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To expedite the valorisation of lignin as a sustainable
component in materials applications, rapid and generally
available analytical methods are essential to overcome the
bottleneck of lignin characterisation. Where features of a lignin’s
chemical structure have previously been found to be predicted
by Partial Least Squares (PLS) regression models built on
Infrared (IR) data, we now show for the first time that this
approach can be extended to prediction of the glass transition
temperature (Tg), a key physicochemical property. This method-
ology is shown to be convenient and more robust for prediction
of Tg than prediction through empirically derived relationships

(e.g., Flory-Fox). The chemometric analysis provided root mean
squared errors of prediction (RMSEP) as low as 10.0 °C for a
botanically, and a process-diverse set of lignins, and 6.2 °C for
kraft-only samples. The PLS models could separately predict
both the Tg as well as the degree of allylation (%allyl) for allylated
lignin fractions, which were all derived from a single lignin
source. The models performed exceptionally well, delivering
RMSEP of 6.1 °C, and 5.4%, respectively, despite the conflicting
influences of increasing molecular weight and %allyl on Tg.
Finally, the method provided accurate determinations of %allyl

with RMSEP of 5.2%.

Introduction

In the necessary resource and materials transitions, in which
fossil feedstock is replaced with a renewable one, lignin is a
prime candidate to serve as a source of renewable, biobased
carbon. It is a polyphenolic component of the plant cell wall,
constituting 15–40% of the biomass, and it stands as the most
abundant form of renewable aromatic carbon on the planet.[1]

However, the complexity and variability of the lignin structure,
in particular after isolation from the lignocellulosic biomass, is
an impediment for commercial utilisation. The botanical origin
of the lignin strongly influences the abundance of differing

functionalities which adorn the phenolic rings and impact the
nature of the linkages present between these aromatic units.[2]

Furthermore, the specific delignification method inevitably
alters and further complicates the structure of the lignin, as a
result of the typically non-specific and harsh reaction conditions
employed in commercial pulp mills, where cellulose is targeted
as the main component of value from biomass.[3] Referred to as
technical lignins, these isolated lignin-derived products of
biomass fractionation processes (e.g. kraft, soda, or organosolv
lignins) are more degraded, condensed, and recalcitrant than
their native in planta, or native-like (e.g., Milled Wood Lignin)
counterparts.[4–6] Broadly speaking, this leaves technical lignins
with a poorly defined structure and with highly variable, but
also often non-desired properties. This hampers direct applica-
tion, especially since the structural variation between samples
leads to variation in material characteristics, even batch-to-
batch, preventing it from reaching correct property specifica-
tion and making quality assurance for industrially produced
lignins more tedious. For example, kraft lignins, the most
prominent technical lignins, are isolated from rather severe
processes, that use high temperatures and strongly alkaline
conditions to delignify the cellulose pulp. As a result, a variety
of kraft-specific functionalities and linkages are introduced by
extensive de- and re-polymerisation, resulting in a highly
heterogeneous material.[3,6–8] Consequently, the majority of kraft
lignin is simply used as a biofuel, instead of recovered,
providing process energy to the biorefinery/pulp mills. Advan-
ces in the biorefinery or pulping processes, and in the
availability of alternative renewable energy sources, however,
provide an opportunity to instead utilise the lignin as a resource
in materials applications. As the dominant delignification
technology producing 98% of chemical pulps,[3] the valorisation
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of this carbon reservoir beyond a low value fuel remains a
pertinent challenge. To address the problem of lignin hetero-
geneity, complexity and variability, a range of methods have
been utilised. Typically, fractionation and/or modification
approaches,[9–13] as well as (partial) depolymerisation
approaches[14–16] have been employed to better achieve more
narrowly dispersed lignins with reliably tuneable characteristics.

Getting detailed insight into the properties of a technical
lignin, and thus an understanding of its potential applications,
requires an extensive suite of characterisation methods. For
insights into the chemical structure, lignin is typically subjected
to an array of spectroscopic methods, including common (1H,
31P, 13C) and multidimensional (1H-13C HSQC, 1H-13C HMBC) NMR
techniques,[3,4,7,17–19] as well as vibrational (Fourier Transform
Infrared (FTIR), Near-Infrared (NIR), Raman) spectroscopic
methods.[20–22] Mass spectroscopy can elucidate lignin fragments
and monomer composition ((py)-GC-MS[23,24]), and molecular
weight characteristics are determined by GPC/SEC.[25,26] Beyond
the structural features, key material properties such as the glass
transition temperature (Tg) are obtained from (modulated)
differential scanning calorimetry ((M)DSC)[11,27] or DMA
measurements,[28] while thermal stability is determined by
TGA,[29,30] and viscosity by rheological methods,[31,32] all to assess
the performance/application potential of the lignins. The Tg in
particular, is an important performance parameter within the
material science field, representing a material’s temperature of
transition between brittle and pliable states. Drawing direct
relationships between complex physicochemical parameters,
such as Tg, and structural features is non-trivial for highly
heterogeneous polymers, such as lignin. Empirical relationships
between structure (number average molecular weight, Mn) and
performance parameters (Tg), originally developed for more
homogeneous polymers (Flory-Fox (FF), Flory-Fox-Ogawa (FFO),
and Fox-Loshaek (FL) relationships),[33–35] have, however, been
successfully applied to small lignin sample sets, in spite of the
heterogeneity of the lignins.[28,36] Such relationships are impor-
tant as structure-property correlations allow for one to gain a
handle on understanding the performance parameters of a
lignin based on a given structural descriptor. However, when
considering large, diverse datasets, such as in a mixed-feed
biorefinery setting, where a range of sources of biomass are
processed, it has not yet been established whether these Mn vs
Tg relationships would hold for a larger range of lignin samples.
Additionally, process variation or post-processing fractionation
and/or modification may lead to radically altered lignin samples,
leading to different lignins of the same Mn that can display a
broad range of Tg values. As these observational correlations
are built upon only one structural descriptor, Mn, (n.b. FFO also
relies upon Mw) they are anticipated to suffer from the large
heterogeneity of lignin. Furthermore, it is unclear as to whether
such relationships could be applied as a valid method of
predicting complex material properties such as Tg for lignin.
Specifically, lignin’s Tg is not only tied to molecular weight, but
has been suggested to also manifest as a function of the degree
of hydrogen bonding,[31,37] methoxy content,[38] and π-π stacking
interactions.[39]

Another pertinent limitation is the analytical infrastructure
required for measuring lignin’s structural and material parame-
ters, as well as establishing relationships between such
characteristics. Full sample characterisation clearly constitutes a
bottleneck in lignin research, given the need for access to
(advanced and thus expensive) equipment as well as the time
investment involved. This hampers both lignin research at an
academic level as well as industrial application of lignin into,
e.g., materials, where quality control and batch checking
increase sample load with such a varying lignin feed. In answer
to this, application of chemometric, statistical methods can
greatly accelerate data acquisition, processing, and even better
inform future experimentation. In a recent example by Karlsson
et al., a design of experiments approach was applied to better
understand the impact of process conditions of their lignin
extraction process on the structure and physical properties of
the lignin.[40] Another powerful application of chemometrics, is
its use in tandem with spectroscopy. Methods such as Principal
Component Analysis (PCA) and Partial Least Squares (PLS) can
be applied to spectroscopic data of biomass, where the latter
method, for example, has been used to predict cellulose
oxidation severity,[41] lignin content,[42] and a further range of
parameters of lignins. PCA on ATR-FTIR spectra has been used
successfully to structurally analyse and group diverse lignin
sample sets by botanical origin,[18,43,44] and PLS models have
been shown to predict lignin parameters (hydroxyl (OH)
content, S/G ratios, emulsion stability, antioxidant
parameters)[18,44] from test samples, respectively. Furthermore,
ATR-FTIR spectroscopy presents itself as a practical choice for
rapid screening of samples and has seen widespread use for
qualitative analysis of lignins, for functional group/connectivity
identification[18,32] and reaction monitoring.[11,31,45] Lancefield
et al. investigated PCA based on ATR-FTIR spectra of a broad
lignin sample set and uncovered defined clustering of samples
by their botanical origin within PC space, similar to an early
example of Boeriu et al. Samples were also found to be well
separated by key structural features, such as β-O-4 content,
prompting successful application of PLS modelling as a tool for
predictively quantifying linkages, as well as MW
characteristics.[43] However, the use of IR-based PLS regression
models on the quantification of more complex, and convoluted
macromolecular properties of lignin remains unexplored. To
further alleviate the burden of lignin analysis, both approaches,
MW-based correlation (FFO, and FL), and spectroscopic-chemo-
metric correlation (PLS regression), were assessed as potential
predictive methods to add to the growing lignin analytical
toolkit. The PLS model proved able to excellently predict lignin
Tg for a wide variety of lignin samples, including fractionated
and covalently modified ones. With this FTIR-PLS approach, the
parameter space that can be predicted by chemometrics was
thus expanded to an industrially relevant material parameter.
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Results and Discussion

Empirical Relationships as Predictive Tools

Previously, we reported on the prediction of molecular weight
(Mn & Mw), linkage abundance (β-O-4, β-O-4’, β-5, β-β, SB5, SB1)
and hydroxyl group content ([OH]) from the ATR-FTIR spectra of
a set of 61 lignins (Table S1+S2) using PLS. These samples
cover a diverse range of botanical origins, as well as
delignification methods, and the set also contains some
(solvent) fractionated lignins. Here, we used the same sample
set and as a part of this study, determined the Tg of each
sample by MDSC (Table S1).[43] Tg values were found to span a
range of 167.5 °C, from 58.8 to 226.3 °C. These values, along
with the samples’ reported molecular weight information
(Table S1), were then used to construct plots according to the
FF, FFO and the FL relationships (Figure 1), which have been

shown to work reasonably well for smaller, more focussed lignin
sample sets.[28,37,46,47] The aim here, was to first test whether the
relatively complex physicochemical parameter, Tg, could still be
reasonably predicted using these aforementioned relationships.
Interestingly, even for this varied set of lignin samples, each
relationship gave a fairly good fit. However, relatively large
errors in Tg were observed at a given Mn value (i. e., vertical
spread), a consequence of the heterogeneity of the lignin.
Surprisingly, not the FFO and the FL models, which were
developed to better account for disperse and crosslinked
polymers, respectively,[33–35] but the standard FF relation best
described this dataset giving the highest R2 value (0.893), and
the lowest root mean squared error (15.6 °C). Consequently, in
the following, we focused on the FF relationship only as a
potential predictive tool.

The dataset of 61 lignin samples was split into calibration
(Cal) and validation (Val) sets such that a ratio of 75 :25 (Cal: 46,
Val:15) was achieved, and these different divisions of samples
were subject to both construction of the FF relationships and
the PLS models. As the method of splitting data can be
impactful on a (poor) model’s performance, be it statistical or
otherwise, two different criteria were used to probe influence of
the selection of the validation samples on the predictive power
of the models. Firstly, we used a Kennard-Stone (KS)
algorithm[48] operating on the Mahalanobis distance[49] of the
samples’ FTIR spectra to select uniformly distributed samples
across the set as determined by (FTIR) spectroscopic
(dis)similarity, and secondly, by random splits, which cannot
ensure even distribution. To further assess the importance of
the splitting, random splits of the samples were performed five
times in total. From the generated models, the R2 and root
mean squared error of prediction (RMSEP for PLS; RMSEPFF for
FF) were calculated and are shown in Table 1. The specific splits
of the samples are detailed in Table S7.

The values of RMSEPFF from the random sample selections
fluctuate between 15.3—22.9 °C, and with the KS split, it is as
low as 7.3 °C. As the error of prediction is dependent on the
selection of test samples, this renders FF a poor model for
predicting Tg for lignin. Indeed, this is because Tg of a lignin is
dependent on a combination of its structural features and not
solely its molecular weight, which is the FF’s sole predictor
variable. Molecular weight of lignin is already a challenging
parameter to reliably obtain, with a relatively large error of
measurement and large dependence on the measurement
setup.[50] To exemplify this, four typical technical lignin samples
were subject to duplicate GPC analysis in two separate runs
with the same equipment and the Mn was determined twice
(Table 2, Figure S2 & S3). The relatively large error in Mn

numbers leads to a large discrepancy in the predicted values of
Tg. Additionally, due to the FF fit’s logarithmic relation, the error
is non-stochastic with respect to Mn, i. e., the error in Tg is not
constant for different values of Mn with the same measurement
error. Specifically, the error in Tg is much larger for smaller Mn

values despite having the same measurement uncertainty than
larger Mn values. In this respect, a look towards a more suitable
method of predicting Tg is indeed warranted. Statistical
approaches, such as PLS analysis based on ATR-FTIR spectra, are

Figure 1. Correlation of Tg with molecular weight characteristics for the set
of 61 lignins according to a) FF, b) FFO and c) FL theories, with molecular
weight data obtained by Lancefield et al.[43] (Table S1+S2).
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anticipated to better predict Tg, as each spectrum contains a
linear combination of the structural features of the sample, thus
better informing the model during the calibration. Sample
purity is a consideration, as, e.g., presence of residual carbohy-
drates may negatively impact model performance. Typically,
technical lignins have relatively low concentrations of carbohy-
drate impurities, and for this sample set, we did not find this to
have impacted prediction performance for lignin parameters
previously.[43] Beyond its intrinsic information advantage, ATR-
FTIR spectra are also easy to acquire, demand minimal sample
preparation, can be rapidly recorded, and offer reliability of
measurement. Given the existing relationship between Mn and
Tg, and that Mn has been shown previously to be predicted
using PLS,[43] we thus sought to develop a more effective
method for prediction of Tg based on ATR-IR/PLS.

Statistical approaches as a means for prediction

The 61 lignin samples (Table S1 + S2) were used ‘as-is’ (i. e.,
without any further sample pretreatment) and were each
remeasured by ATR-FTIR. New PCA and PLS models were
constructed, and spectral data pre-processing parameters were
optimised with the objective of minimising the root mean
squared error of cross-validation (RMSECV), and RMSECV/
RMSEC, where RMSEC is the root mean squared error of
calibration, as this avoids construction of a model that is
susceptible to overfitting (Table S7). For all models, venetian

blinds cross-validation (with 10 splits) was utilised. Recent works
from within our group on chemometrics for lignin analysis
provided insight into which processing parameters were most
suitable for the dataset herein.[43,51] Here, the optimal pre-
processing conditions were found when using 1st derivative
spectra, then applying a Savitzky-Golay (SG) filter, followed by
multiplicative scatter correction (MSC) to mitigate any scaling
and baseline effects, and finally, mean centering. Furthermore,
it is commonplace to remove the part of the spectrum that
primarily contains noise from the diamond crystal (2849-
1851 cm� 1), along with the lower wavenumbers (749–
600 cm� 1).[52] It was found here that such steps improved both
the RMSECV, and offered an improved RMSECV/RMSEC ratio.
These settings were thus used in further modelling (details
available in Table S6, Entry 6). Inspection of the first two PCs of
the ATR-IR spectra (first two eigenspectra) yielded insights into
the important bonds which describe the maximum variance of
this sample set (Figure 2). Whilst it is not a true representation
of the data used in PCA analysis, visual inspection was aided by
plotting the PCs without use of 1st derivative spectra, as
interpretation of the spectra derivatives is often more challeng-
ing. Here can be seen the peaks at 1266 cm� 1 and 1100 cm� 1,
the relative intensities of which have been shown to correlate
with the G/S ratio.[43,53] Typical for the S-type (hardwood) is the
higher intensity of the 1109 cm� 1 vibration, being shifted to a
slightly lower wavenumber than has been reported elsewhere
for transmission and/or DRIFT spectra due to the refractive
index effect present in ATR spectra.[54,55] These observed features

Table 1. Details of PLS models predicting Tg values for the 61 lignin samples based on their respective ATR-FTIR spectra. In each model, 1st derivative with
SG filtering was applied, followed by MSC and mean centering as standard. Details of the empirical FF relationships used as prediction tools with the same
sample splits.

Captured Variance FF

Entry X Y Num LVs RMSEC RMSECV RMSEP R2 Cal R2 CV R2 Pred RMSEPFF R2 PredFF

1 92.60 95.48 5 10.20 15.67 14.99 0.955 0.894 0.890 17.06 0.881

2 93.22 94.82 5 11.06 18.03 14.50 0.948 0.865 0.894 15.31 0.894

3 88.55 94.34 4 11.51 16.63 15.59 0.943 0.882 0.877 18.66 0.792

4 86.62 94.85 4 10.74 14.45 19.87 0.949 0.907 0.849 19.59 0.863

5 92.97 95.19 5 10.36 17.82 17.97 0.952 0.862 0.890 22.90 0.820

6 83.6 88.37 3 16.59 19.73 10.00 0.884 0.836 0.939 7.62 0.974

RMSEC, RMSECV and RMSEP are given in °C. All models were split such that Cal: 46 and Val: 15 samples. Data splits for Entries 1–5 were determined
randomly, the split for Entry 6 was determined by a KS algorithm on the basis of Mahalanobis distance.

Table 2. Comparison of error in Mn (gmol
� 1) determination via duplicate GPC measurement, and the subsequent error in Tg as predicted by FF, and the

experimentally determined (via MDSC) for a selection of 4 lignin samples.

Lignin Mn1 Mn2 ΔMn FFTg1 FFTg2 ΔFFTg Measured Tg Tg Difference
[a]

SEKL 1061 1392 331 134 161 27 142 5.8

P1000 918 1090 172 117 137 20 136 8.5

IKL 895 1134 239 113 142 29 147 19

LF401 728 880 152 82 111 29 137 40

Mn values are provided in gmol
� 1 and Tg values in °C. [a] Calculated by taking the difference between the mean of the FF derived Tg and the experimentally

determined Tg
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respectively constitute two of the key features in PC1. The
vibration at 1266 cm� 1 is also present in PC2 (with a negative
value), along with a broader peak at 1007 cm� 1 which is most
likely related to C� O modes. The typical peak belonging to non-
conjugated G-ring vibrations at 1516 cm� 1 is also present and
appears in both PC1 & PC2 with a negative value. These
observations provide an indication that whilst the spectral
variance is mostly dominated by aromatic-related vibrations,
other vibrations relating to ether linkages, methoxy content
and other unassigned bands clearly play an important role,
given their appearance within these PCs.

The PLS regression modelling was performed with the same
sample splits as with the FF modelling (Table S7). The PLS
regression provided surprisingly robust predictions of Tg, as
denoted by RMSECV/RMSEP ratios relatively close to unity for
most models. A low RMSEP/RMSECV ratio is simply an indication
that the constructed model better describes the Val set than

the Cal set, whereas a high RMSEP/RMSECV value can be an
indication of overfitting. However, relatively high RMSECV
(leading to a high RMSECV/RMSEP), can be due to the intrinsic
nature of cross-validation being a construction of sub-divisions
of the Cal set predicting the other samples within the Cal set.
Regardless, with the random divisions of the samples (Table 1,
Entries 1–5), PLS regression generally offered improvements in
RMSEP compared to the FF modelling. More important,
however, is the robustness of PLS, as showcased by the models’
relative stability in RMSEP, relative to the FF models. Notably,
the sample split obtained by the KS algorithm (Table 1, Entry 6;
Figure 3) provided the best prediction among the PLS models,
with an RMSEP of 10.0 °C. Interestingly, this value is higher than
the corresponding RMSEPFF of 7.3 °C, however this is again
considered a symptom of the unreliable error of simple
empirical models. Similar to the work of Lancefield et al.,[43] a
more focussed set of kraft-only lignins provided a much-
improved prediction power for PLS modelling (Figure 3B). In
essence, this served to remove variation from the spectra which
is introduced by process-specific chemistry occurring during
delignification, allowing the model to ‘focus’ on the more
pertinent spectral features. As most biorefineries operate with a
single, fixed feed of softwood or hardwood, such a more
concise sample set is more realistic than the more diverse
sample set. As anticipated with the contracted sample set, the
quality of the modelling was greatly improved. With RMSECV
and RMSEP of 10.4 and 6.2 °C, respectively, this represents an
exceptionally small relative error (RE) of 3.7%, based on a Tg as
large as 167 °C.

Prediction of Tg for derivatised lignins

Chemical modification of technical (fractionated) lignins are an
important and widely implemented means to better prepare it
for incorporation into materials applications. Success has been
found, for example, by using the (typically phenolic) hydroxyl
groups as reactive handles for installing a host of differing
functionalities,[11,13] and it is well reported that the capping of

Figure 2. PC1 & PC2 (eigenspectra) loadings for FTIR spectra of the set of 61
lignin samples without application of a 1st derivative or SG smoothing pre-
processing, in the window 1850–750 cm� 1. Important wavenumbers have
been highlighted.

Figure 3. Scatterplots of PLS predicted Tg values vs physically measured Tg values (by MDSC). Model a) was built from the entire sample set of 61 lignins, split
75 :25, such that Cal=46 and Val=15 samples. Model b) was built from only the kraft samples (44 lignins), split 75 :25, such that Cal=33 and Val=11
samples.
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these hydroxyl functionalities often leads to a reduction in the
lignin’s Tg.

[31,56,57] At the same time, such derivatisation methods,
more often than not, subtly increase the molecular weight of
the lignin.[11] Such modified lignins would therefore not adhere
to the FF (or similar) relationship and require an alternative
method for Tg prediction. Previously we showed that fractiona-
tion and systematic (partial) modification of a Stora Enso’s Lineo
Classic softwood kraft lignin (SEKL) yielded a set of lignin
samples with a very large (and tuneable) range of Tgs. More
specifically, solvent fractionation using a gradient of EtOAc,
EtOH, MeOH and acetone gave five specific fractions (including
the final insoluble residual fraction).[9] These lignins were well
partitioned by molecular weight, with a Tg thermal property
space range of 152 °C. Subsequent allylation generated a library
of unique samples of lower Tg (relative to the parent fraction),
thus expanding upon this property space to a range of 213 °C,
from 12 to 225 °C. The relevant thermal data (Tg) and the degree
of allylation (%allyl) as determined by MDSC and 31P NMR,
respectively, are reproduced in the supporting information
(Table S3). This data series therefore provided a good testbed
for the use of PLS regression to probe the thermal properties of
a modified lignin. Additionally, as %allyl had been quantified for
these samples too, this metric could also be investigated as a

potential predictable parameter. For this, the ATR-FTIR spectra
of this sample set were measured, and the data pre-processing
optimisation was performed as above for the broader sample
set (Tables S8+S9, for %allyl and Tg, respectively).

As before, prior to quantitative modelling, inspection of the
principal components (PCs) of the FTIR dataset was performed,
albeit without application of the 1st derivative and SG filter
(Figure 4a). For subsequent PCA analysis, however (Figure 4b-d),
the 1st derivative and SG filter were applied as the first pre-
processing steps (respectively) to yield optimal models, hence
the difference in captured variances of PC1&2 in these figures.
As can be seen from Figure 4a, one of the major contributions
to PC1 is the terminal alkene C� H bending modes at 986 and
922 cm� 1 (associated with allyl content) with positive loading,
but with minimal score in PC2. This therefore indicated that
samples with positive PC1 scores will contain increased %allyl

values, whereas PC2 contains minimal information pertaining to
%allyl. Indeed, this is confirmed by the PCA plot in Figure 4b
wherein the samples are coloured by %allyl. Equally, the aromatic
C skeletal ring vibration at 1514 cm� 1[54] and the alkyl-aryl ether
vibration at 1266 cm� 1 had a strongly positive score in PC2,
providing an indication that a positive score in PC2 is linked to
presence of aromatics, and potentially, increasing MW. A

Figure 4. (a) (Top Left) Truncated view of PC1 & PC2 (600-1800-600 cm� 1) eigenspectra of the 48 allylated lignin samples with highlighted peaks of interest.
Score plots of PC2 vs PC1 of the ATR-FTIR spectra were colour coded according to: (b) (Top Right) %allyl, (c) (Bottom Left) Mn, and (d) (Bottom Right) Tg. All plots
were constructed from FTIR data which was pre-processed (see SI). The exception is plot (a) for which neither 1st derivative, nor SG filter were applied. For the
loading vector plot where all pre-processing (as outlined above) was applied, see Figure S1. Arrows on b)–d) were added to highlight the emergent trends.
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general PLS model was built using all samples in the Cal set and
the regression vector (Figure 5) shows that these frequencies
are truly utilised by the model. Note that the slight shift in
frequencies is from the model’s construction on 1st derivative
spectra.

Following this, quantitative modelling of both the Tg and
%allyl of the lignins was performed separately (Figure 6). The 48
samples were split into Cal and Val sets of 36 and 12 samples
respectively to retain a 75 :25 split in the data. To confirm the
reliability of the method (beyond the insights from the RMSECV
value) a series of PLS models were constructed. Three models
were determined with randomised splits in the data, as well as
a data split by KS, based on Mahalanobis distance, for both %allyl

and Tg separately (Table S9). Encouragingly for both Tg and %allyl,
all models had relatively similar RMSECV, averaging to 5.9%
and 10.0 °C for %ally and Tg, respectively (Table 3). Likewise, the
average RMSEP for Tg and %allyl was found to be 5.2% and
10.2 °C, respectively. The resulting RE values are exceptionally

low and are in line with structural parameters which have been
predicted previously,[43] reinforcing the robustness of the
method for determination of Tg. These results thus provide
precedence for the use of IR-PLS methods for the prediction of
properties of modified lignins, and more specifically, for the
prediction of their Tg.

Conclusions

Rapid access to key thermal parameters of lignin, and insight
into how these properties relate to particular structure
descriptors is highly desirable. Here, we have shown that the
previously established, empirical Flory-Fox, Flory-Fox-Ogawa
and Fox-Loshaek relationships between Tg and molecular
weight characteristics also hold reasonably well for large and
diverse lignin sample sets. However, whilst Mn is a dominant
predictor for lignin Tg, it is not the only factor which determines
such a complex parameter, leading to unreliable prediction
using such simple observational relationships. Furthermore, the
inherent error in molecular weight determinations renders this
a less desirable approach to estimating Tg. Instead, an
alternative chemometric method, using PLS predictions based
on spectroscopic data, acts as a surprisingly powerful, alter-
native approach, allowing for a variety of occluded structural
features to act as predictors, and not just Mn. This allowed for
accurate, and robust predictions of the complex physicochem-
ical property, Tg. The PLS models displayed excellent reliability

Figure 5. Regression vector for PLS model for the prediction of Tg,
constructed with the 48 lignin sample series’ ATR-FTIR data. Peaks
(derivative) relating to aromatics (1507 cm� 1) and alkyl-aryl ethers
(1257 cm� 1) are highlighted.

Figure 6. Scatterplots of PLS predicted vs measured values of a) %allyl as determined by
31P NMR, and b) Tg as determined by MDSC previously.

[9] Both models
were built from the set of 48 SEKL derivatives, split 75 :25, by a KS algorithm on the basis of Mahalanobis distance, such that Cal=36 and Val=12 samples.

Table 3. Mean values for RMSECV, RMSEP, R2 Pred, and RE for the PLS
regression models predicting %allyl and Tg for the set of 48 lignins.

Parameter avgRMSECV avgRMSEP avgR
2 Pred avgRE

[a] (%)

%allyl 5.9 5.2 0.980 5.9

Tg 10.0 10.2 0.969 4.7

[a] RE based on ranges of 98.89% and 213 °C for %allyl and Tg respectively.
Details of the models are provided in Tables S8+S9.
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when adjusting sample splits between Cal and Val sets,
showcasing this robustness. Furthermore, after restriction of the
sample set to kraft only samples, the relative error of the
prediction of Tg is of a similar magnitude to the error for
structural features previously predicted by PLS regression. To
the best of our knowledge, chemometric analysis with ATR-FTIR
has not yet been used for the analysis of functionalised
(allylated) lignins. The key spectral variance of this set of lignins
was highlighted through PCA, allowing for mapping of the
samples in PC space wherein the samples were well separated
by their %allyl, molecular weight, and thus, Tg. Furthermore, both
Tg and %allyl were accurately predicted with excellent reliability
through PLS regression.

Overall, the use of ATR-FTIR spectroscopy with chemo-
metrics is again shown to be a powerful tool in the ‘de-
bottlenecking’ of lignin valorisation by expediting its structural
analysis. The list of predictable (key) physicochemical properties
has again been expanded upon, by inclusion of Tg, a complex
material property, to the fold. As the understanding of lignin’s
potential in material applications continues to grow, so too
should the analytical toolbox along with it, to facilitate rapid
on-site predictions for industry and academia to assess the
nature of their sample, without the typical burden of labour-
and equipment-intensive lignin analysis.
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