems. Although
heuristics and metaheuristics typically do not guarantee the global optimality of
a solution, they give good solutions in practice. Certain metaheuristics are even
proven to converge to the optimal solution, under the right conditions.

Approaches that are often applied to scheduling problems in the literature, in
addition to polynomial time algorithms, include:

• Exact approaches: mathematical programming (e.g. mixed-inter linear pro-
gramming, see Chapter 2 and 3), dynamic programming and branch-and-
bound;

• Heuristic methods: schedule generation schemes (see Chapter 5) and other
priority rule based approaches;

• Metaheuristics: simulated annealing (see Chapter 2 and 3), tabu search and
genetic algorithms.

Exact approaches may be preferred, as they guarantee the global optimality of
a solution. If a problem is known to be NP-hard, however, exact methods of-
ten fail to produce good results for large instances. In practice, well-developed
(meta)heuristics often provide the best results for difficult scheduling problems.

1.3. Scheduling approaches for energy-related problems

S ome scheduling problems are explicitly defined as energy-related problems.
For example, the unit commitment problem, which can be considered a clas-
sical operations research problem, explicitly deals with the scheduling and

dispatch of electric power generation resources. Many approaches to solve variants
of this problem have been proposed, most of which use mathematical program-
ming. Several of these approaches have been applied to real-world problems. The
case study we discuss in Chapter 4 is a good example of this.

However, scheduling problems that are not originally defined from an energy-
related application might be applicable to such problems as well. From the sched-
uling problems discussed near the end of Section 1.2.1, the step to certain energy-
related planning problems is not large. In particular, when considering demand
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response, we can treat the amount of available electricity (either limited by the
capacity of a cable, or by the availability of supply) as a renewable resource. Al-
though this inevitably simplifies some of the characteristics of electricity networks,
it is an adequate model for planning electricity use on a medium timescale.

As mentioned previously, electricity demand is traditionally considered to be en-
tirely uncontrollable. This means that the demand at any given time is a given
quantity that has to be matched by controlling the generation of electricity. In
recent times, however, an increasingly large share of the load may be considered to
be controllable, meaning that some measure of control can be exercised to change
the load profile. With the right technology, many types of load, such as the charg-
ing of electric vehicles, the heating of an office building or the cooling of a storage
space, can be shifted in time. Demand response aims to use this flexibility to
bring the demand better in alignment with the supply. Often this is used to take
advantage of low electricity prices when they occur during certain parts of the day,
but it can also be used for other purposes. Let us consider an example inspired
by the current limitations on new grid connections in the Netherlands.

Suppose that the development of an industrial area causes its electricity use to grow
beyond the limits of its current connection to the grid, but it cannot be upgraded
due to the unavailability of additional capacity in the grid. The companies that
make use of this shared connection could consider coordinating their electricity
usage in such a way that it is spread more evenly across the week, bringing the
peak usage down to a level below the capacity of the current connection. For
example, one company might choose to charge their electric delivery vans at a
different time, and another could shift the times its cooling systems are switched
on to bring down the temperature in their cold storage. While there might be
plenty of room for electricity demand to be shifted across time, the coordination
is a difficult task. This is where scheduling comes into play.

Part of the electricity demand consists of tasks that have a window during which
they can be completed, that can be defined by a release time and a deadline,
such as the charging of electric vehicles. Some tasks may be able to scale their
electricity consumption up or down to match the availability better. The range of
feasible consumption rates is usually limited, however. This can be captured, to
a large extent, by using a lower and an upper bound to define this range. Taking
all these constraints and opportunities into account requires careful consideration.
The problem we study in Chapters 2 and 3 focuses on exactly this type of problem.
Managing the charging of large numbers of electric vehicles on a parking lot near
an office or apartment building, for example, would also be an excellent application
of this approach, as we discuss in Chapter 5.

The literature dealing with controlling electricity demand is scattered across a wide
range of fields, ranging from electrical engineering to economics. However, sched-
uling approaches have not been commonly used to solve this type of problem in
the past. Typically, scheduling problems are associated with centralized decision-
making, while distributed approaches have often been given priority due to legal
constraints and privacy considerations. Most of the approaches in the literature,
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therefore, seem to focus on distributed decision-making, where operators use price
signals to incentivize agents in the network to make certain decisions.

However, the use of scheduling approaches will be no more likely to threaten
the privacy or autonomy of a consumer than the implementation of any other
automated approach. At the same time, solutions using scheduling techniques
can provide a transparent mechanism to make automated decisions. Scheduling
approaches make explicit how the desires of an end-user are considered in the
decision-making process. Especially when dealing with the energy needs of house-
holds, clear up-front agreements on the implementation of such approaches are
necessary, that consider privacy concerns and establish boundaries. This is true
for any form of automated decision-making. Having said that, our view is that
scheduling approaches can significantly contribute to the future of energy manage-
ment.

We hope to provide a useful framework for thinking about applications of the
scheduling problems discussed in this thesis and for dealing with this type of
issues.

1.4. Thesis outline

T he core of this thesis consists of two parts, each containing two chapters.
The first part explores a general class of resource-constrained scheduling
problems, and presents a framework for finding good solutions to these

problems. The second part deals with two specific examples of electricity-related
scheduling problems, for which we developed and tested an approach using sched-
uling techniques.

In Chapter 2, we investigate a problem inspired by the scheduling of flexible de-
mand in electricity networks. We consider a variant of the Continuous Energy-
Constrained Scheduling Problem (CECSP) introduced by Nattaf, Artigues, and
Lopez (2014). A set of jobs has to be processed on a continuous, shared resource,
such that the total weighted completion time of all jobs is minimized. Each job
needs to be assigned a start time, completion time and a resource consumption
profile. A job can only start after its release time, and has to be completed be-
fore its deadline. In the meantime, it needs to consume an amount of resource
equal to its resource requirement, while its consumption rate has to stay within
given lower and upper bounds. We use an event-based model. Each job has two
associated events, a start and a completion event, that must be scheduled. The
resource consumption profile is decided for the intervals defined by these events.
A mixed-integer linear programming (MILP) formulation is presented, as well as
a hybrid local search approach. We show that the hybrid local search approach
matches the exact MILP formulation in solution quality for small instances, and
is able to find a feasible solution for larger instances in reasonable time.

We continue by considering a generalization of the CECSP in Chapter 3, which we
call the General Continuous Energy-Constrained Scheduling Problem (GCECSP).
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We extend our approach from Chapter 2 and present a solution framework for
problems in this class. We apply a combination of local search and mathematical
programming. At the core of this framework is the decomposition in two parts,
allowed by the event-based model: 1) determining the order of events and 2)
finding the event times and resource consumption profiles. We use the CECSP
with step-wise cost functions as an example to illustrate the effectiveness of our
framework. We exploit that, for this specific problem, the cost of a solution can
be computed on the basis of the order of events alone, and we present bounds to
assess the feasibility of an event order more efficiently, where possible. We show
the effectiveness of our approach in comparison with a MILP formulation and
argue the broad applicability of the framework.

In Chapter 4 the operational management of microgrids is studied. This chapter
considers the balancing of electricity supply and demand under uncertainty by
managing the production and storage of electricity. Microgrids are clusters of
components that each produce, store or consume energy. The combination of these
components allow microgrids to operate as more or less independent of the main
grid. While some microgrids have a (limited) connection to the main electricity
grid, in this chapter we consider islanded microgrids, with no connection to the
main grid at all. We develop two optimization models for planning the operation
of diesel generators and battery storage units, while dealing with uncertainty in
forecasts of load and solar power. The first one is a deterministic mixed-inter
linear programming model that reserves part of the available battery capacity as a
safety margin. The second one is a multi-stage stochastic optimization model that
models the uncertainty using a scenario tree based on the load and solar power
forecasts. These models are applied to a case study in the Netherlands, using
a number of re-planning strategies. We identify features of microgrids that are
important for determining the success of the developed approaches and show the
effectiveness of using re-planning strategies to reduce the frequency of schedule
generation.

In Chapter 5, the attention is shifted back towards controlling the demand for
electrical energy, rather than the supply. A network of parking lots is considered,
each with a given number of charging stations for electric vehicles (EVs). Some
of the parking lots are covered by a roof with solar panels on it. The demand
that can be served at each parking lot is limited by the capacity of the cables
connecting them to the grid. EVs arrive at the parking lots according to a known
distribution. As soon as a vehicle arrives, we learn its desired departure time, the
amount of electrical energy it needs to charge its battery before that time, and
the range of rates that it can be charged at. The actual departure time of an EV
can be delayed if it has not finished charging in time for its desired departure.
We use data collected in the city of Utrecht for the distribution of arrival times,
connection times and charging volumes. The aim is to minimize the total delay,
i.e. the summed difference between the desired departure time and the actual
departure time, across all vehicles. We present a novel approach, based on an
online variant of well-known schedule generation schemes. A number of variants
of this approach are evaluated using a discrete event simulation. With this, we
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show that applying scheduling approaches increases the number of EVs that can
be charged at the site and reduces the average delay. Furthermore, we argue the
importance of considering aspects of the grid layout in electricity networks and
show the benefits of using flexible charging rates.

Finally, Chapter 6 summarizes the findings of the previous chapters and discusses
some interesting avenues for future research.
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Notation

Indices
j job
i event, interval
e position in event order
k jump point index
I(e) converts position to index
E(i) converts index to position

Sets
J set of jobs
E list of events
F set of fixed-time events
P set of plannable events

Parameters and constants
n number of jobs
k number of cost intervals
P available amount of resource R
Ej resource requirement of job Jj

rj , d̄j release time and deadline of job Jj

P−j , P +
j lower and upper bound on resource consumption for job Jj

wj , Bj weight and constant term for the cost function of job Jj

f̄j step-wise increasing cost function of job Jj

Kk
j jump point k of job Jj

M large constant term (‘big M’)
LB , LR penalty for violating bounds (B) or resource availability (R)

Variables
ti time of occurrence of the event with index i
pj,i amount of resource consumed by job Jj in the interval that starts

when the event with index i occurs

ai,i′

{
1 if E(i) < E(i′)
0 if E(i) ≥ E(i′)

relative order of events i and i′

bi,i′

{
1 if i′ = arg mini′∈P(E(i′)− E(i))
0 otherwise

successor relation of plannable
events i and i′

s−j,i, s+
j,i amount of resource job Jj consumes less (more) than its lower (upper)

bound in interval i
st

i amount of resource consumed in interval i above the available amount P
Sj , Cj start and completion time of job Jj

pj(t) resource consumption profile of job Jj
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Abstract

We consider the Continuous Energy-Constrained Scheduling Problem (CECSP). A
set of jobs has to be processed on a continuous, shared resource. A schedule for a job
consists of a start time, completion time, and a resource consumption profile. The
goal is to find a schedule such that each job does not start before its release time, is
completed before its deadline, satisfies its full resource requirement, and respects its
lower and upper bounds on resource consumption during processing. The objective
is to minimize the total weighted completion time. We present a hybrid local search
approach, using simulated annealing and linear programming, and compare it to a
mixed-integer linear programming (MILP) formulation. We show that the hybrid
local search approach matches the MILP formulation in solution quality for small
instances, and is able to find a feasible solution for larger instances in reasonable
time.

Keywords: continuous scheduling, resource-constrained scheduling, mixed-integer
linear programming, simulated annealing.
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2.1. Introduction

W hen considering scheduling problems with resource constraints, jobs are
often assumed to have a fixed duration or are not allowed to change
the amount of resource they consume over time. In certain applica-

tions, however, these assumptions are too limiting. Typically, such cases can be
found in areas where a (cumulative) amount of work (or resource) is required to
complete a job, but the rate of consumption is not necessarily fixed, such as en-
ergy related applications. Examples of such applications are demand-response in
electricity consumption and electric vehicle charging. To find schedules that can
accommodate flexible charging profiles, we consider an extension of the traditional
scheduling problem, previously introduced as the Continuous Energy-Constrained
Scheduling Problem (CECSP) by Nattaf, Artigues, and Lopez (2014).

This problem is described as follows. A set {J1, . . . , Jn} of jobs has to be processed
on a continuous resource R. This means that, at any time, multiple jobs can be
processed simultaneously and at different rates, as long as their total consumption
does not exceed P . Each job Jj requires a total amount of resource equal to
Ej . The goal is to find a schedule such that each job Jj does not start before
its release time rj , is completed before its deadline d̄j , and respects its lower
and upper bounds (P−j , P +

j ) on the resource consumption rate during processing.
Preemption is not allowed. From its start until its completion, each job must
consume resources at a rate of at least P−j units. The objective is to minimize the
total weighted completion time. We look at the case where both the resource and
time are continuous. We assume that there is no efficiency function influencing
resource consumption, and no explicit precedence relations exist between jobs. It
should be noted that the presented approach can easily be extended to deal with
(piece-wise) linear efficiency functions and precedence relations. The present work,
however, does not include these extensions.

The CECSP was originally introduced as a generalization of the Cumulative Sched-
uling Problem (CuSP) by Nattaf, Artigues, and Lopez (2014). In the case of the
CuSP, we have a single resource with a given capacity, and we need to schedule a
number of activities without exceeding this capacity. Each activity has a release
time, deadline, (fixed) processing time and (constant) resource capacity require-
ment. The CuSP was formulated by Baptiste, Pape, and Nuijten (1999) as a sub-
problem of the Resource Constrained Project Scheduling Problem (RCPSP), re-
laxing precedence constraints and considering only a single resource. The RCPSP
is a very general problem concerning the scheduling of activities subject to prece-
dence, time and resource constraints. The surveys by Hartmann and Briskorn
(2010, 2022) provide a good overview of the RCPSP and its extensions. Notably,
continuous and event-based formulations of the RCPSP have been studied and
evaluated by Koné et al. (2011) and Kopanos, Kyriakidis, and Georgiadis (2014)
as well as more general models with flexible resource profiles in continuous time
(FRCPSP), for example by Naber (2017).

For the CECSP, Nattaf, Artigues, and Lopez (2017) provided a hybrid branch-and-
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bound algorithm and mixed-integer linear program (Nattaf, Horváth, et al. 2019)
to find exact solutions for small instances. The CECSP generalizes the CuSP as
the resource capacity requirement is considered to be a range with a lower and
an upper bound, rather than a fixed value, and the consumption rate can vary
during the execution of the job. As a result, the processing time is no longer fixed,
but depends on the consumption rate during its execution. Through its relation
to CuSP, Nattaf, Artigues, Lopez, and Rivreau (2016) proved that the feasibility
problem for CECSP is NP-complete.

The CECSP is also closely related to the scheduling of malleable jobs (as intro-
duced by Turek, Wolf, and Yu (1992)) on parallel machines, which involves the
scheduling of jobs on P machines, while the number of machines assigned to a job
can change during its execution.

Comparing the problem studied in this work to the version originally introduced
by Nattaf, Artigues, and Lopez (2014), we notice two differences:

1. The version presented here does not consider efficiency functions (i.e., the
amount of work done is equal to the amount of resource consumed), while
in the work of Nattaf, Artigues, and Lopez, (piece-wise) linear efficiency
functions are considered (i.e., the amount of work done is a linear function
of the amount of resource consumed).

2. The objective function minimizes the total weighted completion time, while
the objective in the work of Nattaf, Artigues, and Lopez is to minimize the
amount of resource consumed.

Our contribution. We present a hybrid local search approach (Section 2.3), using
simulated annealing and linear programming, to solve instances of the CECSP.
In addition, we provide a mixed-integer linear programming (MILP) formulation
(Section 2.2.2) and compare the performance of our hybrid approach to it in terms
of quality and runtime. Finally, we found that the feasibility problem is solvable
in polynomial time if we drop the lower bounds on resource consumption from
the problem. We formulate a flow-based solution algorithm for that case (Section
2.4.2), that we use to select problem instances for a new benchmark set of problem
instances that we use to evaluate our approach.

As far as we are aware, we are the first to propose a decomposition and try a combi-
nation of local search and mathematical programming techniques for CECSP. We
show that this approach can compete with exact approaches on small instances,
and has the potential to find good solutions for larger ones. Furthermore, the
approach can be adapted to be applied to related (energy-constrained) scheduling
problems.

The rest of this work is structured as follows. Section 2.2 contains a detailed prob-
lem description, followed by an explanation of the event-based model in Section
2.2.1. From there, we build an MILP formulation in Section 2.2.2. The hybrid lo-
cal search approach is introduced in Section 2.3. We discuss how our test instances
are generated in Section 2.4, which includes a description of our flow-based algo-
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j Ej rj d̄j P−j P +
j wj Bj

1 70.0 0.0 3.0 10.0 30.0 1.0 0.0
2 20.0 1.0 3.0 10.0 40.0 3.5 0.0
3 45.0 2.5 4.0 10.0 50.0 5.0 0.0

Table 2.1: Example instance of the CECSP with three jobs

Figure 2.1: Optimal schedule for the example instance with three jobs

rithm for the feasibility problem without lower bounds. In Section 2.5 we discuss
the results, followed by the conclusions and suggestions for future work in Section
2.6.

2.2. An event-based MILP model for the CECSP

I n this section, we will first provide a detailed problem description. We will
then present an event-based model, and an MILP formulation for the CECSP.
A summary of notation is provided at the start of this part, on page 17.

An instance of the CECSP in the context of this work is defined by the following
properties:

• A resource R with a constant availability of P ;

• For each job Jj , j ∈ {1, ..., n}:

– Resource requirement Ej ;

– Release time rj ;

– Deadline d̄j ;

– Lower bound P−j ;
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– Upper bound P +
j ;

– Linear cost function wj · Cj + Bj .

For each job, we need to determine a start time Sj , a completion time Cj and a
resource consumption profile pj(t) such that

∑
j wjCj + Bj is minimal, while the

following constraints are respected:

C1 The total amount of resource a job j consumes is exactly Ej ;

C2 A job j does not start before its release time rj , i.e. Sj ≥ rj ;

C3 A job j completes no later than its deadline d̄j , i.e. Cj ≤ d̄j ;

C4 A job j only consumes resources between its start and completion time, i.e.
pj(t) = 0 for t < Sj or t ≥ Cj ;

C5 While active, the resource consumption of a job j never drops below P−j
or rises above P +

j , i.e. P−j ≤ pj(t) ≤ P +
j for all possible values of t, with

Sj ≤ t ≤ Cj ;

C6 The total amount of resource consumed by all jobs together at any given
time can never exceed P , i.e.

∑
j pj(t) ≤ P for all possible values of t.

An example instance with three jobs and P = 50.00 is provided in Table 2.1. Figure
2.1 gives a visual representation of the optimal schedule for this instance.

Note that the constant Bj in the cost function of a job Jj can generally be ignored,
as
∑

j Bj is a constant term in the objective function. It has been added to the
cost function to model a generalized linear function, but the problem does not
fundamentally change if we ignore the constant part of these functions.

2.2.1. Event-based approach
We model instances of the CECSP using an event-based approach. This means
that we define a schedule by determining the timing of events, and the activity of
jobs during the intervals that are bounded by these events.

We consider two types of events, associated with a job Jj : its start Sj and com-
pletion Cj . Now let us consider a list E , that lists all events in the order that they
occur over time.

For a given order of events, we can divide the schedule into 2n−1 intervals, where
each interval is bounded by two consecutive events. In the following, when we
refer to an interval, we always mean the span of time in between two consecutive
events. So, no event ever occurs during an interval. Also note that an interval can
be empty, if it is bounded by two events that happen simultaneously.

During these intervals, the set of jobs that are being processed does not change.
We can show that there always exists an optimal solution in which pj(t) re-
mains constant during each interval. We can therefore limit ourselves to such
solutions.
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Theorem 2.1. For any feasible schedule S (with start times Sj, completion times
Cj and resource consumption profiles pj(t) for all jobs Jj , j ∈ {1, ..., n}) that
follows a given event order E, a feasible schedule S ′ exists with the same objective
value where the resource consumption p′j(t) of all jobs remains constant during
each interval.

Proof. Consider any interval between two events, i and i′. The interval starts at
ti and ends at ti′ .

A job Jj is inactive during this interval if ti ≥ Cj or ti′ ≤ Sj in the schedule, and
active otherwise.

The resource consumption profile of any active job Jj in S within this interval
does not violate the lower and upper bounds of this job: P−j ≤ pj(t) ≤ P +

j ∀t, ti ≤
t ≤ ti′ .

Therefore, the average consumption of job Jj within this interval, p̄j =
∫ t

i′
ti

pj(t) dt

ti′−ti
,

does not exceed the bounds on consumption for job Jj : P−j ≤ p̄j ≤ P +
j .

In this interval, all active jobs in S together consume at most (ti′ − ti)P of the
resource, i.e.:

∑
j

p̄j(ti′ − ti) ≤ (ti′ − ti)P

From this, it follows that
∑

j p̄j ≤ P , i.e., the sum of the average consumption of
all jobs does not exceed the available amount of resource.

We obtain S ′, from S by replacing all resource consumption profiles pj(t) with
a step-wise constant function p′j(t) that remains constant during any interval (in
between two consecutive events), and takes the value p̄j , i.e. the average resource
consumption of job Jj in S, during that interval.

We have shown that the schedule S ′ is indeed feasible. For each job, the resulting
consumption rate is within the bounds allowed for that job and the total amount
of available resource is not exceeded either. No other constraints are affected.

It remains to show that S ′ has the same objective value. The objective depends
only on the value of Cj . As the timing of all events in S ′ is identical to that in S,
the objective is not affected by the modifications to the schedule.

Corollary 2.2. For any optimal schedule S∗, there exists an optimal schedule S∗′
where the resource consumption p∗j

′(t) of all jobs remains constant during each
interval.

This means that we can ignore solutions with a non-constant resource consumption
profile for any job during any interval. Therefore, we can fully represent a resource
consumption profile of job Jj with at most 2n− 1 values pj,i, one for each interval
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in which Jj is being processed, indicating the total amount of resource consumed
during that interval.

In the following, we will maintain a link between events and jobs by their index.
Every job has two associated events. For a job with index j, we will say that its
start event has index i = 2j − 1, and its completion event has index i + 1 = 2j.
This allows us to uniquely identify the start and completion events of any job
easily in notation. The index of an event i does not indicate its position in the
event order. We will maintain this indexing scheme throughout this work.

Furthermore, intervals are defined by the event at the start of that interval. For
example, let i and i′ be the indices of the first two events. The first interval starts
when the first event happens at ti; and ends when the next event starts at ti′ .
Then, pj,i represents the amount of resource that job Jj consumes in the interval
associated with event i, spanning the time between ti and ti′ .

2.2.2. Mixed-integer linear programming formulation
Using the event-based approach, we developed an MILP formulation that will find
an optimal schedule. In this section, we gradually build this formulation. The full
formulation can be found in Appendix 2.A.

Although we arrived at it independently, our formulation is similar to the event
based formulations presented by Nattaf, Artigues, Lopez, and Rivreau (2016). The
models share their focus on intervals, delimited by events, but differ in how the
order of these events is expressed. Nattaf, Artigues, Lopez, and Rivreau (2016)
use assignment variables, binary variables that indicate whether events occur at a
given position in the order, or whether a job is active during a given interval. Our
model uses binary ordering variables, to indicate the relative order between pairs
of events.

First, we define the decision variables of our model. For each of the 2n events
i, ti ≥ 0 will denote the time at which it takes place. Recall that all odd event
indices i belong to start times, and all even event indices belong to completion
times. For each job Jj and event i, pj,i ≥ 0 is the amount of resource that Jj

consumes during the interval defined by event i. We know the consumption of a
job Jj during the interval starting at its completion time Cj to be 0 and therefore
set pj,2j = 0. Note that we do not know beforehand what event will be the last in
the event order. The interval that is defined by that event is, theoretically, open-
ended. Note, however, that in the formulations below any pj,i associated with this
interval is forced to 0, as all jobs complete in or before the interval.

Additionally, we define binary variables ai,i′ and bi,i′ to determine the order of
events. These can be viewed as helper variables. For two events i and i′, ai,i′

represents the order they occur in. If ai,i′ = 1, then i occurs before i′ in the event
order. On top of that, bi,i′ indicates whether an event i is an immediate successor
of another event i′: bi,i′ = 1 if i′ occurs immediately after i. In our formulation,
bi,i′ is used exclusively for the enforcement of lower bounds.

The objective is to minimize the combined cost functions of the jobs:
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min
n∑

j=1
(wjt2j + Bj) (2.1)

Now, let us go through the constraints we listed at the beginning of this sec-
tion.

First, we ensure that the total amount of resource consumed by each job Jj equals
Ej (C1), ∀j ∈ {1, ..., n}:

2n∑
i=1

pj,i = Ej (2.2)

Next, we enforce the release time (C2) and deadline (C3) for each job Jj . Since
we can identify the start and completion event of a job by its index i, we obtain
that ∀j ∈ {1, ..., n}:

t2j−1 ≥ rj (2.3)

t2j ≤ d̄j (2.4)

We ensure that pj,i = 0 for any interval after the completion event of Jj (with
index 2j) has happened or before its start event (with index 2j − 1) has taken
place (C4). We use a big M constraint with the order variables ai,i′ to enforce
this exactly for those intervals. So ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}, and sufficiently
large M (M = Ej will suffice) we have:

pj,i ≤ ai,2jM (2.5)

pj,i ≤ a2j−1,iM (2.6)

In between the start and completion events of a job Jj , the values for pj,i must
respect the lower (P−j ) and upper (P +

j ) bounds on resource consumption (C5). The
upper bound can be enforced in between any two events. We use a big M constraint
with order variable ai,i′ to activate the constraint only for events that happen in
the right chronological order, hence ∀j ∈ {1, ..., n}, i, i′ ∈ {1, ..., 2n}, i ̸= i′, and
sufficiently large M :

pj,i ≤ P +
j (ti′ − ti) + Mai′,i (2.7)

The lower bound only applies for consecutive events, which both fall within the
execution window of job Jj . We use a big M term with the bi,i′ helper variable to
activate the constraint only for events that are immediate successors. Besides that,
we include the variables ai′,2j−1 and a2j,i to make sure the constraint is only active
if i and i′ are between the start event of job Jj (index 2j − 1) and its completion
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(index 2j). Hence ∀j ∈ {1, ..., n}, i, i′ ∈ {1, ..., 2n}, i ̸= i′, and sufficiently large
M :

pj,i ≥ P−j (ti′ − ti)− (1− bi,i′ + ai,2j−1 + a2j,i′)M (2.8)

During an interval, the total resource consumption of all active jobs cannot exceed
P at any time. This has to be enforced for all intervals, ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′,
and sufficiently large M :

n∑
j=1

pj,i ≤ P (ti′ − ti) + Mai′,i (2.9)

We need to make sure that the event times are consistent with the variables ai,i′

that control the order of events. Therefore, ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′, and suffi-
ciently large M , we get:

ti ≤ ti′ + Mai′,i (2.10)

We ensure that either ai,i′ = 1 or ai′,i = 1, but not both, for any pair of distinct
events. We could, of course, get rid of half of our binary variables by expressing
ai′,i in terms of ai,i′ for all i′ > i. We choose not to do so for ease of notation,
therefore we need to ensure that ∀i, i′ ∈ {1, ..., 2n}, i < i′:

ai,i′ + ai′,i = 1 (2.11)

We can note here that we also already know: ∀j ∈ {1, ..., n}, a2j−1,2j = 1.

Finally, we need some constraints to make sure the bi,i′ variables indicate events
that are immediate successors. First making sure that bi,i′ can only be 1 if i′ occurs
immediately after i, ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′, and sufficiently large M :

2n∑
i′′=1

ai,i′′ −
2n∑

i′′=1
ai′,i′′ ≤ 1 + (1− bi,i′)M (2.12)

2n∑
i′′=1

ai,i′′ −
2n∑

i′′=1
ai′,i′′ ≥ 1− (1− bi,i′)M (2.13)

And second, by requiring that exactly (or equivalently, at least) 2n − 1 variables
bi,i′ actually take the value of 1:

2n∑
i=1

∑
i′ ̸=i

bi,i′ = 2n− 1 (2.14)
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1 prec← ImplicitPrecedences(J)
2 E , best_score← InitialSolution(J , P , prec)
3 T ← Tinit

4 for iter ∈ {1, ..., max_iter} do
5 E , score← GetNeighbor(E , T , J , P , prec)
6 if score < best_score then
7 Ebest, best_score← E , score

8 if iter%αperiod = 0 then
9 T ← T · α

10 return Ebest, best_score

Algorithm 2.1: Hybrid local search approach

This completes the initial MILP formulation. However, we have added two types
of valid inequalities to speed up the process of solving the model. We know that
the range of feasible processing times for a job is limited by the lower and upper
bound on its resource consumption, ∀j ∈ {1, ..., n}:

t2j − t2j−1 ≤ Ej/P−j (2.15)

t2j − t2j−1 ≥ Ej/P+j (2.16)

Indeed, the addition of these inequalities has a significant impact on the time
needed to find an optimal solution. The MILP formulation that our hybrid local
search approach will be tested against consists of all equations (2.1) - (2.16) and
is repeated in Appendix 2.A.

2.3. Hybrid local search

I n the MILP formulation described above, we can identify two separable parts
to the problem. The binary variables ai,i′ (and bi,i′) fully determine the order
of events E . Then, the continuous variables ti and pj,i determine the exact

schedule for that order.

We can decompose the problem into these two parts. Once we have an order of
events E , determining an optimal schedule boils down to solving an LP, as all binary
variables disappear from the formulation once the event order is fixed.

A global overview of our approach is given in Algorithm 2.1. The elements in this
overview will be discussed in more detail in the following sections. How solutions
are evaluated is discussed in Section 2.3.1. Section 2.3.2 explains the process of
finding an accepted neighbor, returned by GetNeighbor in Algorithm 2.1. Finally,
the algorithms behind ImplicitPrecedences and InitialSolution are discussed in
Section 2.3.3.
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2.3.1. Finding an optimal schedule for a given order using linear pro-
gramming

We will adapt the MILP formulation described above to solve only the (sub)prob-
lem of finding an optimal schedule for a given event order.

The LP will consist of Equations (2.1) - (2.4) and (2.7) - (2.10), eliminating any
part of the inequalities that contain the variables ai,i′ and bi,i′ .

Instead of enforcing pj,i to be 0 outside of Jj ’s processing window (as in Equa-
tions (2.5) and (2.6)), we only take into account pj,i for i within the processing
window, which can easily be done as we already know the order of events. Simi-
larly, upper and lower bounds are only enforced on intervals within the processing
window.

For ease of notation, let us define two functions:

• I(e) gives the event index i of the event in position e of the event order;

• E(i) gives the position in the event order e of the event with index i.

Note that the actual values can already be substituted for these functions before
we attempt to solve the LP, as they only depend on the event order.

So, for example the inequality enforcing the order of events (Equation (2.10) in
the MILP formulation) now becomes, ∀e ∈ {1, ..., 2n− 1}:

tI(e) ≤ tI(e+1) (2.17)

And the inequality controlling the total work of a job (Equation (2.2) in the MILP
formulation) now becomes, ∀j ∈ {1, ..., n}:∑

e∈{E(2j−1),...,E(2j)−1}

pj,I(e) = Ej (2.18)

Note that {E(2j − 1), ..., E(2j) − 1} represents the set of positions in the event
order between the start and completion event of a job Jj , including the former
and excluding the latter.

Finally, to evaluate the relative quality of infeasible event orders, we allow for the
violation of lower bounds, upper bounds, and/or resource availability constraints,
with appropriate cost. For this purpose, we introduce three types of slack vari-
ables:

• s−j,i allowing the resource assignment to job Jj in interval i to go below its
lower bound P−j ;

• s+
j,i allowing the resource assignment to job Jj in interval i to go over its

upper bound P +
j ;

• st
i allowing for increasing the amount of available resource during an interval

i.



2.3. Hybrid local search

2

31

The slack variables are non-negative, but do not have an enforced upper bound.
The introduction of the slack variables affects the inequalities enforcing these
bounds in the LP (Equations (2.7) - (2.9) in the MILP formulation), ∀j ∈ {1, ..., n},
e ∈ {E(2j − 1), ..., E(2j)− 1}:

pj,I(e) ≥ P−j (tI(e+1) − tI(e))− s−j,I(e) (2.19)

pj,I(e) ≤ P +
j (tI(e+1) − tI(e)) + s+

j,I(e) (2.20)

And, ∀e ∈ {1, ..., 2n− 1}:

n∑
j=1

pj,I(e) ≤ P (tI(e+1) − tI(e)) + st
I(e) (2.21)

These slack variables are penalized in the objective function, using LB for violation
of upper and lower bounds and LR for excessive resource usage. This adds the
following term to the objective:

2n−1∑
i=1

LRst
i +

n∑
j=1

LB(s−j,i + s+
j,i)

 (2.22)

The total value of the penalty term gives an indication of the quality of the in-
feasible event orders that can be used to guide the local search towards solutions
that are closer to feasibility. For many event orders, no feasible schedule exists.
Scoring the ‘degree of infeasibility’, helps the search to move on from an infeasible
order towards a feasible one.

2.3.2. Improving the order of events using local search
We use a local search algorithm, simulated annealing, to explore the search space
of all possible event orders. The LP is used to evaluate the quality of each event
order. Below, we will describe the core of the local search, and the neighborhood
operators that are used.

We start the local search with the event order that results from the greedy algo-
rithm (Section 2.3.3). Every iteration, we modify the current solution using one of
the neighborhood operators. Improvements are always accepted, while solutions
that are worse than the current one are accepted with a probability determined
by the current value of the temperature T . The precise settings for the simulated
annealing will be discussed in Section 2.5.

If a candidate solution is rejected, we keep trying with the same neighborhood
operator. We do this by generating a random permutation of the event list each
time we start with a neighborhood operator, and apply the operator to the events
in that order, until a candidate solution is accepted. If this is unsuccessful we move
on to the next neighborhood operator. If no solution is accepted after looping
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through all three neighborhood operators, we terminate the search and report the
best seen solution up to that point.

We have three neighborhood operators that we use to modify the event order and
obtain new candidate solutions:

• Swap two adjacent events. We take the next event from the random
permutation, at position e ∈ {1, ..., 2n−1} and its successor at position e+1
and reverse their order. This means that the event originally at position e
now is at position e + 1 and vice versa.

• Move a single event. We take the next event from the random permuta-
tion, at position e ∈ {1, ..., 2n}. We then determine its range of movement.
On both sides, it is limited by the first event we encounter with which the
event has a precedence relation. How we determine these precedence rela-
tions is discussed in Section 2.3.3. From this range, we then select a new
position, where the probability of a position being selected is inversely pro-
portional to its distance to the original position of the event. That is, smaller
displacements are more likely to be selected than larger ones. The event is
then moved to its new position, with the other events in between the current
and former position of the event shifted accordingly.

• Move both events associated with a single job. We take the next job
from the random permutation, job Jj j ∈ {1, ..., n}. We then look at both
of its associated events, and determine their combined range of movement.
As before, we determine the number of positions both can move in either
direction without crossing over an event with which they have a precedence
relation (see Section 2.3.3). We then take the minimum of these values to get
a combined range. From this range, we select a new position with uniform
probability. The events are then moved to their new position, both offset
from their original position by the same amount, with the other events in
between the current and former position of the events shifted accordingly.

Each of these neighborhood operators results in a small modification of the event
order, necessitating an update of the LP for evaluation. We modify only those
parts of the LP that are affected, and re-solve the model to obtain the score of the
new candidate solution, starting from the current solution.

2.3.3. A greedy algorithm for initial solution generation and prepro-
cessing

We obtain an initial event order using a greedy algorithm. The algorithm assigns
resource to jobs that have been released and have not been fully served, and
extracts the order of events from the resulting schedule. In the construction of the
initial order, we ignore lower bounds on resource consumption and do not consider
the cost function at all. Keep in mind that we are only interested in the order of
events at this point, not in the schedule itself.

We take the release times rj and deadlines d̄j of all jobs, and sort them in ascending
order. In case of a tie, we sort by job index, as the order in this case is immaterial
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for our construction. In this way, we obtain a sequence of time periods during
which the set of jobs available for processing remains the same.

We loop over these time periods, keeping track of the list of available jobs during
the period. Then, we decide the assignment of resources during each time period
in the following way:

1. We assign the minimal amount of resource required to all available jobs. If
this combined minimum exceeds the total amount of resource available, we
stop after this step and continue to the next time period;

2. In order of increasing deadline, we assign as much resource to each job as
it can consume. This may be bounded by the upper bound on resource
consumption of the job, or by the amount of resource that is left to be
assigned at this point. We continue until the resource in the time period is
fully used or no other jobs are available.

The minimal amount of resource a job has to consume is given by max{0, Ẽj −
(d̄j − tend)P +

j }, while its maximum is given by min{Ẽj , P +
j (tend − tstart)}. Here

tstart, tend are the start and end of the current time period and Ẽj is the remaining
resource requirement of the job.

At any time during this procedure:

• If a job is assigned resources for the first time, we append the start event for
that job to our current list;

• If a job’s full resource requirement is satisfied, we append the completion
event for that job to our current list.

At the end of the procedure we have a complete order of events, which will be
the starting solution for our local search. We determine the quality of the optimal
schedule for the initial event order by solving the LP as described above. This
schedule is likely to assign resources differently from the greedy algorithm we used
to find the event order in the first place. Note that the schedule may have positive
penalty terms, i.e. it does not have to meet the available resource bound P or the
job lower or upper bounds P−j and P +

j .

To complete the description of our approach, we will discuss the preprocessing
steps that we use in our algorithm. We deduce a number of implicit precedence
constraints that we use in the neighborhood operators:

1. A start event Sj of a job Jj always has to occur before its corresponding
completion event Cj ;

2. Let uj = Ej/P +
j be the minimal processing time required to complete a job.

Then the possible time ranges of a start and completion event are [rj , d̄j−uj ]
and [rj + uj , d̄j ], respectively. For any two events, if the last possible time
within the range of event i lies before the first possible time within the range
of event i′, we know that i has to come before i′ in any event order.
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n 5, 10, 15, 20, 30, 50
P 25.00, 50.00, 100.00, 200.00
a True, False

Table 2.2: Overview of values of n, P and a used for generating instances

2.4. Test instances

W e generated a number of instances to evaluate our approach. We consider
three important characteristics to group these instances: the number of
jobs (n), the amount of resource (P ) and whether an instance is adver-

sarial (a).

An instance is said to be adversarial, when the ordering of weights is such that
the weight of jobs monotonically increases with increasing deadline. This is meant
as a counter to the greedy algorithm that determines a starting solution, as this
assigns resources to jobs in order of increasing deadline.

By varying P , we also affect the ratios of P/P−j , P/P +
j and P/Ej , as the sampling

of values for Ej , P +
j and P−j is (largely) unaffected by the chosen values of n, P

and a. Each of these ratios are more interesting properties of an instance than P
in itself.

Table 2.2 lists the values of n, P and a for which instances were generated. Each
combination of n, P and a was used to generate four unique instances.

Below, we describe the procedure for generating instances.

2.4.1. Instance generation method
The instance generation is based on the three parameters discussed above (n, P
and a) as well as four scaling parameters: amaxlow, aminupp, arshift and apws. The
first three parameters (amaxlow, aminupp and arshift) are fractions, and should be
between 0 and 1. The last parameter (apws) is a multiplication factor, and should
have a value larger than 1. For each job we sample seven values, that together
fully determine the six properties of a job as described in Section 2.2.

• A resource requirement Ej from U(10, 100).

• A lower bound P−j from U(0, min{amaxlowP, aminuppEj}). The parameters
amaxlow and aminupp can be used to control the largest possible lower bound.
Here amaxlow makes sure that the lower bound on the resource consumption
per time unit never exceeds a fraction (amaxlow) of what is available during
a unit of time, leading to instances where the lower bounds do not restrict
the schedule to only processing a single job at a time. Then, aminupp has a
similar purpose, but as a fraction of the total resource requirement of a job,
ensuring that the lower bound does not restrict the possible duration of a
job too much.
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• An upper bound P +
j from U(aminuppEj , Ej). The aminupp parameter can

be used to make the upper bound more likely to be restrictive, while also
ensuring it does not drop below the lower bound. This distribution also
ensures that no job can be completed in less than a single time unit.

• A release time rj from U

(
−arshift

∑
j

Ej

P , (1− arshift)
∑

j
Ej

P

)
. Any negative

values are treated as zero. The parameter arshift shifts the window for gener-
ating release times, such that a fraction of the generated release times equal
to arshift is expected to be a negative number. In this way, one can control
the expected number of jobs that are available for processing immediately
at time 0. The largest possible release time is limited by the expected total
processing time (at full utilization).

• A deadline d̄j : rj +U

(
Ej

min{P,P +
j
} , apws

∑
j

Ej

P

)
. The parameter apws sets the

latest possible deadline in terms of the expected total processing time (at
full utilization). The earliest possible deadline is the release time plus the
minimum required processing time (its requirement divided by the minimum
of its upper bound or the amount of resource available per unit of time),
avoiding trivially infeasible instances.

• A weight wj from U(0, 5) and an optional objective constant Bj from U(0, 10).
Together they determine the cost function of job Jj : wj · Cj + Bj .

All numbers are rounded to two decimal places.

By design, this instance generation method does not entirely prevent a shortage
of available resource during a certain period of time, depending on the sampled
release times and deadlines. The odds of this happening can be controlled by
increasing the range of release times and/or processing windows, using apws for
example. We describe a method that gives a strong indication of the feasibility
of an instance in the following section. In Section 2.4.3 we describe our choice of
parameters that lead to mostly feasible instances.

2.4.2. Checking feasibility
To get an indication of the (in)feasibility of generated instances, we use a flow-
inspired LP that solves the feasibility problem for the instance, ignoring lower
bounds (P−j ).

The lower bounds might still render an instance infeasible, even if the LP indicates
that a feasible flow exists. However, it provides a good and quick indication.

We will formulate the problem as a max flow problem. We construct a bipartite
graph, with one node for each job on one side, and one node for each time interval
on the other. The intervals are obtained by sorting the set of all release times and
deadlines and constructing an interval for every two consecutive distinct values.
This results in at most 2n− 1 intervals.

There is an arc between a job node (j) and a time interval node (t), if the job
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Figure 2.2: Example with three jobs and four intervals

can be processed during the interval t = [ts, te] (i.e. rj ≤ ts and te ≤ d̄j). The
capacity of that arc is equal to (te− ts)P +

j , the maximum amount of resource that
job j can receive during that interval.

We add a source that has an arc going to every job node, with Ej (the total
amount of work for that job) as its capacity, and a sink with an incoming arc from
each time interval node with a capacity of (te − ts)P (the available resource in
that interval).

A flow through this graph now will represent a resource assignment to the jobs.
We use an LP analogue to solve this flow problem. If a max flow of

∑
j Ej is

found, we know the problem without lower bounds is feasible. If the max flow has
a smaller value, we know that this instance has no feasible solution.

An example with three jobs and four time intervals is illustrated in Figure 2.2.
Note that the end time te of an interval is identical to the start time ts of the next
interval, e.g. t1

e = t2
s.

2.4.3. Choice of parameters for instance generation
We performed a grid search on a number of possible combinations of parameter
settings, generating 100 random instances for each setting and using the flow-
inspired LP described above to check the feasibility.

This analysis was performed for different values of n, while P was fixed at 50.00.
A parameter setting was selected for each value of n such that for 99% of the
generated instances a feasible flow exists in the relaxed problem (without lower
bounds). The aim was to end up with mostly feasible instances, with the occasional
infeasible instance mixed in.

The infeasible instances in the resulting test set will provide insight on the behavior
of our solution approach on instances that we know to be infeasible. At the same
time, using this parameter setting leads to the generation of instances with high
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amaxlow aminupp arshift apws

n = 5, 10 0.25 0.25 0.125 2
n = 15, 20, 30, 50 0.25 0.25 0.125 1.5

Table 2.3: Parameter settings used for generating instances of different sizes

competition for resources during at least some time periods. Finding a feasible
solution may already be a challenge for these instances, and this is exactly the
type of challenging instance that our approach should be tested on.

Note, however, that this analysis was performed for P = 50.00 only. While the
same parameter settings were used for other values of P , the instances generated
are not necessarily equally likely to be feasible. We observe in practice, however,
that the likelihood of feasibility is very similar.

The parameter settings used for each value of n are listed in Table 2.3.

2.5. Computational results

W e ran computational experiments, measuring both solution time and the
objective value of the best found solution for the MILP formulation and
the hybrid local search algorithm. The instances we generated and used

to run the tests can be found online (Brouwer 2022a), as well as the code used to
run the experiments (Brouwer 2022b).

2.5.1. Parameter settings
To run our simulated annealing algorithm, we need to determine the value for the
following parameters:

• Penalty for using slack variables LB , LR;

• Initial temperature Tinit;

• Number of iterations between temperature updates αperiod;

• Multiplication factor for updating the temperature α;

• Probability of selecting each neighborhood operator:

– Swap ps;

– Single move pm;

– Paired move pp.

Below, we will discuss the effect of each of these parameters and explain the choice
of parameters for the hybrid approach, as presented in Table 2.4.

The values for the penalty terms LB and LR have to be chosen carefully. A value
that is too high will discourage exploration by making traversing infeasible parts
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Tinit αperiod α LB LR ps pm pp

n (2n− 1) · 4 0.95 5 5 0.75 0.15 0.1

Table 2.4: Parameter settings for simulated annealing used for computational experi-
ments

of the search space unlikely, once a feasible solution has been found. A value that
is too low, may result in some infeasible solutions having a lower score than the
optimal solution. The value of 5 is chosen to match the largest weight wj a job
can have.

Higher values for the initial temperature Tinit lead to a search that is more likely
to continue with solutions that are not an improvement over the current solution.
The multiplication factor α and the number of iterations between updates αperiod

of the temperature control how quickly the temperature, and thereby the chance
of selecting a worse solution than the current one, is lowered during the search
process. Common values for α are 0.95 and 0.99, while αperiod is generally set to
be a multiple of the neighborhood size. As our dominant neighborhood is defined
by the ‘swap’ operator, we chose its size of 2n− 1 as a starting point.

For a selection of instances of different sizes, we ran a (limited) grid search for a
number of combinations of parameter values. The settings that were tested are as
follows: Tinit ∈ {5, 15, 30, 45, 60, 75}, α ∈ {0.95, 0.99} and αperiod ∈ {2, 4, 6, 8, 10} ·
(2n − 1). We extrapolated the results and chose a combination of values that
performed well across all instance sizes. When considering individual instances or
small groups of instances, the selected set of parameters is not always the best
performing set that we have tested. However, the aim is to find a single set of
parameters for evaluating the hybrid approach, not to over-fit the set of parameters
to every imaginable subset of instances.

The same line of reasoning is followed for the neighborhood selection probabilities
ps, pm and pp. For instances with a short event list E (n ≤ 15), the best results
are achieved when only the ‘swap’ operator is used. More disruptive operators,
such as the ‘(paired) move’, have an added value in instances with larger values
of n. Therefore, to cover the larger (n ≥ 20) instances with the same set of
parameters, non-zero values for pm and pp have been chosen. For this purpose,
we have evaluated the following combinations of (ps, pm, pp) ∈ {(1.00, 0.00, 0.00),
(0.90, 0.10, 0.00), (0.90, 0.05, 0.05), (0.75, 0.25, 0.00), (0.75, 0.15, 0.10)}.

In addition, since we consider the hybrid local search to be most relevant for the
instances with n = 50, we allow restarts under certain conditions for these larger
instances. If a run completes before 1800 seconds have passed, we perform 100
random swaps on the current event order, and restart the simulated annealing
with the obtained order as the initial solution.

For solving both the MILP formulation and the LP subproblem of the simulated
annealing algorithm we used CPLEX Studio 22.1, with a time limit of 3600 seconds,
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MILP SA
n Avg. time Avg. diff Avg. time Avg. diff
5 2.23 0.00% 85.63 0.00%
10 2453.67 0.15% 281.63 0.32%
15 3521.22 2.73% 532.74 0.12%

Table 2.5: Comparison of MILP formulation and simulated annealing algorithm on
small instances

and limited to the use of a single thread. Everything else has been implemented
in the Python programming language. The processor of the system used to run
the tests on was an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz.

2.5.2. Results
The full results of these runs can be found in Appendix 2.B.

In Table 2.5 we compare the performance of the MILP formulation and the simu-
lated annealing on small instances (n = 5, 10, 15) in terms of run time and solution
quality. This analysis is based on the results in Tables 2.8 - 2.10. Infeasible in-
stances were left out of the analysis. The average runtime and difference are com-
puted only over those instances where both approaches come up with a feasible
solution. Note that the average runtime of the MILP for n = 10, 15 is somewhat
misleading, as many runs have been cut off at 3600 seconds, resulting in a run-
time equal to the cut-off time for these runs. The difference is defined to be the
relative difference between the score of the best known solution and the reported
solution.

It is relevant to point out that for both n = 10 and n = 15 there are two instances
where the MILP is able to find a feasible solution, and the simulated annealing
is not, while for n = 15 the simulated annealing finds a feasible solution for five
instances where the MILP fails.

Figure 2.3 shows the runtime of the MILP and the hybrid approach (‘SA’). For
the MILP, only instances where a feasible solution was found are included in the
average, and runs that were cut off after reaching the time limit are included as
taking 3600 seconds. For the hybrid approach, the results for n = 50 have been
excluded, as these runtimes include restarts. We can see that the runtime of the
hybrid local search approach scales better than that of the MILP.

Our approach is competitive with the MILP on instances of size n = 10 and
smaller. It finds equally good solutions, only taking more time for the smallest
instances (n = 5). On instances of size n = 15 and above, the hybrid local search
finds better solutions than the MILP in less time, if the MILP is able to find any
feasible solution at all. The difference is likely to become even clearer if we would
perform a number of reruns of the local search and only keep the best result, as we
already did for the largest instances (n = 50). For n = 15, for example, about 6-7
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Figure 2.3: Average runtime of the compared approaches on increasing instance sizes

reruns can be performed without exceeding the time limit of 3600 that the MILP
also has to respect.

We do see, however, that the performance of the hybrid approach drops with
growing instance size as well. Table 2.6 summarizes the number of instances for
which the (flow) feasibility test predicted a feasible solution exists, and presents
the number of times a feasible solution and the best known (feasible) solution
were found by the hybrid approach and the MILP formulation. Here, the value in
brackets includes the instances where the hybrid approach found the best known
infeasible solution, for instances where no feasible solution is known. This analysis
is based on the results in Tables 2.8 - 2.13. By allowing restarts, we are able to
find feasible solutions in the majority of cases, even for n = 50, but even larger
instance sizes remain challenging.

Note that the best found solution for n = 30 is always the same as the reported
solution for the hybrid local search algorithm. We added the instances of this size
at a later stage to gain better insight, as the sizes of n = 20 and n = 50 differ
strongly in their results. The reported solutions result from the only runs for these
instances, and are therefore by default always the best known. For the instances
of size n = 20 and n = 50, we observe that the number of times that our approach
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Flow SA MIP
n Feas. Feas. Best Feas. Best
5 28 28 28 (28) 28 28
10 32 30 26 (26) 32 23
15 32 30 15 (15) 27 4
20 31 30 8 (8) - -
30 32 28 28 (32) - -
50 32 21 7 (9) - -

Table 2.6: Number of feasible solutions found for each instance size

finds the best known solution strongly decreases. To put this in perspective, we
note that the best known solution for these larger instances was often found during
a trail run that took many hours. These do not offer a realistic alternative to the
presented approach.

Analyzing the behavior of the hybrid approach on the four instances of size n = 5
that we know to be infeasible (see Table 2.8), a difference can be noted when
compared to its behavior when dealing with feasible instances. It will still re-
port the best found infeasible solution, but the time it spends before terminating
the search is significantly shorter. From this, it cannot be concluded that an in-
stance is infeasible whenever the search terminates quickly, but it does indicate
that the algorithm tends to stop searching when there is no hope of further im-
provement.

Table 2.7 shows the relative difference between the best known solution and both
the final and initial solutions of the hybrid local search. The results only include
the instances for which a feasible solution was found, and are grouped by in-
stance size. The groups are further split in the adverse and non-adverse instances
(see Section 2.4). The last column shows the number of instances in each group.
The intuition that sorting the weights of jobs in increasing order (the ‘adverse’ in-
stances) would lead to worse initial solutions is proven wrong. In general, however,
the initial solution that the greedy algorithm from Section 2.3.3 finds, provides a
good starting point for the local search. For n = 15 it occasionally even comes up
with a better solution than the MILP finds in an hour (see Table 2.10). In addi-
tion to that, the local search strongly improves the initial solution for all instance
sizes.

2.6. Conclusion and future work

W e apply a decomposition of the problem in two parts, where a local search
algorithm is used to find event orders and an LP is used to find an opti-
mal schedule for a given event order. Our hybrid local search approach

matches the MILP formulation in solution quality for small instances (n ≤ 10),
and is able to find a feasible solution for larger instances (15 ≤ n ≤ 50) in reason-
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Avg. diff. to best
n adv. Reported Initial #
5 0 0.00% 34.57% 14

1 0.00% 14.36% 14
10 0 0.20% 11.93% 15

1 0.47% 12.73% 15
15 0 0.06% 15.00% 16

1 0.07% 12.86% 14
20 0 0.00% 17.60% 15

1 0.07% 18.93% 15
30 0 0.00% 27.42% 12

1 0.00% 27.19% 16
50 0 7.00% 22.00% 11

1 2.20% 25.70% 10

Table 2.7: Average relative distance for the reported solution and initial solution of the
hybrid approach to the best known solution by group of instances

able time. This approach opens the door for finding solutions to larger instances.
With further tuning and refinement of the current approach it is promising for
finding solutions to instances of even larger sizes.

One of the avenues for future work would be exactly this, further tuning the ap-
proach to deal with larger instances. The addition of more preprocessing steps
(e.g. identifying more implicit precedence relations) and the experimentation with
different search strategies (e.g. adding some form of random restart) are promis-
ing directions for further investigation. The MILP formulation can be further
strengthened by adding valid inequalities.

Finally, one could look at further extensions of the problem. Among those of
interest are the addition of precedence relations and changing P from a constant
into a variable resource availability function P (t).
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2.A. MILP formulation

The MILP formulation for the CECSP is as follows:

min
n∑

j=1
(wjt2j + Bj) s.t.

2n∑
i=1

pj,i = Ej ∀j ∈ {1, ..., n}

t2j−1 ≥ rj ∀j ∈ {1, ..., n}
t2j ≤ d̄j ∀j ∈ {1, ..., n}

pj,i ≤ ai,2jM ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}
pj,i ≤ a2j−1,iM ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}

pj,i ≤ P +
j (ti′ − ti) + Mai′,i ∀j ∈ {1, ..., n}, i, i′ ∈ {1, ..., 2n}, i ̸= i′

pj,i ≥ P−j (ti′ − ti)
−(1− bi,i′ + ai,2j−1 + a2j,i′)M

∀j ∈ {1, ..., n}, i, i′ ∈ {1, ..., 2n}, i ̸= i′∑
j∈{1,...,n}

pj,i ≤ P (ti′ − ti) + Mai′,i ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

ti ≤ ti′ + Mai′,i ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

ai,i′ + ai′,i = 1 ∀i, i′ ∈ {1, ..., 2n}, i < i′

2n∑
i′′=1

ai,i′′ −
2n∑

i′′=1
ai′,i′′ ≤ 1 + (1− bi,i′)M ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

2n∑
i′′=1

ai,i′′ −
2n∑

i′′=1
ai′,i′′ ≥ 1− (1− bi,i′)M ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

2n∑
i=1

∑
i′ ̸=i

bi,i′ = 2n− 1

t2j − t2j−1 ≤ Ej/P−j ∀j ∈ {1, ..., n}
t2j − t2j−1 ≥ Ej/P +

j ∀j ∈ {1, ..., n}
pj,i ≥ 0 ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}

ti ≥ 0 ∀i ∈ {1, ..., 2n}
ai,i′ ∈ {0, 1} ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

ai,i = 0 ∀i ∈ {1, ..., 2n}
bi,i′ ∈ {0, 1} ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′



2

44 2. Hybrid local search for CECSP

2.B. Full Results

I n the result tables provided in this appendix, the first four columns uniquely
describe the instance. Columns 1-3 show the number of jobs n, resource avail-
ability P , and whether the weights are sorted in ascending order (adversarial,

indicated as ‘a’). As four instances of each type were generated, the fourth column
identifies each instance with a number (0-3). We then list whether our feasibility
test was passed by the instance or not (as described in Section 2.4.2).

This is followed by a column indicating the best objective value that we have
encountered in any run of any of our algorithms. Note that this includes some
extremely long runs done in the trail phase. Next we list the results of the MILP
and hybrid local search algorithm (SA). For each we present the run time and best
found objective value, while we also add the objective value of the initial solution
(found by the greedy algorithm described in Section 2.3.3) for our hybrid local
search approach.

Any values in italics indicate objective values corresponding to infeasible solutions.
In the case of a solution found by our hybrid local search, this means that some
slack variables have a non-zero value. An objective value of a solution found by
the MILP or hybrid local search is put in boldface if it is equal to the best known
objective value. Finally, we put LIMIT in the ‘time’ column under ‘MILP’ if the
solver did not terminate within 3600 seconds, meaning it was unable to prove
optimality of the current best found solution. We report an objective of -1.00 if
no feasible solution was found by the solver.

Note that the results for the hybrid local search in these tables are of a single run
of each of the algorithms, they are not averages or best-of results.
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Table 2.8: Computational results for n = 5

Flow Best MILP SA
n P a # Feas. known time obj time obj init
5 25 0 0 yes 163.58 2.04 163.58 24.18 163.58 177.77
5 25 0 1 yes 165.72 1.58 165.72 189.19 165.72 212.33
5 25 0 2 yes 99.42 18.87 99.42 59.68 99.42 104.79
5 25 0 3 yes 78.70 1.92 78.70 80.97 78.70 97.96
5 25 1 0 yes 113.21 1.96 113.21 104.72 113.21 132.90
5 25 1 1 yes 61.94 6.30 61.94 91.03 61.94 68.71
5 25 1 2 yes 73.06 1.83 73.06 111.09 73.06 88.02
5 25 1 3 yes 96.81 6.36 96.81 95.73 96.81 98.34
5 50 0 0 yes 72.39 1.56 72.39 75.05 72.39 76.19
5 50 0 1 yes 88.61 0.87 88.61 103.08 88.61 94.87
5 50 0 2 yes 95.38 1.13 95.38 100.95 95.38 101.10
5 50 0 3 yes 80.81 1.38 80.81 130.12 80.81 92.27
5 50 1 0 yes 98.25 4.23 98.25 121.34 98.25 112.77
5 50 1 1 yes 74.93 2.24 74.93 101.55 74.93 82.42
5 50 1 2 yes 83.88 0.94 83.88 92.08 83.88 99.66
5 50 1 3 yes 102.10 2.08 102.10 91.60 102.10 102.95
5 100 0 0 yes 75.25 0.66 75.25 91.27 75.25 91.20
5 100 0 1 yes 77.71 0.51 77.71 36.22 77.71 175.64
5 100 0 2 yes 49.32 0.95 49.32 62.31 49.32 56.07
5 100 0 3 yes 51.97 0.54 51.97 64.66 51.97 111.72
5 100 1 0 yes 53.80 0.45 53.80 123.77 53.80 54.48
5 100 1 1 yes 69.92 0.71 69.92 43.58 69.92 76.33
5 100 1 2 yes 93.13 0.92 93.13 42.37 93.13 100.24
5 100 1 3 yes 53.79 0.64 53.79 39.44 53.79 55.46
5 200 0 0 yes 67.13 0.38 67.13 89.15 67.13 137.92
5 200 0 1 no 120.94 0.43 -1.00 0.24 169.91 169.91
5 200 0 2 no 74.41 0.45 -1.00 1.78 74.44 146.13
5 200 0 3 yes 57.02 0.48 57.02 86.05 57.02 59.86
5 200 1 0 yes 56.35 0.39 56.35 67.70 56.35 57.73
5 200 1 1 no 81.35 0.45 -1.00 1.62 81.61 148.08
5 200 1 2 yes 67.19 0.61 67.19 78.81 67.19 122.79
5 200 1 3 no 229.58 0.41 -1.00 1.16 231.03 330.74
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Table 2.9: Computational results for n = 10

Flow Best MILP SA
n P a # Feas. known time obj time obj init
10 25 0 0 yes 359.47 LIMIT 360.49 193.25 359.47 424.51
10 25 0 1 yes 334.63 LIMIT 337.72 206.95 334.63 424.35
10 25 0 2 yes 225.99 LIMIT 226.76 204.47 232.05 250.28
10 25 0 3 yes 300.08 LIMIT 300.08 243.97 300.08 392.84
10 25 1 0 yes 345.71 525.62 345.71 277.95 345.71 401.68
10 25 1 1 yes 394.69 3228.46 394.69 218.89 394.69 446.65
10 25 1 2 yes 399.06 LIMIT 399.06 245.50 399.06 493.58
10 25 1 3 yes 378.15 LIMIT 378.15 280.72 378.15 400.00
10 50 0 0 yes 193.57 LIMIT 193.57 293.98 193.57 207.17
10 50 0 1 yes 220.46 LIMIT 221.18 283.44 220.87 239.74
10 50 0 2 yes 254.38 1131.58 254.38 332.78 254.38 289.27
10 50 0 3 yes 191.05 LIMIT 191.05 248.19 191.05 213.67
10 50 1 0 yes 162.90 LIMIT 162.90 281.60 162.90 179.64
10 50 1 1 yes 171.90 LIMIT 172.04 298.19 171.90 174.68
10 50 1 2 yes 194.43 LIMIT 194.56 1.17 552.53 595.79
10 50 1 3 yes 289.80 LIMIT 289.80 256.29 303.90 388.97
10 100 0 0 yes 155.15 29.48 155.15 312.78 155.15 162.38
10 100 0 1 yes 139.62 LIMIT 139.62 308.31 139.62 148.31
10 100 0 2 yes 203.37 LIMIT 203.37 284.11 203.37 211.90
10 100 0 3 yes 168.99 LIMIT 171.55 306.39 168.99 194.37
10 100 1 0 yes 205.44 LIMIT 205.44 348.42 205.44 219.86
10 100 1 1 yes 171.26 LIMIT 171.42 393.40 171.26 225.93
10 100 1 2 yes 143.83 LIMIT 143.83 253.98 143.83 163.53
10 100 1 3 yes 145.66 LIMIT 148.32 282.35 148.32 162.14
10 200 0 0 yes 125.38 181.10 125.38 221.56 125.38 130.17
10 200 0 1 yes 138.32 4.58 138.32 309.86 138.32 185.09
10 200 0 2 yes 107.74 33.39 107.74 276.53 107.74 113.15
10 200 0 3 yes 100.16 4.42 100.16 314.35 100.16 104.39
10 200 1 0 yes 158.68 18.55 158.68 307.19 158.68 182.99
10 200 1 1 yes 135.62 13.38 135.62 443.79 135.62 136.47
10 200 1 2 yes 108.72 7.00 108.72 193.36 108.72 109.42
10 200 1 3 yes 101.19 LIMIT 101.19 233.21 101.19 106.54
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Table 2.10: Computational results for n = 15

Flow Best MILP SA
n P a # Feas. known time obj time obj init
15 25 0 0 yes 831.86 LIMIT 897.55 538.08 831.86 871.10
15 25 0 1 yes 587.90 LIMIT -1.00 390.93 587.96 752.17
15 25 0 2 yes 779.20 LIMIT 790.29 399.92 779.20 985.93
15 25 0 3 yes 800.74 LIMIT 825.81 417.82 800.74 997.23
15 25 1 0 yes 733.29 LIMIT 770.22 326.79 733.29 882.03
15 25 1 1 yes 805.43 LIMIT 898.95 536.96 811.87 953.44
15 25 1 2 yes 649.83 LIMIT -1.00 563.08 649.83 847.58
15 25 1 3 yes 561.05 LIMIT 572.22 402.05 561.98 662.60
15 50 0 0 yes 542.53 LIMIT -1.00 448.71 542.57 634.80
15 50 0 1 yes 309.19 LIMIT 311.46 544.40 309.19 363.38
15 50 0 2 yes 353.07 LIMIT 358.26 411.76 353.08 382.82
15 50 0 3 yes 391.34 LIMIT -1.00 462.41 391.48 611.09
15 50 1 0 yes 322.26 LIMIT 325.22 520.40 322.26 349.78
15 50 1 1 yes 475.77 LIMIT 492.32 2.18 793.14 793.14
15 50 1 2 yes 589.86 LIMIT -1.00 436.84 589.86 626.66
15 50 1 3 yes 347.26 LIMIT 349.15 392.01 347.26 399.45
15 100 0 0 yes 235.75 LIMIT 246.03 427.83 239.26 250.06
15 100 0 1 yes 330.64 LIMIT 337.54 507.91 331.21 338.12
15 100 0 2 yes 314.33 LIMIT 321.52 643.93 314.33 348.71
15 100 0 3 yes 288.97 LIMIT 289.10 479.21 288.97 342.44
15 100 1 0 yes 279.48 LIMIT 291.05 542.24 279.58 299.08
15 100 1 1 yes 341.46 LIMIT 345.56 671.86 341.46 408.68
15 100 1 2 yes 215.79 LIMIT 230.71 2.30 520.72 520.72
15 100 1 3 yes 259.86 LIMIT 265.08 546.11 259.86 296.06
15 200 0 0 yes 168.23 LIMIT 190.76 579.06 168.24 181.16
15 200 0 1 yes 253.88 LIMIT 261.80 881.63 253.88 259.09
15 200 0 2 yes 143.38 LIMIT 144.71 702.94 143.51 151.02
15 200 0 3 yes 237.71 1496.19 237.71 549.86 237.71 243.81
15 200 1 0 yes 179.79 LIMIT 179.86 646.97 179.85 199.15
15 200 1 1 yes 198.08 LIMIT 198.08 526.01 198.10 207.30
15 200 1 2 yes 160.21 LIMIT 160.21 565.79 160.34 165.41
15 200 1 3 yes 244.38 LIMIT 244.38 556.86 244.41 254.76
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Table 2.11: Computational results for n = 20

Flow Best SA
n P a # Feas. known time obj init
20 25 0 0 yes 1122.08 862.19 1125.55 1643.66
20 25 0 1 yes 1343.89 685.22 1343.89 1771.98
20 25 0 2 yes 1012.18 877.71 1012.18 1197.75
20 25 0 3 no 1445.11 732.78 1518.36 1784.42
20 25 1 0 yes 991.01 776.51 995.64 1195.65
20 25 1 1 yes 1316.27 797.72 1316.27 1768.37
20 25 1 2 yes 1094.52 549.41 1094.52 1399.41
20 25 1 3 yes 991.20 702.07 991.20 1123.76
20 50 0 0 yes 657.76 752.77 657.76 827.27
20 50 0 1 yes 765.34 712.16 766.59 951.32
20 50 0 2 yes 590.19 809.64 590.19 620.57
20 50 0 3 yes 729.51 710.34 729.51 1049.81
20 50 1 0 yes 571.33 678.59 571.48 635.55
20 50 1 1 yes 625.52 674.42 628.49 755.16
20 50 1 2 yes 548.63 565.51 548.74 737.98
20 50 1 3 yes 551.01 603.31 554.73 610.62
20 100 0 0 yes 301.95 989.00 302.12 314.61
20 100 0 1 yes 476.50 810.92 476.71 527.38
20 100 0 2 yes 363.01 902.16 363.12 443.13
20 100 0 3 yes 488.63 1461.01 488.68 506.45
20 100 1 0 yes 365.24 980.08 365.31 501.94
20 100 1 1 yes 493.23 1072.18 493.28 584.07
20 100 1 2 yes 415.11 1185.18 415.24 454.11
20 100 1 3 yes 359.19 664.77 359.25 482.25
20 200 0 0 yes 303.41 818.06 303.78 309.97
20 200 0 1 yes 310.99 883.86 311.31 364.42
20 200 0 2 yes 345.24 1064.08 345.28 367.84
20 200 0 3 yes 285.33 796.83 285.70 290.13
20 200 1 0 yes 305.00 1095.02 305.06 334.49
20 200 1 1 yes 337.89 753.72 337.97 346.15
20 200 1 2 yes 313.49 828.79 313.72 332.67
20 200 1 3 yes 318.78 1098.68 318.96 365.87
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Table 2.12: Computational results for n = 30

Flow Best SA
n P a # Feas. known time obj init
30 25 0 0 yes 2088.94 1502.01 2088.94 2599.09
30 25 0 1 yes 3134.71 5.58 3134.71 3211.39
30 25 0 2 yes 2291.27 1406.69 2291.27 2744.97
30 25 0 3 yes 2082.82 1424.99 2082.82 2860.31
30 25 1 0 yes 2920.08 1142.54 2920.08 3380.82
30 25 1 1 yes 2963.77 1483.27 2963.77 3870.67
30 25 1 2 yes 3436.78 29.96 3436.78 3622.45
30 25 1 3 yes 3237.29 1760.39 3237.29 4677.28
30 50 0 0 yes 2426.46 5.62 2426.46 2476.53
30 50 0 1 yes 2538.60 5.75 2538.60 2589.17
30 50 0 2 yes 1052.26 1728.24 1052.26 1254.98
30 50 0 3 yes 2019.35 5.69 2019.35 2020.03
30 50 1 0 yes 1660.95 1601.76 1660.95 2041.24
30 50 1 1 yes 1732.74 1614.14 1732.74 2391.34
30 50 1 2 yes 1778.19 1381.26 1778.19 2190.11
30 50 1 3 yes 1703.09 308.90 1703.09 2080.97
30 100 0 0 yes 747.01 1591.51 747.01 1482.49
30 100 0 1 yes 904.57 1628.79 904.57 1262.40
30 100 0 2 yes 779.62 2140.44 779.62 929.26
30 100 0 3 yes 865.12 1481.99 865.12 1160.84
30 100 1 0 yes 836.81 2110.24 836.81 1118.03
30 100 1 1 yes 976.40 1890.41 976.40 1419.84
30 100 1 2 yes 754.56 1861.07 754.56 1085.14
30 100 1 3 yes 695.52 1690.72 695.52 902.68
30 200 0 0 yes 497.55 2059.61 497.55 549.87
30 200 0 1 yes 486.30 1826.58 486.30 513.94
30 200 0 2 yes 509.32 1685.78 509.32 552.84
30 200 0 3 yes 538.68 2378.16 538.68 604.61
30 200 1 0 yes 468.25 2631.23 468.25 623.84
30 200 1 1 yes 586.33 1823.30 586.33 715.84
30 200 1 2 yes 619.83 1826.30 619.83 645.95
30 200 1 3 yes 568.19 2356.85 568.19 687.19
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Table 2.13: Computational results for n = 50

Flow Best SA
n P a # Feas. known time obj init
50 25 0 0 yes 6002.37 4293.20 6777.69 7958.75
50 25 0 1 yes 6573.68 4665.56 7245.46 7509.22
50 25 0 2 yes 6423.54 5003.16 6423.54 7689.15
50 25 0 3 yes 7027.25 5916.94 7027.25 8145.16
50 25 1 0 yes 6562.65 3602.98 7196.96 7217.22
50 25 1 1 yes 6257.97 5594.27 7278.21 7520.76
50 25 1 2 yes 7239.58 6254.32 7239.58 8007.63
50 25 1 3 yes 7911.54 5082.28 7925.13 8873.06
50 50 0 0 yes 4176.25 5303.19 4469.83 5420.81
50 50 0 1 yes 5837.52 3731.27 5857.73 5871.31
50 50 0 2 yes 3167.27 2318.80 3756.45 4459.79
50 50 0 3 yes 3429.76 3484.34 4080.28 4731.48
50 50 1 0 yes 3503.36 6897.78 3516.58 4041.55
50 50 1 1 yes 3081.82 6070.92 3081.82 4950.52
50 50 1 2 yes 4326.41 2764.69 4499.39 4509.67
50 50 1 3 yes 3548.99 3541.65 4359.87 4750.75
50 100 0 0 yes 1609.52 8184.16 1609.52 1928.63
50 100 0 1 yes 2205.73 8174.82 2205.73 2588.95
50 100 0 2 yes 1658.84 3838.16 2074.60 2127.92
50 100 0 3 yes 1947.59 2484.76 2282.36 2622.42
50 100 1 0 yes 1628.10 4110.64 1933.85 2240.80
50 100 1 1 yes 1716.27 9738.11 1716.27 2096.80
50 100 1 2 yes 1637.18 6344.71 1637.18 2402.85
50 100 1 3 yes 1880.46 6946.31 1880.46 2358.75
50 200 0 0 yes 1139.72 2123.86 1384.30 1415.43
50 200 0 1 yes 1237.01 2861.69 1352.59 1352.59
50 200 0 2 yes 1298.67 12194.00 1306.81 1439.92
50 200 0 3 yes 1211.63 9607.54 1219.67 1442.92
50 200 1 0 yes 1052.00 13363.99 1060.47 1169.24
50 200 1 1 yes 1265.67 2003.09 1458.85 1459.74
50 200 1 2 yes 1060.45 9351.82 1070.15 1223.95
50 200 1 3 yes 1095.45 8013.34 1103.34 1216.94
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Abstract

We present a hybrid optimization framework for a class of problems, formalized
as a generalization of the Continuous Energy-Constrained Scheduling Problem
(CECSP), introduced by Nattaf, Artigues, and Lopez (2014). This class is obtained
from challenges concerning demand response in energy networks. Our framework
extends a previously developed approach (Brouwer, van den Akker, and Hoogeveen
2023; Chapter 2). A set of jobs has to be processed on a continuous, shared re-
source. Consequently, a schedule for a job does not only contain a start and com-
pletion time, but also a resource consumption profile, where we have to respect
lower and upper bounds on resource consumption during processing. In this work,
we develop a hybrid approach for the case where the objective is a step-wise in-
creasing function of completion time, using local search, linear programming and
O(n) lower bounds. We exploit that the costs are known in the local search and
use bounds to assess feasibility more efficiently than by LP. We compare its per-
formance to a mixed-integer linear program. After that, we extend this to a hybrid
optimization framework for the General CECSP. This uses an event-based model,
and applies a decomposition in two parts: 1) determining the order of events and
2) finding the event times, and hence the start and completion times of jobs, to-
gether with the resource consumption profiles. We argue the broad applicability of
this framework.

Keywords: continuous scheduling, resource-constrained scheduling, mathematical
programming, local search, decomposition.



3.1. Introduction

3

55

3.1. Introduction

I n this chapter, we study scheduling problems related to demand response in
energy networks. For example, when charging the battery of an e-vehicle, it
must be provided with enough energy to fill it up to capacity, but the exact

charging time can be freely determined as long as charging takes place between
the arrival and departure time of the vehicle. Moreover, we are not necessarily
limited to a fixed rate for charging the battery, although we want to take into
account that preemption of charging may be undesirable, due to the response time
of batteries.

This leads us to consider scheduling problems where we are primarily interested in
the (cumulative) amount of work (or resource) required to complete a job, while
the rate of consumption may vary within a given range. Such problems require
a different approach than the more traditional ones, as both resources and time
are continuously-divisible, and jobs are flexible (to a certain extent) along both
axes. This type of problem, that we will refer to as the General Continuous
Energy-Constrained Scheduling Problem (GCECSP), has not yet been studied
extensively.

The GCECSP is described as follows. A set {J1, . . . , Jn} of jobs has to be processed
on a continuous, shared resource R. This means that, at any time, multiple
jobs can be processed simultaneously and at different rates, as long as their total
consumption does not exceed the available resource capacity P . A schedule for a
job Jj does not only contain a start and completion time (respecting the release
time rj and deadline d̄j), but also a resource consumption profile pj(t), where
we have to respect lower and upper bounds (P−j , P +

j ) on resource consumption
during processing. The total consumption of job Jj should equal its cumulative
requirement Ej . Preemption is not allowed: from its start until its completion,
each job must consume resources at a rate of at least P−j > 0 units.

The GCECSP is a generalization of the Continuous Energy-Constrained Schedul-
ing Problem (CECSP) that we studied in our previous work (Brouwer, van den
Akker, and Hoogeveen 2023; Chapter 2) and was originally introduced by Nattaf,
Artigues, and Lopez (2014). The CECSP is a generalization of the Cumulative
Scheduling Problem (CuSP) presented by Baptiste, Pape, and Nuijten (1999). In
the case of the CuSP, a number of activities have to be scheduled on a single
shared resource with a given capacity. Each activity has a release time, deadline,
(fixed) processing time and (constant) resource capacity requirement. The CuSP
was formulated as a subproblem of the Resource Constrained Project Scheduling
Problem (RCPSP), relaxing precedence constraints and considering only a single
resource. The RCPSP is a very general problem that concerns the scheduling of
activities subject to precedence, time and resource constraints. The surveys by
Hartmann and Briskorn (2010, 2022) provide a good overview of the RCPSP and
its extensions. Most closely related to the present work, continuous and event-
based formulations of the RCPSP have been studied and evaluated by Koné et al.
(2011) and Kopanos, Kyriakidis, and Georgiadis (2014) as well as more general
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models with flexible resource profiles in continuous time (FRCPSP), for example
by Naber (2017).

For the CECSP including efficiency functions that apply to the conversion of the
amount of consumed resource to the contribution towards the resource requirement
of a job, with minimizing resource consumption as the objective, Nattaf, Artigues,
and Lopez (2017) and Nattaf, Horváth, et al. (2019) provided several algorithms
aiming to find exact solutions for small instances. The CECSP generalizes the
CuSP as the resource capacity requirement is considered to be a range with a
lower and an upper bound, rather than a fixed value, and the consumption rate
can vary during the execution of the job. As a result, the processing time can
vary, depending on the consumption rate during execution. Through its relation
to CuSP, Nattaf, Artigues, Lopez, and Rivreau (2016) proved that the problem of
finding a feasible solution for CECSP is NP-complete.

The GCECSP is also closely related to the scheduling of malleable jobs (as intro-
duced by Turek, Wolf, and Yu (1992)) on parallel machines, which involves the
scheduling of jobs on P machines, while the number of machines assigned to a
job can change during its execution. The machines can be viewed as a discretized
resource.

A wide range of objectives can be considered in variants of the GCECSP. In this
work, we explore the GCECSP with step-wise cost function in detail. Problems
with a generalized step-wise cost function have not been widely studied. In sched-
uling literature, Detienne, Dauzère-Pérès, and Yugma (2011, 2012) study single
(1||f̄(Cj)) and parallel (R|rj |f̄j(Cj)) machine scheduling problems with a regular
step-wise cost function. The single machine problem is proven to be NP-hard in the
strong sense. For both the single machine and the parallel unrelated machine prob-
lem, Detienne, Dauzère-Pérès, and Yugma introduce a dominance relation, proving
that if there exists at least one feasible schedule in which each job completes before
its deadline, then the schedules where jobs are sequenced in non-decreasing order
of their deadlines are feasible. Tseng, Chou, and Chou (2010) study a similar
problem on a single machine, but refer to it as stepwise tardiness.

Our contribution is twofold. (1) We present an optimization framework for the
GCECSP and related problems, based on our previously developed hybrid local
search approach Brouwer, van den Akker, and Hoogeveen 2023, using simulated
annealing and linear programming. (2) As an example, we detail how our ap-
proach can be applied to a variant with a step-wise constant objective function,
where we exploit the properties of the objective to improve the efficiency of the
approach.

The rest of this work is structured as follows. First, we will give a detailed problem
description in Section 3.2. Then, we will introduce our framework in Section 3.3,
using an interesting variant of the problem with step-wise cost functions as an
example throughout. In this section, we will discuss the event-based model, a
proposed decomposition of the problem, and the implementation of our solution
approach. Our approach uses local search, linear programming and a number
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of algorithms for approximating the penalty terms, to avoid solving the LP in
every iteration. We continue with an overview of variants of the GCECSP, and a
discussion on the applicability of our framework to these variants in Section 3.4.
In Section 3.5, we will describe the generation of test instances for the problem
introduced in Section 3.3 and present the computational results of applying our
approach to them. Finally, we will draw conclusions in Section 3.6. An overview
of the notation used in this chapter can be found at the start of this part, on page
17.

3.2. Problem description

W e consider a wide range of scheduling problems. The common basis
of these problems, which we will call the General Continuous Energy-
Constrained Scheduling Problem (GCECSP) from here on, is defined by

the following properties:

• A resource R with a constant availability of P ;

• For each job Jj , j ∈ {1, ..., n}:

– Resource requirement Ej ;

– Release time rj ;

– Deadline d̄j ;

– Lower bound P−j ;

– Upper bound P +
j .

For each job, we need to determine a start time Sj , a completion time Cj and
a resource consumption profile pj(t) (a function that describes the amount of
resource that job Jj consumes over time) such that some objective (most commonly
a function of Cj) is minimized, while the following constraints are respected:

C1 The total amount of resource job Jj consumes is exactly Ej , i.e.
∫

t
pj(t) dt =

Ej ;

C2 Job Jj does not start before its release time rj , i.e. Sj ≥ rj ;

C3 Job Jj completes no later than its deadline d̄j , i.e. Cj ≤ d̄j ;

C4 Job Jj only consumes resources between its start and completion time, i.e.
pj(t) = 0 for t < Sj or t ≥ Cj ;

C5 While active, the resource consumption of job Jj never drops below P−j or
rises above P +

j , i.e. P−j ≤ pj(t) ≤ P +
j for Sj ≤ t ≤ Cj ;

C6 The total amount of resource consumed by all jobs together at any given
time can never exceed P , i.e.

∑
j pj(t) ≤ P for all possible values of t.

An example instance with three jobs and P = 50.00 is provided in Figure 3.1.
Figure 3.1a lists the properties of all jobs and Figure 3.1c visualizes a feasible
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j Ej rj d̄j P−j P +
j

1 70.0 0.0 3.0 10.0 30.0
2 20.0 1.0 3.0 10.0 40.0
3 45.0 2.5 4.0 10.0 50.0

(a) Job properties

(b) Cost functions
(c) Visualization of a feasible sched-
ule

Figure 3.1: Example instance with three jobs

schedule for this instance. The cost functions in Figure 3.1b are step-wise cost
functions, which will be discussed in detail in Section 3.3.

3.3. Hybrid optimization framework

W e will introduce our optimization framework by applying it to one par-
ticularly interesting variant. In this variant, we want to minimize an
increasing step-wise cost function f̄j(Cj), that determines the cost of

completing a job Jj at a given time. Such a function consists of k pieces, each
spanning an interval where the cost of completing a job does not change. Es-
sentially, a job now has k − 1 due dates, or jump points, after each of which the
cost of completing the job increases, and a single deadline. The jump points are
chosen independently for each job. Figure 3.1b shows example cost functions for
the example instance, with two jump points each (k = 3).

3.3.1. Event-based model
Recall that a schedule consists of, for every job Jj : a start time Sj , a completion
time Cj and a resource consumption profile pj(t). So, for every job, the timing of
two events has to be determined, which leads to a total of 2n events. A sequence
of these events E is the basis of any schedule. We will call these events plannable,
as we need to decide their exact timing. We denote the (ordered) set of plannable
events as P.

In most cases, we only need these 2n events in our model. For the step-wise cost
functions, however, we introduce another event type: fixed-time events. These
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Figure 3.2: Graphical representation of part of an event order and associated intervals

are events of which the exact timing is already known. In this case, the k − 1
jump points {K1

j , ..., Kk−1
j } of each job are added to the event list E as fixed-

time events, bringing the total to n(k + 1) events. We denote the (ordered) set of
fixed-time events as F . Including them in the order of events has some benefits
for determining the objective value of a potential solution during our algorithm,
which will be explained in Section 3.3.3. From a given order of events E , we can
identify 2n−1 resource intervals, each defined by two consecutive plannable events
in our sequence and n(k − 1)− 1 timed intervals, each defined by two consecutive
fixed-time events. Part of an example event order and associated intervals is
given in Figure 3.2. Note that, whenever intervals are mentioned without further
qualification in the following, these are resource intervals.

The following theorem is a reformulation of the theorem proven by Brouwer, van
den Akker, and Hoogeveen (2023; Chapter 2) for the case where the objective is
to minimize weighted completion time, but the proof can be modified to fit any
objective that is a function of (plannable) event time.

Theorem 3.1. For any feasible schedule S with resource consumption profiles
pj(t) for all jobs Jj , j ∈ {1, ..., n} and objective value W that follows a given event
order E, a feasible schedule S ′ exists with the same order of events E and objective
value W where the resource consumption p′j(t) of all jobs remains constant during
each interval.

Theorem 3.1 shows that we can simplify the resource consumption profile function
pj(t) to a discrete number of values pj,i, indicating the amount of resource each
job Jj consumes during interval i, i ∈ {1, ..., 2n − 1}. These values pj,i together
with event times ti fully describe the schedule.

The GCECSP can be solved using a mixed-integer linear program, where, besides
ti and pj,i, additional binary variables are used to model the order of events.
We adapt the formulation presented by Brouwer, van den Akker, and Hoogeveen
(2023; Chapter 2) for the variant with step-wise cost functions.

The full MILP formulation is presented in Appendix 3.A. Note that the indexing
scheme of events is similar to that in Chapter 2. The first 2n indices are reserved
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for plannable events, where i = 2j − 1 is the start event of job Jj , and i = 2j
its completion. The fixed-time events follow, where the jth k − 1 indices (i.e.,
2n+(k−1)(j−1)+1, ..., 2n+j(k−1)) belong to the jump points of job Jj . Recall
that the indices of intervals match that of the plannable event that occurs at the
start of that interval.

3.3.2. Decomposition and local search
We observe that, after fixing the binary variables in the MILP, we are left with an
LP that quickly finds an optimal schedule for a given order of events. This inspires
the decomposition of the problem in two parts: (1) finding a good event order E ,
and (2) determining an optimal schedule for a given event order. This idea forms
the basis of the approach that we developed in our previous work (Brouwer, van
den Akker, and Hoogeveen 2023; Chapter 2), where we use simulated annealing
to explore permutations of the order of events E , with neighborhood operators
that swap two adjacent events and occasionally move an event multiple positions
forwards or backwards in the event order. In every iteration of the simulated
annealing, we evaluate the objective by solving an LP to find the optimal schedule
for the given event order, defining event times ti and resource consumption profiles
pj,i.

This approach generalizes well to the GCECSP. It is a shared property of the
GCECSP and its variants that it is difficult to find a good event order E , while
finding a schedule for a given event order is relatively easy. The general approach
can be applied to the GCECSP and its variants, while some elements, such as
the neighborhood operators or the means of assessing the quality of event orders,
may need to be tailored in each case. This tailoring, however, may also open up
opportunities for increasing the performance of the approach. This is the case for
the variant with step-wise cost functions, as will become clear in the remainder of
this chapter.

In the remainder of this section, we will discuss how to tailor the general approach
for the variant with step-wise cost functions. We need to make a number of
changes: (1) we adapt the greedy algorithm for finding an initial solution; (2)
we extend the set of implicit precedence constraints that we consider in the local
search; (3) because of the increased number of events for an instance of the same
size, when compared to the general case, we adapt the neighborhood operator to
generate neighbors by moving an event multiple positions more often; (4) to avoid
spending a lot of time on a plateau, we terminate the search if the number of
iterations since the last improvement of the current solution exceeds one cooling
period (see Section 3.5.1); (5) we change the way the quality of event orders is
assessed, which will be explained in Section 3.3.3. Because we use fixed-time events
to model jump points in the cost function, the value of the objective function is
fully determined by the event order. However, we still need to determine whether
a feasible solution exists for that particular event order.
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3.3.3. Assessing the quality of event orders
In the general approach, an LP is used to solve the subproblem, i.e. for determining
an optimal schedule for the given event order (if one exists). In order to give
the simulated annealing search enough flexibility, we allow it to search through
the space of infeasible solutions. To evaluate infeasible candidate solutions, we
include three types of so-called violation variables (s+

j,i, s−j,i, st
i ≥ 0) that allow for

the violation of the constraints enforcing the (1) upper and (2) lower bound on
the resource consumption for a job, and (3) the upper bound on the amount of
available resource during an interval at the cost of a penalty in the objective. If
the sum of the violation variables is larger than 0, no feasible solution exists for
that order, but we can still view a decrease in the penalty term as a move in the
right direction.

While the search is ongoing, however, it is sufficient if we know the objective value,
including the penalty term. We do not need the schedule, i.e. the exact values of
all event times ti and resource consumption during intervals pj,i. For the case with
step-wise cost functions, this means that we may not have to solve the LP every
time. The value of the objective (excluding the penalty term) is fully determined
by the order of events. For each completion event Cj in the event order, let K→j
denote the next jump point of job Jj in the event order (where K→j = d̄j if no
further jump point occurs). Then, any feasible schedule with the given event order
will have a cost of exactly

∑
j f̄j(K→j ).

At this point, we exploit that this base score may already be sufficient to reject
a candidate solution. We precompute the maximum objective value that we will
accept during the evaluation. If the base score already exceeds this, we will not
compute the penalty term at all.

For estimating the penalty term, we propose three alternatives:

(1) solve the LP, which will always yield the true value of the penalty term;

(2) compute a maximum flow on a bipartite graph, modeling a relaxed version
of the problem;

(3) compute lower bounds on the value of the violation variables using only the
event order.

The results of extensive tests of using each of the three methods for computing
the penalty term are presented in Section 3.5.1.

Solving the LP
The LP is, as before, what remains if we fix the order variables in the MILP
and add violation variables to the relevant constraints. The objective is then to
minimize the weighted sum of the violation variables.

We show the full LP formulation below. For ease of readability, we introduce some
additional notation:
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• Xj,i =
{

1 if I(t2j−1) ≤ I(ti) and I(t2j) ≥ I(ti)
0 otherwise

defines if a job Jj is active

during interval i, which we already know, based on the order of events;

• succ(i) = E(I(i) + 1), the index of the successor of event i in the order of
events E ;

• tsucc(i) =∞ for the last event in E ;

• succP(i) is the same as succ(i), but skips over fixed-time events;

• pj,i = 0,∀j for the last event in the order of events E .

min
2n∑

i=1

LRst
i +

n∑
j=1

LB(s−j,i + s+
j,i)

 s.t.

ti ≤ tsucc(i) ∀i ∈ {1, ..., (k + 1)n}
t2j ≤ d̄j ∀j ∈ {1, ..., n}

t2j−1 ≥ rj ∀j ∈ {1, ..., n}
2n∑

i=1
pj,i = Ej ∀j ∈ {1, ..., n}

pj,i ≥ P−j Xj,i(tsuccP(i) − ti)− s−j,i ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}
pj,i ≤ P +

j Xj,i(tsuccP(i) − ti) + s+
j,i ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}

n∑
j=1

pj,i ≤ P (tsuccP(i) − ti) + st
i ∀i ∈ {1, ..., 2n}

ti ≥ 0 ∀i ∈ {1, ..., 2n}
ti = ci ∀i ∈ {2n + 1, ..., (k + 1)n}

pj,i ≥ 0 ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}
s−j,i ≥ 0 ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}
s+

j,i ≥ 0 ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}
st

i ≥ 0 ∀i ∈ {1, ..., 2n}

Max flow on a bipartite graph
We can model the assignment of resources to jobs and intervals as a flow problem
on a bipartite graph, if we relax some constraints. The bipartite graph models the
given event order by two layers of nodes. On one side, every node represents a
job, and on the other, every node represents the interval between two consecutive
fixed-time events. An arc between the two exists if the job is active during that
interval, i.e. if the start event of the job happens in or before that interval and its
completion event happens in or after it. We set the arc capacity such that upper
and lower bounds are enforced wherever possible. This will be explained in more
detail below.
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Arcs from the source to a job node representing job Jj initially have capacity equal
to the corresponding resource requirement Ej , arcs from a job node for job Jj to
an interval node [Fi,Fi′ ] have capacity (Fi′ −Fi)P +

j , enforcing the upper bound,
and arcs from an interval node [Fi,Fi′ ] to the sink have capacity (Fi′ − Fi)P ,
modeling the available resource in that interval. Lower bounds can be enforced
on intervals that do not contain the start or completion event of a job, resulting
in the adjustment of arc capacities on the arcs on the path from the source to the
sink going through the specific job and interval node. The capacity of each of the
arcs on this path is reduced by the amount of resource required to guarantee the
lower bound for the job in that interval (i.e. (Fi′ −Fi)P−j ).

An example graph is shown in Figure 3.3. The capacities of a few arcs have
been added in the figure. In this example, job 1 is active during the first three
intervals. Therefore, we know it is active during the entire second interval, and we
can already assign the lower bound. This results in the adjustment of the capacity
on the arcs that are on the (unique) path from source to sink that goes through
the nodes representing job 1 and interval 2 (a, c and e).

The assignment of lower bounds may already lead to the conclusion that the event
order is infeasible. If it results in negative capacities in the arcs from source to job
nodes, we know that a job violates its lower bounds by at least that amount. We
keep track of this, and put the capacity to 0. This will contribute to the estimation
of the penalty function, analogous to the s−j,i variable in the LP.

Similarly, if an arc from a time node to the sink has a negative capacity, we know
that there is insufficient resource availability to let all jobs consume at least their
lower bound. Again, we keep track of this as a minimum violation of the resource
availability, analogous to the st

i variable in the LP.

We compute the max flow through the resulting network. The difference between
the value of the max flow and the sum of the (adjusted) resource requirements
gives an indication of the total resource shortage, and therefore of the value of
the resource violation (

∑
i st

i). We add to this the penalties that we already
encountered while computing the arc capacities.

If the difference between these two values is zero, it is a strong indication that
a feasible solution exists, or an infeasible solution (due to the order of start and
completion events in a fixed-time interval, in combination with restrictive lower
or upper bounds) that is fairly close to being feasible. The smaller the expected
number of plannable events within a fixed-time interval, the less often such a flow
will result from an infeasible event order.

A feasible flow does not guarantee a feasible solution. It does not enforce the order
of plannable events within an interval in between two fixed-time events. Therefore,
the resulting flow may not be valid for the exact event order provided. Ensuring
one plannable event to respect its bounds may, due to the order of events, push
another to a time within the interval where it cannot respect its bounds anymore.
The estimation that results from this flow is almost always a close underestimation.
However, it is not a true lower bound on the penalty term, as it does not (properly)



3

64 3. A hybrid optimization framework for the GCECSP

1

2

3

[0,F1]

[F1,F2]

[F2,F3]

[F3, d̄max]

source sink

jobs

time

(a)

(b)

(c) (d)
(e)

(a) E1 − (F2 −F1)P
−
1

(b) F1 · P+
1

(c) (F2 −F1) · (P+
1 − P−

1 )

(d) F1 · P
(e) (F2 −F1) · (P − P−

1 )

Figure 3.3: Example with three jobs and four intervals

account for the possible violation of lower and upper bounds (s−j,i and s+
j,i in the

LP).

Simple lower bounds
Lower bounds can be computed on each of the three types of violation variable. For
the purpose of these lower bounds, we will introduce F←(i) and F→(i), indicating
the closest fixed-time event preceding or following an event i, respectively. These
functions can be constructed by going over the order of events E once in both
directions, and efficiently updated every time an event is moved.

We can determine a lower bound on the violation of the lower bounds in the
following way: A job Jj can start no later than the first fixed-time event that
follows its start event in the event order: F→(Sj), and complete no sooner than
the last fixed-time event that preceded its completion event: F←(Cj). The time
between these two time points is the minimum processing time. We can use this
to determine the minimum amount of resource that the job consumes if it respects
its lower bound during this time. If this amount is larger than its total resource
requirement, the difference between the two gives us a lower bound on the value
of
∑

i s−j,i:

n∑
j=1

max
(
0,
(
tF←(Cj) − tF→(Sj)

)
P−j − Ej

)
Similarly, a lower bound on the violation of the upper bound for a job Jj (s+

j,i)
can be computed using the maximum processing time, based on the last fixed time
event preceding the start event F←(Sj) and the first fixed time event following
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the completion event F→(Cj):

n∑
j=1

max
(
0, Ej −

(
tF→(Cj) − tF←(Sj)

)
P +

j

)

Finally, it remains to estimate the value of the violation variable controlling the
amount of available resource during an interval. We go over the event list once,
adding the resource requirement Ej to the total of consumed resource up to that
point if we encounter a completion event Cj . With every fixed-time event, we
compute the total amount of resource available up to that point (P · ti, where i
is the index of the fixed-time event). Any time the newly computed amount of
available resource is lower than the total amount of consumed resource, we add
the difference to our estimation of the violation. At the end of the event list, this
results in a lower bound on the resource shortage during intervals.

1 Etotal ← 0
2 Eshortage ← 0
3 forall e ∈ E do
4 if IsCompletionEvent(e) then
5 Etotal ← Etotal + Ee/2

6 if IsFixedTimeEvent(e) then
7 Eshortage ← Eshortage + max(0, Etotal − tI(e) · P )
8 Etotal = min Etotal, tI(e) · P

9 return Eshortage · LR

The weighted combination of these three lower bounds provides a lower bound
on the total value of the penalty term. All three can be computed in O(n) time.
Storing intermediate results allows for efficient updates in an amount of time linear
in the number of positions that an event is moved.

3.4. Applicability of the framework for the general prob-
lem

I n this section, we aim to give an overview of the applicability of our approach:
we will discuss the adaptations needed to apply our framework to an elaborate
set of variants of the GCECSP. Our main aim is to show the flexibility and

adaptability of our framework, where we do not claim that our approach is the
best choice in all cases where it can be applied.

We will go through elements of the problem in three sections, to discuss possible
variants and extensions, first discussing the range of possible objective functions
(Section 3.4.1), then properties of jobs (Section 3.4.2) and finally the resource
(Section 3.4.3).
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3.4.1. Objectives
In general, the approach can easily be adapted to work for any objective that is
a linear function of variables that are present in the LP. For objectives that are a
function of completion time Cj (or more general, any plannable event time ti) we
distinguish between three types that we can model with increasing effort. We will
discuss these three types, with a number of examples, followed by some examples
that do not belong to these three types. Then, we will briefly discuss objectives
that are not a function of event times.

Type I: Linear functions
For an objective that is a linear function of event times, only the replacement of the
objective in the LP is required. Examples of this type of objective include:

• Minimize (weighted) completion time
∑

j wjCj (see our previous work (2023;
Chapter 2));

• Minimize total processing time
∑

j(Cj − Sj).

Type II: Minmax criteria (and extensions)
These objectives require a minimal amount of additional adaptations to the LP
compared to objectives of Type I. In addition to the change of the objective,
for example, a helper variable and some additional constraints may have to be
added to compute the objective. Examples of these are objectives that contain a
min or max function, such as minimizing the makespan. They can be modeled
using a helper variable for the objective (min w) and a number of linear equations
(∀j : w ≥ Cj), but not in a single linear expression. Examples of this type of
objective include:

• Minimize makespan maxj{Cj};

• Minimize maximum lateness maxj{Cj − dj};

Type III: Piece-wise linear functions
Objectives that are piece-wise linear can be modeled by splitting them in their
constituent pieces using additional fixed-time events, as discussed in Section 3.3.1.
For this type of objectives it is not sufficient to adapt the LP (as it is for Types
I and II), but changes to the event model, or the introduction of binary variables
in our LP are required. Examples of this type of objective include:

• Minimize (weighted) number of tardy jobs
∑

j wjUj , Uj =
{

0 Cj ≤ dj

1 otherwise
;

• Minimize a step-wise function of completion time
∑

f̄j(Cj) (see Section 3.3).

Non-linear functions
If the objective is a non-linear function of event times, the LP-solver can be re-
placed by an NLP approach.
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Functions of resource variables
Objectives that are a function of resource consumption pj,i, can be accommodated
along the same lines as functions of event times, as long as Theorem 3.1 holds
for the particular objective. This is the case if a solution with constant resource
consumption during intervals dominates solutions with other consumption profiles.
Some examples of such functions are:

• Type I: minimize total resource consumption:
∑

j,i pj,i, where jobs have
efficiency functions (see Section 3.4.2);

• Type III: minimize resource cost
∑

j,i ci,jpj,i, where cost fluctuates across
predetermined intervals. Note that the complete set of intervals have to be
used in the model, where an interval is defined as the time between two
consecutive events of any type, instead of just resource intervals (see Section
3.3.1);

• Non-linear: any objective using the consumption rate pj,i/(ti′ − ti).

Order-determined objectives
For any objective that can already be computed based on the order of events
alone, the LP is only used to determine the feasibility of the given order of events.
Any (efficient) computation of the objective can be performed in the evaluation
of a candidate solution before solving the LP. An example of such an objective
is the minimization of the maximum number of jobs that are being processed in
parallel.

3.4.2. Job properties
In the description of the GCECSP in Section 3.2 we listed a number of prop-
erties for each job. We will discuss the impact on our approach of the absence
of some of these properties, and the addition of others. The removal of release
times, deadlines and upper bounds on the resource consumption rate are fairly
straight-forward, as is the introduction of jobs with a fixed processing rate. We
will not discuss these adaptations in detail.

The lower bound on the resource consumption rate is an essential property of
this type of problem. Maintaining the flexibility of the jobs while removing the
lower bound introduces a form of preemption. The problem becomes significantly
easier. While the presented approach can still be used, using a flow-based or greedy
algorithm will find the optimal solution faster.

In general, preemption can only be modeled to a limited extent. Removing the
lower bound allows preemption, but if a lower bound needs to be maintained,
allowing preemption can only be done by modeling a single task as multiple jobs
with precedence constraints. Then, preemption is allowed a fixed number of times.
General preemption can be approximated by making this number large, but this
hurts the efficiency of the approach.

Efficiency functions that apply to the conversion of the amount of consumed
resource to the contribution towards the resource requirement of a job can be
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easily integrated in the LP, as long as these functions are linear.

The current approach already considers implicit precedence relations, that follow
from the release times and deadlines of jobs. It can easily be extended to include
explicit precedence relations between any two events. The local search will not
explore any candidate solution that does not respect such a relation.

Synchronization constraints can be included by changing the interpretation of
events. In the event order, we treat each pair of events that has to happen si-
multaneously as a single event. Moreover, we add an equality constraint for their
event times. In this way, it is ensured that any considered solution will synchronize
these two events.

3.4.3. Resource
In the GCECSP, we have a single constant renewable resource. Variations on this
aspect of the problem can also be modeled within our framework. We will discuss
two example extensions.

Any piece-wise linear resource availability function can be modeled using fixed-
time events similar to piece-wise linear objective functions (see Section 3.4.1).

Multiple resources can be modeled using additional resource variables p′j,i. The
bounds, resource requirement, and events can be unique to each resource, or shared
among multiple resources.

A discrete resource can be approximated by using multiple (synchronized) jobs
with identical lower and upper bounds to model a single task. This will, however,
limit the number of times the resource consumption profile can change. In addition,
it will hurt the efficiency of the approach.

3.5. Computational results

W e will show results for the GCECSP with step-wise cost functions (see
Section 3.3), using three variants of our approach. For small instances,
we will compare these approaches to the MILP (solved with a time limit

of 3600 seconds) as well. The data and code used are available online (Brouwer
2023a,b). In Section 3.5.1, we discuss the instances and parameter settings used
in our evaluation. Following that, we present the variants of our approach used
in the tests and evaluate their performance in Section 3.5.2. The full result tables
are provided in Appendix 3.B.

3.5.1. Test instances and parameter settings
For generating instances, we will use the procedure developed for instances for
the CECSP in our previous work (Brouwer, van den Akker, and Hoogeveen 2023;
Section 2.4). Only the generation of weights will be different, and the generation
of times for the jump points has to be added. Recall that k indicates the number
of cost intervals in the cost function for each job.
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Instead of a single weight wj from U(0, 5) we generate an array of k weights,
in the following way: we first generate an initial weight wj,1 from U(0, 5) and
then generate k − 1 weights from U(wj,1, 5). The resulting array of k weights is
then sorted to be increasing. Finally, the values are modified to be incremental,
such that the cost of completing job Jj right after the first jump point becomes
wj,1+wj,2, the cost of completing the job right after the second jump point becomes
wj,1 + wj,2 + wj,3, and so on.

Then, we generate k−1 jump points for each job. The release time rj and deadline
d̄j are generated as before. We require k − 1 additional time points in between
where the weight changes. We sample these k− 1 values from U(rj + Ej

P +
j

, d̄j) and
put them in increasing order.

This completes the modified instance generation approach. Using this, we generate
a set of 72 instances: 4 unique instances for each combination of n and k for
n ∈ {5, 10, 15, 20, 30, 50}, k ∈ {2, 3, 4}.

We evaluated the speed and quality of the estimation methods described in Section
3.3.3. For all instance sizes, we ran a test where we computed the estimation
methods on a sequence of event orders. The sequence was obtained by performing
a random walk of length 1000, randomly shifting an event by one position each
time. Averages of the run times are displayed in Figure 3.4.

The lower bound estimation is much faster than either of the other methods and
displays linear scaling behavior. In terms of quality, we note that the computed
bounds are not tight. The flow typically results in a better estimation of the
penalty term. However, for guiding the search, a strong correlation with the
actual penalty term is more important than a tight estimate. To evaluate this, we
computed Spearman’s rank correlation of the lower bounds and the penalty term,
for the instance sizes where n ≥ 10. These all have values between 0.67 and 0.86
(0.77 on average), showing a strong correlation. The flow estimation shows an
even stronger correlation (0.82 on average). However, we decided to drop it from
our approach, given the limited improvement on the quality of the estimation and
the increased runtime compared to the ‘simple’ bounds.

Each of these estimates can be updated efficiently from a previous event order. We
have implemented this for both the LP (1) and the ‘simple’ lower bound estimation
(3). These are used in the approaches that will be evaluated in Section 3.5.2.

To make sure that we get the best performance out of the presented approaches,
we carefully select values for a number of parameters. We chose a commonly used
value for the multiplication factor for updating the temperature α = 0.95. We
performed a limited grid search using different values for the initial temperature
Tinit ∈ {0.1, 0.2, 0.5, 1, 2, 5}n, the number of iterations between temperature up-
dates αperiod ∈ {2, 4, 6, 8}2n and the multipliers used to penalize violation variables
LR, LB ∈ {0.5, 1, 2, 5}. We performed runs for all combinations on twelve instances
with ten jobs. We observe that finding a good initial solution is important, and
exploring too much into a part of the search space consisting of infeasible solutions
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Figure 3.4: Average runtimes of evaluation methods for event orders

is detrimental to the eventual success. Our results indicate that it is beneficial to
select an initial temperature that is not too high, while cooling down more slowly,
and a large penalty for the violation variables, directing the search towards feasible
solutions. The addition of a tabu list of length 1, forbidding the movement of the
same event two times in a row, yields a slight improvement. The final parameter
settings are as follows: Tinit = 0.2n; α = 0.95; αperiod = 16n; violation penalty:
5.0.

3.5.2. Results and discussion
We present results for the following three variants of our hybrid approach:

SA-LP uses only the (iteratively updated) LP for the subproblem;

SA-MIX uses the ‘simple’ bound estimations to assess the quality of an event
order, but also computes the LP if the result of the estimation is 0;

SA-2PHASE uses the ‘simple’ bound estimations until it finds a solution for
which the estimation is 0, and switches to the LP afterward.

As discussed in Section 3.5.1, we will use the ‘simple’ lower bound estimation and
the LP to assess the quality of candidate solutions. Preliminary tests showed that
using only the ‘simple’ lower bound estimation does not result in good solutions.
Therefore, we evaluate approaches combining the use of the ‘simple’ lower bound
estimation with the LP.

In Table 3.1, we summarize the results for each instance size. For every approach,
we list three measures of its performance: the number of instances for which it
found a feasible solution, the number of instances for which it found the best
solution among the tested approaches, and the average distance (in %) to the best
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Approach feas. best dist.
n = 5
MILP 12/12 12/12 0.00
SA-LP 12/12 5/12 3.48
SA-MIX 11/12 8/12 1.05
SA-2PH. 12/12 7/12 4.45
n = 10
MILP 12/12 9/12 1.06
SA-LP 12/12 5/12 1.88
SA-MIX 10/12 1/12 7.23
SA-2PH. 11/12 3/12 2.76
n = 15
MILP 7/12 1/12 4.98
SA-LP 12/12 8/12 0.38
SA-MIX 11/12 0/12 19.94
SA-2PH. 12/12 6/12 2.18

Approach feas. best dist.
n = 20
SA-LP 12/12 4/12 0.98
SA-MIX 4/12 0/12 11.02
SA-2PH. 12/12 8/12 0.21
n = 30
SA-LP 12/12 5/12 0.89
SA-MIX 10/12 0/12 14.06
SA-2PH. 12/12 7/12 1.33
n = 50
SA-LP 12/12 7/12 0.69
SA-MIX 2/12 0/12 10.41
SA-2PH. 12/12 5/12 1.04

Table 3.1: Summary of results for the presented approaches

solution among the tested approaches (infeasible solutions are excluded).

Figure 3.5 shows the runtime of the approaches. Each point is an average over all
instances of a certain size (n). For the correct interpretation of the values for the
MILP for n = 10, 15, note that the average includes runs that were cut off at 3600
seconds. The MILP was not included for n ≥ 20 because of very poor performance.
Our approach scales better than the MILP, but reports high run times for larger
instances as well. However, a reasonable (feasible) solution is often already found
relatively quickly, and much time is spent on searching for further improvements.
Whenever time is a constraint, cutting off the search after a certain amount of
time has elapsed will still yield good results.

The general approach (SA-LP) performs very well on all instance sizes. We are
able to reliably find feasible solutions for much larger instances than the MILP.
Exchanging the LP in the first part of the search for the ‘simple’ bound estimations
(SA-2PHASE) starts to pay off with larger instance sizes. Mixing estimation
methods (SA-MIX) does not perform as well as expected. As the iterative update
of the LP is much faster than solving the LP from scratch, much of the time gained
when using other estimation methods is lost once the LP does have to be solved
again. In addition, the quality of the ‘simple’ bounds does seem to be insufficient
to guide the search reliably towards good solutions for larger instance sizes. The
SA-MIX approach uses only the ‘simple’ lower bound estimation for evaluation
whenever these report a positive penalty term. These ‘simple’ bounds do not detect
all causes of infeasibility, and are therefore unreliable when the search comes close
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Figure 3.5: Average runtimes of discussed approaches

to a feasible solution. The LP, in contrast, computes the exact penalty term. This
may result in moving to candidate solutions with a lower penalty term, but positive
‘simple’ lower bounds, at which point these lower bounds will again be used to
evaluate the candidate solutions. We conclude that multiple iterations with the
LP are needed to converge on a good solution. It should be noted, that the general
approach using only the LP for the evaluation of candidate solutions (SA-LP) also
benefits from the fact that the objective value (excluding the penalty term) can be
computed before solving the LP. If this is sufficient to reject a candidate solution,
the search will move on without solving the LP. To illustrate this point, we ran
the general approach (SA-LP) as well as a modified implementation that does not
make use of this fact (SA-LP naive) on all instances, seeding the random engine
to ensure both approaches follow the exact same path through the search space.
Figure 3.6 shows the average runtime of the general approach (shaded area) as a
percentage of the naive approach (full bar). From this, we can see that this simple
modification saves around 20% of computation time.

As we mentioned above, cutting of the search early on is a viable approach if time is
a constraint. To back up this claim, we reran the SA-LP approach for all instances
of size n = 30 and n = 50. In Figure 3.7, we have plotted the progression of the
best found solution over the total runtime of the approach. The horizontal axis
shows the normalized runtime, and the vertical axis the normalized distance to the
best found solution. With the latter, we mean the difference between the current
best objective value and the final best objective value, expressed as a fraction of
the final best objective value. Each run is displayed as a gray line. Note that
many lines start far outside the plot, but drop to within the range displayed after
a limited number of successful iterations. The inset zooms in on the first part of
the search, and shows the first found feasible solution for each run with a black ‘x’.
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Figure 3.6: Runtime of the general approach (SA-LP) as a percentage of its naive
implementation

From this, we conclude that the first feasible solution is found very quickly, before
0.25% (for n = 30) or 2% (for n = 50) of the total runtime has passed. We also
observe that, after a quick dramatic improvement at the start, the improvement
of the best found solution is gradual. Cutting off the search early will provide a
good, feasible solution, if time is a constraint.

We already noted in the previous section that finding a good initial solution is
important. Even still, the local search will consistently improve the initial solution
significantly. Given the sensitivity of the approach to the initial solution, it would
be an interesting approach to introduce restarts for instances where the best found
solution is not satisfactory. This can be done by disturbing the best found solution
using the neighborhood operator a number of times, regardless of the quality of
the result, and restarting the search from there.

3.6. Conclusions and future work

I n this work, we have introduced a hybrid optimization framework for a class
of problems that are variants of the GCECSP, which we introduced as a gen-
eralization of the CECSP. We have shown the general applicability of our

approach, and have studied its performance when applied to the GCECSP with
step-wise cost functions. With this, we give an impression of how to tailor the
approach to specific variants. Furthermore, we have shown the range of variants
that our approach can be applied to, and discussed the required adaptations for a
number of cases.

In the application to the variant with step-wise cost functions, we show that we are
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able to find good solutions for much larger instances, when compared to the MILP.
We also observe that it can be used to find reasonable solutions relatively quickly,
whereas the MILP starts struggling to find even a feasible solution for instances of
size n = 15 and larger. The fact that we know the part of the objective excluding
the penalty term before solving the subproblem, allows us to improve the efficiency
of the approach. Exploiting this fact further by replacing the LP for solving the
subproblem by alternative approaches has not been as successful.

Furthermore, we open up the possibility of applying the approach to a broader
range of problems. Further study of such variants could provide more insight of the
quality of the results for specific variants. Further exploration of estimation meth-
ods for objectives of Type III (see Section 3.4.1) is of particular interest.
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3.A. Full MILP formulation

The MILP formulation for the GCECSP with step-wise costs is as follows:

min
∑

j∈{1,...,n}

wj,1

+
(

k∑
l=2

wj,la2n+(k−1)(j−1)+(l−1),2j

) s.t.

ti ≤ ti′ + Mai′,i ∀i, i′ ∈ {1, ..., (k + 1)n}, i ̸= i′

t2j ≤ d̄j ∀j ∈ {1, ..., n}
t2j−1 ≥ rj ∀j ∈ {1, ..., n}∑

i∈{1,...,2n}

pj,i = Ej ∀j ∈ {1, ..., n}

pj,i ≥ P−j (ti′ − ti)− (1− bi,i′)M
−(1− a2j−1,i′)M − (1− ai,2j)M

∀j ∈ {1, ..., n},
i, i′ ∈ {1, ..., 2n}, i ̸= i′

pj,i ≤ P +
j (ti′ − ti) + Mai′,i

∀j ∈ {1, ..., n},
i, i′ ∈ {1, ..., 2n}, i ̸= i′

pj,i ≤ ai,2jM ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}
pj,i ≤ (1− ai,2j−1)M ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}∑

j∈{1,...,n}

pj,i ≤ P (ti′ − ti) + Mai′,i ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

ai,i′ + ai′,i = 1 ∀i, i′ ∈ {1, ..., (k + 1)n}, i < i′∑
i′′∈{1,...,2n}

(ai,i′′ − ai′,i′′) ≤ 1 + (1− bi,i′)M ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

∑
i′′∈{1,...,2n}

(ai,i′′ − ai′,i′′) ≥ 1− (1− bi,i′)M ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′

∑
i,i′∈{1,...,2n},i̸=i′

bi,i′ = 2n− 1

t2j − t2j−1 ≤ Ej/P−j ∀j ∈ {1, ..., n}
t2j − t2j−1 ≥ Ej/P +

j ∀j ∈ {1, ..., n}
pj,i ≥ 0 ∀j ∈ {1, ..., n}, i ∈ {1, ..., 2n}

ti ≥ 0 ∀i ∈ {1, ..., 2n}
ti = ci ∀i ∈ {2n + 1, ..., (k + 1)n}

ai,i′ ∈ {0, 1} ∀i, i′ ∈ {1, ..., (k + 1)n}, i ̸= i′

ai,i = 0 ∀i ∈ {1, ..., (k + 1)n}
bi,i′ ∈ {0, 1} ∀i, i′ ∈ {1, ..., 2n}, i ̸= i′
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3.B. Full Results

T his appendix contains the full results of the tests described in Section
3.5, in particular those on which the data in Table 3.1 and Figure 3.5
is based.

Each table shows the results for all four instances of a particular combination of n
and k (displayed in the upper left corner). The first row indicates whether our fea-
sibility test was passed by the instance or not (as described in Section 2.4.2). This
is followed by a row indicating the best objective value that we have encountered
in any run of the three (n ≥ 20) or four (n ≤ 15) listed approaches.

For each of the approaches, we then list the runtime (in seconds), the objective
value of the solution found by that particular approach and, in the case of the
approaches using simulated annealing, the objective value of the initial solution.
In cases where the MILP is cut off because of the time limit set (3600 seconds),
this is indicated with the text LIMIT. If no feasible solution is found by the MILP
within an hour, there is no objective to report, which is indicated with a ‘-’. In the
row that contains the objective, a value is displayed in boldface if it is the best
results among the compared approaches. It is displayed in italics if it represents an
infeasible solution (i.e., the sum of the violation variables is larger than 0). Values
in italics only occur if the approach uses simulated annealing, as the MILP does not
include violation variables and therefore does not report infeasible solutions.

Note that the results in these tables are of a single run of each of the approaches,
they are not averages or best-of results.

n = 5, k = 2 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 12.42 9.74 13.08 6.37

MILP time 0.43 0.44 1.03 0.67
objective 12.42 9.74 13.08 6.37

SA-LP
time 11.41 2.59 29.03 6.44
objective 12.42 11.66 13.08 6.37
init. sol. 17.24 14.58 15.50 6.37

SA-MIX
time 76.10 14.43 134.66 3.25
objective 12.42 9.74 13.08 6.37
init. sol. 17.24 14.58 15.50 6.37

SA-2PHASE
time 2.51 3.48 13.59 1.20
objective 12.42 11.83 13.08 6.37
init. sol. 17.24 14.58 15.50 6.37
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n = 5, k = 3 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 15.27 12.49 17.08 19.52

MILP time 0.39 0.32 0.39 0.85
objective 15.27 12.49 17.08 19.52

SA-LP
time 36.37 60.17 37.33 38.98
objective 15.29 12.49 17.08 19.53
init. sol. 18.02 13.77 17.40 21.09

SA-MIX
time 133.74 20.97 150.01 104.37
objective 15.27 12.49 17.08 19.59
init. sol. 18.02 13.77 17.40 21.09

SA-2PHASE
time 52.18 23.53 28.24 32.14
objective 15.27 12.49 17.08 19.53
init. sol. 18.02 13.77 17.40 21.09

n = 5, k = 4 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 14.63 16.69 9.19 10.77

MILP time 0.92 12.63 0.51 0.54
objective 14.63 16.69 9.19 10.77

SA-LP
time 14.20 51.16 35.30 25.74
objective 16.75 16.75 9.66 10.98
init. sol. 167.39 19.32 10.38 17.07

SA-MIX
time 0.16 106.18 208.08 28.42
objective 145.89 16.75 9.19 11.94
init. sol. 167.39 19.32 10.38 17.07

SA-2PHASE
time 14.16 7.00 36.17 11.43
objective 15.22 18.20 9.19 12.80
init. sol. 167.39 19.32 10.38 17.07
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n = 10, k = 2 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 19.10 17.69 15.56 33.03

MILP time 3403.32 LIMIT 3301.44 209.87
objective 19.10 17.69 15.56 33.03

SA-LP
time 177.35 124.76 245.82 184.96
objective 19.43 18.20 15.56 35.39
init. sol. 243.96 308.84 18.37 38.77

SA-MIX
time 171.70 0.59 199.41 123.25
objective 22.15 204.66 15.56 35.47
init. sol. 243.96 308.84 18.37 38.77

SA-2PHASE
time 219.83 0.26 136.65 296.47
objective 21.66 85.19 15.56 34.45
init. sol. 243.96 308.84 18.37 38.77

n = 10, k = 3 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 21.01 28.00 26.41 22.44

MILP time LIMIT LIMIT 402.73 LIMIT
objective 21.01 28.00 26.41 22.44

SA-LP
time 162.92 409.86 420.81 229.25
objective 22.31 28.00 26.41 22.80
init. sol. 28.53 28.09 31.05 33.31

SA-MIX
time 563.43 1270.58 1215.83 71.37
objective 22.31 28.09 26.49 24.27
init. sol. 28.53 28.09 31.05 33.31

SA-2PHASE
time 137.71 589.88 519.66 425.66
objective 22.31 28.09 26.41 22.80
init. sol. 28.53 28.09 31.05 33.31
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n = 10, k = 4 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 27.28 25.75 29.48 24.72

MILP time 41.82 LIMIT LIMIT LIMIT
objective 27.28 26.61 30.60 26.11

SA-LP
time 295.05 276.10 551.23 375.96
objective 27.32 26.49 29.48 24.72
init. sol. 30.70 31.10 114.09 203.20

SA-MIX
time 13.84 29.44 209.57 15.33
objective 30.70 28.47 32.70 31.82
init. sol. 30.70 31.10 114.09 203.20

SA-2PHASE
time 545.23 549.70 597.15 619.47
objective 27.32 25.75 29.94 25.41
init. sol. 30.70 31.10 114.09 203.20

n = 15, k = 2 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 45.32 29.64 32.52 42.50

MILP time 3472.54 LIMIT LIMIT LIMIT
objective 45.32 29.68 - 43.18

SA-LP
time 1166.54 826.58 694.15 756.64
objective 45.32 29.64 32.52 42.50
init. sol. 89.63 37.38 147.25 51.33

SA-MIX
time 141.57 94.75 0.29 200.75
objective 45.43 36.14 48.77 50.56
init. sol. 89.63 37.38 147.25 51.33

SA-2PHASE
time 1954.29 1333.77 432.17 486.36
objective 45.32 29.64 33.02 45.61
init. sol. 89.63 37.38 147.25 51.33
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n = 15, k = 3 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 37.18 40.41 45.08 32.17

MILP time LIMIT LIMIT LIMIT LIMIT
objective 39.03 - - 38.56

SA-LP
time 837.38 994.47 1295.04 1293.10
objective 37.56 40.41 45.31 32.83
init. sol. 50.79 50.00 105.65 40.50

SA-MIX
time 942.28 63.18 23.69 41.43
objective 40.95 45.98 49.04 40.50
init. sol. 50.79 50.00 105.65 40.50

SA-2PHASE
time 817.44 969.81 1671.45 2317.23
objective 37.18 42.93 45.08 32.17
init. sol. 50.79 50.00 105.65 40.50

n = 15, k = 4 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 42.38 41.76 29.34 33.96

MILP time LIMIT LIMIT LIMIT LIMIT
objective 42.68 - 31.57 -

SA-LP
time 1280.55 1504.55 1017.33 787.37
objective 42.38 41.76 29.61 33.96
init. sol. 51.96 54.36 82.57 42.93

SA-MIX
time 17.26 129.05 0.99 46.33
objective 51.96 50.36 68.28 42.93
init. sol. 51.96 54.36 82.57 42.93

SA-2PHASE
time 1419.34 1909.92 2076.76 1216.30
objective 43.84 44.17 29.34 34.58
init. sol. 51.96 54.36 82.57 42.93
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n = 20, k = 2 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 52.47 49.03 49.14 44.29

SA-LP
time 1502.61 1708.22 1331.91 1156.45
objective 54.18 49.11 50.00 44.29
init. sol. 195.25 319.42 59.13 278.03

SA-MIX
time 13.42 2.71 601.63 155.35
objective 62.79 318.19 55.74 46.54
init. sol. 195.25 319.42 59.13 278.03

SA-2PHASE
time 3198.27 3191.63 1373.58 1332.58
objective 52.47 49.03 49.14 44.70
init. sol. 195.25 319.42 59.13 278.03

n = 20, k = 3 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 65.33 57.83 52.91 62.42

SA-LP
time 1542.54 1463.81 1797.87 1969.42
objective 65.92 58.01 52.91 62.42
init. sol. 192.59 170.00 161.81 178.35

SA-MIX
time 80.95 4.26 131.92 7.42
objective 68.99 149.90 63.37 113.21
init. sol. 192.59 170.00 161.81 178.35

SA-2PHASE
time 1726.78 2661.88 2985.21 3246.13
objective 65.33 57.83 53.54 62.51
init. sol. 192.59 170.00 161.81 178.35

n = 20, k = 4 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 62.09 45.71 53.69 58.47

SA-LP
time 2162.59 1909.21 1930.20 1621.52
objective 63.22 45.71 55.54 58.54
init. sol. 165.04 105.35 314.93 70.27

SA-MIX
time 2.84 1.34 1.89 36.27
objective 146.67 77.84 250.40 66.43
init. sol. 165.04 105.35 314.93 70.27

SA-2PHASE
time 2542.63 2794.88 3813.35 2615.45
objective 62.09 45.85 53.69 58.47
init. sol. 165.04 105.35 314.93 70.27
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n = 30, k = 2 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 79.77 78.99 75.59 69.29

SA-LP
time 5987.90 5293.30 7501.06 4438.27
objective 79.77 81.79 75.59 70.03
init. sol. 201.16 101.66 79.57 106.25

SA-MIX
time 79.23 492.44 282.40 81.74
objective 89.98 82.82 79.57 77.21
init. sol. 201.16 101.66 79.57 106.25

SA-2PHASE
time 9443.22 8515.09 7840.55 8913.61
objective 83.26 78.99 78.20 69.29
init. sol. 201.16 101.66 79.57 106.25

n = 30, k = 3 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 81.40 85.20 74.27 85.25

SA-LP
time 6495.80 5113.45 6655.20 6148.46
objective 81.40 86.49 74.27 85.64
init. sol. 360.08 100.75 91.16 96.37

SA-MIX
time 4.52 155.68 103.69 26.29
objective 130.42 94.67 91.16 92.82
init. sol. 360.08 100.75 91.16 96.37

SA-2PHASE
time 6833.45 9203.74 9654.89 8082.87
objective 83.55 85.20 77.64 85.25
init. sol. 360.08 100.75 91.16 96.37

n = 30, k = 4 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 75.34 75.56 83.54 73.18

SA-LP
time 5793.06 8548.83 4606.60 6463.71
objective 75.64 75.56 86.28 73.46
init. sol. 94.59 92.29 143.81 83.83

SA-MIX
time 123.32 264.12 114.96 104.98
objective 92.28 89.89 105.69 83.83
init. sol. 94.59 92.29 143.81 83.83

SA-2PHASE
time 8152.17 14057.77 7972.45 11481.82
objective 75.34 76.30 83.54 73.18
init. sol. 94.59 92.29 143.81 83.83
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n = 50, k = 2 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 128.78 118.32 121.08 127.03

SA-LP
time 41080.91 38014.12 47866.84 30884.50
objective 128.78 118.32 121.08 127.03
init. sol. 383.00 255.24 2634.19 180.49

SA-MIX
time 38.09 668.13 6.05 288.01
objective 362.09 130.84 2307.93 135.33
init. sol. 383.00 255.24 2634.19 180.49

SA-2PHASE
time 39614.37 35312.87 34989.71 34824.88
objective 131.76 120.82 122.73 128.02
init. sol. 383.00 255.24 2634.19 180.49

n = 50, k = 3 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 134.60 141.69 139.51 152.90

SA-LP
time 44735.46 42392.18 34161.03 25714.16
objective 135.03 141.69 140.43 154.21
init. sol. 677.57 161.94 661.56 247.66

SA-MIX
time 2.87 524.66 9.37 174.86
objective 475.18 161.94 278.72 205.48
init. sol. 677.57 161.94 661.56 247.66

SA-2PHASE
time 31956.34 37477.15 34576.79 26084.72
objective 134.60 145.87 139.51 152.90
init. sol. 677.57 161.94 661.56 247.66

n = 50, k = 4 # 0 # 1 # 2 # 3

Flow feasible yes yes yes yes
Best known 133.09 121.30 134.82 125.22

SA-LP
time 42071.77 33440.85 38900.98 46989.68
objective 135.06 121.30 134.82 131.50
init. sol. 501.21 292.40 236.23 362.49

SA-MIX
time 7.28 201.64 111.17 62.61
objective 480.72 161.28 211.58 362.49
init. sol. 501.21 292.40 236.23 362.49

SA-2PHASE
time 41332.60 27681.98 39418.33 38166.36
objective 133.09 121.89 138.18 125.22
init. sol. 501.21 292.40 236.23 362.49
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Abstract

In the context of the energy transition, the operational management of micro-
grids becomes an issue of increasing importance. In this chapter, we compare two
optimization models for planning generators and storage units in an islanded mi-
crogrid, while dealing with uncertainty in forecasts of load and photovoltaic (PV)
output. These models are combined with a number of re-planning strategies, and
evaluated through a case study of an islanded microgrid in the Netherlands. As a
result, one of our algorithms is currently implemented in this microgrid. In our
analysis of the case study, we identify features of the microgrid that play an im-
portant role in determining whether these approaches are useful and we show the
effectiveness of using re-planning strategies.
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4.1. Introduction

C urrently, we see a move from large centralized energy producers to a dis-
tributed network of small producers and consumers: an energy transition.
New technologies, such as microgrids, facilitate this move. A microgrid is

a small cluster of components that each produce, store or consume energy. An
islanded microgrid should be able to operate autonomously, separate from the
main grid, i.e. it is capable of balancing demand and supply at all times (Lopes,
Moreira, and Madureira 2006). These microgrids are especially important for re-
mote or isolated geographical areas such as islands or mountain villages for which
maintaining a connection to the main grid is very costly or even impossible. How-
ever, microgrids are also applied in other cases: in energy aware home-owners or
neighborhoods or in remote locations where large consumers (e.g. a hospital) and
producers (e.g. photovoltaic (PV) installations) are geographically close.

Another challenging property of microgrids (and smart grids in general) is that a
major part of the generation comes from renewable resources, which do not pro-
duce a guaranteed amount of energy at all times (Mohamed et al. 2015). We have
to deal with these challenges in controlling a microgrid: firstly, the demand has
to be fulfilled while maximizing the use of the renewable resources and minimiz-
ing the cost of additional generators or storage. Secondly, we have to deal with
the uncertainty caused by the weather dependent performance of the renewable
resources.

Many different modeling techniques have been used in the past to model microgrids
(see (Ahmad Khan et al. 2016; Gamarra and Guerrero 2015; Meng et al. 2016)).
One of the most commonly used techniques is mathematical programming, which
is also applied in this chapter.

Furthermore, many strategies have been proposed to effectively deal with the un-
certainty in microgrid planning problems. A popular approach is using model pre-
dictive control or rolling horizon strategies (e.g. by Palma-Behnke et al. (2013)).
But considerable work has also been done on using stochastic models for similar
problems (see (Dai, Zhang, and Su 2015; Huang, Pardalos, and Zheng 2017; Liang
and Zhuang 2014)).

In this chapter, we compare different optimization approaches for planning the
generators and storage units in the islanded microgrids. We consider an economi-
cal optimization (at the level of unit commitment and economic dispatch (Liang,
Tamang, et al. 2014)) of the energy supply. We developed a deterministic opti-
mization model and a multi-stage stochastic optimization model. The properties
of the forecasts used were important drivers in the development of these models.
The models are described in Section 4.2, where we also describe an algorithm for
the generation of the scenario tree needed for the second model. The intuition
is that the latter model in general works better, but it is not clear in advance
whether the advantages of this more complex model also work for small microgrid
environments.
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To evaluate our approach, we performed a case-study for an islanded microgrid in
the Netherlands, with the following components:

2 Olympian GEP55-1 diesel generators;

1 Kohler SDMO K44C3 diesel generator;

1 Lithium-ion battery;

3 PV-fields, with a combined maximum output of 12 kW;

5 load-groups, with a combined average load of 9.6 kW.

In the simulation experiments in this study, the grid generation and storage plan-
ning is performed by our different models in combination with different re-planning
strategies and different forecasting accuracies. Our approach distinguishes itself
from many similar approaches through the application of these strategies. The
experiment is described in more detail in Section 4.3. In Section 4.4 we analyze
the results of the simulations. Finally, some preliminary conclusions are drawn in
Section 4.5. A summary of the notation used throughout this chapter is provided
in Table 4.1.

4.2. Optimization models

4.2.1. Deterministic optimization model
The model presented here contains all the (controllable) components of the mi-
crogrid and enforces production and consumption to be balanced at every time
step (15-minute interval) within the planning horizon (|T | time steps ahead). It is
similar to the model used by Palma-Behnke et al. (2013).

Uncontrollable demand and generation
The uncontrollable components of the demand (mainly consumers) and generation
(mainly renewable energy resources) are modeled in D+

t (demand) and D−t (gen-
eration). The difference between these variables equals the demand that has to be
met by the controllable components in the microgrid. We assume that forecasts
are available for all uncontrollable components in the grid, providing an expected
value and a measure of uncertainty that together define a distribution for the ac-
tual value at each time step. In this work, we assume the forecast error to be
normally distributed, and thus require a mean (µ) and standard deviation (σ) to
be provided.

Conventional generators
Conventional generators, like diesel generators, are represented by three variables
every time step: git ≥ 0 represents the power output of generator i at time t,
yit ∈ {0, 1} describes whether generator i is on or off at time t and xit ∈ {0, 1}
shows if generator i was started at time t. The behavior of a generator is modeled
by the following two constraints, where P min

i and P max
i are the minimum and
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Sets
T set of time steps
G set of generators
B set of batteries
S set of scenarios

Parameters and constants
D+

t , D−t uncontrollable demand and generation
P min

i , P max
i minimum and maximum output of generator i

fi, si, cg
i base operating cost per time step, start-up cost and operating cost

per kWh for generator i
vc

i , vd
i maximum charge and discharge speed for battery i

Ei total capacity of battery i
ηb

i (dis)charging efficiency of battery i
Rmin

i , Rmax
i minimum and maximum thresholds for the state of charge of

battery i
cb

i battery discharge cost per kWh
ηg grid efficiency
µt, σt mean and standard deviation of forecast error at time step t
ρl, ρp correlation between time steps for the load and PV forecasts
ξi

t forecasted value(s) in scenario i for time step t
cw penalty for demand and supply not covered in a scenario per kWh
τ number of time steps before resolution shift
δ deviation tolerance for ‘deviate’ re-planning strategy

Variables
git power output of generator i at time step t
yit on/off indicator for generator i at time step t
xit indicator for generator i starting up at time step t
chit state of charge for battery i at time step t
bin

it , bout
it input and output of battery i at time step t

rit indicator of availability of battery i for use in the schedule at
time step t

w+
t , w−t demand and supply not covered in a scenario at time t

Table 4.1: Summary of notation
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maximum output of generator i, respectively:

yit − yit−1 ≤ xit (4.1)

yitP
min
i ≤ git ≤ yitP

max
i (4.2)

For each generator, three cost constants are defined: fi (the base operating costs
for a single time step), si (start-up costs) and cg

i (fuel costs and operating costs
per kWh).

Energy storage systems
Batteries are modeled by a variable defining their state of charge (0 ≤ chit ≤ Ei)
and variables representing its input (0 ≤ bin

it ≤ vc
i ) and output (0 ≤ bout

it ≤ vd
i ).

The constants vc
i and vd

i represent the maximum charging and discharging speeds,
respectively, and Ei is the total capacity of the battery. For simplicity, the effi-
ciency of charging and discharging are considered to be equal (ηb

i ). Therefore, the
round-trip efficiency is effectively (ηb

i )2. This behavior is modeled in the following
constraint:

chit−1 − chit = bout
it

ηb
i

− bin
it ηb

i (4.3)

In addition, for the deterministic model, we introduce two thresholds, Rmin
i and

Rmax
i , and a variable (rit) that controls whether we can use the battery in our

planning to supply energy. We enforce that chit ≥ Rmin
i , meaning that we have

to charge the battery if its initial state is below Rmin
i . Furthermore, the following

constraints make sure that we only use the battery in our planning when its state
of charge is above Rmax

i :
Rmax

i rit ≤ chit (4.4)

bout
it ≤ ritv

d
i (4.5)

The costs associated with the use of a battery (mainly device wear) are distributed
over the entire lifespan of the battery and are charged per kWh discharged from
the battery (cb

i ).

Energy balance
Maintaining energy balance is crucial in a microgrid. This requirement is expressed
in the following constraint:

D+
t

ηg
−D−t ηg =

∑
i∈G

git +
∑
j∈B

(
bout

jt − bin
jt

)
(4.6)

The total production of the controllable components (right-hand side) should equal
the total demand of the uncontrollable components (left-hand side). In this ex-
pression, ηg is an efficiency constant, modeling grid losses.
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Figure 4.1: Problem structure showing when decisions are fixed (decision time) and
when they are applied (operation time). The dotted outlines represent decisions that are
based on the same available information.

Objective function
The objective is to manage the microgrid at minimal cost. This can be achieved
by minimizing the following function, which includes the costs associated with all
devices over all time steps within the planning horizon:

∑
t∈T

∑
i∈G

(fiyit + cg
i git + sixit) +

∑
j∈B

(
cb

jbout
jt

) (4.7)

Time shift
Both models include a shift in resolution after τ time steps. The first τ time steps
have a fifteen minute-resolution, and the remaining time steps have a one hour-
resolution. This decreases the problem size by considering the distant future in
less detail.

4.2.2. Multi-stage stochastic optimization model
The deterministic optimization model is relatively simple and efficient, but relies
on a single forecast for the whole period. In the multi-stage model we assume
that the output, i.e. actual values of the uncertain parameters, of one period is
also part of the input for the decision of the next period (as shown in Figure 4.1).
Moreover, instead of safety constraints (4.4) and (4.5), this model deals with the
uncertainty D+

t and D−t by defining multiple scenarios (with different values of D+
t

and D−t ) for each time step. The objective function becomes a recursive expression,
representing the expected value by multiplying the probability of every scenario by
its objective value for every time step. In addition, two (heavily weighted) penalty
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Input: planning horizon |T |, correlation ρ, forecasts
µ = (µ1, ..., µ|T |), standard deviations
σ = (σ1, ..., σ|T |)

1 X1 ∼ N (0, 1)
2 s1 ← µ1 + σ1X1
3 for i← 2 to |T | do
4 Xi ∼ N (0, 1)
5 Xi ← ρXi−1 +

√
1− ρ2Xi

6 si ← µi + σiXi

7 return (s1, ..., s|T |)

Algorithm 4.1: Sampling a single scenario

variables (w+
t , w−t ) are added to constraint (4.6) in every scenario to relax the

requirement that the first stage solution can satisfy the demand in all scenarios.
For background on multi-stage stochastic optimization, refer to the book by Pflug
and Pichler (2014).

The problem displays a stage-wise structure in two dimensions: on the one hand,
we divide our problem in time steps. On the other, we can also divide the decisions
in two groups: those that we fix beforehand, and those that we make when the sce-
nario for that time step has been revealed. Note that the scenario-based decisions
of time step t are made with the same available information as the pre-fixed deci-
sions of time step t + 1. Fig. 4.1 shows this structure, where the solid black boxes
represent pre-fixed decisions and the hatched boxes represent the scenario-based
decisions.

For the multi-stage model, we generate a number (|S|) of scenarios. A scenario
consists of a number of (sub)scenarios: one for each type of uncontrollable compo-
nent. Each of these is sampled independently, following the algorithm presented
in Fig. 4.1, taking the correlation (ρ) between time steps into account.

In our case study, we have two (sub)scenarios in every scenario: one for the un-
controllable load (with correlation-coefficient ρl) and one for the PV-output (with
correlation-coefficient ρp).

The scenarios each represent a series of possible realizations of the uncertain con-
stants in our model. By considering these scenarios individually, we would effec-
tively be solving |S| distinct deterministic problems: when the realization for the
first time step is revealed, we “know” what the rest of the scenario will be like.
However, we want to keep taking multiple possibilities into account. In order to
achieve this, we need a scenario tree, that branches at each time step. The idea
is to “merge” different scenarios that are similar in the beginning in earlier time
steps.

We use the simultaneous backward reduction algorithm described by Gröwe-Kuska,
Heitsch, and Römisch (2003) to obtain a scenario tree from the sampled scenarios.
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We define the distance between two scenarios at time step t to be:

dist(ξi
t − ξj

t ) = |(ξi
t,load − ξi

t,pv)− (ξj
t,load − ξj

t,pv)|

where ξi
t,pv is the forecasted value of the PV-output for time step t in scenario i

and ξi
t,load is the forecasted value for the load at time step t in scenario i.

At every level in the tree (corresponding to a time step in the model), we “merge”
the two most similar scenarios (those with the smallest distance up till time step
t, using the measure given above), until the number of scenarios at that level is
equal to |S|·t

τ+ |T |−τ
4

, where t is the index of the time step (a level in the scenario tree
corresponds to a time step in the optimization problem). This results in a linear
increase in the number of scenarios over time. We end up with a scenario tree
with a single root node and |S| leaves, each corresponding to one of the original
scenarios.

4.2.3. Re-planning strategies
The optimization models described above generate a planning for the next 0.25·|T |
hours, so we have to decide how much of this planning will be used, and when to
re-plan in case the forecasts deviate from the actual generation and demands of
energy. The most straight-forward way to use the described planning algorithms,
is by applying them every 15 minutes to generate an updated planning. This
only makes sense for the deterministic model and is called “deterministic-simple”
re-planning. We evaluate two other re-planning strategies:

1. Deviate: only generate a new planning when the reduced demand (load
minus PV-output) of none of the generated scenarios is within δ kWh of the
actual reduced demand in the previous time step;

2. Recover : only generate a new planning when the enforced decisions of the
planning in the last time step had to be adjusted, meaning that the batteries
were unable to compensate the difference between planning and realization.

If no new planning is generated, the simulation will use the decisions for the
corresponding time-step of the most recent planning. In the deterministic case,
this choice is straight-forward. In the case of the multi-stage model, we take the
decisions from the scenario that is the most similar to reality observed so far.

4.3. Experiments

A s a basis for our experiments, we used the data from our case study in the
period of 1 – 8 June 2017. The initial state of the simulation is equal to
the state of the grid on 1 June 2017 at 00:00, and the observed values of

PV-output and load of this period are used as the realized values in the simulation.
We performed experiments with the following model/strategy-combinations and
forecasts as input for the optimization models:
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Devices Parameters
Olympian DG Kohler DG δ 0.25
P min 8 kW P min 6.4 kW τ 24
P max 40 kW P max 32 kW |T | 96

s ¤1.00 s ¤1.00 |S| 200
f ¤0.40 f ¤0.40 ρp, ρl 0.7

cg ¤0.30 cg ¤0.30
Battery Other

E 20 kWh cw 2
vc, vd 12 kW ηg 0.97
Rmax 3 kWh
Rmin 1 kWh

ηb 0.93
cb ¤0.10

Table 4.2: List of constants and parameters

• Models: deterministic-simple, deterministic-deviate, deterministic-recover,
multi-stage-deviate (5x) and multi-stage-recover (5x);

• Forecast-construction with a standard-deviation of: 2% (5x), 10% (5x) and
20% (5x).

This results in 195 runs of eight simulated days for every tested week. Of
each run, the first day serves as a warm-up period, which means that it is
excluded from the results presented below.

An overview of the values of constants and parameters used in our experiments is
provided in Table 4.2.

4.3.1. Artificial forecasts
As input for our problem, we constructed a number of artificial forecasts. We
used artificial forecasts to avoid a situation where the week that is simulated
happened to have very stable weather and (almost) perfect forecasts, which would
be very easy to optimize for even the simplest model. Forecasts were sampled using
the same algorithm that is used to sample scenarios in the multi-stage approach
(Fig. 4.1), with a standard deviation of 2% (5x), 10% (5x) or 20% (5x) of the real
value. Resulting in a total of 15 different artificial forecasts.

4.3.2. Simulation
Our simulation adjusts the device behavior, as described in the pre-generated plan-
ning, every time step to match the actual demand in real-time. No optimization
model is used at this stage, the simulation uses a few simple rules-of-thumb to
match production and consumption exactly. In general, if adjustments are neces-
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Forecast st. dev. Model Strategy Realized cost # skipped

2%
deterministic

plain ¤414.83 0
deviate ¤414.95 434
recover ¤414.94 293

multi-stage deviate ¤473.85 646
recover ¤459.37 321

10%
deterministic

plain ¤416.31 0
deviate ¤416.04 402
recover ¤415.68 294

multi-stage deviate ¤472.85 536
recover ¤460.52 321

20%
deterministic

plain ¤416.13 0
deviate ¤416.71 329
recover ¤417.75 314

multi-stage deviate ¤467.52 425
recover ¤461.78 314

Table 4.3: Average metrics for different strategies

sary, generator output is adjusted first (if one is active already), then the battery
output is adjusted and finally PV-output can be curtailed or an additional gener-
ator may be brought on-line. As a final measure, load-shedding might take place.
Because of the large generation capacity of the generators, however, this is very
unlikely. For a more detailed description of these rules, refer to the thesis by
Brouwer (2017).

The costs of energy production and storage are also calculated and reported at
this stage. The battery state and generator state after applying the required
adjustments serve as input for the planning problem, starting from the next time
step. At this point, the decision is made on whether re-planning is necessary or
not, using the strategies as described in Section 4.2.3.

4.3.3. Metrics
For each group of runs, we report two metrics:

• (Average) realized cost. This is the total cost of operation as determined
during simulation, with a correction for the difference in the state of charge
of the battery between the start and the end of the simulated period.
Let ∆ch be the difference in state of charge (in kWh). The correction then
equals −cg ·∆ch, which is equal to the minimal cost of producing the same
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amount of energy using a diesel generator, times -1.

• (Average) number of skipped planning steps. The number of time steps that
the planning stage was skipped and an old planning was re-used, because of
the application of one of the strategies described in Section 4.2.3.

4.4. Results

T he results are summarized in Table 4.3. In terms of the realized cost, all
five approaches produce stable results in the face of growing uncertainty
(Fig. 4.2). In general, the deterministic model results in lower overall costs,

that only increase slightly when the uncertainty grows. The multi-stage model is
more expensive. Interestingly, the deviate-strategy seems to perform better with
larger uncertainty. This can be explained by the decrease in skipped planning steps
(Fig. 4.3): with a larger uncertainty, the strategy is forced to re-plan more often as
the probability of having considered a sufficiently similar scenario decreases. This,
in turn, allows adjustment of the previous decisions to the exact current state of
affairs, which increases the quality of the solution as a whole.

The deviate-strategy has a clear advantage over the other strategies in the number
of planning steps that can be skipped. As would be expected, this advantage is
even stronger with the multi-stage model: the multi-stage-deviate combination,
only re-plans on average in less than 1 in 7 steps.

We have to conclude, however, that the multi-stage model is not capable of bringing
down the cost of operation in our case study. This can be blamed, in part, on the
relatively small size of the battery in the test system. We found that the range
of the generated scenarios in the multi-stage problem is often larger than what
can be covered by adjusting the battery output. This forces the situation where
some of the scenarios are not satisfied in the second stage (i.e. penalty terms w+

t

and w−t are used). These penalty terms then contribute heavily to the objective
function, and the resulting planning will be one that minimizes the penalty, which
is not necessarily the most cost-effective solution for an “average” scenario. Note
that, when the realization is close to one of the unsatisfied scenarios, the planning
for that scenario will still be used - even though we know for sure that it will need
adjustment. This potentially compounds the issue.

The state of charge of the battery in the runs that use the multi-stage model is
kept at very high levels for a majority of the time. At the same time, we see
that the number of generator starts approximately doubles when compared to the
runs using the deterministic model. We expect this to be the result of the issue
discussed above. However, this means that the planning will be very similar for
different uncertainty levels and explains part of the higher operation cost: start-
ups are expensive, and a full battery might force PV-output to be curtailed in the
case of overproduction, which means that “free” energy is wasted.

We expect the multi-stage model to perform better when the range of consid-
ered scenarios is (relatively) smaller: either by decreasing the considered range
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Figure 4.2: Realized cost of five approaches for different forecast accuracies

explicitly or increasing the capability of adjustment in the scenario-based deci-
sions (either by increasing the battery size, or by allowing other decisions to be
scenario-based as well).

Finally, a note on the computational performance of each of the approaches. We
will not discuss exact numbers, as these may be misleading, given that a time limit
of ∼10 minutes was imposed on every planning step, in order to evaluate its per-
formance in an on-line setting. The deterministic model typically takes less than
a second to be solved (using CPLEX v12.7.1), while the multi-stage model takes
significantly longer. For solving a multi-stage problem, the time limit is exceeded
in some time steps, which means that the solution has a larger (proven) optimality
gap (on average at most 2%). The impact on the solutions is manageable, and can
be reduced in multiple ways, e.g. by reducing the number of scenarios.

4.5. Conclusion

T he deterministic approach that we developed has proven its worth. As a
result, it is currently implemented in the microgrid that we based our case
study on.

Based on the results in our case study, we cannot justify the application of the
more complex model in this specific case. We expect this to be caused, at least in
part, by the particular make-up of this grid (the small storage capacity, relative
to the large generation capability), in combination with our modeling of battery
output as the adjustable part of the planning.

The performance of the deterministic model we proposed shows, however, that
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Figure 4.3: Number of planning steps skipped by four approaches for different forecast
accuracies

planning the operation of a microgrid in this way has its advantages: the resulting
planning is robust in the face of large uncertainty in the forecasts of load and PV
output. The system displays intuitive behavior when following the planning, and
the cost of operation do not increase by doing so. It should be noted that the
safety constraints (constraint (4.4) and (4.5)) are crucial here. A naive model that
lacks these, does not perform as well.

In addition, we have shown that applying strategies for skipping the planning
phase in a number of time steps does not necessarily mean that the resulting
solution will be more expensive. This means that less computing resources are
needed to implement the automated planning of generators and storage units,
when compared to a traditional rolling horizon strategy.

This case study is a first step in investigating the application of the approaches
we proposed for the management of microgrids. Next steps include evaluating the
different models for microgrids with different configurations (e.g. a relatively larger
storage capacity or smaller flexible generation capability) and further investigation
of the re-planning strategies.

Further fine-tuning and testing on different cases is required to deliver a final state-
ment on the usefulness of applying complex optimization models to this problem.
The success of the deterministic model and the re-planning strategies provides
promising opportunities for improving typical operation strategies.
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Abstract

We study Electric Vehicle (EV) charging from a scheduling perspective, aiming to
minimize delays while respecting the grid constraints. A network of parking lots
is considered, each with a given number of charging stations for electric vehicles.
Some of the parking lots have a roof with solar panels. The demand that can be
served at each parking lot is limited by the capacity of the cables connecting them
to the grid. We assume that EVs arrive at the parking lots according to a known
distribution. Upon arrival, we learn the desired departure time, the amount of
electrical energy it needs to charge its battery, and the range of rates that it can
be charged at. Vehicle arrival patterns, connection times, and charging volume are
based on data collected in the city of Utrecht. The departure time of an EV is
delayed if it has not finished charging in time for its desired departure. We aim
to minimize the total delay. We present a novel approach, based on an online
variant of well-known schedule generation schemes. We extend these schemes and
include them in a destroy-and-repair heuristic. This resulted in several scheduling
strategies. We show their effectiveness using a discrete event simulation. With
this, we show that applying scheduling approaches increases the amount of EVs
that can be charged at a site and reduces the average delay. Furthermore, we argue
the importance of considering aspects of the grid layout in electricity networks and
show the benefits of using flexible charging rates.

Keywords: smart EV charging, scheduling, simulation, OR in energy.
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5.1. Introduction

T he number of electric vehicles (EVs) has rapidly increased in recent years.
This trend is likely to continue, as policies aiming to reduce greenhouse gas
emissions encourage their sale to replace vehicles that run on fossil fuels.

The increasing number of EVs requires charging stations to be installed in many
locations. At parking lots where many EVs congregate, such as one near a large
office building for example, managing the demand for charging the batteries of all
these EVs concurrently is a challenge. Such parking lots often have clear peaks in
demand, and are relatively quiet at other times. For parking lots outside residential
neighborhoods, this peak in demand often occurs during the day, which matches
well with the peak in production of solar panels. Therefore, the installation of
a large number of charging stations is often paired with the installation of solar
panel arrays on roofs over these parking lots. Although the peaks in supply and
demand do not line up as nicely for parking lots in residential areas, solar panels are
commonly installed in these areas as well. The servicing of EVs at these parking
lots will benefit from smart scheduling of the charging jobs to align well with the
availability of power at the parking lot.

In this work, we consider a network of parking lots operated by the same provider,
who offers the service of parking and charging electric vehicles (EVs). Each parking
lot has a given number of charging stations for EVs. The demand that can be
served at each parking lot is limited by the amount of available power. The power
supply is constrained by the capacity of the cables connecting the parking lots to
the grid. Some parking lots are covered by a roof with solar panels on it, supplying
additional power under the right weather conditions.

We assume that EVs arrive at the parking lots according to a known distribution.
As soon as a vehicle arrives, we learn its desired departure time, the amount of
electrical energy it needs to charge its battery before that time, and the range of
rates that it can be charged at. The charging of these EVs must be scheduled in
such a way that the total delay is minimized, while the network constraints are
respected. This means that the summed difference between the desired departure
time and the actual departure time, which is delayed if an EV has not finished
charging in time, must be minimal across all vehicles.

The charging of electric vehicles is a widely studied subject across multiple disci-
plines, even if we limit ourselves to the (optimal) scheduling of charging jobs. Many
surveys aim to provide an overview of aspects of this problem. A recent survey on
this topic was performed by Pasha et al. (2024). Earlier surveys include the work
by Wang et al. (2016), who make a classification of EV charging control algorithms
based on their perspective and objective. They identify three categories: smart
grid oriented, aggregator oriented and customer oriented EV charging, describing
the perspective from which the problem is considered. Although the objectives dis-
cussed in the review are mainly cost optimization objectives, we could consider our
problem setting to align with the aggregator oriented model, as we aim to provide
the best possible service within the limited capacity of the network.
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The control of EV charging can be considered on several ‘levels’, or timescales
(Arif et al. 2021). The lowest level of control is reactive, and mainly concerns sta-
bilization of the grid. Arif et al. (2021) describe that EVs can be used at that level
to provide ancillary services by controlling the charging (grid-to-vehicle, G2V) or
discharging (vehicle-to-grid, V2G) at a very small timescale. Such timescales make
scheduling intractable. We focus on higher levels of control: aligning demand well
with forecasts of solar panel output and the demand of other EVs within the same
network. The importance of the uncertainty of demand is emphasized by Al-Ogaili
et al. (2019). This implies that offline scheduling methods may struggle to account
for the uncertainty surrounding the arrival times and charging demands of EVs at
charging locations. Therefore, we consider an online scheduling approach.

Most surveys conclude that coordinated charging strategies, where some central-
ized decision-making is involved, yield the best results. Hussain et al. (2021), for
example, states that “it is found that centralized coordination is [the] best strat-
egy to handle all issues effectively." Liu et al. (2015) also find that centralized
approaches have better performance, but prefer decentralized approaches due to
the communication overhead of centralized approaches.

We will be looking at a centralized control strategy, from the perspective of an
aggregator. We aim to schedule the demand in a network of parking places as
well as possible, given the limited resources available. In this sense, the prob-
lem we consider is closely related to the Resource-Constrained Project Scheduling
Problem (RCPSP). The surveys by Hartmann and Briskorn (2010, 2022) give
a good overview of the RCPSP and its variants. The RCPSP with flexible re-
source profiles (FRCPSP) such as studied by Naber (2017) and the General Con-
tinuous Energy-Constrained Scheduling Problem (GCECSP) (Brouwer, van den
Akker, and Hoogeveen 2024; Chapter 3) are most closely related to the present
work.

The approaches we develop in this work are inspired by priority rule based schedul-
ing heuristics commonly employed for finding solutions to RCPSP and its variants.
Kolisch (1996) provides a good overview of the application of schedule generation
schemes to the classical RCPSP. Lova, Tormos, and Barber (2006) apply schedule
generation schemes to the multi-mode RCPSP, where tasks can be processed in
a number of different modes, which can be seen as a discretized variant of the
flexible model we are considering. More recently, priority rule based approaches
that are similar to schedule generation schemes have been applied to the stochas-
tic RCPSP (Chen et al. 2018) and in the context of genetic algorithms, where
compound priority rules are learned for the generation of schedules (Ðumić and
Jakobović 2021).

Our contribution: We present a novel approach, based on an extension of tra-
ditional schedule generation schemes to an online setting with flexible charging
rates. We consider single-pass methods, where we apply a scheme once, as well
as more advanced methods, where we include the schemes in a destroy-and-repair
heuristic. In this way, we develop a number of variants of the approach for the
generation of efficient schedules for charging EVs on a network of parking lots. As
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Figure 5.1: Network layout

far as we are aware, similar approaches have not been applied to this problem yet.
We show the effectiveness of these approaches using a discrete event simulation.
Furthermore, we argue the importance of considering aspects of the grid layout in
electricity networks and show the benefits of using flexible charging rates.

The work presented here is a continuation of earlier work by van Huffelen (2023).
The specific case is loosely based on an assignment used in the master’s course ‘Op-
timization for sustainability’ at Utrecht University (van den Akker and Posthoorn
2021). The distribution of solar output is based on a forecast of the production
of solar panels in the Netherlands in 2025 (ENTSO-E 2018). The data used for
the distribution of arrival times, charging volumes and connection times is based
on real-world data from the city of Utrecht, and was provided by Brinkel, AlSkaif,
and van Sark (2020). The authors of this paper argue, as we do, that the usage of
smart charging strategies reduces the need for grid reinforcement and is, in fact,
more cost-effective (Brinkel, Schram, et al. 2020). In later work, they develop an
approach for a mix of shared and privately-owned EVs using V2G techniques to
mitigate grid congestion (Brinkel, AlSkaif, and van Sark 2022).

The rest of this work is structured as follows. In Section 5.2, we give a detailed
problem description, followed by an explanation of the developed scheduling ap-
proaches in Section 5.3. We present the results of evaluating our approaches using
that simulation in Section 5.4. Finally, we will draw some conclusions and discuss
avenues for future work in Section 5.5.

5.2. Problem description

W e consider an online problem, where a schedule for the charging of EVs
needs to be generated with the objective to minimize the average delay.
EVs arrive over time, which implies that the schedule needs to be updated

regularly. We will discuss strategies for these updates in Section 5.3.
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We consider a network that consists of a number of interconnected parking lots,
that share a grid connection. An example network is shown in Figure 5.1. Each
parking lot has:

• a number of parking spots, where EVs can be parked and charged;

• the fraction of EVs pPi that will select parking lot Pi;

• (optionally) an array of solar panels, producing a variable amount of power.

These parking lots are connected by cables with a given maximum capacity. The
cable capacity limits the amount of power that can be transported to each park-
ing lot. We use this a simple approximation of the limits imposed by the net-
work.

The amount of power generated by the solar panels is based on the so-called
availability vector. This expresses the average production of solar panels at any
given time as a fraction of their peak power. The production of the solar panels is
revealed at the start of every hour, and treated as a constant production rate for
the entire hour.

The EVs arrive at this location according to a Poisson process. The arrival rate
is not constant, but changes every hour. Each EV j has a number of properties,
which are revealed when the vehicle arrives. Here, EV j is the jth vehicle in the
order of arrival:

• a connection time dj − rj , the amount of time between its arrival time rj

and its desired time of departure dj ;

• a charging volume Ej : the amount of energy required to fully charge its
battery before departure (in kWh);

• charging rates [P−j , P +
j ], a range of rates between a lower (P−j ) and an upper

(P +
j ) bound that can be used to charge it, in kW;

• a parking preference: an ordered list of three parking lots, where the EV will
try to park. If all three parking lots in the parking preference of an EV are
full, it will leave the area.

For each EV, we determine a start and completion time for the charging process.
The start time must be after its arrival, which implies that the EV may not start
charging immediately. After its start, we determine a charging profile that will be
followed. It completes when its full energy demand is served, which will be earlier
than or, if that is not possible, as close to its preferred departure time as possible.
Note that we guarantee that the connection time is never smaller than the time it
takes to charge an EV at its minimum rate, i.e. Ej/P−j .

In addition, note that the existence of a lower bound implies that preemption is
not allowed: as soon as an EV has started charging, it cannot drop below the
lower bound on its charging rate before it completes. A reason for this is that
interruption of the charging process comes with some loss of efficiency caused by
startup and shutdown effects.
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In this setting, we want to minimize the total tardiness
∑

j max(0, Cj − dj) over
all EVs that parked at the network of parking lots.

In this work, we use a case study for the evaluation of our approaches, loosely based
on an assignment used in the master’s course ‘Optimization for sustainability’ at
Utrecht University (van den Akker and Posthoorn 2021). It uses the network
depicted in Figure 5.1. All cables have a capacity of 200 kW. We use the availability
factor predicted for solar panels in summer in the Netherlands in 2025 (ENTSO-E
2018), which we provide in Appendix 5.B.1. We assume the average hourly power
output to follow a normal distribution, with the value from the availability vector
as its mean, and a standard deviation of 15%. All solar panel arrays installed
have a peak power of 200 kW, unless explicitly stated otherwise. We assume an
average arrival rate of 1125 EVs per day. We use hourly arrival rates, charging
volumes, and connection times based on data from Brinkel, AlSkaif, and van Sark
(2020). These distributions are provided in Appendix 5.B.2, 5.B.4 and 5.B.5. The
distribution of charging ranges can be found in Appendix 5.B.3.

5.3. Scheduling

A s EVs keep arriving continuously, we use an online scheduling approach.
Only the characteristics of the EVs that have already arrived have been
revealed, and the amount of power produced by the solar panels is only

known for the current hour. The available information will serve as the basis for a
schedule that determines when and at what rate each EV charges. In this section,
we will first introduce the methods that are used to find schedules based on this
information. After that, we will discuss a strategy for replacing these schedules
when new information is revealed.

5.3.1. Schedule generation schemes
In this chapter, we consider priority rule based scheduling heuristics. These are
made up of two components: a schedule generation scheme and a priority rule.
Priority rules will be discussed in Section 5.3.2. The schedule generation scheme is
a constructive heuristic that adds jobs to the schedule one by one, until a feasible
schedule is obtained.

There are two main variants of schedule generation schemes that are often con-
sidered in literature: serial and parallel (Kolisch 1996). A convenient way to
characterize the difference is that the serial scheme iterates over jobs, while the
parallel scheme iterates over points in time. The serial scheme aims to schedule
the highest priority job as early as possible, and the parallel scheme tries to fill
the current time with as high-priority jobs as possible. Both variants construct a
schedule by adding jobs, until all jobs have been placed. In simple schedule genera-
tion schemes, the schedule that results from this procedure is not adapted further.
These schemes are considered to be single-pass schedule generation schemes, since
they place all jobs in a single loop over jobs (serial) or time (parallel).

At any stage in the construction, the serial scheme will select the unscheduled job
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with the highest priority (according to the priority rule) and schedule it as early as
possible. It will then repeat this until all jobs are scheduled. The parallel scheme,
in contrast, will select the highest priority job (or jobs, if enough power remains
available after the scheduling of the first one) that fits in the gap at the current
time in the schedule, which is not necessarily the highest priority job available
overall.

We extended these schemes in the following ways to apply them to our case:

Composite resource To check whether enough resource (power) is available to
process a job at a given rate, we need to check the load of all cables and park-
ing lots along the path from its source to the lot where the EV is located. The
residual capacity at a parking lot can be determined by an elementary flow
computation from the load at other parking lots, including the contribution
of solar panels, and the cable capacities.

Resilience against drops of solar power We need to guarantee the load on
the cables does not exceed the capacity, while using as much of the available
power as we can. If, for whatever reason, the solar output should fall away,
we want to be able to guarantee that we can scale back charging on some
EVs to remain within the bounds of the cable capacity. Therefore, we ensure
that the EV’s that are currently charging, can charge at their minimum
rate without using solar power, i.e. solar power is only used to increase the
charging rate above the lower bound.

Flexible rate The jobs have a flexible resource consumption profile. This means
that we need to decide the consumption rate for each job for the duration of
its execution. When a job is selected to be added, it is placed at the earliest
possible time in the partial schedule, at the highest possible rate. It may
start at any rate between its lower and upper bound. From that point, it will
always be scheduled to charge at the highest possible rate, until it completes.
This rate is equal to its upper bound, or the maximum rate allowed by the
resource constraints, whichever is more restrictive. This means the rate may
change over time.

Avoid preemption Applying the schemes in an online setting means that we
need to take into account jobs that are already started when we reschedule.
Recall that preemption is not allowed. When the construction of a new
schedule starts, these jobs are initialized as charging at their lowest possible
rate. As soon as they are encountered in the priority order, this rate is scaled
up where possible. In this way, preemption is avoided, while respecting the
priority order as much as possible.

Note that in the parallel schedule generation scheme, we do not need to generate
a complete schedule, but just one that lasts until the next time a schedule will be
generated in our strategy. We stop the construction as soon as it advances to a
time point beyond that. This is not true for the serial scheme, as a lower priority
job may still cause changes early in the schedule.
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5.3.2. Priority rules
A schedule generation scheme uses a priority rule to assign a priority to each job.
A priority rule essentially is a formula that assigns a numerical value to a job, that
can be used to order them. Typically, jobs with a smaller value for the priority
rule’s formula have a higher priority. Many possible priority rules exist, but we
will only list the ones that will be used in the remainder of this work:

FCFS First Come First Serve: rj .

EDD Earliest Due Date: dj .

ELSTu Updated Earliest Latest Starting Time: dj − E′j/P +
j .

where E′j is the remaining charging volume, i.e. the original charging volume Ej

minus the amount charged up to the time of evaluation.

5.3.3. Destroy-and-repair
The single-pass schedule generation schemes described in Section 5.3.1 generate
reasonably good schedules. We want to investigate, however, if we can improve
them further by using an iterative heuristic.

Essentially, our approach boils down to a destroy-and-repair heuristic. We remove
parts of the schedule and replace them by parts that are generated using a different
priority rule. We repeat this a limited number of times to obtain an improved
schedule.

A global overview of the procedure is given in Algorithm 5.1. From the initial
schedule, we remove a fraction s of jobs. First, a fraction r < s is removed
randomly with uniform probability. For the remaining fraction s − r, jobs are
removed with a probability proportional to their weight. The weight is defined as
the number of jobs adjacent to the job in the original schedule that have already
been removed. In this way, the removal procedure aims to create some large
contiguous open areas in the schedule, rather than many small holes. For two
jobs to be considered adjacent, two conditions must be met: (1) part of their
processing windows must overlap or immediately follow each other, and (2) they
must be scheduled on two parking lots that compete for resources (i.e. parking
lots that share at least one cable along the path to the root node).

We start the repair phase by reinserting jobs that have a start time Sj before
the start of the schedule, i.e. jobs that are already being processed, to avoid
preemption. These are initially scheduled at the lowest possible rate. Then, we
reinsert (or adjust) all jobs, ordering them using a different priority rule than the
one used to generate the initial schedule.

The resulting schedule is compared to the best schedule we have seen so far. If it
is better, we continue the procedure with the new schedule. If it is better by at
least a minimum improvement imin, we say the procedure was successful. If the
procedure was not successful a number of f consecutive times, we stop.
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/* Generate initial schedule with a parallel or serial
schedule generation scheme using the first priority rule
*/

1 S∗ ← InitialSchedule(J , PRIO1)
2 fails ← 0
3 while fails < f do
4 S ← S∗
5 J ′ ← ∅

/* Randomly remove r · n jobs */
6 for iter ∈ {1, ..., r · n} do
7 j ← GetRandomJob(S)
8 J ′ ← J ′ ∪ {j}
9 S ← RemoveFromSchedule(S, j)

/* Further removal based on adjacency */
10 for iter ∈ {r · n, ..., s · n} do
11 j ← GetWeightedRandomJob(S)
12 J ′ ← J ′ ∪ {j}
13 S ← RemoveFromSchedule(S, j)

/* Reinsert already started jobs at minimum rate */
14 for j ∈ J ′ : Sj < t do
15 S ← ScheduleAtMinRate(S, j)

/* Reinsert (or adjust) jobs in order of the second
priority rule */

16 for j ∈ SortBy(J ′, PRIO2) do
17 S ← AddToSchedule(S, j)

/* Above some minimum improvement threshold imin, we count
a success */

18 if Score(S) < Score(S∗) + imin then
19 fails ← fails + 1
20 else
21 fails ← 0

/* Keep the best result */
22 if Score(S) > Score(S∗) then
23 S∗ ← S

24 return S∗

Algorithm 5.1: Global overview of the destroy-and-repair procedure. J
is the set of available jobs (of size n), t is the current time.
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5.3.4. Scheduling frequency
We consider an online problem. This means that new information regularly be-
comes available, either when the solar output is updated, or when a new EV
arrives at a parking lot. The most naive way to deal with this is to generate a new
schedule any time new information is revealed. However, since we use a rather
advanced scheduling algorithm, it is reasonable to generate a new schedule less
often. Therefore, we trigger the generation of a new schedule on a periodic basis,
e.g. every hour. Within an interval, no new schedules are generated, unless a
high-priority EV arrives. A high-priority EV is defined as an EV that has a higher
priority value (for the first priority rule) than 80% of the EVs in the schedule at
that time. If such an EV arrives, an additional schedule is generated at its time
of arrival. It does not change the timing of the next periodic schedule generation,
however.

5.4. Computational results

W e have implemented a discrete-event simulation to evaluate our approach.
A brief description of the simulation is presented in Appendix 5.A.

For the test runs reported below, average results over five runs are presented, each
with a fixed seed used to generate the instance. Each individual run contains nine
days of simulated time, the first two of which are treated as a warm-up period.
This means that all reported results (except the runtime) are over days 3-9. The
simulator was written in the Python programming language. The processor of
the system used to run the tests on was an Intel(R) Xeon(R) Gold 6130 CPU @
2.10GHz.

The main performance metric of an approach is the resulting average delay, or
the average tardiness, of an EV that is charged at one of the parking lots in the
simulation. The other metrics that we will report on are maximum delay, i.e.
the largest delay a single EV encounters in the simulation, the fraction of EVs
that are delayed as a percentage of the total number of EVs that parked at one
of the parking lots, and the number of EVs that suffered a delay of more than
fifteen minutes. We present the number of EVs with a large delay rather than a
percentage, as we feel that the number of EVs that experience a large delay is a
relevant metric, even if the percentage is small.

In the remainder of this section, we first discuss the selected approaches and pa-
rameter settings in 5.4.1. We continue with an analysis of the effects of considering
elements of the grid topology (Section 5.4.2) and flexible charging rates (Section
5.4.3). Then we will show the performance of the developed approaches on different
scheduling intervals in Section 5.4.4. We conclude this section with a comparison
of the most promising approaches in Section 5.4.5.

5.4.1. Approach selection and parameter settings
Based on their performance in initial test runs, we selected five variants that we
will use in our evaluation:
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FCFS is a serial schedule generation scheme, using the First Come First Serve
priority rule.

S generates schedules using a serial schedule generation scheme, where the planned
departure of an e-vehicle is used as the priority (Earliest Due Date/EDD).

P generates schedules using a parallel schedule generation scheme, where the
planned departure of an e-vehicle is used as the priority (Earliest Due Date/EDD).

SR generates initial schedules using a serial schedule generation scheme, where
the planned departure of an e-vehicle is used as the priority (Earliest Due
Date/EDD). Improvements are generated using the destroy-and-repair heuris-
tic described in Section 5.3.3 with the Updated Earliest Latest Starting Time
(ELSTu) priority rule.

PR generates initial schedules using a parallel schedule generation scheme, where
the planned departure of an e-vehicle is used as the priority (Earliest Due
Date/EDD). Improvements are generated using the destroy-and-repair heuris-
tic described in Section 5.3.3 with the Updated Earliest Latest Starting Time
(ELSTu) priority rule.

For the latter two, the values of the relevant parameters are as follows:

• Rescheduling fraction s = 0.5;

• Random removal fraction r = 0.05;

• Improvement threshold imin = 100;

• Unsuccessful iteration tolerance f = 4.

Other variants of the approaches have been tested, using different (combinations)
of priority rules, parameter settings, and adjacency measures (in case of weighted
removal). The presented approaches and settings (except ‘FCFS’) were chosen
as they showed the most consistent good performance in the preliminary tests.
Apart from these four main approaches, we also present results from ‘FCFS’ when
relevant.

5.4.2. Network constraints
Where limitations exist in the transport capacity of the underlying electricity
network, it is important to take these into account when planning electricity usage.
To show the effects of ignoring the grid layout, we have implemented a scenario
that does so (see Figure 5.2). This network consists of a single parking lot, with
as many parking spots and solar panels as the seven parking lots in our original
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Metric S P SR PR

Grid

Max. delay (s) 14236.27 13882.98 5033.37 4847.46
Avg. delay (s) 121.19 106.03 88.14 86.56
EVs delayed (%) 1.75 1.48 1.47 1.54
Delay ≥ 15 min 65.20 58.00 52.60 55.40

No Grid

Max. delay (s) 36.41 0.00 36.41 10.40
Avg. delay (s) 0.01 0.00 0.01 0.00
EVs delayed (%) 0.00 0.00 0.00 0.00
Delay ≥ 15 min 0.00 0.00 0.00 0.00

Table 5.1: Comparison of results taking the network layout into account and those
ignoring the grid

grid combined. The results of running our four main approaches on both grids are
shown in Table 5.1.

We observe that delays almost disappear when we take away the grid layout. This
indicates that the simplification of ignoring the grid layout gives a significant and
unrealistic advantage in the scheduling model. This difference justifies the addi-
tional modeling effort required to account for the topology of the network.

5.4.3. Flexible charging rates
The assumption that using the flexibility in rates that charging of EV batteries
may allow would be beneficial, is crucial for our model. To test this assumption,
we compared simulations with the flexible rates as we have described them so
far, to simulations with a fixed rate of 9 kW for all EVs. The value of 9 kW
was chosen, as this is the average upper bound in the flexible scenario, meaning
that the average potential for energy consumption is equal across both scenarios.
Additionally, we excluded the solar panels from this simulation. EVs cannot scale
down in the fixed rate scenario and their charging is not allowed to be preempted.
Because of this, using the power from solar panels in the schedule means that the
cable capacity may be violated if the amount of power they provide changes. To
make the comparison as fair as possible, therefore, the solar panels are turned off.
Note the absence of solar power causes markedly different results compared to e.g.
Table 5.1, as less power is available for charging overall. The results of these runs
are presented in Table 5.2.

Here, we present the results of the ‘FCFS’ alongside our four main approaches, as
it performs unexpectedly well in this scenario. It seems that planning according to
the ‘first come first serve’ principle is fairly effective in a strained network where
all power flows from a single source.

We observe that the differences are not large, but the average delay is typically a
few minutes shorter in the scenario with flexible charging rates. The same is true
for the amount of severe delays and the percentage of EVs that are delayed.
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Metric FCFS S P SR PR

Fixed

Max. delay (s) 68148.35 54599.73 54561.94 53366.20 56653.89
Avg. delay (s) 15142.88 14899.12 14894.50 15055.51 15103.98
EVs delayed (%) 61.30 85.83 85.89 85.83 85.01
Delay ≥ 15 min 2106.40 2950.80 2954.40 2958.80 2911.20

Flexible

Max. delay (s) 66068.74 62563.74 59144.77 61743.67 60528.36
Avg. delay (s) 14131.81 14600.97 14486.47 14327.40 14418.19
EVs delayed (%) 59.02 82.34 83.25 81.61 83.86
Delay ≥ 15 min 2055.60 2837.40 2870.60 2815.60 2886.60

Table 5.2: Comparison of results for flexible and fixed rate charging

Keep in mind that we excluded the solar panels from this comparison. Their output
can be incorporated safely in the scenario with flexible rates, whereas it cannot
be incorporated when using fixed charging rates without allowing preemption.
Therefore, one could say that flexible rates are very beneficial when we want to
use solar power. These results together show that the use of flexible charging rates
allows for better outcomes.

5.4.4. Scheduling frequency
In an online setting, regular updates of the schedule are performed. Each time
new information is revealed, the generation of a new schedule could be triggered.
The results presented in the previous sections use this strategy, because it provides
the most clear environment for the comparison of elements of the modeling. In
practice, however, it is undesirable and unnecessary to generate new schedules
that often, in particular for the more advanced scheduling methods. Generating
schedules less frequently is also more realistic in terms of computation time, as
new EVs arrive with high frequency during peak hours.

The more often a new schedule is generated, the better the results are expected
to be. If the difference in quality is sufficiently small, however, it is reasonable
to update schedules with a lower frequency. We have tested three scheduling
frequencies:

1. Generate a new schedule whenever new information is revealed (i.e., when
the solar forecast is updated or a new EV arrives);

2. Generate a new schedule once every 15 minutes;

3. Generate a new schedule once every hour.

In the latter two cases, we keep track of the priority of newly arriving EVs, ac-
cording to the (first) priority rule used for scheduling. If an EV arrives with a
priority that is higher than 80% of the EVs that are currently scheduled, we will
trigger an additional schedule to be generated.

The results are presented in Table 5.3. Most approaches show a slight deterioration
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Metric S P SR PR

New information

Max. delay (s) 14236.27 13882.98 5033.37 4847.46
Avg. delay (s) 121.19 106.03 88.14 86.56
EVs delayed (%) 1.75 1.48 1.47 1.54
Delay ≥ 15 min 65.20 58.00 52.60 55.40
Runtime (s) 20366.03 12743.83 70506.54 40210.12

15 min.

Max. delay (s) 14706.39 13167.38 5293.81 5237.77
Avg. delay (s) 123.94 115.11 106.39 95.23
EVs delayed (%) 1.75 1.63 1.73 1.60
Delay ≥ 15 min 65.20 58.00 52.60 55.40
Runtime (s) 8688.63 7143.22 27071.67 15324.67

1 hour

Max. delay (s) 14889.79 14027.18 8399.59 5135.09
Avg. delay (s) 127.69 103.22 136.22 96.95
EVs delayed (%) 1.77 1.47 1.94 1.61
Delay ≥ 15 min 65.20 58.00 52.60 55.40
Runtime (s) 7499.83 7423.24 19654.80 14446.14

Table 5.3: Comparison of results for a number of scheduling intervals.

in the quality of the results when the scheduling frequency decreases. Only the
results for the parallel scheduling scheme (‘P’) are somewhat inconsistent with this
observation. The performance of the ‘SR’ approach deteriorates most of all.

We observe that the total runtime of the simulation is significantly reduced for all
approaches. Note that the reported runtime includes every aspect of the simulation
(not just the scheduling itself) for a total simulation time of nine days. The runtime
of all approaches is such that it is realistic to implement them with a schedule
generation interval of 15 minutes. In terms of the quality of the schedules, we
observe that the best performing (advanced) approach (‘PR’) still outperforms
the single-pass approaches on the main metric (average delay), even with a large
scheduling interval.

5.4.5. Overall performance
From the results in the previous sections, we observe that the parallel implemen-
tation of an approach seems to dominate the serial implementation of that same
approach. Based on the results of our preliminary tests, however, we must say
that this is not a general result. This is consistent with earlier findings by e.g.
Kolisch (1996).

In this section, we will give a final overview of the results. We present the best per-
forming single-pass approach and the best performing approach using our destroy-
and-repair heuristic. We compare them to the ‘FCFS’ approach, which we consider
to be the most straight-forward application of scheduling using our adapted sched-
ule generation schemes. The best performing approaches are the parallel schedule



5

120 5. Grid-constrained online scheduling of flexible EV charging

FCFS P-EDD PR-15min
Max. delay (s) 31287.96 13882.98 5237.77
Avg. delay (s) 1114.21 106.03 95.23
EVs delayed (%) 11.72 1.48 1.60
Delay ≥ 15 min 470.20 58.00 55.40
Runtime (s) 16168.70 12743.83 15324.67

Table 5.4: Results for the most promising approaches

generation scheme using the Earliest Due Date (EDD) priority rule, ‘P-EDD’, and
the parallel ‘improved’ approach using the EDD and ELSTu (Updated Earliest
Latest Starting Time) priority rules, ‘PR-15min’. For the latter approach, we use
a scheduling interval of 15 minutes, while the other two will continuously generate
new schedules, any time new information is revealed.

The parallel ‘improved’ approach outperforms the other approaches on almost all
metrics, while it is comparable in computational load. This seems to be the most
promising approach for our case study and similar scenarios.

Note that all approaches discussed above protect the network capacity and apply
scheduling techniques for charging decisions. We conclude with a note on the
effectiveness of scheduling in general. Therefore, we want to make a comparison
with a scenario where no control is exercised over the charging at all. We ran
simulations on the same network, under the same conditions, where all EVs have
a fixed charging rate of 9 kW. Rather than scheduling their demand, any EV
that arrives at a parking lot immediately starts charging, until its battery is fully
charged. In this scenario, we consider a 10% overload of the cable capacity (i.e. a
load of 200-220 kW) to be manageable. We consider anything beyond 220 kW to
be truly problematic. If we look at the two main cables connecting the two groups
of parking lots to the transformer, we find that the cable on the left (connecting to
P1, P2 and P3) suffers from a manageable overload 4.4% of the time, and from a
problematic overload 53.7% of the time. The cable of the right (connecting to P4,
P5, P6 and P7) has a manageable overload 2.6% of the time, and a problematic
overload 65.8% of the time. These numbers indicate that it is absolutely necessary
to manage the charging of EVs on these parking lots, and show the usefulness and
effectiveness of a scheduling approach like ours.

5.5. Conclusions and future work

W e have formulated an online scheduling problem dealing with the charg-
ing of EVs. For this problem, we developed a scheduling approach that
extends the idea of schedule generation schemes to an online setting with

flexible charging jobs. In our case study, the application of schedules generated
using this approach, allows for the serving of many EVs with minimal delay, while
respecting the constraints imposed by the network. If no control over the charging
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was exercised at all, cables in the network would be overloaded around 60-70%
of the time. Overload is completely avoided if our schedules are followed, at the
cost of an average delay of just over 1.5 minutes per EV in a high-occupancy sce-
nario. The quality of the generated schedules is such that frequent updates are not
necessary. Finally, the computational load of the developed approach is reason-
able for practical purposes, making it a promising candidate for implementation
in real-world cases.

In addition to this main result, our case study shows that it is essential to take
the network topology into account when deciding charging profiles. Furthermore,
we have shown the benefits of considering a range of permissible charging rates for
EVs, rather than a single fixed value.

Many avenues for future research exist. Broadly, we see two main directions for
future research.

First, there are many opportunities for further development of the scheduling
approach. We have proposed a novel approach for generating schedules. Other
variants of this approach might be interesting. Examples include the use of more
than two priority rules in the improvement process and the application of a more
directed destroy-and-repair heuristic that aims to improve the schedule at the
points that cause the most delay.

Second, certain extensions of the model may be interesting to investigate. For
example, a more complex model could include the ability of EVs to discharge as
well (V2G), and contribute to the charging of other EVs with a higher priority. A
more detailed modeling of the uncertain power output of the solar panels can be
considered as well. Using a more detailed model of the power network (e.g. an
AC model) would be an interesting, but computationally heavy, extension. Other
objectives, such as cost minimization through consideration of electricity prices,
can also be investigated.
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5.A. Simulation model

W e evaluated the developed scheduling approaches using a discrete-event
simulation. We will briefly explain the simulation model using the event
graph displayed in Figure 5.3. Each box represents a type of event, where

arcs between events indicate that an event may schedule another. A dashed arc
indicates that the subsequent event happens instantaneously if it is triggered. The
arcs labeled with ‘(a)’ may or may not be present, depending on the scheduling
approach used (see Section 5.3). The simulation is run by repeatedly extracting
the next event from the event queue and executing its associated actions, until the
end simulation event is encountered.

We simulate the arrival, charging and departure of electric vehicles. The charging
is done according to the schedule we generate during the simulation, using one of
the approaches described in Section 5.3. The shaded boxes in Figure 5.3 indicate
events that are contained in the schedule. A schedule is, in essence, a series of
provisional events of types EV changes charging rate and EV stops charging. The
inspect schedule event draws these events from the schedule and enters them in
the event queue. A brief description of each event is provided below:

EV arrives
planned
departure

EV leaves

solar power
update

apply
scheduling
approach
to update
schedule

inspect
schedule

EV stopsEV stops
chargingcharging

EV startsEV starts
chargingcharging
or changesor changes

charging ratecharging rate

(a)(a)

(a)(a)

(a)(a)

Figure 5.3: Event graph showing the relations between events in our simulation model
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EV arrives happens when a new EV enters the simulation. This event handles
the selection of a parking lot (or removes the EV from the simulation if
all three parking lots from its preference are full). It schedules a planned
departure event for the EV at its due date dj and may schedule an immediate
update schedule event, depending on the scheduling approach used. Finally,
it will schedule a EV arrives event for the next EV to arrive.

planned departure happens when an EV is supposed to leave, at the end of
its planned connection time. If the EV is fully charged, it will schedule an
immediate EV leaves event.

EV leaves happens when an EV actually leaves. This means that it leaves its
parking lot and is removed from the simulation.

EV starts charging or changes charging rate happens when an EV starts
charging for the first time, or changes its charging rate later on. It up-
dates all relevant values and rates, but schedules no additional events. This
event is dictated by the schedule.

EV stops charging happens when an EV stops charging, i.e. it has received its
requested charging volume Ej . It updates all relevant values and rates. If
the due date dj of the EV has already passed, it will schedule an immediate
car leaves event. Depending on the scheduling approach used, it may also
trigger an immediate update schedule event.

solar power update is a regularly scheduled event, that happens on a given
interval: every hour of simulated time. This event retrieves the (expected)
power produced by the solar panels installed for the upcoming interval, and
updates the available power at each parking lot accordingly. It will trigger
an immediate update schedule event. Finally, it will schedule another regular
forecast update event at the end of the current forecast interval.

apply scheduling approach to update schedule happens when the schedule
needs to be updated. A new schedule is generated using the relevant schedul-
ing approach. It schedules an inspect schedule event at the time of occurrence
of the first action in the generated schedule. Additionally, if schedules are
updated on an interval different from the regular forecast update, it schedules
another update schedule event at the end of the current scheduling interval.

inspect schedule will retrieve the next event from the schedule (either a EV
changes charging rate event or a EV stops charging event) and, if it happens
at the current time, schedules the corresponding event. It will then schedule
an inspect schedule event at the (planned) time of occurrence of the following
event in the schedule.

At the start of the simulation, three events are scheduled: (1) ‘regular forecast
update’ at time 0; (2) ‘car arrives’ at the first generated arrival time; (3) ‘end sim-
ulation’ at the end of the period of time we intend to simulate. These correspond
to the three arcs that do not originate at an event box in Figure 5.3.
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5.B. Distributions

5.B.1. Solar power
The power that a solar panel produces strongly depends on the time of day. In
Table 5.5, we list the average production of solar panels as a fraction of their
peak power. These will be used to determine the mean of the distribution (with
a standard deviation of 15%) from which the actual values are drawn during the
simulation. The values are based on a forecast of the production of solar panels
during the summer months in the Netherlands in 2025 (ENTSO-E 2018).

Hour Fraction
0 0.000000000
1 0.000000000
2 0.000000000
3 0.001548952
4 0.017126799
5 0.055567520
6 0.132034210
7 0.222931250

Hour Fraction
8 0.311153080
9 0.382618250

10 0.426692930
11 0.446001000
12 0.440104200
13 0.403637380
14 0.342447800
15 0.261458840

Hour Fraction
16 0.169520680
17 0.083306720
18 0.026936987
19 0.005260382
20 0.000000000
21 0.000000000
22 0.000000000
23 0.000000000

Table 5.5: Average solar panel revenues as a fraction of peak power

5.B.2. Arrival of EVs
EVs arrive in the simulation according to a Poisson process. The (average) arrival
rates for every hour of the day as a fraction of the total daily arrivals are listed in
Table 5.6.

Hour Fraction
0 0.012926435
1 0.004938874
2 0.002042621
3 0.001188988
4 0.000304869
5 0.000518277
6 0.007560745
7 0.027072345

Hour Fraction
8 0.058748209
9 0.049114356

10 0.035456236
11 0.040120728
12 0.045181549
13 0.048108289
14 0.050913082
15 0.057254352

Hour Fraction
16 0.072223408
17 0.103899271
18 0.125453492
19 0.071156367
20 0.056217798
21 0.052467913
22 0.047315631
23 0.029816164

Table 5.6: Average fraction of arrivals at each hour
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5.B.3. Charging rates
Each EV has a minimum and maximum charging rate (kW), drawn with uniform
probability from the combinations listed in Table 5.7.

Min. Max. Probability
3 6 0.0625
3 7 0.0625
3 8 0.0625
3 9 0.0625
4 7 0.0625
4 8 0.0625
4 9 0.0625
4 10 0.0625

Min. Max. Probability
5 8 0.0625
5 9 0.0625
5 10 0.0625
5 11 0.0625
6 9 0.0625
6 10 0.0625
6 11 0.0625
6 12 0.0625

Table 5.7: Distribution of charging rates
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5.B.4. Charging volumes
Each EV has a demand for a given amount of energy to be added to its battery
over the duration of its connection. These are distributed in the range of 0 to
102 kWh according to the fractions given in Table 5.8. These fractions represent
the probability of the charging volume to be drawn from that particular range.
Within each group, values are distributed uniformly.

kWh Weight
0-1 0.029938112
1-2 0.026188226
2-3 0.035212341
3-4 0.032681930
4-5 0.043443797
5-6 0.050333831
6-7 0.071186854
7-8 0.055973903
8-9 0.048809488

9-10 0.032163654
10-11 0.021188378
11-12 0.023383433
12-13 0.020670102
13-14 0.019725008
14-15 0.018688455
15-16 0.018261638
16-17 0.018048230
17-18 0.017347032
18-19 0.017286058
19-20 0.018718941
20-21 0.018078717
21-22 0.018901863
22-23 0.017286058
23-24 0.017316545
24-25 0.017103137
25-26 0.016615347
26-27 0.014511753
27-28 0.015487333
28-29 0.014938569
29-30 0.013200817
30-31 0.011859395
31-32 0.013322765
32-33 0.010853328
33-34 0.011127710

kWh Weight
34-35 0.009603366
35-36 0.008444864
36-37 0.008292430
37-38 0.008079022
38-39 0.006585165
39-40 0.007042468
40-41 0.006920521
41-42 0.006676626
42-43 0.006219323
43-44 0.005762019
44-45 0.005822993
45-46 0.005487638
46-47 0.005640072
47-48 0.005883967
48-49 0.005121795
49-50 0.004115728
50-51 0.004115728
51-52 0.004268163
52-53 0.003871833
53-54 0.004786439
54-55 0.003810859
55-56 0.003262096
56-57 0.003384043
57-58 0.003445017
58-59 0.003201122
59-60 0.002804793
60-61 0.002987714
61-62 0.002957227
62-63 0.002317003
63-64 0.002073108
64-65 0.002256029
65-66 0.001981647
66-67 0.001585318
67-68 0.001615804

kWh Weight
68-69 0.001249962
69-70 0.001128014
70-71 0.000640224
71-72 0.000853633
72-73 0.000518277
73-74 0.000731685
74-75 0.000518277
75-76 0.000762172
76-77 0.000579251
77-78 0.000396329
78-79 0.000396329
79-80 0.000182921
80-81 0.000182921
81-82 0.000091500
82-83 0.000091500
83-84 0.000091500
84-85 0.000274382
85-86 0.000243895
86-87 0.000152434
87-88 0.000182921
88-89 0.000182921
89-90 0.000182921
90-91 0.000030500
91-92 0.000000000
92-93 0.000000000
93-94 0.000030500
94-95 0.000000000
95-96 0.000000000
96-97 0.000000000
97-98 0.000000000
98-99 0.000000000

99-100 0.000000000
100-101 0.000000000
101-202 0.000030500

Table 5.8: Distribution of charging volumes of EVs
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5.B.5. Connection times
Each EV has an intended time of departure, effectively a due date for the charg-
ing to be complete. This is determined by adding a connection time (in hours,
distributed as in Table 5.9) to the arrival time. These fractions represent the prob-
ability of the connection time to be drawn from that particular range. Within each
group, values are distributed uniformly.

Hours Weight
0-1 0.075089174
1-2 0.089052163
2-3 0.084570592
3-4 0.069967379
4-5 0.053565440
5-6 0.036309869
6-7 0.025608975
7-8 0.028200360
8-9 0.041492637

9-10 0.037559830
10-11 0.037072040
11-12 0.040699979
12-13 0.046431511
13-14 0.055242218
14-15 0.049205817
15-16 0.034511143
16-17 0.026828450
17-18 0.022590775
18-19 0.019237218
19-20 0.016737295
20-21 0.013261791
21-22 0.010426511
22-23 0.008536325
23-24 0.006707113

Hours Weight
24-25 0.005518124
25-26 0.004237676
26-27 0.002926740
27-28 0.001859699
28-29 0.001524344
29-30 0.001128014
30-31 0.000579251
31-32 0.000914606
32-33 0.001280449
33-34 0.001249962
34-35 0.001341423
35-36 0.001920673
36-37 0.002256029
37-38 0.003231609
38-39 0.003536478
39-40 0.002804793
40-41 0.002408463
41-42 0.002865766
42-43 0.001890186
43-44 0.002286516
44-45 0.001890186
45-46 0.001310936
46-47 0.001432883
47-48 0.001341423

Hours Weight
48-49 0.000945093
49-50 0.000548764
50-51 0.000518277
51-52 0.000274382
52-53 0.000121948
53-54 0.000152434
54-55 0.000426816
55-56 0.000243895
56-57 0.000213408
57-58 0.000457303
58-59 0.000396329
59-60 0.000274382
60-61 0.000670711
61-62 0.000945093
62-63 0.000792659
63-64 0.000884119
64-65 0.000853633
65-66 0.000640224
66-67 0.000396329
67-68 0.000609738
68-69 0.000548764
69-70 0.000457303
70-71 0.007987561

Table 5.9: Distribution of connection times
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6
Conclusion

E nergy consumption and production patterns are changing in a major way.
To meet the challenges that come with these developments, it is necessary
to rethink the way the demand for electrical energy is managed.

In this thesis, we considered the usefulness of scheduling approaches for the align-
ment of demand and supply in electricity networks. We first discussed a class
of scheduling problems, the (General) Continuous Energy-Constrained Scheduling
Problem, that is a good model for scheduling flexible demand in electricity net-
works. We proposed a general hybrid solution framework for this class of problem,
and developed tailored approaches for two variants contained in this class of prob-
lems. In the second part of the thesis, we developed scheduling approaches for
two real-world problems in the context of energy networks and investigated the
performance of these approaches.

6.1. Summary and contributions

I n Chapter 2, we studied the Continuous Energy-Constrained Scheduling Prob-
lem (CECSP) with the objective to minimize the weighted completion time.
The problem consists of the construction of a schedule for a set of jobs that

has to be processed on a continuous, shared resource. In a schedule, each job is
assigned a start time, completion time and resource consumption profile. A job
cannot start before its release time, and must be completed before its deadline.
Once it has started, a job cannot be preempted, but must satisfy its full resource
requirement in one go. The consumption rate can fluctuate during processing, as
long as it stays within the range of the lower and upper bound on the consump-
tion rate for that job. We proposed a hybrid local search approach, where we use
simulated annealing to explore the search space of possible event orders and a lin-
ear program to find the optimal schedule for a given event order. An event order
lists all events (start and completion times) in order of occurrence. We compared
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the performance of the hybrid local search approach with a mixed-integer linear
programming (MILP) formulation. We found that the hybrid approach matches
the MILP formulation in solution quality for small instances. For larger instances,
it outperformed the MILP approach, as it was able to find feasible solutions in
reasonable time, where the MILP approach was not.

In Chapter 3, we presented a generalization of the CECSP from the previous
chapter, the General Continuous Energy-Constrained Scheduling Problem. We
extended the previously developed approach to a solution framework for this class
of problems. A decomposition of the problem in two parts, that follows from the
event-based model, lies at the core of this framework: 1) determining the order
of events and 2) finding the event times and resource consumption profiles. We
extended the event-based model to include fixed-time events, which may be used
to model piece-wise linear objective functions, for example, and showed how this
can be exploited to speed up the evaluation of candidate solutions. We argued the
broad applicability of the framework, and have given an impression of the range
of problems that it can be applied to. We have illustrated the effectiveness of
the framework by applying it to the CECSP with step-wise cost functions. We
exploited that the cost of a solution can be computed on the basis of the order of
events alone, and used bounds to assess the feasibility of a given event order more
efficiently. A comparison with a MILP formulation showed the effectiveness of our
approach for finding reasonable solutions in limited time.

From the general class of problems, we then moved on to specific examples of
scheduling problems in electricity networks. The first of these examples, discussed
in Chapter 4, concerns the operational management of islanded microgrids. These
are small, isolated electricity networks with a limited number of components that
each produce, consume and/or store electrical energy. These assets allow the
microgrid to operate autonomously, as long as it can be managed such that supply
and demand are always balanced. We developed two optimization models for
planning the operation of diesel generators and battery storage units. We included
forecasts of the uncertain load and solar panel output. The first approach is a
deterministic mixed-integer linear programming model that generates a schedule
using the predicted values for the load and solar panel output. The uncertainty
is managed by keeping a percentage of the battery capacity available for dealing
with deviations from the predicted scenario. The second approach used a multi-
stage stochastic optimization model, that explicitly models the uncertainty by
constructing a scenario tree based on the forecasted distributions. Re-planning
strategies were developed to minimize the amount of times new schedules have to
be generated. These models were applied to a case study in the Netherlands. The
re-planning strategies were shown to be very effective. The multi-stage stochastic
model suffered from the (relatively) large uncertainty around the forecasts for such
a small system. While the pragmatic approach implemented in the deterministic
model performed well in practice.

Finally, in Chapter 5, we studied the scheduling of demand at a network of parking
lots for electric vehicles (EVs). These parking lots are connected by cables in the
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local energy network, and share a limited connection to the main electrical grid.
Some parking lots are covered by an array of solar panels that provides additional
power. EVs arrive at the parking lots according to a known distribution. When
an EV arrives, its desired departure time, the amount of electrical energy it needs
to charge its battery, and the range of rates it can be charged at are revealed.
The departure of an EV is delayed if it has not finished charging before its de-
sired departure time. The charging of EVs at the parking lots must be managed
such that the average delay across all EVs is minimized. We presented a novel
approach, based on an online variant of well-known schedules generation schemes.
We evaluated a serial and a parallel implementation of a single-pass variant of
this approach, and a serial and a parallel implementation of a variant that uses
a destroy-and-repair heuristic to improve the schedule further. In all cases, we
selected the best performing variant for further comparison. We compared the
outcomes using the developed scheduling approaches to the scenario where no
control over the charging is exercised at all, showing the benefits of using a sched-
uling approach to efficiently plan the charging jobs. Furthermore, we argued the
importance of considering aspects of the grid layout in electricity networks and
showed the benefits of using flexible charging rates.

Finally, we will briefly summarize the key contributions of this thesis.

1. We defined a class of scheduling problems, the General Continuous Energy-
Constrained Scheduling Problem (GCECSP), that models the planning of
tasks, that use a resource of which the availability is constrained, with flexible
resource consumption profiles. This is particularly useful for modeling the
planning of flexible electricity demand.

2. We introduced a hybrid solution framework for this class of problems and
described how it can be applied and adapted to solve problems related to
the GCECSP.

3. We presented and evaluated an implementation of the framework for the
GCECSP with the objective of minimizing weighted completion time.

4. We presented and evaluated a more sophisticated approach for the GCECSP
with step-wise constant cost functions.

5. We developed a deterministic and a multi-stage stochastic optimization ap-
proach for the operational management of microgrids under uncertainty. We
defined re-planning strategies to effectively apply these approaches using a
rolling horizon approach.

6. We evaluated the developed approaches for the operational management
of microgrid using a real-world case study. This provides insights in the
challenges of dealing with uncertainty explicitly in a small system.

7. We developed a novel scheduling approach for the planning of electric vehicle
charging. We adapted ideas from classic schedule generation schemes to an
online setting with flexible charging rates. We described a novel destroy-
and-repair heuristic to further improve generated schedules.
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8. We evaluated a number of variants of the scheduling approach for EV charg-
ing using a discrete-event simulation of a case study based on real-world
data, showing the effectiveness of scheduling in general and of the approach
in particular.

9. We investigated the effects of ignoring the network topology when making
charging decisions and the benefits of working with flexible charging rates.

6.2. Further research

W e are convinced that scheduling approaches will contribute to solutions
for the challenges originating from the ongoing energy transition. We
hope that we have made a convincing case across all chapters of this

thesis for the application of scheduling algorithms to problems concerning the
allocation of a limited power supply and the coordination of supply and demand
of electrical energy.

There are many interesting variants of the General Continuous Energy-Constrained
Scheduling Problem (discussed in Chapter 2 and 3) that remain to be explored.
Our hybrid solution framework can be applied to many more variants. This in-
cludes, but is not limited to, variants using different objectives (particularly piece-
wise linear objectives). Other techniques can be developed for the evaluation of
candidate solutions for specific variants to improve the performance of the ap-
proach. It would be interesting to evaluate the ease of tuning the framework to
each variant, to further assess the general applicability of the approach, and to
compare the performance with other solution methods. We strongly encourage
the application of our approach to new variants and its use for comparisons to
alternative approaches. The software is freely available (Brouwer 2024).

It is of particular interest to explore variants with an energy-related application in
mind. Examples along these lines are variants with a variable resource availability,
a mix of fixed-rate and flexible jobs, or an objective of minimizing electricity cost
based on market prices.

It is not straightforward to apply the approach presented in the first part of this
thesis to the problems studied in the second part. However, it would be interesting
to try to apply it in similar settings. The main challenge is dealing with (control-
lable) production, varying availability of solar energy and properly considering the
grid layout, as these aspects lead to a very complicated character of the resource.
Moreover, it would require the modification of the framework to work in an online
setting. The most difficult aspect would be the insertion of newly revealed jobs in
an existing schedule, to construct a new initial solution.

An islanded microgrid with shiftable loads provides an interesting case for the
inclusion of demand response. An approach that integrates an application of the
framework we developed for scheduling demand with a planning for generators
and battery storage could be developed.



6.2. Further research

6

137

Finally, the application of scheduling techniques on electric vehicle charging lo-
cations can be further developed by extending the model, for example with the
inclusion of vehicle-to-grid capabilities. It is worthwhile to investigate if the novel
schedule generation approach and the destroy-and-repair heuristic we presented
can be extended with new aspects. For example, the heuristic could be adapted
to use multiple priority rules during the improvement process, or to specifically
target points in the schedule that cause the most delay. A further extension of the
approach may include a forecast of the number of vehicles that will arrive during
the planning horizon in the schedule generation process.

If this type of approach is to be implemented in practice, it is important to properly
consider the legal aspects and address privacy concerns. The success of such an
application depends on the cooperation of all participants, and is therefore strongly
determined by the clarity of up-front agreements. With the implementation of
such an approach, the structure of decision-making changes, and it must be made
explicit who has control over which decision. A useful concept in this context is
that of aggregators, where a group of consumers cooperates to coordinate their
electricity demand. Control decisions can be made within the group based on
information provided by the individual users, while presenting only an aggregated
profile to the outside world.

Many opportunities for the application of scheduling approaches exist in the con-
text of energy networks. Hopefully, this thesis has brought the exploitation of
these opportunities one step closer.
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A
Nederlandse samenvatting

We zitten midden in een energietransitie. Elektriciteit voorziet in een steeds gro-
ter deel van onze energiebehoefte. Tegelijkertijd verandert de manier waarop die
elektriciteit wordt opgewekt. Een steeds groter aandeel komt van hernieuwbare
bronnen, waarbij de hoeveelheid opgewekte energie sterk afhangt van de weersom-
standigheden. Dit levert nu al grote problemen op in het Nederlandse elektrici-
teitsnet. Niet alleen is het een steeds grotere uitdaging om het totaal van vraag
en aanbod continue in balans te houden, maar ook het daarvoor benodigde trans-
port van elektrische energie vormt een groeiend probleem. In dit werk passen we
technieken uit de scheduling toe op problemen in deze context. We richten ons
daarbij met name op het spreiden van de stuurbare vraag, zodat die beter kan
worden afgestemd op de productie van energie, of goed gebruik maakt van de be-
schikbare capaciteit van een beperkte netaansluiting. Met scheduling technieken
zoeken we naar een zo goed mogelijk schema hiervoor. De ontwikkelde methodo-
logie zou bijvoorbeeld kunnen worden ingezet voor het coördineren van de vraag
op een plek waar de transportcapaciteit van het netwerk (te) beperkt is, of voor
het beter afstemmen van de pieken in vraag en aanbod. In algemene zin betogen
we dat er winst te behalen is door het toepassen van scheduling technieken op
dit type problemen. De kern van dit werk valt uiteen in twee delen met elk twee
hoofdstukken. In het eerste deel verkennen we een algemene klasse van proble-
men en presenteren we een raamwerk dat kan worden ingezet voor het vinden van
goede oplossingen. In het tweede deel kijken we naar twee specifieke voorbeelden
van elektriciteitsplanningsvraagstukken, waarvoor we oplossingsmethoden hebben
ontwikkeld.

In Hoofdstuk 2 bestuderen we het Continuous Energy-Constrained Scheduling Pro-
blem (CECSP), met het minimaliseren van de gewogen voltooiingstijd als doelstel-
lingsfunctie. Dit probleem houdt in dat een schema gevonden moet worden voor
een set activiteiten die gebruik maken van een continue, gedeelde grondstof (bij-
voorbeeld: elektrisch vermogen), waarvan voortdurend een beperkte hoeveelheid
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beschikbaar is. Voor elke activiteit moet een starttijd, voltooiingstijd en een con-
sumptieprofiel gevonden worden, zodat voldaan wordt aan de volgende eisen. Een
activiteit kan niet eerder starten dan de tijd waarop hij beschikbaar komt, en
moet voor zijn deadline klaar zijn. Dat wil zeggen dat de volledige grondstofbe-
hoefte van de activiteit voor de deadline voldaan is. Als een activiteit eenmaal
begonnen is, mag hij niet onderbroken worden. Het consumptieprofiel, de hoeveel-
heid grondstof die een activiteit op elk gegeven moment consumeert, mag tussen
de start- en voltooiingstijd fluctueren, zolang het maar binnen de grenzen blijft
die gedefinieerd worden door de onder- en bovengrens op de grondstofconsumptie
voor de activiteit. We introduceren een hybride aanpak, waarbij we simulated
annealing gebruiken om de zoekruimte van mogelijke eventvolgordes te verkennen
en een lineair programma om het optimale schema te vinden voor een gegeven
eventvolgorde. Een eventvolgorde omvat alle events (start- en voltooiingstijden)
in chronologische volgorde. We vergelijken onze hybride aanpak met een mixed-
integer linear programming (MILP) formulering. Daarbij zien we dat de kwaliteit
van oplossingen die we met onze hybride aanpak vinden voor kleine instanties over-
eenkomt met de kwaliteit van de oplossingen die uit de MILP formulering volgen.
Voor grotere instanties presteert de hybride aanpak beter, aangezien het in staat
is toegelaten oplossingen te vinden in relatief korte tijd. De MILP aanpak slaagt
daar niet in.

In Hoofdstuk 3 presenteren we een generalisatie van het CECSP uit het vorige
hoofdstuk: het General Continuous Energy-Constrained Scheduling Problem. We
breiden de hybride aanpak uit tot een oplossingsraamwerk voor deze klasse proble-
men. De basis van dit raamwerk is de decompositie van het probleem, die volgt uit
het eventgebaseerde model, in twee delen: 1) het bepalen van de eventvolgorde en
2) het vinden van de event tijden en consumptieprofielen. We breiden het eventge-
baseerde model uit met events met vaste tijden. Deze events kunnen onder andere
gebruikt worden voor het modelleren van stuksgewijs lineaire doelstellingsfuncties.
We laten zien hoe dit gebruikt kan worden om de beoordeling van kandidaatoplos-
singen te versnellen. Verder beargumenteren we de brede toepasbaarheid van het
raamwerk, en geven we een idee van de omvang van de klasse problemen waar het
op toegepast kan worden. We illustreren de effectiviteit van het raamwerk met de
toepassing op het CECSP met stapsgewijze kostenfuncties. Hierbij gebruiken we
het feit dat de kosten van een oplossing alleen afhangen van de eventvolgorde en
gebruiken we grenzen om op een efficiënte manier in te schatten of een oplossing
toegelaten is. De vergelijking met een MILP formulering toont de effectiviteit van
onze aanpak voor het vinden van oplossingen in relatief korte tijd.

Na de bespreking van deze generieke klasse van problemen, richten we ons op
specifieke voorbeelden van scheduling problemen in elektriciteitsnetwerken. Het
eerste voorbeeld, dat wordt besproken in Hoofdstuk 4, betreft het operationele
beheer van microgrids zonder aansluiting op het landelijke netwerk. Deze grids
zijn kleine, geïsoleerde netwerken met een beperkt aantal componenten. Elk van
deze componenten produceert elektriciteit, consumeert elektriciteit, of slaat elek-
triciteit op. Een microgrid kan autonoom opereren, zolang het in staat is om de
componenten zo in te zetten dat vraag en aanbod van elektrische energie conti-
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nue in balans zijn. We presenteren twee optimalisatie modellen voor het plannen
van de aansturing van diesel generatoren en batterijen. We gebruiken daarbij
voorspellingen van het verbruik en de opwek van de zonnepanelen. De eerste is
een deterministisch mixed-integer linear programming model dat een schema ge-
nereert op basis van de voorspelde waarden voor het verbruik en de opwek van
de zonnepanelen. Een deel van de capaciteit van de batterij wordt niet gebruikt
in de planning, en dient als buffer om afwijkingen van de voorspelling op te van-
gen. De tweede aanpak gebruikt een multi-stage stochastisch optimalisatie model
dat de onzekerheid expliciet modelleert door middel van een boom van scenario’s,
gebaseerd op de voorspelde waarden en afwijkingen. We hebben herplannings-
strategieën ontwikkeld om het aantal keer dat een nieuw schema gegenereerd moet
worden te minimaliseren. Beide modellen zijn toegepast op een casus in Nederland.
De herplanningsstrategieën blijken daarbij zeer effectief te zijn. Het multi-stage
stochastisch optimalisatie model lijdt onder de grote onzekerheid bij het voorspel-
len van verbruik en opwek in een klein systeem. De pragmatische aanpak van het
deterministische model laat daarentegen goede resultaten zien.

Tot slot bekijken we in Hoofdstuk 5 het plannen van vraag in een netwerk van
parkeerplaatsen voor elektrische voertuigen (EVs). Deze parkeerplaatsen zijn on-
derling verbonden door kabels met een beperkte capaciteit, en delen een (beperkte)
aansluiting op het elektriciteitsnetwerk. Sommige parkeerplaatsen zijn overdekt,
waarbij zonnepanelen op het dak zijn geïnstalleerd die elektriciteit terugleveren.
EVs arriveren bij de parkeerplaatsen volgens een bekende verdeling. Wanneer een
EV aankomt wordt bekend wat zijn gewenste vertrektijd, laadbehoefte en sprei-
ding van toegelaten laadsnelheden zijn. Het vertrek van een EV wordt vertraagd
als de laadbehoefte niet volledig voldaan is voor zijn gewenste vertrektijd. Het op-
laden van de EVs moet zo gebeuren dat de gemiddelde vertraging geminimaliseerd
wordt. We presenteren een nieuwe aanpak, gebaseerd op een online variant van
klassieke schedule generation schemes. We evalueren een seriële en een parallelle
implementatie van een single-pass variant van deze aanpak, evenals een seriële en
een parallelle implementatie van een variant die een destroy-and-repair heuristiek
gebruikt om het schema verder te verbeteren. In alle gevallen selecteren we de
best presterende combinatie van parameters voor verdere evaluatie. We vergelij-
ken de uitkomsten van de verschillende varianten met het scenario waarbij geen
enkele aansturing plaatsvindt, waarmee we de voordelen van het efficiënt plannen
van het opladen laten zien. Daarnaast beargumenteren we dat het meenemen van
bepaalde aspecten van het netwerk van belang is en dat het gebruik van flexibele
laadsnelheden voordelen biedt.
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