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The learning speed of feed-forward neural networks is notoriously slow and
has presented a bottleneck in deep learning applications for several decades.
For instance, gradient-based learning algorithms, which are used extensively to
train neural networks, tend to work slowly when all of the network parameters
must be iteratively tuned. To counter this, both researchers and practitioners
have tried introducing randomness to reduce the learning requirement. Based
on the original construction of Igelnik and Pao, single layer neural-networks with
random input-to-hidden layer weights and biases have seen success in practice,
but the necessary theoretical justification is lacking. In this study, we begin to
fill this theoretical gap. We then extend this result to the non-asymptotic setting
using a concentration inequality for Monte-Carlo integral approximations. We
provide a (corrected) rigorous proof that the Igelnik and Pao construction
is a universal approximator for continuous functions on compact domains,
with approximation error squared decaying asymptotically like O(1/n) for the
number n of network nodes. We then extend this result to the non-asymptotic
setting, proving that one can achieve any desired approximation error with high
probability provided n is su�ciently large. We further adapt this randomized
neural network architecture to approximate functions on smooth, compact
submanifolds of Euclidean space, providing theoretical guarantees in both the
asymptotic and non-asymptotic forms. Finally, we illustrate our results on
manifolds with numerical experiments.

KEYWORDS

machine learning, feed-forward neural networks, function approximation, smooth

manifold, random vector functional link

1 Introduction

In recent years, neural networks have once again triggered an increased interest among

researchers in the machine learning community. So-called deep neural networks model

functions using a composition of multiple hidden layers, each transforming (possibly non-

linearly) the previous layer before building a final output representation [1–5]. In machine

learning parlance, these layers are determined by sets of weights and biases that can be

tuned so that the network mimics the action of a complex function. In particular, a single

layer feed-forward neural network (SLFN) with n nodes may be regarded as a parametric

function fn : R
N → R of the form

fn(x) =
n∑

k=1

vkρ(〈wk, x〉 + bk), x ∈ R
N .
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Here, the function ρ : R → R is called an activation function

and is potentially non-linear. Some typical examples include the

sigmoid function ρ(z) = 1
1+exp(−z)

, ReLU ρ(z) = max{0, z}, and
sign functions, among many others. The parameters of the SLFN

are the number of nodes n ∈ N in the the hidden layer, the input-

to-hidden layer weights and biases {wk}nk=1
⊂ R

N and {bk}nk=1
⊂ R

(resp.), and the hidden-to-output layer weights {vk}nk=1
⊂ R. In

this way, neural networks are fundamentally parametric families of

functions whose parameters may be chosen to approximate a given

function.

It has been shown that any compactly supported continuous

function can be approximated with any given precision by a single

layer neural network with a suitably chosen number of nodes

[6], and harmonic analysis techniques have been used to study

stability of such approximations [7]. Other recent results that take a

different approach directly analyze the capacity of neural networks

from a combinatorial point of view [8, 9].

While these results ensure existence of a neural network

approximating a function, practical applications require

construction of such an approximation. The parameters of

the neural network can be chosen using optimization techniques

to minimize the difference between the network and the function

f : RN → R it is intended to model. In practice, the function f is

usually not known, and we only have access to a set {(xk, f (xk))}mk=1

of values of the function at finitely many points sampled from

its domain, called a training set. The approximation error can be

measured by comparing the training data to the corresponding

network outputs when evaluated on the same set of points, and the

parameters of the neural network fn can be learned by minimizing

a given loss function L(x1, . . . , xm); a typical loss function is the

sum-of-squares error

L(x1, . . . , xm) =
1

m

m∑

k=1

|f (xk)− fn(xk)|2.

The SLFN which approximates f is then determined using

an optimization algorithm, such as back-propagation, to find the

network parameters which minimize L(x1, . . . , xm). It is known

that there exist weights and biases which make the loss function

vanish when the number of nodes n is at least m, provided the

activation function is bounded, non-linear, and has at least one

finite limit at either±∞ [10].

Unfortunately, optimizing the parameters in SLFNs can be

difficult. For instance, any non-linearity in the activation function

can cause back-propagation to be very time-consuming or get

caught in local minima of the loss function [11]. Moreover, deep

neural networks can require massive amounts of training data, and

so are typically unreliable for applications with very limited data

availability, such as agriculture, healthcare, and ecology [12].

To address some of the difficulties associated with training deep

neural networks, both researchers and practitioners have attempted

to incorporate randomness in some way. Indeed, randomization-

based neural networks that yield closed form solutions typically

require less time to train and avoid some of the pitfalls of traditional

neural networks trained using back-propagation [11, 13, 14]. One

of the popular randomization-based neural network architectures

is the Random Vector Functional Link (RVFL) network [15, 16],

which is a single layer feed-forward neural network in which the

input-to-hidden layer weights and biases are selected randomly

and independently from a suitable domain and the remaining

hidden-to-output layer weights are learned using training data.

By eliminating the need to optimize the input-to-hidden layer

weights and biases, RVFL networks turn supervised learning into

a purely linear problem. To see this, define ρ(X) ∈ R
n×m to be the

matrix whose jth column is {ρ(〈wk, xj〉 + bk)}nk=1
and f (X) ∈ R

m

the vector whose jth entry is f (xj). Then, the vector v ∈ R
n of

hidden-to-output layer weights is the solution to the matrix-vector

equation f (X) = ρ(X)Tv, which can be solved by computing

the Moore-Penrose pseudoinverse of ρ(X)T . In fact, there exist

weights and biases that make the loss function vanish when the

number of nodes n is at least m, provided the activation function

is smooth [17].

Although originally considered in the early- to mid-1990s [15,

16, 18, 19], RVFL networks have had much more recent

success in several modern applications, including time-series

data prediction [20], handwritten word recognition [21], visual

tracking [22], signal classification [23, 24], regression [25], and

forecasting [26, 27]. Deep neural network architectures based

on RVFL networks have also made their way into more recent

literature [28, 29], although traditional, single layer RVFL networks

tend to perform just as well as, and with lower training costs than,

their multi-layer counterparts [29].

Even though RVFL networks are proving their usefulness

in practice, the supporting theoretical framework is currently

lacking [see 30]. Most theoretical research into the approximation

capabilities of deep neural networks centers around two main

concepts: universal approximation of functions on compact

domains and point-wise approximation on finite training sets [17].

For instance, in the early 1990s, it was shown that multi-

layer feed-forward neural networks having activation functions

that are continuous, bounded, and non-constant are universal

approximators (in the Lp sense for 1 ≤ p < ∞) of continuous

functions on compact domains [31, 32]. The most notable result

in the existing literature regarding the universal approximation

capability of RVFL networks is due to Igelnik and Pao [16]

in the mid-1990s, who showed that such neural networks can

universally approximate continuous functions on compact sets;

the noticeable lack of results since has left a sizable gap between

theory and practice. In this study, we begin to bridge this gap

by further improving the Igelnik and Pao result, and bringing

the mathematical theory behind RFVL networks into the modern

spotlight. Below, we introduce the notation that will be used

throughout this study, and describe our main contributions.

1.1 Notation

For a function f : RN → R, the set supp(f ) ⊂ R
N denotes

the support of f . We denote by Cc(R
N) and C0(R

N) the classes

of continuous functions mapping RN to R whose support sets are

compact and vanish at infinity, respectively. Given a set S ⊂ R
N ,

we define its radius to be rad(S) : = supx∈S ‖x‖2; moreover, if

dµ denotes the uniform volume measure on S, then we write

vol(S) : =
∫
S dµ to represent the volume of S. For any probability

distribution P : RN → [0, 1], a random variable X distributed
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according to P is denoted by X ∼ P, and we write its expectation

as EX : =
∫
RN XdP. The open ℓp ball of radius r > 0 centered at

x ∈ R
N is denoted by BNp (x, r) for all 1 ≤ p ≤ ∞; the ℓp unit-

ball centered at the origin is abbreviated BNp . Given a fixed δ > 0

and a set S ⊂ R
N , a minimal δ-net for S, which we denote C(δ, S),

is the smallest subset of S satisfying S ⊂ ∪x∈C(δ,S)B
N
2 (x, δ); the δ-

covering number of S is the cardinality of a minimal δ-net for S and

is denotedN(δ, S) : = |C(δ, S)|.

1.2 Main results

In this study, we analyze the uniform approximation

capabilities of RVFL networks. More specifically, we consider

the problem of using RVFL networks to estimate a continuous,

compactly supported function on N-dimensional Euclidean space.

The first theoretical result on approximating properties of

RVFL networks, due to Igelnik and Pao [16], guarantees that

continuous functionsmay be universally approximated on compact

sets using RVFL networks, provided the number of nodes n ∈ N

in the network goes to infinity. Moreover, it shows that the mean

square error of the approximation vanishes at a rate proportional

to 1/n. At the time, this result was state-of-the-art and justified

how RVFL networks were used in practice. However, the original

theorem is not technically correct. In fact, several aspects of the

proof technique are flawed. Some of the minor flaws are mentioned

in Li et al. [33], but the subsequent revisions do not address the

more significant issues which would make the statement of the

result technically correct. We address these issues in this study,

see Remark 1. Thus, our first contribution to the theory of RVFL

networks is a corrected version of the original Igelnik and Pao

theorem:

Theorem 1 ([16]). Let f ∈ Cc(R
N) with K : = supp(f ) and fix any

activation function ρ, such that either ρ ∈ L1(R) ∩ L∞(R) with∫
R

ρ(z)dz = 1 or ρ is differentiable with ρ′ ∈ L1(R) ∩ L∞(R) and∫
R

ρ′(z)dz = 1. For any ε > 0, there exist distributions from which

input weights {wk}nk=1
and biases {bk}nk=1

are drawn, and there exist

hidden-to-output layer weights {vk}nk=1
⊂ R that depend on the

realization of weights and biases, such that the sequence of RVFL

networks {fn}∞n=1 is defined by

fn(x) : =
n∑

k=1

vkρ(〈wk, x〉 + bk) for x ∈ K

satisfies

E

∫

K
|f (x)− fn(x)|2dx < ε + O(1/n),

as n → ∞.

For a more precise formulation of Theorem 1 and its proof, we

refer the reader to Theorem 5 and Section 3.1.

Remark 1.

1. Even though in Theorem 1 we only claim existence of the

distribution for input weights {wk}nk=1
and biases {bk}nk=1

, such

a distribution is actually constructed in the proof. Namely, for

any ε > 0, there exist constants α,� > 0 such that the random

variables

wk ∼ Unif ([−α�,α�]N);
yk ∼ Unif (K);
uk ∼ Unif ([−π

2 (2L+ 1), π
2 (2L+ 1)]),

where L : = ⌈ 2N
π
rad(K)� − 1

2 ⌉,

are independently drawn from their associated distributions,

and bk : = −〈wk, yk〉 − αuk.

2. We note that, unlike the original theorem statement in Igelnik

and Pao [16], Theorem 1 does not show exact convergence of

the sequence of constructed RVFL networks fn to the original

function f . Indeed, it only ensures that the limit fn is ε-close to

f . This should still be sufficient for practical applications since,

given a desired accuracy level ε > 0, one can find values of

α,�, and n such that this accuracy level is achieved on average.

Exact convergence can be proved if one replaces α and � in the

distribution described above by sequences {αn}∞n=1 and {�n}∞n=1

of positive numbers, both tending to infinity with n. In this

setting, however, there is no guaranteed rate of convergence;

moreover, as n increases, the ranges of the random variables

{wk}nk=1
and {uk}nk=1

become increasingly larger, which may

cause problems in practical applications.

3. The approach we take to construct the RVFL network

approximating a function f allows one to compute the output

weights {vk}nk=1
exactly (once the realization of random

parameters is fixed), in the case where the function f is known.

For the details, we refer the reader to Equations 6, 8 in the proof

of Theorem 1. If we only have access to a training set that is

sufficiently large and uniformly distributed over the support of

f , these formulas can be used to compute the output weights

approximately, instead of solving the least squares problem.

4. Note that the normalization
∫
R

ρ(z)dz = 1 of the activation

function can be replaced by the condition
∫
R

ρ(z)dz 6=
0. Indeed, in the case when ρ ∈ L1(R) ∩ L∞(R) and∫
R

ρ(z)dz /∈ {0, 1}, one can simply use Theorem 1 to

approximate 1∫
R

ρ(z)dz
f by a sequence of RVFL network with

the activation function 1∫
R

ρ(z)dz
ρ. Mutatis mutandis in the case

when
∫
R

ρ′(z)dz′ /∈ {0, 1}. More generally, this trick allows any

of our theorems to be applied in the case
∫
R

ρ(z)dz 6= 0.

One of the drawbacks of Theorem 1 is that the mean square

error guarantee is asymptotic in the number of nodes used in the

neural network. This is clearly impractical for applications, and

so it is desirable to have a more explicit error bound for each

fixed number n of nodes used. To this end, we provide a new,

non-asymptotic version of Theorem 1, which provides an error

guarantee with high probability whenever the number of network

nodes is large enough, albeit at the price of an additional Lipschitz

requirement on the activation function:

Theorem 2. Let f ∈ Cc(R
N) with K : = supp(f ) and fix any

activation function ρ ∈ L1(R) ∩ L∞(R) with
∫
R

ρ(z)dz = 1.

Suppose further that ρ is κ-Lipschitz on R for some κ > 0. For any

ε > 0 and η ∈ (0, 1), suppose that n ≥ C(N, f , ρ)ε−1 log(η−1/ε),
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where C(N, f , ρ) is independent of ε and η and depends on f ,

ρ, and superexponentially on N. Then, there exist distributions

from which input weights {wk}nk=1
and biases {bk}nk=1

are drawn,

and there exist hidden-to-output layer weights {vk}nk=1
⊂ R that

depend on the realization of weights and biases, such that the RVFL

network defined by

fn(x) : =
n∑

k=1

vkρ(〈wk, x〉 + bk) for x ∈ K

satisfies
∫

K
|f (x)− fn(x)|2dx < ε

with probability at least 1− η.

For simplicity, the bound on the number n of the nodes on

the hidden layer here is rough. For a more precise formulation of

this result that contains a bound with explicit constant, we refer

the reader to Theorem 6 in Section 3.2. We also note that the

distribution of the input weight and bias here can be selected as

described in Remark 1.

The constructions of RVFL networks presented in Theorems 1,

2 depend heavily on the dimension of the ambient space R
N .

If N is small, this dependence does not present much of a

problem. However, many modern applications require the ambient

dimension to be large. Fortunately, a common assumption in

practice is the support of the signals of interest lies on a

lower-dimensional manifold embedded in R
N . For instance, the

landscape of cancer cell states can be modeled using non-linear,

locally continuous “cellular manifolds;” indeed, while the ambient

dimension of this state space is typically high (e.g., single-

cell RNA sequencing must account for approximately 20,000

gene dimensions), cellular data actually occupies an intrinsically

lower dimensional space [34]. Similarly, while the pattern space

of neural population activity in the brain is described by an

exponential number of parameters, the spatiotemporal dynamics

of brain activity lie on a lower-dimensional subspace or “neural

manifold” [35]. In this study, we propose a new RVFL network

architecture for approximating continuous functions defined on

smooth compact manifolds that allows to replace the dependence

on the ambient dimension N with dependence on the manifold

intrinsic dimension.We show that RVFL approximation results can

be extended to this setting. More precisely, we prove the following

analog of Theorem 2.

Theorem 3. Let M ⊂ R
N be a smooth, compact d-dimensional

manifold with finite atlas {(Uj,φj)}j∈J and f ∈ C(M). Fix any

activation function ρ ∈ L1(R) ∩ L∞(R) with
∫
R

ρ(z)dz = 1

such that ρ is κ-Lipschitz on R for some κ > 0. For any

ε > 0 and η ∈ (0, 1), suppose n ≥ C(d, f , ρ)ε−1 log(η−1/ε),

where C(d, f , ρ) is independent of ε and η and depends on f ,

ρ, and superexponentially on d. Then, there exists an RVFL-like

approximation fn of the function f with a parameter selection

similar to the Theorem 1 construction that satisfies
∫

M
|f (x)− fn(x)|2dx < ε

with probability at least 1− η.

For a the construction of the RVFL-like approximation fn and

a more precise formulation of this result and an analog of

Theorem 1 applied tomanifolds, we refer the reader to Section 3.3.1

and Theorems 7, 8. We note that the approximation fn here is

not obtained as a single RVFL network construction, but rather

as a combination of several RVFL networks in local manifold

coordinates.

1.3 Organization

The remaining part of the article is organized as follows.

In Section 2, we discuss some theoretical preliminaries on

concentration bounds for Monte-Carlo integration and on smooth

compact manifolds. Monte-Carlo integration is an essential

ingredient in our construction of RVFL networks approximating

a given function, and we use the results listed in this section

to establish approximation error bounds. Theorem 1 is proven

in Section 3.1, where we break down the proof into four main

steps, constructing a limit-integral representation of the function

to be approximated in Lemmas 3, 4, then using Monte-Carlo

approximation of the obtained integral to construct an RVFL

network in Lemma 5, and, finally, establishing approximation

guarantees for the constructed RVFL network. The proofs of

Lemmas 3, 4, and 5 can be found in Sections 3.5.1, 3.5.2, and 3.5.3,

respectively. We further study properties of the constructed RVFL

networks and prove the non-asymptotic approximation result of

Theorem 2 in Section 3.2. In Section 3.3, we generalize our results

and propose a new RVFL network architecture for approximating

continuous functions defined on smooth compact manifolds. We

show that RVFL approximation results can be extended to this

setting by proving an analog of Theorem 1 in Section 3.3.2 and

Theorem 3 in Section 3.5.5. Finally, in Section 3.4, we provide

numerical evidence to illustrate the result of Theorem 3.

2 Materials and methods

In this section, we briefly introduce supporting material and

theoretical results which we will need in later sections. Thismaterial

is far from exhaustive, and is meant to be a survey of definitions,

concepts, and key results.

2.1 A concentration bound for classic
Monte-Carlo integration

A crucial piece of the proof technique employed in Igelnik

and Pao [16], which we will use repeatedly, is the use of the

Monte-Carlo method to approximate high-dimensional integrals.

As such, we start with the background onMonte-Carlo integration.

The following introduction is adapted from the material in

Dick et al. [36].

Let f : RN → R and S ⊂ R
N a compact set. Suppose we want

to estimate the integral I(f , S) : =
∫
S f dµ, where µ is the uniform

measure on S. The classic Monte Carlo method does this by an
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equal-weight cubature rule,

In(f , S) : =
vol(S)

n

n∑

j=1

f (xj),

where {xj}nj=1 are independent identically

distributed uniform random samples from S and

vol(S) : =
∫
S dµ is the volume of S. In particular, note that

EIn(f , S) = I(f , S) and

EIn(f , S)
2 = 1

n

(
vol(S)I(f 2, S)+ (n− 1)I(f , S)2

)
.

Let us define the quantity

σ (f , S)2 : = I(f 2, S)

vol(S)
− I(f , S)2

vol2(S)
. (1)

It follows that the random variable In(f ) has mean I(f , S) and

variance vol2(S)σ (f , S)2/n. Hence, by the Central Limit Theorem,

provided that 0 < vol2(S)σ (f , S)2 < ∞, we have

lim
n→∞

P

(
|In(f , S)− I(f , S)| ≤ Cε(f , S)√

n

)
= (2π)−1/2

∫ C

−C
e−x2/2dx

for any constant C > 0, where ε(f , S) : = vol(S)σ (f , S). This yields

the following well-known result:

Theorem 4. For any f ∈ L2(S,µ), the mean-square error of the

Monte Carlo approximation In(f , S) satisfies

E
∣∣In(f , S)− I(f , S)

∣∣2 = vol2(S)σ (f , S)2

n
,

where the expectation is taken with respect to the random variables

{xj}nj=1 and σ (f , S) is defined in Equation 1.

In particular, Theorem 4 implies E
∣∣In(f , S) − I(f , S)

∣∣2 = O(1/n) as

n → ∞.

In the non-asymptotic setting, we are interested in obtaining

a useful bound on the probability P(|In(f , S)− I(f , S)| ≥ t) for all

t > 0. The following lemma follows from a generalization of

Bennett’s inequality (Theorem 7.6 in [37]; see also [38, 39]).

Lemma 1. For any f ∈ L2(S) and n ∈ N, we have

P

(
|In(f , S)−I(f , S)| ≥ t

)
≤ 3 exp

(
− nt

CK
log

(
1+ Kt

vol(S)I(f 2, S)

))

for all t > 0 and a universal constant C > 0, provided

|vol(S)f (x)| ≤ K for almost every x ∈ S.

2.2 Smooth, compact manifolds in
Euclidean space

In this section, we review several concepts of smooth manifolds

that will be useful to us later. Many of the definitions and results

that follow can be found, for instance, in Shaham et al. [40]. Let

M ⊂ R
N be a smooth, compact d-dimensional manifold. A chart

for M is a pair (U,φ) such that U ⊂ M is an open set and

φ : U → R
d is a homeomorphism. One way to interpret a chart is

as a tangent space at some point x ∈ U; in this way, a chart defines

a Euclidean coordinate system on U via the map φ. A collection

{(Uj,φj)}j∈J of charts defines an atlas for M if ∪j∈JUj = M. We

now define a special collection of functions onM called a partition

of unity.

Definition 1. Let M ⊂ R
N be a smooth manifold. A partition of

unity ofMwith respect to an open cover {Uj}j∈J ofM is a family of

non-negative smooth functions {ηj}j∈J such that for every x ∈ M,

we have 1 =
∑

j∈J ηj(x) and, for every j ∈ J, supp(ηj) ⊂ Uj.

It is known that if M is compact, there exists a partition of unity

of M such that supp(ηj) is compact for all j ∈ J [see 41]. In

particular, such a partition of unity exists for any open cover ofM

corresponding to an atlas.

Fix an atlas {(Uj,φj)}j∈J for M, as well as the corresponding,

compactly supported partition of unity {ηj}j∈J . Then, we have the
following useful result [see 40, Lemma 4.8].

Lemma 2. LetM ⊂ R
N be a smooth, compact manifold with atlas

{(Uj,φj)}j∈J and compactly supported partition of unity {ηj}j∈J . For
any f ∈ C(M), we have

f (x) =
∑

{j∈J : x∈Uj}
(f̂j ◦ φj)(x)

for all x ∈ M, where

f̂j(z) : =
{
f (φ−1

j (z)) ηj(φ
−1
j (z)) z ∈ φj(Uj)

0 otherwise.

In later sections, we use the representation of Lemma 2 to

integrate functions f ∈ C(M) overM. To this end, for each j ∈ J,

let Dφj(y) denote the differential of φj at y ∈ Uj, which is a map

from the tangent space TyM into R
d. One may interpret Dφj(y)

as the matrix representation of a basis for the cotangent space at

y ∈ Uj. As a result, Dφj(y) is necessarily invertible for each y ∈ Uj,

and so we know that | det(Dφj(y))| > 0 for each y ∈ Uj. Hence, it

follows by the change of variables theorem that

∫

M
f (x)dx =

∫

M

∑

{j∈J : x∈Uj}
(f̂j ◦ φj)(x)dx

=
∑

j∈J

∫

φj(Uj)

f̂j(z)

| det(Dφj(φ
−1
j (z)))|

dz. (2)

3 Results

In this section, we prove our main results formulated in

Section 1.2 and also use numerical simulations to illustrate

the RVFL approximation performance in a low-dimensional

submanifold setup. To improve readability of this section, we

postpone the proofs of technical lemmas till Section 3.5.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1284706
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Needell et al. 10.3389/fams.2024.1284706

3.1 Proof of Theorem 1

We split the proof of the theorem into two parts, first handling

the case ρ ∈ L1(R) ∩ L∞(R) and second, addressing the case

ρ′ ∈ L1(R) ∩ L∞(R).

3.1.1 Proof of Theorem 1 when ρ ∈ L
1(R) ∩ L

∞(R)
We begin by restating the theorem in a form that explicitly

includes the distributions that we draw our random variables from.

Theorem 5 ([16]). Let f ∈ Cc(R
N) with K : = supp(f ) and fix any

activation function ρ ∈ L1(R) ∩ L∞(R) with
∫
R

ρ(z)dz = 1. For

any ε > 0, there exist constants α,� > 0 such that the following

holds: If, for k ∈ N, the random variables

wk ∼ Unif ([−α�,α�]N);
yk ∼ Unif (K);
uk ∼ Unif ([−π

2 (2L+ 1), π
2 (2L+ 1)]),

where L : = ⌈ 2N
π
rad(K)� − 1

2 ⌉,

are independently drawn from their associated distributions, and

bk : = −〈wk, yk〉 − αuk,

then there exist hidden-to-output layer weights {vk}nk=1
⊂ R

(that depend on the realization of the weights {wk}nk=1
and biases

{bk}nk=1
) such that the sequence of RVFL networks {fn}∞n=1 defined

by

fn(x) : =
n∑

k=1

vkρ(〈wk, x〉 + bk) for x ∈ K

satisfies

E

∫

K
|f (x)− fn(x)|2dx ≤ ε + O(1/n).

as n → ∞.

Proof. Our proof technique is based on that introduced by Igelnik

and Pao and can be divided into four steps. The first three steps

essentially consist of Lemma 3, Lemma 4, and Lemma 5, and the

final step combines them to obtain the desired result. First, the

function f is approximated by a convolution, given in Lemma 3.

The proof of this result can be found in Section 3.5.1.

Lemma 3. Let f ∈ C0(R
N) and h ∈ L1(RN) with

∫
RN h(z)dz = 1.

For � > 0, define

h�(y) : = �Nh(�y). (3)

Then, we have

f (x) = lim
�→∞

(f ∗ h�)(x) (4)

uniformly for all x ∈ R
N .

Next, we represent f as the limiting value of a multidimensional

integral over the parameter space. In particular, we replace (f ∗
h�)(x) in the convolution identity (Equation 4) with a function of

the form
∫
K F(y)ρ(〈w, x〉 + b(y))dy, as this will introduce the RVFL

structure we require. To achieve this, we first use a truncated cosine

function in place of the activation function ρ and then switch back

to a general activation function.

To that end, for each fixed � > 0, let L = L(�) : =
⌈ 2N

π
rad(K)� − 1

2 ⌉ and define cos� : R → [−1, 1] by

cos�(x) : =
{
cos(x) x ∈ [− 1

2 (2L+ 1)π , 12 (2L+ 1)π],

0 otherwise.
(5)

Moreover, introduce the functions

Fα,�(y,w, u) : =
α

(2π)N
f (y) cos�(u)

N∏

j=1

φ(w(j)/�),

bα(y,w, u) : = −α(〈w, y〉 + u)

(6)

where y,w ∈ R
N , u ∈ R, and φ = A ∗ A for any even function

A ∈ C∞(R) supported on [− 1
2 ,

1
2 ] s.t. ‖A‖2 = 1. Then, we have

the following lemma, a detailed proof of which can be found in

Section 3.5.2.

Lemma 4. Let f ∈ Cc(R
N) and ρ ∈ L1(R) with K : = supp(f ) and∫

R
ρ(z)dz = 1. Define Fα,� and bα as in Equation 6 for all α > 0.

Then, for L : = ⌈ 2N
π
rad(K)� − 1

2⌉, we have

f (x) = lim
�→∞

lim
α→∞

∫

K(�)
Fα,�(y,w, u)ρ

(
α〈w, x〉 + bα(y,w, u)

)
dydwdu (7)

uniformly for every x ∈ K, where K(�) : = K × [−�,�]N ×
[−π

2 (2L+ 1), π
2 (2L+ 1)].

The next step in the proof of Theorem 5 is to approximate

the integral in Equation 7 using the Monte-Carlo method. Define

vk : = vol(K(�))
n Fα,�

(
yk,

wk
α
, uk

)
for k = 1, . . . , n, and the random

variables {fn}∞n=1 by

fn(x) : =
n∑

k=1

vkρ
(
〈wk, x〉 + bk

)
. (8)

Then, we have the following lemma that is proven in

Section 3.5.3.

Lemma 5. Let f ∈ Cc(R
N) and ρ ∈ L1(R) ∩ L∞(R) with

K : = supp(f ) and
∫
R

ρ(z)dz = 1. Then, as n → ∞, we have

E

∫

K

∣∣∣∣
∫

K(�)
Fα,�(y,w, u)ρ

(
α〈w, x〉 + bα(y,w, u)

)
dydwdu

−fn(x)
∣∣2 dx = O(1/n), (9)

where K(�) : = K× [−�,�]N × [−π
2 (2L+ 1), π

2 (2L+1)] and

L : = ⌈ 2N
π
rad(K)� − 1

2⌉.
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To complete the proof of Theorem 5, we combine the

limit representation (Equation 7) with the Monte-Carlo error

guarantee (Equation 9) and show that, given any ε > 0, there exist

α,� > 0 such that

E

∫

K
|f (x)− fn(x)|2dx ≤ ε + O(1/n)

as n → ∞. To this end, let ε′ > 0 be arbitrary and consider the

integral I(x; p) given by

I(x; p) : =
∫

K(�)

(
Fα,�(y,w, u)ρ

(
α〈w, x〉 + bα(y,w, u)

))p
dydwdu

(10)

for x ∈ K and p ∈ N. By Equation 7, there exist α,� > 0 such that

|f (x)− I(x; 1)| < ε′ holds for every x ∈ K, and so it follows that

∣∣f (x)− fn(x)
∣∣ < ε′ +

∣∣I(x; 1)− fn(x)
∣∣

for every x ∈ K. Jensen’s inequality now yields that

E

∫

K
|f (x)− fn(x)|2dx ≤ 2vol(K)(ε′)2 + 2E

∫

K

∣∣I(x; 1)− fn(x)
∣∣2dx.

(11)

By Equation 9, we know that the second term on the right-hand

side of Equation 11 is O(1/n). Therefore, we have

E

∫

K
|f (x)− fn(x)|2dx ≤ 2vol(K)(ε′)2 + O(1/n),

and so the proof is completed by taking ε′ =
√

ε/2vol(K) and

choosing α,� > 0 accordingly.

3.1.2 Proof of Theorem 1 when ρ
′
∈ L

1(R) ∩ L
∞(R)

The full statement of the theorem is identical to that of

Theorem 5 albeit now with ρ′ ∈ L1(R) ∩ L∞(R), so we omit it for

brevity. Its proof is also similar to the proof of the case where

ρ ∈ L1(R) ∩ L∞(R) with some key modifications. Namely, one

uses an integration by parts argument to modify the part of the

proof corresponding to Lemma 4. The details of this argument are

presented in Section 3.5.4.

3.2 Proof of Theorem 2

In this section, we prove the non-asymptotic result for RVFL

networks in R
N , and we begin with a more precise statement of the

theorem that makes all the dimensional dependencies explicit.

Theorem 6. Consider the hypotheses of Theorem 5 and suppose

further that ρ is κ-Lipschitz on R for some κ > 0. For any

0 < δ <

√
ε

8
√
2Nκα2M�(�/π)Nvol3/2(K)(π + 2Nrad(K)�)

,

suppose

n ≥ c6α(�/π)N(π + 2Nrad(K)�) log(3η−1N(δ,K))
√

ε log
(
1+

√
ε

6α(�/π)N (π+2Nrad(K)�)

) ,

where M : = supx∈K |f (x)|, c > 0 is a numerical constant, and 6

is a constant depending on f and ρ, and let parameters {wk}nk=1
,

{bk}nk=1
, and {vk}nk=1

be as in Theorem 5. Then, the RVFL network

defined by

fn(x) : =
n∑

k=1

vkρ(〈wk, x〉 + bk) for x ∈ K

satisfies
∫

K
|f (x)− fn(x)|2dx < ε

with probability at least 1− η.

Proof. Let f ∈ Cc(R
N) with K : = supp(f ) and suppose ε > 0,

η ∈ (0, 1) are fixed. Take an arbitrarily κ-Lipschitz activation

function ρ ∈ L1(R) ∩ L∞(R). We wish to show that there exists

an RVFL network {fn}∞n=1 defined on K that satisfies the

∫

K
|f (x)− fn(x)|2dx < ε

with probability at least 1 − η when n is chosen sufficiently large.

The proof is obtained by modifying the proof of Theorem 5 for the

asymptotic case.

We begin by repeating the first two steps in the proof of

Theorem 5 from Sections 3.5.1, 3.5.2. In particular, by Lemma 4

we have the representation given by Equation 4, namely,

f (x) = lim
�→∞

lim
α→∞

∫

K(�)
Fα,�(y,w, u)ρ

(
α〈w, x〉+bα(y,w, u)

)
dydwdu

holds uniformly for all x ∈ K. Hence, if we define the random

variables fn and In from Section 3.5.3 as in Equations 8, 29,

respectively, we seek a uniform bound on the quantity

|f (x)− fn(x)| ≤ |f (x)− I(x; 1)| + |In(x)− I(x; 1)|

over the compact set K, where I(x; 1) is given by Equation 10 for all

x ∈ K. Since Equation 7 allows us to fix α,� > 0 such that

|f (x)− I(x; 1)| =
∣∣∣f (x)−

∫

K(�)
Fα,�(y,w, u)ρ

(
α〈w, x〉 + bα(y,w, u)

)
dydwdu

∣∣∣ <

√
ε

2vol(K)

holds for every x ∈ K simultaneously, the result would follow if we

show that, with high probability,

|In(x)−I(x; 1)| <
√

ε/2vol(K) uniformly for all x ∈ K. Indeed, this

would yield

∫

K
|f (x)− fn(x)|2dx ≤ 2

∫

K
|f (x)− I(x; 1)|2dx

+2

∫

K
|In(x)− I(x; 1)|2dx < ε
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with high probability. To this end, for δ > 0, let C(δ,K) ⊂ K denote

a minimal δ-net for K, with cardinalityN(δ,K). Now, fix x ∈ K and

consider the inequality

|In(x)− I(x; 1)| ≤ |In(x)− In(z)|︸ ︷︷ ︸
(∗)

+ |In(z)− I(z; 1)|︸ ︷︷ ︸
(∗∗)

+ |I(x; 1)− I(z; 1)|︸ ︷︷ ︸
(∗∗∗)

, (12)

where z ∈ C(δ,K) is such that ‖x− z‖2 < δ. We will obtain the

desired bound on Equation 12 by bounding each of the terms (∗),
(∗∗), and (∗∗∗) separately.

First, we consider the term (∗). Recalling the definition of In,

observe that we have

(∗) = vol(K(�))

n

∣∣∣
n∑

k=1

Fα,�(yk,wk, uk)
(
ρ
(
α〈wk, x〉 + bα(yk,wk, uk)

)

− ρ
(
α〈wk, z〉 + bα(yk,wk, uk)

))∣∣∣

≤ αMvol(K(�))

(2π)Nn

n∑

k=1

∣∣ρ
(
α〈wk, x〉 + bα(yk,wk, uk)

)

− ρ
(
α〈wk, z〉 + bα(yk,wk, uk)

)∣∣∣

≤ αM(2π)−Nvol(K(�))Rα,�(x, z),

whereM : = supx∈K |f (x)| and we define

Rα,�(x, z) : = sup
y∈K

w∈[−�,�]N

u∈[−(L+ 1
2 )π ,(L+

1
2 )π]

∣∣∣ρ
(
α〈w, x〉 + bα(y,w, u)

)

−ρ
(
α〈w, z〉 + bα(y,w, u)

)∣∣∣.

Now, since ρ is assumed to be κ-Lipschitz, we have

∣∣∣ρ
(
α〈w, x〉 + bα(y,w, u)

)
− ρ

(
α〈w, z〉 + bα(y,w, u)

)∣∣∣

=
∣∣∣ρ

(
α
(
〈w, x− y〉 − u

))

− ρ

(
α
(
〈w, z − y〉 − u

))∣∣∣ ≤ κα
∣∣〈w, x− z〉

∣∣

for any y ∈ K, w ∈ [−�,�]N , and u ∈ [−(L + 1
2 )π , (L + 1

2 )π].

Hence, an application of the Cauchy–Schwarz inequality yields

Rα,�(x, z) ≤ κα�δ
√
N for all x ∈ K, from which it follows that

(∗) ≤ M
√
Nκδα2�(2π)−Nvol(K(�)) (13)

holds for all x ∈ K.

Next, we bound (∗∗∗) using a similar approach. Indeed, by the

definition of I( · ; 1), we have

(∗∗∗) =
∣∣∣
∫

K(�)
Fα,�(y,w, u)

(
ρ
(
α〈w, x〉 + bα(y,w, u)

)

− ρ
(
α〈w, z〉 + bα(y,w, u)

))
dydwdu

∣∣∣

≤ αM‖φ‖N∞
(2π)N

∫

K(�)

∣∣ρ
(
α〈w, x〉 + bα(y,w, u)

)

− ρ
(
α〈w, z〉 + bα(y,w, u)

)∣∣∣dydwdu

≤ αM(2π)−Nvol(K(�))Rα,�(x, z).

Using the fact that Rα,�(x, z) ≤ κα�δ
√
N for al x ∈ K, it

follows that

(∗∗∗) ≤ M
√
Nκδα2�(2π)−Nvol(K(�)) (14)

holds for all x ∈ K, just like Equation 13.

Notice that the Equations 13, 14 are deterministic. In fact, both

can be controlled by choosing an appropriate value for δ in the

net C(δ,K). To see this, fix ε′ > 0 arbitrarily and recall that

vol(K(�)) = (2�)Nπ(2L + 1)vol(K). A simple computation then

shows that (∗)+ (∗∗∗) < ε′ whenever

δ <
ε′

4
√
Nκα2M�(�/π)Nvol(K)(π + 2Nrad(K)�)

(15)

<
ε′

2
√
Nκα2M�(�/π)Nπ(2L+ 1)vol(K)

.

We now bound (∗∗) uniformly for x ∈ K. Unlike (∗) and (∗∗∗), we
cannot bound this term deterministically. In this case, however, we

may apply Lemma 1 to

gz(y,w, u) : = Fα,�(y,w, u)ρ
(
α〈w, z〉 + bα(y,w, u)

)
,

for any z ∈ C(δ,K). Indeed, gz ∈ L2(K(�)) because Fα,� ∈
L2(K(�)) and ρ ∈ L∞(R). Then, Lemma 1 yields the tail bound

P
(
(∗∗) ≥ t

)
= P

(
|In(gz ,K(�))− I(gz ,K(�))| ≥ t

)

≤ 3 exp
(
− nt

Bc
log

(
1+ Bt

vol(K(�))I(g2z ,K(�))

))

= 3 exp
(
− nt

Bc
log

(
1+ Bt

vol(K(�))I(z; 2)
))

for all t > 0, where c > 0 is a numerical constant and

B : = 2αM(�/π)N(π + 2Nrad(K)�)‖ρ‖∞vol(K)

≥ αM(�/π)Nπ(2L+ 1)‖ρ‖∞vol(K)

= αM(2π)−N‖ρ‖∞vol(K(�))

≥ max
z∈C(δ,K)

‖gz‖∞vol(K(�)).

By taking

C : = 2M‖ρ‖∞vol(K) and 6 : = 2C
√
2vol(K),
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we obtain B = Cα(�/π)N(π + 2Nrad(K)�) and

max
z∈C(δ,K)

vol(K(�))I(z; 2) ≤
(
αM(2π)−N‖ρ‖∞vol(K(�))

)2
≤ B2.

If we choose the number of nodes such that

n ≥ Bc log(3η−1N(δ,K))

t log(1+ t/B)
, (16)

then a union bound yields (∗∗) < t simultaneously for all z ∈
C(δ,K) with probability at least 1 − η. Combined with the bounds

from Equations 13, 14, it follows from Equation 12 that

|In(x)− I(x; 1)| < ε′ + t

simultaneously for all x ∈ K with probability at least 1−η, provided

δ and n satisfy Equations 15, 16, respectively. Since we require

|In(x) − I(x; 1)| <
√

ε/2vol(K), the proof is then completed by

setting ε′ + t =
√

ε/2vol(K) and choosing δ and n accordingly. In

particular, it suffices to choose ε′ = t = 1
2

√
ε/2vol(K) = C

√
ε/6,

so that Equations 15, 16 become

δ <

√
ε

8
√
2Nκα2M�(�/π)Nvol3/2(K)(π + 2Nrad(K)�)

,

n ≥ c6α(�/π)N(π + 2Nrad(K)�) log(3η−1N(δ,K))
√

ε log
(
1+

√
ε

6α(�/π)N (π+2Nrad(K)�)

) ,

as desired.

Remark 2. The implication of Theorem 6 is that, given a desired

accuracy level ε > 0, one can construct a RVFL network fn that is

ε-close to f with high probability, provided the number of nodes n

in the neural network is sufficiently large. In fact, if we assume that

the ambient dimension N is fixed here, then δ and n depend on the

accuracy ε and probability η as

δ .
√

ε and n &
log(η−1N(δ,K))
√

ε log
(
1+√

ε
) .

Using that log(1 + x) = x + O(x2) for small values of x, the

requirement on the number of nodes behaves like

n &
log

(
η−1N

(√
ε,K

))

ε

whenever ε is sufficiently small. Using a simple bound

on the covering number, this yields a coarse estimate of

n & ε−1 log(η−1/ε).

Remark 3. If we instead assume that N is variable, then, under

the assumption that f is Hölder continuous with exponent β ,

one should expect that n = ω(N2βN) as N → ∞ (in light

of Remark 10 and in conjunction with Theorem 6 with log(1 +
1/x) ≈ 1/x for large x). In other words, the number of nodes

required in the hidden layer is superexponential in the dimension.

This dependence of n on N may be improved by means of more

refined proof techniques. As for α, if follows from Remark 12 that

α = 2(1) as N → ∞ provided
∫
R
|vρ(v)|dv < ∞.

Remark 4. The κ-Lipschitz assumption on the activation function

ρ may likely be removed. Indeed, since (∗∗∗) in Equation 12 can

be bounded instead by leveraging continuity of the L1 norm with

respect to translation, the only term whose bound depends on the

Lipschitz property of ρ is (∗). However, the randomness in In (that

we did not use to obtain the bound in Equation 13) may be enough

to control (∗) in most cases. Indeed, to bound (∗), we require

control over quantities of the form
∣∣∣ρ

(
α
(
〈wk, x − yk〉 − uk

))
−

ρ

(
α
(
〈wk, z − yk〉 − uk

))∣∣∣. For most practical realizations of ρ,

this difference will be small with high probability (on the draws of

yk,wk, uk), whenever ‖x− z‖2 is sufficiently small.

3.3 Results on sub-manifolds of Euclidean
space

The constructions of RVFL networks presented in

Theorems 5, 6 depend heavily on the dimension of the ambient

space R
N . Indeed, the random variables used to construct the

input-to-hidden layer weights and biases for these neural networks

areN-dimensional objects; moreover, it follows from Equations 15,

16 that the lower bound on the number n of nodes in the hidden

layer depends superexponentially on the ambient dimension N.

If the ambient dimension is small, these dependencies do not

present much of a problem. However, many modern applications

require the ambient dimension to be large. Fortunately, a common

assumption in practice is that signals of interest have (e.g.,

manifold) structure that effectively reduces their complexity. Good

theoretical results and algorithms in a number of settings typically

depend on this induced smaller dimension rather than the ambient

dimension. For this reason, it is desirable to obtain approximation

results for RVFL networks that leverage the underlying structure of

the signal class of interest, namely, the domain of f ∈ Cc(R
N).

One way to introduce lower-dimensional structure in the

context of RVFL networks is to assume that supp(f ) lies on a

subspace of RN . More generally, and motivated by applications,

we may consider the case where supp(f ) is actually a submanifold

of RN . To this end, for the remainder of this section, we assume

M ⊂ R
N to be a smooth, compact d-dimensional manifold and

consider the problem of approximating functions f ∈ C(M) using

RVFL networks. As we are going to see, RVFL networks in this

setting yield theoretical guarantees that replace the dependencies

of Theorems 5, 6 on the ambient dimension N with dependencies

on the manifold dimension d. Indeed, one should expect that the

random variables {wk}nk=1
, {bk}nk=1

are essentially d-dimensional

objects (rather than N-dimensional) and that the lower bound

on the number of network nodes in Theorem 6 scales as a

(superexponential) function of d rather than N.

3.3.1 Adapting RVFL networks to d-manifolds
As in Section 2.2, let {(Uj,φj)}j∈J be an atlas for the

smooth, compact d-dimensional manifold M ⊂ R
N with the

corresponding compactly supported partition of unity {ηj}j∈J . Since
M is compact, we assume without loss of generality that |J| < ∞.

Indeed, if we additionally assume thatM satisfies the property that

there exists an r > 0 such that, for each x ∈ M, M ∩ BN2 (x, r)

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2024.1284706
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Needell et al. 10.3389/fams.2024.1284706

is diffeomorphic to an ℓ2 ball in R
d with diffeomorphism close to

the identity, then one can choose an atlas {(Uj,φj)}j∈J with |J| .

2dTdvol(M)r−d by intersecting M with ℓ2 balls in R
N of radii

r/2 [40]. Here, Td is the so-called thickness of the covering and

there exist coverings such that Td . d log(d).

Now, for f ∈ C(M), Lemma 2 implies that

f (x) =
∑

{j∈J : x∈Uj}
(f̂j ◦ φj)(x) (17)

for all x ∈ M, where

f̂j(z) : =
{
f (φ−1

j (z)) ηj(φ
−1
j (z)) z ∈ φj(Uj)

0 otherwise.

As we will see, the fact that M is smooth and compact implies

f̂j ∈ Cc(R
d) for each j ∈ J, and so we may approximate each

f̂j using RVFL networks on R
d as in Theorems 5, 6. In this

way, it is reasonable to expect that f can be approximated on

M using a linear combination of these low-dimensional RVFL

networks. More precisely, we propose approximating f on M via

the following process:

1. For each j ∈ J, approximate f̂j uniformly on φj(Uj) ⊂ R
d using a

RVFL network f̃nj as in Theorems 5, 6;

2. Approximate f uniformly on M by summing these RVFL

networks over J, i.e.,

f (x) ≈
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

for all x ∈ M.

3.3.2 Main results on d-manifolds
We now prove approximation results for the manifold RVFL

network architecture described in Section 3.3.1. For notational

clarity, from here onward, we use lim{nj}j∈J→∞ to denote the limit

as each nj tends to infinity simultaneously. The first theorem that

we prove is an asymptotic approximation result for continuous

functions on manifolds using the RVFL network construction

presented in Section 3.3.1. This theorem is the manifold-equivalent

of Theorem 5.

Theorem 7. Let M ⊂ R
N be a smooth, compact d-dimensional

manifold with finite atlas {(Uj,φj)}j∈J and f ∈ C(M). Fix any

activation function ρ ∈ L1(R) ∩ L∞(R) with
∫
R

ρ(z)dz = 1. For

any ε > 0, there exist constants αj,�j > 0 for each j ∈ J such that

the following holds. If, for each j ∈ J and for k ∈ N, the random

variables

w
(j)

k
∼ Unif([−αj�j,αj�j]

d);

y
(j)

k
∼ Unif(φj(Uj));

u
(j)

k
∼ Unif([−π

2 (2Lj + 1), π
2 (2Lj + 1)]),

where Lj : = ⌈ 2d
π
rad(φj(Uj))�j − 1

2 ⌉,

are independently drawn from their associated distributions, and

b
(j)

k
: = −〈w(j)

k
, y

(j)

k
〉 − αju

(j)

k
,

then there exist hidden-to-output layer weights {v(j)
k
}nj
k=1

⊂ R such

that the sequences of RVFL networks {f̃nj }∞nj=1 defined by

f̃nj (z) : =
nj∑

k=1

v
(j)

k
ρ
(
〈w(j)

k
, z〉 + b

(j)

k

)
, for z ∈ φj(Uj)

satisfy

E

∫

M

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣
2

dx ≤ ε + O(1/min
j∈J

nj)

as {nj}j∈J → ∞.

Proof. We wish to show that there exist sequences of RVFL

networks {f̃nj}∞nj=1 defined on φj(Uj) for each j ∈ J, which together

satisfy the asymptotic error bound

E

∫

M

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣
2

dx ≤ ε + O(1/min
j∈J

nj)

as {nj}j∈J → ∞.Wewill do so by leveraging the result of Theorem 5

on each φj(Uj) ⊂ R
d.

To begin, recall that we may apply the representation given by

Equation 17 for f on each chart (Uj,φj); the RVFL networks f̃nj we

seek are approximations of the functions f̂j in this expansion. Now,

as supp(ηj) ⊂ Uj is compact for each j ∈ J, it follows that each set

φj(supp(ηj)) is a compact subset ofRd. Moreover, because f̂j(z) 6= 0

if and only if z ∈ φj(Uj) and φ−1
j (z) ∈ supp(ηj) ⊂ Uj, we have that

f̂j = f̂j|φj(supp(ηj) is supported on a compact set. Hence, f̂j ∈ Cc(R
d)

for each j ∈ J, and so we may apply Lemma 4 to obtain the uniform

limit representation given by Equation 7 on φj(Uj), that is,

f̂j(z) = lim
�j→∞

lim
αj→∞

∫

K(�j)
Fαj ,�j (y,w, u)ρ

(
αj〈w, z〉

+bαj (y,w, u)
)
dydwdu,

where we define

K(�j) : = φj(Uj)× [−�j,�j]
d × [−π

2 (2Lj + 1), π
2 (2Lj + 1)].

In this way, the asymptotic error bound that is the final result

of Theorem 5, namely

E

∫

φj(Uj)

∣∣f̂j(z)− f̃nj (z)
∣∣2dz ≤ εj + O(1/nj) (18)

holds. With these results in hand, we may now continue with the

main body of the proof.

Since the representation given by Equation 17 for f on each

chart (Uj,φj) yields

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj◦φj)(x)

∣∣∣∣ ≤
∑

{j∈J : x∈Uj}

∣∣∣(f̂j◦φj)(x)−(f̃nj ◦φj)(x)
∣∣∣
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for all x ∈ M, Jensen’s inequality allows us to bound the mean

square error of our RVFL approximation by

E

∫

M

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣
2

dx

≤ |J| · E
∫

M

∑

{j∈J : x∈Uj}

∣∣∣(f̂j ◦ φj)(x)− (f̃nj ◦ φj)(x)
∣∣∣
2
dx

︸ ︷︷ ︸
(∗)

(19)

To bound (∗), note that the change of variables given by

Equation 2 implies

∫

M

∑

{j∈J : x∈Uj}

∣∣∣(f̂j ◦ φj)(x)− (f̃nj ◦ φj)(x)
∣∣∣
2
dx

=
∑

j∈J

∫

φj(Uj)

∣∣f̂j(z)− f̃nj (z)
∣∣2

| det(Dφj(φ
−1
j (z)))|

dz

for each j ∈ J. Defining βj : = infy∈Uj | det(Dφj(y))|, which is

necessarily bounded away from zero for each j ∈ J by compactness

ofM, we therefore have

(∗) ≤
∑

j∈J
β−1
j E

∫

φj(Uj)

∣∣f̂j(z)− f̃nj (z)
∣∣2dz.

Hence, applying Equation 18 for each j ∈ J yields

(∗) ≤
∑

j∈J
β−1
j

(
εj + O(1/nj)

)
=

∑

j∈J

εj

βj
+ O(1/min

j∈J
nj) (20)

because
∑

j∈J 1/nj ≤ |J|/minj∈J nj. With the bound given by

Equation 20 in hand, Equation 19 becomes

E

∫

M

∣∣∣∣f (x)−
∑

{j∈J :
x∈Uj}

(f̃nj ◦ φj)(x)

∣∣∣∣
2

dx ≤ |J|
∑

j∈J

εj

βj
+ O(1/min

j∈J
nj)

as {nj}j∈J → ∞, and so the proof is completed by taking each εj > 0

in such a way that

ε = |J|
∑

j∈J

εj

βj
,

and choosing αj,�j > 0 accordingly for each j ∈ J.

Remark 5. Note that the neural-network architecture obtained in

Theorem 7 has the following form in the case of a generic atlas.

To obtain the estimate of f (x), the input x is first “pre-processed”

by computing φj(x) for each j ∈ J such that x ∈ Uj, and then

put through the corresponding RVFL network. However, using the

Geometric Multi-Resolution Analysis approach from Allard et al.

[42] (as we do in Section 3.4), one can construct an approximation

(in an appropriate sense) of the atlas, with maps φj being linear.

In this way, the pre-processing step can be replaced by the layer

computing φj(x), followed by the RVFL layer fj. We refer the reader

to Section 3.4 for the details.

The biggest takeaway from Theorem 7 is that the same asymptotic

mean-square error behavior we saw in the RVFL network

architecture of Theorem 5 holds for our RVFL-like construction

on manifolds, with the added benefit that the input-to-hidden layer

weights and biases are now d-dimensional random variables rather

than N-dimensional. Provided the size of the atlas |J| is not too
large, this significantly reduces the number of random variables

that must be generated to produce a uniform approximation of

f ∈ C(M).

One might expect to see a similar reduction in dimension

dependence for the non-asymptotic case if the RVFL network

construction of Section 3.3.1 is used. Indeed, our next theorem,

which is the manifold-equivalent of Theorem 6, makes this explicit:

Theorem 8. Let M ⊂ R
N be a smooth, compact d-dimensional

manifold with finite atlas {(Uj,φj)}j∈J and f ∈ C(M). Fix any

activation function ρ ∈ L1(R) ∩ L∞(R) such that ρ is κ-Lipschitz

on R for some κ > 0 and
∫
R

ρ(z)dz = 1. For any ε > 0, there exist

constants αj,�j > 0 for each j ∈ J such that the following holds.

Suppose, for each j ∈ J and for k = 1, ..., nj, the random variables

w
(j)

k
∼ Unif([−αj�j,αj�j]

d);

y
(j)

k
∼ Unif(φj(Uj));

u
(j)

k
∼ Unif([−π

2 (2Lj + 1), π
2 (2Lj + 1)]),

where Lj : = ⌈ 2d
π
rad(φj(Uj))�j − 1

2 ⌉,

are independently drawn from their associated distributions, and

b
(j)

k
: = −〈w(j)

k
, y

(j)

k
〉 − αju

(j)

k
.

Then, there exist hidden-to-output layer weights {v(j)
k
}nj
k=1

⊂ R

such that, for any

0 < δj <
√

ε

8|J|
√

dvol(M)κα2
j Mj�j(�j/π)dvol(φj(Uj))(π+2drad(φj(Uj))�)

,

and

nj ≥
2c|J|

√
vol(M)C(j)αj(�j/π)

d(π+2drad(φj(Uj))�j) log(3|J|η−1N(δj ,φj(Uj)))
√

ε log
(
1+

√
ε

2|J|
√

vol(M)C(j)αj(�j/π)
d (π+2drad(φj(Uj))�j)

) ,

where Mj : = supz∈φj(Uj)
|f̂j(z)|, c > 0 is a numerical constant,

and C(j)
: = 2Mj‖ρ‖∞vol(φj(Uj)), the sequences of RVFL networks

{f̃nj }∞nj=1 defined by

f̃nj (z) : =
nj∑

k=1

v
(j)

k
ρ
(
〈w(j)

k
, z〉 + b

(j)

k

)
, for z ∈ φj(Uj)

satisfy

∫

M

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣
2

dx < ε

with probability at least 1− η.
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Proof. See Section 3.5.5.

As alluded to earlier, an important implication of Theorems 7, 8

is that the random variables {w(j)

k
}nj
k=1

and {b(j)
k
}nj
k=1

are d-

dimensional objects for each j ∈ J. Moreover, bounds for δj

and nj now have superexponential dependence on the manifold

dimension d instead of the ambient dimension N. Thus,

introducing the manifold structure removes the dependencies on

the ambient dimension, replacing them instead with the intrinsic

dimension ofM and the complexity of the atlas {(Uj,φj)}j∈J .

Remark 6. The bounds on the covering radii δj and hidden layer

nodes nj needed for each chart in Theorem 8 are not optimal.

Indeed, these bounds may be further improved if one uses the local

structure of the manifold, through quantities such as its curvature

and reach. In particular, the appearance of |J| in both bounds

may be significantly improved upon if the manifold is locally

well-behaved.

3.4 Numerical simulations

In this section, we provide numerical evidence to support

the result of Theorem 8. Let M ⊂ R
N be a smooth, compact

d-dimensional manifold. Since having access to an atlas for M is

not necessarily practical, we assume instead that we have a suitable

approximation to M. For our purposes, we will use a Geometric

Multi-Resolution Analysis (GMRA) approximation of M (see

[42]; and also, e.g., [43] for a complete definition).

A GMRA approximation of M provides a collection

{(Cj,Pj)}j∈{1,...J} of centers Cj = {cj,k}
Kj

k=1
⊂ R

N and affine

projections Pj = {Pj,k}
Kj

k=1
on R

N such that, for each j ∈ {1, . . . , J},
the pairs {(cj,k, Pj,k)}

Kj

k=1
define d-dimensional affine spaces that

approximate M with increasing accuracy in the following sense.

For every x ∈ M, there exists C̃x > 0 and k′ ∈ {1, . . . ,Kj} such
that

‖x− Pj,k′x‖2 ≤ C̃x2
−j (21)

holds whenever ‖x− cj,k′‖2 is sufficiently small.

In this way, a GMRA approximation ofM essentially provides

a collection of approximate tangent spaces toM. Hence, a GMRA

approximation having fine enough resolution (i.e., large enough j)

is a good substitution for an atlas. In practice, one must often first

construct a GMRA from empirical data, assumed to be sampled

from appropriate distributions on the manifold. Indeed, this is

possible, and yields the so-called empirical GMRA, studied in

Maggioni et al. [44], where finite-sample error bounds are provided.

The main point is that given enough samples on the manifold, one

can construct a good GMRA approximation of the manifold.

Let {(cj,k, Pj,k)}
Kj

k=1
be a GMRA approximation of M for

refinement level j. Since the affine spaces defined by (cj,k, Pj,k) for

each k ∈ {1, . . . ,Kj} are d-dimensional, we will approximate f

on M by projecting it (in an appropriate sense) onto these affine

spaces and approximating each projection using an RVFL network

on R
d. To make this more precise, observe that, since each affine

projection acts on x ∈ M as Pj,kx = cj,k + 8j,k(x − cj,k) for some

othogonal projection 8j,k : R
N → R

N , for each k ∈ {1, . . .Kj}, we
have

f (Pj,kx) = f
(
cj,k+8j,k(x−cj,k)

)
= f

(
(IN−8j,k)cj,k+Uj,kDj,kV

T
j,kx

)
,

where 8j,k = Uj,kDj,kV
T
j,k

is the compact singular value

decomposition (SVD) of 8j,k (i.e., only the left and right singular

vectors corresponding to non-zero singular values are computed).

In particular, the matrix of right-singular vectors Vj,k : R
d → R

N

enables us to define a function f̂j,k : R
d → R, given by

f̂j,k(z) : = f
(
(IN − 8j,k)cj,k + Uj,kDj,kz

)
, z ∈ R

d,

which satisfies f̂j,k(V
T
j,k
x) = f (Pj,kx) for all x ∈ M. By continuity

of f and Equation 21, this means that for any ε > 0, there exists

j ∈ N such that |f (x)− f̂j,k(V
T
j,k
x)| < ε for some k ∈ {1, . . . ,Kj}. For

such k ∈ {1, . . . ,Kj}, we may therefore approximate f on the affine

space associated with (cj,k, Pj,k) by approximating f̂j,k using a RFVL

network f̃nj,k : R
d → R of the form

f̃nj,k (z) : =
nj,k∑

ℓ=1

v
(j,k)
ℓ ρ

(
〈w(j,k)

ℓ , z〉 + b
(j,k)
ℓ

)
, (22)

where {w(j,k)
ℓ }nj,kℓ=1 ⊂ R

d and {b(j,k)ℓ }nj,kℓ=1 ⊂ R are random

input-to-hidden layer weights and biases (resp.) and the hidden-

to-output layer weights {v(j,k)ℓ }nj,kℓ=1 ⊂ R are learned. Choosing

the activation function ρ and random input-to-hidden layer

weights and biases as in Theorem 8 then guarantees that

|f (Pj,kx)− f̃nj,k (V
T
j,k
x)| is small with high probability whenever nj,k is

sufficiently large.

In light of the above discussion, we propose the following

RVFL network construction for approximating functions f ∈
C(M): Given a GMRA approximation ofM with sufficiently high

resolution j, construct and train RVFL networks of the form given

by Equation 22 for each k ∈ {1, . . . ,Kj}. Then, given x ∈ M and

ε > 0, choose k′ ∈ {1, . . . ,Kj} such that

cj,k′ ∈ argmin
cj,k∈Cj

‖x− cj,k‖2

and evaluate f̃nj,k′ (x) to approximate f (x). We

summarize this algorithm in Algorithm 1. Since

the structure of the GMRA approximation implies

‖x − Pj,k′x‖2 ≤ Cx2
−2j holds for our choice of

k′ ∈ {1, . . . ,Kj} [see 43], continuity of f and Lemma 5 imply

that, for any ε > 0 and j large enough,

|f (x)− f̃nj,k′ (V
T
j,k′x)| ≤ |f (x)− f̂j,k′ (V

T
j,k′x)| + |f̂j,k′ (VT

j,k′x)

−f̃nj,k′ (V
T
j,k′x)| < ε

holds with high probability, provided nj,k′ satisfies the requirements

of Theorem 8.

Remark 7. In the RVFL network construction proposed above,

we require that the function f be defined in a sufficiently large

region around the manifold. Essentially, we need to ensure that f
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Given: f ∈ C(M); GMRA approximation {(cj,k , Pj,k)}
Kj

k=1
of M

at scale j

Output: y♯ ≈ f (x) for any x ∈ M

Step 1: For each k ∈ {1, . . . ,Kj}, construct and train1 an

RVFL network f̃nj,k of the form given by Equation 22

Step 2: For any x ∈ M, find cj,k′ ∈ argmincj,k∈Cj
‖x− cj,k‖2

Step 3: Set y♯ = f̃nj,k′ (x)

Algorithm 1. Approximation algorithm.

is continuously defined on the set S : = M ∪ M̂j, where M̂j is the

scale-j GMRA approximation

M̂j : = {Pj,kj(z)z : ‖z‖2 ≤ rad(M)} ∩ BN2 (0, rad(M)).

This ensures that f can be evaluated on the affine subspaces given

by the GMRA.

To simulate Algorithm 1, we take M = S
2 embedded in R

20

and construct a GMRA up to level jmax = 15 using 20,000 data

points sampled uniformly from M. Given j ≤ jmax, we generate

RVFL networks f̂nj,k : R
2 → R as in Equation 22 and train them on

VT
j,k
(BN2 (cj,k, r)∩Tj,k) using the training pairs {(VT

k,j
xℓ, f (Pj,kxℓ))}pℓ=1,

where Tk,j is the affine space generated by (cj,k, Pj,k). For simplicity,

we fix nj,k = n to be constant for all k ∈ {1, . . . ,Kj} and use a single,
fixed pair of parameters α,� > 0 when constructing all RVFL

networks. We then randomly select a test set of 200 points x ∈ M

for use throughout all experiments. In each experiment (i.e., point

in Figure 1), we use Algorithm 1 to produce an approximation

y♯ = f̃nj,k′ (x) of f (x). Figure 1 displays the mean relative error in

these approximations for varying numbers of nodes n; to construct

this plot, f is taken to be the exponential f (x) = exp(
∑N

k=1 x(k))

and ρ the hyperbolic secant function. Notice that for small numbers

of nodes, the RVFL networks are not very good at approximating f ,

regardless of the choice of α,� > 0. However, the error decays

as the number of nodes increases until reaching a floor due to

error inherent in the GMRA approximation. Hence, as suggested

by Theorem 3, to achieve a desired error bound of ε > 0, one

needs to only choose a GMRA scale j such that the inherent error

in the GMRA (which scales like 2−j) is less than ε, then adjust the

parameters αj, �j, and nj,k accordingly.

Remark 8. As we just mentioned, the error can only decay so far

due to the resolution of the GMRA approximation. However, that

is not the only floor in our simulation; indeed, the ε in Theorem 3

is determined by the αj’s and �j’s, which we kept fixed (see the

caption of Figure 1). Consequently, the stagnating accuracy as n

increases, as seen in Figure 1, is also predicted by Theorem 3. Since

the solid and dashed lines seem to reach the same floor, the floor

due to error inherent in the GMRA approximation seems to be

the limiting error term for RVFL networks with large numbers of

nodes.

1 The construction and training of RVFL networks is left as a “black box”

procedure. How to best choose a specific activation function ρ(z) and train

each RVFL network given by Equation 22 is outside of the scope of this study.

The reader may, for instance, select from the range of methods available for

training neural networks.

Remark 9. Utilizing random inner weights and biases resulted

in us needing to approximate the atlas to the manifold. To

this end, knowing the computational complexity of the GMRA

approximation would be useful in practice. As it turns out in

Liao and Maggioni [45], calculating the GMRA approximation

has computational complexity O(CdNm log(m)), where m is the

number of training data points and C > 0 is a numerical constant.

3.5 Proofs of technical lemmas

3.5.1 Proof of Lemma 3
Observe that h� defined in Equation 3 may be viewed as a

multidimensional bump function; indeed, the parameter � > 0

controls the width of the bump. In particular, if � is allowed to

grow very large, then h� becomes very localized near the origin.

Objects that behave in this way are known in the functional analysis

literature as approximate δ-functions:

Definition 2. A sequence of functions {ϕt}t>0 ⊂ L1(RN) are called

approximate (or nascent) δ-functions if

lim
t→∞

∫

RN
ϕt(x)f (x)dx = f (0)

for all f ∈ Cc(R
N). For such functions, we write δ0(x) =

limt→∞ ϕt(x) for all x ∈ R
N , where δ0 denotes the N-dimensional

Dirac δ-function centered at the origin.

Given ϕ ∈ L1(RN) with
∫
RN ϕ(x)dx = 1, one may construct

approximate δ-functions for t > 0 by defining ϕt(x) : = tNϕ(tx)

for all x ∈ R
N [46]. Such sequences of approximate δ-functions

are also called approximate identity sequences [47] since they satisfy

a particularly nice identity with respect to convolution, namely,

limt→∞ ‖f ∗ϕt−f ‖1 = 0 for all f ∈ Cc(R
N) [see 47, Theorem 6.32].

In fact, such an identity holds much more generally.

Lemma 6. [46, Theorem 1.18] Let ϕ ∈ L1(RN) with∫
RN ϕ(x)dx = 1 and for t > 0 define ϕt(x) : = tNϕ(tx) for all

x ∈ R
N . If f ∈ Lp(RN) for 1 ≤ p < ∞ (or f ∈ C0(R

N) ⊂ L∞(RN)

for p = ∞), then limt→∞ ‖f ∗ ϕt − f ‖p = 0.

To prove Equation 4, it would suffice to have

lim�→∞‖f ∗ h� − f ‖∞ = 0, which is really just Lemma 6 in

case p = ∞. Nonetheless, we present a proof by mimicking [46] for

completeness. Moreover, we will use a part of proof in Remark 10

below.

Lemma 7. Let h ∈ L1(Rn) with
∫
RN h(x)dx = 1 and define h� ∈

L1(RN) as in Equation 3 for all� > 0. Then, for all f ∈ C0(R
N), we

have

lim
�→∞

sup
x∈RN

∣∣(f ∗ h�)(x)− f (x)
∣∣ = 0.

Proof. By symmetry of the convolution operator in its arguments,

we have

sup
x∈RN

∣∣(f ∗ h�)(x)− f (x)
∣∣ = sup

x∈RN

∣∣∣
∫

RN
f (y)h�(x− y)dy− f (x)

∣∣∣

= sup
x∈RN

∣∣∣
∫

RN
f (x− y)h�(y)dy− f (x)

∣∣∣.
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FIGURE 1

Log-scale plot of average relative error for Algorithm 1 as a function of the number of nodes n in each RVFL network. Black (cross), blue (circle), and
red (square) lines correspond to GMRA refinement levels j = 12, j = 9, and j = 6 (resp.). For each j, we fix αj = 2 and vary �j = 10, 15 (solid and dashed
lines, resp.). Reconstruction error decays as a function of n until reaching a floor due to error in the GMRA approximation of M. The code used to
obtain these numerical results is available upon direct request sent to the corresponding author.

Since a simple substitution yields 1 =
∫
RN h(x)dx =

∫
RN h�(x)dx,

it follows that

sup
x∈RN

∣∣(f ∗ h�)(x)− f (x)
∣∣ = sup

x∈RN

∣∣∣
∫

RN

(
f (x− y)− f (x)

)
h�(y)dy

∣∣∣

≤
∫

RN
|h�(y)| sup

x∈RN

∣∣f (x)− f (x− y)
∣∣dy.

Finally, expanding the function h�, we obtain

sup
x∈RN

∣∣(f ∗ h�)(x)− f (x)
∣∣

≤
∫

RN

(
�N |h(�y)|

)
sup
x∈RN

∣∣f (x)− f (x− y)
∣∣dy

=
∫

RN
|h(z)| sup

x∈RN

∣∣f (x)− f (x− z/�)
∣∣dz,

where we have used the substitution z = �y. Taking limits on both

sides of this expression and observing that

∫

RN
|h(z)| sup

x∈RN

∣∣f (x)− f (x− z/�)
∣∣dz ≤ 2‖h‖1 sup

x∈RN

|f (x)| < ∞,

using the Dominated Convergence Theorem, we obtain

lim
�→∞

sup
x∈RN

∣∣(f ∗ h�)(x)− f (x)
∣∣

≤
∫
RN |h(z)| lim�→∞ supx∈RN

∣∣f (x)− f (x− z/�)
∣∣dz.

So, it suffices to show that, for all z ∈ R
N ,

lim
�→∞

sup
x∈RN

∣∣f (x)− f (x− z/�)
∣∣ = 0.

To this end, let ε > 0 and z ∈ R
N be arbitrary. Since f ∈

C0(R
N), there exists r > 0 sufficiently large such that |f (x)| < ε/2

for all x ∈ R
N \ B(0, r), where B(0, r) ⊂ R

N is the closed ball of

radius r centered at the origin. Let B : = B(0, r + ‖z/�‖2), so that

for each x ∈ R
N \ B we have both x and x − z/� in R

N \ B(0, r).
Thus, both |f (x)| < ε/2 and |f (x− z/�)| < ε/2, implying that

sup
x∈RN\B

∣∣f (x)− f (x− z/�)
∣∣ < ε.

Hence, we obtain

lim
�→∞

sup
x∈RN

∣∣f (x)− f (x− z/�)
∣∣

≤ lim
�→∞

max
{
sup
x∈B

∣∣f (x)− f (x− z/�)
∣∣,

sup
x∈RN\B

∣∣f (x)− f (x− z/�)
∣∣
}

≤ max
{
ε, lim

�→∞
sup
x∈B

∣∣f (x)− f (x− z/�)
∣∣
}
.

Now, as B is a compact subset of RN , the continuous function

f is uniformly continuous on B, and so the remaining limit and

supremum may be freely interchanged, whereby continuity of f

yields

lim
�→∞

sup
x∈B

∣∣f (x)− f (x−z/�)
∣∣ = sup

x∈B
lim

�→∞

∣∣f (x)− f (x−z/�)
∣∣ = 0.

Since ε > 0 may be taken arbitrarily small, we have proved the

result.

Remark 10. While Lemma 7 does the approximation we aim for, it

gives no indication of how fast

sup
x∈RN

∣∣(f ∗ h�)(x)− f (x)
∣∣

decays in terms of � or the dimension N. Assuming h(z) =
g(z(1)) · · · g(z(N)) for some non-negative g (which is how we will
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choose h in Section 3.5.2) and f to be β-Hölder continuous for some

fixed β ∈ (0, 1) yields that

sup
x∈RN

∣∣(f ∗ h�)(x)− f (x)
∣∣

≤
∫

RN
|h(z)| sup

x∈RN

∣∣f (x)− f (x− z/�)
∣∣dz

. �−β

∫

RN
‖z‖β

2 h(z)dz

≤ �−β

( ∫

RN

(
z(1)2 + · · · + z(N)2

)
h(z)dz

)β/2

≤ �−β

(
N max

j∈{1,...,N}

∫

RN
z(j)2h(z)dz

)β/2

= (
√
N/�)β

(
max

j∈{1,...,N}

∫

R

z(j)2g(z(j))dz(j)

)β/2

= (
√
N/�)β

( ∫

R

z(1)2g(z(1))dz(1)

)β/2

. (
√
N/�)β

where the third inequality follows from Jensen’s inequality.

3.5.2 Proof of Lemma 4: the limit-integral
representation

Let A ∈ C∞(R) be any even function supported on [− 1
2 ,

1
2 ] s.t.

‖A‖2 = 1. Then, φ = A∗A ∈ C∞(R) is an even function supported

on [−1, 1] s.t. φ(0) = 1. Lemma 3 implies that

f (x) = lim
�→∞

(f ∗ h�)(x) (23)

uniformly in x ∈ K for any h ∈ L1(RN) satisfying
∫
RN h(z)dz =

1. We choose

h(z) = 1

(2π)N

∫

RN
exp(i〈w, z〉)

N∏

j=1

φ(w(j))dw

which the reader may recognize as the (inverse) Fourier transform

of
∏N

j=1 φ(w(j)). As we announced in Remark 10, h(z) =
g(z(1)) · · · g(z(N)), where (using the convolution theorem)

g(z(j)) = 1

2π

∫

R

exp(iw(j)z(j))φ(w(j))dw(j)

= 1

2π

∫

R

exp(iw(j)z(j))(A ∗ A)(w(j))dw(j)

= 2π

(
1

2π

∫

R

exp(iw(j)z(j))A(w(j))dw(j)

)2

≥ 0

Moreover, since g is the Fourier transform of an even function,

h is real-valued and also even. In addition, since φ is smooth, h

decays faster than the reciprocal of any polynomial (as follows from

repeated integration by parts and the Riemann–Lebesgue lemma),

so h ∈ L1(RN). Thus, Fourier inversion yields

∫

RN
h(z)dz =

∫

RN
exp(−i〈w, z〉)h(z)dz

∣∣∣
w=0

=
N∏

j=1

φ(0) = 1,

which justifies our application of Lemma 3. Expanding the right-

hand side of Equation 23 (using the scaling property of the Fourier

transform) yields that

(f ∗ h�)(x) =
∫

RN
f (y)h�(x− y)dy

= 1

(2π)N

∫

K
f (y)

∫

RN
exp(i〈w, x− y〉)

N∏

j=1

φ(w(j)/�)dwdy

= 1

(2π)N

∫

K

∫

[−�,�]N
f (y) cos(〈w, x− y〉)

N∏

j=1

φ(w(j)/�)dwdy (24)

because φ is even and supported on [−1, 1]. Since Equation 24 is

an iterated integral of a continuous function over a compact set,

Fubini’s theorem readily applies, yielding

f (x) = lim
�→∞

(f ∗ h�)(x)

= lim
�→∞

1

(2π)N

∫

K×[−�,�]N
f (y) cos(〈w, x− y〉)

N∏

j=1

φ(w(j)/�)dydw.

Since |〈w, x − y〉| ≤ ‖x − y‖1‖w‖∞ ≤ 2Nrad(K)� ≤ (L + 1
2 )π , it

follows that

f (x) = lim
�→∞

1

(2π)N

∫

K×[−�,�]N
f (y) cos�(〈w, x− y〉)

N∏

j=1

φ(w(j)/�)dydw (25)

where cos� is defined in Equation 5.

With the representation given by Equation 25 in hand, we now

seek to reintroduce the general activation function ρ. To this end,

since cos� ∈ Cc(R) ⊂ C0(R) we may apply the convolution

identity given by Equation 4 with f replaced by cos� to obtain

cos�(z) = limα→∞(cos� ∗hα)(z) uniformly for all z ∈ R, where

hα(z) = αρ(αz). Using this representation of cos� in Equation 25,

it follows that

f (x) = lim
�→∞

1

(2π)N

∫

K×[−�,�]N
f (y)

(
lim

α→∞

(
cos� ∗hα

)(
〈w, x− y〉

))

N∏

j=1

φ(w(j)/�)dydw

holds uniformly for all x ∈ K. Since f is continuous and

the convolution cos� ∗hα is uniformly continuous and uniformly

bounded in α by ‖ρ‖1 (see below), the fact that the domain K ×
[−�,�]N is compact then allows us to bring the limit as α tends

to infinity outside the integral in this expression via the Dominated

Convergence Theorem, which gives us
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f (x) = lim
�→∞

lim
α→∞

1

(2π)N

∫

K×[−�,�]N
f (y)

(
cos� ∗hα

)

(
〈w, x− y〉

) N∏

j=1

φ(w(j)/�)dydw (26)

uniformly for every x ∈ K. The uniform boundedness of the

convolution follows from the fact that

(cos� ∗hα)(z) =
∫

R

cos�(z − u)hα(u)du

=
∫

R

cos�(z − v/α)ρ(v)dv, (27)

where v = αu.

Remark 11. It should be noted that we are unable to swap the order

of the limits in Equation 26, since cos� is not in C0(R) when � is

allowed to be infinite.

Remark 12. Complementing Remark 10, we will now elucidate

how fast

|cos�(z)− (cos� ∗hα)(z)|

decays in terms of α. Using the fact that
∫
R

ρ(z)dz = 1,

Equation 27 and the triangle inequality allows us to bound the

absolute difference above by

∫

R

|cos�(z)− cos�(z − v/α)| · |ρ(v)|dv.

Since cos� is 1-Lipschitz, it follows that the above integral is

bounded by
∫
R
|vρ(v)| dv/α.

To complete this step of the proof, observe that the definition

of cos� allows us to write

(cos� ∗hα)(z) = α

∫

R

cos�(u)ρ
(
α(z − u)

)
du

= α

∫ π
2 (2L+1)

− π
2 (2L+1)

cos�(u)ρ
(
α(z − u)

)
du (28)

By substituting Equation 28 into Equation 26, we then obtain

f (x) = lim
�→∞

lim
α→∞

α

(2π)N

∫

K(�)
f (y) cos�(u)ρ

(
α
(
〈w, x− y〉 − u

))

N∏

j=1

φ(w(j)/�)dydwdu

uniformly for all x ∈ K, where K(�) : = K × [−�,�]N ×
[−π

2 (2L + 1), π
2 (2L + 1)]. In this way, recalling that

Fα,�(y,w, u) : = α
(2π)N

f (y) cos�(u)
∏N

j=1 φ(w(j)/�), and

bα(y,w, u) : = −α(〈w, y〉+u) for y,w ∈ R
N and u ∈ R, we

conclude the proof.

3.5.3 Proof of Lemma 5: Monte-Carlo integral
approximation

The next step in the proof of Theorem 5 is to approximate

the integral in Equation 7 using the Monte-Carlo method. To this

end, let {yk}nk=1
, {wk}nk=1

, and {uk}nk=1
be independent samples

drawn uniformly from K, [−�,�]N , and [−π
2 (2L + 1), π

2 (2L +
1)], respectively, and consider the sequence of random variables

{In(x)}∞n=1 defined by

In(x) : =
vol(K(�))

n

n∑

k=1

Fα,�(yk,wk, uk)ρ
(
α〈wk, x〉 + bα(yk,wk, uk)

)

(29)

for each x ∈ K, where we note that vol(K(�)) = (2�)Nπ(2L +
1)vol(K). If we also define

I(x; p) : =
∫

K(�)

(
Fα,�(y,w, u)ρ

(
α〈w, x〉 + bα(y,w, u)

))p
dydwdu

for x ∈ K and p ∈ N, then we want to show that

E

∫

K
|I(x; 1)− In(x)|2dx = O(1/n) (30)

as n → ∞, where the expectation is taken with respect to the

joint distribution of the random samples {yk}nk=1
, {wk}nk=1

, and

{uk}nk=1
. For this, it suffices to find a constant C(f , ρ,α,�,N) < ∞

independent of n satisfying

∫

K
E|I(x; 1)− In(x)|2dx ≤ C(f , ρ,α,�,N)

n
.

Indeed, an application of Fubini’s theorem would then yield

E

∫

K
|I(x; 1)− In(x)|2dx ≤ C(f , ρ,α,�,N)

n
,

which implies Equation 30. To determine such a constant, we first

observe by Theorem 4 that

E|I(x; 1)− In(x)|2 =
vol2(K(�))σ (x)2

n
,

where we define the variance term

σ (x)2 : = I(x; 2)
vol(K(�))

− I(x; 1)2

vol2(K(�))

for x ∈ K. Since ‖φ‖∞ = 1 (see Lemma 8 below), it follows that

|Fα,�(y,w, u)| =
α

(2π)N
|f (y)| · |cos�(u)|

N∏

j=1

|φ(w(j)/�)| ≤ αM

(2π)N

for all y,w ∈ R
N and u ∈ R, where M : = supx∈K |f (x)| < ∞, we

obtain the following simple bound on the variance term

σ (x)2 ≤ I(x; 2)
vol(K(�))

≤ α2M2

(2π)2Nvol(K(�))∫

K(�)

∣∣∣ρ
(
α〈w, x〉 + bα(y,w, u)

)∣∣∣
2
dydwdu.
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Since we assume ρ ∈ L∞(R), we then have

∫

K
E|I(x; 1)− In(x)|2dx = vol2(K(�))

n

∫

K
σ (x)2dx

≤ α2M2vol(K(�))

(2π)2Nn

∫

K×K(�)

∣∣∣ρ
(
α〈w, x〉 + bα(y,w, u)

)∣∣∣
2
dxdydwdu

= α2M2vol2(K(�))vol(K)‖ρ‖2∞
(2π)2Nn

.

Substituting the value of vol(K(�)), we obtain

C(f , ρ,α,�,N) : = α2M2(�/π)2Nπ2(2L+ 1)2vol3(K)‖ρ‖2∞

is a suitable choice for the desired constant.

Now that we have established Equation 30, we may rewrite

the random variables In(x) in a more convenient form. To this

end, we change the domain of the random samples {wk}nk=1
to

[−α�,α�]N and define the new random variables {bk}nk=1
⊂ R

by bk : = −(〈wk, yk〉+αuk) for each k = 1, . . . , n. In this way, if we

denote

vk : =
vol(K(�))

n
Fα,�

(
yk,

wk

α
, uk

)

for each k = 1, . . . , n, the random variables {fn}∞n=1 defined by

fn(x) : =
n∑

k=1

vkρ
(
〈wk, x〉 + bk

)

satisfy fn(x) = In(x) for every x ∈ K. Combining this

with Equation 30, we have proved Lemma 5.

Lemma 8. ‖φ‖∞ = 1.

Proof. It suffices to prove that |φ(z)| ≤ 1 for all z ∈ R because

φ(0) = 1. By Cauchy–Schwarz,

|φ(z)| =
∣∣∣∣
∫

R

A(u)A(z − u)du

∣∣∣∣

≤
√∫

R

A(u)A(u)du

∫

R

A(z − u)A(z − u)du

=
√∫

R

A(u)A(0− u)du

∫

R

A(v)A(−v)dv =
√

φ(0)φ(0) = 1

because A is even.

3.5.4 Proof of Theorem 1 when ρ
′
∈ L

1(R) ∩ L
∞(R)

Let f ∈ Cc(R
N) with K : = supp(f ) and suppose ε > 0 is fixed.

Take the activation function ρ : R → R to be differentiable with

ρ′ ∈ L1(R)∩L∞(R).Wewish to show that there exists a sequence of

RVFL networks {fn}∞n=1 defined on K which satisfy the asymptotic

error bound

E

∫

K
|f (x)− fn(x)|2dx ≤ ε + O(1/n)

as n → ∞. The proof of this result is a minor modification of

second step in the proof of Theorem 5.

If we redefine hα(z) as αρ′(αz), then Equation 26 plainly still

holds and Equation 28 reads

(cos� ∗hα)(z) = α

∫

R

cos�(u)ρ
′(α(z − u)

)
du.

Recalling the definition of cos� in Equation 5 and integrating

by parts, we obtain

(cos� ∗hα)(z) = α

∫

R

cos�(u)ρ
′(α(z − u)

)
du

= −
∫ π

2 (2L+1)

− π
2 (2L+1)

cos�(u)dρ(α(z − u))

= − cos�(u)ρ(α(z − u))
∣∣∣

π
2 (2L+1)

− π
2 (2L+1)

+
∫ π

2 (2L+1)

− π
2 (2L+1)

ρ(α(z − u))d cos�(u)

= −
∫

R

sin�(u)ρ
(
α(z − u)

)
du

for all z ∈ R, where L : = ⌈ 2N
π
rad(K)� − 1

2 ⌉ and sin� : R →
[−1, 1] is defined analogously to Equation 5. Substituting this

representation of (cos� ∗hα)(z) into Equation 26 then yields

f (x) = lim
�→∞

lim
α→∞

−α

(2π)N

∫

K(�)
f (y) sin�(u)ρ

(
α(〈w, x− y〉 − u)

)

N∏

j=1

φ(w(j)/�)dydwdu

uniformly for every x ∈ K. Thus, if we replace the definition of Fα,�

in Equation 6 by

Fα,�(y,w, u) : =
−α

(2π)N
f (y) sin�(u)

N∏

j=1

φ(w(j)/�)

for y,w ∈ R
N and u ∈ R, we again obtain the uniform

representation given by Equation 7 for all x ∈ K. The remainder

of the proof proceeds from this point exactly as in the proof of

Theorem 5.

3.5.5 Proof of Theorem 8
We wish to show that there exist sequences of RVFL networks

{f̃nj }∞nj=1 defined on φj(Uj) for each j ∈ J, which together satisfy the

error bound

∫

M

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣
2

dx < ε

with probability at least 1−η for {nj}j∈J sufficiently large. The proof

is obtained by showing that

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣ <

√
ε

vol(M)
(31)
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holds uniformly for x ∈ M with high probability.

We begin as in the proof of Theorem 7 by applying the

representation given by Equation 17 for (f on each chart (Uj,φj),

which gives us

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣

≤
∑

{j∈J : x∈Uj}

∣∣∣(f̂j ◦ φj)(x)− (f̃nj ◦ φj)(x)
∣∣∣ (32)

for all x ∈ M. Now, since we have already seen that f̂j ∈ Cc(R
d)

for each j ∈ J, Theorem 6 implies that for any εj > 0, there

exist constants αj,�j > 0 and hidden-to-output layer weights

{v(j)
k
}nj
k=1

⊂ R for each j ∈ J such that for any

δj <

√
εj

8
√
2dκα2

j Mj�j(�j/π)dvol
3/2(φj(Uj))(π + 2drad(φj(Uj))�)

(33)

we have

∣∣∣f̂j(z)− f̃nj (z)
∣∣∣ <

√
εj

2vol(φj(Uj))

uniformly for all z ∈ φj(Uj) with probability at least 1−ηj, provided

the number of nodes nj satisfies

nj ≥
c6(j)αj(�j/π)

d(π + 2drad(φj(Uj))�j) log(3η
−1
j N(δj,φj(Uj)))

√
εj log

(
1+

√
εj

6(j)αj(�j/π)d(π+2drad(φj(Uj))�j)

) ,

(34)

where c > 0 is a numerical constant and 6(j)
: =

2C(j)
√
2vol(φj(Uj)). Indeed, it suffices to choose

v
(j)

k
: =

vol(K(�j))

nj
Fαj ,�j

(
y
(j)

k
,
w
(j)

k

αj
, u

(j)

k

)

for each k = 1, . . . , nj, where

K(�j) : = φj(Uj)× [−αj�j,αj�j]
d × [−π

2 (2Lj + 1), π
2 (2Lj + 1)]

for each j ∈ J. Combined with Equation 32, choosing δj and nj
satisfying Equations 33, 34, respectively, then yields

∣∣∣∣f (x) −
∑

{j∈J : x∈Uj}
(f̃nj ◦ φj)(x)

∣∣∣∣ <
∑

{j∈J : x∈Uj}

√
εj

2vol(φj(Uj))

≤
∑

j∈J

√
εj

2vol(φj(Uj))

for all x ∈ M with probability at least 1 −
∑

{j∈J : x∈Uj} ηj ≥
1−

∑
j∈J ηj. Since we require that Equation 31 holds for all x ∈ M

with probability at least 1 − η, the proof is then completed by

choosing {εj}j∈J and {ηj}j∈J , such that

ε = vol(M)

2

(∑

j∈J

√
εj

vol(φj(Uj))

)2
and η =

∑

j∈J
ηj.

In particular, it suffices to choose

εj =
2vol(φj(Uj)) ε

|J|2vol(M)

and ηj = η/|J| for each j ∈ J, so that Equations 33, 34 become

δj <

√
ε

8|J|
√
dvol(M)κα2

j Mj�j(�j/π)dvol(φj(Uj))(π + 2drad(φj(Uj))�)
,

nj ≥
2c|J|

√
vol(M)C(j)αj(�j/π)

d(π + 2drad(φj(Uj))�j) log(3|J|η−1N(δj,φj(Uj)))
√

ε log
(
1+

√
ε

2|J|
√

vol(M)C(j)αj(�j/π)d(π+2drad(φj(Uj))�j)

) ,

as desired.

4 Discussion

The central topic of this study is the study of the approximation

properties of a randomized variation of shallow neural networks

known as RVFL. In contrast with the classical single-layer neural

networks, training of an RVFL involves only learning the output

weights, while the input weights and biases of all the nodes are

selected at random from an appropriate distribution and stay fixed

throughout the training. The main motivation for studying the

properties of such networks is as follows:

1. Random weights are often utilized as an initialization for a

NN training procedure. Thus, establishing the properties of the

RVFL networks is an important first step toward understanding

how random weights are transformed during training.

2. Due to their much more computationally efficient training

process, the RVFL networks proved to be a valuable alternative

to the classical SLFNs. They were successfully used in several

modern applications, especially those that require frequent re-

training of a neural network [20, 26, 27].

Despite their practical and theoretical importance, results

providing rigorous mathematical analysis of the properties of

RVFLs are rare. The work of Igelnik and Pao [16] showed that RVFL

networks are universal approximators for the class of continuous,

compactly supported functions and established the asymptotic

convergence rate of the expected approximation error as a function

of the number of nodes in the hidden layer. While this result served

as a theoretical justification for using RVFL networks in practice, a

close examination led us to the conclusion that the proofs in Igelnik

and Pao [16] contained several technical errors.

In this study, we offer a revision and a modification of the

proof methods from Igelnik and Pao [16] that allow us to prove

a corrected, slightly weaker version of the result announced by

Igelnik and Pao.We further build upon their work and show a non-

asymptotic probabilistic (instead of on average) approximation

result, which gives an explicit bound on the number of hidden

layer nodes that are required to achieve the desired approximation

accuracy with the desired level of certainty (that is, with high

enough probability). In addition to that, we extend the obtained

result to the case when the function is supported on a compact,

low-dimensional sub-manifold of the ambient space.

While our study closes some of the gaps in the study of the

approximation properties of RVFL, we believe that it just starts
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the discussion and opens many directions for further research. We

briefly outline some of them here.

In our results, the dependence of the required number n

of the nodes in the hidden layer on the dimension N of the

domain is superexponential, which is likely an artifact of the proof

methods we use. We believe this dependence can be improved to

be exponential by using a different, more refined approach to the

construction of the limit-integral representation of a function. A

related interesting direction for future research is to study how the

bound on n changes for more restricted classes of (e.g., smooth)

functions.

Another important direction that we did not discuss in this

study is learning the output weights and studying the robustness

of the RVFL approximation to the noise in the training data.

Obtaining provable robustness guarantees for an RVFL training

procedure would be a step toward the robustness analysis of neural

networks.
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