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Climate-forced Hg-remobilization associated
with fernmutagenesis in the aftermathof the
end-Triassic extinction

Remco Bos 1 , Wang Zheng 2 , Sofie Lindström 3, Hamed Sanei 4,
Irene Waajen 1, Isabel M. Fendley 5,6, Tamsin A. Mather 5, Yang Wang2,
Jan Rohovec7, Tomáš Navrátil 7, Appy Sluijs 1 & Bas van de Schootbrugge 1

The long-term effects of the Central Atlantic Magmatic Province, a large
igneous province connected to the end-Triassic mass-extinction (201.5Ma),
remain largely elusive. Here, we document the persistence of volcanic-induced
mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years
after the extinction event. In sediments recovered in Germany (Schandelah-1
core), we record not only high abundances of malformed fern spores at the
Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian,
indicating repeated vegetation disturbance and stress that was eccentricity-
forced. Crucially, these abundances correspond to increases in sedimentary
Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic
source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial
source for the early Jurassic peaks. We conclude that volcanically injected Hg
across the extinction was repeatedly remobilized from coastal wetlands and
hinterland areas during eccentricity-forced phases of severe hydrological
upheaval and erosion, focusing Hg-pollution in the Central European Basin.

The emplacement of theCentral AtlanticMagmatic Province (CAMP) is
often causally linked to the end-Triassic mass extinction (ETME,
~201.3Ma)1–4. Several lines of evidence indicate phased and prolonged
volcanism that emitted vast amounts of greenhouse gasses and pol-
lutants to the atmosphere across the Triassic–Jurassic boundary
(TJB)5–7. Global warming of 3–6 °C8 due to a strong rise in atmospheric
pCO2

9 is commonly seen as the main driver of the ETME10. Two nega-
tive excursions in the stable carbon isotopic composition (δ13C) of
organic carbon due to a release of isotopically light carbon into the
ocean–atmosphere system coincide with phases of increased extinc-
tion rates in the marine and terrestrial realms11,12. In addition to global
warming, a combination of acid rain, wildfires, increased seasonality,

and weathering rates are thought to have contributed to terrestrial
extinction13–15. Ocean anoxia and severe shallow-shelf euxinia were
likely a direct consequence of warming (decreased oxygen solubility)
and increased nutrient/weathering flux (harmful algal blooms), con-
tributing further to marine extinction rates16–20.

A distinct feature that has been recorded for both the end-
Permian and end-Triassic extinctions is the high abundance of mal-
formed pollen and spores2,21. This has been interpreted to reflect vol-
canic halogen emissions causing ozone depletion and heat stress in
vegetation22–24. More recently, sedimentarymercury (Hg) anomalies in
TJB sections in Sweden and Denmark were linked to plant extinction
and the profusion of malformed fern spores2. As one of themost toxic
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metals on Earth, Hg can induce DNA damage through oxidative stress
and cause stomatal closure and visible injuries such as lesions25,26.
Furthermore, Hg-induced mutagenic changes in plant DNA will be
transferred to the reproductive cells (e.g., spores) when DNA repair
mechanisms become dysfunctional2,27. Coeval plant extinction and
mutagenesis could, therefore, be an expression of environmental Hg-
toxicity. Sedimentary Hg-enrichments have been used to trace volca-
nic activity in deep time and, in somecases, support a direct cause-and-
effect relationship between volcanism and extinction1,2,28–31. TJB sec-
tions across northwestern (NW) Europe (Fig. 1) have been extensively
studied for Hg concentrations and additional records in China32,
Nevada30, Greenland, and Argentina28 indicate the wide reach of CAMP
emissions.

Volcanism is a source of gaseous Hg to the atmosphere, and
large igneous province (LIP) volcanic eruptions are hypothesized to
release substantial amounts of Hg to the global environment33.
Furthermore, Hg is an ideal recorder for relatively short (~1 Myr
duration) geological events, such as LIP eruptions that can be traced
globally28,34–36. The low vapor pressure of elemental Hg0 makes it
susceptible to volatilization, and its long atmospheric residence time
(0.5–2 years) provides the potential to be distributed globally in its
gaseous phase37. Once oxidized, it becomes reactive gaseous mer-
cury (Hg2+) and can become bound to fine particles (Hgp). Both Hg2+

and Hgp are deposited via rainfall and/or particle fallout38. The spe-
ciation of Hg in terrestrial and marine reservoirs strongly affects its
mobility and toxicity, and, therefore, its effects on the biosphere.
Stable solid Hg forms include S-bound complexes (HgS-minerals and
Hg–S complexes in sediments) and the highly toxic and bioaccu-
mulating methylmercury (MeHg). MeHg is produced from Hg2+

mainly through sulfate- and/or iron-reducing bacteria and then
enters marine and terrestrial foodwebs39. In aqueous environments,
Hg exists as dissolved Hg0, dissolved MeHg and ligand-bound spe-
cies (central-bound molecule), which can be reduced and mobilized
to gaseous Hg0 by microbial and photochemical processes40. Sto-
matal gaseous uptake of Hg0 is the main pathway into vegetation41

with this entry route also plausibly promoting mutagenesis in the

plant’s seeds/spores due to its proximity to the formation of the
plant’s reproductive organs and its circumvention of the root-
protection systems26. Therefore, tracingHg-cycling across the ETME,
particularly Hg-degassing, can shed light on LIP-induced Hg-pollu-
tion and its potential long-term effects on the terrestrial vegetation.
Previous studies have reported changes in Hg-cycling during CAMP
phases31,32, however, the long-term consequences of volcanically-
degassed Hg in the environment following the cessation of LIP
eruptions remain elusive.

Shifts in Hg sourcing, pathways, and mobilization can be traced
using Hg-stable isotope signatures32. Hg-isotopic assessment through
mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg)
fractionation shows a range of environmental interactions42 (see the
“Methods” section for a detailed description). MDF is found in nearly
all kinetically controlled reactions, with resulting products having
depleted δ202Hg values while the remaining reactant pool retains
heavier isotopes. In the terrestrial environment, stomatal uptake and
storage of atmospheric Hg0 in foliage results in strong negative MDF,
causing significantly negative δ202Hg in the terrestrial reservoir relative
to the atmospheric reservoir41. Therefore, MDF can reflect changes in
Hg-absorption of the terrestrial biosphere in coastal and shallow
marine sediments. Photochemical reactions (e.g., photo-reduction and
photo-demethylation) of bound-Hg produce positiveMDF shifts in the
retained fraction42. In contrast, MIF is often insignificant in biotic and
most abiotic reactions. Instead, photochemical reactions play a key
role inMIF variability of Hg in the environment42. Consequently, MIF is
less prone to post-depositional processes in sediments and is con-
sidered a good tracer for Hg sources/contamination pathways42. MIF
has previously been used to distinguish between pathways involved in
Hg-enrichment of sediment across several LIP events30–32. VolcanicMIF
is assumed to be near-zero (Δ199Hg = −0.1‰ to +0.1‰) but could
develop positive values through atmospheric redox transformations
during the dispersal of volcanic Hg33. Terrestrial Hg (i.e., in soils and
vegetation) typically exhibits highly negative MIF, which is attributed
to a photochemical reduction (loss of Hg) in foliage41,43, whereby
subsequent litterfall carries very low MIF values (Δ199Hg = −0.6‰ to
−0.2‰)42. Depending on the type of Hg-bound and environment,
photochemical reduction can produce both negative and positive
shifts in MIF. However, degradation and photochemical reduction of
Hg stored in terrestrial soil organics and bedrock causes mainly posi-
tive shifts inMIF in the retaining fraction and indicates Hg-degassing42,
potentially harmful to vegetation.

Here, we present combined bulk Hg-concentrations, Hg-stable
isotope records, and fern spore abundance and malformations
obtained from shallowmarine sediments from the Lower Saxony Basin
(Schandelah-1 core) in Germany (Fig. 1). The Schandelah-1 core pro-
vides a unique coastal margin archive of the late Rhaetian extinction
(~201.5Ma) to the early Sinemurian recovery (~196Ma)13. Malforma-
tions in spores and pollen have been previously used to demonstrate
stress and mutagenesis associated with major mass-extinction
events2,21. Here, we quantify various types of trilete fern spores exhi-
biting patterns of abnormal development (i.e., teratology). Previously,
the classification of spore malformations attempted to distinguish
mutagenic severity based onmorphological characteristics (Fig. 2 and
supplementary Fig. 1)2. We adopt this approach to pinpoint intervals
that show signs of elevated rates ofmutagenesis. In order to assess the
potential link between Hg-enrichments and/or volcanism to fern
mutagenesis, we reconstruct Hg-cycling across the ETME and Early
Jurassic to uncover the mobility and toxicity of environmental Hg. We
hypothesize that increased amounts of gaseous forms of Hg in the
environment would affect fern communities and produce malformed
spores. Assessing changes in Hg-isotope compositions through the
combineduse ofMDFandMIF records allowsus todetermine themain
processes and/or sources that governed Triassic and Jurassic Hg-
dynamics44.
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Results
Stratigraphic framework and environmental setting
The stratigraphic framework for the Schandelah-1 core in this paper is
based on ammonite45 and palynomorph13 biostratigraphy and cross-
correlated with radiometric dates using stable carbon isotope
stratigraphy46. Two distinctive negative organic C-isotope excursions
(CIE; Fig. 3a andSupplementary Fig. 4) represent theMarshi andwidely
recorded Spelae CIEs (correlated with the Precursor and Initial
excursions at the St. Audrie’s Bay section (UK)), interpreted to reflect
the volcanic injection of 13C-depleted carbon in relation to the exo-
genic pool5,46. Temporal overlap of CAMP activity with our records
from Schandelah-1 is based on the position of negative CIEs (i.e.,
Marshi and Spelae) and palynofloral diversity disturbances13,45. This is
further linked to palynological records that have been correlated to
U/Pb-dated ash beds and from several global locations, indicating a
range of 450–150 kyr between the Marshi and Spelae CIEs46–48. In NW
Europe, theonset of the ETMEcoincideswith the lastoccurrenceof the
ammonite species Choristoceras marshi49, which is closely associated
with theMarshi CIE and amarine transgression46. This interval is known
as theContorta Beds in the Lower Saxony Basin. TheContorta Beds are
succeeded by the Triletes Beds, which coincides with the maximum
phase of marine extinction (Fig. 3)50,51. The Triletes Beds stand-out for
their high abundance of fern spores (fern-spike interval) and a
regressive event associated with relatively high organic δ13C values2,13.
The onset of the Spelae CIE is also linked with a transgression46 and is
marked by increased sedimentary total organic carbon (TOC) content
(Fig. 3b) and increased abundances in aquatic palynomorphs in the
Schandelah-1 core13,45. The remainder of the Spelae CIE shows a slight
increase in δ13CTOC values and widely coincides with a depauperate
benthic marine interval30. The Lower Jurassic Hettangian (Angula-
tenton Fm) succession of Schandelah-1 roughly encompasses ~1.3
million years based on orbitally-paced fluctuations in δ13CTOC

(Fig. 3a)13. This interval is dominated by shale-sandstone heterolithic
facies. Repeated positive CIEs (He1–He4) in intervals of low and stable
TOC values (<0.5 wt%) correlate with higher abundances of trilete
spore morphotypes indicating intervals of increased palynofloral
diversity disturbances13. Based on time series analyses, it has been
shown that the long-eccentricity cycle (405 kyr) strongly influenced
the climate, carbon cycle, and vegetation during the Hettangian
(Fig. 3)13. The Hettangian–Sinemurian transition corresponds to a shift
towards organic-rich claystone with overall higher TOC levels. This
marked shift, combined with higher relative abundances of conifer-

derived wind-driven bisaccate pollen, suggests a more distal position
to the shore and a deepening of the basin. No significant biodiversity
disturbances have been recorded in the Sinemurian palynoflora, indi-
cating further stabilization of terrestrial vegetation and the regional
climate, similar to pre-crisis conditions13.

Hg trends and anomalies
To correct for variable Hg-sequesteration potential in the rock
record, bulk Hg-concentrations are normalized for TOC. This is a
well-known method of examining sedimentary Hg-enrichments in
various marine depositional settings52. Although sulfur-rich and
clay minerals can potentially host Hg, this is relatively uncommon,
and, therefore, TOC corrections are most frequently employed52.
The correlation between Hg and TOC for our samples is considered
in Supplementary Fig. 2, and the details are discussed below. A
total of five anomalous intervals of Hg/TOC are recognized
within the studied section of the Schandelah-1 core (Fig. 3). Here, we
identify increases of more than 1 standard deviation (1σ = 64.3 parts
per billion per weight percent [ppb/wt%]) above median value
(48.6 ppb/wt%) as anomalous. The Hg/TOC levels for the Marshi CIE,
which showed the highest concentrations of bulk Hg (125–250 ppb),
are substantially lower and fall around the median value, while the
lowest measured Hg values of the Triletes Beds remain low in both
records (bulk Hg = 0–10 ppb; Hg/TOC = 10–60ppb/wt%). In contrast,
the Hg-anomaly at the Spelae CIE is still prominent in the Hg/TOC
record, with values ranging up to ~310 ppb/wt% (hereafter referred to
as the Spelae Hg-anomaly). A strong positive linear relation exists
between Hg and TOC for the Rhaetian and lowermost Hettangian
strata (R2 = 0.61; Supplementary Fig. 2), with the Spelae Hg-anomaly
showing a notable offset. This regression is somewhat forced by two
data points from the Marshi CIE, leaving a gap of data between 1.5%
and 3.0% TOC. In contrast, in the Hettangian interval (R2 = 0.01,
Supplementary Fig. 2), there is no correlation. This is expressed by
more pronounced Hg/TOC anomalies, particularly in the upper part
of theHettangian, where two increases up to ~330 ppb/wt%, similar in
magnitude to the Spelae Hg-anomaly, are present. Overall, the Het-
tangian Hg/TOC levels plot along a median value of 48.6 ppb/wt%,
while Hettangian Hg-anomalies indicate sharp increases followed
by sudden decreases, similar to bulk Hg-concentrations. Another
strong positive correlation between Hg and TOC is found for the
Sinemurian section (R2 = 0.49; Supplementary Fig. 2). The Sinemur-
ian Hg/TOC record shows stable and low levels below median value
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(<48.6 ppb/wt%) and a spike (74.2 ppb) observed in the bulk Hg
record. In addition, we calculated an enrichment factor for the Hg/
TOC normalized record relative to a baseline value (Hg/TOC median
value = 48.6 ppb/wt%) to identify anomalous intervals (Fig. 3e). We
consider an enrichment factor of 2 or greater to be anomalous, which
is consistent with the standard deviation assessment of the Hg/TOC
record.

Spore malformations
Malformations in trilete fern spores are observed throughout the
studied section except for the Sinemurian interval (Fig. 4). These
trilete, smooth triangular spores derive from several fern and tree-
fern families, including the Dipteridaceae, Dicksoniaceae, and
Matoniaceae2 (Fig. 2). Abundances in spore malformations initially
increase directly following the Marshi CIE to ~12% of the total spore
assemblage and directly diminish towards the lowest observed
fraction (<3%) in the Triletes Beds (Fig. 4b). The highest fraction of
spore malformations is found across the Triassic-Jurassic transition
and is contemporaneous with the Spelae Hg-anomaly, where mal-
formed specimens comprise up to 30% of the counted spores.

Trends in malformed spore abundances follow a similar sharp
increase and decrease as seen for the Spelae CIE. The most common
malformation is Type-I (dwarfed/unexpanded; see Fig. 2) and ismost
likely related to abortion and premature shedding of non-viable
spores2. Similar to records from the Danish Basin2, the severity of the
malformations increases and culminates during the Spelae Hg-
anomaly with more frequent occurrences of Types III, IV, and V.
Following the extinction interval, Hettangian malformed spore
abundances show four distinct peaks coinciding with increased Hg-
concentrations and positive CIEs. These reoccurring increases in
spore malformations typically show average abundances of 10.2%
over a background signal that averages at 3.5%, with the highest
fraction observed in the upper Hettangian (16% to 18%). Type-I and
Type-II (thickened/deformed labra) are most abundant in the Het-
tangian strata with more frequent occurrences of Type-III, IV and V
malformation within intervals containing a high abundance of spore
malformations (Supplementary Data 1). Spore malformation abun-
dances decrease in the lowermost Sinemurian to 0% and have not
been detected in the upper interval of the studied section. Spore
malformations typically show no features indicating reworking (i.e.,
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centrations, d mercury over total organic carbon correction (Hg/TOC), and e Hg-
enrichment factor for the Schandelah-1 core spanning the upper Rhaetian to lower
Sinemurian. The lithostratigraphic column is present alongside key biostrati-
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based on the position of the Marshi and Spelae CIEs (red bars)2,11,46.
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darkened/broken wall material), and therefore, we are confident this
record represents an in situ signal (see the “Methods” section for
palynological counting strategy).

Hg-isotopes
Hg-isotopic records from Schandelah-1 are presented using the
Δ199Hg and δ202Hg notation, representing mass-independent (MIF)
and mass-dependent fractionation (MDF), respectively (Fig. 4d and
e). Δ199Hg shows highly negative values for the Rhaetian interval
(−0.50‰ to −0.31‰) with an average of –0.38‰. Following a sharp
positive excursion (−0.39‰ to −0.13‰) at the Spelae CIE, average
Δ199Hg values shift to –0.18‰ for the Hettangian section. Further-
more, Δ199Hg values in the Hettangian section show repetitive posi-
tive shifts from an average baseline of −0.22‰ up to values of ~
−0.17‰, coinciding with anomalies in Hg concentrations. The main
feature in the Sinemurian seems to be a broad negative shift in
Δ199Hg (average value = −0.23‰).

Rhaetian δ202Hg values average at −1.55‰ with relatively low
values in the pre-extinction interval (−1.99‰ to −1.61‰). Higher values
(−1.60‰ to −1.01‰) characterize the Triletes Beds, which directly
underly a negative excursion from −1.01‰ to −1.73‰ at the Spelae CIE/
anomaly. Hettangian δ202Hg varies (−1.79‰ to −0.84‰) in tandemwith
Δ199Hg, with four positive shifts coinciding with anomalies in Hg con-
centrations, except for one outlier (246.5 mbs), which displays oppo-
site excursions for MDF and MIF.

Discussion
In the Schandelah-1 record, the abundance of malformations of fern
spores across the TJB varies in concert with the Spelae CIE and sedi-
mentaryHg-enrichments in the Schandelah-1 record (Fig. 4). The spore
malformation types and abundances of the Schandelah-1 record are
strikingly similar to the Danish Basin2, suggesting a synchronous
widespreadmutagenic event at the TJB with a single underlying cause.
Multiplemechanisms have been proposed to explainmalformations in
pollen and spores associated with the emplacement of large igneous
provinces andmass-extinctions.Ozone layer depletion due to volcanic
halocarbon emissions may have led to increased UV-B radiation and
has been previously linked to malformations in gymnosperm pollen
and permanent lycopsid tetrads across the Permian-Triassic
boundary21–23. Other explanations include rising global temperature
due to increased greenhouse gas emissions causing heat-stress, which
can induce polyploidy, abnormal meiosis, and cytokinesis in extant
angiosperm pollen24. Although increased UV-B radiation and heat-
stress could have played a contributing role, these scenarios fall short
of explaining the prolonged and repeated mutagenesis in fern com-
munities as seen during the Hettangian of the Schandelah-1 core after
major CAMP activity had ceased (Fig. 4). U/Pb dates of CAMP basalts
indicate two phases of pulsed flood volcanism that ended following
the Spelae CIE47,53, although with a few smaller outflows in the Hook
Mountain Group from Morocco and New Jersey known to be later1.
Only minor sill intrusions of limited size are coeval with the Planorbis
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zone (early Hettangian)1, although erosion might have reduced the
volume. Therefore, the effect on ozone layer degradation was also
likely limited, eliminating UV-B radiation asmulti-million-year stressor.
In contrast, Hg is continuously present in the Earth’s crust and can be
mobilized through gaseous volatilization, transported in particulates
(rivers/runoff), and organic matter degradation that involves several
surface processes, such as deforestation, weathering, and wildfires54.
The strong correlation between Hg-concentrations and elevated mal-
formed spore abundances throughout the studied section (Supple-
mentary Fig. 3) suggests that the accumulation of mobilized mercury
in terrestrial environments played a key role.

The enrichment of Hg in sediments is governed by several pro-
cesses that drive burial and preservation on geological timescales.
Most Hg is adsorbed to organicmatter (OM) and, to a lesser degree, on
S-rich minerals, a process that takes place mostly in aquatic systems55.
The size of the carbon sink normally dictates the adsorption potential
and concentrationofHg in sediments30. This is clearly observed for the

Marshi CIE, where the highest Hg-concentrations are correlated with
high TOC levels. In NW Europe this event is linked to widespread
marine transgression13 driving increased carbon burial. A decoupling
of Hg and TOC is observed at the Spelae Hg-anomaly (Supplementary
Fig. 2), suggesting carbon burial did not play a significant role in Hg-
enrichment. The pathway of volcanic Hg-enrichment in marine sedi-
ments is largely facilitated through atmospheric deposition of oxi-
dized Hg2+ and subsequent scavenging by organic matter (OM). In
addition, other minerals such as sulfides and clays can be hosts of
Hg36,56. For instance, during photic zone euxinia (PZE) in the upper
water column, the amount of free H2S can result in in situ pyrite
framboid formation. These conditions favor Hg-mitigation through
S-drawdown in the case of excess Hg, overriding the OM-drawdown34.
For the Schandelah-1 record, a short-livedpeak in TOCand the influxof
aquatic palynomorphs13 at the onset of the Spelae CIE is indicative of a
transgression. Molybdenum isotope data from Schandelah-1 reveal
localized euxinic conditions at this level16. Therefore, the initial rise in
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bulk Hg-concentrations at the Spelae CIE (318.5–317.7 mbs) is likely
coupled to increased sulfur-binding and burial, while the subsequent
decrease inTOC and increase inHg/TOC reflects excess burial of, likely
volcanogenic, Hg.

Although CAMP-eruptions spanned at least 800 kyr, many global
sites only record a few prominent Hg-anomalies (Supplementary
Fig. 4), most notably at the Spelae CIE2,28,30,31,57. Some con-
temporaneous T–J boundary sections record a notable increase in bulk
sedimentaryHg at theMarshi CIE (Supplementary Fig. 4), similar to the
Schandelah-1 record. However, this interval is often not expressed by a
Hg/TOC anomaly. There are a few exceptions, however, suggesting a
potential volcanic loading of atmospheric Hg at the start of the ETME.
Mediation of enriched environmentalHg through carbonburial and/or
sulfur adsorption could be responsible for the variable expression
from site to site. Furthermore, the generation and emission of volatiles
through volcanic intrusions is dependent on the composition of
intruded sedimentary rock3. It has been suggested that earlier CAMP
phases associated with the Marshi CIE produced more halocarbons
from carbonate and evaporite-rich deposits in the Amazon Basin53.
While the CAMP phase associated with the Spelae CIE potentially
intruded organic-rich sediments that had a higher potential to gen-
erate gaseous Hg3,53. Therefore, the magnitude of a sedimentary Hg-
anomaly is dependent on a combination of burial, preservation, and
generation of Hg in the environment.

Similar to the Spelae Hg-anomaly, the four Hettangian intervals
with Hg-anomalies show a decoupling of Hg to TOC. The regular
reoccurring nature of these Hg-enrichments and the assumed absence
of eruptive CAMP activity (discussed above) suggest they are unlikely
to have been caused by volcanism. Instead, terrestrial reservoirs
(bedrock, soil, and vegetation) need to be considered for their ability
to accumulate Hg, which can be intermittently delivered to shallow
marine depositional environments. In addition, the effects of redox
conditions and early diagenesis need to be taken into account58. We
utilize the Hydrogen Index (HI) and Oxygen Index (OI) of organic
matter13 to assess the influence of (post-depositional) oxidation on our
Hettangian Hg record. Hg/TOC shows no significant correlation with
either HI or OI (Supplementary Fig. 2), although three samples with
exceptionally high Hg/TOC values (>200 ppb/wt%) exhibit lower HI in
the upper Hettangian red claystone intervals. This could indicate the
presence of paleo-redox fronts in the sediment that are characterized
by lower HI and higher OI in open marine systems, expressing them-
selves through sharp increases of Hg/TOC58. However, the organic
matter from the Schandelah-1 section is thermally immature and
dominated by terrestrial input13, where intervals showing elevated Hg/
TOC coincide with pulses of increased weathering, as evident from
reworked palynomorphs13. Malformed spore specimens, however,
show no features of being reworked. Overall, this indicates that
particle-bound Hg of the Hettangian anomalies was delivered via
increased transport of terrestrial sediments (clays) and/or terrestrial
organic material (high O/C and low H/C).

Large-scale volcanic activity increases the global Hg budget,
resulting inHg accumulating in terrestrial environments32,59. Terrestrial
reservoirs, such as plants and soils, can accumulate Hg and act as a
source to shallow marine/lacustrine environments when Hg is
remobilized35,36,59. The residence time of Hg determines the redeposi-
tion potential, which is closely tied to soil organics in terrestrial
environments. About 50% of Hg deposited on the ocean’s surface is re-
emitted to the atmosphere, while only a small fraction (10%) of Hg
deposited in soils is recycled60. This results in a residence time of Hg in
soils of about 1000 years with a total residence time of 3000 years in
the atmospheric–ocean–terrestrial system60. However, bedrock
reservoirs, such as coal beds and mineral sources, have accumulated
Hgover longer geological timescales that canbe similarlymobilized by
erosion and runoff61. Part of this terrestrial Hg finds its way to the
marine realm via rivers, which may contribute up to 10% of the total

oceanic Hg input62. Thus, the terrestrial Hg flux to shallow marine
basins is significantly larger than the total oceanic input. However,
deriving terrestrial Hg-concentrations frommarine sediments, such as
from the Schandelah-1 record, remains challenging. Periods of
increased runoff and erosion would ultimately displace large quan-
tities of terrestrially stored Hg from vast catchment areas and con-
centrate it in low-lying basins and deltaic/coastal fronts, such as the
Central European Basin (CEB; Fig. 1), and ultimately cause elevated
marine sedimentary Hg-concentrations in those areas.

In the Rhaetian interval of Schandelah-1, sources of Hg are con-
sistent with plant material where MIF values show highly negative
variability (Δ199Hg, −0.50‰ to −0.30‰). Mass-dependent fraction
shows considerably more variation (δ202Hg, −2.00‰ to −1.00‰) dur-
ing the Rhaetian (Fig. 5b). Positive shifts in MDF in the Triletes Beds
preceding the Spelae CIEwere likely driven by the reduction ofHg2+ via
microbial or abiotic processes42. In addition, the low Hg concentra-
tions are indicative of the absence of Hg-input. The volcanic origin of
the Spelae Hg-anomaly in the Schandelah-1 record is supported by the
sharp positive shift in MIF co-occurring with a negative shift in δ13CTOC

(Fig. 4). An increase in atmospheric dispersal of volcanic Hg0 (assumed
to be near-zero MIF) fits the observed pattern, causing the Δ199Hg
values of in those beds enriched in Hg to shift towards 0‰ (Fig. 5a,
black dashed arrow). Additionally, magmatic sill intrusions into coal-
beds provide volcanism with another potential Hg-source. Hg-isotope
studies of coal-fired plant emissions demonstrate slightly positive to
slightly negative MIF and substantial negative MDF63, although this
varies slightly depending on the particular coal deposit. Volcanic Hg-
enrichment at the Spelae Hg-anomaly displays a notable shift towards
more negative MDF, potentially indicative of subsurface coal-burning
and/or plant influence (Fig. 5b). A similar pattern was noted in the St.
Audrie’s Bay section (Fig. 1), showing a positive shift in MIF and a
negative shift in MDF at the Spelae (initial) CIE31.

In the Hettangian interval of Schandelah-1, higher MIF values
(Fig. 4d)mark a shift in Hg-sourcing and/or a change in photochemical
reduction. The ratio of Δ199Hg/Δ201Hg depicts a slope of ~1.00 (Fig. 5c)
that indicates MIF variability is consistent with the photochemical
reduction of Hg2+, deriving from rainfall, foliage, sediments, and
coals42. Both Δ199Hg and δ202Hg values exhibit repeated positive shifts
in tandem with Hg-anomalies, which suggest that increased input of
Hg was either derived from a mixture of multiple terrestrial sources
and/or isotopic alteration during transport44. For instance,modern soil
reservoirs typically show higher MIF (Δ199Hg = −0.2‰ to +0.1‰) and
likely represent a contribution of both leaf foliage (litter fall, highly
negative MIF) and mineral/bedrock sources (near-zero MIF)41,54. Mod-
ern foliage also tends to show lower δ202Hg values than those of
mineral soils43,64. Other studies suggest significant shifts in MIF can be
attributed to a higher proportion of reworking from abundant Triassic
coal beds57,61. Fossilized terrestrial organic matter derived from coal
deposits shows lowMIF (averageΔ199Hg = ~−0.2‰)54. This suggests that
the terrestrial Hg-isotope signature in the marine system is dependent
on the composition of the transported material. While during the
Rhaetian, the MIF composition of Schandelah-1 represents a vegeta-
tion endmember (low Hg/TOC and highly negative MIF), during the
Hettangian MIF could represent a mixture of the plant (litterfall) and
soil/bedrock (mineral) derived Hg.

During the Hettangian, loss of vegetation cover, as evidenced by
decreased abundances of conifer-type vegetation13, would increase the
fraction of Hg-mineral sources in the shallow marine environment.
Furthermore, elevated abundances of reworked Upper Triassic paly-
nomorphs (up to 5% of total assemblage) suggest periodic increases in
weathering13, indicating the redeposition of older coal/bedrock-
derived Hg. This pattern is also evident in sections in China that
straddle the Triassic-Jurassic boundary, confirming a prominent role
for terrestrial Hg during the early Hettangian through increased
weathering32. Previous examinations of the Schandelah-1 core have
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revealed simultaneous increases in the S/P ratio (Σspores/(Σpollen +
Σspores)) and relative abundance of microcharcoal particles13, which
coincide with intervals of elevated spore malformations (Fig. 4).
Changes in wildfire frequency and weathering intensity/runoff due to
major swings in the hydrological regime were modulated by the long-
eccentricity cycle (405 kyr) and were likely exacerbated by extreme
greenhouse conditions13. During eccentricity maxima, shifts to open
landscapes resulted in large inputs of terrestrial material and soil/
bedrock-stored Hg, driving positive shifts in both MIF and MDF. In
addition, emissions from wildfires could have played a contributing
role in the mobilization and distribution of gaseous Hg. The effect of
wildfire Hg-emissions on MIF variability has been demonstrated to be
non-significant65 and, therefore, did not influence the overall signature.

However, open andflooded landscapeswould provide the ideal setting
for terrestrial (soil, bedrock, and vegetation)Hg to bephotochemically
reduced, resulting in shifts to gaseous Hg0 species. Photochemical
reduction of terrestrial Hg, which yields higher MIF (higher Δ199Hg
values), shows a correlation with shading from canopy66. Sediments
from salt marshes also show highly positive MIF, which has been
attributed to in situ photochemical reduction67. Hence, shifts towards
open landscapes through the loss of high canopy vegetation affect the
mobility of Hg, not only by making soils and the underlying bedrock
more susceptible to erosion but also by increasing exposure to sun-
light, causing volatilization/degassing of terrestrial Hg.

The Spelae Hg-anomaly interval of Schandelah-1 shows evidence
of increased extinction rates and increased stress/mutagenesis in fern
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communities (i.e., spore malformations). Hg-enrichments driven by
volcanic emissions coincide with the Spelae CIE reflecting gaseous Hg
being distributed atmospherically as noted by a positive shift in MIF
(Fig. 6a). This suggests Hg-toxicity is dependent not only on the con-
centration but also on the speciation (i.e., gaseous phase). Although
other toxic metals are emitted from volcanic events and could
potentially impose plant mutagenesis, the volatile nature of Hg results
in uptake in plants via stomata41 and increases its re-deposition
potential60. The similarities in morphological traits of malformed
spores found throughout the Schandelah-1 section suggest a single
underlying cause. This is in linewith gaseousHg as themainmutagenic
stressor in fern communities across the ETME and Early Jurassic
Hettangian.

During the Hettangian stage, wildfire emissions and photo-
chemical reduction of terrestrially sourced Hg led to periodical
increases in volatilization of Hg0. This could have induced muta-
genesis in local fern communities comparable to volcanic atmo-
spheric deposition at the TJB (Fig. 5d). Coastal mires and hinterland
areas acted as catchments and storage for Hg during times of
increased terrestrial biomass production (Fig. 6b). Temperate
conditions during long-eccentricity (405 kyr) minima promoted
high canopy mire vegetation and Hg-sequestering. Increasing sea-
sonal (precessional) contrast during long-eccentricity maxima
caused a collapse of vegetation cover and promoted the pro-
liferation of pioneering fern taxa that were subjected to Hg-
mobilization and degassing. Transport of terrestrial organic and
eroded bedrock from vast catchment areas likely resulted in higher
concentrations of Hg in low-lying coastal margins and shallow
basins (Fig. 6b). Furthermore, a collapse of terrestrial and marine
biomass due to the ETME likely impeded the re-absorption of
excess Hg68 and caused long-term consequences. The mutagenic
potency of Hg on vegetation would be significantly magnified if
shifted to its gaseous form (Hg0), causing stomatal uptake and
circumventing root-protective systems25–27,41. Palynofloral diversity
disturbances appear to have ceased during the early Sinemurian
when a conifer-dominated biome stabilized, and sea level rise led to
enhanced carbon burial13. Despite the low Hg-record resolution of
the Sinemurian in the Schandelah-1 record, enhanced carbon burial
and widespread forest biomesmay have led to themediation of Hg-
pollution and long-term sequestering in soils and marine
sediments.

Based on quantification of spore teratology and Hg concentra-
tions, as well as Hg-isotope records, we establish a link between fern
mutagenesis and Hg-pollution due to CAMP volcanism and sub-
sequent mobilization from soil/bedrock reservoirs during times with-
out large-scale volcanic eruptions. Hg-mobilization continued during
the Hettangian under extreme greenhouse climate conditions. Evi-
dence suggests that Hg was mainly sourced through continental ero-
sion during the Hettangian based on positive shifts in δ202Hg and
Δ199Hg (MDF andMIF). In contrast, Hg at the Triassic-Jurassic boundary
was volcanically sourced consistent with other studies. Climate-driven
collapse of vegetation through eccentricity-paced increases in wildfire
activity and weathering impeded the re-absorption of Hg, which con-
tinued to disturb and stress Hettangian coastal ecosystems. The strong
correlation of spore malformations with high MIF/MDF values further
indicates that the photo-reduction of terrestrial Hg was periodically
enhanced during the Hettangian in open coastal/wetland areas due to
the loss of canopy cover. Our results further indicate that gaseous Hg
played a significant role in mobility and toxicity, which directly
impacted fern communities. Hg pollution may have been especially
severe in coastal regions depending on the ability of such areas to
absorb and store Hg for longer periods. Although environmental Hg-
dynamics over hundreds of thousands of years are still unclear, our
results point to the long-term implications of large-scale volcanism on
terrestrial vegetation following major extinction.

Methods
Palynology and spore teratology
A total of 91 samples were analyzed for spore teratology and were
prepared and processed using the palynological methods at Utrecht
University. Approximately 5–7 g of oven-dried material was crushed
and processed once with 10% hydrochloric acid (HCl) and twice with
38% hydrofluoric acid (HF). Residual material was sieved using a 10μm
nylon-mesh, homogenized andmounted on glass slides using glycerin
gel. A smaller number of slides were permanently mounted using a
combination of 5% polyvinyl alcohol (PVA) solution and glass glue. To
assess the relative abundance of spore malformations, all normal and
malformed spores were counted until a total of 300 palynomorphs
were recognized using a Leica DM 2500 transmitted light microscope
(×40 magnification).

Specimens exhibiting clear malformed characteristics were
counted asmalformed. Folded, broken, or obscured specimens were
omitted from malformed categories and instead were counted as
normal. This could result in the obtained fraction of relative aber-
rancy being an underestimation in some samples. In addition, only a
few malformed spore specimens were found that exhibited
reworked features such as darkened and broken wall material and
are similarly omitted form the malformation counts. We completely
focused on a single sporomorph group known as LTT-spores (lae-
vigate, triangular, trilete spores)2, which is known to have been
produced by ferns of the Dipteridaceae, Dicksoniaceae, or
Matoniaceae69 during the Late Triassic and Early Jurassic in NW
Europe2. These fern families can be assigned to several different
spore taxa, most notably to the genera Concavisporites and Deltoi-
dospora. In addition, we pinpointed intervals of palynofloral dis-
turbance based on the spore/pollen (S/P) ratio, which is calculated as
the total number of spores over the sum of the total number of
pollen and spores (Σspores/(Σpollen + Σspores)) for each counted
sample. Reworked palynomorphs are counted separately and typi-
cally exhibit darkened and broken wall material. All palynological
data is summarized in Supplementary Data 1.

Various forms of environmental stress may reflect different types
of disturbance during spore formation. Similar to the methods
described in a previous study2, we focused on morphological traits
related to function and viability rather than taxonomy on the species
level. Classification in this studywasorganizedbasedon the rarity of all
observed malformations, with type-I being the most common and
type-VI the rarest. Type-I malformations: Dwarfed and unexpanded
spores are considered to be the result of premature shedding from
sporangia. Unexpanded forms were likely not mature and, therefore,
non-viable. Type-II malformations: Spores with thickened and/or
deformed labra, sometimes exhibiting uneven trilete rays (Supple-
mentary Fig. 1i), may represent immature spore tetrads that have not
completely separated. Type-III malformations: Cracks and/or folds in
the exine wall are features that often co-occur with type-II malforma-
tion within the same specimens (Fig. 2d and l; Supplementary Fig. 1l).
These abnormalities are likely related to later stages of improper exine
wall development. Type-IV malformations: Abnormal/uneven suture
showing single (monolete) marks and multiple (quadrilete) marks
could represent unbalanced meiosis and cytokinesis, indicating a
malfunctioning of the mother cell. Type-V malformations: Spores with
severely deformed proximate areas with no clear discernible trilete
markswere likelynon-viable andpartof deformed spore tetrads due to
genetic disturbance. Type-VI malformations: Spores conjoined by
additional wall material were only encountered twice in the studied
section and could be the result of improper development of the spore
tetrad (unbalanced meiosis).

Organic carbon analysis
Organic carbon records were originally reported in several previous
studies13,45 (Supplementary Data 2). Powdered samples (~0.3 g) were
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analyzed for carbon content using a CNS analyzer (NA 1500) at Utrecht
University. The detection limit for this analysis is at ~0.2%. All samples
that were below this value were omitted from the Hg/TOC correction.
Prior to analysis, samples were treated twice using 10% HCl and rinsed
with de-ionized water for the removal of carbonates. The total organic
carbon (TOC) content was calculated by multiplying the measured
carbon content with a ratio of the de-carbonated and original sample
weights. Hydrogen and Oxygen indices are derived from a previous
study of Schandelah-113 (Supplementary Data 2).

Mercury analysis
Prior to analysis, a total of 129 individual freeze-dried sediment
samples were crushed using an agate mortar and pestle and further
ground to a fine homogenized powder. Bulk mercury (Hg) con-
centrations were determined on a Hydra IIC direct mercury analyzer
using thermal decomposition, amalgamation, and atomic absorp-
tion spectrophotometry following EPA Method 747342 at Teledyne
Leeman Labs (Hudson, NH, USA). A total of 55 samples were weighed
(10–50mg) into quartz boats and quantified by the external stan-
dardmethod. Calibration curves range from 1 to 1500 μg/g. A total of
2–3 certified reference materials (CRMs: MESS-3, DOLT-5,
NIST2709a, and PACS-3 [National Research Council of Canada and
NIST]) were introduced in every batch of 10 samples along with 3
blanks and 1–2 pairs of duplicates. The mean CRM recoveries were
within the expected ranges (101.9 ± 9.0%). An additional 55 samples
were analyzed with a Lumex 915+ device combined with a pyrolysis
unit (PYRO-915) at the University of Oxford (UK). Sediment samples
were pyrolyzed at 700 °C and calibrated using a paint-contaminated
soil standard (NIST2587, 290 ppb [ng/g] Hg). A duplicate was
introduced for every 10 samples. Long-term observations of the
NIST2587 standard established a reproducibility of, on average, 6%58.
Lastly, additional samples that were selected for Hg-isotope mea-
surements were also analyzed for bulk Hg concentrations at the
School of Earth System Science (Tianjin University), as described in
the following section. All bulk Hg data is summarized in supple-
mentary Data 3.

Mercury isotope analysis
Mercury isotopes were analyzed using multi-collector inductively
coupled plasma mass spectrometry (MC-ICP-MS, Neptune Plus,
Thermo Scientific) at the School of Earth System Science, Tianjin
University, based on published methods70,71. Prior to isotopic analysis,
Hg in 33 samples was extracted by acid digestion and then purified
using an ion-exchange chromatographic method71. Briefly, powdered
samples were weighed into 30ml Teflon beakers and digested with a
mixture of trace metal grade concentrated acids containing HNO3,
HCl, and BrCl with a volume ratio of 12:6:1 at ~100 °C for 48 h. Then the
digested samples were centrifuged to remove solid residues. The
centrifuged solutions were loaded onto columns containing anion
exchange resin AG1-X4 (200–400 mesh, Bio-Rad). After rinsing with
2M HCl to remove the matrix, Hg was eluted with 12ml 0.5M
HNO3 + 0.05% L-cysteine and then digested with 0.2M BrCl prior to
isotope analysis. The Hg concentrations in the eluted solutions were
determined using a Lumex RA-915 M Hg Analyzer. The Hg yield of the
digestion and anion-exchange chromatographic procedures was
101 ± 14% (2 SD, n = 34). Procedural blanks and one standard reference
material (SRM), GBW07311 (Stream sediment), and the NIST SRM 3133
Hg isotope standardwereprocessed alongside samples. Recoveries for
all SRM were 103 ± 8% (2 SD, n = 6) (Supplementary Data 5). Mercury
concentrations in procedural blanks were typically <1% of the Hg
present in samples.

Thematrix-separated samples were diluted to 1.0–1.5 ng/g of Hg
using a 5% HCl solution. Then, Hg in the diluted solutions was
reduced by SnCl2 (3%, w/v) to gaseous Hg0, which was then carried
into the plasma of MC-ICP-MS by Hg-free Ar. Simultaneously,

thallium (Tl) aerosol (NIST SRM 997) was generated by the Aridus II
desolvator and was introduced together with Hg0 vapor into the
plasma. Five Hg isotopes (198Hg, 199Hg, 200Hg, 201Hg, and 202Hg) and
two Tl isotopes (203Tl, 205Tl) were simultaneously measured via
Faraday cups. Instrumental mass bias was corrected by using a
combination of internal calibration with measured 205Tl/203Tl ratios
and standard–sample–standard bracketing (relative to theNIST SRM
3133 Hg standard). The bracketing standard wasmatched to samples
in terms of both matrix and Hg concentration (<10% difference). On-
peak zero corrections were applied to all measuredmasses. Mercury
isotope compositions are reported using δ notation defined by the
following equation:

δxHgð%Þ= ðxHg=198HgÞsample

ðxHg=198HgÞstd
� 1

" #
× 1000 ð1Þ

where xHg is 199Hg, 200Hg, 201Hg, or 202Hg, and “std” represents the NIST
SRM3133 standard. TheMDF is reported as δ202Hg, andMIF is reported
as the capital delta notation (Δ) according to the following equation:

ΔxHgð%Þ= δxHg� ðδ202Hg ×βÞ ð2Þ

where x is the mass number of Hg isotopes 199, 200, and 201. β is a
scaling constant used to estimate the theoretical kinetic MDF, and it is
0.2520, 0.5024, and 0.7520 for 199Hg, 200Hg, and 201Hg, respectively72.

To ensure data quality, each sample was measured at least twice,
and a commonly used reference standard, NIST SRM 8610, was mea-
sured for every 6−7 samples to monitor instrument performance. The
averages of all NIST 8610 are: δ202Hg = −0.57 ± 0.07‰,
Δ199Hg = −0.04 ± 0.06‰, Δ200Hg =0.01 ± 0.02‰ (2 SD, n = 20), con-
sistent with the published values72. The GBW07311 yielded average
δ202Hg,Δ199Hg and Δ200Hg values of −0.54± 0.05‰, −0.27 ±0.04‰ and
−0.02 ±0.07‰ (n = 2, 2SE), respectively (Supplementary Data 4),
which are also consistent with the published values70. All isotope data
are reported in Supplementary Data 4, and analytical uncertainties are
reported as either 2 standard error (2SE) of sample replicates or 2 SDof
all measurements of the NIST 8610, whichever is higher.

Data availability
All data generated in this study are provided in the Source Data files.
Additional data needs to be requested from the corresponding
authors.
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