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Abstract. We pose the problem of metastability for a three–state spin system with conservative dynamics.
We consider the Blume–Capel model with the Kawasaki dynamics, we prove that, in a particular region of
the parameter plane, the metastable state is the unique homogeneous minus state, and we estimate the exit
time. To achieve our goal we have to solve several variational problems in the configuration space which
result to be particularly involved, due to complicated structure of the trajectories. They key ingredient is
the control of the energy differences between the configurations crossed when a spin is transported from
the boundary to an internal site of the lattice through a completely arbitrary mixture of the three–state
spin species. To master these mechanisms we have introduced a new approach based on the transport of
spins along nearest neighbor connected regions of the lattice with constant spin configuration. This novel
approach goes beyond the Blume–Capel model and can be used for the study of more general multi–state
spin models.
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1. Introduction

Metastable states are very common in nature and are observed in several physical systems. Their mathe-
matical description is a challenging task that, in the last decades, has given rise to different approaches and
has been attacked from different angles. For a systematic discussion of the literature related to the so–called
pathwise and potential–theoretic approaches we refer to the monografies [11, 35] and to the review [14]. For
the more recent trace method we refer, for instance, to [8].

The pertinent literature is characterized by the alternation of abstract studies [9, 31], in which general
theories are proposed or refined, and applied ones in which the behavior of special models is discussed. The
latter, beside their interest due to specific novel applications, see, e.g., [1, 22] for the 3D Ising model, [2, 4]
for applications to non-square lattices, and [3] for the Ising model on a family of finite networks, play an
important role in suggesting possible progresses of the general theories.

This is a paper of the second type in which we investigate the metastable behavior of the Blume–Capel
lattice spin model [10, 25] under the Kawasaki dynamics [26] in finite volume and in the zero temperature
limit. The model is characterized by the fact that the lattice spin variables can assume the three states
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minus, zero, and plus, and the Hamiltonian is ferromagnetic. Moreover, the Kawasaki dynamics, reversible
with respect to the Gibbs measure, allows in the bulk only the swaps between neighboring spins. This is
a particularly challenging problem since it combines the difficulties due to the three state character of the
spins and those due to the conservative character of the dynamics.

Before entering into the details of our work, we review briefly the papers in which the metastable behavior
of the Blume–Capel model with the Glauber non–conservative dynamics has been investigated. The first
results were published in [18] in finite volume and in the zero-temperature limit. In [16, 17, 27] a peculiar
version of the model, for which there exist two non–degenerate in energy metastable states, is studied. The
infinite volume regime is considered in [28,32]. We mention, also, that in the interesting paper [19], this model
has been studied at finite temperature with non–rigorous methods, such as Monte Carlo simulations and
transfer matrix approaches. Moreover, in different regimes, thanks to its great ductility, the Blume–Capel
model and its generalizations have been recently used to study the pattern formation in three–components
mixtures of polymers and solvent [29, 30, 33]. In all these studies the model is defined on a torus, namely,
periodic boundary conditions are considered.

In our recent work [15] we attack this model with zero boundary conditions and discuss the metastability
scenario on the parameter plane, comparing it with what was already known for periodic boundary conditions.
In particular, we prove that, depending on the choice of the parameters, the system can exhibit both
homogeneous and heterogeneous nucleation triggered by the boundary. Beside its intrinsic interest, [15] is a
sort of prequel of the present paper in which we study the Kawasaki case where zero boundary conditions
are natural for modelling the exchange of particles between the system and the reservoir.

The rigorous study of metastability for a Kawasaki dynamics has been a challenging problem from the
very beginning: the number of particles is indeed conserved in the interior of a finite box, so that during
the nucleation particles must travel between the droplet and the boundary of the box, which causes several
mathematical complications. A first simplified local 2D model for a Ising lattice gas was introduced in [24],
where only the particles inside a finite box were considered for the interaction, while the particles outside
evolved via non-interacting random walks. The removal of the interaction outside the finite box allowed the
mathematical control of the gas of particles, and it was consistent with the physical picture of an ideal gas
approximation of a low density gas in the limit in which the temperature tends to zero.

The crucial point was indeed that at low density, say proportional to the exponential of minus the inverse
of the temperature, the gas outside the finite box could be treated as a reservoir that creates particles with
rate equal to the small density at sites on the interior boundary of the finite box and annihilates particles
with rate one at the external boundary sites.

The local dynamics results in [24] for the Ising lattice gas were extended to the 3D case in [22], with the
sharp asymptotics given in [12], and to the anisotropic Ising lattice gas in [5–7,34].

Moreover, the case of volumes growing moderately fast as the temperature decreases was first studied
in [20] by using the pathwise approach, then in [13] with the use of the potential theoretic approach, and
finally in [21] with the trace method. All these results have been derived for two spin classical lattice gases
with Kawasaki dynamics.

To our knowledge, [23] is the sole paper in which the metastable behavior of a three state system with a
conservative dynamics has been approached. In that paper a swap dynamics is considered for a model with
three state site variables (zero, one, and two) in which direct swaps between the states one and two are not
allowed. Moreover, the Hamiltonian is not ferromagnetic in the sense that it promotes the interface between
states one and two, with respect to all other possible bond configurations, which are all alike; thus the single
interface one–two is favored with respect to all the others. This yields in a chessboard–like stable state with
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the sites of the even and odd sublattices occupied, respectively, by state one and two or viceversa.
In the present paper, in contrast with [23], we approach the Blume–Capel model with the Kawaski

dynamics allowing swaps between spins of any value. Moreover, the ferromagnetic interaction favors the
three type of bonds between sites sharing the same spin, whereas the bonds between different spins are not
alike, but pay different energy costs, indeed, the minus–plus bond costs four times the zero–minus and the
zero–plus bonds. This fact complicates the study of the model: due to the interface energy cost hierarchy,
plus structures cannot grow freely inside minus regions, but must always be protected by a thin layer of
zeros. In other words, in order to perform changes of the system configuration in which a plus structure
grows inside a minus background, before substituting bulk pluses with minuses, it is necessary to let zeros
populate the bulk to avoid direct interfaces between minus and plus regions. Controlling these mechanisms
becomes utterly difficult in the case of conservative dynamics, since the spins cannot be locally created, as
it is the case for non–conservative ones, but they must first enter the lattice at its boundary and then be
transported through the bulk to the spot where they are needed.

The complications that arise are due to the necessity to control energy differences along path of configu-
rations corresponding to the transport of one spin (either minus, zero, or plus) along the lattice through a
completely general mixture of the three spin species. In this paper we manage these mechanisms by means of
new techniques based on the idea that spins are transported through the lattice along regions made of nearest
neighbor connected sites with constant spin value. It is important to stress that the energy cost associated
to the transport of spins along the lattice is controlled in Lemma 3.4 which is susceptible of being extended
to more general multi–spin models, such as a generalized Potts model with different interface energy costs,
see Lemma 5.15. Thus, the results discussed in this paper can open the way to new studies of conservative
dynamics for general multi–state spin systems.

Coming back to this work, we focus on a region of the parameter plane where we are able to prove the
uniqueness of the metastable state (the homogeneous minus configuration) and to study the transition to
the unique stable configuration (the homogeneous plus state), that is to say, to the absolute minimum of
the energy. This is achieved in the framework of the pathwise approach as formulated in [31] by solving
two model dependent problems: call the stability level of a configuration the minimal energy barrier that
has to be overcome by a path connecting such a configuration to any other at lower energy, then compute
the stability level of the homogeneous minus configuration and show that the stability level of any other
configuration is strictly smaller. These two problems are addressed in the literature respectively as the
optimal path and the recurrence problem.

Due to the very intricated structure of the trajectories of our three–state conservative model, we solve a
weaker version of the optimal path problem, that is to say, we do not compute exactly the stability level of
the homogeneous minus configuration, but we show that it belongs to a closed interval. As for the recurrence
property, we show that the stability level of all other configurations is smaller than the infimum of this
interval. This allows us to prove that the homogeneous minus configuration is the metastable state and to
prove an estimate for the exit time from it with an uncertainty related to the width of the interval. We remark
that, due to the uncertainty on the value of the stability level of the homogeneous minus configuration, it is
natural to use the pathwise approach, since the other methods need a more detailed control of the energy
landscape, i.e., of the minimizers of the Dirichlet form associated to the dynamics.

The paper is organized as follows. In Section 2 we introduce the model and state our main results.
Section 3 is devoted to the proof of the theorems which are based on the key Lemma 3.4 about the particle
transport. The proofs of the more technical lemmas are reported in Section 4. In Section 5 we summarize
our conclusions, propose a generalization of our key lemma, and discuss its potential applications to general
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multi–state spin systems.

2. Model and results

In this section we introduce the Blume–Capel model with the Kawasaki dynamics and state our main results.

2.1. The lattice

We consider the set Z2 embedded in R2 and call sites its elements. We will denote by {e1, e2} the canonical
base of R2 and we will often address to the direction 1 (resp. 2) as the horizontal (resp. vertical) direction.
Given two sites x, x′ ∈ Z2 we let |x− x′| be their Euclidian distance. Given x ∈ Z2, we say that x′ ∈ Z2 is a
nearest neighbor of x if and only if |x−x′| = 1. Pairs of neighboring sites will be called bonds. A set X ⊂ Z2

is connected if and only if for any x ̸= x′ ∈ X there exists a sequence x1, x2, . . . , xn of sites of X such that
x1 = x, xn = x′, and xk and xk+1 are nearest neighbors for any k = 1, . . . , n− 1.

Given X ⊂ Z2 we call internal boundary ∂−X of X the set of sites in X having a nearest neighbor outside
X. The interior or bulk of X is the set X \∂−X, namely, the set of sites of X having four nearest neighbors
inside X. We call external boundary ∂+X of X the set of sites in Z2 \X having a nearest neighbor inside X.

A column, resp. a row, of Z2 is a sequence of L connected sites of Λ such that the line joining them is
parallel to the vertical, resp. horizontal, axis.

A set R ⊂ Z2 is called a rectangle (resp. square) of Z2 if the union of the closed unit squares of R2

centered in the sites of R with sides parallel to the axes of Z2 is a rectangle (resp. a square) of R2. The sides
of a rectangle of Z2 are the four maximal connected subsets of its internal boundary (note that they lie on
straight lines parallel to the axes of Z2). The length of one side of a rectangle of Z2 is the number of sites
belonging to the side itself. A quasi–square is a rectangle with side lengths equal to n and n+ 1, with n an
integer greater than or equal to one.

We equip Z2 with a directed graph structure by considering the set of directed edges (x → y) where
{x, y} ⊂ Z2 such that |x− y| = 1.

2.2. The configuration space

Let Λ := {0, ..., L + 1}2 ⊂ Z2 be a finite square with fixed side length L + 2 and denote its interior by
Λ0 := Λ \ ∂−Λ = {1, ..., L}2. Remark that ∂+Λ0 is not equal to ∂−Λ, since the four corner sites of Λ belong
to ∂−Λ, but not to ∂+Λ0. We denote by E ⊂ Λ × Λ the collection of all the directed edges (x → y) such
that x, y ∈ Λ and E0 := {(x → y) ∈ E|x, y ∈ Λ0} the set of oriented edges with both vertices in Λ0.

With each x ∈ Λ we associate a spin variable σ(x) ∈ {−1, 0,+1}. Moreover, we let X := {−1, 0,+1}Λ
be the configuration space and X̂ := {σ ∈ X |σ(x) = 0 ∀x ∈ ∂−Λ} be the set of configurations with spin 0

associated to the sites in the internal boundary of Λ.
Given a configuration σ ∈ X , if σ(x) = 0 we say that the site is empty, otherwise, if σ(x) = +1 (resp.

σ(x) = −1), we say that it is occupied by a particle with spin plus (resp. minus).
Given a configuration σ ∈ X and a set A ⊆ Λ0, we denote σ|A by σA. Finally, given s ∈ {−1, 0,+1} and

A ⊆ Λ0, we denote by sA the homogeneous configuration σ ∈ {−1, 0,+1}A with spin equal to s for any site
in A. The symbols −1−1−1, 000, +1+1+1 denote, respectively, the configurations with spins zero in ∂+Λ0 and spins −1,
0, and +1 in Λ0, namely the homogeneous configuration in the interior of Λ.

2.3. Hamiltonian of the model and assumptions on its parameters
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The Blume–capel Hamiltonian is defined in terms of three real parameters J > 0, λ, and h, respectively
called coupling constant, chemical potential, and magnetic field. It is also convenient to set

∆p = 4J − (λ+ h) and ∆m = 4J − (λ− h). (2.1)

For any s ∈ {−1,+1}, we define

∆s =
1− s

2
∆m +

1 + s

2
∆p. (2.2)

We now introduce a particular version of the Hamiltonian of the Blume–Capel model which is well suited to
treat the particle exchange between the bulk and the boundary:

H(σ) = H0(σ) + ∆p
∑

i∈∂+Λ0

1{σ(i)=+1} +∆m
∑

i∈∂+Λ0

1{σ(i)=−1} (2.3)

where
H0(σ) =

J

2

∑
i,j∈Λ0:

|i−j|=1

[σ(i)− σ(j)]2 + J
∑

i∈∂−Λ0

∑
j∈Z2\Λ0:

|i−j|=1

[σ(i)]2 − λ
∑
i∈Λ0

σ(i)2 − h
∑
i∈Λ0

σ(i). (2.4)

Note that if in a configuration σ a spin zero surrounded by zeros is changed to plus or minus the value of
the energy H0 increases precisely of ∆p and ∆m, respectively. Thus, these two quantities can be interpreted
as the energy cost of a plus and a minus spin in the sea of zeros.

We note that if σ is a configuration such that the external boundary of Λ0 is filled with zero spins, then
H(σ) = H0(σ). It is interesting to remark that the function H0 in (2.4) is precisely the Hamiltonian of the
Blume–Capel model that has been used in [15] to study the Blume–Capel model with Glauber dynamics
in the case of zero boundary conditions. Here, we consider the Hamiltonian (2.3) to take into account the
energy cost of particles that must be created in the boundary ∂+Λ0 to run the Kawasaki dynamics mimicking
the presence of an external gas with fixed density of plus and minus spins.

The equilibrium state of the Blume–Capel model with zero boundary condition on Λ and at temperature
1/β, with β a positive real number, is described by the Gibbs measure

µβ(σ) =
e−βH(σ)

Zβ
, (2.5)

where Zβ :=
∑

η∈X e−βH(η) is the partition function.
In the sequel we shall discuss the metastable behavior of the Blume–Capel model, but, to do so, we will

rely on the following assumptions on the parameters1 (see, also, Figure 1):

i)λ > 0 and
λ

2
< h < min

{
λ,

1

3
J − λ

}
(2.6)

ii)λ <
4J(1− h/λ)

h/λ(1 + h/λ)

[
− 2(1− 2h/λ)

h/λ
+

√
64

1 + h/λ
− 22

h/λ
− 6

]−1

for
h

λ
>

1

3
(9− 4

√
3) (2.7)

iii)L >
( 2J

λ− h

)3

and
2J

λ+ h
,

2J

λ− h
,
2J + λ− h

2h
are not integers. (2.8)

Condition (2.6) implies that ∆p and ∆m are both positive and will be also used in the proof of Theo-
rem 2.1. Conditions (2.7)–(2.8) are more technical, in particular (2.7) is related to the uncertainty on the

1With the notation 0 < a ≪ b we mean 0 < a < cb for some positive constant c > 1 that we are not interested to compute
exactly.

cjs-bck_zero.tex – 16 maggio 2024 5 0:26



Figure 1: Region of the parameters space compatible with assumptions (2.6)–(2.8) for J = 1. The red and
the black lines have, respectively, slope (9− 4

√
3)/3 and 1.

computation of the stability level of the configuration −1−1−1, as mentioned already in the introduction (see,
also, Theorem 2.2 and the way in which it is used in Section 3.7). Note that the above conditions are
not completely independent one from each other, indeed, in the case ξ much larger than (9 − 4

√
3)/3 the

condition (2.7) implies the requirements assumed in (2.6) on h.
We close this section by remarking that a simple computation yields that the Hamiltonian (2.3) can be

rewritten as follows

H(σ) = −J
∑

(x→y)∈E0

1{σ(x)σ(y)=+1}+J
∑

(x→y)∈E0

1{σ(x)σ(y)=−1}+∆p
∑

x∈Λ0∪∂+Λ0

1{σ(x)=+1}+∆m
∑

x∈Λ∪∂+Λ0

1{σ(x)=−1}. (2.9)

This is an interesting expression pointing out that the interaction takes effect only inside Λ0 and that the
binding energy associated to a positive bond is −J < 0 (respectively, J > 0 for a negative bond).

2.4. Energy landscape

The energy difference (energy cost) associated with each possible swap between two particles of different
type plays a crucial role in the proof of several results.

Given σ ∈ X , we well consider the following transformations: we denote by σ(x,y) the configuration
obtained by swapping the values of the spins at sites x and y in σ, by σ(x;0) the configuration obtained from
σ by replacing the value of the spin at site x with 0, and by σ(x;s) the configuration obtained from σ by
replacing the value of the spin at site x with s ∈ {−1,+1}, more precisely, we set

σ(x,y)(z) =


σ(z) if z ̸= x, y

σ(y) if z = x

σ(x) if z = y,

σ(x;0)(z) =

{
σ(z) if z ̸= x

0 if z = x,
σ(x;s)(z) =

{
σ(z) if z ̸= x

s if z = x.
(2.10)

In order to express conveniently the energy differences, we introduce the following energy cost functions.
Let σ ∈ X and x ∈ Λ, we set

Dx(σ) :=
∑
y∈Λ

|x−y|=1

1{σ(y)σ(x)=+1} −
∑
y∈Λ

|x−y|=1

1{σ(y)σ(x)=−1} if x ∈ Λ0 (2.11)

and Dx(σ) = 0 if x ∈ ∂+Λ0, which makes sense since, according to (2.3), in ∂−Λ there is no interaction.
We note that for x ∈ Λ0, if σ(x) = 0, then Dx(σ) = 0, otherwise Dx(σ) is the difference between the

number of nearest neighbours of x with spin equal to σ(x) and the number of nearest neighbors with spin
equal to −σ(x).
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Furthermore, it is easy to see that the energy cost of the swap between the spins in x and y in Λ is given
by

H(σ(x,y))−H(σ) = 2J
[
[Dx(σ) +Dy(σ)]− [Dx(σ

(x,y)) +Dy(σ
(x,y))]

]
. (2.12)

As we will see below, the homogeneous states −1−1−1, 000, and +1+1+1 will be of basic importance in our study.
We, thus, compute their energy. Recalling (2.3), it follows

H(000) = 0, H(−1−1−1) = −L2(λ− h) + 4JL, H(+1+1+1) = −L2(λ+ h) + 4JL, (2.13)

where we have reported only the terms proportional to L2 omitting the terms proportional to L and smaller.
The ground states of the system (or of the Hamiltonian) are the configurations where the Hamiltonian

(2.3) attains its absolute minimum. We let X s be the set of ground states.

Lemma 2.1. Assume condition (2.6) is satisfied, then the homogeneous state +1+1+1 is the sole ground state of
the system, namely X s = {−1−1−1}.

We say that a configuration η ∈ X is a local minimum of the Hamiltonian if and only if for any η′ ̸= η

communicating with η we have H(η′) > H(η).

Lemma 2.2. Assume (2.6) and (2.7) are satisfied. The homogeneous states 000 and −1−1−1 are local minima of
the system.

Based on the above lemma, we can expect that the homogeneous states −1−1−1 and 000 are potential metastable
states.

2.5. Local Kawasaki dynamics

We consider a lattice dynamics similar to the local Kawasaki dynamics defined in [24] for one type of particles.
In the bulk spins cannot be freely modified, as it is the case for the Glauber dynamics, but only swaps of the
spin values between neighboring sites are allowed. The total amount of pluses, minuses, and zeroes is not
kept constant since we let particle to enter the system at the boudary. Indeed, in the region ∂+Λ0, which is
contained in the internal boundary ∂−Λ of Λ, the value of a spin can be changed from zero to plus or minus,
and viceversa, mimicking in this way a swap with the exterior of Λ, namely, Z2 \ Λ, which plays the role of
an infinite reservoir.

We denote by E+ the set obtained by adding to E the oriented pairs of neighboring sites such that one
and only one is inside Λ. In other words,

E+ = E ∪ {(x → y) |x ∈ Λ, y ∈ ∂+Λ} ∪ {(x → y) |x ∈ ∂+Λ, y ∈ Λ}. (2.14)

We say that σ and η are communicating configurations, and we denote by σ ∼ η, if there exists an edge
(x → y) ∈ E+ such that η may be obtained from σ in any one of these ways:

– for (x → y) ∈ E+, η = σ;

– for (x → y) ∈ E, η = σ(x,y) is the configuration obtained from σ by exchanging the spin values in the
sites x and y;

– for (x → y) ∈ E+ with y ∈ ∂+Λ, η = σ(x;0) represents the fact that a spin inside the internal-boundary
∂−Λ is set to zero;
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– for (x → y) ∈ E+ with x ∈ ∂+Λ and σ(y) = 0, η = σ(y;s) represents the fact that a spin inside the
internal-boundary ∂−Λ is set to s ∈ {−1,+1}.

The dynamics is modelled by the discrete time Markov chain σt ∈ X , with t ≥ 0, performing jumps
among communicating configurations. Precisely, at time t ≥ 1 choose at random an edge (x → y) ∈ E+

with uniform probability, then

i) if (x → y) ∈ E then σt+1 = σ
(x,y)
t with probability e−β[H(σ

(x,y)
t )−H(σt)]+ , otherwise σt+1 = σt;

ii) if (x → y) ̸∈ E and x ∈ Λ, then σt+1(x) = 0 and σt+1(z) = σt(z) for all z ∈ Λ \ {x} with probability
1/2, otherwise σt+1 = σt;

iii) if (x → y) ̸∈ E and y ∈ Λ is such that σ(y) = ±1, then σt+1 = σt. Otherwise if y ∈ Λ is such that
σ(y) = 0 we set

σt+1(y) =


+1 with probability 1

2e
−β∆p

,

−1 with probability 1
2e

−β∆m

,

σt(y) otherwise.

(2.15)

Moreover σt+1(z) = σt(z) for all z ∈ Λ \ {y}.
Case i) corresponds to the swap of spins between neighboring sites in Λ0. Cases ii) and iii) correspond

to the exchange of spins at the boundary ∂−Λ. In particular point ii) states that a spin s ∈ {−1,+1} inside
∂−Λ is replaced by a spin zero and point iii) states that a spin s ∈ {−1,+1} outside Λ replaces a spin in
∂−Λ.

We denote by pβ(σ, η) the transition probability associated with this Markov chain.

Lemma 2.3. The Markov chain defined above is reversible with respect to the Gibbs measure (2.5), i.e., it
satisfies the detailed balance condition

µβ(σ)pβ(σ, η) = µβ(η)pβ(η, σ) (2.16)

for σ, η ∈ X .

2.6. Paths, energy costs, metastable states

A sequence of configurations ω) = (ω1, ω2, . . . , ωn) such that ωi and ωi+1 are communicating for any i =

1, 2, . . . , n− 1 is called a path of length n. A path (ω1, . . . , ωn) is called downhill (resp. uphill) if and only if
H(ωi) ≥ H(ωi+1) (resp. H(ωi) ≤ H(ωi+1)) for any i = 1, 2, . . . , n − 1. In particular, a path (ω1, . . . , ωn) is
called two-steps downhill if and only if H(ωi) ≥ H(ωi+2) ≥ H(ωi+1) for any i = 1, 2, . . . , n − 2. Given two
configurations η, η′ ∈ X , the set of paths with first configuration η and last configurations η′ is denoted by
Ω(η, η′).

Given a path ω = (ω1, . . . , ωn), its height Φ(ω) is the maximal energy reached by the configurations of
the path, more precisely,

Φ(ω) := max
i=1,...,n

H(ωi) . (2.17)

Given two configurations η, η′, the communication height between η and η′ is defined as

Φ(η, η′) := min
ω∈Ω(η,η′)

Φ(ω) . (2.18)
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Figure 2: In the picture, white, dark gray and light gray represent the zero, plus and minus regions respec-
tively. On the left, the configuration σc. On the right, the configuration σs that contains two more pluses
and two less minuses than σc. We note that the cluster of pluses can be attached in one of the four corners
of Λ and the protuberance can be attached along one of the two sides of the cluster of pluses.

Any path ω ∈ Ω(η, η′) such that Φ(ω) = Φ(η, η′) is called optimal for η and η′.
Let Iσ be the set of configurations with energy strictly lower than H(η). The stability level of a configu-

ration η ∈ X is

Vη := Φ(σ, Iη)−H(η), (2.19)

If Iσ is empty, then we define Vσ = ∞. Given a real number a, we let Xa be the set of the configuration
with stability level larger than a.

The metastable states are defined as the configurations, different from the ground states, such that their
stability level is maximal.

2.7. Main results

In this section, we present the main results of the model for the region of the parameter space specified by
the conditions (2.6)–(2.8) that are assumed to be satisfied. We denote by Pσ and Eσ the probability measure
induced by the Markov chain started at σ and the associated expectation.

In the next theorems we will compute estimates for the maximal stability level of all the configurations of
the model and we will identify the metastable state. Some key estimates will be given in terms of the energies
of two peculiar configurations σc and σs, see Figure 2. The precise description of these configurations is given
in the caption of the figure where the definition of the critical length

lc =
⌊2J + λ− h

2h

⌋
+ 1 (2.20)

will be used. The energies of the two configuration are given by

H(σc) = H(−1−1−1) + 2J(2lc − 1)− (λ+ h)lc(lc − 1) + (λ− h)(lc(lc − 1) + (2lc − 1))

H(σs) = H(σc) + 6J − 2(λ+ h) + 2(λ− h). (2.21)

The first result is an estimate of the stability level of all the configurations of X different from {−1−1−1,+1+1+1}.
This result suggests that −1−1−1 is the unique metastable state in the region of the parameter plane under
consideration.
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Theorem 2.1. Let η ∈ X be a configuration such that η ̸∈ {−1−1−1,+1+1+1}, then

Vη ≤ 6J − 2(λ+ h) +
4J2

λ+ h
=: V ∗. (2.22)

An immediate consequence of Theorem 2.1 is the recurrence of the system to the set {−1−1−1,+1+1+1}. Indeed,
by applying [31, Theorem 3.1] we have that for any ϵ > 0 the function

β → sup
σ∈X

Pσ(τ{−1−1−1,+1+1+1} > eβ(V
∗+ϵ)) (2.23)

is super–exponentially small2 for β → ∞, where τ{−1−1−1,+1+1+1} is the first hitting time to {−1−1−1,+1+1+1} of the chain
started at σ.

The equation (2.23) implies that the system reaches with high probability either the state −1−1−1 (which is
a local minimizer of the Hamiltonian) or the ground state in a time shorter than eβ(V

∗+ϵ), uniformly in the
starting configuration σ for any ϵ > 0. In other words we can say that the dynamics speeded up by a time
factor of order eβV

∗
reaches with high probability {−1−1−1,+1+1+1}.

Theorem 2.2 (Stability level of −1−1−1). The stability level V−1−1−1 of −1−1−1 is such that

H(σc) + ∆p −H(−1−1−1) ≤ V−1−1−1 ≤ H(σs)−H(−1−1−1).

We remark that the upper bound of V−1−1−1 can be estimated as follows:

H(σs)−H(−1−1−1) = 2J(2lc + 1) + λ(2lc − 1)− h(2l2c + 3) <
2J2

h
+

2Jλ

h
+ 4J +

λ2

2h
− 7

2
h− λ. (2.24)

Moreover, by using the explicit expression of the energy of the two configurations σs and σc, see the equation
(2.7) below, the difference between the upper and the lower bound is

[H(σs)−H(−1−1−1)]− [H(σc) + ∆p −H(−1−1−1)] = 2J + λ− h. (2.25)

Finally, we are now able to identify the metastable states of the system. Indeed, since the lower bound in
Theorem 2.2 is strictly greater than V ∗ and since all the other configurations have stability level smaller
than V ∗, as stated in Theorem 2.1, we have that −1−1−1 is the configuration with maximal stability level.

Theorem 2.3 (Identification of the metastable state). The unique metastable state is −1−1−1.

Finally, we recall that the knowledge of the stability level of the metastable state allows to give the the
asymptotic behavior as β → ∞ of the transition time of the system started at the metastable state.

Theorem 2.4 (Asymptotic behavior of the transition time). For any ϵ > 0, we have

lim
β→∞

P−1−1−1(e
β(H(σc)+∆p−H(−1−1−1)−ϵ) < τ+1+1+1 < eβ(H(σs)−H(−1−1−1)+ϵ)) = 1, (2.26)

where τ+1+1+1 is the first hitting time to +1+1+1 of the chain started at −1−1−1.

3. Proof of main results

In this section we collect the proofs of all the results stated in Section 2.
2We say that a function x 7→ f(x) is super exponentially small for x → ∞ if limx→∞(log f(x))/x = −∞.
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3.1. Proof of Lemma 2.1

Let σ and η be two communicating configurations. If σ = η the statement is trivial. We consider then
the case σ ̸= η. If there exists (x → y) ∈ E such that η = σ(x,y), then the statement follows by standard
Metropolis computations. On the other hand, suppose that η and σ differ for the value of the spin in a single
site x ∈ ∂−Λ. Several cases have to be considered:

a) σ(x) = +1 and η(x) = 0, we have

µβ(σ)pβ(σ, η) =
e−βH(σ)

Zβ

1

2|E+| (3.27)

since the case ii) in the definition of the dynamics must be considered, and

µβ(η)pβ(η, σ) =
e−βH(η)

Zβ

1

2|E+|e
−β∆p

(3.28)

since the case iii) in the definition of the dynamics must be considered. By (2.3), we obtain H(σ) =

H(η) + ∆p and we get that (3.27) and (3.28) are equal.

b) σ(x) = −1 and η(x) = 0, the proof is similar to that of case a).

c) σ(x) = 0 and η(x) = +1, same as case a).

d) σ(x) = 0 and η(x) = −1, same as case b).

We note that if σ(x) = ±1 and η(x) = ∓1 with x ∈ ∂−Λ, then σ and η are not communicating configurations.

3.2. Proof of Lemma 2.1

The fact that +1+1+1 is the ground state of the Hamiltonian is achieved as in the proof of [15, Lemma 2.2] and
using that ∆p,∆m > 0.

3.3. Proof of Lemma 2.2

We observe that when a particle moves in Λ, the energy of the system increases. In particular, the energy
cost to get a plus (resp. a minus) in Λ is ∆p (resp. ∆m). This implies that the state 000 is a local minumun.
Moreover, also the state −1−1−1 is a local minimum of the Hamiltonian, since the other possible moves have a
positive energy cost, indeed a minus may move from Λ0 in ∂+Λ0 with an energy cost greater than (exit from
the boundary) or equal to (exit from the corner) 4J .

3.4. Auxiliary lemmas

In this section we collect some auxiliary lemmas that wil be used in the proof of the following theorems. The
proofs of these lemmas are in Section 4.

First of all, given a configuration η ∈ X , we consider the set C(η) ⊆ R2 defined as the union of the closed
unitary squares centered at sites of Λ0 with the boundary parallel to the axes of Z2 and such that the spin
in η associated with the site is plus. The maximal connected components C1, . . . , Cm, with m ∈ N, of C(η)
are called clusters of pluses. We define in the same way the clusters of minuses and the clusters of zeros.
The boundary of each cluster is made of straight lines and corners on the dual lattice, that can be convex
corners or concave corners following the usual R2 definitions. Moreover, the portion of the boundary of the
cluster delimited by two subsequent convex corners is called a convex side of the cluster, otherwise, if at
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least one of the two corners is concave, it is called a concave side. We observe that each cluster has at least
one convex side, since Λ0 is finite (and, recall, it is not a torus).

Moreover, given a configuration σ ∈ X , a zero-carpet of σ is a connected set X ⊂ Λ such that σ(x) = 0

for each x ∈ X. In a similar way we define the s-carpet of σ with s ∈ {−1,+1}.
The following lemma is a key result of this paper. Indeed, here we show that if a particle, indifferently

a plus or a minus, is transported along a zero carpet, then it possible to reduce the computation of the
difference of energy between any two configurations visitec along the path to the examination of nine possible
cases. Moreover, the height of this path in the configuration space equals the height computed along the
corresponding path on the graph by summing the weights of each transition. We use this property to prove
a bound for the height of the path in the configuration space which does not depend on its length.

Lemma 3.4 (Weighted graph for the energy cost in a carpet). Let s ∈ {−1, 0,+1}. Consider a configuration
σ ∈ X such that there exists a s-carpet X of σ and two nearest neighboring sites x ∈ Λ \X and x′ ∈ X such
that σ(x) = r ̸= s. Assume, also, that there exists y ̸= x′ a nearest neighbor of x such that σ(y) = s. Let X ′

be the subset of X obtained by collecting x′ together with all the sites of X having at least two neighboring
sites in X. Then the following holds:

1. for any v ∈ X ′ ∪ {x}, let σv = σ(x,v) and recall that σ(x,x) is equal to σ. Then, for any pair of
neighboring sites v, w ∈ X ′ ∪ {x}

H(σv)−H(σw) ∈


{−8J,−6J,−4J,−2J, 0, 2J, 4J, 6J, 8J} if s = 0,

{−8J,−6J,−4J,−2J, 0, 2J, 4J, 6J, 8J} if s ̸= 0 and r = 0,

{−16J,−12J,−8J,−4, 0, 4J, 8J, 12J, 16J} if s ̸= 0 and r = −s.

can be computed as specified in the Figure 3.

2. For any v ∈ X ′

Φ(σ, σv)−H(σ) ≤


8J if s = 0,

8J if s ̸= 0 and r = 0,

16J if s ̸= 0 and r = −s.

In the next lemma, we show that if a particle is transported inside or outside Λ0 through a carpet, than
Lemma 3.4 can be used to bound the height of the path by 18J .

Lemma 3.5 (Transport through a zero-carpet). Consider a configuration σ ∈ X such that there exists a
zero-carpet X of σ such that X ∩ ∂−Λ0 ̸= ∅.

(i) Given x ∈ X, let η := σ(x;s) with s ∈ {−1,+1}, then

Φ(σ, η)−H(σ) ≤ 18J and H(η) = H(σ) + ∆s − 2Dx(η)J, (3.29)

where Dx(η) is defined in 2.11.

(ii) Given x ∈ Λ0 a nearest neighbor of X such that σ(x) = s ̸= 0. Let η := σ(x;0), then

Φ(σ, η)−H(σ) ≤ 14J and H(η) = H(σ) + 2Dx(σ)J −∆s. (3.30)
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Figure 3: In each vertex of the graph the three squares represent three sites such that the one at the center is
the site x and it is nereast neighbor of the other two. The local configuration is reported with the colors red,
green and white representing, respectively, the spin values s ̸= 0, −s, and 0. The other two sites neighboring
the middle square and not reported in the picture are occupied by a zero spin in the left panel, and by a
s spin in the center and right panel. The vertex at the center of the graph corresponds to any of the two
reported configurations. Any transition from σv to σw for v, w ∈ X ′ ∪ {x} is realized via the swap of the
particle between two sites with local configuration represented by one of the vertices of the graph. For each
possible swap the energy difference is reported in the picture.

In words, in (i) we state that to transport a plus or a minus through a zero-carpet from outside to a site
x with spin zero, has an energy cost smaller than or equal to 18J and the energy of the final configuration
depends on the local configuration around x. While, in (ii), we state that a plus or a minus in the site x

follows a zero-carpet and then it leaves Λ with an energy cost smaller than or equal to 10J ; also in this case
the energy of the final configuration depends on the local configuration around x.

Lemma 3.6 (Transport through a s-carpet). Consider a configuration σ ∈ X such that there exists a s-carpet
X of σ such that X ∩ ∂−Λ0 ̸= ∅ and y ∈ Λ a nearest neighbor of X.

(i) If σ(y) ̸= 0, then let η := σ(y;0) and we have

Φ(σ, η)−H(σ) ≤ 54J and H(η) = H(σ) + 2Dy(σ)J −∆s, (3.31)

where Dy(σ) is defined in 2.11.

(ii) If σ(y) = 0, then let η := σ(y;s) and we have

Φ(σ, η)−H(σ) ≤ 35J and H(η) = H(σ) + ∆s − 2Dy(η)J. (3.32)

In words, in (i) a particle with spin −s follows a s-carpet from its position y to ∂+Λ0 and then it
is replaced by a zero. This zero runs through the s-carpet until it reaches the site y. This path has an
energy cost smaller than or equal to 38J and the energy of the final configuration depends only on the local
configuration around y. While, (ii) considers the motion of the zero initially in x along the s-carpet, until it
reaches ∂−Λ0. Hence, this zero is exchanged with a particle with spin s created in ∂+Λ0. The energy cost
of this path is smaller than or equal to 54J and the energy of the final configuration depends only on the
local configuration around y.

We will now state some lemmas in which we use the notion of carpet to estimate the stability level of
some specified configurations. Before stating the lemmas we need a new definition.
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Figure 4: Representation of the flag-shaped structure present in the configuration considered in Lemma 3.12.
We note that the strips can be vertical or horizontal.

Lemma 3.7. Let σ be a configuration that contains a bond of type (+,−). Assume that there exists a zero-
carpet of σ at distance one from the bond and intersecting ∂−Λ0 or the bond is at distance one from ∂+Λ0,
then Vσ ≤ 14J .

Lemma 3.8. Let σ be a configuration that contains a bond of type (+,−) and let s ∈ {−1,+1}. If there
exists a s-carpet of σ at distance one from ∂+Λ0 and from the site of the bond with spin −s, then Vσ ≤ 54J .

Lemma 3.9. Let x ∈ Λ and let xi be the nearest neighbours of x, with i = 1, . . . , 4. Let σ be a configuration
such that σ(x) = 0, σ(x1) = σ(x2) = +1, σ(x3) = 0, and σ(x4) ̸= −1 or σ(x4) = −1 with at most two
nearest neighbors equal to −1. If there exists a zero-carpet of σ at distance one from x and intersecting
∂+Λ0, then Vσ < 18J .

Lemma 3.10. Let σ be a configuration that contains a cluster of pluses (resp. minuses) with at least a
convex side with length l ≤ ⌊ 2J

λ+h⌋ (resp. l ≤ ⌊ 2J
λ−h⌋). Assume that there exists a zero-carpet of σ at distance

one from one of the two corner sites of the convex side of the cluster and intersecting ∂+Λ0. Then Vσ < 16J .

Lemma 3.11. Let σ be a configuration that contains a cluster of pluses (resp. minuses) with at least a
convex side with length l ≥ ⌊ 2J

λ+h⌋ + 1 (resp. l ≥ ⌊ 2J
λ−h⌋ + 1) at distance strictly greater than two from a

minus spin (resp. plus spin). Assume that there exists a zero-carpet of σ at distance one from one of the two
corner sites of the convex side of the cluster and intersecting ∂+Λ0. Then Vσ < 22J .

We note that in the previous two lemmas, if the cluster is at distance one from ∂+Λ0, then there exists
a zero carpet, at distance one the two corner sites of the convex side, composed by only sites in ∂+Λ0.

Lemma 3.12. Let σ be a configuration that contains a flag-shaped structure namely a structure made of a
strip of pluses, a strip of zeros and a strip of minuses with equal lengths as in the left or right panel of Figure
4. Assume that there exists a minus-carpet of σ at distance one from the strip of zeros, then Vσ < 58J .

Lemma 3.13. We have that V000 ≤ 6J − 2(λ+ h) + 4J2/(λ+ h).

3.5. Proof of Theorem 2.1

In order to prove Theorem 2.1 we start showing that the stability level of each configuration η ̸∈ {−1−1−1,+1+1+1}
is smaller than or equal to V ∗. First of all, we note that if η contains some plus or minus spin in ∂+Λ0,
then Vη = 0 indeed the particle with plus (resp. minus) spin leaves Λ and the energy decreases by ∆p (resp.
∆m). Thus, from now on we assume η∂+Λ0

= 0∂+Λ0
. To prove that Vη < V ∗, we partition the set of all

configurations according to the value of the spin in the upper-left corner, that we denote by x0 = (1, L), and
we use the auxiliary lemmas 3.7-3.13. In the following the columns are ordered from left to right and the
row from top to bottom.
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Figure 5: Representation of the configurations used in items (i) and (ii) of Case η(x0) = 0 in the proof of
the Theorem 2.1, respectively, on the left and on the right.

Case η(x0) = 0. Let R be the maximal rectangle with the upper-left corner in the x0 and such that
ηR = 0R. We note that if R ≡ Λ0, i.e. η ≡ 000, then we conclude by using Lemma 3.13. Thus, assume R ̸≡ Λ0

and let lv, lh be, respectovely, the vertical and horizontal side lengths of R.
If lv, lh ≥ ⌊ 2J

λ+h⌋ + 1, then we reduce the energy of η with an energy cost strictly smaller than V ∗ by
using the same path described in the proof of Lemma 3.13.

Thus, assume that at least one of the two lengths (for instance lh) is smaller than or equal to ⌊ 2J
λ+h⌋+1.

Since, R is maximal it follows that there exists x2 ∈ {L− lv + 1, . . . , L} such that, denoted x = (lh + 1, x2),
we have η(x) ̸= 0 and η(x + je2) = 0 for j = 1, . . . , L − x2. We let, also, y = x − (m − 1)e2, with m ≥ 1

integer, be such that η(x − je2) = η(x) for every 0 ≤ j ≤ m − 1 and η(y − e2) ̸= η(y). We distinguish two
cases, see Figure 5:

(i) Case x2 −m ≥ L− lv + 1: if m ≤ ⌊ 2J
λ±h⌋, we consider the configuration in which the spins in x− je2,

with j = 0, . . . ,m−1, are changed to 0, and note that, by Lemma 3.10, such a configuration has energy
smaller that the initial one and the communication height is smaller than 10J which, in turn, is smaller
than V ∗. On the other hand, if m ≥ ⌊ 2J

λ±h⌋ + 1, we consider the configuration in which the zeroes at
sites (lh, x2 − j) with j = 0, . . . ,m− 1 are changed to η(x) and the theorem follows from Lemma 3.11.

(ii) Case x2−m ≤ L−lv, and assume that there exists a site z = (lh, z2) for some x2−(m−1)−1 ≤ z2 ≤ L−lv

such that η(z) ̸= 0 and η(lh, a) = 0 for a ≥ z2 + 1, see Figure 6. We distinguish two cases:

(ii.a) η(z) = −η(x). We conclude by applying Lemma 3.7.

(ii.b) η(z) = η(x). We consider the site w = z + e2 and assume that η(w − e1) ̸= −η(x). If necessary,
we add a particle with spin η(x) in ∂+Λ0, by paying either ∆p or ∆m. Then we transport the
particle trough the zero-carpet to w, by paying 8J , see Lemma 3.4. By direct inspection we also
get that the difference of energy between the final and the initial configurations is smaller than or
equal to −(λ ± h). On the other hand, in the case η(w − e1) = −η(x), we conclude by applying
Lemma 3.7.

(iii) Case x2 − m ≤ L − lv, and assume that all the spins associated with the sites (lh, a) with a ≥
x2 − (m− 1)− 1 are zero.

In the case m ≤ ⌊ 2J
λ±h⌋, we proceed exactly as in case (i) above.
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Figure 6: Representation of the configurations in items (ii.a) and (ii.b) of Case η(x0) = 0 in the proof of the
Theorem 2.1, respectively, on the left and on the right.
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Figure 7: Left: Representation of the configuration used in case (iii) of Case η(x0) = 0 in the proof of the
Theorem 2.1. Right: An example of configuration η of point (ii) in Case η(x0) = +1.

On the other hand, in the case m ≥ ⌊ 2J
λ±h⌋ + 1, we have to look at the spins in the column lh − 1.

If all the sites (lh − 1, j) with j ≥ x2 − (m − 1) have spin zero, then we get the proof again as in
case (i) above. Otherwise, namely, if at least one of the spins associated with the sites (lh − 1, j) with
j ≥ x2− (m−1) is not zero, then we have to look at the sites along the row L− lv. Since R is maximal,
there exists a site k = (k1, L − lv) such that η(k) ̸= 0 and η(j, L − lv) = 0 for j = 1, . . . , k1 − 1. Let
q = k + ne1, with n ≥ 0 integer, be such that η(k + je1) = η(k) for 0 ≤ j ≤ n and η(k) ̸= η(q + e1),
see the left panel in Figure 7. If n ≤ ⌊ 2J

λ±h⌋ we conclude by using Lemma 3.10 and if n ≥ ⌊ 2J
λ±h⌋ + 1

we conclude by using Lemma 3.11.

Case η(x0) = +1. Let R be the maximal rectangle with the upper-left corner in the x0 and such that
ηR = +1R. We note that R ̸≡ Λ0, otherwise η ≡+1+1+1.

Thus, let lv, lh be, respectively, the vertical and horizontal side lengths of R. Since R is maximal, it
follows that there exists a spin different from plus at distance one from R.

In case it is a minus, we conclude by applying Lemma 3.7, if the associated site is in ∂−Λ0, otherwise we
conclude by applying Lemma 3.8.

Now, we consider the case in which all the spins at distance one from R are pluses and zeros. Without
loss of generality, we can assume that there exists a site on the vertical part of the external boundary of R
with associates spin equal to zero. Thus, we let x2 ∈ {L−lv+1, . . . , L} be such that, denoted x = (lh+1, x2),
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Figure 8: Representation of the configuration used in the case η(x0) = +1 in the proof of Theorem 2.1.
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Figure 9: Representation of the configuration used in the case η(x0) = +1 in the proof of Theorem 2.1.

we have η(x) = 0 and η(x+ je2) = +1 for j = 1, . . . , L− x2.
We note that if x ̸∈ ∂−Λ0, see the left panel in Figure 8, then we apply Lemma 3.6 or Lemma 3.9 and

we conclude.
We are thus left with the case x ∈ ∂−Λ0, i.e., x2 = L. In such a case we let y = x−(m−1)e2, with m ≥ 1

integer, be such that η(x− je2) = η(x) for every 0 ≤ j ≤ m−1 and either y−e2 ∈ ∂+Λ0 or η(y−e2) ̸= η(y),
see the center and right panel in Figure 8. We distinguish two cases:

(i) Case m ≤ lv − 1: we can conclude since η satisfies the assumption of Lemma 3.5-(i), indeed, η(y) = 0,
η(y− e1) = +1 (inside R), η(y− e2) = +1 (otherwise there would be a minus in ∂+R), and if η(y+ e1)

were minus, then it would not have three neighboring minuses because in such a case there would be
a direct (+,−) interface in the sites y − e2 and y + e1 − e2. See the center panel in Figure 8.

(ii) Case m ≥ lv. If lv ≤ ⌊ 2J
λ+h⌋, then we reduce the energy of η with an energy cost strictly smaller than

V ∗ by using Lemma 3.10. If lv ≥ ⌊ 2J+λ−h
2h ⌋+ 1, we conclude by using Lemma 3.12.

We are thus left with the case ⌊ 2J+λ−h
2h ⌋ ≥ lv ≥ ⌊ 2J

λ+h⌋+ 1 with which we deal by looking at the value
of the spins at distance

√
2 and 2 from the side of R with length lh.

If one of these spins is plus we apply Lemma 3.5-(i) and if they are all zeros we conclude by applying
Lemma 3.11. We are left with the case in which these spins are either zero or minus and at least one
of them is minus, see Figure 9. We distinguish two cases:

(ii.a) all these spins are zeros excepted the one at distance
√
2 which has spin minus, see the left panel

in Figure 9.
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Figure 10: On the left the initial configuration η of point (i) in Case η(x0) = +1. On the right the final
configuration η′′.

We note that if this minus has three minus nearest neighbours, then one of them is at distance
one from R and so we conclude by applying Lemma 3.8.

Thus, we assume that the minus has at most two nearest neighbors with minus spin. Let η′ be the
configuration obtained from η by replacing the minus at distance

√
2 with a zero, and let η′′ be

the configuration obtained from η′ by replacing with plus the zeros at distance one from the side
of the rectangle with length lv, see Figure 10. We consider the following path which starts from
η and ends in η′′ crossing η′: the minus is transported along the (vertical in the figure) column
adjacent to R and, after it reaches the external boundary ∂+Λ0, it is removed. Then, one after
the other, lv pluses are created in ∂+Λ0 and transported along the same column to their final
location as reported in panel of Figure 10. We have that H(η′) = H(η) + (λ − h) and H(η′′) =

H(η′)+2J− lv(λ+h). Then, we obtain H(η′′) ≤ H(η)+(λ−h)+2J−
(

2J
λ+h +1

)
(λ+h) < H(η).

Moreover, by direct inspection, we have that the height along the considered path is smaller than
or equal to 6J .

(ii.b) There is at least a minus spin at distance 2 from the side of R with length lv.

We denote by k = (lh + 2, k2) the site with minus spin and at minimal distance from ∂+Λ0, see
the right panel in Figure 9.

If L − k2 ≥ ⌊ 2J
λ+h⌋ + 1, then we replace with pluses the first (from the top) L − k2 zeroes in the

vertical column adjacent to R, by applying Lemma 3.11 we prove the theorem.

On the contrary, suppose, now, that L− k2 ≤ ⌊ 2J
λ+h⌋.

We consider the rectangular region D of Λ0 with the upper-left corner in (lh+2, L) and the down-
right corner in k+ne1 where n ∈ {lh+2, ..., L} is such that η(k+ je1) = η(k) for every 0 ≤ j ≤ n

and η(k+ ne1) ̸= η(k), see the right panel in Figure 7. Notice that the horizontal strip from k to
k+ne1 contained in D is a strip of minuses by construction. Let p ∈ D be the site with the minus
spin according to the lexicographic order. We note that p can be k by construction. We consider
the rectangular region D1 ⊂ D with the upper-left corner in (lh + 1, L) and the down-left corner
in (p1 − 1, k1 +1). We observe that by construction in D1 there are not minus spins, see the right
panel in Figure 7. If there is a plus spin at distance one from the strip of minuses containing k in
the rectangular region D1, then we conclude by applying Lemma 3.7. Thus, we are left with the
case in which there are only zeros at distance one from this strip. Assume, first, that in D1 there
is a cluster of pluses, then it necessarily has a convex side length smaller than ⌊ 2J

λ+h⌋. Then, we
conclude by applying Lemma 3.11. Thus, in D1 there are only zero spins. and we consider the
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rectangular region D2 with the upper-left corner in (p1, L) and the down left corner in p + ae1

where a ∈ {lh +2, ..., L} is such that η(p+ ae1) = η(k) for every 0 ≤ j ≤ a and η(p+ ae1) ̸= η(p),
see the right panel in Figure 7.

Assume D2 ̸= ∅. Notice that the horizontal strip from p to p + ae1 is a strip of minuses by
construction. If there is a plus spin at distance one from this strip, then we conclude by applying
Lemma 3.7. We observe that by construction in D2 there are not minus spins and we assume,
first, that in D2 there is a cluster of pluses. This cluster necessarily has a convex side length
smaller than ⌊ 2J

λ+h⌋ by construction, thus we conclude by applying Lemma 3.11. Thus, in D2

there are only zeros and we consider the length a of the strip of minuses containing p.

If a ≤ ⌊ 2J
λ−h⌋ we conclude by applying Lemma 3.10.

Otherwise if a ≥ ⌊ 2J
λ−h⌋+ 1, we distinguish two cases:

(ii.b.1) The site at distance
√
2 from the strip of minus has spin different from plus. In this case, we

apply Lemma 3.11 and we prove the Theorem.

(ii.b.2) The site at distance
√
2 from the strip of minus has plus spin. We denote by z this site and

we note that if η(z − e2) = +1, then there is a direct (+,−) interface in the sites z − e2 and
z− e1 − e2. Thus, we conclude by applying Lemma 3.5-(ii) to the site z− e1 − e2. Otherwise
if η(z − e2) = 0, then we can conclude by applying Lemma 3.10 to the cluster of pluses
containing z.

If D2 = ∅, i.e. p ≡ k, then we proceed as above by applying the same procedure to D1.

Case η(x0) = −1. Let R be the maximal rectangle with the upper-left corner in the x0 and such that
ηR = −1R. We note that R ̸≡ Λ0, otherwise η ≡−1−1−1.

Thus, let lv, lh be, respectively, the vertical and horizontal side lengths of R. Since R is maximal, it
follows that there exists a spin different from minus at distance one from R.

In case it is a plus, we conclude by applying Lemma 3.7 if the associated site is in ∂−Λ0, otherwise we
conclude by applying Lemma 3.8.

Then, we consider the case in which all the spins at distance one from R are minuses and zeros. Without
loss of generality, we can assume that there exists a site on the vertical part of the external boundary of
R with an associated spin equal to zero. Thus, we let x2 ∈ {L − lv + 1, . . . , L} be such that, denoted
x = (lh + 1, x2), we have η(x) = 0 and η(x+ je2) = −1 for j = 1, . . . , L− x2.

We distinguish two cases:

(i) Case x2 ̸= L. We consider the cluster of minuses C containing R. If ∂+C contains a plus spin, then
we conclude by using Lemma 3.8. Thus, suppose that ∂+C contains only zero spins. Either η ≡ −1−1−1

or we denote by p = (p1, p2) with p1, p2 ∈ {1, ..., L} the first site such that η(p) = 0 in lexicographic
order. If p2 = L, then we proceed as in case (ii) below assuming p ≡ x. Otherwise if p2 = L− j with
L− 1 ≥ j > 0, then all spins with vertical coordinate L,L− 1, ..., L− (j − 1) are minus and we look at
sites p+ e1 and p− e2. If η(p+ e1) = −1 or η(p− e2) = −1, then we conclude by applying Lemma 3.6.
If η(p+ e1) = η(p− e2) = 0, then we prove the statement by using Lemma 3.6. We are thus left with
the case η(p + e1) = 0 and η(p − e2) = +1, indeed we recall that p + e1 ∈ ∂+Λ0 or p + e1 ∈ ∂+C, so
η(p+ e1) ̸= +1. We consider the strip of pluses containing p− e2 and we observe that if there exists a
site at distance one from this strip with vertical coordinate p2 + 1 with spin different from zero, then
we can apply Lemma 3.8 and we conclude. Thus, all the sites at distance one from this strip with
vertical coordinate p2 + 1 are zero and we prove the statement by using Lemma 3.12.
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(ii) Case x2 = L. In such a case we let y = x−(m−1)e2, with m ≥ 1 integer, be such that η(x−je2) = η(x)

for every 0 ≤ j ≤ m− 1 and either y − e2 ∈ ∂+Λ0 or η(y − e2) ̸= η(y). We distinguish two cases:

(ii.a) Case m ≤ lv−1. Assume first η(y+e1) ̸= +1, then we can conclude since η satisfies the assumption
of Lemma 3.5-(i), indeed, η(y) = 0, η(y − e1) = −1 (inside R), η(y − e2) = −1 (otherwise there
would be a plus in ∂+R).

Now, suppose that η(y+ e1) = +1 and let w = y+ e1 +ne2 with n be such that η(y+ e1 + je2) =

η(y + e1) for every 0 ≤ j ≤ m− 1 and either w + e2 ∈ ∂+Λ0 or η(w + e2) ̸= η(y + e1).

If L − (y2 + j̃) − 1 ≥ ⌊ 2J
λ−h⌋ + 1, then we apply Lemma 3.11 to the part of the side of R with

length L− (y2 + j̃)− 1 and we prove the theorem.

On the contrary, if L− (y2 + j̃)− 1 ≤ ⌊ 2J
λ−h⌋, we consider the rectangle of Λ0 with the upper-left

corner in (lh + 2, L) with side lengths L− (y2 + j̃) and ls, where ls is the horizontal length of the
strip of pluses containing η(w). If inside of this rectangle there is a minus spin at distance one
from this strip of pluses, then we conclude by applying Lemma 3.7. Thus, assume that inside the
rectangle there are only zeros and pluses at distance one from this strip and assume, first, that in
the rectangular region there is a cluster of minuses, then it necessarily has a convex side length
smaller than L− (y2 + j̃)− 1 ≤ ⌊ 2J

λ−h⌋. Then, we conclude by applying Lemma 3.11.

Now, assume that in this rectangular region there is a mixture of pluses and zeros. If the cluster
of pluses containing η(w) has a concave side or there are some plus spins at distance two from it,
then we conclude by applying Lemma 3.5-(i). In the other case, we consider the length n.

If ls ≤ ⌊ 2J
λ+h⌋ we conclude by applying Lemma 3.10.

Otherwise if ls ≥ ⌊ 2J
λ+h⌋+ 1, we distinguish two cases:

(ii.a.1) The site z at distance
√
2 from the strip of pluses and at distance one from the rectangle S

has spin different from minus. In this case, we apply Lemma 3.11 and we prove the Theorem.

(ii.a.2) The site z at distance
√
2 from the strip of pluses and at distance one from the rectangle S

has minus spin. We conclude as in case η(x0) = +1 (ii.a).

(ii.b) Case m ≥ lv. If lv ≤ ⌊ 2J
λ−h⌋, then we reduce the energy of η with an energy cost strictly smaller

than V ∗ by using Lemma 3.10. We are thus left with the case lv ≥ ⌊ 2J
λ−h⌋+1 with which we deal

by looking at the value of the spins at distance
√
2 and 2 from the vertical side of R.

Assume first that the spin at distance
√
2 is different from plus. If all the sites at distance 2

have zero spin, then we apply Lemma 3.11. If one of the spins at distance 2 is minus we apply
Lemma 3.5-(i).

Now, we suppose that the spin at distance
√
2 is plus. If there is a minus spin in a site d =

(lh +2, d2) such that d2 ̸= L− lv − 1, then we apply Lemma 3.5-(i). Otherwise, if d2 = L− lv − 1

then we analyze the spins at the right and the left of the site d− e1 − e2, i.e. the site of the plus
spin at distance

√
2 from the rectangle. If one of them is plus, then we apply Lemma 3.5 at the

minus at site d or d− 2e1. Otherwise, we apply the Lemma 3.5 at the plus in d− e1 − e2,.

We are left with the case in which spins are either zero or plus at distance 2 and
√
2 and at least

one of them is plus. We distinguish two cases:

(ii.b.1) all these spins are zeros excepted the one at distance
√
2 which has spin plus. We denote by

q = (lh + 1, L− lv) the corresponding site. If lv − 1 ≥ ⌊ 2J
λ−h⌋+ 1, then we apply Lemma 3.11

and we prove the theorem.
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On the contrary, suppose that lv − 1 ≤ ⌊ 2J
λ−h⌋.

We consider the rectangular region D of Λ0 with the upper-left corner in (lh + 1, L) and the
down-right corner in q+ne1 where n ∈ {lh +2, ..., L} is such that η(q+ je1) = η(q) for every
0 ≤ j ≤ n and η(q + ne1) ̸= η(q). Notice that the horizontal strip from q to n contained
in D is a strip of pluses by construction. Let p ∈ D be the site with the first plus spin
according to the lexicographic order. We note that p can be q by construction. We consider
the rectangular region D1 ⊂ D with the upper-left corner in (lh + 1, L) and the down-left
corner in (p1 − 1, q1 + 1). We observe that by construction in D1 there are not plus spins. If
there is a minus spin at distance one from the strip of pluses containing q in the rectangular
region D1, then we conclude by applying Lemma 3.7. Thus, we are left with the case in
which there are only zeros at distance one from this strip. Assume, first, that in D1 there is
a cluster of minuses, then it necessarily has a convex side length smaller than lv − 1 ≤ ⌊ 2J

λ−h⌋.
Then, we conclude by applying Lemma 3.11. Thus, in D1 there are only zero spins and we
consider the rectangular region D2 with the upper-left corner in (p1, L) and the down left
corner in p+ ae1 where a ∈ {p1, ..., L} is such that η(p+ ae1) = η(p) for every 0 ≤ j ≤ a and
η(p + ae1) ̸= η(p). Assume D2 ̸= ∅. Notice that the horizontal strip from p to p + ae1 is a
strip of pluses by construction. If there is a minus spin at distance one from this strip, then
we conclude by applying Lemma 3.7.
We observe that by construction in D2 there are not plus spins and we assume, first, that
in D2 there is a cluster of minuses. This cluster necessarily has a convex side length smaller
than lv − 1 ≤ ⌊ 2J

λ−h⌋ by construction, thus we conclude by applying Lemma 3.11.
Thus, in D2 there are only zeros and we consider the length a of the strip of pluses containing
p. If a ≤ ⌊ 2J

λ+h⌋, then we conclude by applying Lemma 3.11. If a ≥ ⌊ 2J
λ+h⌋+1, we distinguish

two cases:

(ii.b.1.I) The site at distance
√
2 from the strip of pluses has spin different from minus. In this

case, we apply Lemma 3.11 and we prove the Theorem.

(ii.b.1.II) The site at distance
√
2 from the strip of pluses has minus spin. We conclude by building

two configurations η′ and η′′ and by proceeding as in case η(x0) = +1 (ii.a).

If D2 = ∅, i.e. p ≡ q, then we proceed as above by applying the same procedure to D1.

(ii.b.2) We denote by k = (lh+2, k2) the site with plus spin and at minimal distance from ∂+Λ0 and
we proceed in the same manner of case η(x0) = +1 (ii.b). The only difference from this proof
is that in case (ii.b.2) we have to apply Lemma 3.10 to the cluster of pluses containing the
strip of length a instead of the strip containing z.

3.6. Proof of Theorem 2.2

We provide separately the upper and the lower bound to V−1−1−1, respectively, in Sections 3.6.1 and 3.6.2.

3.6.1. Upper bound for V−1−1−1

In this section, we construct a path from−1−1−1 to+1+1+1, the so-called reference path, and we found an upper bound
for V−1−1−1. Starting from σ0 = −1−1−1, the system follows the path in Figure 11 until it reaches the configuration
with a frame in the corner as in the bottom right panel in Figure 11. We denote such a configuration by σ2,2

and we continue the path towards +1+1+1 with the mechanism described in the figures 12-13 for a general side
length l of the frame (we denote the corresponding configuration with σl,l). In particular, starting from σl,l,
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Figure 11: The first part of the reference path. White, light gray and dark grey squares represent zero,
minus and plus spins respectively.

the path reaches σl,l+1 by crossing the configuration η, i.e. the configuration in the 10-th panel in Figure
12, and we have

H(η)−H(σl,l) = 6J + 2(λ− h)− 2(λ+ h). (3.33)

Then, the path continues without never overcoming the energy of η.

Figure 13: In this part of the reference path, a frame in the corner with side lengths l and l + 1 is created.

We repeat this mechanism of growing of the frame in the corner along the shortest side, until we reach
the homogeneous phase +1+1+1.
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Figure 12: In this part of the reference path, a frame in the corner with side length l starts to grow.

In order to find the energy barrier to reach +1+1+1 starting from −1−1−1, we compute the value of the maximal
energy of σn,m and we sum to it the value in (3.33). The energy of σn,m with m,n ∈ N respect to the energy
of the homogeneous state −1−1−1 is

H(σn,m)−H(−1−1−1) = 2J(n+m) + λ(n+m)− h(2nm+ n+m). (3.34)

The maximal value of this function is attained for n = m = 2J+λ−h
2h , however n and m are integer number,

so with a simple computation we find that the chopped corner frame with maximal energy has size lc =

⌊ 2J+λ−h
2h ⌋+1 and lc − 1. Thus, the height along the reference path is reached in a configuration σs obtained

as η, see as Figure 2, and its value is equal to

H(σs)−H(−1−1−1) = 2J(2lc − 1) + λ(2lc − 1)− h(2l2c − 1) + 6J + 2(λ− h)− 2(λ+ h)

= 4J(lc + 1) + λ(2lc − 1)− h(2l2c + 3) (3.35)

and then
V−1−1−1 ≤ H(σs)−H(−1−1−1). (3.36)

3.6.2. Lower bound for V−1−1−1

In order to find the lower bound for V−1−1−1, we use [15, Lemma 4.14], that we report here for the convenience
of the reader. Let n+

c = lc(lc − 1) and denote by Mn+
c
⊂ X (resp. Mn+

c +1 ⊂ X ) the manifold with fixed
number n+

c (resp. n+
c + 1) of pluses. We recall, the definition of the configuration σc = σlc−1,lc provided in

Figure 2.

Lemma 3.14. H(σc) = minξ∈M
n
+
c

H(ξ).
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Note that this lemma was proven in [15] for the Blume-Capel model, with the Hamiltonian (2.3) that we
use in this paper, with the Glauber dynamics. We remark that the result is valid also in this setting, since
it does not depend on the dynamics but only on the structure of the Hamiltonian.

Consider ω from −1−1−1 to +1+1+1 and let σ ∈ Mn+
c

and η ∈ Mn+
c +1 be two consecutive configurations along

this path. Then Φ(ω) ≥ H(η) = H(σ) + ∆p. By Lemma 3.14, we have H(σ) ≥ H(σc) and therefore
V−1−1−1 ≥ H(σc) + ∆p −H(−1−1−1).

3.7. Proof of Theorem 2.3

By (2.7) it follows that V ∗ < H(σc) + ∆p − H(−1−1−1). Thus, by Theorems 2.1 and 2.2 it follows that the
stability level of −1−1−1 is larger that the stability level of all other configurations differing from +1+1+1.

Since, the stability level of −1−1−1 is the maximal one for the configurations in X \ {−1−1−1}, by [16, Theorem
2.4] we have that −1−1−1 is the unique metastable state for the system.

3.8. Proof of Theorem 2.4

Remark that V−1−1−1 is the maximal stability level. Then, by applying [31, Theorem 4.1] with η0 = −1−1−1 we get
that

lim
β→∞

P−1−1−1(e
β(V−1−1−1−ϵ) < τ+1+1+1 < eβ(V−1−1−1+ϵ)) = 1,

for any ϵ > 0. Thus the theorem follows by noting that the event {eβ(V−1−1−1−ϵ) < τ+1+1+1 < eβ(V−1−1−1+ϵ)} is a subset
of the event {eβ(H(σc)+∆p−H(−1−1−1)−ϵ) < τ+1+1+1 < eβ(H(σs)−H(−1−1−1)+ϵ)}.

4. Proof of lemmas

In this section we prove all the auxiliary lemmas related to the recurrence property and stated in Section
3.4.

Proof of Lemma 3.4. Before starting the proof, we recall that a complete weighted directed graph G = (V,E)

is a graph such that a weight w(u, v) is associated to every edge (u, v) of the graph and every vertex is
connected with the others. Moreover, given a path p on G, the sum of the weights along the path is called
path-weight and denoted by wp. Given a path p = (v1, ..., vn), the maximal sub-path weight is defined as
mp = maxk∈{1,...,n−1}

∑k
i=1 w(vi, vi+1).

Let σ ∈ X be a configuration as in the assumption. In particular, we suppose that σ contains a zero-
carpet. The proof of the other cases is analogous.

We let x0 := x and let x1, ..., xn be a sequence of sites of X ′ such that xi is connected with xi+1 for
i = 0, ..., n− 1. Recall σ(x) = r ∈ {−1,+1}.

We consider a weighted directed graph G = (V,E) with self-loops such that each vertex is a non-ordered
pair of spins and it is connected with all the others. Each weight w(v, u) is defined as reported in Figure 3.

We associate to every site xi of the sequence x0, x1, ..., xn a vertex in V such that the nearest sites of xi

different from xi−1 and xi+1 have spins equal to the vertex. We denote by vi the vertex associated with xi.
We recall that the sites x0, x1, ..., xn have two nearest spins equal to zero.

We consider xi, xj as above and we note that H(σ(x,xj))−H(σ(x,xi)) is equal to the weight w(vi, vj); for
the sake of clarity the weight already reported in the left panel of Figure 3 are reported also in 4.

We consider a path from σ(x,xi) to σ(x,xj) composed by the following pairwise communicating configu-
rations ω = (σ(x,xi), σ(x,xi+1), ..., σ(x,xj−1), σ(x,xj)). In order to compute the height of this path, we consider
the associated path pω on the graph G and we compute its maximal sub-path weight.
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(s, s)

(0, s)

(0, 0) or (s, r)

(0, r)

(r, r)

(r, r) (0, r) (0, 0) or (s, r) (0, s) (s, s)

spins

of nearest

neighbours

of x

spins of nearest neighbours of y
H(σy)−H(σ)

0 2J 4J 6J 8J

−2J 0 2J 4J 6J

−4J −2J 0 2J 4J

−6J −4J −2J 0 2J

−8J −6J −4J −2J 0

Table 4.1: Energy difference for all the possible choices of the local configuration of the sites x and y zeros
after the swap of the particle originally at site x. The two neighbouring spins not specified in the table are
zeros.

In the following, we explain in detail how to compute the maximal sub-path weight of a general path p

on G. First, we consider the path p′ obtained removing all the loops in p. We note that the path-weight
of a loop is 0, because the weight of the edge (v, u) is defined as the difference of a real-valued function f

calculated in the two vertices v and u, i.e. w(v, u) = f(v)− f(u). Hence, it follows that w(v, u) = −w(u, v)

for each pair of vertices v, u. Moreover, from Figure 3, the maximal sub-path weight of p is smaller than or
equal to 8J . Thus, Φωa = mpω

≤ 8J .

Proof of Lemma 3.5. (i). Let σ be a configuration as in the assumption and let η = σ(x;s). Let s ∈ {−1,+1}.
Let x1, ..., xn ∈ X and x0 ∈ ∂+Λ0 such that |xi − xi−1| = 1 for i = 1, ..., n and |xn − x| = 1. We construct a
path ω = (σ, ω0, ω1, ..., ωn, η) in the following way:

ω0 := σ(x0;s); ωi := ω
(xi−1,xi)
i−1 for i = 1, ...n; ωn+1 := ω(xn,x)

n . (4.37)

We observe that ωn+1 = η. By (2.3) and (2.12), we have

H(η)−H(σ) = [H(η)−H(ω0)] + [H(ω0)−H(σ)]

≤ 2J
[
[Dx(ω0) +Dx0(ω0)]− [Dx(η) +Dx0(η)]

]
+∆s = −2JDx(η) + ∆s, (4.38)

where the equality holds when σ(x0) = 0. We compute now the height between σ and σ(x;s) along the path ω.
We get the particle s in ∂+Λ0 if σ(x) ̸= s, and the energy increases at most by ∆s, i.e. H(ω0) ≤ H(σ)+∆s.
By applying Lemma 3.4 to ω0, we have

Φ((ω0, ..., ωn)) ≤ H(ω0) + 8J ≤ H(σ) + ∆s + 8J. (4.39)

Thus,

Φ((σ, ..., η)) = max{Φ((ω0, ..., ωn)),Φ((ωn, η))}
≤ H(σ) + ∆s + 8J + 2J |Dx(η)| ≤ H(σ) + 18J. (4.40)

(ii). Let σ be a configuration as in the assumption. We let x0 = x and σ(x) = s ̸= 0. Let x1, ..., xn ∈ X

and xn ∈ ∂+Λ0 such that |xi − xi−1| = 1 for i = 1, ..., n. We construct a path ω = (σ, ω0, ω1, ..., ωn, η) in the
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following way:

ω0 := σ; ωi := ω
(xi−1,xi)
i−1 for i = 1, ..., n; ωn+1 = σ(x;0). (4.41)

By (2.3) and (2.12), we obtain

H(ωn)−H(σ) = 2JDx(σ),

H(ωn+1)−H(ωn) = −∆s (4.42)

Moreover, Φ((ωn, ωn+1)) = H(ωn) since H(ωn+1) < H(ωn), and by applying Lemma 3.4 to ω1 we have that

Φ((ω1, ..., ωn)) ≤ H(ω1) + 8J ≤ H(ω0) + 2J |Dx0,x1(ω0)|+ 8J, (4.43)

Thus, we have

Φ((ω0, ωn+1)) ≤ max{Φ((ω0, ω1)),Φ((ω1, ..., ωn))}
= max{H(ω0) + 2J |Dx0,x1

(ω0)|, H(ω0) + 2J |Dx0,x1
(ω0)|+ 8J} ≤ H(ω0) + 14J, (4.44)

where the last inequality follows from the fact that in the worst case x0 has three nearest neighbours with
spin equal to s and the two nearest neighbours of x1 not in X has spin value −s.

Proof of Lemma 3.6. (i). Let σ be a configuration as in the assumption and let η = σ(y;0). We suppose first
σ(y) = −s. Set y0 = y and let y1, ..., yn ∈ X be such that |yi − yi−1| = 1 for i = 1, ..., n and yn ∈ ∂−Λ0. Let
z ∈ ∂+Λ0 be at distance one from X and, without loss of generality, we assume that σ(z) = 0. We construct
a path ω from σ to η in the following way:

1. the particle with spin −s in y moves through the s-carpet until ∂−Λ0;

2. the −s in ∂−Λ0 is exchanged with a zero in ∂+Λ0 and then it leaves Λ;

3. the zero in ∂−Λ0 moves along the s-carpet until it reaches the site y.

Formally, we define the path ω = (ω0, ω1, ωn, ωn+1, ξ0, ξ1, ..., ξn) such that

ω0 := σ; ωi := ω
(yi−1,yi)
i−1 for i = 1, ...n; ωn+1 := ω(yn,z)

n ; (4.45)

ξ0 := ω
(z;0)
n+1 ; ξi := ξ

(yn−i+1,yn−i)
i−1 for i = 1, ..., n. (4.46)

We note that ξn = η. By (2.3) and (2.12), we obtain

H(η)−H(σ) = 2JDy(σ)−∆−s (4.47)

Next, we compute the height between σ and η along this path.

Φ(ω) = max{Φ((σ, ω1)), Φ((ω1, ..., ωn−1)), Φ((ωn−1, ωn, ωn+1)), Φ((ωn+1, ξ0)),Φ((ξ0, ξ1)),

Φ((ξ1, ..., ξn−1)), Φ((ξn−1, η))}

We note that Φ((σ, ω1)) = max{H(σ), H(ω1)} ≤ H(σ) + 2J |Dy0,y1
(σ)|, and by applying Lemma 3.4 to the

configuration ω1 we have that

Φ((ω1, ..., ωn−1)) ≤ H(ω1) + 16J ≤ H(σ) + 2J |Dy0,y1
(σ)|+ 16J (4.48)

cjs-bck_zero.tex – 16 maggio 2024 26 0:26



Then, Φ((σ, ω1)) ≤ Φ((ω1, ..., ωn−1)). Moreover, Φ((ωn+1, ξ0)) = H(ωn+1) since H(ξ0) < H(ωn+1), then
Φ((ωn+1, ξ0)) ≤ Φ((ωn−1, ωn, ωn+1)) = max{H(ωn−1), H(ωn), H(ωn+1)} and

H(ωn+1) = H(ωn) + 2JDyn,z(ωn)

H(ωn) = H(ωn−1) + 2JDyn−1,yn(ωn−1)

H(ωn−1) ≤ H(ω1) + 16J (4.49)

where the last inequality follows from Lemma 3.4. Then,

Φ((ωn−1, ωn, ωn+1)) ≤ H(ω1) + 2J |Dyn,z(ωn)|+ 2J |Dyn−1,yn(ωn−1)|+ 16J

≤ H(σ) + 2J |Dy0,y1(σ)|+ 2J |Dyn,z(ωn)|+ 2J |Dyn−1,yn(ωn−1)|+ 32J (4.50)

Thus

max{Φ((σ, ω1)),Φ((ω1, ..., ωn−1)),Φ((ωn−1, ωn, ωn+1))} ≤ H(σ) + 54J, (4.51)

since 2J |Dy0,y1
(σ)| ≤ 10J , 2J |Dyn,z(ωn)| ≤ 4J and 2J |Dyn−1,yn

(ωn−1)| ≤ 8J .
Furthermore, Φ((ξ0, ξ1)) = max{H(ξ0), H(ξ1)} ≤ H(ξ0) + 2J |Dyn,yn−1

(ξ0)|, and by applying Lemma 3.4
to ξ1 we have that

Φ((ξ1, ..., ξn−1)) ≤ H(ξ1) + 8J ≤ H(ξ0) + 2J |Dyn,yn−1
(ξ0)|+ 8J, (4.52)

then Φ((ξ0, ξ1)) ≤ Φ((ξ1, ..., ξn−1)). Finally,

Φ((ξn−1, ξn)) = max{H(ξn−1), H(ξn)} ≤ H(ξn−1) + 2J |Dy1,y0(ξn−1)|
≤ H(ξ1) + 8J + 2J |Dy1,y0(ξn−1)|
≤ H(ξ0) + 2J |Dyn,yn−1(ξ0)|+ 8J + 2J |Dy1,y0(ξn−1)| (4.53)

where the second inequality is obtained by using Lemma 3.4. Then,

max{Φ((ξ0, ξ1)),Φ((ξ1, ..., ξn−1)),Φ((ξn−1, ξn))} ≤ H(ξ0) + 26J, (4.54)

since 2J |Dyn,yn−1
(ξ0)| ≤ 8J and 2J |Dy1,y0

(ξn−1)| ≤ 10J .
Thus, by (4.51) and (4.54), we obtain

Φ((σ, ..., ξn)) ≤ max{H(σ) + 54J, H(ξ0) + 26J}. (4.55)

Moreover

H(ξ0)−H(σ) = [H(ξ0)−H(ωn+1)] + [H(ωn+1)−H(ωn)] + [H(ωn)−H(σ)]

= −∆−s + 2J |Dyn,z(ωn)|+ 2J |Dy0,yn
(σ)|

≤ −∆−s + 14J < 10J + (λ− sh) < 11J (4.56)

since 2J |Dyn,z(ωn)| ≤ 4J , 2J |Dy0,yn
(σ)| ≤ 10J and Condition 2.7. Thus, we conclude

Φ((σ, ..., ωn+1)) ≤ H(σ) + 54J. (4.57)

In the case of σ(y) = s, we proceed in a similar way by constructing a path from σ to η composed by
only the last part of the previous path. i.e. starting from σ the zero in ∂−Λ0 moves along the s-carpet until
it reaches the site y.

(ii). Let σ be a configuration as in the assumption, and let η = σ(y;s). Set y = y0 and let y1, ..., yn ∈ X

be such that |yi − yi−1| = 1 for i = 1, ..., n and yn ∈ ∂−Λ0. Let z ∈ ∂+Λ0 and we construct a path ω from σ

to η in the following way:
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– the particle with zero spin in y crosses the s-carpet until yn ∈ ∂−Λ0;

– a particle with spin s gets in ∂+Λ0;

– the particle moves from z to yn by exchanging with the zero in yn.

Formally, we define the path ω = (ω0, ω1, ωn, ωn+1, ξ0, ξ1, ..., ξn) such that

ω0 := σ; ωi := ω
(yi−1,yi)
i−1 for i = 1, ...n; (4.58)

ξ1 := ω(z;s)
n ; ξ2 := ω

(z,yn)
n+1 . (4.59)

We note that ξ2 = η. By (2.3) and (2.12), we obtain

H(η)−H(σ) = [H(η)−H(ξ1)] + [H(ξ1)−H(σ)] = −2JDy(η) + ∆s (4.60)

Next, we compute the height between σ and η along this path.

Φ(ω) = max{Φ((σ, ω1)), Φ((ω1, ..., ωn−1)), Φ((ωn−1, ..., η)), }

We note that Φ((σ, ω1)) = max{H(σ), H(ω1)} ≤ H(σ) + 2J |Dy0,y1
(σ)|, and by applying Lemma 3.4 to the

configuration ω1 we have that

Φ((ω1, ..., ωn−1)) ≤ H(ω1) + 8J ≤ H(σ) + 2J |Dy0,y1(σ)|+ 8J ≤ H(σ) + 18J (4.61)

since 2J |Dy0,y1
(σ)| ≤ 10J . Then, Φ((σ, ω1)) ≤ Φ((ω1, ..., ωn−1)).

Moreover, Φ((ωn−1, ..., η)) = max{H(ωn−1), H(ωn), H(ξ1), H(η)} and

H(η) = H(ξ1) + 2JDz,yn(ξ1) ≤ H(ξ1) + 4J

H(ξ1) = H(ωn) + ∆s

H(ωn) = H(ωn−1) + 2JDyn−1,yn(ωn−1) ≤ H(ωn−1) + 8J

H(ωn−1) ≤ H(ω1) + 8J (4.62)

where the last inequality follows from Lemma 3.4. Then,

Φ((ωn−1, ..., η)) ≤ H(ω1) + ∆s + 20J ≤ H(ω1) + 25J ≤ H(σ) + 2J |Dy0,y1(σ)|+ 25J ≤ H(σ) + 35J (4.63)

Thus, by (4.61) and (4.63), we conclude Φ((σ, ..., η)) ≤ H(σ) + 35J .

Proof of Lemma 3.7. Let σ be a configuration as in the assumption. Suppose that σ∂+Λ0
= 0∂+Λ0

, otherwise
the stability level of σ is zero, indeed when a plus or a minus leaves Λ the energy decreases. Assume first
that the bond (+,−) is at distance one from ∂+Λ0. We consider the configuration η = σ(x;0) where x is the
site of the bond at distance one from ∂+Λ0. Suppose without loss of generality that σ(x) = −1, then with
a direct computation we have

H(η)−H(σ) ≤ −2J + (λ− h) < 0. (4.64)

We note that σ and η are not communicating configurations. Let ξ = σ(x,x′) where x′ ∈ ∂+Λ0 is at distance
one from x, then σ ∼ ξ ∼ η and

Φ(σ, η)−H(σ) = max{H(ξ)−H(σ), 0} ≤ 2J, (4.65)
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since Dx(σ) ≤ 1, where Dx(σ) is defined in (2.11).
In the following, assume that there exists a zero–carpet at distance one from x, where x is one of the

two sites of the bond. Suppose without loss of generality that σ(x) = −1. We apply Lemma 3.5-(ii) and we
obtain

Φ(σ(x;0), σ)−H(σ) ≤ 14J and H(σ(x;0))−H(σ) ≤ −2J + (λ− h), (4.66)

since this minus spin is at distance one from a plus spin and a zero spin of the carpet, then it has at most
two nearest neighbors with the same value of the spin. This implies that Dx(σ) ≤ 1, where Dx(σ) is defined
in (2.11).

Proof of Lemma 3.8. Let σ as in the assumption. Suppose that σ∂+Λ0
= 0∂+Λ0

, otherwise Vσ = 0, indeed
when a plus or a minus leaves Λ the energy decreases. Suppose without loss of generality that s = −1

and that the plus belonging to the bond (+,−) is at distance one from the minus-carpet. We consider the
configuration σ(x;0), where x is the site of the bond with plus spin. Assume first that this plus has at most
two pluses as nearest neighbours, then by using Lemma 3.6-(i), we have

Φ(σ, σ(x;0))−H(σ) ≤ 54J and H(σ(x;0))−H(σ) ≤ −2J + (λ+ h). (4.67)

Now, we suppose that this plus spin has three pluses as nearest neighbours. We analyze the two columns
(or rows) that contains the bond (+,−) until we possibly find a bond different from (+,−). In the case that
σ contains two columns composed by all bonds (+,−) in Λ0, we look at the bond of these two columns in
∂−Λ0 and we note that the plus of this bond has at most two nearest neighbours equal to plus, so we proceed
as before. In the case that there exists a bond different from (+,−) in the two columns, we distinguish two
cases: (i) if the pair of spins in the bond is of the type (s, r) with s ̸= +1 and r ∈ {−1, 0,+1}, then the
nearest bond (+,−) contains a plus with at most two pluses nearest neighbours and we proceed as before;
(ii) if the pair of spins in the bond is of the type (+, r), then the nearest bond (+,−) contains a minus with
at most two minus nearest neighbours and we conclude by applying Lemma 3.6-(i) to this minus.

Proof of Lemma 3.9. Let σ be a configuration as in the assumption. Suppose that σ∂+Λ0
= 0∂+Λ0

, otherwise
Vσ = 0, indeed when a plus or a minus leaves Λ the energy decreases. Assume first σ(x4) ̸= −1 and we
consider the configuration η = σ(x;+). Then, we conclude by applying Lemma 3.5-(i). On the other hand,
we suppose σ(x4) = −1 with at most two nearest neighbors equal to −1. We apply Lemma 3.5-(ii) to x4

and we obtain a configuration ξ = σ(x4;0) such that Φ(σ, ξ) ≤ H(σ) + 14J and H(ξ) ≤ H(σ) + (λ − h).
The configuration ξ satisfies the assumption of Lemma 3.5-(i), thus we define the configuration η = ξ(x;+)

such that Φ(ξ, η) ≤ H(ξ) + 18J and H(η) ≤ H(ξ) − (λ + h). Then, H(η) < H(σ) and finally Φ(σ, η) ≤
max{Φ(σ, ξ),Φ(ξ, η)} ≤ 18J.

Proof of Lemma 3.10. Let σ0 = σ be a configuration that contains a cluster of pluses as in the assumption.
The proof for a cluster of minuses is similar. Suppose that σ∂+Λ0

= 0∂+Λ0
, otherwise Vσ = 0, indeed when a

plus or a minus leaves Λ the energy decreases. We call x1, ..., xl the sites along the convex side of the cluster
and let x1 be the corner along this side at distance one from the zero-carpet. We define a path between σ0

and the configuration σl obtained from σ0 by shrinking the cluster of pluses, formally:

σi = σ
(xi;0)
i−1 for i = 1, ..., l. (4.68)

We note that these configurations are not communicating, so we construct a path from σi−1 to σi for every
i = 1, ..., l in the following way. For i = 1, the plus in x1 moves along the zero-carpet until ∂+Λ0 and then
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it leaves Λ. By using Lemma 3.5-(i), we have H(σ1) − H(σ0) ≤ λ + h and Φ(σ0, σ1) ≤ H(σ0) + 14J . For
i = 2, the plus in x2 is at distance one from the zero-carpet in σ1 obtained by adding the zero in x1 to the
zero-carpet in σ0, then it moves along the zero-carpet until ∂+Λ0 and then it leaves Λ. As before, by using
Lemma 3.5-(i), we have H(σ2)−H(σ1) ≤ λ+ h and Φ(σ1, σ2) ≤ H(σ1) + 14J . Thus,

Φ(σ0, σ2) = max{Φ(σ0, σ1),Φ(σ1, σ2)} ≤ H(σ1) + 14J ≤ H(σ0) + (λ+ h) + 14J (4.69)

We iterate this procedure for every i = 3, ..., l − 1 and we obtain H(σl−1) − H(σl−2) ≤ λ + h and
Φ(σl−2, σl−1) ≤ H(σl−2) + 14J . Thus,

Φ(σ0, σl−1) = max{Φ(σ0, σ1),Φ(σ1, σ2), ...,Φ(σl−2, σl−1)}
≤ H(σl−2) + 14J ≤ H(σ0) + (l − 1)(λ+ h) + 14J. (4.70)

When the last plus in xl is detached from the cluster of pluses and it leaves Λ, by using Lemma 3.5-(i), we
have H(σl)−H(σl−1) ≤ −2J + λ+ h and Φ(σl−1, σl) ≤ H(σl−1) + 14J ≤ Φ(σl−2, σl−1). Then, we have

H(σl) ≤ H(σ0)− 2J + l(λ+ h) < H(σ0), (4.71)

where the last inequality follows from the assumption l ≤ ⌊ 2J
λ+h⌋, and

Φ(σ0, σl) ≤ H(σ0) + (l − 1)(λ+ h) + 14J < H(σ0) + 16J. (4.72)

Proof of Lemma 3.11. Let σ0 = σ be a configuration that contains a cluster of pluses as in the assumption.
The proof for a cluster of minuses is similar. Suppose that σ∂+Λ0

= 0∂+Λ0
, otherwise Vσ = 0, indeed when

a plus or a minus leaves Λ the energy decreases. If there is at least a plus spin at distance strictly smaller
than two from the convex side, then we conclude by applying Lemma 3.5-(ii). Otherwise, all sites at distance
smaller than two are zeros and we define a path between σ0 and the configuration σl obtained from σ0 by
adding a strip of pluses with length l to the cluster of pluses. More precisely, we can call x1, ..., xl the sites
at distance one from the convex side that form a strip of zeros in such a way that the transition from σ0 to
σl can be realized through the following sequence of configurations:

σi = σ
(xi;+)
i−1 for i = 1, ..., l. (4.73)

We note that these configurations are not communicating, so we create a path from σi−1 to σi for every
i = 1, ..., l in the following way. For i = 1, a plus gets in ∂+Λ0 and it moves along the zero-carpet until x1.
By using Lemma 3.5-(i), we have H(σ1) −H(σ0) ≤ 2J − (λ + h) and Φ(σ0, σ1) ≤ H(σ0) + 18J . For i = 2,
another plus gets in ∂+Λ0 and it moves along the zero-carpet until in x2. By using Lemma 3.5-(i), we have
H(σ2)−H(σ1) ≤ 2J − (λ+ h) and Φ(σ1, σ2) ≤ H(σ1) + 18J , note that the 2J in the estimate of the energy
difference is not present if x1 and x2 are nearest neighbours. Thus,

Φ(σ0, σ2) = max{Φ(σ0, σ1),Φ(σ1, σ2)} ≤ H(σ1) + 18J ≤ H(σ0) + 22J − (λ+ h) (4.74)

We iterate this procedure for every i = 3, ..., l − 1. We stress that from i = 3 on each new plus spin will
be accommodated at a site with at least two neighboring pluses, so that H(σi) −H(σi−1) ≤ −(λ + h) and
Φ(σi−1, σi) ≤ H(σi−1) + 18J . Thus, Φ(σi−1, σi) ≤ Φ(σi−2, σi−1), since H(σi) < H(σi−1) for i = 1, ..., l.
Then,

Φ(σ0, σl) = max{Φ(σ0, σ1),Φ(σ1, σ2), ...,Φ(σl−1, σl)}
= max{Φ(σ0, σ1),Φ(σ1, σ2)} < H(σ0) + 22J. (4.75)
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Finally, we conclude

H(σl)−H(σ0) ≤ H(σ0) + 2J − l(λ+ h) < H(σ0), (4.76)

since l ≥ ⌊ 2J
λ+h⌋+ 1.

Proof of Lemma 3.12. Let σ be a configuration as in the assumption. Suppose that σ∂+Λ0
= 0∂+Λ0

, otherwise
Vσ = 0, indeed when a plus or a minus leaves Λ the energy decreases. Let l be the length of the strip of
pluses. We distinguish two cases:

(i) Consider the flag-shaped structure in the right panel of Figure 4.

(ii) Consider the flag-shaped structure in the left panel of Figure 4.

We start with the case (i). Assume first l ≥ ⌊ 2J
h + λ−h

h ⌋+1.
Let x1, ..., xl be the sites in the flag-shaped structured with minus spin and such that |xi − xi+1| = 1 for

every i = 1, ..., l − 1. Let y1, ..., yl be the sites in the flag-shaped structured with zero spin and such that
|yi −xi| = 1 for every i = 1, ..., l. Let z1 and z2 be the two sites outside the flag-shaped structured such that
σ(z1) = σ(z2) = −1, |z1 − y1| = 1 and |z2 − yl| = 1.

First, we note that if z1, z2 have three nearest neighbours with minus spin, then there exists a bond
(+,−) and we conclude by applying Lemma 3.8. Then, assume that z1 and z2 have at most two nearest
neighbours with minus spins. Moreover, we suppose that zj and xi for every j = 1, 2 and every i = 1, ..., l

have only nearest neighbours with minus or zero spins, otherwise we conclude by applying Lemma 3.8.
We construct a path from σ to σ2l+2 where σ2l+2 is such that

σ2l+2(k) =


σ(k) for each k ̸= xi, yi, zj for every i = 1, ..., l and every j = 1, 2

0 for each k = xi, zj for every i = 1, ..., l and every j = 1, 2

+1 for each k = yi for every i = 1, ..., l

(4.77)

Starting from σ, we apply Lemma 3.6-(i) and we obtain the configuration σ1 = σ(z1;0) such that H(σ1) ≤
H(σ)+λ−h and Φ(σ, σ1) ≤ H(σ)+54J . Then, we apply Lemma 3.6-(i) to σ1 and we obtain the configuration
σ2 = σ

(z2;0)
1 such that H(σ2) ≤ H(σ1) + λ− h and Φ(σ1, σ2) ≤ H(σ1) + 54J . Thus Φ((σ, σ1, σ2)) ≤ H(σ) +

54J +λ− h. We apply Lemma 3.6-(i) to σ2 and we obtain the configuration σ3 = σ
(x1;0)
2 such that H(σ3) ≤

H(σ2)+2J+λ−h, since x1 may have three nearest neighbours equal to minus, and Φ(σ2, σ3) ≤ H(σ2)+54J .
Thus Φ((σ, ..., σ3)) ≤ H(σ) + 54J + 2(λ − h). Next, we define the configuration σ4 = σ

(y1;+)
3 obtained by

applying Lemma 3.8-(ii) to σ3. We have H(σ4) ≤ H(σ3) + 2J − (λ + h) and Φ(σ3, σ4) ≤ H(σ3) + 35J .
Thus Φ((σ, ..., σ4)) ≤ H(σ) + 54J + 2(λ − h), since by a direct computation we have Φ(σ3, σ4) −H(σ3) ≤
Φ((σ, ..., σ3))−H(σ). Then, we apply Lemma 3.6-(i) to σ4 and we obtain the configuration σ5 = σ

(x2;0)
4 such

that H(σ5) ≤ H(σ4) + (λ− h), since x2 may have at most two nearest neighbours equal to minus, and

Φ(σ4, σ5) ≤ H(σ4) + 54J ≤ H(σ3) + 56J − (λ+ h) ≤ H(σ) + 58J + 2(λ− 2h).

Thus Φ((σ, ..., σ5)) ≤ H(σ) + 58J + 2(λ − 2h). Next, we define the configuration σ6 = σ
(y2;+)
5 obtained by

applying Lemma 3.8-(ii) to σ5. We have H(σ6) ≤ H(σ5) − (λ + h) and Φ(σ5, σ6) ≤ H(σ5) + 35J . Thus,
Φ((σ, ..., σ6) ≤ H(σ) + 58J + 2(λ− 2h), since Φ(σ5, σ6) ≤ Φ((σ, σ5)).

The rest of the path is a two-step down-hill path. Indeed, we iterate the two last steps for i = 3, ..., l and
we obtain

H(σ2i+1) ≤ H(σi) + (λ− h) (4.78)

H(σ2i+2) ≤ H(σ2i+1)− (λ+ h) (4.79)
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and

Φ((σ, ..., σ2i+1)) = Φ((σ, ..., σ2i+1)) ≤ H(σ) + 58J + 2(λ− 2h) < 58J (4.80)

where the last inequality follows from the assumption λ < 2h.
In order to conclude the proof, we show that H(σ2l+2) < H(σ). By (4.78) and (4.79), we have

H(σ2l+2) ≤ H(σ2l+1)− (λ+ h) ≤ H(σ2l) + (λ− h)− (λ+ h)

≤ ... ≤ H(σ4) + (l − 1)(λ− h)− (l − 1)(λ+ h)

≤ H(σ3) + 2J − l(λ+ h) + (l − 1)(λ− h)

≤ H(σ2) + 4J − l(λ+ h) + l(λ− h)

≤ H(σ) + 2(λ− h) + 4J − 2lh < H(σ), (4.81)

where the last inequality follows from l ≥ ⌊ 2J
h + λ−h

h ⌋+ 1.
Next, suppose l ≤ ⌊ 2J

h + λ−h
h ⌋. Let xi, yi, zj be as in the previous case for i = 1, ..., l and j = 1, 2.

Let v1, ..., vl be the sites in the flag-shaped structured with plus spin and such that |vi − yi| = 1 for every
i = 1, ..., l. We consider a configuration η such that

η(k) =


σ(k) for each k ̸= yi, vi for every i = 1, ..., l

0 for each k = vi for every i = 1, ..., l and every j = 1, 2

−1 for each k = yi for every i = 1, ..., l

(4.82)

We construct a path from σ to η by replacing every plus in the flag-shaped structured with a zero and by
exchanging every zero with a minus. The transport of each particle takes place through the minus-carpet as
before. By arguing as above and recalling l ≤ ⌊ 2J

h + λ−h
h ⌋, we obtain H(η) < H(σ) and Φ(σ, η)−H(σ) ≤ 58J .

The cases (ii) is similar to case (i) considering the two cases l ≤ ⌊ 2J
h + λ−h

2h ⌋ and l ≥ ⌊ 2J
h + λ−h

2h ⌋+1.

Proof of Lemma 3.13. To prove the result, we construct a path ω from 000 to+1+1+1 as a sequence of configurations
from 000 to +1+1+1 with increasing clusters as close as possible to a quasi-square, see Figure 14. We construct
a path in which at each step a particle of plus gets in Λ and then it is attached to the cluster of pluses
constructed before. We observe that every time that a particle gets in Λ the energy cost is ∆p. The first two
pluses get in Λ and they possibly moves in the box until they are attached. When they are attached, a bond
between plus spins is created and the energy decreases by 2J . Then, another plus gets in Λ and it moves
towards the cluster of two particles. First the energy increases by ∆p and then, when the plus reaches the
cluster, it decreases by 2J . The fourth plus get in Λ with the same cost, but when it is attached to the cluster
we obtain a square 2 × 2 and two bonds between pluses are created, so the energy decreases by 4J . Next,
another two particles get in Λ and they are attached clockwise to the square, so we obtain a quasi-square
2× 3 and so on. We note that when a particle is attached to the cluster the energy of the system decreases
by at least 2J . In particular, when we attach the first particle along a side of the quasi-square the energy
decreases by 2J , while the energy decreases by 4J when we attach the other particles along the same side.
Next, we iterate this procedure by getting in Λ, moving and attaching a plus. In this way, we create squares
and quasi-squares of pluses consequentially, until the cluster invades all the space Λ0. In the following we
compute the height of this path. First of all, we compute the energy of a configuration η that contains a
rectangle of pluses with side lengths m and n and only zero spins outside.

H(η) = H(000) + 2J(m+ n)− (λ+ h)mn (4.83)
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Figure 14: In the figure, the white part represents the region with zero spins, the dark gray region is the
cluster of pluses. We observe that the configurations in this figure belongs to the path ω but they are not
communicating, indeed the free plus in the boundary must move in the box before to reach the cluster.

where 2(m + n) is the number of bonds (0,+) and mn is the number of pluses in η. The equation (4.83)
attains the maximum in (m,n) =

(
2J
λ+h ,

2J
λ+h

)
, that corresponds to a configuration with a square of pluses

with side length ñ = ⌊ 2J
λ+h⌋+ 1, called ηñ. Starting from ηñ to reach the configuration ηñ+1 that contains a

quasi-square with side length ñ and ñ + 1, the energy cost is equal to 6J − 2(λ + h) and it is given by the
first three steps with a non-null energy cost. Indeed, this value is obtained by the sum between the positive
cost ∆p of the entrance of the first plus, the negative cost −2J due to the junction of this plus to the cluster
and the positive cost ∆p of the entrance of the second plus ∆p. The rest of the path is a two-step downhill
path indeed, a particle moves in Λ by increasing the energy by ∆p and then it is attached to the cluster by
decreasing the energy by 4J > ∆p, see Figure 14. Thus, recalling that H(000) = 0, using the value of ñ and
the assumption 2h > λ > h, we have

Φ(000,+1+1+1)−H(000) ≤ Φ(ηñ, ηñ+1)−H(000) = H(ηñ) + 6J − 2(λ+ h)−H(000)

= 4Jñ− (λ+ h)ñ2 + 6J − 2(λ+ h) =
4J2

λ+ h
+ 6J − 2(λ+ h) = V ∗. (4.84)

5. Conclusions

We have studied the metastable behavior of the Blume–Capel model with magnetic field smaller than the
chemical potential and we have been able to prove that, for this choice of the parameters, the minus homo-
geneous state is the unique metastable state. Moreover, we have studied in detail the transition from the
metastable to the stable homogeneous plus state and we have provided an estimate of the exit time.

As we have explained above, see also the introductory section, the solution of the variational problems
involved in the study of metastability is particularly difficult, because of the conservative nature of the
Kawasaki dynamics and the interplay among the energy costs of different types of interfaces (the energy cost
of the minus–plus lattice bonds is higher than that of the zero–plus and zero–minus ones).

The main problem is that, in order to minimize the energy cost of the interacting structure of pluses and
minuses, it is necessary to separate them by means of a thin layer of zeros. Thus, the transition from the
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metastable minus state to the stable plus one must happen via the formation and growth of a droplet of
pluses surrounded by a layer of zeros. This, associated with the swap character of the dynamics, is a huge
problem, since, during the growth, it is not possible to create the necessary zeros and pluses where they are
needed, but it is necessary to transport them from the boundary to these particular lattice sites through a
completely arbitrary mixture of the three spin species.

We have solved this problem by introducing the idea of carpet, namely, a nearest neighbor connected set
of lattice sites with constant spin value, and using these structures to transport spins along the lattice. The
key lemma on which our study is based is Lemma 3.4 which allows us to control this transport mechanism
and to estimate the involved energy costs.

For the sake of clearness, we have stated and proven this lemma in the context of the Blume–Capel
model, but it is useful to remark that it is possible to state it in a more general setup, namely for multi–state
spin systems. The generalized version of the lemma opens the way for the study of the metastable behavior
of more general multi–state systems.

We thus wrap up this paper by stating the general version of the lemma. Let us, then, consider the
generalized Potts model with spin variables taking value in {1, ..., q}, with q ∈ N. Given the lattice Λ with
periodic boundary conditions, the configuration space is X = {1, ..., q}Λ and the Hamiltonian function is
given by

H(σ) =
∑

x,y∈Λ:
|x−y|=1

J(σ(x), σ(y)) +
∑
x∈Λ

h(σ(x)), (5.85)

where σ ∈ X is a configuration, J : {1, . . . , q} × {1, . . . , q} → R gives the energy cost of the bond with spins
σ(x) and σ(y), and h : {1, . . . , q} → R is the magnetic field.

In the following we misuse the notation introduced in the paper for the Blume–Capel model and, mutatis
mutandis, apply it to the generalized Potts model.

Lemma 5.15 (Weighted graph for the energy cost in s–carpet). Let s ∈ {1, ..., q}. Consider a configuration
σ ∈ X such that there exists a s-carpet X of σ and two nearest neighboring sites x ∈ Λ \X and x′ ∈ X such
that σ(x) = r ̸= s. Assume, also, that there exists y ̸= x′ a nearest neighbor of x such that σ(y) = s. Let X ′

be the subset of X obtained by collecting x′ together with all the sites of X having at least two neighboring
sites in X. Then the following holds:

1. for any v ∈ X ′ ∪ {x}, let σv = σ(x,v) and recall σ(x,x) is equal to σ. Then, for any pair of neighboring
sites v, w ∈ X ′ ∪ {x}

H(σv)−H(σw) = [Dv(σ
v) +Dw(σ

v)]− [Dv(σ
w) +Dw(σ

w)] (5.86)

where

Dx(η) :=


∑
y∈Λ:

|x−y|=1

J(η(x), η(y)) if x ∈ Λ0,

0 if x ∈ ∂+Λ0.

(5.87)

2. For any v ∈ X ′

Φ(σ, σv)−H(σ) ≤ max
v∈X′

(
[Dv(σ

v)−Dv(σ)] + [Dx(σ
v)−Dx(σ)]

)
. (5.88)
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Figure 15: In each vertex of the graph the three squares represent three sites such that the one at the
center is the site x and it is nearest neighbor of the other two. The local configuration is reported with the
colors green and white representing, respectively, the spin values r, and any other spin different from r. The
other two sites neighboring the middle square and not reported in the picture are occupied by a fixed s ̸= r

spin, indeed, in this example, we supposed that the configuration contains a s-carpet. The vertex at the
center of the graph corresponds to any of the two reported configurations. Any transition from σv to σw for
v, w ∈ X ′∪{x} is realized via the swap of the particle between two sites with local configuration represented
by one of the vertices of the graph. For each possible swap the energy difference is reported in the picture.

In order to illustrate an interesting application of the Lemma 5.15 we consider the case of the ferromag-
netic standard q–state Potts model and compute explicitely the energy difference H(σv) −H(σw) and the
communication height Φ(σ, σv) − H(σ). In this case the interaction term is a negative constant for equal
spins and zero otherwise, i.e.,

H(σ) = −J
∑

x,y∈Λ:
|x−y|=1

1{σ(x)=σ(y)} +
∑
x∈Λ

h(σ(x)) (5.89)

with J > 0 and 1 is the characteristic function. Thus in this case, we have

H(σv)−H(σw) ∈ {−4J,−2J, 0, 2J, 4J} and Φ(σ, σv)−H(σ) ≤ 4J, (5.90)

see Figure 15 for details.
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