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Introduction

1

CHAPTER 1

Introduction

Since the early work a century ago by Sewall Wright and Charles Spearman, and

through important contributions by the likes of Karl G. Jöreskog, Otis Dudley Dun-

can, and many, many others, structural equation modeling (SEM) has emerged as

a powerful and versatile statistical modeling framework (Matsueda, 2023; Tomarken

& Waller, 2005). One of the defining features of this framework is the ability to

define latent variables herein, and connect these to other latent and observed vari-

ables through structural equations. Latent variables can be used to model unobserved

constructs (e.g., self-esteem or intelligence through confirmatory factor analysis), but

their uses extend far beyond this: Latent variables can also capture statistical con-

cepts such as measurement errors, clusters, random effects, and variance components

(L. K. Muthén & Muthén, 2009). Furthermore, the SEM framework itself has been

extended to include mixture modeling, multilevel modeling, missing data modeling,

and Bayesian estimation, further broadening its statistical capabilities and areas of

application. Combined with implementation of these techniques in user-friendly soft-

ware such as Mplus (L. K. Muthén & Muthén, 2017) or the R package lavaan (Rosseel,

2012), and with powerful algorithms for estimation, researchers have developed a wide

range of SEM models for a diverse set of research questions. By now, SEM has be-

come established as one of the main statistical modeling frameworks in the social and

behavioural sciences.

My first encounter with SEM was in 2017, during the first year of my research

master. I was immediately drawn to it. Its main appeal was the visual aspect: Using

a combination of circles, squares, one-headed, and two-headed arrows, a SEM model,

and the set of regression equations that are implied by it, can be visualized in a

path diagram. These diagrams offer an intuitive connection between the theoretical

phenomenon that is the object of investigation and the statistical analysis, mapping

hypothesized relationships (based on theory) to parameters in regression equations.
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Chapter 1

Perhaps because it is so simple to draw a set of boxes and circles with arrows con-

necting them, path diagrams can be extended beyond situations of mere multiple

regression with ostensible ease. For example, path diagrams can be used to repre-

sent moderation, mediation, multiple outcomes, longitudinal processes, with causal

relationships going into multiple directions, and combinations thereof. As human

behavior, cognition, emotions, abilities, and other psychological features are complex

systems—interacting with each other and evolving over time—the possibility to visu-

alize such systems and map them to a set of equations in a (seemingly) straightforward

manner is a huge appeal.

1.1 The PhD project

My PhD project started as part of the Consortium on Individual Development (CID),

an interuniversity research consortium in the Netherlands that investigated how child

characteristics and environmental factors impact a child’s development of social com-

petence and behavioural control (Consortium on Individual Development, 2023). The

goal of the PhD project was to evaluate and develop methods for studying the causes

and effects in psychological and behavioural developmental processes. Given the ex-

pertise of my promotor, Dr. Ellen Hamaker, the project quickly centered on lon-

gitudinal SEM models, and how (applications of) this broad class of models could

be improved by learning from causal inference approaches in other disciplines (e.g.,

through the use of instrumental variables, or the potential outcomes framework).

The first subproject concerned developing and describing extensions of the random

intercept cross-lagged panel model (RI-CLPM). It is a longitudinal SEM model for in-

vestigating lag-1 relationships between constructs over time (i.e., cross-lagged effects),

and it is part of the larger class of cross-lagged panel models in psychology (Usami

et al., 2019; Zyphur, Allison, et al., 2020; Zyphur, Voelkle, et al., 2020). After the

RI-CLPM was introduced by Hamaker et al. (2015), the model rapidly increased in

popularity. It addressed some long-standing concerns that psychological researchers

have had about the analysis of panel data, such as unobserved heterogeneity, and the

conflation of trait-like and state-like variance. Hence, it is not surprising that applied

researchers were interested in how the RI-CLPM could be adapted to accommodate

specific data and research interests. Frequently asked questions concerned extensions

of the RI-CLPM to the use of multiple indicators, multiple groups, the inclusion time-

invariant predictors, and sample size recommendations. These questions ended up as

the focus of two separate papers: The first paper described three extensions of the

RI-CLPM, and included an online website with elaborately annotated Mplus syntax

and R code for fitting these particular models; The second paper outlined a strategy

for power analysis that is tailored to the particularities of the RI-CLPM (this strat-

2
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1egy was also implemented in the R package powRICLPM as part of this subproject).

These papers are included as Chapters 4 and 5 in this dissertation, respectively.

By the second year of the PhD project, I had gotten involved in a considerable

amount of statistical consultation about longitudinal SEM models. Some of the ques-

tions I received were in response to the RI-CLPM-related papers that had been pub-

lished, some were asked during consultation duties at the Methodology and Statistics

department at Utrecht University, and others resulted from collaborations with col-

leagues within CID. Ultimately, two applied papers evolved from these consultations.

The first is a collaborative project with clinical psychologists from Utrecht University

and the Altrecht Academic Anxiety Center, and concerned the development of post

traumatic stress disorder (PTSD) symptoms of patients throughout a newly devel-

oped two-week clinical treatment program. The second is a collaborative project with

developmental neuroscientists from the Erasmus University Rotterdam and Leiden

University, in which we investigated the developmental trajectories of children’s neu-

ral and behavioural (aggressive) responses to social rejection. In both papers we used

growth curve models (GCMs), which is another broad class of longitudinal models

that is well-suited for describing development in a construct over time, and individual

differences herein. However, these applied subprojects were not run-of-the-mill appli-

cations of GCMs: Each subproject had its own set of fundamental and/or statistical

challenges that made these projects interesting from a methodological perspective. A

personal challenge that I had set for myself, was ensuring that I described our use of

statistics in an accessible manner for an applied audience, while not compromising on

statistical rigor. These values sometimes clashed in practice: The complexity of em-

pirical data often dictated going beyond the use of standard, off-the-shelf statistical

models, which made the description of these methods in the papers more complex as

well. Here, I found the use of Rmarkdown- and Quarto-websites as online supplemen-

tary materials for these papers quite useful. Websites offer an essentially unlimited

amount of space for additional explanation of, and rational for the statistical meth-

ods that were used, and can include interactive plots and annotated code to support

additional explanation. Both applied projects are included as Chapters 2 and 3 in

this dissertation.

The latter halve of my PhD project is characterized by an increasing focus on

formal causal inference, specifically the potential outcomes framework that is widely

used in disciplines like epidemiology and biostatistics. This focus emerged from a

fundamental interest in causality within CID, and psychology more generally. In

Hamaker et al. (2020), we evaluated a hundred randomly sampled research papers

published by researchers that were part of CID. In each paper, we identified sentences

regarding its research question, hypothesis, discussion, and conclusions, and catego-

rized these sentences as being descriptive, predictive, or causal in nature. We found

3



Chapter 1

that CID studies were mostly driven by descriptive and causal interests. This is in

line with Grosz et al. (2020), who argues that much of the psychological research

interest is essentially causal in nature, but often implicitly so (Hernán, 2018). At the

same time, there is critique in the formal causal inference literature on the use of lon-

gitudinal SEM models for causal inference from nonexperimental data. For example,

Van der Laan and Rose (2011) and VanderWeele (2012) argue that the traditional

use of SEM models relies on a large number of parametric assumptions that are likely

to be wrong, resulting in biased estimates of model parameters. Instead, they pro-

mote the use of a class of methods called generalized methods (g-methods), which

have been developed specifically in the potential outcomes framework (Rubin, 1987;

Vansteelandt & Sjolander, 2016). These methods have been developed to minimize

reliance on parametric assumptions and therefore, in principle, should lead to more

robust causal inference.

However, the uptake of g-methods, and the potential outcomes framework more

generally, is still limited in the psychological literature. One of the main obstacles

that psychological researchers face, is that the causal inference literature on these

methods is not easily accessible due to the sometimes technical descriptions of the

methods, and examples that do not connect to the modeling practices that psycholog-

ical researchers are familiar with. To clarify the critique on the use of SEM models for

causal inference, and to enable applied researchers to make better informed decisions

about which particular model and modeling approach is most useful for their research

project, my promoter and I started two subprojects comparing the use of longitudi-

nal SEM models, specifically cross-lagged panel modeling approaches, to g-methods

in a psychological context. The first is a collaboration with an epidemiologist and a

biostatistician from the University Medical Center Utrecht, focusing on cross-lagged

panel modeling and inverse probability weighting estimation of marginal structural

models (one of the g-methods). The second is a collaboration with my co-promotor,

associate professor Satoshi Usami at the University of Tokyo, centering around cross-

lagged panel modeling and structural nested mean modeling (another one of the

g-methods). Both subprojects are included in this dissertation as Chapters 6 and 7,

respectively.

1.2 Dissertation outline

The current dissertation is a reflection of the work done in my PhD project. With the

exception of Chapter 2, it centers around applications and evaluations of longitudinal

SEM models for nonexperimental data. At the same time, the dissertation is diverse

in focus, ranging from applied, to methodological studies, and describing statistical

methods across disciplines, from clinical psychology to neuroscience and epidemiology.
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1The organizing principle for the chapters in this dissertation is the distinction

of research questions into those that are descriptive, predictive, or causal . This

distinction is absolutely critical for making well-informed decisions about the study

design and data analysis in research projects, as the fundamental issues underlying

each type of research question are different (Hamaker et al., 2020). Although this

distinction may appear evident at first, there is evidence that in practice a study’s

research goals are not always clear (Grosz et al., 2020; Haber et al., 2022; Hamaker

et al., 2020). The problem with ambiguity in research questions is that it encumbers

critical assessment of the methodological approach that was taken, and whether or not

the conclusions drawn are valid in relation to the research question (Hernán, 2018).

By organizing the chapters in this dissertation by the type of research question that

each chapter addresses, I hope to clarify what I believe these models are used for in

practice.

1.2.1 Description

Chapter 2 is a collaboration with Dr. Michelle Achterberg, assistant professor at

Erasmus University Rotterdam, and Dr. Simone Dobbelaar, a neuroscience researcher

from Leiden University. This applied project consisted of two parts. First, we investi-

gated the developmental trajectories of children’s neural and behavioural (aggressive)

responses to social rejection (from childhood to emerging adolescence), as well as in-

dividual differences herein. Numerous statistical challenges were present here, such

as (a) individually-varying times of observation, (b) censoring of behavioural mea-

surements, (c) nonnormality of the data, (d) missing data, (e) nonindependence of

measurements due to twinning, and (f) expected nonlinear development. Bayesian

multilevel growth curve models were used to model the development in neural and

behavioural responses, and to take the statistical challenges into account. Second, we

explored if individual differences in development of neural and behavioural responses

were related to social well-being in early adolescence. For this, individual-level growth

components were extracted from the Bayesian multilevel model, and used as predic-

tors in a SEM model and with social well-being items as outcomes.

1.2.2 Prediction

Chapter 3 is an applied project with Valentijn Alting van Geusau, a PhD candidate

in clinical psychology at Utrecht University, and Dr. Suzy Matthijsen at the Altrecht

Academic Anxiety Center. At Altrecht, a new two-week clinical PTSD treatment

program had been developed. Due to the high costs of the treatment program and the

high rate of dropout, medical practitioners were interested in predicting early on in the

treatment program (in the first week), who would benefit from continuing treatment

5
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into the second week. Therefore, the goal of the study was to predict PTSD reduction

four weeks after the treatment program from daily PTSD symptom measurements

during the program. Five different latent growth curve models (LGCMs) were used to

capture PTSD symptom reduction throughout the treatment program, and to predict

PTSD reduction at four-week follow-up. Through the use of k-fold cross-validation we

compared the out-of-sample prediction performance of the different LGCMs models.

1.2.3 Causation

I categorize the majority of the chapters in this dissertation as pertaining to causa-

tion, including the chapters about the RI-CLPM. While some might question this

decision—pointing out that the RI-CLPM is merely a statistical model, and that ap-

plications thereof in psychological research rarely evaluate the causal identification

assumptions and parametric assumptions needed to interpret estimates causally—

estimates of the RI-CLPM are commonly interpreted as causal. Therefore, we should

be clear about what this model is used for by researchers, such that we can have an

honest discussion about the advantages and shortcomings of this modeling approach

(Hernán, 2018).

Chapter 4 is a statistical paper in collaboration with Ellen Hamaker. We describe

three extensions of the RI-CLPM, including (a) the inclusion of stable, person-level

characteristics as predictors and/or outcomes; (b) specifying a multiple-group version;

and (c) including multiple indicators. A core element of this paper is its online

supplementary material: It is a website on which we provide elaborately annotated

Mplus syntax and R code for fitting the RI-CLPM and the extensions we described,

as well as an example dataset for practice. The website also includes a section with

answers to frequently asked questions that reached us since the publication of this

paper.

Chapter 5 proposes a strategy for performing a power analysis for the RI-CLPM.

The strategy was designed to be user-friendly, and is implemented in the R package

powRICLPM. Various extensions to the basic power analysis analysis strategy are

described, including the use of bounded estimation, imposing various constraints on

parameters over time, and inclusion of measurement errors in the data generating

model and estimation model (leading to the stable trait autoregressive trait state

model).

Chapter 6 is a methodological project in collaboration with Dr. Kim Luijken,

an epidemiologist at the University Medical Center Utrecht, Dr. Bas Penning de

Vries, a biostatistician at the University Medical Center Utrecht, and Ellen Hamaker.

We aimed to clarify some of the critique in the causal inference framework on the

use of SEM models for causal inference. First, we described how the use of SEM

models fits within the potential outcome framework for causal inference. Second, we

6
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1compared SEM methods to potential outcome methods (specifically, path analysis

versus inverse probability weighted estimation of marginal structural models) using

an empirical example on smoking cessation and weight gain. Third, we zoomed in on

the critique that path analysis relies too heavily on parametric assumptions. As such,

we performed a simulation study to investigate the finite sample performance of path

analyses and inverse probability weighted estimation under violations of parametric

assumptions.

Chapter 7 is a methodological project with Dr. Satoshi Usami and Ellen Hamaker.

In this chapter, we bridged the disciplinary disconnect between the SEM literature

and causal inference literature, by comparing a cross-lagged panel modeling approach

with structural nested mean modeling for investigating effects of time-varying ex-

posures. We introduced and compared the causal effects that are targeted by both

methods (i.e., cross-lagged effects versus joint effects), as well as the causal and para-

metric assumptions that both methods rely on. Their use was illustrated using an

empirical psychological example regarding the joint effect of self-esteem on depression.

To facilitate further integration of the SEM literature and causal inference literature,

we linked our comparison to other methodological and statistical discussions that are

taking place in the SEM literature, such as the decomposition of observed variance

into within- and between-unit variance, and the inclusion of contemporaneous effects.

7
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CHAPTER 2

Individual differences in developmental trajectories of social

emotion regulation from childhood to emerging adolescence

Revised version published as:

Mulder, J. D., Dobbelaar, S., & Achterberg, M. (2024). Behavioral and neural

responses to social rejection: Individual differences in developmental trajectories

across childhood and adolescence. Developmental Cognitive Neuroscience, 66, 101365.

https://doi.org/10.1016/j.dcn.2024.101365

Abstract

Dealing with social rejection is challenging, especially during childhood when

behavioral and neural social emotion regulation is still developing. Prior research

has focused largely on group-based averages of this development, obscuring

meaningful individual variation. In the current longitudinal study, we used a

Bayesian multilevel growth curve model to describe individual differences in

the development of behavioral and neural responses to negative social feedback

in a large sample (N ą 500). We found a slight peak in aggression following

negative feedback (compared to neutral feedback) during late childhood, as

well as individual differences during this developmental phase, possibly sug-

gesting a sensitive window for social emotion regulation development across

late childhood. Moreover, we found evidence for individual differences in the

linear development of neural responses to social rejection in our three brain

regions of interest: The anterior insula, the medial prefrontal cortex, and the

dorsolateral prefrontal cortex. In addition to providing insights in the individual

trajectories of social emotion regulation during childhood, this study also makes

a meaningful methodological contribution: Our statistical analysis strategy (and

online supplementary information) can be used as an example on how to take into

account the many complexities of developmental neuroimaging datasets, while

still enabling researchers to answer interesting questions about individual-level

relationships.

9
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Chapter 2

2.1 Introduction

During the transition from childhood to emerging adolescence (approximately between

the ages of 7- to 14-years-old) peer relations and long-lasting friendships become more

salient. Social emotion regulation, that is, regulating one’s emotions in social situa-

tions, for example after receiving negative peer feedback, is an important prerequisite

for developing and maintaining such relationships. A broad range of literature has

shown that receiving negative social feedback can result in reactive aggressive behav-

ior (Dodge et al., 2003; Leary et al., 2006; Nesdale & Lambert, 2007), and that the

regulation thereof is related to neural activation (Achterberg et al., 2016; Chester

et al., 2014; Riva et al., 2015).

These behavioral and neural responses to social emotion regulation develop across

childhood and adolescence (Achterberg et al., 2020; Dobbelaar et al., 2023). How-

ever, existing research into development of behavioral aggression has focused largely

on group-based averages, obscuring meaningful individual variation across children

in development (Chester, 2019). To move towards a more nuanced understanding of

behavioral aggression and neurocognitive changes, developmental neuroimaging stud-

ies need to characterize individual differences as a variable of interest, as argued by

Foulkes and Blakemore (2018) and Telzer et al. (2018), amongst others. By address-

ing individual variability in adolescent development, researchers acknowledge the fact

that adolescents, and their brains, develop in meaningfully different ways. This is

particularly important when studying behavioral and neural responses to social in-

teractions, as adolescents substantially vary in the quantity and quality of friendships

they have, affecting both their behavioral and neural responses to social interactions

(Lamblin et al., 2017; Van Harmelen et al., 2017). Some researchers have even pro-

posed that adolescent development is shaped by brain-based individual differences in

sensitivity to social contexts, and that individual differences in neurobiology might

determine how sensitive an adolescent is to the social context (Schriber & Guyer,

2016). Additionally, a focus on individual differences in behavioral and neural de-

velopment allows for investigating whether such differences are useful predictors for

future mental health and well-being (Copeland et al., 2013; Foulkes & Blakemore,

2018; Van Harmelen et al., 2017).

Therefore, the current preregistered study investigates individual differences in de-

velopmental trajectories of social emotion regulation (the preregistration is published

as Achterberg et al., 2022). Our focus is on behavioral (aggressive) responses, and

neural responses to negative social feedback, specifically in three brain regions that

have previously been related to the processing of social feedback, namely the anterior

insula (AI), the medial prefrontal cortext (MPFC), and the dorsolateral prefrontal

cortex (DLPFC). To understand the underlying brain mechanisms, we additionally
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examine how developmental trajectories of aggression regulation following negative

social feedback relate to each other, and to social well-being in early adolescence. To

address individual variability in developmental trajectories, we analyze longitudinal

behavioral and fMRI data (three waves, measured during childhood and emerging

adolescence) in a multilevel modeling framework.

2.1.1 Behavioral and neural correlates of social emotion

regulation

Social emotion regulation, defined here as aggression regulation following negative

social feedback, is an essential quality for children to develop in order to establish

and maintain relationships with peers. A recently introduced experimental method

for measuring this, which is also used in this study, is the Social Network Aggression

Task (SNAT; Achterberg et al., 2016; Achterberg et al., 2018). Using this method, it

has been demonstrated that negative social feedback, compared to neutral or positive

feedback, can lead to aggression in 7-9-year-old children (Achterberg et al., 2018;

Achterberg et al., 2017; Dobbelaar et al., 2022), in 9-11-year-old children (Achterberg

et al., 2020), in typically developing young adults (Achterberg et al., 2016; Van de

Groep et al., 2021), and in young adults with a history of antisocial behavior (Van

de Groep et al., 2022).

By extending the SNAT with fMRI measurements, researchers have investigated

relations between social emotion regulation and neural (brain) responses, particularly

in the AI, MPFC, and DLPFC brain regions. It has been shown that both positive

and negative social feedback (comparedto neutral feedback) result in increased neural

activation in the Anterior Cingulate Cortex (ACC) gyrus and bilateral AI (Achter-

berg et al., 2016; Achterberg et al., 2018; Achterberg et al., 2020; Dobbelaar et al.,

2022; Van de Groep et al., 2021). These findings fit with the literature suggesting that

the ACC and AI signal for social salience in general (Cheng et al., 2019; Dalgleish et

al., 2017; Somerville et al., 2006). Moreover, the social salience networks reported in

adults (Achterberg et al., 2016; Van de Groep et al., 2021), middle childhood (Achter-

berg et al., 2018; Dobbelaar et al., 2022) and late childhood (Achterberg et al., 2020)

show remarkable resemblances, indicating that on average this mechanism is already

developed in middle childhood. More importantly, variation in AI activation following

negative social feedback has been related to variation in aggression regulation. That

is, Achterberg et al. (2020) previously found that children with increased activation in

the AI showed more aggression after negative social feedback. Interestingly, Chester

et al. (2014) found a similar association, but only in adults with low executive control

(and not in adults with high executive control). Possibly, the association between

AI activation and behavioral aggression is stronger in childhood than adolescence, as

executive control functions increase across development. The current study includes
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longitudinal measures across childhood and emerging adolescence, such that we can

test developmental changes in brain-behavior associations.

Second, the MPFC has been shown to play an important role in social cognition

and behavior (Adolphs, 2009; Blakemore, 2008), and is specifically implicated when

thinking about others (Apps et al., 2016; D. Lee & Seo, 2016). Receiving negative

social feedback may leave the children wondering what the other might have thought

about them (Gallagher & Frith, 2003). Interestingly, when conducting whole brain

analyses, previous studies often failed to find significant neural activation after nega-

tive social feedback (Gunther Moor et al., 2010; Guyer et al., 2012). However, studies

with a larger sample, and increased statistical power, reported strong activation in

the MPFC after social rejection in childhood (Achterberg et al., 2018; Achterberg et

al., 2020). As social cognition and behavior are increasingly important during adoles-

cence, activation in this region might show strong development—and strong individ-

ual differences in development—during the transition from childhood to adolescence.

Previous studies did not reveal associations between aggression regulation following

negative social feedback and MPFC activation. However these studies were often

underpowered, examined group differences, and/or used aggregated scores (Chester,

2019).

Third, a brain-behavior association that has been consistently found using the

SNAT is the negative association between DLPFC activation after negative social

feedback and reactive aggression. That is, consistent with prior experimental studies,

increased activation in the DLPFC after social rejection was followed by decreased

aggression in adults, suggesting that these individuals were more successful at regu-

lating their behavioral aggression (Achterberg et al., 2016; Riva et al., 2015). Region

of interest analyses of the DLPFC in 7- to 9-year-olds provided some indications of an

aggression regulation network, but this was not strong enough to be depicted using

whole brain-behavior analyses (Achterberg et al., 2018). When examining these same

children two years later—now during late childhood—there was a significant associa-

tion between brain and behavior. Similar to adults, increased neural activation in the

DLPFC was related to decreased behavioral aggression after negative social feedback

(Achterberg et al., 2020). Importantly, the children who displayed the largest de-

velopmental increases in DLPFC activity across childhood also displayed the largest

changes in behavioral aggression. These results suggest that, in addition to being an

important region for cool (nonemotional) cognitive control (Crone & Steinbeis, 2017;

Luna et al., 2004; Luna et al., 2010) the DLPFC is also important in controlling hot

emotional control (Welsh & Peterson, 2014; Zelazo & Carlson, 2012). The current

study expands this knowledge by examining functional DLPFC development across a

broader age range, including emerging adolescence, and by including both linear and

nonlinear development.
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2.1.2 Study aims

The aim of this study is threefold. First, we describe developmental trajectories of

neural and behavioral (aggressive) responses to social emotion regulation, allowing for

individual differences herein. We focus specifically on the AI, MPFC, and DLPFC

brain regions, as these have previously been related to the processing of social feed-

back. Second, we examine associations between the individual developmental trajec-

tories of the behavioral and neural responses to social emotion regulation. Third, we

test whether individual differences in developmental trajectories of brain and behavior

across childhood (7- to 14-year-olds) are predictive for social well-being in (early) ado-

lescence (12- to 15-year-olds). For readability, we discuss our usage of the Bayesian

multilevel framework for the analyses only in general terms, and provide (technical)

details, elaborate explanations, and R code in our online supplementary materials at

https://jeroendmulder.github.io/social-emotion-regulation.

2.2 Methods

2.2.1 Participants and procedure

Participants in this study took part in the longitudinal twin study of the Leiden

Consortium on Individual Development (L-CID; Crone et al., 2020). The procedures

were approved by the Dutch Central Committee for Human Research and written

informed consent was obtained from both parents. Invitations to participate were

sent to families with same-sex twins born between 2006 and 2009, within a two-hour

radius around the city of Leiden, the Netherlands. Participants were fluent in Dutch

and were excluded when they had visual or physical impairments that could disable

them from performing the behavioral tasks. The data were collected during annual

visits between 2016 and 2021. Annual visits were either a home visit, in which families

performed behavioral tasks at home, or a lab visit, in which families were invited to

participate in an fMRI session. The sixth visit consisted of digital questionnaires

that participants filled in at home. For the current study, data from the Middle

Childhood Cohort collected at the lab visits during waves 1, 3, and 5, and the social

well-being questionnaire at wave 6 were used. For details regarding the L-CID study

and procedure, see Crone et al. (2020).

At wave 1 (first fMRI visit, September 2015 to August 2016), 512 children were

included (7.02–9.68 years old,M “ 7.94), with 55% being monozygotic. The majority

of the sample (91%) was Caucasian and had normal IQ (M “ 103.58, SD “ 11.76),

as measured using two subsets of the WISC (for details, see Achterberg et al., 2018).

Socioeconomic status (based on parental education) was high for 45% of the sample,

middle for 46%, and low for 9% of the sample (Crone et al., 2020). 489 children
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completed the fMRI scan at wave 1. At wave 3 (second fMRI visit, September 2017

to August 2018, 8.98–11.67 years old, M “ 9.98), 456 participants were included, of

whom 406 completed the fMRI scan. Wave 5 (third fMRI visit, September 2019 to

April 2021, 11.15–14.11 years old,M “ 12.38) included 336 participants, of whom 236

completed the fMRI scan. At wave 6 (June 2021 to October 2021, 11.98–15.10 years

old, M “ 13.34), 294 children filled in the digital social well-being questionnaires.

Further details about the sample characteristics can be found in Table 1 of this study’s

preregistration (Achterberg et al., 2022), and in Dobbelaar et al. (2023).

2.2.2 Measurements

There are three outcomes of interest that were measured for this study: (a) Behavioral

aggression following social feedback, measured simultaneously with the fMRI sessions

at waves 1, 3, and 5; (b) neural responses in the AI, MPFC, and DLPFC following

social feedback, measured at waves 1, 3, and 5; and (c) social well-being measured at

wave 6.

2.2.2.1 Behavioral aggression following social feedback

Behavioral aggression after social feedback was measured using the Social Network

Aggression Task (SNAT), which was programmed in Eprime, version 2.0.10.356 (see

also Achterberg et al., 2016; Achterberg et al., 2018; Achterberg et al., 2020; Achter-

berg et al., 2017). One to four weeks prior to the fMRI session, participants filled in

a personal profile at home, which was handed in at least one week before the actual

fMRI session. The profile page consisted of questions such as: “What is your favorite

color?”, “What is your favorite food?”, and “What is your biggest wish?”. Partic-

ipants were informed that their profiles were reviewed by other, unfamiliar, peers.

During the SNAT the participants were presented with pictures and feedback to their

personal profile from those unfamiliar peers. Unbeknownst to the participants, others

did not judge the profile, and the photos were created by morphing two peers of an ex-

isting data base (matching the participants’ age range) into a new, nonexistent peer.

Every trial consisted of feedback from a new unfamiliar peer. This feedback could

either be positive (visualized by a green thumb up), negative (red thumb down), or

neutral (grey circle) as visualized in Figure 2.1. Peer pictures were randomly coupled

to feedback, ensuring equal gender proportions for each type of feedback.

Following each peer feedback, the participants were instructed to send a loud noise

blast to this peer. The longer they pressed the button, the more intense the noise

would be, which was visually represented by a volume bar (Figure 2.1). To keep task

demands as similar as possible between the conditions, participants were instructed

to always press the button, but they could determine the intensity and duration of
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Figure 2.1: Visualization of the Social Network Aggression Task. After the participants
viewed positive, neutral or negative social feedback on their personal profile, participants
got the opportunity to blast a loud noise towards the peer, which was taken as a proxy for
behavioral aggression following social evaluation.

the noise blast. Participants were instructed to deliver the noise blast by pressing one

of the buttons on the button box attached to their legs, with their right index finger.

As soon as the participant started the button press, the volume bar started to fill up

with a newly colored block appearing every 350 ms. After releasing the button, or at

maximum intensity (after 3500 ms), the volume bar stopped increasing and stayed on

the screen for the remainder of the 5000 ms. The duration of the button press (in ms)

to each negative, neutral, or positive trial was recorded and used as measurement of

behavioral aggression in the statistical analyses (see Section 2.2.3). Participants were

aware that the peers were not actually receiving the noise blast, but were instructed

to respond as if the other peer would receive the noise blast.

The SNAT consisted of sixty trials (twenty per condition). An overview of trial

order of the SNAT including jitter times is available at https://osf.io/ycgqe/. Each

trial started with a fixation screen (500 ms), followed by the social feedback (2500

ms). After another jittered fixation screen (3000-5000 ms), the noise screen with the

volume bar appeared, which was presented for a total of 5000 ms. Before the start of

the next trial, another jittered fixation cross was presented (0-11550 ms; Figure 2.1).

The order of trials was semirandomized to ensure that no condition was presented

more than three times in a row. The optimal jitter timing and order of events were

calculated with Optseq 2 (Dale, 1999). For each wave, the same version of the task

was used. In the third fMRI wave we selected different photos of peers, such that

they matched the age range of participants. For the current study, we specifically

focused on noise blast duration after negative social feedback, compared to neutral

social feedback.
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2.2.2.2 Neural responses following social feedback

MRI scans were acquired with a Philips Ingenia 3.0 Tesla MR scanner. A standard

whole-head coil was used, with foam inserts added to minimize head motion. A

screen was placed behind the MRI scanner, such that participants could view the

screen displaying the stimuli through a mirror on the head coil. T2*-weighted echo

planar imaging (EPI) was used to collect the fMRI scans. The first two volumes

were discarded to allow for equilibration of T1 saturation effects (field of view “

220 ˆ 220 ˆ 111.65 mm, TR “ 2.2 s, TE “ 30 ms, FA “ 80˝, sequential acquisition,

37 slices, voxel size “ 2.75 ˆ 2.75 ˆ 2.75 mm). A high-resolution 3D T1 scan was

collected as anatomical reference (field of view “ 224ˆ177ˆ168 mm, TR “ 9.72 ms,

TE “ 4.95 ms, FA “ 8˝, 140 slices, voxel size “ 0.875 ˆ 0.875 ˆ 0.875 mm).

fMRI data were analyzed in SPM12 (Wellcome Department of Cognitive Neurol-

ogy, London). Preprocessing included slice timing correction and correction for rigid

body motion. Images were normalized to T1 templates (based on MNI-305 stereo-

taxic space; Cocosco et al., 1997) using 12-parameter affine transform mapping and

nonlinear transformation with cosine basis functions. Volumes of each participant

were resampled to 3 ˆ 3 ˆ 3 mm voxels and were spatially smoothed using a 6 mm

full-width-at-half-maximum isotropic Gaussian kernel. Data of participants with at

least two blocks of fMRI data with less than 3 mm movement in every direction were

included in the analyses. Individual participants’ data at each wave were analyzed

using a general linear model in SPM12. The onset of feedback delivery was mod-

eled as a zero duration event with positive, neutral and negative feedback added as

separate regressors. To model the start of noise blast, the hemodynamic response

function (HRF) was modeled for the length of the noise blast duration. Noise blasts

following positive, neutral, and negative feedback were modeled as separate regres-

sors (Achterberg et al., 2018). This study focuses specifically on the feedback event.

Longitudinal trajectories of the noise blast event are described in Dobbelaar et al.

(2023). Trials on which participants did not respond in time were marked invalid and

excluded from further analyses. Six motion regressors were added as covariates of

no interest. Least-squares parameter estimates of height of the best fitting canonical

HRF for each condition were used in pairwise contrasts. The focus of this study was

on the contrast negative versus neutral feedback.

Based on previous findings in an adult sample (N = 30, 18–30 years old) by

Achterberg et al. (2016), the AI, MPFC, and right DLPFC were selected as regions of

interest (ROI, see Figure 2.2). Parameter estimates were extracted using the MarsBar

toolbox (Brett et al., 2002) for the contrast “negative feedback ą neutral feedback”,

which was used as a measure of neural activity of social emotion regulation. These

fMRI brain data analyses resulted in individual- and wave-specific contrast scores

per ROI, representing the mean difference in brain activity between the negative and

16



Developmental trajectories of social emotion regulation

2

Dorsolateral PFC

Behavioral control

Anterior insula

Social saliency

Medial PFC

Rejection sensitivity

Figure 2.2: Regions of interest (ROIs) for the anterior insula (AI), the medial prefrontal
cortex (MPFC), and the right dorsolateral prefrontal cortex (DLPFC). ROIs are available
as .png, .nii, and .mat files at https://osf.io/byn7r/files/.

neutral social feedback conditions.

2.2.2.3 Social well-being questionnaire

The social well-being questionnaire was filled in by participants at wave 6 and con-

sisted of 35 items. A complete overview of the questionnaire including all items and

response categories is available at https://osf.io/fseq8/. It was constructed from five

subscales: Ten items from the Adolescent Wellbeing Paradigm (AWP; Green et al.,

2023), ten items from the World Health Organization Quality of Life Scale (WHOQoL;

Vahedi, 2010), and three subscales (each five items) from the Harter’s Self-Perception

Profile for Adolescents (SPPA; Harter, 1988; Wichstraum, 1995), specifically the sub-

scales Social Competence (SC), Close Friendships (CF) and Global Self-worth (GS).

All items were answered on a four-point Likert scale, with low scores indicating low

social well-being and high scores indicating high social well-being. Instructions in each

of the subscale manuals were followed for the handling of missing data and scoring of

subscale scores, resulting in simple mean scores per subscale.

2.2.3 Statistical analyses

In this section, the statistical analyses are described in general terms. For Aim 1—

describing development in behavioral and neural responses to social emotion regu-

lation, and individual differences herein—brain and behavioral data were analyzed

with growth curve models in a Bayesian multilevel model framework. For Aims 2

and 3—investigating the relationships between individual development in behavioral

responses, individual development in neural responses, and later social well-being—a

structural equation modeling (SEM) approach was used. Technical details on these
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analyses (e.g., model equations, the fitting procedure, assessment of convergence and

model fit), R code, and a rationale for the modeling decisions that were made, can be

found in this study’s online supplementary materials.

2.2.3.1 Bayesian multilevel growth curve models (Aim 1)

To describe developmental trajectories of (aggressive) behavioral and brain responses,

growth curve models were fitted for each outcome in a Bayesian multilevel framework.

The multilevel framework was used to allow for individual differences in the develop-

ment of brain and behavioral responses, and to more easily accommodate the indi-

vidual variation in age at each measurement wave (i.e., there is substantial variability

in participants’ age at each measurement occasion, see Section 2.2.1). The Bayesian

framework was used because it is more flexible in accommodating some characteristics

of the data, such as dropout of participants across time, censoring of the behavioral

response data at 3500 (ms), and potential nonnormality. The models were fitted using

the package brms (version 2.18.0; Bürkner, 2017) in R (version 4.2.2 R Core Team,

2022).

Analysis of the behavioral response data is discussed first. The data have a four-

level structure, with the sixty repeated trials nested within three measurement waves,

nested within individuals, nested within families. Using a multilevel model, we can

estimate individual behavioral responses to social rejection at the trial level (level

1), model the development in these responses across a participant’s age at the wave

level (level 2), describe individual differences within families in this development at

the individual level (level 3), and account for twin-dependence in the measurements

at the family level (level 4). It is important to note that because our data is twin

data, individual differences here are a combination of differences between individuals

within a given family/twin-pair (level 3) and differences between such families/twin-

pairs (level 4). For the current study, this differentiation is not of substantive interest,

and is only made to control for the nonindependence of observations in our statistical

analyses.

From a multilevel model we can extract various components relevant for Aim 1.

The model’s fixed effect (FE) parameters capture average change, that is, averag-

ing across individuals within families (level 3) and across families (level 4), does an

individual’s behavioral response to social rejection change as the individual’s age in-

creases? Because behavioral change across time is hardly ever linear, we include FE

parameters for both linear and quadratic changes across time. In total, three FE

parameters from the model are of interest: An intercept, which captures the expected

behavioral response to negative feedback (compared to the neutral condition) at the

mean age (approximately nine years and nine months)1, an expected linear slope

1Because the variable time was grand mean centered before use in the multilevel model, the growth
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in behavioral response at mean age, and an expected quadratic slope in behavioral

response at mean age. From hereon we jointly refer to the intercept and slopes as

growth components.

The multilevel model contains random effect (RE) terms for the growth compo-

nents at the individual level and the family level. The inclusion of these terms in the

model implies that the estimated development (as captured by the growth compo-

nents) can vary from individual to individual within a family (i.e., through the RE

terms at level 3), and between families (i.e., through the RE terms at level 4). Stan-

dard deviations of the RE terms are then measures of across adolescent (but within

family) and between-family variability in the development of behavioral and neural

responses, respectively. By extracting RE terms for each individual and family, we

can create individual-specific growth components. These components serve as input

for the second-part of the data analysis (see Section 2.2.3.2).

The analysis procedure of the neural responses was largely similar to the analysis

procedure as just-described for the behavioral responses: For each ROI, growth curve

models were fitted in a Bayesian multilevel framework, and FEs (averaged across

individuals and families) and REs (both individual- and family-specific) of the growth

components were extracted herefrom. There was one notable exception. As described

in Section 2.2.2, preprocessing of the fMRI data resulted in contrast score averages

across trials rather than trial-specific scores. Hence, for the fMRI data, the neural

responses to social rejection (compared to the neutral condition) do not have to be

estimated anymore as part of the multilevel model. Therefore, for the fMRI data, a

three-level multilevel model was used in which the trial level was omitted.

The Bayesian framework was used to handle multiple complicating factors of the

data. First, it accommodated censoring in the behavioral data (at 3500 ms) by

integrating censored values out. Second, to prevent unnecessary loss of data, missing

data for the outcomes were imputed as part of the model fitting procedure under the

assumption of missing at random. Third, because the data showed increased kurtosis,

a Student t distribution was used for the outcome to increase model fit (compared to

assuming a Gausian-distributed outcome). Ultimately, a Bayesian fitting procedure

does not result in a single point estimate of the model parameters, but rather in a

distribution of likely values for each parameter (i.e., the posterior distribution). We

specified the Bayesian fitting procedure such that it resulted in a thousand sets of

plausible values for individual-specific growth components for each outcome. These

data sets were used as input for the structural equation model for investigating Aims

2 and 3.

Finally, the above-described analysis procedure deviates slightly from the prereg-

istered analyses. Initially, we described the use of intercept-only models to compute

components represent development at the mean age of participants. This was done to prevent issues
with multicollinearity of the linear and quadratic growth components in the model.
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the intraclass correlations (ICC) for each level. Based on the ICC, we could decide

to remove the family level if no substantial amount of variance was captured at this

level, making the multilevel models considerably simpler. However, these analyses

were not performed because a three- or four-level structure, albeit complex, is theo-

retically fitting for the brain and behavioral data, respectively. Moreover, by fitting

multilevel models with the same number of levels the same analysis procedure (i.e.,

extracting the REs, combining them, etc.) could be used for all brain areas.

2.2.3.2 Structural equation model (Aims 2 and 3)

Structural equation modeling was used to estimate the associations between the

individual-specific growth components of the behavioral and neural responses (Aim

2), and predict later social well-being (Aim 3). First, a one-factor confirmatory factor

analysis was performed on the five social well-being subscale means. If the one-factor

model for social well-being showed good model fit, we would use the growth compo-

nents to predict a common social well-being factor. If the one-factor model showed

bad model fit, the growth components would predict each of the social well-being

subscales separately.

Second, a multivariate regression model was specified with a latent social well-

being factor (or the subscales separately) as the outcome(s), and the estimated growth

components from the Bayesian multilevel model as predictors. In this model, the pre-

dictors were allowed to covary freely with each other such that associations between

development in behavioral responses and development in neural activation could be

estimated (Aim 2). The regression coefficients represent the relationship between

development in social emotion regulation and social well-being (subscales) in adoles-

cence (Aim 3). The models were fitted using the R package lavaan (version 0.6.16;

Rosseel, 2012).2

As explained in Section 2.2.3.1, a thousand sets of plausible values for the growth

components were extracted from the Bayesian multilevel model. Hence, the multivari-

ate regression model was fitted a thousand times, once for each set of plausible values.

This was done using the R package semTools (version 0.5.6; Jorgensen et al., 2022).

Parameter estimates of the thousand fitted SEM models were averaged to create a

single point estimate of the associations amongst the growth components, and their

relation with later social well-being (either a single common social well-being fac-

tor, or its five separate subscales). Standard errors for these parameters were pooled

following the rules by Rubin (1987).

2In contrast to the preregistration, we did not use the software package Mplus. This decision was
made for convenience as R packages are freely and openly available.
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2.3 Results

In this section we present model results that are directly related to this study’s Aims.

The full set of numerical results can be found in the online supplementary materials.

2.3.1 Individual differences in development of neural and be-

havioral responses (Aim 1)

For our first aim, Bayesian multilevel growth curve models were fitted to the behav-

ioral an brain data. Table 2.1 contains the 95% credible intervals for the FEs of

the growth components, and standard deviations of the REs (at both the individual-

and family-level) of the growth components. Results for the FEs are also visualized

in Figure 2.3, which shows the model-predicted development across adolescence for

behavioral aggression and the neural responses in the AI, MPFC, and DLPFC.

For behavioral aggression, results show that there is 95% certainty that the ex-

pected behavioral response at the mean age (approximately nine years and nine

months) lies between 1.31 and 1.49 seconds. The REs imply that there is evidence of

differences between individuals (within families) herein—with the standard deviation

of the RE at the individual level estimated to be between 0.03 and 0.42—as well as dif-

ferences between families—with the standard deviations of the REs at the family level

estimated to be between 0.15 and 0.43. Linear development of behavioral aggression

at the mean age is estimated to lie between -0.05 and 0.02, with the standard deviation

of the RE estimated to lie between 0.00 and 0.11 for the individual level, and between

0.01 and 0.16 at the family level. This implies that there is no, to little evidence

of differences between individuals and families in linear development, respectively.

Quadratic development at the mean age is estimated to be slightly negative, lying

between -0.06 and -0.03. This implies that expected development herein follows an

inverted-U shape, with behavioral aggression following negative feedback peaking in

late childhood, and decreasing thereafter. There is no evidence of between-individual

or between-family differences herein.
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Table 2.1: 95% credible intervals for the fixed effects (FEs) and the standard deviations
of the random effects (REs) of the growth components. REs exist at both the individual-
level (i.e., within families) and the family-level (i.e., between families). Results are shown
for development in behavioral aggression, and neural responses in the anterior insula, media
prefrontal cortex, and dorsolateral prefrontal cortex. The asterisk ˚ denotes credible intervals
not containing zero.

FE SD(RE) individual-level SD(RE) family-level

Aggression (noise)
Intercept [1.31, 1.49]˚ [0.03, 0.42]˚ [0.15, 0.43]˚

Linear slope [-0.05, 0.02] [0.00, 0.11] [0.01, 0.16]˚

Quadratic slope [-0.06, -0.03]˚ [0.00, 0.03] [0.00, 0.05]
AI

Intercept [0.42, 1.03]˚ [0.02, 1.01]˚ [0.01, 0.81]˚

Linear slope [-0.29, -0.02]˚ [0.03, 0.66]˚ [0.01, 0.35]˚

Quadratic slope [-0.01, 0.13] [0.00, 0.17] [0.00, 0.14]
MPFC

Intercept [0.52, 1.20]˚ [0.03, 1.37]˚ [0.13, 1.62]˚

Linear slope [-0.17, 0.10] [0.01, 0.56]˚ [0.00, 0.31]
Quadratic slope [-0.01, 0.13] [0.00, 0.23] [0.00, 0.27]

DLPFC
Intercept [-0.65, -0.09]˚ [0.02, 0.97]˚ [0.01, 0.84]˚

Linear slope [-0.14, 0.11] [0.02, 0.53]˚ [0.01, 0.43]˚

Quadratic slope [-0.02, 0.11] [0.00, 0.17] [0.00, 0.16]

For neural responses in the AI, the REs show that there is 95% certainty that

expected response at the mean age lies between 0.42 and 1.03. The REs imply that

there is evidence of between-individual (within-families), and between-family differ-

ences herein. Linear development of AI response at the mean age is estimated to

lie between -0.29 and -0.02, with results indicating some evidence of differences be-

tween individuals and between families herein. Quadratic development at the mean

age is estimated to lie between -0.01 and 0.13, implying that there is no evidence

of a quadratic trend in AI development across adolescence. Additionally, there is

no evidence of differences between individuals or between families herein. Thus, in

general we found evidence for increased AI activity following social rejection, and

a linear decrease herein (but no quadratic development). Furthermore, results also

show individual differences in linear development.

For neural responses in the MPFC, the results for the REs show that there is

95% certainty that expected response at mean age lies between 0.52 and 1.20. The

REs imply that there are significant differences between individuals (within families)

herein, as well as significant between-family differences. Linear development of MPFC

at mean age is estimated to lie between -0.17 and 0.10, with only marginal evidence of
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Figure 2.3: Predicted development in behavioral and neural responses to social emotion
regulation (i.e., negative feedback versus neutral feedback). The bold black line represents
the predicted (based on the REs) average development across adolescence. The gray lines
represent uncertainty around this prediction, based on draws from the posterior distribution
for the REs. The vertical dotted (red) line represents the mean age of approximately 9 years
and 9 months.
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differences between individuals in linear development, and no evidence of differences

between families. Quadratic development at mean age is estimated to lie between

-0.01 and 0.13. Results show no evidence of differences between individuals herein.

Thus, in general we found evidence for increased MPFC activity following social

rejection, but no overall (linear or quadratic) development herein. However, results

do show individual differences in linear development (i.e., for some individuals there

is a positive linear development, and for some a negative).

Finally, for neural responses in the DLPFC, results for the REs show that there

is 95% certainty that expected response at mean age lies between -0.65 and -0.09.

The REs provide only marginal evidence that are between individual-, and between

family differences families differences herein. Linear development at mean age is es-

timated to lie between -0.14 and 0.11, with again only marginal evidence of between

individual and between family differences. The results show no evidence for a sig-

nificant quadratic trend on average for the development of DLPFC responses, and

do not suggest differences between individuals or between families. Thus, in general

we found evidence for decreased DLPFC activity following social rejection, but no

overall (linear or quadratic) development herein. However, results do show individual

differences in linear development.

2.3.2 Associations between growth components of behavioral

and neural responses (Aim 2)

For Aims 2 and 3, a single multivariate regression model was fitted in which the growth

components predicted later social well-being (of interest for Aim 3), and the predic-

tors freely covaried with each other (of interest for Aim 2). In total, 66 covariances

between the individual-level growth components of neural and behavioral responses

were estimated. Of these, two covariances were significant at the α ă .05 significance

level. The covariance between the expected AI response at mean age (intercept) and

the linear development in AI response at mean age (linear slope) was estimated to

be -0.123, SE “ 0.054, tp978.689q “ ´2.280, p “ .023. This implies that individuals

with a higher AI response at mean age tend to have a steeper linear decrease in AI re-

sponse. Furthermore, the covariance between the expected MPFC reactivity at mean

age (intercept) and the quadratic slope of MPFC at mean age was estimated to be

´0.111, SE “ 0.051, tp1012.368q “ ´2.194, p “ .028. This implies that individuals

with a higher expected MPFC at mean age also show a less curvilinear (i.e., more

linear) development.
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Parameter Est. SE 95% CI

Factor loadings:
λAWP 1 - -
λWHO 0.996 0.057 [0.884, 1.108]
λSC 0.766 0.096 [0.578, 0.954]
λCF 0.628 0.092 [0.448, 0.808]
λGS 1.161 0.099 [0.967, 1.355]

Unique variances:
θAWP 0.051 0.007 [0.037, 0.065]
θWHO 0.019 0.006 [0.007, 0.031]
θSC 0.299 0.026 [0.248, 0.350]
θCF 0.281 0.024 [0.233, 0.328]
θGS 0.275 0.025 [0.226, 0.324]

Common variance:
ψ 0.141 0.017 [0.108, 0.174]

Table 2.2: Parameter estimates of the measurement model of social well-being. The factor
loading of the first indicator was set to one for scaling. AWP = ten items from the Adolescent
Wellbeing Paradigm; WHO = ten items from the World Health Organization Quality of Life
Scale; SC = Social Competence subscale from Harter’s Self-Perception Profile for Adoles-
cents; CF = Close Friendships subscale of Harter’s Self-Perception Profile for Adolescents;
GS = Global Self-Worth subscale of Harter’s Self-Perception Profile for Adolescents.

2.3.3 Prediction of social well-being subscales (Aim 3)

The exact specification of social well-being in the multivariate regression model was

determined based on how well the social well-being subscales could be represented as a

unidimensional construct. To this end, a one-factor confirmatory factor analysis model

was fitted to the five subscale measures. Estimates of the factor loadings λ, unique

subscale variances θ, and the common social well-being factor variance ψ are reported

in Table 2.2. This unidimensional structure for the social well-being subscales showed

substantial misfit to the data, χ2p5q “ 49.269, p ă .001, CFI “ .922, TLI “ .844,

RMSEA “ 0.178. Therefore, subscales were included as separate outcomes in the

multivariate regression model rather than a common social well-being factor. Such

a model, in which the exogenous predictors freely covary amongst each other, and

in which all outcome residuals also freely covary amongst each other, is saturated,

implying perfect fit.

None of the growth components significantly predicted any of the social well-being

subscales.
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2.4 Discussion

The regulation of negative emotions during social interaction is an essential quality

for developing and maintaining social relations, and there are many individual differ-

ences in how children deal with social rejection. Although prior literature has linked

the development of social emotion regulation to changes in behavioral (aggressive)

responses and neural activation, previous literature has mostly focused on group-

based aggregates, limiting our knowledge on individual differences in development

(Chester, 2019). Complementing existing research, this preregistered study focuses

on the development of behavioral aggression and neural responses in the AI, MPFC,

and DLPFC following social rejection, and places individual differences in such de-

velopment front and center. The renewed focus on individual variability endorses

the fact that adolescents’ behavioral and neural responses to social interaction devel-

ops in meaningfully different ways (Foulkes & Blakemore, 2018; Telzer et al., 2018),

and allows for investigating if such individual differences are predictive of, for exam-

ple, future health outcomes (Copeland et al., 2013; Foulkes & Blakemore, 2018; Van

Harmelen et al., 2017). In this study, we made use of data of the Leiden Consortium

on Individual Development (Crone et al., 2020), which is a longitudinal (experimen-

tal) data set containing neural (fMRI) and behavioral measurements following social

interaction (for more information, see https://www.developmentmatters.nl/). To de-

scribe linear and quadratic development of behavioral and neural responses, as well

as individual differences herein (Aim 1), we fitted Bayesian multilevel growth curve

models. Results from the multilevel models served as input for a structural equation

model, in which we simultaneously investigated intercept-slope associations among

brain and behavioral development (Aim 2), and whether or not individual behav-

ioral and neural development could predict social well-being (Aim 3). All research

aims and analyses were preregistered in Achterberg et al. (2022). Technical details

and R code for the analyses can be found in the online supplementary materials at

https://jeroendmulder.github.io/social-emotion-regulation.

The main findings of this study are threefold: First, average behavioral devel-

opment was found to be nonlinear (quadratic), with a peak in behavioral response

during late childhood. Individual differences were found primarily in the intercept

(expected behavioral response at mean age) and to a lesser degree in the linear slope.

Secondly, in line with our expectations, we found individual differences in the linear

development of neural responses to social rejection. Third, we did not find associa-

tions between the estimated individual trajectories of brain and behavioral response,

nor were these estimated individual trajectories predictive for future self-reported so-

cial well-being. Below, we discuss the theoretical and methodological implications of

these main findings further.

26

https://www.developmentmatters.nl/
https://jeroendmulder.github.io/social-emotion-regulation


Developmental trajectories of social emotion regulation

2

2.4.1 Late childhood as a sensitive window for social emotion

regulation

Behaviorally, we found that social emotion regulation (as measured by aggression

following negative versus neutral feedback) peaks during late childhood. The REs

in the multilevel models described general linear and quadratic development at the

mean age of approximately nine years and nine months. Based on the estimated

standard deviations of the REs, we found evidence for individual differences in the

intercept (i.e., expected behavioral response at mean age). Note that here, individual

differences are a combination of both differences within- families at the individual

level, and between-families at the family level. Furthermore, there was some evidence

for individual differences in linear slope between families, but these effects were less

pronounced. This suggests that children may differ in their response to rejection in

late childhood, but that the developmental trajectories (i.e., a peak in aggression

in late childhood) are relatively similar between children. Although most prior de-

velopmental studies have focused on adolescent specific peaks in social behavior (cf.

Brechwald & Prinstein, 2011; Casey et al., 2010; Somerville & Casey, 2010; Steinberg,

2008; Steinberg & Morris, 2001), our results suggest that late childhood is also an

important period for social development, specifically for dealing with social rejection.

Prior work on reactive aggression also reported a peak in late childhood (Cui et al.,

2016), with decreases in aggression towards adolescence (Fite et al., 2008). This peak

in aggression in late childhood may be explained by delayed development of inhibi-

tion of aggression following negative feedback, compared to inhibition of aggression

following neutral feedback (Dobbelaar et al., 2023). However, although social rejec-

tion is a challenging experience for all children, there are pronounced differences in

how children deal with such rejection. While some socially rejected children suffer

from widespread and persistent impairments in mental health (i.e., internalizing and

externalizing problems; Ladd, 2006; Prinstein & Aikins, 2004; Prinstein & La Greca,

2004), other children seem more resilient in dealing with social rejection (Ioannidis

et al., 2020; Van Harmelen et al., 2021). Until now there was little insight on where

in the developmental process these individual differences emerge. Our findings add

to the existing literature by providing evidence for individual differences during late

childhood. Possibly, the peak in aggression following negative feedback during late

childhood, and individual differences herein, suggests an undiscovered sensitive period

in development. This sensitive window might provide a window of opportunity for

interventions that foster social development in youth.
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2.4.2 Individual differences in the linear development of neural

responses to social rejection

With regards to overall development of neural responses, the results provide evidence

of a negative linear development in the AI. This implies that, in general, the AI re-

sponse to social rejection is expected to decrease between ages nine and ten which

levels off again in emerging adolescence. Additionally, in line with earlier empirical

and theoretical studies, we report evidence for individual differences in linear develop-

ment of all ROIs (Bottenhorn et al., 2023; Foulkes & Blakemore, 2018). Furthermore,

neural sensitivity to social feedback may be shaped by social experiences (Rudolph

et al., 2021), that can substantially differ between individuals. However, very few

studies have investigated brain development across childhood. The main reason for

this is that scanning children is more challenging than scanning adolescents or adults

(Achterberg & Van der Meulen, 2019; O’Shaughnessy et al., 2008). Nevertheless, our

findings indicate that there is evidence of individual differences in brain development

during childhood, and highlight that future studies should also include participants

below the age of twelve. Notably, we did not find evidence of quadratic trends in the

developmental trajectories, nor in general, nor at an individual level. Prior studies

have suggested nonlinear development across puberty and adolescence and our results

add to this literature by showing that functional brain development across childhood

seems mostly linear (Gracia-Tabuenca et al., 2021; Vijayakumar et al., 2019).

2.4.3 Testing brain-behavior associations: Methodological con-

siderations

We did not find evidence for associations between the estimated growth components of

behavioral and neural responses themselves (Aim 2), nor were we able to predict future

social well-being from the individual growth components (Aim 3). That is, our data

analysis did not provide any evidence that these individual differences in development

are meaningfully related to each other, or to future social well-being. This stands in

contrast to what is described in the literature as previous studies based on (parts of)

the same data and/or experiment report significant brain-behavior associations (cf.

Achterberg et al., 2016; Achterberg et al., 2020; Dobbelaar et al., 2022; Dobbelaar

et al., 2023; Van de Groep et al., 2021). For example, it was found that behavioral

aggression regulation across time was associated with DLPFC activation across time

(Achterberg et al., 2020).

There are a couple of potential explanations for this seeming discrepancy. First,

this research project is ambitious in its scope, and utilized a complex study design

(e.g., longitudinal twin data, in which individuals inevitably drop out, and in the pres-

ence of censoring). Our specific setup therefore requires a large number of individuals
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and repeated measures in order to achieve adequate statistical power. While this

study is amongst the first in the literature to attempt to collect repeated MRI data

in children at this scale, the sample size might still be too small to detect the many,

and arguably small neural relationships that are targeted here (Marek et al., 2022).

Second, the statistical analyses in this study deviate in some important ways from

previous studies into this topic. The deviations concern the handling of missing data,

censoring in the data, and individually-varying times of observations of participants.

Such methodological and statistical differences between studies can lead to differences

in results, and consequently differences in conclusions that are drawn. This underlines

the importance of making informed decisions about the methodological and statisti-

cal choices that researchers have apriori, and recording these in a preregistration, or

even better, a registered report, and with the inclusion of extensive peer reviewing.

It is also important to engage in team science, with interdisciplinary collaborations

on research projects to get different perspectives on the subject-matter and analysis

strategy (Fair et al., 2021).

2.5 Conclusion

Dealing with social rejection, or negative peer feedback, can be challenging, specifi-

cally for children as their social emotion regulation is still developing. Prior research

has focused largely on group-based averages of this development, obscuring mean-

ingful individual variation in development. Here, we employed a Bayesian multilevel

modeling framework to describe individual differences in the development of behav-

ioral and neural responses to negative social feedback. We found a slight peak in

behavioral social emotion regulation development across late childhood, as well as

individual differences during this developmental phase. Moreover, we report evidence

for individual differences in the linear development of neural responses to social rejec-

tion in our three brain regions of interest: the AI, MPFC and DLPFC. Our follow-up

analyses did not provide evidence for associations between individual trajectories of

brain and behavior, or later social well-being. In addition to providing insights in

the individual trajectories of social emotion regulation during childhood, this study

also makes a meaningful methodological contribution. That is, our statistical analysis

strategy can be used as an example of how to take into account the many complexi-

ties of developmental neuroimaging datasets, while still enabling researchers to answer

interesting questions about individual-level relationships.
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Predicting outcome of an intensive outpatient PTSD

treatment program using daily measures

Adapted from:

Alting van Geusau, V. V. P., Mulder, J. D, & Matthijssen, S. J. M. A. (2021). Predict-

ing outcome in an intensive outpatient PTSD treatment program using daily measures.

Journal of Clinical Medicine, 10 (18), 4152. https://doi.org/10.3390/jcm10184152

Abstract

The Altrecht Academic Anxiety Center has developed a new intensive six-day

treatment program for patients with posttraumatic stress disorder. Due to

the high dropout rates in trauma treatments generally, and high costs of the

newly-developed treatment program, clinicians were interested in predicting

treatment outcomes after completion of the program from development of

patients during the program. The current study investigates daily treatment

progress as a predictor for treatment success at four-week follow-up. Data

from 109 PTSD-patients (87.2% female, mean age = 36.9, SD = 11.5) were

used. PTSD symptoms were measured with the CAPS-5 and the self-reported

PTSD checklist for DSM-5 (PCL-5). Daily PTSD symptoms were measured

with an abbreviated version of the PCL-5 (8-item PCL). Multiple latent growth

curve models were used to describe changes in daily PTSD symptoms and

predict treatment outcome. Cross-validation was used to compare the prediction

performance (in terms of mean square error) these models. Overall, results

showed that a greater decline in daily PTSD symptoms measured by the 8-item

PCL predicts better treatment outcome (CAPS-5 and PCL-5), but that a

patient’s PTSD symptoms on the first day of treatment has no predictive effect.

A decline in PTSD symptoms only during the first half of treatment was also

found to predict treatment outcomes.

https://doi.org/10.3390/jcm10184152
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3.1 Introduction

Posttraumatic stress disorder (PTSD) is a stress-related disorder that one can de-

velop after being exposed to one or more traumatic events (American Psychiatric

Association, 2013). The lifetime prevalence of PTSD is around 7.4–8% (De Vries &

Olff, 2009; Kessler et al., 2012). According to multidisciplinary guidelines, there are

several evidence-based treatments for PTSD (American Psychological Association,

2017; International Society of Traumatic Stress Studies, 2018). Among these are

eye movement desensitization and reprocessing (EMDR), trauma-focused cognitive

behavioral therapy (TF-CBT), prolonged exposure (PE), and cognitive processing

therapy (CPT) which all show good effect sizes in reducing PTSD symptoms (Lewis

et al., 2020). EMDR therapy seems to be the most cost-effective treatment (Mavrane-

zouli et al., 2020).

Although there are effective trauma treatments, dropout rates are often high. In

a meta-analysis by Imel et al. (2013), an average dropout rate of 18% was found

among active treatments in clinical trials for PTSD, but dropout rates as high as 54%

are reported in some studies (Schottenbauer et al., 2008). Furthermore, of all the

patients who complete treatment, 30–50% still show symptoms (Bradley et al., 2005).

Therefore, there is much room for improvement. A first step would be to find out

who is likely to benefit from treatment and who is not, and to see if treatment success

can already be predicted in an early phase. If so, practitioners may decide to scale

up or alter treatment during early stages of treatment, which would prevent patients

from undergoing treatment that is predicted to have little effect in the long term.

In some studies, factors related to treatment outcome for psychotherapeutic in-

terventions for PTSD were identified, including comorbidity, cognitive dimensions,

suicide risk, and characteristics of the patient such as gender (Ehlers et al., 1998;

Forbes et al., 2003; Tarrier et al., 2000). Results of a study investigating predic-

tors of treatment outcome and dropout in two samples of PTSD patients who were

treated with PE, showed that higher PTSD symptom scores at pretreatment were cor-

related with more PTSD symptoms at posttreatment and at follow-up (Van Minnen

& Hagenaars, 2002). Another study found that lower pretreatment clinician-rated

PTSD symptoms were associated with better treatment outcomes, whereas higher

baseline self-rated PTSD symptoms were associated with better treatment outcomes

(Karatzias et al., 2007). In one study, indications were found that benzodiazepine use

was related to worse treatment outcomes, and alcohol use was related to increased

dropout rates. However, demographic variables; depression; general anxiety; per-

sonality pathology; trauma characteristics; feelings of anger, guilt, and shame; and

nonspecific variables regarding therapy were not related to either treatment outcomes

or dropping out (Van Minnen & Hagenaars, 2002). The result that the use of benzo-
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diazepines was related to worse PTSD psychotherapy outcomes has also been found in

a meta-analysis (Guina et al., 2015). Although in some studies factors were identified

that were related to treatment outcomes, in other studies contradictory results were

found. Hence, there are not many clear, convincing and reliable pretreatment predic-

tors for treatment outcomes, a result that has also been found in other studies (Ehlers

et al., 2013; Karatzias et al., 2007). However, how about predictors during treatment?

Is it possible to predict treatment outcomes during early stages of treatment?

Several factors during treatment have been shown to predict treatment outcome. A

strong therapeutic alliance has been linked to better treatment outcome in psychother-

apeutic interventions (Horvath & Symonds, 1991; Martin et al., 2000). Between-

session habituation has been identified as a predictor for treatment outcomes in PE

treatment programs, with patients who showed more between-session habituation be-

ing more likely to show better treatment outcomes (Cooper et al., 2017; Hendriks

et al., 2018). It has also been shown that trauma-related belief change predicted sub-

sequent PTSD-symptom change in PE (Cooper et al., 2017). Higher fear activation

during the first session of PE, as measured with subjective units of distress (SUDs)

and facial expression, was found to be correlated with better treatment outcome (Foa

et al., 1995). Higher emotional engagement during PE in the first session, as measured

with SUDs, predicted better treatment outcomes (Jaycox et al., 1998). For EMDR,

it was found that lower SUD scores at the end of the first session predicted better

treatment results (D. Kim et al., 2008).

In identifying predictors of treatment outcome, one could argue that it is clinically

relevant to identify treatment response in an early stage in order to be able to adjust

treatment strategies when deemed necessary. In a study examining PE effects for

PTSD symptoms of veterans of the war in Iraq, the greatest reduction in symptoms

was found in the first five sessions (Tuerk et al., 2011). In another study, comparing

EMDR to brief eclectic psychotherapy, it was also found that the largest reduction

in PTSD symptoms was achieved in the first five sessions in the EMDR condition

(Nijdam et al., 2012). However, only a few researchers have studied whether the

early response progress predicts posttreatment outcomes. For example, one study

found that PTSD patients receiving PE or CPT who did not improve much after

the first eight sessions were not likely to improve much subsequently (Sripada et al.,

2020). Another study found that the probability of achieving meaningful symptom

amelioration decreased after every session for patients receiving CPT, indicating that

patients who show little PTSD-symptom change during early stages of treatment are

likely to show worse overall treatment outcomes (Byllesby et al., 2019).

The present study aims to respond to the limited evidence for early treatment

response as a predictor for treatment success. Treatment for PTSD is commonly de-

livered once or twice a week over the course of several months. Since PTSD interferes
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with social and occupational functioning (Ehlers et al., 2014), it is desirable for pa-

tients to make rapid progress. Several intensive treatment programs have been set

up, with good results and significantly lower dropout rates of below 10% (Ragsdale

et al., 2020). The current study aims to determine the predictive value of treatment

response on treatment outcome in such an intensive treatment program, which con-

sists of two weeks of treatment for three consecutive days each. Patients receive three

hours of trauma therapy (PE and EMDR), one hour of physical activity and one hour

of psychoeducation every day. The results of a meta-analysis showed that adding

physical activity to usual care improved the health of PTSD patients, and was effec-

tive in decreasing PTSD symptoms (S. Rosenbaum et al., 2015). A combination of

PE, EMDR, physical activity and psychoeducation in an inpatient intensive treatment

program was found to be effective in reducing PTSD symptoms (Van Woudenberg

et al., 2018).

The goal of the present study is to investigate whether change in PTSD symptoma-

tology during the current intensive treatment program predicts PTSD reduction four

weeks after completions of the program. It is expected that a greater decline in PTSD

symptoms—based on development during the entire two-week treatment program—

predicts greater PTSD symptom reduction four weeks after treatment completion.

Moreover, it is expected that a greater decline in PTSD symptoms—based on de-

velopment during only the first half of the treatment program—also predicts greater

PTSD symptom reduction four weeks after treatment completion.

3.2 Materials and methods

3.2.1 Participants

The current study used a self-select sample comprised of 109 PTSD patients who

participated in the program between April 2018 and November 2019 (from hereon re-

ferred to as participants). The mean age was 36.9 years old (SD = 11.5), ranging from

20 to 64 years; 14 identified as male (12.8%), 95 as female (87.2%). The trauma types

of participants varied (e.g., sexual abuse, physical abuse, and accidents). Inclusion

criteria were (a) having a PTSD diagnosis according to the Diagnostic and Statistical

Manual of Mental Disorders (DSM-5); (b) having experienced multiple traumatiza-

tion; (c) no alcohol or drug use during treatment; (d) no acute suicidality risk; (e)

sufficient proficiency in the Dutch language; (f) the absence of comorbid psychiatric

disorders that would seriously interfere with treatment; and (g) no, or in exceptional

cases, minimal, use of sedating medication during treatment (for example, partici-

pants prone to mania who would be deprived of sleep without sleeping medication

were allowed to continue their medication).
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3.2.2 Procedure

The intensive trauma treatment program was provided at the Altrecht Academic

Anxiety Center, a center specialized in the treatment of severe anxiety disorders,

obsessive-compulsive disorder, and trauma-related disorders in Utrecht, the Nether-

lands. Prior to starting treatment, participants were screened on diagnoses and inclu-

sion criteria, and an individual treatment plan was made. Participants were asked to

select the six subjectively most disturbing traumatic memories for treatment. Each

day, one memory would be treated.

3.2.3 Treatment

The treatment program consisted of two consecutive weeks, with treatment provided

on Tuesday, Wednesday and Thursday in an outpatient setting (i.e., totalling six

days of treatment). Each treatment day had the same outline (except for days 1

and 6, when participants filled out additional measurements, see Section 3.2.4 and

Table 3.1). Treatment consisted of two evidence-based treatments for PTSD: PE

and EMDR. For the PE sessions, a slightly modified version of the PE protocol was

used, where participants did not make audio recordings to listen to as homework

in between sessions (Foa et al., 1995). EMDR was delivered according to standard

protocol (Jongh & Broeke, 2020; Shapiro, 2018). The combination of these treatments

was used because PE and EMDR supposedly differ in underlying working mechanism,

and for this reason could possibly complement each other in treatment effect. It has

also been found that these treatments can be successfully combined (Van Minnen

et al., 2020). Participants received PE in the morning, and EMDR in the afternoon.

It has been shown that this sequence resulted in better treatment outcomes than the

reversed sequence (Van Minnen et al., 2020). Treatment was delivered with therapist

rotation to ensure that participants were treated by many different therapists, and

that the therapists had daily multidisciplinary meetings in between sessions to ensure

treatment was given according to protocol. It has been suggested that therapists’

shared responsibility for treatment leads to better implementation thereof due to

decreased therapist drift, and reduced negative concerns by therapists (Van Minnen

et al., 2018). In between PE and EMDR sessions, participants conducted physical

activity: Either trauma-sensitive yoga (Emerson et al., 2009; Nolan, 2016), walking

or jogging, or physical exercises.

3.2.4 Measurements

Multiple instruments were used to assess PTSD symptomatology before, during, and

after the treatment program:
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Table 3.1: Daily treatment program.

Activity Duration (minutes)

Pretreatment measurementa 45
PE session 90
Short break 15
Physical activity (yoga, exercise, running) 60
Lunch break 30-45
EMDR session 90
Short break 90
Psycho-education 60
Measurementsb 45

a Only at day 1.
b Only at day 6.

• The Dutch version of the Clinician Administered PTSD Scale for DSM-5 (CAPS-

5) assesses the frequency and intensity of the twenty DSM-5 PTSD symptoms

(Boeschoten, Bakker, Jongedijk, et al., 2014). It was administered to partic-

ipants for evaluating the existence of a PTSD diagnosis at screening, and at

one-week, four-week, and six-week follow-up. Severity scores were computed

as a sum score of the 20 symptom-specific severity scores, ranging from 0-80.

Boeschoten et al. (2018) found the CAPS-5 to have adequate validity and reli-

ability.

• The Dutch version of the PTSD checklist for DSM-5 (PCL-5) is a twenty-

item self-report questionnaire intended to measure PTSD symptomatology, with

scores ranging from 0–80 (Boeschoten, Bakker, & Jongedijk, 2014; Weathers et

al., 2013). It was administered to participants at screening, at the start of day

1 of treatment, at the end of day 6 of treatment, and at one-week, four-week,

and six-week follow-up. It has been found to show strong validity and reliability

(Blevins et al., 2015).

• An abbreviated 8-item version of the Dutch PCL-5 (from hereon referred to

as the 8-item PCL) was used to monitor PTSD symptoms on each day during

treatment. This self-report instrument consists of eight of the original twenty

questions from the PCL-5, with scores ranging from 0–32. The 8-item PCL

strongly correlated with the complete PCL-5 and has been recommended for

use to monitor treatment progress (Price et al., 2016). For interpretive data on

the 8-item PCL, readers are referred to Price et al. (2016).

PTSD reduction four-weeks after completion of the program was operationalized as

the difference in CAPS-5 score between screening and four-week follow-up, ∆C; and
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as the difference in PCL-5 score between the start of day 1 and four-week follow-up,

∆P .

3.2.5 Data analysis

Latent growth curve models (LGCMs) were fitted to the daily PTSD measurements

(measured with the 8-item PCL) to capture the change in PTSD symptomatology of

participants during the treatment program (Meredith & Tisak, 1990). In LGCMs,

this change is captured by latent factors, which we refer to as growth factors. To inves-

tigate to what degree progress during treatment could predict PTSD reduction four

weeks after treatment, PTSD reduction four weeks after completion of the program

(i.e., ∆P and ∆C) were regressed on the growth factors.

As LGCMs are flexible models that can differ in the number and type of growth

factors used to capture progress during treatment, multiple candidate LGCMs (i.e.,

linear, quadratic, and piece-wise versions) were compared with respect to how well

∆P and ∆C could be predicted. Full details on the different candidate models con-

sidered, assessment of their out-of-sample prediction performance using k-fold cross-

validation, and model fit can be found in the online supplementary materials at

https://jeroendmulder.github.io/predicting-PTSD-using-LGCM.

Here, we focus only on the linear LGCM (L-LGCM, Figure 3.1a), and the piece-

wise linear LGCM (P-LGCM, Figure 3.1b). The L-LGCM uses two growth factors:

An intercept factor I to capture initial PTSD-symptomatology of participants at start

of treatment, and a linear slope factor S to capture linear change in symptomatology

across the six daily measures. These factors were then used to predict treatment

reduction at four-week follow-up ∆C and ∆P . The L-LGCM is interesting as it is the

most parsimonious model, while retaining relatively good out-of-sample prediction

performance (see cross-validation results in the online supplementary materials). The

P-LGCM extends the L-LGCM by including a second linear slope factor S2: The

first linear slope factor S1 captures linear change in symptomatology across the first

three daily measurements (in week 1), whereas the second linear slope factor captures

linear change in symptomatology across the last three daily measurements (in week

2). All three growth factors then predict PTSD reduction at four-week follow-up.

This particular variant of LGCMs is interesting from a clinical perspective, as it

allows for investigating how well ∆P and ∆C can be predicted from change in PTSD

symptomatology across the first three daily measurements alone.

Analyses were performed in R (version 3.6.1; R Core Team, 2022). The LGCMs

were fitted to data using the R package lavaan (version 0.6–7; Rosseel, 2012). Missing

data were handled using full information maximum likelihood, such that all available

data points were used in the analyses (i.e., no participants were listwise-deleted).
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(b) Piece-wise linear latent growth curve model

Figure 3.1: Yt = daily measurement of PTSD-symptomatology on day t using the 8-item
PCL; I = intercept growth factor; S = linear slope growth factor; S1 = linear slope growth
factor week 1; S2 = linear slope growth factor week 2; ∆C = difference in CAPS-5 score
between screening and four-week follow-up; ∆P = difference in PCL-5 score between score
at start of day 1 and at four-week follow-up.

3.3 Results

In this section, we present and visualize the data, and discuss results from the L-

LGCM and P-LGCM. Descriptive statistics for the 8-item PCL daily measurements

and PTSD reduction at four-week follow-up can be found in Table 3.2. At screening,

participants had an average CAPS-5 score of M “ 43.10 (SD “ 9.93). On day 1

before treatment, patients had an average PCL-5 score of M “ 55.08 (SD “ 11.04).

Figure 3.2 depicts development of daily PTSD symptomatology throughout treat-

ment for a subsample of ten participants (to avoid overplotting). These participants

were selected to illustrate the variability in PTSD symptoms across participants and

throughout treatment. The solid black line represents the average change in PTSD

symptoms over the entire sample. An interactive plot containing the daily PTSD mea-

surements from the entire sample can be found in the online supplementary materials.

Figure 3.2 shows that there are large differences in PTSD symptoms of participants

at the start of treatment (as can also be inferred from the standard deviation of the

daily measurements in Table 3.2), as well as in how much participants change, and

the form of this change during the treatment program. Four weeks after completion

of the treatment program, 45 participants (41.3%) still met the criteria for PTSD

according to the CAPS-5, 48 participants (44.0%) did not meet the criteria for PTSD

anymore, and 16 (14.7%) cases were missing (i.e., the participants did not show up for

the four-week follow-up measurement, or they showed up too late). Participants had

an average CAPS-5 score of M “ 25.82 (SD “ 17.00) and an average PCL-5 score

of M “ 34.02 (SD “ 20.08) at four-week follow-up. The average PTSD reduction at

four-week follow-up was ∆P “ ´22.05 (SD “ 19.61) in terms of PCL-5 scores, and

∆C “ ´17.29 (SD “ 15.47) on the CAPS-5 scale.
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Table 3.2: Descriptive statistics for daily 8-item PCL scores, and
PTSD reduction at four-week follow-up.

Variable N M SD Min. Max.

∆P 89 -22.05a 19.61 -69b +12b

∆C 99 -17.29 15.47 -53b +14b

8-item PCL - Day 1 107 22.49 35.54 5 32
8-item PCL - Day 2 105 20.60 40.64 2 32
8-item PCL - Day 3 102 19.52 48.45 1 32
8-item PCL - Day 4 106 19.29 45.09 0 32
8-item PCL - Day 5 102 18.08 48.35 1 32
8-item PCL - Day 6 96 17.37 55.25 1 31

a The sum of ∆P and mean PCL-5 score at four-week follow-up does
not exactly equal the mean PCL-5 score on day 1. This is due to 14
participants that are included in the PCL-5 measurements on day
1, but are missing at four-week follow-up, and hence not included
when computing ∆P .

b ∆P and ∆C represent a change in PTSD-symptomatology. There-
fore the column “Min.” actually represents the greatest observed
decrease in symptomatology, and the column “Max.” the smallest
observed decrease (in fact, an increase) in symptomatology.

Figure 3.2: PTSD symptomatology during treatment (measured with the 8-item PCL) of
a subsample of ten participants. The y-axis represents total scores on the 8-item PCL. The
x-axis represents treatment day. The thick black line represents the observed mean PTSD
symptomatology over time, whereas the colored lines represent individual trajectories. See
the online supplementary materials for an interactive spaghetti plot of the complete sample.
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3.3.1 The linear LGCM (L-LGCM)

The L-LGCM showed good model fit: χ2p25q “ 35.98, p “ .072; root-mean-square

error of approximation (RMSEA) “ 0.06; comparative fit index (CFI) “ 0.99; Tucker-

Lewis index (TLI) “ 0.98. The mean of the intercept factor was estimated to be 21.94

(SE “ 0.56, p ă .001) with a variance of 29.45 (SE “ 4.56, p ă .001); the mean of the

linear slope factor was estimated to be -0.96 (SE “ 0.12, p ă .001) with a variance

of 1.15 (SE “ 0.23, p ă .001). This implies that, on average, participants started

treatment with a PTSD score of 21.94 on the 8-item PCL scale, which decreased

linearly each day by 0.96 points. However, the variances of the growth factors imply

that there are large differences between participants in the starting point and change

during the treatment program.

When predicting the follow-up treatment outcome ∆P from the growth compo-

nents, we found a nonsignificant regression coefficient (unstandardized) for the in-

tercept (b “ 0.20, SE “ 0.30, p “ .492), but a significant coefficient for the slope

(b “ 15.44, SE “ 1.81, p ă .001). Combined, the intercept and slope result in an

R2 of .69. This implies that the linear slope in the L-LGCM is a significant predic-

tor of PTSD reduction at four-week follow-up, explaining approximately 69% of the

variance. Participants who show a one-point-per-day greater decrease in their PTSD

symptomatology during treatment are predicted to have a 15.44 point greater PTSD

reduction on the PCL-5 scale at four-week follow-up. The symptomatology at the start

of the treatment program does not provide any predictive information about ∆P . For

PTSD reduction as measured using the CAPS-5, ∆C, we again found a nonsignifi-

cant regression coefficient (unstandardized) for the intercept (b “ 0.25, SE “ 0.24,

p “ .298), and a significant coefficient for the slope (b “ 11.76, SE “ 1.47, p ă .001).

Combined, the intercept and slope produce an R2 of 0.66. This suggests that the in-

tercept is not predictive of PTSD reduction at four-week follow-up as measured with

the CAPS-5 scale, but participants with one-point-per-day greater decrease in PTSD

symptomatology are predicted to have in a 11.76 greater decrease in ∆C. Both the

intercept and slope explain approximately 66% of the variance.

3.3.2 The piecewise LGCM (P-LGCM)

The P-LGCM showed adequate model fit: χ2p21q “ 33.99, p “ .036; RMSEA “

0.08; CFI “ 0.98; TLI “ 0.98. The mean of the intercept was estimated to be

22.18 (SE “ 0.57, p ă .001) with a variance of 28.04 (SE “ 4.45, p ă .001), the

mean of the slope across the first three daily measurements was -1.20 (SE “ 0.26,

p ă .001) with a variance of 3.51 (SE “ 0.95, p ă .001), and the slope across the last

three daily measurements was -0.85 (SE “ 0.16, p ă .001) with a variance of 1.36

(SE “ 0.37, p ă .001). This implies that on average, participants started treatment
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with a score of 22.18 on the 8-item PCL. Over the first two full treatment days,

PTSD symptomatology decreased on average with approximately 1.20 points per day,

whereas in the second week the symptomatology decreased with approximately 0.85

points per day.

∆P and ∆C were regressed on the growth components. For ∆P we found an

unstandardized regression coefficient of b “ 0.12 for the intercept (SE “ 0.32, p “

.693), b “ 6.47 for the first slope (SE “ 1.41, p ă .001) and b “ 8.83 for the second

slope (SE “ 2.03, p ă .001). These results indicate that both changes in PTSD

symptomatology in the first week, and changes in the second week, are significant

predictors for PTSD reduction at four-week follow-up on the PCL-5 scale. We found

an R2 of .67, meaning that the three growth components were able to account for

67% of the variance in the outcome. Next, we inspected the standardized regression

coefficients to compare which predictor (either the change in PTSD symptomatology

the first week or the second week) had greater predictive power. For the first slope we

found β “ 0.62 (SE “ 0.11, p ă .001), and for the second slope β “ 0.53 (SE “ 0.11,

p ă .001). We therefore concluded that both the first and the second slope are useful

in predicting follow-up treatment outcomes (PCL-5), but relatively speaking, the

change in PTSD symptomatology during the first week holds more predictive power

than the change in symptoms during the second week. When using only the change

in PTSD symptomatology in the first week to predict PTSD reduction at four-week

follow-up, 33% of the variance in ∆P was explained.

For PTSD reduction on the CAPS-5 scale, we again found a nonsignificant regres-

sion coefficient (unstandardized) for the intercept (b “ 0.28, SE “ 0.26, p “ .270),

but a significant coefficient for the first slope (b “ 4.17, SE “ 1.09, p ă .001), and

the second slope (b “ 7.73, SE “ 1.76, p ă .001). The growth components combined

explain approximately 63% of variance in the outcome. Looking at the standardized

effects, we found β “ 0.52 (SE “ 0.12, p ă .001) for the first slope and β “ 0.59

(SE “ 0.11, p ă .001) for the second slope. Therefore, we concluded that, again,

both slopes are useful for predicting PTSD reduction using the CAPS-5 scale. How-

ever, relatively speaking, it is the change in PTSD symptomatology during the second

week that is more informative for predicting PTSD reducation at four-week follow-

up (measured using the CAPS-5) compared to the change in the first week. When

using only the change in PTSD symptomatology in the first week to predict PTSD

reduction, the explained variance in ∆C was reduced to 28.3%, implying that it is

the combination of all three growth components that is most useful for predicting the

follow-up treatment outcomes.
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3.4 Discussion

This paper studied whether change in PTSD symptomatology during treatment could

be used to predict PTSD reduction four weeks after treatment was completed. This

was assessed in an outpatient intensive treatment program for PTSD, in which PE

sessions, EMDR sessions, physical activity, and psychoeducation were combined.

Progress during the six treatment days (i.e., three consecutive days per week, for two

consecutive weeks) was monitored by assessing symptoms of PTSD with an abbrevi-

ated PTSD self-report measure (8-item PCL). It was expected that early improvement

in PTSD symptoms during treatment would be a predictor for PTSD reduction at

four-week follow-up. Consistent with expectations, the results indicate that a greater

decline in self-reported PTSD symptoms during the complete treatment program is a

predictor for a greater decline in PTSD symptoms at four-week follow-up, as measured

with both self-rated, and clinician-rated instruments. Additionally, it was expected

that a greater decline in PTSD symptoms during the first half of treatment would

predict PTSD reducation as well. The results show that a greater decline in self-

reported PTSD symptoms during the first week of treatment, after completing two

of the total six treatment days, was indeed a predictor for PTSD reduction at four-

week follow-up, as measured with self-rated, and clinician-rated instruments. These

findings are consistent with earlier findings which showed that early PTSD-symptom

change was related to overall treatment outcome (Byllesby et al., 2019; Sripada et

al., 2020). Interestingly, discrepant results have been found concerning the predic-

tive value of the first and second treatment week. When using self-report PCL-5 as

the overall treatment outcome measure, development in the first treatment week had

more predictive value, whereas when using the clinician-rated CAPS-5, development

in the second week had more predictive value. Moreover, the results show that pre-

treatment PTSD symptoms, as measured with the self-report 8-item PCL, do not

predict treatment outcomes. This is an interesting finding because the findings of

previous studies showed that pretreatment PTSD symptoms were in fact related to

treatment outcome (Karatzias et al., 2007; Van Minnen et al., 2002).

The inconclusive results of studies on the value of pretreatment factors (cf. Ehlers

et al., 1998; Ehlers et al., 2013; Forbes et al., 2003; Karatzias et al., 2007; Tarrier

et al., 2000; Van Minnen et al., 2002) stress the need for more approaches to predict

treatment outcome. Although the current study awaits replication, the results imply

that using a measure to monitor treatment progress, and evaluate early progress,

could be valuable in decision-making (e.g., adjusting treatment based on treatment

response). When a patient does not show a large improvement during the first few

days, practitioners may decide to scale up treatment or change the type of evidence-

based treatment provided, which is what guidelines recommend (Akwa GGZ, 2020).
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Doing so might prevent participants from continuing a treatment with little expected

benefit. Although in this case, scaling up treatment by intensifying seems difficult

considering the treatment program for the current sample is already an intensive

one. Other remaining guideline suggestions include switching to other evidence-based

treatments (e.g., cognitive processing therapy), pharmacotherapy, or experimental

treatments.

The current study has a number of limitations. First, there were numerous missing

cases, which were mainly participants missing, or showing up too late for follow-up

measurements. This might compromise the generalizability of this study’s results to

the population. One might argue that a reason why participants did not show up,

or showed up too late to be included in follow-up measurements, is because they

were unsatisfied with treatment and have seen little improvement in their symptoms.

Another reason might be that participants who did not show PTSD symptoms after

treatment may have refused to spend time and effort on measurement, as they already

finished treatment, and did not see any personal added value to inclusion in follow-

up measurements. A second limitation is that the patient sample predominantly

consisted of women, which again negatively affects generalizability of the results. It

is unclear why the sample had such a notable gender imbalance, however the results

should be interpreted with this in mind. Third, the size of the sample can be seen

as a limitation, since it made it impossible to investigate if the presence of comorbid

disorders could influence treatment progress.

A strength of the current study is that PTSD reducation at four-week follow-up

was measured using two different measurements: The clinician-rated CAPS-5, and

the self-report PCL-5. Although the CAPS-5 and PCL-5 correlate strongly (Blevins

et al., 2015), one study found contradictory results in prediction models using the

CAPS (Blake et al., 1995) and PCL (Davidson et al., 1989) as treatment outcome

measures (Karatzias et al., 2007). They found that lower baseline CAPS scores were

associated with better treatment outcomes, whereas higher baseline PCL scores were

associated with better treatment outcomes. Using the clinician-rated CAPS-5 as well

as the self-report PCL-5 to measure treatment outcome controls for these possibly

ambiguous results.

Future research should be aimed at improving the reliability and generalizability

of the results by replicating the current study in different cultures, and in samples

that vary in gender, age, and other demographic variables. One could study if there

is a difference in the results for trauma type, and different types and intensities of

treatment as well. Since the results were found in an intensive treatment program

including PE and EMDR, the study should be replicated in nonintensive treatment

programs and other types of treatments (Byllesby et al., 2019; Sripada et al., 2020).

Another recommendation for future research is to explore possible adaptations in in-
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tensive treatment programs for patients who show little response, since it is yet unclear

which adaptations can be made. Therefore, future research should first be focused on

investigating relevant processes during treatment that could influence outcomes in the

current treatment program. The current treatment consists of several components,

and one should also identify which treatment components are responsible for treat-

ment progress, and also in whom. It is useful to know that the absence of response

during treatment indicates less beneficial overall treatment outcome. The next step

should be investigating what is causing patients to show little or no response, or even

deterioration. As mentioned before, factors like therapeutic alliance, trauma-related

belief change, between-session habituation, and SUD scores during the first PE or

EMDR session have been shown to be related to treatment outcome (Cooper et al.,

2017; Foa et al., 1995; Hendriks et al., 2018; Horvath & Symonds, 1991; Jaycox et al.,

1998; D. Kim et al., 2008; Martin et al., 2000). These are possible relevant factors

during treatment that could explain why some patients show little reduction in PTSD

symptoms. Another reason why it is useful to identify which processes are responsible

for less beneficial treatment response is that the predictive value of the current study

is based on means, and the results are not necessarily applicable to every patient.

This poses an ethical dilemma for clinical use because practitioners would have to

make a decision for the individual to change treatment (intensity) based on those

means.

In conclusion, the present study indicates that a greater decline in PTSD symp-

toms during the course of an intensive treatment program is a predictor for greater

PTSD reduction at four-week follow-up. This prediction can also be made using the

progress measured only during the first treatment week, after completing two of the

six treatment days. Pretreatment PTSD symptoms had no predictive value for treat-

ment outcome at the four-week follow-up. Being able to predict treatment outcomes

using the progress measured during treatment shows a large potential for clinical

use. Future research should mainly be focused on replicating the current results and

improving the reliability and generalizability of the results. A next step would be

investigating the factors responsible for poorer treatment responses.
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CHAPTER 4

Three extensions of the random intercept cross-lagged panel

model

Mulder, J. D., & Hamaker, E. L. (2021). Three extensions of the random intercept

cross-lagged panel model. Structural Equation Modeling: A Multidisciplinary Journal,

28 (4), 638-648. https://doi.org/10.1080/10705511.2020.1784738

Abstract

The random intercept cross-lagged panel model (RI-CLPM) is rapidly gaining

popularity in psychology and related fields as a structural equation modeling

(SEM) approach to longitudinal data. It decomposes observed scores into

within-unit dynamics and stable, between-unit differences. This paper discusses

three extensions of the RI-CLPM that researchers may be interested in, but are

unsure of how to accomplish: (a) including stable, person-level characteristics

as predictors and/or outcomes; (b) specifying a multiple-group version; and (c)

including multiple indicators. For each extension, we discuss which models need

to be run in order to investigate underlying assumptions, and we demonstrate

the various modeling options using a motivating example. We provide fully

annotated code for the R package lavaan, and Mplus on an accompanying website.

https://doi.org/10.1080/10705511.2020.1784738
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The random intercept cross-lagged panel model (RI-CLPM) proposed by Hamaker

et al. (2015) is an extension of the traditional cross-lagged panel model (CLPM). It

was introduced to account for stable, trait-like differences between units (e.g., in-

dividuals, dyads, families, etc.), such that the lagged relations pertain exclusively

to within-unit fluctuations.1 The idea that we should decompose longitudinal data

into stable, between-unit differences versus temporal, within-unit dynamics is closely

linked to the multilevel literature on cluster-mean centering (Bolger & Laurenceau,

2013; Enders & Tofighi, 2007; Kievit et al., 2013; Kreft et al., 1995; Mundlak, 1978;

Neuhaus & Kalbfleisch, 1998; Nezlek, 2001; Raudenbush & Bryk, 2022; Snijders &

Bosker, 2012). Alternatively, it can also be linked to the discussion in panel research

on the need to account for unobserved heterogeneity in longitudinal data (Allison

et al., 2017; Bianconcini & Bollen, 2018; Bollen & Brand, 2010; Bou & Satorra,

2018; Finkel, 1995; Hamaker & Muthén, 2020; Liker et al., 1985; Ousey et al., 2011;

Wooldridge, 2002, 2013). A detailed discussion of how other common panel models

account for unobserved heterogeneity (as well as for measurement error and develop-

mental trajectories) is provided by Usami et al. (2019), Zyphur, Allison, et al. (2020),

and Zyphur, Voelkle, et al. (2020).

The appeal of the RI-CLPM can be attributed to three factors. First, the basic

idea that one needs to decompose the observed variance into two sources resonates

with a concern many researchers have had about the traditional CLPM (Keijsers,

2016). In fact, there have been numerous other proposals aiming to do exactly this

(e.g., Allison et al., 2017; Bianconcini & Bollen, 2018; Kenny & Zautra, 1995; Ormel

et al., 2002; Ormel & Schaufeli, 1991; Ousey et al., 2011). Second, the model can

be applied if one has three occasions of data or more, using any structural equation

modeling (SEM) software package, which makes the approach broadly applicable and

easy to implement. Third, the RI-CLPM tends to fit empirical data (much) better

than the traditional CLPM, as is corroborated by empirical work of for instance

Borghuis et al. (2020), Burns et al. (2020), and Keijsers (2016). The second-order

lagged relations that are often needed to get a CLPM to have an acceptable fit, are

typically not needed in the RI-CLPM, because the long-run, trait-like stability is now

captured by the random intercepts instead of by the second-order lagged relations.

Given the growing popularity of the RI-CLPM, it is not surprising that researchers

are interested in how they can adapt the basic model to accommodate their particular

data and research interests. Examples of this can be found in the Mplus Discussion

Board thread on the RI-CLPM,2 the lavaan forum,3 and RI-CLPM-related posts on

1While the original paper by Hamaker et al. (2015) uses the terms within-person and between-
person, we use within-unit and between-unit here to emphasize that the cases are not necessarily
individuals, but can also be dyads, families, companies, or individuals and their context, peers, etc.

2Accessible via http://www.statmodel.com/discussion/messages/11/25297.html?1579816772
3Accessible via https://groups.google.com/forum/#!forum/lavaan.
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SEMNET.4 Some of the most frequently asked questions are how to extend the model

by (a) including person-level characteristics (e.g., social economic status, personality

factors, age, health) as a predictor or outcome variable, (b) performing a multiple-

group version of the model to investigate whether lagged relationships are different

across groups, and (c) using multiple indicators for latent variables in the model. The

purpose of the current paper is to elaborate on these extensions and help researchers

navigate the different modeling options and assumptions.

This paper is organized as follows. In the first section we begin with presenting

the RI-CLPM, and discuss how it is related to the traditional CLPM. In the fol-

lowing three sections we discuss the three different extensions described above and

we will focus on the modeling options available. To facilitate the explanation of the

model and its results we will use a motivating example about the reciprocal effects of

sleep problems and anxiety in young adolescents based on Narmandakh et al. (2020).

Furthermore, to allow the reader to obtain hands-on experience with this modeling

approach, we provide a simulated data set of our motivating example, as well as

annotated lavaan code and Mplus syntax in the online supplementary materials at

https://jeroendmulder.github.io/RI-CLPM.

4.1 The RI-CLPM and the traditional CLPM

Below, we begin with discussing how the RI-CLPM is build up. Subsequently, we

discuss diverse constraints over time that can be imposed or relaxed. We end by briefly

discussing how this model is related to the traditional CLPM. While the terminology

used here is clearly inspired by the multilevel literature (where there is a between-

cluster level and a within-cluster level), the RI-CLPM is estimated in wide-format

using structural equation modeling (SEM), rather than in long-format with multilevel

modeling. Throughout we make use of a simulated data set that was motivated by

Narmandakh et al. (2020). In their study, five waves of data were obtained from 1189

adolescents on their sleep problems and anxiety during the past 15 years.

4.1.1 Building up the basic RI-CLPM

To fit an RI-CLPM, we need to decompose the observed scores into three components:

Grand means, stable between components, and fluctuating within components. This

decomposition is illustrated in Figure 4.1a. Let Sit and Ait represent the observed

scores on sleep problems and anxiety for person i at occasion t, respectively. The first

components are the grand means, which are the means over all units per occasion t,

and represented by µt for sleep problems and πt for anxiety. These grand means may

4Accessible via https://listserv.ua.edu/cgi-bin/wa?A0=SEMNET.
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Figure 4.1: Sit = observed sleep problems of unit i at occasion t; Ait = observed anxiety
of unit i at occasion t.
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be time-varying, or may be fixed to be invariant over time. Second, the between com-

ponents, indicated by the letter B, are the random intercepts: BSi for sleep problems

and BAi for anxiety. They capture a unit’s time invariant deviation from the grand

means and thus represent the stable differences between units. The random intercepts

are specified in SEM software by creating a latent variable with the repeated measures

as its indicators, and fixing all the factor loadings to 1. Third, the within components,

indicated by the letter W , are the differences between a units observed measurements

and the unit’s expected score based on the grand means and its random intercepts.

WSit and WAit thus represent the within components of sleep problems and anxiety,

respectively. We create these components in SEM software by specifying a latent

variable for each measurement and constraining its measurement error variances to

0. As a result, we have Sit “ µt `BSi `WSit and Ait “ πt `BAi `WAit.

Next, we specify the structural relations between the within components. The

autoregressive effects (i.e., αt from WSi t´1 to WSit and δt from WAi t´1 to WAit)

represent the within-person carry-over effects. If αt is positive, this implies that an

individual who experiences elevated sleep problems relative to his/her own expected

score, is likely to experience elevated sleep problems relative to his/her own expected

score at the next occasion as well. The same logic applies to the interpretation of

δt. For this reason, the within-person autoregressive effects are sometimes referred

to as inertia (i.e., the tendency to not move; see Suls et al., 1998). The cross-lagged

effects in the model represent the spill-over of the state in one domain into the state of

another domain. Here, βt represents the effect of WSi t´1 to WAit and γt the effect

of WAi t´1 to WSit. A positive βt implies that a positive (negative) deviation from

an individual’s expected level of sleep problems will likely be followed by a positive

(negative) deviation in the individual’s expected level of anxiety at the next occasion

in the same direction. The same logic applies to γt.

Finally, we need to include covariances for both the within, and between compo-

nents of the model. For the within part we specify that the components at occasion 1

and the within-person residuals at all subsequent occasions are correlated within each

occasion. For the between part we specify that the random intercepts are correlated.

We are not including covariances between the within-person components at the first

occasion and the random intercepts because typically the observations have started at

an arbitrary time point in an ongoing process, and there is no reason to assume that

the within components at the first occasion are correlated to the random intercepts.5

Applying this model to our simulated example data, we find that both random

intercepts have significant variance, which implies that there are stable, trait-like

5This is in contrast to other SEM approaches that combine lagged relations with stable com-
ponents, such as the one presented by Allison et al. (2017) and Bianconcini and Bollen (2018).
The defining difference between these approaches and the RI-CLPM discussed here is whether or
not the lagged relations are modeled between the observed variables, or between the within-person
components. For more details, see Usami et al. (2019).
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differences between persons on sleep problems and anxiety. Moreover, we find a

significant positive covariance between the random intercepts of 0.01 with SE “ 0.001

(the correlation is .59, SE “ 0.050), suggesting that individuals who have more sleep

problems in general are also more anxious in general.

If, in contrast to our findings here, the variance of a random intercept does not

significantly differ from 0, this means that there are little to no stable between-unit

differences, and that each unit fluctuates around the same grand means over time.

Including a random intercept in the model can then be regarded as “redundant”; such

a model would be too complex for the data. In that case one can choose to either

fix the nonsignificant variance (and all the covariances between this random intercept

and the other intercepts) to 0, or simply remove the random intercept from the model

and include lagged-relations between the observed variables instead of between the

within-unit components. These two solutions are statistically equivalent and will lead

to the same lagged-parameter estimates and model fit. Note that it is possible to

have a model in which one variable needs to be decomposed into a between-unit and

a within-unit part, while the other variable does not require such a decomposition.

Looking at the within part of the model we find the following standardized autore-

gressive effects for sleep problems, α2 “ 0.29 (SE “ 0.034), α3 “ 0.24 (SE “ 0.036),

α4 “ 0.27 (SE “ 0.036), α5 “ 0.29 (SE “ 0.035), and for anxiety, δ2 “ 0.004

(SE “ 0.045), δ3 “ 0.25 (SE “ 0.036), δ4 “ 0.29 (SE “ 0.033), δ5 “ 0.40

(SE “ 0.030). There are also significant cross-lagged effects of sleep problems to

anxiety, β2 “ 0.15 (SE “ 0.039), β3 “ 0.10 (SE “ 0.035), β4 “ 0.11 (SE “ 0.034),

β5 “ 0.08 (SE “ 0.031), which means that individuals with relatively little sleep

problems (relative to an individual’s own mean) will likely experience relatively little

anxiety at the next occasion. However, none of the cross-lagged effects from anxiety to

sleep problems are significant, which means that an individual’s temporary elevated

or damped amount of sleep problems does not depend on that individual’s temporary

level of anxiety at the previous occasion.

4.1.2 Imposing constraints over time

To test specific hypotheses, researchers can decide to impose constraints on the model

and test the tenability of these constraints. This can be done by comparing the fit

of a (nested) model with constraints to the fit of the more general model using a

chi-square difference test (∆χ2); if the constrained model fits the data significantly

worse, the imposed constraints are untenable. Alternatively, one can use the AIC or

BIC as measures of model fit to compare both non-nested and nested models, where

the model with the lower AIC or BIC should be preferred.

The use of the chi-square difference test is wide-spread in the SEM community,

but a few cautionary notes are in order. First, parameters should only be constrained
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if the constraints make theoretical sense, and not solely because it leads to a more

parsimonious model. Second, failing to detect a significantly worse fitting model in

a sequence of chi-square difference tests does not imply that the constrained model

represents the population well. It is possible that the unconstrained base model

was misspecified in the first place and this misspecification will carry on into the

constrained model. In that case, the chi-square difference test is unable to control

for Type I error rates and retain adequate power (Yuan & Bentler, 2004). Careful

consideration should always be given to the fit of the models themselves by looking

at a variety of model fit indices.

In the RI-CLPM, there are several constraints over time that can be added. We

discuss two common ones here. First, we may consider testing if the lagged regression

coefficients are time-invariant. This can be done by comparing the fit of a model

with constrained regression coefficients (over time), with the fit of a model where

these parameters are freely estimated (i.e., the “unconstrained” model). If this chi-

square difference test is nonsignificant, this implies the constraints are tenable and

the dynamics of the process are time-invariant. If the constraints are not tenable,

this could be indicative of some kind of developmental process taking place during

the time span covered by the study.

In this context it is important to realize that the lagged regression coefficients

depend critically on the time interval between the repeated measures. Hence, con-

straining the lagged parameters to be invariant across consecutive waves only makes

sense when the time interval between the occasions is (approximately) equal (Gollob

& Reichardt, 1987; Kuiper & Ryan, 2018; Voelkle et al., 2012). If the time intervals

between subsequent occasions vary, we are estimating different autoregressive and

cross-lagged effects between each pair of adjacent measurements. In such a situa-

tion, constraining the lagged regression coefficients leads to an uninterpretable blend

of different lagged relationships. Furthermore, even when the lagged parameters are

invariant over time, this will typically not be true for the standardized lagged param-

eters, because these are a function of the within-unit variance of the predictor and the

within-unit variance of the outcome. As these variances are typically not (constrained

to be) equal across the occasions (which is complicated due to the recursiveness in

the model), the standardized lagged parameters can differ even if the unstandardized

lagged parameters are constrained to be the same (Hamaker et al., 2015).

To test if the lagged relations in our sleep problems and anxiety example are

invariant over time, we fit a model with constrained lagged regression coefficients and

find χ2 “ 90.97 with 33 degrees of freedom. The unconstrained model (the basic

RI-CLPM fitted before) has χ2 “ 25.81 with 21 degrees of freedom. The chi-square

difference test of these two nested models is thus ∆χ2p12q “ 65.16, with p ă .001.

Hence, constraining the lagged effects to be the same over time results in a significantly
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worse model fit. We therefore conclude that the constraints are untenable and that

there appears to be a change in within-person dynamics over time. Upon closer

inspection of the autoregressive effects of anxiety δt in the unconstrained model, this

makes sense: These estimates increase with each subsequent occasion, from .004 to

.40.

Second, we may investigate whether the grand means, µt and πt, are invariant over

time. This can be done by constraining the means to be the same across occasions and

performing the chi-square difference test to determine whether this constraint can be

imposed. If this is the case, this implies we are dealing with a construct that is stable

at the population level for the duration of the study. In contrast, if the grand means

cannot be constrained to be invariant over time, this implies that on average there is

some change in this variable over time, which may reflect some occasion-specific effect,

or a developmental trend. By allowing the means to freely vary over time, we account

for such average changes over time. In our example a comparison of the constrained

and the unconstrained models yields a chi-square difference test of ∆χ2p8q “ 434.20,

p ă .001, which implies that the constraints are untenable and that the grand means

vary over time.

Alternatively, one can choose to relax, instead of impose, constraints over time

to allow for a more flexible and better fitting model. The RI-CLPM is based on

the assumption that the random intercepts have the exact same influence on the

observed variables at each occasion, which is reflected by the factor loadings that are

all constrained to be 1 over time. However, researchers may want to test this, which

can be done by comparing the model with these constrained factor loadings to a model

in which the factor loadings are estimated freely; the latter model implies that there

are stable, trait-like differences between individuals, but the size of these differences

can change over time. The between components are then no longer random intercepts,

but can be interpreted as traits. To fit a model with freely estimated factor loadings,

at least four occasions of data are needed; in contrast, with the fixed factor loadings,

the model is already identified with only three waves of data.

4.1.3 Relatedness to the traditional CLPM

If we constrain the variances of all random intercepts (and their covariance) in the

RI-CLPM to zero, we obtain a model that is nested under the RI-CLPM, and no

longer accounts for stable between-unit differences. This model is actually statistically

equivalent to the traditional CLPM (represented in Figure 4.1b), which implies that

we can compare these two models using a chi-square difference test.6

6Actually, it requires a chi-bar-square test, as it is based on constraining two of the parameters
on the bound of the parameter space, see Stoel et al. (2006). The regular chi-square test is too
strict, which means that if it is significant, the chi-bar-square test would also be significant, while
the reverse is not true.
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In comparison to the traditional CLPM, the RI-CLPM often leads to autoregres-

sive parameters that are closer to zero with larger standard errors. As a result, the

autoregressive parameters that are significantly different from zero in the CLPM, may

not be significant in the RI-CLPM. This has led some to speculate that the reliabil-

ity of the within-unit components in the RI-CLPM is low. However, it is important

to realize that the autoregressive parameters represent quite different phenomena in

these two models. In the traditional CLPM, the autoregressive parameter captures

the stability of the rank-order of individuals from one occasion to the next. It is

closely related to the idea of test-retest reliability, which uses the autocorrelation as

a measure of reliability of a time-invariant, trait-like construct. In the RI-CLPM

however, the trait-like features are captured by the random intercepts, such that the

autoregressive parameters are not there to capture rank-order stability due to a trait,

but to account for additional moment-to-moment stability (i.e., inertia or carry-over)

of the within-unit fluctuations over time. Hence, in the RI-CLPM, the autoregressive

parameters should not be considered as measures of reliability, because reliability and

stability do not coincide for state-like concepts (Hertzog & Nesselroade, 1987).

With respect to the cross-lagged parameters, there can be a number of differences

between the two models. As discussed in the original paper by Hamaker et al. (2015),

we may find cross-lagged paths in the CLPM that seize to exist in the RI-CLPM

or vice versa, the standardized absolute values of the cross-lagged parameters may

lead to a different ordering, and even the sign of a cross-lagged path may change.

The latter result has been corroborated in empirical research by Dietvorst et al.

(2018). The extent to which results change depends on various factors, including the

relative contributions of the within-unit and the between-unit components to the total

variance. For instance, when the relative contribution of the between-unit components

is small, the lagged parameters of the two models will be quite similar.

Furthermore, Dormann and Griffin (2015) have recently argued that many of our

conventional panel studies are probably based on intervals that are too large to capture

the underlying within-unit dynamic relationships. Instead, the lagged effects that are

found with the CLPM might result from stable between-unit differences rather than

dynamic within-unit relations. This would imply that many of the significant results

that are obtained with the CLPM, will not be replicated when using an RI-CLPM

because the stable between-unit differences, captured by first and second-order lagged

effects in the CLPM, are now captured by the random intercept in the RI-CLPM

(Keijsers, 2016). Yet, the extent to which the results from the traditional CLPM and

the RI-CLPM will differ, cannot be predicted; the discrepancy or similarity will have

to be established empirically through fitting both models to the data and comparing

the results.
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4.1.4 Conclusion

We have provided a brief introduction to the modeling and reasoning behind the

RI-CLPM, and illustrated the basic steps researchers should consider when using this

modeling approach. For more details on how this model is related to other longitudinal

SEM approaches, the reader is referred to Hamaker et al. (2015) and Usami et al.

(2019). In the remainder of this paper, we discuss several extensions of the basic

RI-CLPM.

4.2 Extension 1: Including time-invariant predic-

tors and outcomes

If we have obtained certain time-invariant person characteristics prior to the repeated

measures—such as social economic status, personality, age, or gender—we may want

to include these as predictors in the RI-CLPM. A question that arises in this context is

whether these variables should be used to predict the observed variables or the random

intercepts. These two options for an observed predictor variable are represented in

Figure 4.2. In this section, we discuss both options in more detail and show how

they are related. Additionally, we discuss how one may include time-invariant distal

outcomes—such as later educational level, life satisfaction, or depression—in the RI-

CLPM.

It is important to realize that adding variables to our model changes the covariance

structure that is being analyzed, and in SEM we can only compare models that are

based on the same set of variables. As a result, a model with a time-invariant predictor

is not comparable to a model that excludes it. Likewise it is possible to have a well-

fitting model, which is then extended with a predictor that proves significant, while

this extended model no longer fits. The reason for this is that the two models are

based on different covariance and mean structures.

4.2.1 Including a time-invariant predictor

Let Ni be a measure of an individual’s neuroticism, which we want to include as

predictor of the observed variables Sit and Ait, as represented in the top left panel

of Figure 4.2a. This allows the effect of neuroticism on sleep problems and the effect

of neuroticism on anxiety to be different at each occasion t. In the particular case

that Ni is a dummy variable (as in our example here) the regression coefficients

can be interpreted as mean differences between the group represented by the dummy

variable, and the reference group (represented by zero scores on all dummy variables).

We include a dummy for individuals who are high on neuroticism, which results in

significant positive effects of neuroticism on both sleep problems and anxiety. This

56



Three extensions of the RI-CLPM

4

Ai1 Ai2 Ai3

WAi2 WAi3WAi1

WSi2 WSi3WSi1

Si1 Si2 Si3

BSi

BAi

Between

Ai4

WAi4

WSi4

Si4
W

ithin

Between-level Ni affecting the observations

Ni

BSi

BAi

Between

Ni

𝛜𝛜BSi

𝛜𝛜BAi

Between-level Ni affecting the random intercepts

Ai1 Ai2 Ai3

WAi2 WAi3WAi1

WSi2 WSi3WSi1

Si1 Si2 Si3

Ai4

WAi4

WSi4

Si4

W
ithin

Observations affecting time-invariant outcome Li

BSi

BAi

Between

Li𝛜𝛜Ei

Random intercepts affecting time-invariant outcome Li

Ai5

WAi5

WSi5

Si5

Ai5

WAi5

WSi5

Si5

Ai1 Ai2 Ai3

WA2 WA3WA1

WS2 WS3WS1

Si1 Si2 Si3

Ai4

WA4

WS4

Si4

W
ithin

Ai5

WA5

WS5

Si5

Ai1 Ai2 Ai3

WAi2 WAi3WAi1

WSi2 WSi3WSi1

Si1 Si2 Si3

Ai4

WAi4

WSi4

Si4

W
ithin

Ai5

WAi5

WSi5

Si5

BSi

Between

Li𝛜𝛜Ei

BAi

(a) Between-level Ni affecting the observations.

Ai1 Ai2 Ai3

WAi2 WAi3WAi1

WSi2 WSi3WSi1

Si1 Si2 Si3

BSi

BAi

Between

Ai4

WAi4

WSi4

Si4

W
ithin

Between-level Ni affecting the observations

Ni

BSi

BAi

Between

Ni

𝛜𝛜BSi

𝛜𝛜BAi

Between-level Ni affecting the random intercepts

Ai1 Ai2 Ai3

WAi2 WAi3WAi1

WSi2 WSi3WSi1

Si1 Si2 Si3

Ai4

WAi4

WSi4

Si4

W
ithin

Observations affecting time-invariant outcome Li

BSi

BAi

Between

Li𝛜𝛜Ei

Random intercepts affecting time-invariant outcome Li

Ai5

WAi5

WSi5

Si5

Ai5

WAi5

WSi5

Si5

Ai1 Ai2 Ai3

WA2 WA3WA1

WS2 WS3WS1

Si1 Si2 Si3

Ai4

WA4

WS4

Si4

W
ithin

Ai5

WA5

WS5

Si5

Ai1 Ai2 Ai3

WAi2 WAi3WAi1

WSi2 WSi3WSi1

Si1 Si2 Si3

Ai4

WAi4

WSi4

Si4

W
ithin

Ai5

WAi5

WSi5

Si5

BSi

Between

Li𝛜𝛜Ei

BAi

(b) Between-level Ni affecting the random intercepts.

Figure 4.2: Two options for including a between-level predictor N : In Figure 4.2a Ni

influences the observed variables directly; in Figure 4.2b this occurs indirectly through the
random intercepts. The model in Figure 4.2b is nested under the model in Figure 4.2a (fixing
the regression coefficients to be identical over time results in a version that is equivalent to
the model on the right).
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(b) Observations affecting time-invariant outcome Li.

Figure 4.3: Two options for including a between-level outcome: In Figure 4.3a Li is
explained by the random intercepts which includes only between variance; in Figure 4.3b
the distal outcome is regressed on both the random intercepts and the within components
such that we use both between- and within-level variance to predict Li. These two models
are not nested.
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suggests that highly neurotic adolescents experience more sleep problems and have

more anxiety symptoms than adolescents in the low-neuroticism group, and this result

holds for all occasions. As a restricted version of this model, we can constrain the

effects of neuroticism on sleep problems and anxiety to be the same at each occasion

t. Because these models are nested, we can perform a chi-square difference test to

determine whether these constraints can be imposed.

The latter constrained model is statistically equivalent to a model in which the

random intercepts, rather than the observed variables, are regressed on Ni (repre-

sented in Figure 4.2b). This is only the case however if the factor loadings of the

random intercept are all fixed at 1 like in the basic RI-CLPM discussed before. Im-

posing the constraints leads to a chi-square difference test of ∆χ2p8q “ 8.91 with

p “ .350, which implies that the effects of neuroticism on the random intercepts of

sleep problems and anxiety are time-invariant: The estimated standardized effects are

0.27 (SE “ 0.040) and 0.24 (SE “ 0.035), respectively. Therefore, we conclude that

high-neuroticism adolescents experience more sleep problems and anxiety in general

than low-neuroticism individuals.

4.2.2 Including a time-invariant outcome

Suppose we have measured later life satisfaction Li after the repeated measures, and

we want to predict this using sleep problems and anxiety. We can do this by regressing

Li either on the random intercepts BSi and BAi, the within-person fluctuations

WSit and WAit, or on the observed variables Sit and Ait. The first two options are

represented in Figure 4.3. From a substantive point of view, regressing life satisfaction

on the random intercepts implies that temporal within-person fluctuations in sleep

problems and anxiety, WSit and WAit, are not informative for predicting later life

satisfaction as the random intercepts only contain stable between person information.

This assumption is defensible as later educational level is a time-invariant outcome

and therefore belongs to the between part of the model.

Alternatively, one can decide to regress the outcome on both the random intercepts

and the temporal deviations. The regression on the random intercepts then represents

the predictive value of between components net the predictive value of the within

part, and the regression on the temporal deviations represents the predictive value

of the within components net the predictive value of the between part. As such,

we separate the total predictive power of our variables into a uniquely between and

uniquely within component. The decision to use only between-unit variance, or both

within- and between-unit variance to predict the outcome, should ideally be based

on theoretical grounds. However, if this is something that the researcher explicitly

wants to test one can fit the above two models and compare them using a chi-square

difference test where the model with the outcome regressed on the random intercepts

59



Chapter 4

is nested under the current model.

A third option is regressing Li on the observed variables, which implies that one

assumes that both between-person variance that comes from the random intercepts,

and temporary, within-person variance that comes from the within-person compo-

nents, are informative about later depression. However, we find this modeling option

less defensible as it again blends stable between-effects and fluctuating within-effects,

an issue that the RI-CLPM aims to address in the first place. By regressing the out-

come on both the within-components and between-components separately, researchers

can check if within variance provides additional predictive value over the between vari-

ance.

4.2.3 Including both a predictor and outcome

We can also consider including both neuroticism as a predictor and later life satisfac-

tion as an outcome at the between level. If this is all specified at the between level,

this implies neuroticism has an indirect effect on life satisfaction through the random

intercepts and this can be considered as a case of mediation at the between level. We

can also include the direct effect of neuroticism on life satisfaction to allow for partial

mediation.

4.3 Extension 2: The multiple-group RI-CLPM

In the previous section we used a dummy variable for neuroticism as a predictor in our

model, which allowed us to investigate whether there are mean differences between

the group high on neuroticism, and the group low on neuroticism. Alternatively, one

can use such a categorical variable as a grouping variable in multiple group analysis

(e.g., Van Lissa et al., 2019; Vangeel et al., 2018). This approach implies that not only

the means can differ across the groups (as is the case when including dummy variables

as predictors of the random intercepts or the observed variables, as described in the

previous section), but also the lagged regression coefficients, the (residual) variances,

and the (residual) covariances.

Group differences in lagged regression coefficients can be thought of as modera-

tion or interaction effects, and may therefore be of specific interest to researchers.

This can be investigated by comparing a multiple group version of the RI-CLPM in

which there are no constraints across the groups, with a model in which the lagged

regression coefficients are constrained to be identical across the groups. If the chi-

square difference test indicates that this constraint cannot be imposed, this implies

that (some of) the lagged coefficients differ across the groups: The lagged effects of

the variables on each other depend on the level of the grouping variable. In contrast,

when the equality constraints on the lagged parameters across the groups hold, this
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implies there is no moderation effect. However, note again that the constraints only

imply that the raw coefficients are invariant across groups; the standardized lagged

effects may still differ across the groups in case the variances differ across groups.

To test if the reciprocal effects between sleep problems and anxiety are the same

for those high in neuroticism versus those low in neuroticism, we perform a multiple

group analysis. First, we fit a multiple group RI-CLPM without constraints across

the groups and find χ2p42q “ 45.64. Subsequently we fit a model in which lagged

parameters are invariant across groups and find χ2p58q “ 54.80. The chi-square

difference test of these two nested models yields ∆χ2p16q “ 9.16, p “ .907, which

implies that imposing the constraints is tenable: The lagged effects for individuals

with different levels of neuroticism appear to be the same.

4.4 Extension 3: The multiple-indicator RI-CLPM

Another way in which researchers may wish to extend the RI-CLPM is by including

multiple indicators for each of the constructs, while formulating the dynamics over

time between the latent variables. There are two ways in which this can be done.

First, a random intercept can be included for each indicator, as shown in Figure 4.4a,

and these random intercepts are allowed to be correlated with each other. In addition,

a common factor of the multiple indicators is included per occasion to capture the

common within-unit variability over time. Second, the random intercepts can be

included at the latent level as shown in Figure 4.4b (e.g., Seddig, 2020). There is

a common factor for each construct at each occasion, which is then being further

decomposed into a time-invariant part captured by the random intercept, and a time-

varying part that is used to model the within-unit dynamics. These two approaches

are nested with the second being a special case of the first.

To allow for a meaningful comparison of factors over time, the factor loadings

should be time-invariant, such that there is (at least) weak factorial invariance over

time (Meredith, 1993; Millsap, 2011). If we are unable to establish this invariance,

it implies that the constructs that we try to measure are interpreted differently over

time, and it is difficult to make meaningful comparisons between the constructs mea-

sured at different occasions. Below we discuss the sequence of models that needs

to be considered to establish longitudinal measurement invariance, and detail how

the decomposition into within-unit and between-unit variance can be obtained in the

context of multiple indicators.

In the first model, we decompose each observed variable into two parts: A stable,

between-unit part, and a time-varying, within-unit part that indicators have in com-

mon (see Figure 4.4a). Thus, if we use three indicators to measure sleep problems,

S1it, S2it, and S3it, and three indicators to measure anxiety, A1it, A2it, and A3it,
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we specify six random intercepts to capture the trait-like part of each indicator. In

addition, since we have five measurement occasions, we need to specify five within-

unit components for sleep problems, WSit, and five for anxiety, WAit, that capture

the common state-like part at each occasion. Moreover, we allow there to be an

occasion- and indicator-specific residual, that captures what each observed variable

does not share with itself at other occasions or with the other variables within the

same occasion, thus capturing measurement error. At the latent within-unit level,

we specify the dynamic model. Furthermore, we allow the within-person factors at

the first occasion, and their residuals at subsequent occasions to be correlated within

each occasion. The six random intercepts are allowed to be freely correlated with each

other. In this model there are no constraints on the factor loadings over time for the

within-unit factors; hence, this can be considered a model for configural invariance.

In the second model, we constrain the factor loadings to be invariant over time.

This model is nested under the previous model, such that we can do a chi-square

difference test. Fitting both models to our example data and comparing them yields

∆χ2p16q “ 10.12, p “ .861 and we conclude that the model with invariant factor

loadings over time does not fit significantly worse. Therefore, we can assume weak

factorial invariance holds. In contrast, a significant test implies that the factor load-

ings cannot be constrained over time, making further comparisons between the latent

variables problematic or even impossible. There are however two ways of dealing

with this problem (Lek et al., 2018; Seddig & Leitgöb, 2018). First, by checking the

modification indices, we can determine whether there is a specific factor loading at

a particular measurement occasion that wildly deviates from the other factor load-

ings that it is constrained to be equal to. In such a case, researchers can choose to

freely estimate this particular factor loading, resulting in a model that is based on

partial measurement invariance. The model then accounts for a large measurement

difference associated with a particular indicator while retaining weak measurement

invariance for the rest of the indicators. Second, recently researchers have argued that

the traditional concepts and tests of measurement invariance are too strict for small

measurement differences. They advocate the use of approximate measurement invari-

ance which allows for these minor differences through the use of priors in Bayesian

estimation procedures. An introduction to the concept of approximate measurement

invariance can found in Van de Schoot et al. (2013).

Assuming that weak factorial invariance holds, we can proceed with the third

model and test whether strong factorial invariance holds. To this end, we specify a

model in which we constrain the intercepts of the observed variables over time to be

invariant, and estimate the latent means from the second occasion onward.7 Again,

7Note that if we would not freely estimate the latent means, we would not only specify strong
factorial invariance, but also specify a model in which there cannot be mean changes over time. Such
a model may be of interest, for instance if you want to test for developmental trends, but that should
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this model is nested under the previous model, such that a chi-square difference test

can be performed to see whether the constraints hold. Applying this test to our ex-

ample data, we find ∆χ2p16q “ 21.64, p “ .155, which means we can assume that

strong factorial invariance holds over time. In contrast, a significant chi-square dif-

ference test would mean strong factorial invariance does not hold, implying that the

actual scores cannot be compared over time, but individual differences in scores can

still be meaningfully compared since weak factorial invariance holds. As the focus in

cross-lagged panel modeling is primarily on comparing individual differences (by de-

composing the observed scores into between-unit and within-unit components) rather

than mean scores over time, weak factorial invariance may be enough. However, from

a measurement point of view, having strong factorial invariance would be considered

more ideal.

Instead of including a random intercept at the observed level for each indicator

separately, as shown in Figure 4.4a, we can also choose to specify the entire RI-

CLPM at the latent level; this is illustrated in Figure 4.4b. This can be done in either

a model with weak or strong factorial invariance over time. To this end, we specify

the common factors that capture both trait-like and state-like common variance, and

thereby make the assumption that the trait- and state-structures coincide. We then

decompose these latent variables into a stable, between-unit part and the within-unit

components. Although not immediately apparent, this model is nested under the

model specified before. Instead of having free correlations between the six random

intercepts as in the first model, we can model the connections between them by

including two second-order factors: One for BS1i, BS2i, and BS3i, and one for BA1i,

BA2i, and BA3i. We set the factor loadings of these second-order factors to be

identical to the corresponding factor loadings of the within-unit factors. Additionally,

we constrain the residual variances for the first-order factors to zero. This model is

nested under the model presented in Figure 4.4a, and is statistically equivalent to the

model presented in Figure 4.4b. This implies that we can use a chi-square difference

test to compare the current model, as presented in Figure 4.4b, to the previous model,

represented Figure 4.4b.

Comparing the current and previous model on our example data yields ∆χ2p18q “

17.23, p “ .508. This nonsignificant result implies that the current model does not

have to be rejected, and we can say that there is measurement invariance across the

stable between structure and fluctuating within-structure. If however the chi-square

test is significant, then we need to conclude that these structures do not coincide,

and temporal fluctuations within individuals take place on a different underlying

dimension than the stable differences between units (see Hamaker et al., 2017, for

further discussion on this).

be tested separately.
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Finally, there are two important considerations that we want to emphasize in

the context of having multiple indicators for the constructs on which one wants to

perform the RI-CLPM. First, researchers commonly use a two-step procedure, in

which they first compute factor scores, sum scores, or mean scores, which are then

submitted to the RI-CLPM as if they were observed variables (e.g., Burns et al.,

2020; Hesser et al., 2018; Keijsers, 2016). The disadvantage of using sum and mean

scores however is that one assumes an absence of measurement error, which often is

an unrealistic assumption, especially within the social sciences (Griliches & Hausman,

1986). Failing to properly account for measurement error can bias lagged-parameter

estimates downwards, leading to a loss of power. Also, the estimation of factor scores

is difficult due to the problem of factor indeterminancy (i.e., there are multiple ways

to obtain factor scores, each with their own set of advantages and disadvantages), and

it is unclear how this affects the results of the RI-CLPM.

Second, the procedure described above for establishing measurement invariance

relies heavily on chi-square difference testing which, as mentioned before, can have

serious disadvantages such as an increased Type I and Type II error rate when the

base model is misspecified (Yuan & Bentler, 2004). Alternatively, researchers can

use equivalence testing (Yuan & Chan, 2016), which allows researchers to explicitly

specify an acceptable level of model misfit in their null-hypotheses when comparing

the above sequence of models, and thereby retain acceptable Type I an Type II error

rates.

4.5 Conclusion

The extensions discussed in this paper adhere to requests from researchers who want to

use the decomposition into time-varying within-unit dynamics and stable between-unit

differences in their panel research. While these extensions are mostly straightforward

from a modeling point of view, they involve important assumptions, and researchers

have to make important decisions with regards to this. The current paper therefore

elaborated on diverse extensions, what choices can be made, how these are related,

and provides hands-on experience with this modeling approach through our online

supplementary materials. We hope that this enables researchers to tailor the RI-

CLPM to their own research projects.
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CHAPTER 5

Power analysis for the random intercept cross-lagged panel

model using the powRICLPM R-package

Mulder, J. D. (2023). Power analysis for the random intercept cross-lagged panel model

using the powRICLPM R-package. Structural Equation Modeling: A Multidisciplinary

Journal, 30 (4), 645-658. https://doi.org/10.1080/10705511.2022.2122467

Abstract

The random intercept cross-lagged panel model (RI-CLPM) is a popular model

among psychologists for studying reciprocal effects in longitudinal panel data.

Although various texts and software packages have been published concerning

power analyses for structural equation models (SEM) generally, none have

proposed a power analysis strategy that is tailored to the particularities of the

RI-CLPM. This can be problematic because mismatches between the power

analysis design, the model, and reality, can negatively impact the validity of the

recommended sample size and number of repeated measures. As power analyses

play an increasingly important role in the preparation phase of research projects,

an RI-CLPM-specific strategy for the design of a power analysis is detailed,

and implemented in the R package powRICLPM. This paper focuses on the

(basic) bivariate RI-CLPM, and extensions to include constraints over time,

measurement error (leading to the stable trait autoregressive trait state model),

non-normal data, and bounded estimation.

https://doi.org/10.1080/10705511.2022.2122467
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A popular model among psychologists for the analysis of panel data is the random

intercept cross-lagged panel model (RI-CLPM). It was first formally introduced by

Hamaker et al. (2015) as an extension of the traditional cross-lagged panel model

(CLPM; Rogosa, 1980) to account for stable, between-unit differences in the data.

Unlike the CLPM, the RI-CLPM separates stable, between-unit variance from fluc-

tuating, within-unit variance: The autoregressive effects can then be interpreted as

purely within-unit effects and carry-over (rather than estimates of stability of the

rank-order of units, as is the case in the CLPM), and cross-lagged effects can be in-

terpreted as the within-unit effect or “spillover” of one domain into another (Mulder &

Hamaker, 2021). This feature addresses some long-standing concerns that researchers

have had about panel data analysis, such as the conflation of within- and between-

unit variance for studying within-unit processes, unobserved heterogeneity, and bias

in the cross-lagged effects due to omitted variables (Andersen, 2022; Hamaker et al.,

2015; Heise, 1970; Kenny & Zautra, 1995, 2001). The reader is referred to Usami

et al. (2019), Zyphur, Allison, et al. (2020), and Zyphur, Voelkle, et al. (2020) for an

overview of how related SEM models address these concerns.

A frequently asked question by substantive researchers in relation to the RI-CLPM,

is about the required sample size for detecting hypothesized effects. Such questions

of statistical power are especially relevant in the design phase of a study: Under-

powered study designs are more likely to result in Type II errors (i.e., incorrectly

failing to reject the null-hypothesis of no effect), whereas overpowered studies (i.e.,

study designs with a sample size larger than necessary to find hypothesized effects) can

place an unreasonable burden on the research resources (Zhang & Liu, 2018). While

there are some general rules of thumb in the structural equation modeling (SEM)

literature for what is regarded an adequate sample size (cf., Barrett, 2007; Jackson,

2003; Little, 2013; MacCallum et al., 1996), in practice, statistical power depends

on many factors and assumptions, making it difficult to come up with a generally

applicable sample size recommendation. When planning a longitudinal study, it is

therefore advized to perform a power analysis that is tailored to a particular research

context and research question, to find the optimal study design (Oertzen et al., 2010;

Wang & Rhemtulla, 2021; Wolf et al., 2013). However, it can be challenging to design

and perform such a study for researchers who are inexperienced with simulation-based

power analyses, the particularities of a model, and the software required to automate

the process.

This paper proposes a strategy for setting up and executing a power analysis for

the RI-CLPM based on Monte Carlo simulations, and implements it in the R package

powRICLPM. Although treatments on the design and implementation of Monte Carlo

studies have appeared before (cf., S. Lee, 2015; L. K. Muthén & Muthén, 2002;

Paxton et al., 2001; Wang & Rhemtulla, 2021; Zhang & Liu, 2018), these texts are
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not particular to the characteristics of the RI-CLPM, or target model (mis)fit rather

than specific parameters within the model. Performing a power analysis for the RI-

CLPM involves numerous model-specific and complex decisions which have not been

described in the literature yet. The focus of this paper is on à priori power analysis

(e.g., during the planning phase of a study, or as part of a grant proposal), but

the procedure can similarly be used for post hoc power analysis (e.g., at a reviewer’s

request, or because dropout or non-response resulted in a lower-than-expected sample

size; Hancock & French, 2013).

The paper is organized as follows: First, an illustrative example concerning aca-

demic amotivation is introduced that is used throughout. Second, the RI-CLPM itself

is presented, as well as the factors influencing its power. Third, a six-step power anal-

ysis strategy is laid out. Fourth, this strategy is demonstrated using the powRICLPM

package and the illustrative example. Fifth, extensions of the power analysis strategy

are described, including the addition of constraints on parameters over time, mea-

surement error (thereby leading to the bivariate stable trait autoregressive trait state

model by Kenny & Zautra, 2001), non-normal data, and bounded estimation. This

paper concludes with limitations of the proposed procedure, a comparison with other

software packages for power analysis, and directions for future development.

5.1 Illustrating example: Self-alienation and aca-

demic amotivation

Suppose we are interested in the prevention of loss of academic motivation in stu-

dents, and have reason to believe (based on previous research and expert opinion)

that self-alienation is a driving factor herein. More specifically, we want to investi-

gate the reciprocal effects of self-alienation X (the feeling that one does not know

oneself) and academic amotivation Y (a lack of intrinsic or extrinsic motivation for

pursuing academic goals) in college students over time. Unfortunately, due to time

and money constraints, we are unable to design a randomized experiment in which

self-alienation X is intervened on, and are therefore bound to observational data. As

such, we want to use the RI-CLPM to estimate cross-lagged effects while controlling

for stable, between-person differences in self-alienation and academic amotivation.

Suppose further that we deem the assumptions underlying the RI-CLPM plausible,

namely that the reciprocal effects between self-alienation and academic amotivation

are (a) linear; (b) constant across units, that is, homogeneity; (c) constant across

the values of our observed variables and error terms, that is, no effect modification;

(d) not affected by unobserved time-varying confounding; and (e) the error terms

(approximately) follow a multivariate normal distribution (Gische & Voelkle, 2022).

Prior to the start of the data collection, we want to perform a power analysis
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Figure 5.1: A bivariate random intercept cross-lagged panel model with three waves of
data. αt and δt are autoregressive effects of WX and WY , respectively. γt and βt are the
cross-lagged effects of WX,t´1 on WY,t and WY,t´1 on WX,t, respectively. The grand means
µX,t and µY,t are not included here.

to determine the required sample size N and number of repeated measures T for

detecting potential reciprocal effects with a power level of 0.8. Planning for N and

T is a matter of balance: It can be beneficial in terms of time and costs to collect

an additional wave of data rather than additional participants, or vice versa, while

maintaining the desired level of statistical power. Some researchers, like Winkens et

al. (2006), explicitly include a “costs function” in their power analysis to determine

an optimal trade-off in terms of sample size and number of repeated measures (as well

as other factors).

5.2 The model

Figure 5.1 presents an RI-CLPM for a study design with three repeated measures.

Let Xit and Yit be the observed values for self-alienation and academic amotivation

for individual i at time point t, respectively. By fitting an RI-CLPM, these observed

variables are decomposed into three independent components: Grand means µX,t and

µY,t for each time-point, time-invariant random intercept factors RIX,i and RIY,i, and

time-varying within-components WX,it and WY,it, for self-alienation and academic
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amotivation respectively.These decompositions are represented by

Xit “ µX,t `RIX,i `WX,it, (5.1)

Yit “ µY,t `RIY,i `WY,it. (5.2)

The grand means are time-specific means across all individuals, and they can be freely

estimated in the model or constrained over time. The random intercepts RIX and

RIY are latent factors, with the observed measures for self-alienation as indicators for

RIX , and the observed measures for academic amotivation for RIY . They capture

individuals’ stable, time-invariant (i.e., for the duration of the study) deviations from

the grand means µX,t and µY,t, such that the random intercept factors exclusively

represent between-person variance. In the standard RI-CLPM presented here, the

factor loadings of the random intercept factors are fixed at 1, implying that the size

of the stable, between-person differences is invariant over time. However this may

be an assumption that researchers want to check by freely estimating these factor

loadings and comparing model fit (Mulder & Hamaker, 2021). Finally, the within-

components WX,it and WY,it represent the deviation of an individual at a specific

time-point from the individual’s expected score based on the grand mean and the

random intercept.

Next, autoregressive and cross-lagged effects are added between the within-components

at subsequent waves, such that

WX,it “ αtWX,i,t´1 ` βtWY,i,t´1 ` uit, (5.3)

WY,it “ δtWX,i,t´1 ` γtWY,i,t´1 ` vit, (5.4)

where αt represents the autoregressive effect of self-alienation from wave t´1 to wave

t, δt represents the autoregressive effect of academic amotivation from wave t ´ 1 to

wave t, βt is the cross-lagged effect from academic amotivation at wave t ´ 1 to self-

alienation at wave t, and γt is the cross-lagged effect from self-alienation at wave t´1

to academic amotivation at wave t. uit and vit are zero-mean normally distributed

residuals with variances σ2
u,t and σ2

v,t, respectively, and they are allowed to covary

with each other within each wave. Because the within-person variance is separated

from the stable, between-person variance, the lagged effects pertain exclusively to

within-person fluctuations. The autoregressive parameters αt and δt can then be

interpreted as carry-over or inertia (Kuppens et al., 2010; Suls et al., 1998), whereas

the cross-lagged parameters βt and γt represent the within-person spill-over of the one

construct into the other (i.e., controlled for stable, between-person differences), and

vice versa. Finally, including a covariance between the between-components RIX and

RIY completes the basic setup of the RI-CLPM. The model is flexible, and can be

extended to include constraints over time, time-invariant and time-varying predictors
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and outcomes, multiple groups, multiple indicators (Mulder & Hamaker, 2021), and

interactions to test for moderation (Ozkok et al., 2022; Speyer et al., 2023).

5.2.1 Factors influencing power

Besides sample size and the number of repeated measures, there are many other factors

that influence the RI-CLPM’s power to detect individual non-zero parameters.1 It

is important to carefully consider and include these in the setup of a power analysis

as they can impact the validity of the power analysis results. Here, these factors are

divided into two groups: Characteristics of the study design, and characteristics of

the data.

Characteristics of the study design that influence statistical power are interesting

because they are under control of the researcher, and can be tweaked to achieve the

desired amount of power. Sample size and number of repeated measures are the two

most obvious examples of such factors. Others include (a) the significance criterion,

where a larger criterion leads to a higher probability of rejecting the null-hypothesis

of no effect, but also increases the probability of Type I errors (Zhang & Liu, 2018);

(b) model complexity, where it has been suggested that models with fewer freely

estimated parameters, for example due to imposed parameter constraints over time,

have more power to detect non-null effects (Wang & Rhemtulla, 2021); and (c) in

the case of a multiple-indicator RI-CLPM (MI-RICLPM), the number of indicators,

as the inclusion of multiple indicators allows for controlling for measurement error,

thereby increasing power (Oertzen et al., 2010; Wang & Rhemtulla, 2021).

Characteristics of the data that impact power are important to consider as well.

Even though these cannot be controlled by the researcher, failing to adequately rep-

resent these data characteristics in the simulated data in the power analysis can

negatively affect the validity of the power analysis results. These factors include (a)

the effect size, where larger effects in the data result in larger test statistics, and thus

greater power to reject the null-hypothesis of no effect (Wang & Rhemtulla, 2021);

(b) non-normality, because many SEM models actually assume multivariate normal

data, and non-normality then negatively impacts power (Zhang, 2014); (c) missing

data, although some missing data patterns have a larger impact than others (Zhang

& Liu, 2018); (d) the reliability of indicators, where smaller measurement error vari-

1To get some intuition of why increasing the number of repeated measures increases power in the
RI-CLPM, it is useful to consider the concept of cluster-mean centering from the multilevel litera-
ture (Kreft et al., 1995). Rewriting Equation 5.1 shows that the within-components in the model are
obtained by subtracting the between-components from the observed variables. The parameters gov-
erning RIX and RIY are unknown, however, and must be estimated from the data. This introduces
measurement error in the between-components, and by Equation 1, also in the within-components
(Asparouhov & Muthén, 2019). A larger number of repeated measures reduces the measurement
error in RIX and RIY , resulting in less error in the within-components, and thereby increasing the
power to detect lagged effects (Zhang & Liu, 2018).
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ances leads to larger power (this is also related to the impact of the use of multiple

indicators on power; Oertzen et al., 2010; Wang & Rhemtulla, 2021); and (e) the

proportion of between-unit variance in the observed data. This last factor warrants

additional explanation as the decomposition of observed variance into independent

between-unit and within-unit variance is particular to the RI-CLPM. If a large por-

tion of the observed variance is captured by the random intercepts, this implies that

relatively little variance remains in the within-components. Consequently, point esti-

mates of parameters at the within-unit level of the model, including the lagged effects

of interest, are less certain, leading to higher standard errors and lower power. This

point will be illustrated in Section 5.4 using the illustrative example.

5.3 The power analysis strategy

With the illustrative example, the RI-CLPM, and the factors influencing its statistical

power introduced, a strategy for RI-CLPM power analysis is presented next. Because

analytical solutions to power-related questions often become intractable in realistic

situations, with small sample sizes, complex models, and when the underlying as-

sumptions of a model are not met (Bandalos & Leite, 2013; S. Lee, 2015), this power

analysis strategy relies on Monte Carlo simulations instead (Paxton et al., 2001). In

general, a Monte Carlo study is based on generating R samples from a model that is

thought to represent the population of interest (referred to as the population model),

and then estimating the parameters in each sample r “ 1, ..., R. The parameter esti-

mates from each sample are then collected, forming an (artificial) empirical sampling

distribution for each parameter. The performance of the estimated parameters is then

based on properties of this sampling distribution. In the case of a power analysis, the

population model is the same as the estimated model: Here, the RI-CLPM. Sampling

distribution properties of interest include the proportion of times the confidence inter-

val for the parameter(s) of interest does not include zero (i.e., the power), the width

of the associated confidence interval(s) (i.e., the accuracy), and the mean square error

(MSE). Other properties exist, like the percentage and relative bias, the standard de-

viation around the mean parameter estimate, and the coverage rate of the confidence

interval, but these are typically not the primary focus of a power analysis.

The power analysis strategy presented here contains 6 steps:

1. Determine experimental conditions of interest (e.g., with varying sample sizes,

numbers of repeated measures, or proportions of between-unit variance, amongst

other things).

2. Choose and compute population parameter values.
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3. Generate data from an RI-CLPM using the population parameter values from

step 2.

4. Estimate an RI-CLPM on the data generated in step 3.

5. Repeat steps 3 and 4 R times for each experimental condition.

6. Summarize the R results and compare across experimental conditions.

5.3.1 Step 1: Define experimental conditions

The first step entails determining the experimental conditions that you are interested

in simulating the power for. In this context, an experimental condition is a combi-

nation of values for each factor that influences the RI-CLPM’s power, for instance,

the experimental condition with a sample size of 500, three repeated measures, a sig-

nificance criterion of 0.05, a 50:50 proportion of within- and between-unit variance,

data with a skewness of 0, etc. In an à priori power analysis, a range of experimen-

tal conditions is included, where sample sizes and numbers of repeated measures are

typically varying across conditions. If none of the included experimental conditions

leads to the desired amount of power, the range of experimental conditions can be

extended.

The key issue here is determining what are realistic values for the factors (other

than the sample size and the number of repeated measures) that make up an experi-

mental condition. If data are generated under conditions that are not representative

of empirical data, the validity of the power analysis results can be severely limited

(S. Lee, 2015; Paxton et al., 2001). This can happen, for example, when researchers

wrongly assume a 90:10 proportion of within-:between-unit variance, whereas in real-

ity it is approximately 50:50. Therefore, it is recommended to define values for these

factors using theory, such that any decisions can be explained and defended. Previous

studies on the same topic and expert knowledge can be important sources of infor-

mation for deciding what are realistic values (Bandalos & Leite, 2013; L. K. Muthén

& Muthén, 2002). When the appropriateness of certain choices are ambiguous, it

might be recommendable to limit the values to conservative options: For example,

a higher proportion of between-unit variance, or increased levels of non-normality.

Alternatively, these factors can be allowed to vary across simulation conditions as

well, rather than relying on a single (ambiguous) decision. This allows the researcher

to determine what conditions are tolerable without loss of the desired power level

(Bandalos & Leite, 2013).

For the illustrative example, let the sample size range from 200 to 2000 using

steps of 200, and the number of repeated measures range from three to five. Re-

garding appropriate values for the proportion of between-unit variance, J. Kim et
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al. (2018) found 56% and 59% stable, between-unit variance for self-alienation and

academic amotivation, respectively, for biweekly measurements, for a total of eight

weeks. However, there is likely to be some uncertainty in basing the proportion of

between-unit variance on previous research because research designs and contexts are

never perfectly equivalent. For example, intervals of one month between repeated

measures might be thought to better reflect the time it takes for the causal effect

under study to take place (Heise, 1970; Mitchell & James, 2001), and therefore plan

to take monthly measurements rather than biweekly measurements. This difference

in the timing of measurements is likely to affect the proportion of between-unit vari-

ance in the collected data. Therefore, to take this uncertainty into account, a range

of proportions of between-unit variance is included in the power analysis, namely 0.3,

0.5, and 0.7. Furthermore, for the sake of interpretability of this illustrative example,

the traditional significance criterion of 0.05 is used to denote significance, and we as-

sume no deviations from normality, no missing data, and no measurement error (i.e.,

perfect reliability of the indicators).

5.3.2 Step 2: Choose and compute population parameter

values

To generate data in step 4, a population model needs to be specified that acts as

a data generating mechanism. To this end, population values need to be specified

for each parameter in the RI-CLPM first. In this strategy, populations values need

to be set for (a) the standardized autoregressive and cross-lagged effects; (b) the

correlations between within-components; and (c) the correlation between the random

intercepts. Similar to defining the experimental conditions in step 1, the key issue is

to choose population parameter values that are realistic. Again, it is recommended to

base these decisions on previous literature, or expert opinion. In case of uncertainty,

a good strategy might be to be conservative: Pick values on the smaller side of the

plausible range. Other parameters in the RI-CLPM are either computed from these

population parameter values (like the residual variances and covariances of the within-

components at wave 2 and further), determined based on the experimental conditions

as defined in step 1 (the random intercept variances), or set to 0 because they are not

of primary interest here (the mean structure).

5.3.2.1 Step 2.1: Within-unit parameters

Within-unit parameters include the autoregressive effects αt and δt, cross-lagged ef-

fects βt and γt, variances and covariance for the within-components at wave 1, and

the residual variances and covariances for the within-components at wave 2 and fur-

ther. For the lagged effects we rely on the specification of standardized effects in the
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population model such that the power analysis does not depend on any particular met-

ric. J. Kim et al. (2018) report standardized autoregressive effects of self-alienation

and academic amotivation between 0.206 and 0.266, and between 0.294 and 0.529,

respectively. The standardized cross-lagged effect from self-alienation to academic

amotivation was estimated to be between 0.08 and 0.104, while the reverse effect was

estimated to be between 0.154 and 0.301. Our strategy is to be conservative, and as

such we specify a small effect of 0.20 for the autoregressive effect of self-alienation,

and a small to medium effect of 0.30 for the autoregressive effect of academic amoti-

vation (following guidelines by Cohen, 1988). This conservative approach would im-

ply that the population parameter values for the cross-lagged effect of self-alienation

to academic amotivation are set to be extremely small (i.e., 0.08). However, such

small effects are arguably not interesting in practice and it is recommended to use a

cutoff value—for example 0.10 as recommended by Paxton et al. (2001)—for popula-

tion parameter values. We set the cross-lagged effects to be 0.10 for the effect from

self-alienation to academic amotivation, and to be 0.15 for academic amotivation to

self-alienation.

For these population values to be interpreted as standardized effects, the variances

of the within-components need to be 1. At the first wave, the variances can be set to

one directly as these variables are exogenous, and their covariance (which is now also

the correlation) is set to 0.26, as reported by J. Kim et al. (2018). However, setting

the variance of the within-components at wave 2 and further is more involved because

these variables are endogenous. Hence, only the variances and covariance of the residu-

als can be set directly, rather than the variances of the within-components themselves.

Taking the within-components of academic amotivation and self-alienation at wave 2

as an example, it can be shown using the path-tracing rules that their variances are a

function of the variance they “inherit” from their predictors (the within-components

of academic amotivation and self-alienation at the first wave), as well as the variance

from their residuals (see Appendix 5.A for details). Therefore, we must compute how

much variance the residuals should have such that, together with the variance from

their predictors, the variance of the within-components add up to one.

The residual variances and covariance can be expressed as a function of the popula-

tion values for the lagged effects and the correlations between the within-components

(C. J. Kim & Nelson, 1999), as derived in Appendix 5.B. Using this relationship, the

residual variances and residual covariance for a wave t, given the lagged effects and

the correlation between the within-components at the previous wave t ´ 1, can be

computed such that it results in a variance of one for the within-components at wave

t. For our example, this results in a residual variance of the within-component of self-

alienation of 0.9219, a residual variance of the within-component of academic amoti-

vation of 0.8844, and a residual covariance of 0.1755 at wave 2. Under the assumption
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of stationarity, whereby the lagged effects and the variances of and correlations be-

tween the within-components do not change over time, the residual variances and the

residual covariance similarly apply to the within-components at wave 3 and further,

ensuring that all within-components have a variance of one, and that the population

lagged effects can be interpreted as standardized effects at each time point.

5.3.2.2 Step 2.2: Between-unit parameters

Next, the population parameter values for the between-unit parameters need to be

set, including the variances of, and covariance between the random intercepts. As the

variances of the within-components are designed to be one, the ratio of between- and

within-unit variance is determined by the variance of the random intercepts: Setting

the random intercept variances to one implies a 50% between- and 50% within-unit

variance, while setting the random intercept variance to three leads to 75% between-

and 25% within-unit variance in the observed variables. The proportion of between-

unit variance is already chosen in step 1, so the exact population value of the random

intercept variances can simply be computed from this. Finally, along the lines of J.

Kim et al. (2018) we set the correlation between the random intercepts to be 0.35.

Optionally, the means can be set in the population model. While this can be of

interest in the case of a multiple indicator RI-CLPM, the mean structure is typically

not of (primary) interest in any basic RI-CLPM. In the former case, it is recommended

to test if strong measurement invariance over time holds and therefore researchers

should constrain the factor loadings and intercepts/means over time. As this is not of

interest in the illustrative example, the mean structure is ignored here and the grand

means are set to zero, µX,t “ µY,t “ 0.

5.3.3 Steps 3-5: Generate data, estimate RI-CLPM, repeat

Once the design of the power analysis has been decided upon (i.e., the experimental

conditions and population parameter values are defined), it can be implemented. The

process of running a Monte Carlo power analysis—repeatedly generating a sample of

data from the population model and estimating parameter values—creates a lot of

data and requires adequate computing power. It is therefore important to automate

the process, and the R package powRICLPM has been created specifically for this

purpose, implementing the power analysis strategy outlined here. The package is

demonstrated in Section 5.4.

There are two more factors to consider in these steps: The number of replications

R, and the seed. First, the number of replications needs to be large enough to ensure

that the results have converged to a stable solution (L. K. Muthén & Muthén, 2002):

Too few replications will lead to a large uncertainty around the results, whereas
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too many replications can take a long time to run, especially for complex models,

and large numbers of experimental conditions. An alternative strategy for dealing

with many experimental conditions is to first run a power analysis with a reduced

number of replications (e.g., 50 or 100 replications) to get preliminary results, and then

validate these results, using a larger number of replications only for those experimental

conditions that are close to the desired power levels. Second, use a seed to determine

the starting point for the random simulation of data. This ensures that the results

can be replicated.

5.3.4 Step 6: Summarize results

Before interpreting the results, it is important to check if certain experimental con-

ditions resulted in a high number of convergence issues or inadmissible results (e.g.,

negative variances). This indicates that the results of the power analysis for these

conditions might be unreliable, and that estimation of the model in these conditions

is unstable. The powRICLPM package keeps track of convergence issues, inadmissible

parameter estimates, and fatal errors terminating an estimation procedure, and can

report to the user the number of times each occurs per experimental condition.

Next, multiple metrics can be computed that summarize the simulated sam-

pling distributions for the parameter of interest, per experimental condition. The

powRICLPM package reports (a) the mean estimate over all R replications; (b) the

standard deviation of the estimates; (c) the mean standard error of the estimates; (d)

the mean square error; (e) the accuracy, computed as the mean length of the confi-

dence interval; (f) the coverage rate, computed as the proportion of times the confi-

dence interval included the true population value; and (g) the power (L. K. Muthén

& Muthén, 2002, 2017). In addition, the powRICLPM can visualize how these met-

rics change across experimental conditions, for example as a function of sample size,

number of repeated measures, and the proportion of between-unit variance. Using

these metrics and visualizations, the sample sizes and number of repeated measures

that lead to the desired amount of power can be determined.

5.4 The powRICLPM package

The powRICLPM package provides functions to automate steps 2 to 5, as well as

methods for summarizing the results of the analysis as described in step 6. For steps

3 and 4, it uses the R-package lavaan on the back-end. Up-to-date information about

the functionality of the package, as well as instructions on how to install it and fully

annotated R-code for the illustrating example in this article, can be found in the

package’s documentation at https://jeroendmulder.github.io/powRICLPM.
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The main function powRICLPM() implements steps 2 to 5, and follows the pro-

cedure as outlined in Figure 5.2. First, users must specify (a) which experimental

conditions they want to explore using the sample size, search *, time points, and

ICC arguments; (b) the population parameter values of the lagged effects, and correla-

tions between the within-components and between the random intercepts in the Phi,

within cor, and RI cor arguments, respectively; and (c) their desired power level

in the target power argument. Optionally, users can specify skewness and kurtosis

values to generate non-normal data, impose constraints on the estimation model, in-

clude measurement error in the simulated data, estimate measurement error variances

(leading to the stable trait autoregressive trait state model), and use bounded estima-

tion (De Jonckere & Rosseel, 2022), among other things. Second, this input is used to

compute the residual variances and covariances, and the random intercept variances

for the population model. Third, for each experimental condition lavaan model syn-

tax is generated to simulate data and estimate the RI-CLPM. Fourth, this syntax is

used to repeatedly simulate data and estimate the RI-CLPM. Parameter estimates

and standard errors are collected, and summaries are saved in a powRICLPM object.

To quantify the uncertainty around the simulated power, powRICLPM implements a

non-parametric bootstrapping procedure of the results: It involves taking B bootstrap

samples (by default: 1000) of the significance of the parameter estimates to create a

bootstrap distribution of the power for each experimental condition (Constantin et

al., 2023). The 95% confidence intervals of these bootstrap distributions represent the

uncertainty around the simulated power. Finally, the user can use various methods

such as summary(), give(), and plot() to explore the results.

5.4.0.1 Illustrating example

The illustrating example concerned determining the required sample size and number

of repeated measures for detecting cross-lagged effects between self-alienation and

academic amotivation with a power of 0.80. In step 2.1, it was argued that small

cross-lagged effects of 0.10 and 0.15 were reasonable effect sizes to include in the power

analysis (based on J. Kim et al., 2018), yet large enough to be practically interesting.

Furthermore, in step 1 it was determined to include a range of proportions of between-

unit variance in the experimental conditions, namely 0.3, 0.5, and 0.7. Continuing

with this example, the experimental conditions to be included in the power analysis

are further defined by selecting sample size candidates ranging from N “ 200 to

N “ 2000, increasing with steps of 100, and numbers of repeated measures from T “ 3

to T “ 5. In total, this results in 19 sample sizes ˆ 3 numbers of repeated measures

ˆ 3 proportions of between-unit variance, totalling 171 experimental conditions.

Following the suggestion in Section 5.3.3, the analysis is partitioned into a prelimi-

nary phase with reduced number of replications (R = 100), and a validation phase (R
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Figure 5.2: Overview of power analysis procedure used by powRICLPM.

= 2000) with only those experimental conditions that are close to the desired results.

The preliminary power analysis can be run using

1 out_preliminary <- powRICLPM(

2 target_power = 0.8,

3 search_lower = 200,

4 search_upper = 2000,

5 search_step = 100,

6 time_points = c(3, 4, 5),

7 ICC = c(0.3, 0.5, 0.7),

8 RI_cor = 0.35,

9 Phi = Phi ,

10 within_cor = 0.26,

11 reps = 100,

12 seed = 123456

13 )

where target power denotes the desired power level, the search arguments define

the lower bound, upper bound, and step size of the range of sample sizes to in-

clude, respectively, time points denotes the numbers of time points, ICC denotes the

proportions of between-person variance, RI cor denotes the correlation between the
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random intercept factors, Phi refers to a matrix of lagged effects (see Appendix 5.B),

within cor defines the correlation between the within-components, reps sets the

number of Monte Carlo replications, and seed sets a seed for replicability. A visual-

ization of the preliminary results across all 171 experimental conditions, specifically

the power to detect a cross-lagged effect of 0.10 (standardized), can be obtained using

1 plot(out_preliminary , parameter = "wB2~wA1")

and is displayed in Figure 5.3. Details about the naming conventions of parameters,

ways to speed up the analysis using multicore processing, and tracking the analysis

progress can be found in the online documentation of the powRICLPM, and in the

powRICLPM() function documentation (accessible via ?powRICLPM()).

Inspecting the results using

1 summary(out_preliminary)

shows that there were no fatal errors or convergence issues across any conditions in

the preliminary power analysis. However, for the condition with three time points,

30% between person variance, and sample sizes from 200 to 500, there were eight,

five, four, and two replications with inadmissible results, respectively. Investigating

this further for the case with a sample size of 200, using

1 summary(

2 out_preliminary ,

3 sample_size = 200,

4 time_points = 3,

5 ICC = 0.3

6 )

shows that the problematic parameter is likely the variance of the random inter-

cepts: The minimum estimate (across all replications) is negative, which leads to the

inadmissible value warning. These inadmissible results might lead to bias in other

parameters as well, and hence it is advisable to err on the side of caution while inter-

preting results for these experimental conditions (De Jonckere & Rosseel, 2022). A

solution might be the use of bounded estimation, which is introduced in Section 5.5.

While these are only the preliminary results, the influence of sample size, number

of repeated measures, and proportion of between-unit variance on power are already

clearly visible in Figure 5.3: Experimental conditions with a higher number of re-

peated measures have more power to detect the cross-lagged effect of 0.10, and simi-

larly for conditions with a relatively small proportion of stable, between-unit variance

in the observed data. Focusing on the relation between number of time points and

power, the preliminary results suggest that with the current range of sample sizes and
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Figure 5.3: Results of preliminary power analysis for the RI-CLPM, based on 100 repli-
cations, for a cross-lagged effect of 0.10 (standardized). The different panels display results
for conditions with a 0.3, 0.5 and 0.7 proportion of between-unit variance, respectively. The
vertical error bars represent the uncertainty around the simulated power.

proportions of between-unit variance, we cannot achieve desirable power to detect a

small cross-lagged effect with three time points. Furthermore, the results suggest

that at least four time-points and a sample size upwards of a 1000 are required in

the condition with the most advantageous proportion of between-unit variance (where

proportion of between-unit variance is 0.3). For conditions with a 0.7 proportion of

between-unit variance, sample sizes of approximately 1500 are needed with five re-

peated measures, whereas sample sizes upwards of 1700 are needed for four repeated

measures. Based on these results, experimental conditions for validation are selected:

The range of sample sizes is reduced to 900 to 1800, and experimental conditions

with three repeated measures are omitted, resulting in 10 sample sizes ˆ two num-

bers of repeated measures ˆ three proportions of between-unit variance, totalling 60

experimental conditions for validation.

The validation results (obtained by increasing the reps argument of the R code

above to reps = 2000) are displayed in Figure 5.4. The error bars representing the

uncertainty surrounding the simulated power have shrunk considerably due to the
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Figure 5.4: Results of the validation phase of the power analysis for the RI-CLPM, based
on 2000 replications. The different panels display results for conditions with a 0.3, 0.5 and
0.7 proportion of between-unit variance, respectively. The vertical error bars represent the
uncertainty around the simulated power.
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higher number of replications, leading to more stable results. With equal proportions

between- and within-unit variance (the middle panel of Figure 5.4, a sample size of

approximately 1400 is needed for an RI-CLPM with five time points, and a sample size

of 1600 is needed for RI-CLPM’s with four time points, for detecting small cross-lagged

effects. Compare this to data containing higher proportions of between-unit variance,

where sample sizes of 1600 or more and more than 2000 are required for RI-CLPM’s

with five and four time points, respectively. In conditions with lower proportions of

between-unit variance, a sample size of approximately 1100 is adequate for detecting

small cross-lagged effects with five repeated measures, whereas a sample size of 1300

is needed for the case with four repeated measures.

5.5 Extending the power analysis

So far, the primary focus has been on a basic bivariate RI-CLPM with experimental

conditions varying over sample size, number of repeated measures, and proportion of

between-unit variance. However, researchers might want to include additional factors

in their experimental conditions to better align the power analysis to their research

question or empirical context. Below various extensions that have been build into

the powRICLPM package are discussed briefly, specifically: (a) imposing various con-

straints over time on the estimation model; (b) including measurement error in the

simulated data and in the estimation model; (c) simulating non-normal data (i.e.,

skewness and kurtosis; Blanca et al., 2013); and (d) the use of bounded estimation

(De Jonckere & Rosseel, 2022). Again, technical details on the implementation of

these extensions, as well as example code, can be found in the online documenta-

tion powRICLPM. Extensions such as the multiple-group RI-CLPM or the multiple-

indicator RI-CLPM are not supported by the package (yet), but are briefly discussed

in the Discussion section. Moreover, note that the RI-CLPM is a flexible model, and

that further extensions of the model are likely to be developed (e.g., Ozkok et al.,

2022), each with its own idiosyncrasies when it comes to power analysis.

5.5.1 Constraints over time

Means, autoregressive and cross-lagged effects, and residual variances and covari-

ances can vary freely over time in the RI-CLPM. This is useful if the process under

study is characterized by some kind of development, or if there are unequal inter-

vals between repeated measures. For example, changes in the cross-lagged effects

over time can be representative of a maturation process in individuals: The influence

of one variable becomes more or less important in driving the other variable (and

vice versa) as one gets older. However, imposing constraints on some of the param-

eters over time can be useful as well. It leads to more parsimonious results (e.g.,
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a single set of lagged effects rather than different lagged effects between each pair

of adjacent within-components), can reduce convergence issues, leads to interesting

statistical equivalences with other popular panel models (for example, see Andersen,

2022; Hamaker, 2005), and increases power for the constrained parameters. In the

proposed power analysis strategy above, the population model used to simulate data

implicitly imposes constraints over time on the grand means µ (fixed to 0), lagged

effects, and the residual variances and covariances. Essentially, the population model

implies a stationary process such that for a person i the expected values EpXitq and

EpYitq, variances V arpXitq and V arpYitq, and autocovariances CovpXit, Xi,t`1q and

CovpYit, Yi,t`1q are independent of the time point t (Hamaker & Dolan, 2009). This

was done for didactic purposes and ease of use of the power analysis strategy, as now

only a a single set of population values for the lagged effects and within-component

variance-covariance matrices has to be found, which can already be challenging. In

contrast, the estimation model does not impose any of these constraints and freely

estimates these parameters at each time point by default.

To accommodate researchers who choose to impose constraints over time on the

estimation model, the powRICLPM-package includes various constraint specifications

via the constraints argument. It allows users to simulate the power for their specific

RI-CLPM specification of interest, including (a) constraints on the lagged effects over

time with constraints = "lagged", (b) constraints on the residual variances and

covariances over time with constraints = "residuals", or (c) constraints on both

the lagged effects and residual variance and covariances over time with constraints

= "within". Note that constraining the lagged effects to be time-invariant is only

advized when the time interval between repeated measures is (approximately) equal

(Gollob & Reichardt, 1987; Kuiper & Ryan, 2018). Furthermore, constraints on the

lagged effects pertain only to the unstandardized effects, while the standardized effects

are likely to be time-varying still. This is because standardization uses the variances of

the within-component predictor and outcome, and these are typically not constrained

to be the same over time, even with constraints on the residual variances and covari-

ances. To obtain both time-invariant unstandardized and standardized effects, full

stationarity constraints need to be imposed, which can be done with constraints

= "stationarity". These constraints are a function of the estimated autoregressive

and cross-lagged effects, residual covariances, and the covariance between the within-

components at the first wave. The derivations for these constraints can be found in

the online supplementary materials of Mulder and Hamaker (2021).

Finally, full stationarity constraints have a long tradition in the econometric lit-

erature on dynamic panel models (for example, see Hamilton, 1994). Therefore, it

is understandable that some researchers are interested in this specific specification of

the RI-CLPM. However, researchers should feel comfortable with the assumptions one
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makes à priori when incorporating these constraints in the power analysis, as there can

be various reasons why such constraints are not justified (e.g., varying time-intervals,

maturation processes, development, etc.). An alternative approach is to not assume

time-invariant lagged effects and residual variances beforehand (as one does if these

constraints are included in the power analysis), but instead test the tenability of them

using the collected data (Mulder & Hamaker, 2021).

5.5.2 Measurement error

It is generally advisable to control for measurement error when analysing psycholog-

ical data, as it is widely accepted that measurement error is likely to be present in

psychological measurements (Steyer et al., 1992). While the RI-CLPM actually does

not include measurement error, it can in theory be added if four or more waves of

data are available. This would make the model equivalent to the bivariate trait state

error (TSE) model by Kenny and Zautra (1995)—later referred to as the bivariate

stable trait autoregressive state trait (STARTS) model (Kenny & Zautra, 2001)—

without constraints over time and with the stable trait factor loadings fixed to one.

However, the STARTS model is notorious for being empirically underidentified, com-

monly resulting in inadmissible solutions when sample sizes are small, leading Cole

et al. (2005) to recommend a minimum of 8 waves of data (given a sample size of

500) or more. Therefore, the inclusion of measurement errors in the RI-CLPM can

greatly impact the recommended sample size and number of repeated measures, not

for reasons related to the power, but for reasons of empirical identification.

Within the powRICLPM package, users can include measurement error for the

simulation of data (step 3) via the reliability argument, and in the estimation

model (step 4) via the estimate ME argument. The population values for the mea-

surement error variances are determined by the package itself given the specified

reliability of the indicators, the specified proportion of between-unit variance, and

within-unit component variances of one.

5.5.3 Non-normally distributed data

The RI-CLPM is typically fitted in SEM software using maximum likelihood esti-

mation, thereby assuming multivariate normally distributed data. However, Micceri

(1989) concludes that asymmetry in empirical distributions appears to be the rule

for psychometric measurements rather than the exception. This is problematic as

non-normality of the data can negatively impact the power of SEM models (Yuan

& Chan, 2016). Therefore, if researchers have reason to believe that multivariate

normality might not be a reasonable assumption for the data they plan on collect-

ing, the power analysis should incorporate non-normal data as well (Yuan & Chan,
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2016). powRICLPM allows for incorporating data with various degrees of skewness

and kurtosis via the skewness and kurtosis arguments of the powRICLPM() function.

5.5.4 Bounded estimation

Nonconvergence of the estimation model is disadvantageous for Monte Carlo power

analyses because it reduces the effective number of replications the power analysis

results are based on, and can slow down the analysis considerably as the optimization

algorithm takes a long time searching for a solution that it ultimately does not find.

It typically occurs when sample sizes are small (e.g., smaller than 100) and when the

model is complex (e.g., when measurement error is included). Therefore, De Jonckere

and Rosseel (2022) have implemented so-called bounded estimation in the R-package

lavaan, placing bounds on the parameter space of the model. This prevents the opti-

mization algorithm from searching in the completely wrong direction for parameters,

for example, for negative solutions to the (residual) variances of latent variables.

Users of powRICLPM can make use of bounded estimation via the bounded =

TRUE argument. Automatic wide bounds are then used as recommended by De Jon-

ckere and Rosseel (2022), implying that (residual) variances (e.g., the random inter-

cept variance, and residual variances of the within-components) have a small negative

value as a lower bound, and the variances of the observed variables they load on as an

upper bound. In the context of the RI-CLPM, the factor loadings are (usually) fixed,

and no bounds are included for these parameters. The lagged effects are theoretically

infinite, and hence there are no sensible bounds that can be placed à priori on these

parameters.

5.6 Discussion

It is easy to underestimate the time and effort it can take to set up and execute a valid

power analysis (e.g., see Footnote 2 of Paxton et al., 2001). While the increased focus

within the scientific community on à prior power analysis is helpful for the progress

of cumulative science, the design and execution of a valid power study is far from

trivial for many applied researchers (De Jonckere & Rosseel, 2022; Maxwell et al.,

2008). Nevertheless, investing time in a proper power analysis that is tailored to the

particularities of one’s study is well-worth the effort, as it helps in the prevention of

under-powered studies and can reduce unnecessary demand on study resources.

In this article, a six-step Monte Carlo power analysis strategy that is tailored to

the random intercept cross-lagged panel model was proposed and demonstrated. It

was created with usability for applied researchers in mind and has been implemented

in the R-package powRICLPM. For a basic power analysis, four sets of population
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parameter values are required as input, namely autoregressive and cross-lagged ef-

fects, variances and covariances for the within-unit components, the proportion of

between-unit variance, and the correlation between the random intercepts. Choices

for these population parameter values should be based on expert opinion or literature,

or be grounded in theory. The powRICLPM package then computes the remaining

population parameter values (e.g., the residual variances and covariances) and auto-

mates the process of repeatedly simulating data and estimating the model. Users can

use the summary(), give(), and plot() functions to inspect the results, including

convergence rates, mean square error, coverage rate, and power, among other metrics,

across experimental conditions. Currently, the basic power analysis can be extended

to include constraints over time on the estimation model, measurement error (i.e., the

STARTS models), non-normal data, and bounded estimation.

5.6.1 Limitations

Step 2 of the strategy involves choosing population parameter values for the lagged

effects and correlations between the within-unit components. While it is recommended

to base these on theory and literature, this does not imply that any set of population

parameters goes. There is a mathematical restriction on the population model-implied

variance-covariance matrix that adds a degree of difficulty to the determination of

these population parameter values, and introduces an element of trial-and-error to

this step. Specifically, there are two restrictions that impact the population parameter

values that users can specify. First, population values for the lagged effects should

be chosen such that the data that are generated from these form a stable stationary

system.2 Second, the correlation matrix of the within-components is required to

be positive definite in order to generate data from it.3. The powRICLPM package

automatically checks if these restrictions are met, and throws an error otherwise. In

that case, researchers should adjust the population parameter values for the lagged

effects and correlations between the within-unit components accordingly, which often

implies that these should be made smaller.

Furthermore, within a power analysis context one would expect the population

model and the estimation model to be the same (i.e., it is assumed that the estimation

model is actually the data generating model). However, as discussed in Section 5.5.1,

there is a discrepancy in the proposed power analysis strategy by design between the

population model used to simulate the data, and the model that is estimated. The

population model is based on full stationarity constraints, affecting the lagged effects,

residual variances and covariances and grand means, while the estimated model allows

2In technical terms, the eigenvalues of the matrix of lagged effects Φ should be within unit-circle.
3In technical terms, the eigenvalues of the variance-covariance matrix of the within-unit residuals

should be positive.
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all parameters to be freely estimated over time. This setup was chosen for reasons of

usability, without compromising the validity of the power analysis results. It ensures

that users need to specify only a single set of lagged parameters and a single correlation

for the within-components, which can be quite challenging already. It also implies

that the power analysis results are conservative for situations where these constraints

are valid, in the sense that a higher power would be achieved if constraints over time

had been imposed in the estimation model. Further note that this difference between

the data generating mechanism and the estimation model can be overruled using the

constraints argument.

Moreover, it is possible that small sample sizes (ă 100) not only result in low statis-

tical power, but also in bias in the parameter estimates. This is a phenomenon related

to the large sample properties of maximum likelihood estimation, something that has

been repeatedly reported on in the SEM literature (cf. De Jonckere & Rosseel, 2022;

Rosseel, 2020; Wolf et al., 2013). The effect of small samples and a limited number

of repeated measures on bias in RI-CLPM parameter estimates was not investigated

here. However, it is advisable to check that bias is not a limiting factor (rather than

power) for sample size recommendations when performing a power analysis using such

limited sample sizes. For this, the bias as reported by powRICLPM package can be

used.

A final limitation to take into account is that the sample size recommendations

following the illustrating example assume a complete dataset, multivariate normally-

distributed data, and no measurement error. However, missing data often do pose

a problem in empirical datasets (especially in social sciences, it is nearly inevitable;

van Buuren, 2018, p. 7), observed data can show considerable deviations from nor-

mality (Blanca et al., 2013; Micceri, 1989), and many (indirect) psychological and

behavioural measures are likely to include measurement error. Therefore, the con-

clusions from this illustrating example should be considered as lower bounds, and in

practice greater sample sizes might be required to counter the negative effects of these

suboptimal conditions on the power.

5.6.2 Comparison to other packages

Many different software programs have been developed for doing power analyses for

SEM. They can be roughly categorized based on whether the power analysis is analyt-

ical or simulation-based, the price (free or paid option), and their generality (focusing

on SEM models in general, or specific to a particular model). Below the focus is on

some software packages that can be useful alternatives for RI-CLPM power analy-

ses. For a more extensive overview of software packages available for Monte Carlo

simulation studies for SEM, the reader is referred to S. Lee (2015).

The software package Mplus by L. K. Muthén and Muthén (2017) is a latent
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variable modeling program with a wide range of analysis options including Monte

Carlo simulation analyses, and can be used for power analysis for the RI-CLPM. The

main advantage compared to powRICLPM is that it is much faster: Although no

formal comparison of computation time was performed, from personal experiences a

Monte Carlo power analysis for the RI-CLPM with a single experimental condition

can take up to 10 minutes using powRICLPM, whereas it takes less than a minute

using Mplus.4 Disadvantages of Mplus are that it is a paid option, does not run

multiple experimental conditions simultaneously, and is not tailored to the RI-CLPM.

As such, more steps need to be taken by the user to specify the power analysis for the

RI-CLPM, including, for example, computing the residual variances and covariance

of the within-unit components. To accommodate users of Mplus, the powRICLPM

includes the powRICLPM Mplus() function to generate Mplus syntax for RI-CLPM

power analysis (for multiple experimental conditions simultaneously), which can be

run subsequently in Mplus itself.

Various analytical power analysis options for SEM are available as well, including

WebPower by Zhang and Liu (2018) or functions within the semTools R-package by

Jorgensen et al. (2022). These options are useful, especially for the multiple group

extension of the RI-CLPM (Mulder & Hamaker, 2021). The multiple group RI-

CLPM is based on fitting a multiple group version of the RI-CLPM both with and

without constraints across groups (e.g., the constraint of equal lagged effects), and

comparing the model fit to determine whether the imposed constraints are tenable.

Power thus refers to the probability of rejecting a bad-fitting model due to untenable

across-group constraints in this context, rather than rejecting the null-hypothesis for

a specific parameter (Wang & Rhemtulla, 2021). The effect size then refers to how

much worse the constrained model fits the data compared to the more general model

(with less, or no across-group constraints). Analytic solutions, like the likelihood

ratio test by Satorra and Saris (1985) or power analyses based on the RMSEA by

MacCallum et al. (1996), are more efficient to use for these types of power analyses

than computationally intensive Monte Carlo simulation studies. For example, Jak

et al. (2021) describes how the SSpower() function from the R package semTools can

be used for a multi-group SEM power analysis. It requires users to provide a SEM

model without, and a model with (a single, or multiple) equality constraints across

groups. The SSpower() function then performs a chi-square-based power analysis

across a range of sample sizes to assess the tenability of the constraints (Jorgensen

et al., 2022; Satorra & Saris, 1985).

4Computation time depends on many factors, including the speed of the CPU, the number of
cores you are using, and the complexity of the model, etc.

92



Power analysis for the RI-CLPM

5

5.6.3 Conclusion

In conclusion, this paper proposes a strategy for performing a power analysis specif-

ically tailored to the particularities of the RI-CLPM. It is implemented in the R

package powRICLPM, which is designed to be as user-friendly as possible for ap-

plied researchers, and accommodates various extensions. Together, this paper and

the R package provide researchers with the resources to design a power analysis that

produces valid recommendations for planning future research involving the RI-CLPM.
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Appendices

5.A Variance of within-components

The variance for the within-component of X at wave 2, V arrWX,2s, can be expressed

as

V arrWX,2s “ V arrα1WX,1 ` β1WY,1 ` u1s, (5A.1)

“ V arrα1WX,1s ` V arrβ1WY,1s ` 2α1β1CovrWX,1,WY,1s ` V arru1s,

(5A.2)

“ α2
1V arrWX,1s ` β2

1V arrWY,1s ` 2α1β1CovrWX,1,WY,1s ` V arru1s,

(5A.3)

“ α2
1 ` β2

1 ` 2α1β1CovrWX,1,WY,1s ` σ2
u, (5A.4)

which shows that it is a function of the lagged effects, α2
1 `β2

1 , the covariance between

the predictors at the previous wave, 2α1β1CovrWX,1,WY,1s, and the residual variance,

σ2
u. This logic similarly applies to the variance of the within-component of academic

amotivation.

5.B Residual variances and co-variances at wave 2 and further

Let Φ be a square matrix of lagged effects with the diagonal elements representing

autoregressive effects, and off-diagonal elements cross-lagged effects. Collecting these

population parameter values for the illustrating example gives

Φ “

«

0.20 0.15

0.10 0.30

ff

.

Furthermore, let Σ be a variance-covariance matrix for the within-components at each

time point. For the illustrating example, this results in

Σ “

«

1 0.26

0.26 1

ff

with the diagonal elements representing the variances of the within-components, and

the off-diagonal elements representing the correlation between the within-components.

C. J. Kim and Nelson (1999, p. 27) present an expression for the unconditional

covariance matrix of a stationary process as a function of the lagged effects and the

residual variance covariance matrix. Rewriting this equation, the residual variances
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and covariances can be expressed as

vecpΨq “ pI ´ Φ b ΦqvecpΣq (5B.5)

with Ψ the residual variance-covariance matrix, I the identify matrix, and vecp¨q

denoting the operation of putting the elements of a matrix into a column. Applying

Equation 5B.5 to the population parameter values of the illustrating example result

in

Ψ “

«

0.9219 0.1755

0.1755 0.8844

ff

where the diagonal elements represent the residual variances, and the off-diagonal

represent the residual covariances needed to get within-components with a variance

of 1.
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CHAPTER 6

Estimating causal effects of time-varying exposures: The

overlap and differences between structural equation modeling

and marginal structural models

Revised version published as:

Muldera, J. D., Luijkena, K., Penning de Vries, B. B. L., & Hamaker, E. L. (2024).

Causal effects of time-varying exposures: A comparison of structural equation modeling

and marginal structural models in cross-lagged panel research. Structural Equation

Modeling: A Multidisciplinary Journal. https://doi.org/10.1080/10705511.2024.2316586

Abstract

Structural equation modeling (SEM) has become established as one of the main

statistical modeling frameworks in psychology and related fields for investigating

prospective effects of variables on each other. However, the use of SEM models

for causal inference from panel data is critiqued in the causal inference literature

for unnecessarily relying on a large number of parametric assumptions, and

alternative methods originating from the potential outcomes framework have

been recommended, such as inverse probability weighting (IPW) estimation

of marginal structural models (MSMs). To help SEM users understand this

criticism we describe three phases of causal research. We explain (differences in)

the assumptions that are made throughout these phases for SEM and IPW-MSM

approaches using an empirical example. Second, using simulations we compare

the finite sample performance of path analysis (a SEM approach) and IPW-MSM

for the estimation of time-varying exposure effects on an end-of-study outcome

under various violations of parametric assumptions. We conclude that although

increased reliance on parametric assumptions does not always translate to

increased bias (even under model misspecifcation), psychological researchers are

still well-advised to acquaint themselves with causal methods from the potential

outcomes framework to investigate time-varying exposure effects.

aMulder and Luijken contributed equally to the work.
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A common question shared across research disciplines is how one variable has a

prospective effect on another. In psychology and related fields, this question is of-

ten tackled using panel data, in which the same people are measured multiple times

on the same variables. A particularly popular modeling approach to such data is

cross-lagged panel modeling, which falls within the broader context of the structural

equation modeling (SEM) framework (Usami et al., 2019; Zyphur, Allison, et al.,

2020; Zyphur, Voelkle, et al., 2020). The cross-lagged effects that are obtained with

them are often interpreted as causal effects, sometimes quite explicitly (Asendorpf,

2021; Orth et al., 2021), but oftentimes in a more implicit way through the use of

specific language (e.g., when one variable is described to “react to”, “respond to”,

“impact”, or “spill over into” another variable; Hamaker et al., 2020; Hernán, 2018).

While the SEM framework has been commended by researchers like Bollen and Pearl

(2013) for the purpose of causal inference, there is also criticism of this practice. In

particular, Van der Laan and Rose (2011) and VanderWeele (2012) point out that

SEM models depend heavily on parametric assumptions; since these are likely to be

violated—at least to some degree—in practice, SEM is prone to bias when used for

causal inference, according to these researchers.

Obviously, this claim should raise concerns among SEM users. Yet, disciplinary

differences can hinder SEM users, for instance from the field of psychology, to appreci-

ate the arguments, concerns, and solutions put forward by SEM critics who come from

fields like epidemiology and biostatistics. To fully comprehend whether, when, and to

what extent the critique of SEM is relevant, one first needs to be well-versed in the

principled approach to causal inference (based on the potential outcomes framework)

that is currently used in these disciplines. Additionally, one needs to be aware of

typical presumptions in these disciplines: Oftentimes, the focus is on a binary causal

variable, which is typically referred to as the treatment or exposure; furthermore,

when the state of this variable can vary over time, the focus is often on contrast-

ing treatment regimes—that is, specific sequential patterns of being (not) exposed

at particular time points—rather than the effect of the exposure at one specific time

point only; in that case, the focus is often on an end-of-study outcome, rather than

multiple repeated outcomes. Finally, to understand what is meant with the unre-

alistic parametric assumptions made in the SEM framework, and how these can be

avoided using an alternative estimation framework, one needs to be able to compare

the SEM approach with a possible alternative that is proposed, such as inverse prob-

ability weighting (IPW) estimation of marginal structural models (MSMs; Robins et

al., 2000; Vansteelandt & Sjolander, 2016). Hence, bridging this disciplinary gap is

quite challenging, and it is therefore likely that the criticism of SEM does not end up

with SEM users.

The goal of this paper is therefore twofold. First, we want to provide SEM
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users from disciplines like psychology with the necessary knowledge to understand

the voiced criticism of SEM for causal inference. To this end we introduce the reader

to the principled approach to causal inference that has been developed within the

potential outcomes framework, and discuss to what extent SEM can be considered

compatible with this approach. Moreover, we will explain the main idea and purpose

of IPW estimation of an MSM as an alternative that is based on fewer parametric

assumptions, making it less susceptible to violations of these assumptions. Second,

we will perform a simulation study to assess the finite sample performance of path

analysis (a SEM method) versus IPW estimation of MSMs under various violations of

the parametric assumptions that path analysis relies on. Throughout, our focus will

be specifically on panel data where we want to make inferences about the effect of a

time-varying exposure on an end-of-study outcome, in the presence of both baseline

and time-varying confounding.

This paper is organized as follows. Section 6.1 introduces the potential outcome

framework and the phases of causal research. These phases are illustrated for both

SEM and IPW estimation in Section 6.2 using an empirical example concerning the

effect of smoking cessation on body weight. Section 6.3 describes the set-up of our

simulation study for comparing the bias and mean squared error (MSE) of path anal-

ysis and IPW estimation in estimating the effect of a time-varying binary exposure on

a continuous end-of-study outcome under different violations of parametric assump-

tions. Section 6.4 describes the results of the simulations. We end with a discussion

and conclusion.

To facilitate understanding of terminology more common in the potential outcomes

framework, we provide a glossary in Table 6.1 that explains important causal inference

related terms that our discussion relies on. Boldfaced words in this paper are included

in the glossary. Annotated R code used for the analyses in this paper can be found

in the online supplementary materials at https://jeroendmulder.github.io/SEM-and-

MSM.

6.1 Causal inference in the potential outcomes frame-

work

In this paper, we make use of the Neyman-Rubin potential outcomes framework for

causal inference (Rubin, 1974; Splawa-Neyman et al., 1990). This framework is cen-

tered around randomization as a principle of causality, which is used in experimental

trials (Fisher, 1935). These trials are considered the gold standard to causal inference,

and are closely mimicked in nonexperimental studies using the potential outcomes

framework (Hernán & Robins, 2016). The phases of causal inference in the potential

outcomes framework can be regarded as a principled approach for making explicit un-
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Table 6.1: Glossary of causal inference-related terms used in this article.

Term Description and related terms

Exposure regime A predetermined rule that determines the value of a time-varying expo-
sure for each time point (Hernán & Robins, 2020). Here, we discuss static
regimes, implying that exposure values are all predetermined. Related term:
exposure sequence.

Always-exposed An exposure regime in which a binary exposure is set to “exposed” for all
predefined number of time points.

Never-exposed An exposure regime in which a binary exposure is set to “not exposed” for
all predefined number of time points.

Causal estimand A precise description of an effect, reflecting the research question of a re-
search project. It summarizes at a population-level what the outcomes
would be in the same individuals under different exposure conditions (Euro-
pean Medicines Agency, 2020). Causal estimands are often defined as func-
tions (e.g., contrasts) of potential outcomes. Related term: target causal
quantity (Petersen & Van der Laan, 2014).

Causal identification The process of translating a causal estimand to a statistical estimand, which
is defined as a function of observed data. It involves evaluation of the causal
identification assumptions of exchangeability, consistency, and positivity.

Exchangeability A causal identification assumption restricting the exposure to be indepen-
dent from the potential outcomes (Angrist & Pischke, 2009; Hernán &
Robins, 2020; Imbens & Rubin, 2015). It is violated in setting with con-
founding/selection bias. Related terms: unconfounded assignment, uncon-
foundedness, no unmeasured confounding, (conditional) independence of
treatment and potential outcomes, exogeneity (P. R. Rosenbaum & Rubin,
1983).

Consistency A causal identification assumption linking potential outcomes to observed
outcomes. It is violated when exposure is not well-defined and/or there
exist multiple versions of intervention/treatment (Hernán, 2016).

Causal directed acyclical
graphs (DAGs)

A diagram, consisting of nodes and edges connecting them, visualizing a
data generating process. Nodes represent variables in the phenomenon un-
der study, and edges the causal relationships between them. All variables
thought to play a role in the causal process should be included. Related
terms: causal diagrams, non-parametric structural equation model (Pearl,
2009)
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der what assumptions statistical effects in nonexperimental research can interpreted

as causal effects (Goetghebeur et al., 2020; Petersen & Van der Laan, 2014). In this

section, we first give a brief overview of the core phases of causal inference. Then,

we discuss in which phases differences between SEM and MSM approaches manifest

themselves. Note, that Phases 1 and 2 tend to be left more implicit in empirical

research with the SEM framework. As such, researchers working predominantly with

SEM may be less familiar with them. For more elaborate introductions, we refer to

Goetghebeur et al. (2020) and Hernán and Robins (2020).

6.1.1 Phases of the causal inference process

Generally, the process of causal inference contains three phases, namely (1) the for-

mulation of a causal research question using potential outcomes, resulting in a causal

estimand; (2) the identification of the causal estimand in terms of observed data,

translating the causal estimand into a statistical estimand; and (3) estimation of the

statistical estimand from a finite sample using a statistical model (Goetghebeur et al.,

2020; Petersen & Van der Laan, 2014). Below, each phase is discussed in more detail.

Phase 1 concerns the formulation of a causal research question in terms of a con-

trast between possible scenarios. In the case of a time-varying exposure, the question

can be of the form “What would happen to an outcome variable if a time-varying ex-

posure had been fixed to a certain regime versus another regime?”1 These questions

are thus expressed as contrasts of potential outcomes, that is, values of an outcome

that would have been observed if the exposure had been set to a particular regime

(Rubin, 1974; Splawa-Neyman et al., 1990). Phase 1 involves, amongst other things,

specifying a population, an exposure contrast, and an outcome. The population in-

dicates which specific group of individuals the study aims to make inferences about

(which is referred to as the target population in the causal inference literature), that

is, who is eligible for inclusion in the study? This includes a specification of the mo-

ment at which individuals become eligible for the study (Brookhart, 2015; Edwards

et al., 2016; Hernán et al., 2016; Suissa, 2008). The exposure contrast reflects which

specific exposure regimes will be compared. The outcome is specified by defining

the measure that is a relevant outcome, including when this is measured. Thinking

about these questions and using the potential outcomes language helps researchers

to formalize their research question into an explicit causal estimand that describes in

great detail what causal effect is of interest.

Phase 2 concerns the translation of the causal estimand (which is a hypotheti-

cal, potential outcomes concept), into a statistical estimand that can be estimated

1Readers more familiar with the potential outcomes literature might recognise this research ques-
tion as pertaining to static exposure regimes rather than dynamic exposure regimes. For accessibility
of the paper, we focus exclusively on the simpler case of static exposure regimes.
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using observed data. The process of equating a causal estimand to a function of the

population distribution of observed variables is also know as identification. This is

done by evaluating a set of causal identification assumptions, typically includ-

ing consistency, exchangeability, and positivity (Hernán & Robins, 2020). The

assumption of consistency relates the potential outcomes that form the basis of the

causal estimand to observed outcomes. It requires interventions on the exposures

to be sufficiently well-defined, implying that researchers need to clearly define an

intervention on exposures, even if the intervention is purely hypothetical (e.g., car-

rying out the intervention would be unethical, impractical, or impossible; Hernán &

Robins, 2020). The assumption of conditional exchangeability states that, conditional

on covariates, the potential outcomes are independent from the observed exposures of

individuals. One often-discussed scenario in which this assumption is violated, is when

there exist unmeasured covariates that confound the relationship between an expo-

sure and an outcome. Hence, this assumption is closely associated to the assumption

of no unmeasured confounding that psychological researchers might be more familiar

with, but note that the assumption of conditional exchangeability is more general

(i.e, there exist situations other than the presence of unbserved confounding in which

conditional exchangeability is violated; Bollen, 1989). The positivity assumption in-

dicates that there is a non-zero probability for individuals to be in either exposure

condition. This assumption would be violated when, in practice, there is perhaps a

policy or condition due to which an individual has a zero probability of either one

exposure values.

Phase 3 concerns the translation of the statistical estimand, which still refers to

the entire population, to an estimator, which is a method to estimate the statistical

estimand from a finite random sample. We compare two methods here: Path analysis

(a SEM approach), and IPW regression of an MSM (a potential outcomes approach).

These different methods make different parametric assumptions—such as linearity for

certain relations, and whether or not interactions are present—which imply a particu-

lar probability distribution. Whenever an estimator relies on parametric assumptions,

it comes with the risk of model misspecification, and violation of parametric assump-

tions can result in a biased estimator.2 Parametric assumptions and violations thereof

can also influence other properties of estimators, such as statistical convergence, or

sampling variability. It is therefore important to decide a priori which properties of

estimators are most desirable for a particular research problem, and then to find an

estimator that has these properties.

2We discuss parametric assumptions in Phase 3, but it is possible that parametric assumptions are
already incorporated in the statistical estimand, and are thus part of Phase 2. A more estimation-
specific (i.e., Phase 3-specific) matter is how the parameters of the statistical models are estimated
using finite samples. Different estimators (e.g., maximum likelihood with or without penalization,
or random forests) need not have the same statistical properties (e.g., finite sample bias, statistical
convergence, sampling variability).
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Sometimes a fourth phase is described, in which researchers evaluate how particu-

lar assumptions made throughout the first three phases impact their results. Through

a sensitivity analysis, it can be determined how large the violations of an assumption

need to be before this changes the conclusions that were drawn (based on the results

in Phase 3). In the current study, we do not further discuss this, but the interested

reader is referred to Imbens and Rubin (2015), Lash et al. (2009), and VanderWeele

and Ding (2017).

6.1.2 Differences between SEM and MSM approaches

The phases for empirical causal research are equally applicable to both SEM and

potential outcome approaches. However, notions about causality are explicit in the

latter; for instance, an MSM is defined in terms of potential outcomes, rather than

in terms of the observed outcome variable, and thus invites explicit examination of

causal identification assumptions. SEM can also be used within the potential outcome

framework (e.g., De Stavola et al., 2015; Moerkerke et al., 2015; B. O. Muthén et al.,

2016), but common applications of SEM focus mainly on estimation of (complex)

statistical models (Phase 3) with little or no attention paid to the formulation of

a causal research question (Phase 1), and identifying it (Phase 2). Without careful

formulation and evaluation of the causal identification assumptions, it remains unclear

if the estimates that result from a statistical analysis actually provide an answer to

the causal question of interest.

Another difference between SEM and potential outcome approaches concerns their

modeling “focus”. While typically only one (or a limited number of) causal effect(s) is

targeted in a research question, SEM approaches usually attempt to model the entire

causal process under study. That is, SEM models make parametric assumptions

about the causal dependencies of the outcome, the exposure, and all time-varying

covariates that are thought to play a role. By estimating each and every individual

path-specific effect, SEM models rely on a large number parametric assumptions

in total. This is a valid approach assuming all of these assumptions hold (e.g., if,

in fact, all effects are linear and there are no interactions). However, one of the

points made by critics of the use of SEM models for causal inference, is that these

parametric assumptions are unlikely to start with, and the potential for violations

thereof only increases as the size of SEM models grows (VanderWeele, 2012). Instead,

IPW estimation of MSMs does not require a model for the distribution of covariates,

and their relation to previous variables. Compared to SEM, this reduced reliance

on parametric assumptions therefore should, in principle, lead to more robust causal

inference.

A third difference is how both modeling approaches handle the problem of exposure-

confounding feedback. This issue occurs whenever an exposure affects subsequent
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time-varying confounding variables and is itself influenced by the confounding vari-

able (Robins et al., 2000). This type of confounding cannot be adjusted for using

standard regression techniques which attempt to estimate effects of a time-varying

exposure simultaneously, for example by a single linear regression of the outcome

on previous time-varying exposures and time-varying covariates. G-methods such as

IPW estimation for MSMs have been developed to resolve these issues and estimate

time-varying exposure effects (Daniel et al., 2013; Naimi et al., 2016; Robins et al.,

2000). However, exposure-confounding feedback is not a topic in the SEM litera-

ture, as modeling the entire assumed data generating mechanism forgoes this issue.

Hence, the issues introduced by exposure-confounding feedback are likely unfamiliar

to researchers predominantly working with SEM.

6.2 Investigating time-varying exposure effects: An

example using smoking cessation and body weight

To illustrate the three phases of causal inference described above, we make use of

an empirical example about the causal effect of smoking cessation on body weight.

These data come from the health survey of the Longitudinal Internet studies for the

Social Sciences panel, administered by Centerdata (Tilburg University, The Nether-

lands). The LISS panel consists of a random sample of Dutch households represen-

tative of the Dutch-speaking population in the Netherlands aged 16 years or older

(more information about the LISS panel can be found at https://www.lissdata.nl;

Scherpenzeel, 2018). The empirical example focuses on self-reported measurements

of smoking cessation, body weight, and a set of covariates in the period 2007 to 2020.

Some simplifying decisions were made throughout the three phases. This was done

for illustrative purposes, and to keep the focus of this comparison on the (parametric)

assumptions underlying both approaches (rather than on differences in, for example,

techniques for missing data handling).

6.2.1 Phase 1: Formulation of the research question and causal

estimand

Formulating a research question and causal estimand is similar for SEM and potential

outcome approaches. Suppose we are interested in the impact of smoking cessation

on body weight. Rather than focusing on the effect of smoking cessation at one

particular wave on body weight at the next wave (e.g., as done in cross-lagged panel

modeling), we may decide to focus on the effect of smoking cessation at multiple

waves on an end-of-study measure of body weight. Our research question about the

average causal effect (ACE) of a change in exposure (i.e., smoking) regimes can then
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be: “What would be the difference in average body weight after two years if all

currently smoking Dutch adults quit smoking, and refrained from smoking for two

years, compared to if they continued smoking for two years?”. This research question

describes a joint effect, as it refers to a change in smoking status at multiple exposure

times, that is smoking cessation in year 1 and year 2, and its combined (joint) effect

on end-of-study body weight (Daniel et al., 2013).

The target population in this example are adults who smoke in the general Dutch

population. The moment that individuals become eligible is the moment they enroll

in the LISS cohort. Note that this is an eligibility criterion that is difficult to trans-

late into a meaningful event in everyday life (i.e., outside the context of the LISS

study; Suissa, 2008). We explored whether we could define a meaningful moment of

eligibility, such as “the first time that their physician indicated they are at cardiovas-

cular risk (i.e., suffer from high blood pressure, high serum cholesterol, or diabetes)”.

However, this left us with fewer than 80 individuals in the LISS data set, which would

inhibit us from fitting the models of interest in this illustration. We make this remark

for future empirical studies. The exposure contrast is “quitting and refraining from

smoking for two years” versus “continuing smoking for two years”. The outcome is

defined as body weight in kilograms measured by a scale two years after the moment

of becoming eligible.

To formalize this research question as a causal estimand, we introduce some nota-

tion. In terms of timing, we denote t “ ´1 as the time at which eligibility is assessed.

From time point t “ 0 onward, the exposure can vary for everyone. Let Y2 repre-

sent the end-of-study outcome, observed body weight in kilos at time point t “ 2.

Let At denote the exposure variable of interest at time point t, in this case quitting

smoking (At “ 1) or not (At “ 0). Let Lt denote a set of covariate values at time

point t (including body weight at t “ 0, 1), and with baseline covariates measured

at t “ ´1, L´1. We abbreviate the history of the exposure and covariates up to t,

that is, pA0, ..., Atq and pL0, ..., Ltq, by Āt and L̄t, respectively. Finally, let Y ā1
2 be

the potential outcome weight under smoking regime Ā1 “ pA0, A1q “ pa0, a1q. The

potential outcome of a smoker who continues smoking for two years is then Y 0̄1
2 , and

Y 1̄1
2 if the smoker quits and refrains from smoking for two years.

The causal estimand for our research question can be formalized as a contrast of

two potential outcomes:

ACE “ErY 1̄1
2 s ´ ErY 0̄1

2 s. (6.1)

The causal estimand in Equation 6.1 can be referred to as an “always-exposed

versus never-exposed effect”.

In Phase 1, we can also specify an MSM to formalize the research question. An

MSM is a model for the marginal distribution (i.e., summarizing across all possible
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subpopulations) of potential outcomes. For our research question, in which ā1 can

only be 0̄1 or 1̄1, it can specified as

ErY 0̄1
2 s “ β0, (6.2)

ErY 1̄1
2 s “ β0 ` β1 (6.3)

where β0 represents the expected end-of-study body weight if all individuals continue

smoking for two years, and β1 represents the difference between the expected end-of-

study body weight if all individuals quit smoking for two years (i.e., ā1 “ 1̄1) versus

if they continue smoking for two years (i.e., ā1 “ 0̄1).

6.2.2 Phase 2: Assess identifiability of causal estimands

Evaluation of the causal identification assumptions, particularly exchangeability, can

be done with help of a visual diagram such as a causal directed acyclic graph

(DAG; Hernán, 2016; Pearl, 2009, 2010; VanderWeele, 2019). A causal DAG encodes

causal assumptions about the data-generating mechanism based on domain knowl-

edge (for an introduction on DAGs in the context of psychological science, we refer to

Rohrer, 2018). While causal DAGs appear similar to path diagrams commonly used

in SEM, there are some crucial differences (Kunicki et al., 2023; Moerkerke et al.,

2015). Importantly, the causal relations between variables in a causal DAG do not

encode parametric assumptions about those relations, such as linearity assumptions or

normality of residuals, which are typically assumed in a path diagram. Furthermore,

causal DAGs only depict direct causal relationships represented by one-headed ar-

rows, whereas path diagrams can also include covariances represented by two-headed

arrows to account for unexplained relationships between variables. Yet, both types of

diagrams can help a researcher to assess whether the causal identification assumptions

can be plausibly invoked in theory. To illustrate this, we examine the identifiability

of the causal estimand in our empirical example.

First, we visually represent existing knowledge about the causal system (as well as

uncertainty). Such knowledge can be obtained by a review of the literature and expert

consultations. We pragmatically drew information from a systematic review into

smoking cessation and body weight gain by Tian et al. (2015). Potential confounding

variables in the causal system of interest are time-invariant covariates age, sex, and

ethnicity. Time-varying covariates are body weight, alcohol consumption, physical

activity, socioeconomic factors, energy intake, and comorbidities. Knowledge of the

involvement of these covariates in the causal system is represented in the causal DAG

in Figure 6.1. For readability, we simplified the DAG by omitting relations between

covariates themselves, and denoted the set of three time-fixed covariates at baseline

simply as “Baseline covariates”, and the set of five time-varying covariates as “Time-
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Baseline
covariates‡

Time-
varying
covariates∗-1

Smoking
cessation0

Time-
varying
covariates∗0

Smoking
cessation1

Time-
varying
covariates∗1

Body weight2

Figure 6.1: A simplified representation of the causal DAG relating smoking cessation and
body weight. It includes the variables smoking cessation, body weight, baseline covariates,
and time-varying covariates. The arrows represent the nonparameteric links between them.
; Age, sex, ethnicity.
˚ Body weight, socioeconomic factors, alcohol consumption, physical activity, energy intake,
and comorbidities.

varying covariatest” for t “ 0, 1, 2.

It is of paramount importance that the causal system is drawn based on back-

ground knowledge, and is not based on data availability. In this process, the omission

of variables or arrows from the causal DAG is a stronger assumption than including

them, as omissions of arrows amounts to constraining causal effects to exactly zero

(Bollen & Pearl, 2013). In longitudinal studies, this might imply that not only lag-1

effects are included in the causal DAG, but also lag-2 and longer relations (Vander-

Weele, 2021). As encoded in the simplified causal DAG in Figure 6.1, we do not

assume only lag-1 effects, but additionally allows for lag-2 effects and longer. This

causal DAG does not assume any particular probability distribution for the causal sys-

tem, nor does it specify the functional form of the causal relationships in the graph.

This means that there may be linear but also non-linear relations, and that there may

be interactions in addition to main effects.

We can now determine whether the causal estimand that was specified in Phase

1, can be expressed as a function of the observed data (i.e., the statistical estimand),

given the background knowledge encoded in the causal DAG in Figure 6.1 and the

available data. The causal identification assumption of consistency entails that the

observed outcome of an individual who quits smoking for two years is equal to their

potential outcome if quitting smoking for two years, that is, Y 1̄1
2 “ Y for individuals

with observed ā1 “ 1̄1. Similarly, the observed outcome of an individual who continues

smoking for two years should be equal to their potential outcome if continuing smoking

for two year, that is, Y 0̄1
2 “ Y for individuals with observed ā1 “ 0̄1 (Hernán & Robins,

2020). This seemingly obvious assumption implies that the exposure itself, as well
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as (hypothetical) interventions on it, must be sufficiently well defined such that it is

clear what specific exposure the causal effect refers to (Hernán, 2016; VanderWeele,

2018). For example, smoking cessation can be achieved with the help of nicotine pills,

therapy, a supporting friend, or a combination of these; setting the exposure to “quit

smoking” leaves it open which of these exposures an individual undergoes. Because the

different strategies might have different causal effects on body weight, the observed

outcome need not necessarily equal the potential outcome. Information about the

distribution of strategies to quit smoking might help to link the potential outcomes

to observed data (Hernán & Robins, 2020), but this information is not collected in

the LISS study, meaning that consistency is compromised in our example.

The conditional exchangeability assumption states that, given a set of covariates,

the potential outcomes are independent of the observed exposures. In longitudinal

settings, with multiple exposure-times, conditional exchangeability must hold at each

time point. This can be denoted as At KK Y āt |L̄t, Āt´1 “ āt´1, with L̄t denoting the

set of baseline and time-varying covariates up to and including time t and Āt´1 “

āt´1 representing the sequence of exposures a person received up to t ´ 1 (Hernán

& Robins, 2020; Naimi et al., 2016). To be able to achieve this in practice, we

must have collected data (without measurement error) on all relevant covariates that,

based on the causal DAG, could confound the relationship between exposure and

outcome. Based on Tian et al. (2015), ethnicity, socioeconomic factors, and energy

intake were identified as relevant confounders. However, energy intake, for example,

is not measured in the LISS data set, and therefore cannot be adjusted for in the

analyses. As such, conditional exchangeability is compromised for our example. In

practice, this conclusion would imply that additional data needs to be collected or

identified to be able to provide a valid answer to the research question. Additionally, a

sensitivity analysis can give insight into how strong the confounding by energy intake

must be to substantively affect the conclusions derived from the primary analysis.

The sequential positivity assumption indicates that, at each time point and across

all values of the covariates in the data, there is a non-zero probability for individuals

to be in either exposure condition. This seems to be the case in this example on

smoking cessation, because it is hard to conceive a policy or condition due to which

an individual has a zero probability to quit or continue smoking.

Based on our evaluation of the causal identification assumptions for the empiri-

cal example, we conclude that additional data needs to be collected or identified to

provide a valid answer to the causal research question: Such a finding is in itself is a

useful contribution for the design of future studies (Petersen & Van der Laan, 2014).

This example also underscores the importance of carefully considering Phases 1 and

2 in causal research before data is collected to ensure that the causal identification

assumptions are as plausible as possible. If no additional data can be collected and
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the assumptions are compromised, then sensitivity analyses can be performed to de-

termine, for example, how strong the relations of a confounding covariate must be to

substantively change the conclusions of the primary analysis. For illustrative purposes

we continue with the current example, but emphasize that causal interpretation of

findings would be incorrect.

Using the causal identification assumptions, the causal estimand can be reex-

pressed as a statistical estimand. These steps, which are provided in detail in Ap-

pendix 6.B, are a formalisation of the causal identification process as described above.

It yields:

causal estimand : “ ErY 1̄1
2 s ´ ErY 0̄1

2 s,

...

“ EL0

!

EL1

`

ErY2 | A1 “ 11, L1s

ˇ

ˇ

ˇ
A0 “ 1, L0

˘

)

´ EL0

!

EL1

`

ErY2 | A1 “ 01, L1s

ˇ

ˇ

ˇ
A0 “ 0, L0

˘

)

(6.4)

“: statistical estimand.

Notice how the identification process starts with the causal estimand in terms of po-

tential outcomes (hypothetical quantities), and ends in a statistical estimand with

only observed variables. However the statistical estimand in Equation 6.4 is just one

“form”, known in the causal inference literature as the “g-formula representation”,

but can be further rewritten such that it takes a different form. This is illustrated in

Appendix 6.B where we further rewrite the g-formula representation of the statistical

estimand to the “IPW representation”. Different representations of a statistical esti-

mand invite different modeling approaches for Phase 3, and this can have advantages

(or disadvantages) for particular research designs.

6.2.3 Phase 3: Estimation using finite sample data

The terms in the statistical estimand can be estimated from finite random samples

(taken from the population distribution) under a statistical model. The statistical

estimand in Equation 6.4 suggests that we impose a statistical model on the distri-

bution of the outcome given the exposure and covariate history, ErY2 | A1 “ 11, L1s

and ErY2 | A1 “ 01, L1s; and for the conditional distribution of (post-baseline) time-

varying covariates at t “ 1, EL1

“

p...q
ˇ

ˇ

ˇ
A0 “ 1, L0

‰

and EL1

“

p...q
ˇ

ˇ

ˇ
A0 “ 0, L0

‰

. In

situations with many time-varying covariates, working with the g-formula representa-

tion might be problematic as a statistical model must be specified for all covariates in

L1, thereby increasing the risk of model misspecification. In contrast, the statistical

estimand can be reexpressed (see Appendix 6.B) to the IPW representation, such
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Table 6.2: Overview of covariates included in the LISS panel study. All variables
are self-reported measures taken from a questionnaire.

Covariate Measurement level Measurement time Time-span

age continuous baseline right now
sex nominal baseline right now
body weight continuous time-varying right now
alcohol consumption ordinal time-varying average last year
hours physical activity continuous time-varying average last week
number of comorbiditiesa ordinal time-varying last year

a Self reported information on diagnosis by a physician.

that it does not suggest that the conditional distribution of the outcome be modelled;

instead, the reexpressed statistical estimand suggests that the time-varying exposures

are modelled. When adjustment for many covariates is required, working with the

IPW representation of the statistical estimand might thus be advantageous.

Here, we compare path analysis to IPW estimation—in which path analysis is

more in line with the g-formula representation of the statistical estimand, and IPW

estimation (obviously) with the IPW representation (Naimi et al., 2016)—and attempt

to answer our research question using the LISS data.

6.2.3.1 Establishing the study sample from the LISS data

The LISS panel study is based on a rolling enrollment, meaning that each year, a new

group of individuals is added to the existing participant pool. Table 6.2 contains an

overview of covariates that were included in the LISS data. We established the study

sample for the target population “currently smoking Dutch adults” from the LISS

data as follows. From each participant, the first four yearly measures were selected

(regardless of the year in which participants enrolled) corresponding to time anchors

t “ ´1 to t “ 2 in our study. If participants indicated affirmatively on the question

“Do you smoke now?” at their first measurement wave, they were included in the

sample of this study starting from the wave after (i.e., their second measurement wave

is at t “ 0). The sample included 2,736 participants. Participants with implausible

or impossible values on variables were deleted (i.e., weight higher than 200 kg or

lower than 20 kg, yearly weight increase followed by weight decrease of more than

50 kg, more than 150 hours of physical activity per week). To keep the focus of

this analysis on the parametric assumptions underlying both approaches, we filled in

missing values in this sample by single imputation using the mice package (version

3.16.0; van Buuren & Groothuis-Oudshoorn, 2011) in R (version 4.2.2; R Core Team,

2022).
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6.2.3.2 Path analysis with an additional joint effect parameter

In a typical SEM approach, the entire causal system as illustrated in the simplified

DAG of Figure 6.1 would be interpreted as a path diagram. This implies that each

dependency is specified in a SEM model as a linear effect, with independent residuals

that are multivariate normally distributed. All exogenous variables (i.e., the baseline

covariates) are allowed to freely covary with each other. This path diagram represents

a set of linear equations, the parameters of which are estimated from the data. If the

entire causal system is correctly specified (i.e., all dependencies in Figure 6.1 are

indeed linear, there is no measurement error or effect modification, error terms follow

a multivariate normal distribution, etc.; Gische & Voelkle, 2022), then this approach

results in unbiased estimates of each path.

Estimates of our joint effect of interest can then be obtained as linear combinations

of path-specific estimates. In particular, the joint effect is a linear combination of all

regression coefficients on paths from exposures (both at time points 0 and 1) to the

outcome, not going through later exposures. For the empirical example, this includes

(a) the lag-2 path “Smoking cessation0”Ñ “Body weight2”; (b) the set of indirect

paths “Smoking cessation0” Ñ “Time-varying covariates1” Ñ “Body weight2”; and

(c) the path “Smoking cessation1”Ñ “Body weight2”. The combinations of these

paths can be specified as additional parameters in a SEM model, such that point

estimates for the targeted effects can be obtained directly. Confidence intervals can

be obtained by nonparametric bootstrap.

One major issue of this approach is that it is not obvious how to combine the ef-

fect estimates on these paths when the paths include both categorical and continuous

covariates. In those situations, one would have to combine linear regression coeffi-

cients with odds ratios, and there is no simple way to do this. In simple situations,

with one, or a limited number of categorical time-varying covariates, one can rely

on g-computation in order to get controlled direct effects from SEM models (B. O.

Muthén et al., 2016; Nguyen et al., 2016). However, to make the causal identifica-

tion assumption of conditional exchangeability plausible in complex nonexperimental

settings, researchers would likely want to include a large number of covariates, and

there are likely to be numerous categorical covariates as well. For our example, some

of the time-varying covariates were categorical in nature, or have been measured in

a categorical manner in the LISS data (e.g. alcohol consumption, and number of

comorbidities). For this reason, a path analysis using the LISS data that incorporates

all variables mentioned in Table 6.2 is not a viable option.

For purely illustrative purposes, we discard the categorical covariates in this ex-

ample such that we can continue our comparison of SEM and potential outcome

approaches, and (the impact of) the parametric assumptions underlying path anal-

ysis and IPW estimation. We stress that this decision is far from satisfying from a
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causal inference point-of-view because the exchangeability assumption would conse-

quently be violated. The decision is a necessary consequence of choosing path analysis

as an estimation strategy in this phase. A path model based on Figure 6.1 was fitted

to the LISS data in Mplus version 8.9 (L. K. Muthén & Muthén, 2017). Only body

weight and hours of physical activity were included as time-varying covariates. The

probit-link was used for regressing the time-varying exposures on covariates.

6.2.3.3 IPW linear regression

In brief, the aim of IPW is to create a pseudo-population in which the exchangeability

assumption holds conditional on the measured covariates (Robins et al., 2000). This

is achieved in three steps. First, probability of exposure is estimated using a propen-

sity score model in which the exposure is regressed on the measured confounding

variables. For a categorical exposure, such a model is commonly a logistic regression

model in which the exposure is the outcome, and all confounding variables identi-

fied using the approach described in Section 6.2.2 are independent variables. The

propensity score model must be correctly specified, implying that the functional form

of the dependencies in the model is correct (i.e., the dependencies are in fact lin-

ear). In the second step, inverse-probability-of-exposure-weights are created for each

individual. These are based on the probability of observed exposures values from

the fitted propensity score model, which are inverted, and then multiplied across the

time points per individual. The resulting weights are used to balance the original

sample: Individuals with a low probability of scoring their observed exposure value

have a higher weight, and are therefore over-represented in the pseudo-population,

whereas individuals with a high probability of scoring their observed exposure have a

lower weight, and are therefore underrepresented in the pseudo-population. The con-

sequence of this weighting procedure is that in the pseudo-population the dependen-

cies of the time-varying exposure on the time-varying varying-covariates—the paths

“Time-varying covariates´1” Ñ “Smoking cessation0”; “Time-varying covariates´1”

Ñ “Smoking cessation1”; ‘Time-varying covariates0” Ñ “Smoking cessation0”; ‘Time-

varying covariates0” Ñ “Smoking cessation1”; and “Time-varying covariates1” Ñ

“Smoking cessation1”—are broken, such that these covariates are not confounders

anymore for the effect of smoking cessation on end-of-study body weight. In the third

step, estimates of the targeted effects are obtained by fitting a weighted regression

model to the pseudo-population in which the outcome is regressed on both exposure-

times. If the parametric assumptions (e.g., linearity, the absence of interaction effects)

of this outcome model hold, then this procedure leads to unbiased estimates of the

effect of exposure at time point 0 not going through later exposures, and exposure at

time point 1, on the outcome. These effects of smoking cessation at each time point

are also sometimes referred to as controlled direct effects, where the term “controlled”
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Time 0 Time 1
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Figure 6.2: Density of propensity scores for individuals who quit smoking versus individuals
who continued smoking at time points 0 and 1 (before weighting). Propensity scores were
computed using all covariates.

refers to controlling for future exposures, and “direct” refers to the fact that the in-

termediate process by which smoking cessation leads to body weight is not modeled

(Daniel et al., 2013). The sum of both controlled direct effects is our estimate of the

joint effect.

The IPW regression method was applied to our empirical example. In contrast

to path analysis, we include both categorical and continuous time-varying covariates

here. A propensity score model was fitted by regressing the exposure variables on

covariate history and previous exposure status. Positivity was evaluated by a visual

inspection of overlap of the distributions of propensity scores of exposed and non-

exposed at each time point, see Figure 6.2. No violation to positivity was detected.

Stabilized IPWs were computed from the propensity score model using the R package

WeightIt (version 0.14.0; Greifer, 2023b). Balance of the confounding variables in

the propensity score model was assessed by comparing the standardized means of

covariates for those who quite smoking, and those who continued smoking, using

the R package cobalt (version 4.5.0; Greifer, 2023a). This comparison was done in

both the unweighted sample and the weighted sample (i.e., the pseudo-population),

and at both exposure-times, see Figure 6.3. Absolute standardized mean differences

indicated well-balanced data based on a recommended threshold value of 0.2 (Stuart,

2010).

A regression model was fitted to the pseudo-population, regressing body weight at

t “ 2 on smoking cessation at t “ 0 and t “ 1. The regression coefficients of smoking

cessation at t “ 0 and t “ 1 are the controlled direct effects, the combination of

which is our joint effect of interest. 95% confidence intervals were obtained using the

nonparametric bootstrap with 999 replications. Bootstrapping was performed using
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Time 0 Time 1

0.0 0.1 0.2 0.0 0.1 0.2

Age (years)
Sex: male*

Health change t-1: considerably poorer * 
Health change t-1: somewhat poorer* 

Health change t-1: same *
Health change t-1: somewhat better * 

Health change t-1: considerably better* 
Weight t-1 (kg)

Alcohol frequency t-1: daily*
Alcohol frequency t-1: 5/6 PW* 
Alcohol frequency t-1: 3/4 PW* 
Alcohol frequency t-1: 1/2 PW* 
Alcohol frequency t-1: 1/2 PM*

Alcohol frequency t-1: 1 P2M*
Alcohol frequency t-1: 1/2 PY*
Alcohol frequency t-1: never*

Physical activity t-1 (hours per week) 
Heart problems t-1: yes*

Comorbidity t-1: 1 diagnosis* 
Comorbidity t-1: > 1 diagnoses* 

Health change t0: considerably poorer* 
Health change t0: somewhat poorer* 

Health change t0: same *
Health change t0: somewhat better * 

Health change t0: considerably better* 
Weight t0 (kg)

Alcohol frequency t0: daily*
Alcohol frequency t0: 5/6 PW* 
Alcohol frequency t0: 3/4 PW* 
Alcohol frequency t0: 1/2 PW*  
Alcohol frequency t0: 1/2 PM*

Alcohol frequency t0: 1 P2M* 
Alcohol frequency t0: 1/2 PY* 
Alcohol frequency t0: never* 

Physical activity t0 (hours per week) 
Heart problems t0: yes*

Comorbidity t0: 1 diagnosis* 
Comorbidity t0: > 1 diagnoses* 

Health change t1: considerably poorer* 
Health change t1: somewhat poorer* 

Health change t1: same*
Health change t1: somewhat better* 

Health change t1: considerably better* 
Weight t1 (kg)

Alcohol frequency t1: daily*     
Alcohol frequency t1: 5/6 PW* 
Alcohol frequency t1: 3/4 PW* 
Alcohol frequency t1: 1/2 PW* 
Alcohol frequency t1: 1/2 PM* 
Alcohol frequency t1: 1 P2M*
Alcohol frequency t1: 1/2 PY* 
Alcohol frequency t1: never*

Physical activity t1 (hours per week) 
Heart problems t1: yes*

Comorbidity t1: 1 diagnosis* 
Comorbidity t1: > 1 diagnoses*

Absolute Standardized Mean Differences

Sample Unweighted PS weighted

Figure 6.3: Visualization of covariate balance (standardized mean differences) before and
after reweighing at time points 0 and 1. The asterisk * denotes binary covariates (or dummy
variables) for which the displayed value is the raw (unstandardized) difference in means. PW
= per week; PM = per month; P2M = per 2 months; PY = per year.
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the R package boot (version 1.3-28; Canty & Ripley, 2022).

6.2.3.4 Results

Path analysis resulted in an estimated always-exposed versus never-exposed effect of

0.69, 95% CI [-0.01, 1.34], implying that there is no evidence of an effect of sustained

smoking cessation on body weight a year later. Analysis with IPW regression resulted

in a negative estimate of sustained smoking cessation, -1.87, [-4.29, 0.53], although it

similarly was not significant at the α “ .05 level. The substantive conclusions drawn

using the different analyses would thus be the same. Differences between the point

estimates can be due to the different set of covariates that was adjusted for, and the

different parametric assumptions that both methods rely on.

6.3 Simulation study

So far, we have given an elaborate illustration of the investigation of joint effects,

specifically an always-exposed versus never-exposed effect, in the causal inference

framework, and using path analysis and IPW linear regression as estimation methods.

In the current section, we study the impact of violations of parametric assumptions

in path analysis and IPW linear regression, particularly, violations of the linearity

assumption. We performed a simulation study to compare the finite sample perfor-

mance of both estimation methods in terms of bias and MSE under various scenarios

of model misspecification. In line with the empirical example, we focused on inves-

tigating the always-exposed versus never-exposed effect. The scenarios considered

here were further simplified compared to the empirical example (in terms of number

of covariates), but are based on the same causal structure as the simplified DAG in

Figure 6.1.

6.3.1 Data generation

Data were generated under five different data-generating mechanisms (DGMs). All

DGMs contain a time-varying binary exposure A measured at time points t “ 0, 1,

a continuous end-of-study outcome Y2, a continuous baseline confounder L´1, and

continuous time-dependent confounding variables Lt at time points t “ 0, 1. The

simulated data have a causal structure as visualized in Figure 6.4, with continuous

variables following a normal distribution. Appendix 6.A contains a table with pop-

ulation values for all regression coefficients. In DGM 1, all dependencies are linear.

In DGM 2, the dependencies of the time-dependent confounders L0 and L1 include a

quadratic term (see Figure 6.5a). These terms were created by first grand mean cen-

tering the predictors before squaring them. The quadratic regression coefficients were
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DGM 1: All dependencies linear

𝐴𝐴0 𝐴𝐴1

𝐿𝐿0 𝐿𝐿1

𝑌𝑌2𝐿𝐿−1

Figure 6.4: The causal structure of the data generating mechanisms used in the simulations.

equal to the linear regression coefficients. By grand mean centering the predictors, the

population value of the always-exposed versus never-exposed effect does not change.

In DGM 3, the dependencies of the outcome on the baseline and time-dependent

covariates are quadratic (see Figure 6.5b). In DGM 4, the dependencies of the ex-

posure on the time-varying covariates are quadratic (see Figure 6.5c). Finally, DGM

5 combines all quadratic dependencies of DGMs 2, 3 and 4. In all five DGMs, the

population controlled direct effect of A0 on Y2 is 0.32, and the population controlled

direct effect of A1 on Y2 is 0.40, such that, combined, the population always-exposed

versus never-exposed effect is 0.72. Data generation was performed in base R (version

4.2.2; R Core Team, 2022).

6.3.2 Estimation

Five different estimation methods were used for investigating the always-exposed ver-

sus never-exposed effect: IPW linear regression, linear path analysis, IPW regression

with both linear and quadratic terms in the propensity score model, path analysis

with both linear and quadratic terms, and linear regression without confounding ad-

justment. These methods estimated the always-exposed versus sustained non-exposed

effect as a combination of the controlled direct effects of A0 and A1. The propensity

score model and outcome model of IPW linear regression were fitted using standard

OLS regression in R version 4.2.2 (R Core Team, 2022). The path analysis models

were fitted in Mplus version 8.9, with the probit link used for the regression models

of the exposures, and robust maximum likelihood selected as the estimator (L. K.

Muthén & Muthén, 2017).

The linear IPW estimation method was misspecified under DGMs 4 and 5: It

wrongly assumed linear dependencies for the propensity score model. For path anal-

ysis, a linear path analysis model was specified, which was locally misspecified under

DGMs 2, 3, 4, and 5. To get a sense for the impact of misspecification on perfor-

mance of the method, we also estimated the joint effects without misspecificiation in

the methods: For IPW, this was implemented using a propensity score model that
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DGM 2: Nonlinear covariate dependencies

𝐴𝐴0 𝐴𝐴1

𝐿𝐿0 𝐿𝐿1

𝑌𝑌2𝐿𝐿−1

(a) DGM 2

DGM 3: Nonlinear covariate-outcome dependencies

𝐴𝐴0 𝐴𝐴1

𝐿𝐿0 𝐿𝐿1

𝑌𝑌2𝐿𝐿−1

(b) DGM 3

DGM 4: Nonlinear time-varying covariate-exposure 
dependencies

𝐴𝐴0 𝐴𝐴1

𝐿𝐿0 𝐿𝐿1

𝑌𝑌2𝐿𝐿−1

(c) DGM 4

Figure 6.5: Overview of data generating mechanisms (DGMs) 2, 3, and 4. Bold black
arrows in the DAGs indicate nonlinear dependencies. These are visualized in the plots to
the right of each respective DGM, with the solid black line representing the true (nonlinear)
functional relationship between two variables, and the dashed blue line representing the
linear projection. DGM 1 (not illustrated here) contains only linear dependencies. DGM 5
(not illustrated here) combines the nonlinear dependencies of DGMs 2, 3, and 4.
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included quadratic terms for DGMs 4 and 5; for path analysis, a path analysis model

was specified which included quadratic terms where relevant for DGMs 2, 3, 4, and 5.

These latter two scenarios thus represent a “best-case scenario”, in which no model

misspecification occurs in the IPW regression, and path analysis methods. Finally, a

linear regression model with Y2 as the outcome and A0 and A1 as independent vari-

ables was specified, without any regression adjustment for confounding, or weighting.

This method provides a benchmark for a “worst-case scenario” against which we can

compare (misspecified) IPW regression and path analysis methods. Performance of

these five methods under different simulation conditions was evaluated in terms of

bias of the joint-effect point estimates, and mean square error (MSE).

In addition to varying the source of model misspecification, we varied sample

size (n “ 300, 1000) and proportion exposed at both time points (p “ 0.1, 0.5, 0.9).

Combined, this lead to thirty simulation conditions. For each condition, a thousand

replications were simulated.

6.4 Results

Figure 6.6 visualizes the bias of point estimates for the always-exposed versus never-

exposed effect across the five estimation methods. Here, we only present results for

a sample size of n “ 1000, and 10% and 50% exposed. Figure 6.7 contains the mean

square error of these point estimates. The horizontal bars in both plots are 95%

confidence intervals (CI), based on Monte Carlo standard errors, for the bias and

MSE (Morris et al., 2019). For most estimates of bias and MSE, this CI is so narrow

that it is not visible. Numerical results, as well as results for the other simulation

conditions, are included in the online supplementary materials.

As expected under DGM 1, the linear IPW regression model and linear path

analysis model performed well in terms of bias and MSE. Here, the IPW regression

model and path analysis model with additional quadratic effects were equivalent, as

all dependencies are in fact linear under DGM 1. For DGM 2, there was only slight

upward bias for the linear path analysis model under the 10% exposed condition,

which reduced to near 0 when exposure was balanced (it is barely visible in Figure 6.6,

but shows in the numerical results in the online supplementary materials). This bias

did not exist for the linear IPW regression model, although it had more variability of

the estimates as reflected in the slightly increased MSE.

Results for DGM 3 and 10% exposed showed significant bias in the estimates of the

linear path analysis model, and small bias for the linear IPW regression model. The

higher bias for the linear path analysis model was also reflected in the MSE, which

was now higher than that of the linear IPW regression model. When exposure was

balanced, these biases disappeared and linear path analysis had a lower MSE again.
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Figure 6.6: Bias in the point estimates of the always-exposed versus never-exposed effect
across five methods: “IPW (L)” is linear IPW regression; “Path (L) is linear path analysis;
“IPW (L, Q)” is IPW regression with linear and quadratic terms in DGMs 3, 4, and 5;
“Path (L, Q)” is path analysis with linear and quadratic terms in DGMs 2, 3, 4, and 5;
“Unadjusted” is a linear regression without confounding adjustment. Results are presented
for the case of n “ 1000, 10% and 50% exposed, and across five DGMs.

Results for DGM 4 with 10% exposed showed a large negative impact of an incorrectly

specified propensity score model for IPW-based estimators (Hernán & Robins, 2020).

There was considerable bias for the linear IPW regression model and increased MSE.

When exposure was balanced in the sample, both bias and MSE were close to zero

again, although some bias remained. Somewhat surprisingly, estimates of the effect

of interest in the linear path analysis model appeared unaffected by the incorrectly

modeled exposures, with no bias and low MSE for both the 10% exposed and 50%

exposed conditions.

Finally, for DGM 5, both the linear IPW regression model and the linear path

analysis model performed badly, with significant bias in the point estimates and high

MSE. This was expected as there was considerable misspecification of functional forms

in multiple locations of the models (i.e., numerous violations of parametric assump-

tions). Performance increased somewhat when the proportion exposed in the sample

was balanced, but bias remained significant. In this situation, both methods per-

formed almost as poorly as the naive, unadjusted method.

6.5 Discussion

While the use of SEM models for causal inference from longitudinal observational

data is quite popular in psychology, this practice has been criticized in the causal

inference literature for its high potential of model misspecification and, consequently,
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Figure 6.7: MSE of the point estimates of the always-exposed versus never-exposed effect
across five methods, and five DGMS (n “ 1000).

bias in the estimates of causal effects of interest (cf. Bollen & Pearl, 2013; Van der

Laan & Rose, 2011; VanderWeele, 2012). To fully understand this critique, and to see

why the alternative causal inference methods that have been proposed counter these

problems, researchers need to be knowledgeable of the potential outcomes framework.

Although SEM methods are compatible with the potential outcomes framework (e.g.,

Loeys et al., 2014; Moerkerke et al., 2015; B. O. Muthén et al., 2016), the literature

on the potential outcomes framework comes predominantly from the disciplines of

epidemiology and biostatistics; as such, the literature is targeted to research problems

and common practices that psychological researchers are less familiar with, making

it difficult to bridge the disciplinary gap. In this article, we first introduced SEM

users from psychology (and related disciplines) to three core phases of the potential

outcomes approach to causal inference (inspired by Goetghebeur et al., 2020; Petersen

& Van der Laan, 2014). In particular, we compared path analysis from the SEM

framework, to IPW estimation of MSMs when investigating an always-exposed versus

never-exposed effect of a time-varying exposure on an end-of-study outcome, in the

presence of baseline and time-varying confounding. Through the use of a simulation

study, we assessed the finite-sample performance (in terms of bias and MSE) of both

methods under varying violations of parametric assumptions.

Simulation results showed that, for the specific scenarios investigated in this study,

path analysis generally had lower MSE than IPW estimation when estimating the

time-varying exposure effect; the only exception here was for DGM 3, with misspecif-

cation in the relationships between the confounders and the outcome. The lower MSE

obtained with path analysis was mainly due to higher efficiency, which compensated

for the higher bias under particular forms of misspecification (see, for example, the

lower MSE of path analysis in DGM 4, specifically for “IPW (L, Q)” and “Path (L,
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Q)”; and DGM 5, even while path analysis was as biased, or more biased than IPW

regression; Vansteelandt & Sjolander, 2016). For misspecification of the covariate-

outcome relations (i.e., in DGM 3, in which a linear relation was assumed in the

fitted model whereas data were generated under a quadratic relation), results for an

uneven distribution of exposed and non-exposed individuals (10% exposed) confirmed

that path analysis was more prone to bias in the always-exposed versus never-exposed

effect than IPW estimation. However, the bias appeared to be minor. For misspecifi-

cation of the propensity score model (the covariate-exposure relationships in DGM 4),

IPW estimation led to significant bias for the always-exposed versus never-exposed

effects, whereas no bias was observed for path analysis in this scenario. When covari-

ate, exposure, and outcome dependencies were all misspecified (DGM 5), then both

path analysis and IPW regression performed almost as poorly (in terms of bias) as

standard linear regression without any covariate adjustment. Interestingly, bias across

all scenarios was significantly reduced when the proportion exposed was balanced.

Hence, our comparison of path analysis and IPW estimation across the three

phases of causal inference has made insightful how SEM approaches fit within a prin-

cipled approach to causal inference, the causal identification assumptions that both

methods rely on, and the differences between them in terms of the parametric as-

sumptions they make. Subsequently, our simulations have shown that violations of

parametric assumptions unique to path analysis (i.e., concerning covariate-covariate

relationships, investigated in DGM 2; and covariate-outcome relationships, investi-

gated in DGM 3) did not always translate into substantial bias when estimating joint

effects from finite samples. These results nuance the criticism of SEM for the purpose

of causal inference, as expressed by VanderWeele (2012), for instance. Moreover, we

find that in a setting without unmeasured confounding, path analysis actually per-

formed better generally in terms of MSE, and showed no bias when the functional

forms of the covariate-exposure relations are misspecified, in contrast to IPW estima-

tion (see DGM 4).

However, this should not be interpreted to mean that SEM can be easily used

for the purpose of causal inference. First, our illustrative example highlights that

attempts to model the entire data generating mechanism (as with cross-lagged panel

modeling approaches) complicates computations of joint effects when categorical time-

varying covariates are included (e.g., combining linear regression coefficients with logit

or probit coefficients). This is problematic as the inclusion of many time-varying

covariates is required to make the causal identification assumption of conditional

exchangeability plausible in the first place, and some covariates are likely to be cat-

egorical in practice (e.g., level of education, diagnoses of psychological disorders, re-

lationship status, etc.). Second, our simulations focused only on a limited number of

scenarios, and we may find different results when considering other scenarios, such
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as: The presence of unmeasured confounding variables; wrongfully omitting interac-

tions and second-order lagged effects from the model; a different set of population

parameter values; and more severe violations of parametric assumptions. In light

of this uncertainty, it is still advisable to consider methods that relax the paramet-

ric assumptions as much as possible. Causal inference methods from the potential

outcomes framework are advantageous in this respect.

Furthermore, we emphasize that these simulation results should certainly not be

interpreted as an incentive to continue currently popular SEM modeling practices,

when the actual goal is causal inference. While estimation of causal effects using

SEM models can work well (as illustrated in the simulations), it requires very careful

and elaborate consideration of the issues and topics in Phases 1 and 2 of causal re-

search, as we have shown in this article. Fitting an off-the-shelf bivariate cross-lagged

panel model (or a related SEM model) without inclusion of additional covariates

(both baseline and time-invariant), and without consideration of lag-2 and further

relationships, is inappropriate for investigating causal effects. While this paper fo-

cused on the investigation of joint effects, our conclusion equally applies when the

interest is in cross-lagged effects. In fact, we estimated joint effects as combinations

of CDEs, and under the causal DAGs in Figure 6.1 and 6.4, the CDE of exposure at

time point 2 is the same as the cross-lagged effect of exposure at time point 2 to the

end-of-study outcome. Psychological researchers are therefore well-advised to study

the potential outcomes framework, and the proposed causal inference methods therein

such that they can make better-informed decisions about which modeling approach

is appropriate given their considerations in Phases 1 and 2.

In this article, we limited our simulations to misspecification of functional forms,

and did not investigate the impact of unobserved confounding variables from the anal-

ysis, or the potential of latent variables to (partially) adjust for this (Usami et al.,

2019). Unobserved confounding is, however, a fundamental issue in causal research.

We also did not study the performance of path analysis and IPW estimation under vi-

olations of conditional independence assumptions—that is, when the causal DAG that

acts as the basis for our analyses wrongfully omits one, or multiple, dependencies—

which was an additional critique in VanderWeele (2012). Instead, in our simulations

and in our illustrative example, both the path analysis model and IPW estimation

included lag-0, lag-1, lag-2, and lag-3 relationships. Furthermore, missingness in the

illustrative example was handled by single stochastic imputation for practical reasons.

However, as the SEM framework and potential outcome framework have different tech-

niques for missing data handling—IPW for censoring is more common in the potential

outcomes framework, whereas the use of full information likelihood is widespread in

SEM—it would be interesting to also investigate how differences in these techniques

impact estimation performance.
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In conclusion, psychological research has fully embraced the SEM framework for

causal inference, whereas the uptake of the potential outcomes framework, and the

causal inference methods developed herein, has been lagging behind. However, re-

duced reliance on parametric assumptions and the possibility to include a large set

of (categorical) time-varying covariates, are good reasons to invest time in learning

techniques such as IPW estimation of MSMs. We hope this comparison of IPW es-

timation and path analysis facilitates a better understanding of these methods for

causal inference about time-varying exposure effects.
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Appendices

6.A Population values simulation study

Table 6A.1 contains the population values used for data generation. L´1 is normally

distributed with mean 4 and variance 1. Residuals are standard-normally distributed.

The intercepts of L0 and L1 are set to 1. The intercept of Y2 is 0. These population

values resulted in an always-exposed versus never-exposed effect of 0.72.

Table 6A.1: Population values used
for data generation.

Causal effect Population value

L´1 Ñ ... 0.1a

L0 Ñ A0 0.5
L0 Ñ L1 0.3
L0 Ñ A1 0.25
L0 Ñ Y2 0.15
A0 Ñ L1 0.4
A0 Ñ A1 0.8
A0 Ñ Y2 0.2
L1 Ñ A1 0.5
L1 Ñ Y2 0.3
A1 Ñ Y2 0.4

a This value applies to all effects of
L´1.

6.B Derivation statistical estimand

Here, we describe the derivation of the statistical estimand in Equation 6.4 from

the causal estimand in Equation 6.1. In the derivation we make use of mathematical

formalisms such as the law of iterated expectations, as well as the causal identification
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assumptions, conditional exchangeability, consistency, and positivity:

causal estimand : “ ErY 1̄1
2 s ´ ErY 0̄1

2 s,

p1q
“ E

␣

ErY 1̄1
2 | L0s

(

´ E
␣

ErY 0̄1
2 | L0s

(

p2q
“ E

␣

ErY 1̄1
2 | A0 “ 1, L0s

(

´ E
␣

ErY 0̄1
2 | A0 “ 0, L0s

(

p3q
“ EL0

!

EL1

`

ErY 1̄1
2 | A0 “ 1, L1s

ˇ

ˇ A0 “ 1, L0

˘

)

´ EL0

!

EL1

`

ErY 0̄1
2 | A0 “ 0, L1s

ˇ

ˇ A0 “ 0, L0

˘

)

p4q
“ EL0

!

EL1

`

ErY 1̄1
2 | A1 “ 11, L1s

ˇ

ˇ A0 “ 1, L0

˘

)

´ EL0

!

EL1

`

ErY 0̄1
2 | A1 “ 01, L1s

ˇ

ˇ A0 “ 0, L0

˘

)

p5q
“ EL0

!

EL1

`

ErY2 | A1 “ 11, L1s
ˇ

ˇ A0 “ 1, L0

˘

)

´ EL0

!

EL1

`

ErY2 | A1 “ 01, L1s
ˇ

ˇ A0 “ 0, L0

˘

)

“ : statistical estimand (g-formula representation).

Equality (1) follows from law of iterated expectations with regards to L0. Equality

(2) follows from conditional exchangeability of the form Y ā1
2 KK A0 | L0 and pos-

itivity. Equality (3) follows from law of iterated expectations with regards to L1,

conditional on L0 and A0. As we now condition on both L0 and L1, we represent

this as conditioning on covariate history L̄1. Equality (4) follows from conditional

exchangeability of the form Y a1
2 KK A1 | L1, A0 “ a0; and positivity. Equality (5)

relies on the consistency assumption.

This statistical estimand takes the form that is known in the causal inference

literature as the standard g-formula for time-varying exposures (Naimi et al., 2016;

Robins, 1986). It can be further rewritten to a form that is known in the causal infer-

ence literature as the IPW representation. Continuing from the statistical estimand
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in g-formula representation on the right-hand side of Equality (5), it yields:

EL0

!

EL1

`

ErY2 | A1 “ 11, L1s
ˇ

ˇ A0 “ 1, L0

˘

)

´ EL0

!

EL1

`

ErY2 | A1 “ 01, L1s
ˇ

ˇ A0 “ 0, L0

˘

)

p6q
“ EL0

#

EL1

ˆ

E
„

Y21pA1 “ 1q

PrpA1 “ 1 | A0 “ 1, L1q

ˇ

ˇ

ˇ

ˇ

A0 “ 1, L1

ȷ
ˇ

ˇ

ˇ

ˇ

A0 “ 1, L0

˙

+

´ EL0

#

EL1

ˆ

E
„

Y21pA1 “ 0q

PrpA1 “ 0 | A0 “ 0, L1q

ˇ

ˇ

ˇ

ˇ

A0 “ 0, L1

ȷ ˇ

ˇ

ˇ

ˇ

A0 “ 0, L0

˙

+

p7q
“ EL0

#

E
ˆ

Y21pA1 “ 1q

PrpA1 “ 1 | A0 “ 1, L1q

ˇ

ˇ

ˇ

ˇ

A0 “ 1, L0

˙

+

´ EL0

#

E
ˆ

Y21pA1 “ 0q

PrpA1 “ 0 | A0 “ 0, L1q

ˇ

ˇ

ˇ

ˇ

A0 “ 0, L0

˙

+

p8q
“ EL0

#

E
ˆ

Y21pA0 “ 11q

PrpA0 “ 1 | L0qPrpA1 “ 1 | A0 “ 1, L1q

ˇ

ˇ

ˇ

ˇ

L0

˙

+

´ EL0

#

E
ˆ

Y21pA1 “ 01q

PrpA0 “ 0 | L0qPrpA1 “ 0 | A0 “ 0, L1q

ˇ

ˇ

ˇ

ˇ

L0

˙

+

p9q
“ E

#

Y21pA1 “ 11q

PrpA0 “ 1 | L0qPrpA1 “ 1 | A0 “ 1, L1q

+

´ E

#

Y21pA1 “ 01q

PrpA0 “ 0 | L0qPrpA1 “ 0 | A0 “ 0, L1q

+

p10q
“ E

“

WY21pA1 “ 11q
‰

´ E
“

WY21pA1 “ 01q
‰

p11q
“ E

“

WY2 PrpA1 “ 11q | A1 “ 11
‰

´ E
“

WY2 PrpA1 “ 01q | A1 “ 01
‰

p12q
“ E

„

W

ErW | A1s
Y2

ˇ

ˇ

ˇ

ˇ

A1 “ 11

ȷ

´ E
„

W

ErW | A1s
Y2

ˇ

ˇ

ˇ

ˇ

A1 “ 01

ȷ

p13q
“ E

“

W˚Y2 | A1 “ 11q
‰

´ E
“

W˚Y2 | A1 “ 01
‰

“: statistical estimand (IPW representation).

Equality (6) follows from the law of iterated expectations with regard to A1, condi-

tional on A0 and L1; and positivity. Here, 1p¨q is an indicator function that equals

one if p¨q is true, and zero otherwise. Equality (7) follows from the law of iterated

expectations with regard to L1, conditional on A0 and L0. Equality (8) follows from

the law of iterated expectations with regard to A0, conditional on L0; and positiv-

ity. Equality (9) follows from the law of iterated expectations with regard L0. For

Equality (10) we define inverse probability of exposure weights W as W “ W0W1,

that is the product of the inverse probability weights at each exposure-time. With a
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dichotomous exposure taking on values A “ 0 or A “ 1, and for time points t “ 0, 1,

the time-specific weights are defined as

Wt “
At

PrpAt “ 1 | Lt, At´1q
`

1 ´At

1 ´ PrpAt “ 1 | Lt, At´1q
.

Equality (10) then follows from this definition of the weightsW . Equation (11) follows

from the law of iterated expectations with regard to A1. To see that Equality (12) is

true, suppose for simplicity that L1 is discrete, and observe that

ErW | A1 “ a1s “ E

«

1

PrpA0 “ a0 | L0qPrpA1 “ a1 | A0, L1q

ˇ

ˇ

ˇ

ˇ

ˇ

A1 “ a1

ff

“
ÿ

l0

ÿ

l1

PrpL1 “ l1 | A1 “ a1q

PrpA0 “ a0 | L0qPrpA1 “ a1 | A0 “ a0, L1 “ l1q

“
1

PrpA1 “ a1q

ÿ

l0

ÿ

l1

PrpA1 “ a1, L1 “ l1q

PrpA0 “ a0 | L0qPrpA1 “ a1 | A0 “ a0, L1 “ l1q

“
1

PrpA1 “ a1q

ÿ

l0

ÿ

l1

PrpL0 “ l0qPrpL1 “ l1 | A0 “ a0, L0 “ l0q

“
1

PrpA1 “ a1q

ÿ

l0

PrpL0 “ l0q
ÿ

l1

PrpL1 “ l1 | A0 “ a0, L0 “ l0q

“
1

PrpA1 “ a1q
.

Equality (13) is a more succinct way of expressing the statistical estimand in IPW rep-

resentation using stabilised weights W˚ “ W {ErW | A2s. This derivation shows that

a statistical estimand in g-formula representation can be rewritten into a statistical

estimand in IPW representation. However, both representations suggest a different

modeling approach: The g-formula representation suggest that a statistical model

for L1 and Y might need to be specified, whereas the IPW representation suggests

that the time-varying exposures are modelled (via the inverse probability of exposure

weights W ).
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Abstract

A popular approach among psychological researchers for investigating causal

relationships from panel data is cross-lagged panel modeling. However, structural

equation models are critiqued in the causal inference literature for relying on an

unnecessarily large number of parametric assumptions, thereby increasing the

risk of model misspecification and bias. Instead, the use of structural nested

mean models (SNMMs) with G-estimation are promoted as an approach that

relies on fewer assumptions and therefore, in principle, leads to more valid

causal conclusions. However, the uptake of SNMMs and G-estimation in the

psychological literature is lacking, hampered by a disconnect between the causal

inference literature, and the statistical concepts and modeling practices that

psychological researchers are familiar with. In this paper, we aim to bridge

this disciplinary divide by introducing joint effects, controlled direct effects,

SNMMs, and G-estimation, and comparing these to cross-lagged panel modeling

approaches. An empirical example from psychological practice is used throughout.
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Across a wide range of disciplines, researchers analyze longitudinal, observational

data to investigate prospective causal relationships between variables. In psychology,

a signification portion of this kind of research is devoted to lag-1 relationships, which

are investigated using cross-lagged panel modeling approaches within the framework of

structural equation modeling (Gische et al., 2021; Usami et al., 2019; Zyphur, Allison,

et al., 2020; Zyphur, Voelkle, et al., 2020). In contrast, in disciplines like epidemiology

and biostatistics, research more typically focuses on exposure regimes and joint effects.

These concern effects of a collection of repeatedly-measured exposures (i.e., the effect

of an X-variable measured at time points 1, 2, 3, etc., combined) on an outcome.

An interesting aspect of joint effects is that it comprises both short-term and long-

term influences (i.e., effects at multiple time lags: lag-0, lag-1, lag-2, etc.), and that

it goes beyond the individual, direct paths that are targeted by cross-lagged effects

(Vansteelandt & Joffe, 2014). While a joint effect can be assessed within the structural

equation modeling framework, they are traditionally investigated using a class of

formal causal modeling approaches that were developed largely by James M. Robins

(Daniel et al., 2013; Naimi et al., 2016). In this paper, we focus on one of these

approaches, namely structural nested mean models (SNMMs) with G-estimation, as it

is best equipped to analyze continuous exposures (common in psychological research)

and has the most advantages from a causal inference point-of-view (Vansteelandt

& Sjolander, 2016). The appeal of SNMMs with G-estimation is that it relies on

fewer parametric assumptions than structural equation modeling approaches, thereby

reducing the potential for model misspecification (e.g., wrongly assuming an effect is

linear whereas, in fact, it is nonlinear) and leading, in principle, to more robust causal

conclusions (Van der Laan & Rose, 2011; VanderWeele, 2012).

Despite this advantage, the interest in joint effects and the uptake of SNMMs

with G-estimation is limited in the psychological literature. While there are many

introductions to this approach for investigating joint effects (e.g., Goetghebeur et al.,

2020; Hernán & Robins, 2020; Naimi et al., 2016; Petersen & Van der Laan, 2014),

these are typically not targeted towards psychological researchers, and provide lit-

tle to no connection to the modeling practices that they are familiar with. Such

a disconnect between strands of literature hinders researchers from understanding

how different kinds of causal hypotheses, and the modeling approaches for estimating

causal effects, are related. Two important contributions in this regard are recently

published papers by Loh and Ren (2023a, 2023b), who provide an introduction to

SNMMs with G-estimation (based on Vansteelandt & Sjolander, 2016), and illustrate

how SNMMs can be fitted to longitudinal data with G-estimation within the struc-

tural equation modeling framework. The current paper supplements both papers by

(a) extending the use of SNMMs to continuous predictors, commonly used in psy-

chological panel data; (b) providing a more conceptual explanation of the concepts
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that underlie this causal inference approach, such as joint effects, controlled direct

effects, exposure regimes, and the essence of SNMMs and G-estimation; and most

importantly (c) comparing the use of SNMMs explicitly to modeling practices SEM

users are familiar with, in particular cross-lagged panel modeling. We introduce key

concepts using a cross-lagged panel design, minimize technical details, and present an

empirical psychological example regarding self-esteem and depression throughout.

This article is organized as follows. Section 7.1 provides the necessary background:

We start with introducing a visual representation of a causal process (also referred to

as a causal directed acyclical graph, or DAG); explain the difference between cross-

lagged effects and joint effects; and end with discussing the causal identification as-

sumptions needed for a causal interpretation of model estimates. This is followed,

in Section 7.2, by the introduction and comparison of cross-lagged panel modeling

approaches versus SNMMs using G-estimation. In Section 7.3, we illustrate both

approaches for the investigation of joint effects with empirical data of self-esteem

and depression. The discussion in Section 7.4 connects our treatment of joint ef-

fects and SNMMs to other modeling topics that are prominent in the psychological

modeling literature, such as the decomposition of observed variance into within- and

between-person variance, the inclusion of contemporaneous effects, and the inclu-

sion of lag-2 effects to control for confounding. Annotated R code for the empir-

ical analyses in this paper can be found in the online supplementary materials at

https://jeroendmulder.github.io/joint-effects-using-SNMM.

7.1 Background

This section starts with an introduction of causal DAGs, using an empirical psycholog-

ical example based on Kuster et al. (2012). Subsequently, joint effects are introduced

and compared to the cross-lagged effects which tend to be the key focus in psycho-

logical research. We end with a discussion of causal identification assumptions; while

these are not the focus of this article, they are needed for a causal interpretation

of statistical results, regardless of the kind of causal effect that is targeted, or the

modeling approach that was taken.

7.1.1 A causal DAG for self-esteem and depression

Causal DAGs are graphical tools that can be used to represent the causal structure of

empirical phenomena that researchers want to study. It consists of a set of variables

(nodes) and one-headed arrows representing the causal dependencies between them

(edges; Pearl, 2009). All variables that are believed to play a role in the empirical

phenomena should be included in the causal DAG. Thus, in addition to exposures
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and outcomes, causal DAGs usually also include a set of time-varying and time-

invariant covariates (both observed and unobserved), and their causal connections

(Hamaker et al., 2020; Pearl, 2009; Rohrer, 2018). These causal DAGs appear similar

to path diagrams in the structural equation modeling framework, but there are three

important differences: causal DAGs (a) do not necessarily imply linear relationships,

that is, they represent dependencies between variables, without assuming a specific

functional form of this dependency; (b) do not make any assumptions about the

distribution underlying this system of variables; and (c) do not include two-headed

arrows representing unexplained covariances between variables (Pearl, 2009).

Suppose we are interested in assessing causal relations between self-esteem and

depressive symptoms. Let Xt be a measure of self-esteem and Yt be a measure of

depressive symptoms, both measured at time point t. Let Lt represent a time-varying

covariate at time point t, for example rumination, and let C represent time-invariant

baseline covariates such as gender, family social economic status, and maternal age

(Boden et al., 2008). We can represent the causal structure underlying these variables

over time in a causal DAG, as shown in Figure 7.1. It contains the four repeated

measures of self-esteem, depressive symptoms and rumination, two (sets of) time-

invariant covariates C and U , and the dependencies between these variables over

time. The time-invariant covariates in C influence all variables at future time points;

to avoid clutter, not every arrow is drawn in the DAG. The time-invariant variable

U represents covariates that exist before t “ 1, and that only has direct effects on X,

Y , and L at the first time point. The existence of such a variable is often assumed

in panel data, as measurements of X, Y , and L are obtained at random points in

time in an ongoing process: U can then represent unobserved realisations of X, Y ,

and L before the start of measurement that results in covariances between X1, Y1,

and L1. This specific causal DAG represents a structure where time-varying variables

influence all other time-varying variables at the next time point, but this influence

does not extend beyond lag 1. This is also the predominant causal structure that is

assumed in psychological cross-lagged panel research (Usami et al., 2019).

While working with the causal DAG in Figure 7.1, we make the implicit assump-

tion that it correctly represents the underlying causal structure between depressive

symptoms, self-esteem, rumination, and the time-invariant covariates (Imbens, 2019).

Arguably, the lag-1 process as encoded in the DAG of Figure 7.1 is an oversimplifi-

cation, as empirical processes might include effects that extend beyond a single time

interval (i.e., lag-2, and further; Little, 2013, p. 203). Additionally, lag-0 effects

can be added to the DAG to represent instantaneous effects. Such effects are com-

monly assumed in longitudinal biomedical research, and recently, B. O. Muthén and

Asparouhov (2022a) argued that lag-0 effects may also be realistic in psychological

research when data are collected with long time intervals, and measurements referring
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A causal DAG

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑌𝑌1 𝑌𝑌2 𝑌𝑌3

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3

𝑋𝑋4

𝑌𝑌4

𝐿𝐿4𝐶𝐶

𝑈𝑈

Figure 7.1: A causal DAG, representing how a time-invariant variable C, and time-varying
variables X, Y , and L are causally related to each other across 4 repeated measurements. C
is causally related to all other variables in the model, although not all arrows are included
in the DAG to prevent clutter.

to past experiences. For didactical reasons, we start with the simplified DAG in Fig-

ure 7.1, but in Section 7.4, we discuss in more detail the addition of lag-0 and lag-2

causal dependencies to the DAG, and how this impacts the use of structural equation

models (SEMs) and SNMMs.

7.1.2 Cross-lagged effects and joint effects

Figure 7.2a visualizes cross-lagged effects in the causal DAG of Figure 7.1. Charac-

teristically, cross-lagged effects are bidirectional, implying that self-esteem and de-

pression take on the role of both presumed cause and outcome: At the first wave

self-esteem and depression are presumed causes, at the final wave self-esteem and

depression are outcomes, and at the intermediate waves self-esteem and depression

are both. In psychological research oftentimes each dependency (i.e., arrow) inde-

pendently is a target of inference. That is, when interested is in cross-lagged effects

and assuming the causal structure of Figure 7.1, we target six causal effects: Three

cross-lagged effects from self-esteem to depression, and three cross-lagged effects from

depression to self-esteem. Typically, these cross-lagged effects concern lag-1 relation-

ships.

In the epidemiological and biostatistical literature, rather than focusing on path-

specific effects, it is more common to investigate effects of exposure regimes (also

sometimes referred to as exposure sequences or exposure history; Wallace et al., 2017).

Regimes are predetermined rules that determine the value of a time-varying exposure

for all time points jointly. One example is a regime in which individuals are made to

have a self-esteem score of, say, five at each of the four measurement occasions, that is

tX1 “ 5, X2 “ 5, X3 “ 5, X4 “ 5u. Another example would be a regime in which the

self-esteem score of individuals is set at 2 at the first occasion, set to 1 at the second
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Reciprocal effects

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑌𝑌1 𝑌𝑌2 𝑌𝑌3

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3

𝑋𝑋4

𝑌𝑌4

𝐿𝐿4𝐶𝐶

𝑈𝑈

(a) Reciprocal, cross-lagged effects.

Joint effects (CDE1)

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑌𝑌1 𝑌𝑌2 𝑌𝑌3

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3

𝑋𝑋4

𝑌𝑌4

𝐿𝐿4𝐶𝐶

𝑈𝑈

(b) Controlled direct effect of X1 on Y4.

Joint effects (CDE2)

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑌𝑌1 𝑌𝑌2 𝑌𝑌3

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3

𝑋𝑋4

𝑌𝑌4

𝐿𝐿4𝐶𝐶

𝑈𝑈

(c) Controlled direct effect of X2 on Y4.

Joint effects (CDE3)

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑌𝑌1 𝑌𝑌2 𝑌𝑌3

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3

𝑋𝑋4

𝑌𝑌4

𝐿𝐿4𝐶𝐶

𝑈𝑈

(d) Controlled direct effect of X3 on Y4.

Figure 7.2: Representation of the causal dependencies that are targeted by research ques-
tions on reciprocal, cross-lagged effects, and joint effects.

occasion, and set to 0 thereafter, tX1 “ 2, X2 “ 1, X3 “ 0, X4 “ 0u. For simplic-

ity of notation, we will write such regimes as t5, 5, 5, 5u and t2, 1, 0, 0u, respectively.

Contrasting end-of-study outcomes that follow from two different treatment regimes

then allows researchers to assess the average causal effect (ACE) of being exposed to

one specific regime over another specific regime. Such contrasts are also referred to as

joint effects, where “joint” refers to the exposures at multiple time points combined.

Moreover, in biomedical research, the exposures are oftentimes dichotomous (e.g., an

individual either did attend a therapy or not; an individual either was diagnosed to

be depressed or not) such that regimes only concern zeros and ones. One partic-

ularly popular joint effect, especially in the pharmacoepidemiologic research, is the

always-treated versus never-treated effect. This is represented as a contrast of regimes

t1, 1, 1, 1u versus t0, 0, 0, 0u, in which the exposure is binary with 1 = treatment, and

0 = no treatment.

The joint effect of X can be decomposed into multiple controlled direct effects

(CDEs) of X, specifically (1) the effect of X1 on end-of-study Y4, which does not

through later versions of X; (2) the effect of X2 on end-of-study Y4 which does

not go through later versions of X; and (3) the effect of X3 on end-of-study Y4

which does not go through later X (Daniel et al., 2013). These three CDEs are

visualized in Figures 7.2b, 7.2c, and 7.2d, respectively. Any single CDE captures

the total effect of increasing self-esteem at a particular point in time on end-of-study

depression, while controlling for the future self-esteem scores. The term “controlled”

in CDE thus refers to the fact that values of later self-esteem are held constant at

a particular value (or set of values), whereas the term “direct” refers to the fact
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that the underlying intermediate process by which self-esteem at a particular time

point affects end-of-study depression is not modeled, but that rather a single estimate

summarizing this intermediate process is obtained (Tompsett et al., 2022; Wallace et

al., 2017). For researchers familiar with structural equation modeling techniques, this

might be confusing terminology as the intermediate process would be regarded as a

set of indirect effects, rather than direct. To accentuate the fact that for CDEs the

intermediate process is not our target of inference, the intermediate dependencies for

the CDEs of X1 and X2 in Figures 7.2b and 7.2c appear as dotted arrows.

Let us zoom in on the CDE of X1 in Figure 7.2b. This can alternatively be

represented as a contrast of outcomes following the regimes tx1 ` 1, x2, x3u versus

tx1, x2, x3u—i.e., the effect of a one-point increase in self-esteem at the first measure-

ment occasion on end-of-study depression, while keeping future levels of self-esteem

constant at values x2, and x3. These values can be anything, but for interpretational

reasons, researchers might set x2 and x3 to the mean self-esteem score, or the lowest

possible score on the self-esteem scale. Even more generally, the CDE can be repre-

sented as a contrast of outcomes following the regimes tx˚
1 , x2, x3u versus tx1, x2, x3u

to represent the effect of an arbitrary increase of self-esteem at the first measurement

occasion. We ignore X4 here as, based on the causal DAG in Figure 7.1, it has no

causal effect on the end-of-study outcome. Similarly, the CDE of X2 can be regarded

as a contrast of outcomes following the regimes tx1, x
˚
2 , x3u versus tx1, x2, x3u. In this

contrast, we control for exposure before time point 2 (X1 “ x1), and future exposure

(X3 “ x3). The CDE of X3 can be represented as a contrast of tx1, x2, x
˚
3 u and

tx1, x2, x3u. Representing the CDEs as contrasts of exposure regimes is useful later

for understanding how SNMMs are build up. Finally, for this particular DAG, the

CDE of X3 and the cross-lagged effect of X3 concern the same dependency in the

causal DAG, X3 Ñ Y4. However, note that this (causal) equivalence does not hold

generally (e.g., when lag-0 effects of the time-varying covariate to the outcome are

added to the causal DAG; this is further discussed in Section 7.4.2.

7.1.3 Conceptual differences between cross-lagged effects and

joint effects

There are multiple conceptual differences between cross-lagged effects and joint effects.

These not only affect the interpretation of the effects, but also have some statistical

ramifications. First, research questions about cross-lagged effects in a psychological

context are typically bidirectional in nature: Researchers investigate if effects between

variables go from X to Y , from Y to X, if both processes are at work, and if so, which

process is causally dominant (Rogosa, 1980). Instead, investigations of joint effects

in the literature are predominately unidirectional, with researchers deciding a priori

which specific causal process (i.e., which “causal direction”) is studied. However, in
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theory, joint effects could be studied in both directions as well (e.g., Li et al., 2016).

Second, the role variables take on in a causal process depends on the causal effect

that is targeted. For cross-lagged effects, six variables are exposures, namely X1, Y1,

X2, Y2, X3, and Y3, and six variables are outcomes, namely X2, Y2, X3, Y3, X4, and

Y4. Instead, for joint effects, the exposure is a single variable measured at multiple

time points, Xt. Moreover, the majority of the studies investigating joint effects

concern a single outcome, usually measured at the end of a study (e.g., Y4). However,

when an outcome is measured repeatedly (as done in a cross-lagged panel design),

SNMMs can be extended to include time-varying outcomes as well (Vansteelandt &

Sjolander, 2016).

The role of time-varying covariates also changes depending on whether one tar-

gets cross-lagged, or joint effects. For example, the cross-lagged effect X3 Ñ Y4 is

confounded by L2 via the paths X3 Ð L2 Ñ L3 Ñ Y4 and X3 Ð L2 Ñ Y3 Ñ Y4.

This implies that rumination at time point 2 should be controlled for in a statistical

analysis. In contrast, for the joint effect of X, L2 is both a confounder and a medi-

ator: It is a confounder for the CDE of X3 (i.e., it is a common cause on the paths

X3 Ð L2 Ñ Y3 Ñ Y4 and X3 Ð L2 Ñ L3 Ñ Y4), and it is mediator for the CDE of

X1 (it lies on the paths X1 Ñ L2 Ñ L3 Ñ Y4 and X1 Ñ L2 Ñ Y3 Ñ Y4). Such a

“double role” complicates statistical analyses, as attempts to estimate the joint effect

with standard regression methods—for example, a linear regression of Y4 on all expo-

sures X1, X2, X3, and all confounders simultaneously—is incorrect: Controlling for

L2 leads to overcontrol bias for the CDE of X1, whereas not controlling for L2 leads

to confounder bias in the CDE of X3. In the causal inference literature, this problem

is referred to as exposure-confounder feedback, and the causal inference approaches by

Robins have been developed specifically to tackle this problem (Robins & Greenland,

2000). In Section 7.2, we discuss how exposure-confounder feedback is dealt with in

a SEM and in a SNMM with G-estimation.

Third, cross-lagged effects and joint effects relate to different time lags at which

the causal process operates. In general, estimates of causal effects depend critically

on the size of the time interval between subsequent measures (Gollob & Reichardt,

1987; Kuiper & Ryan, 2018; Voelkle et al., 2012). Therefore, estimates of cross-lagged

effects are interpreted as causal effects that take one time-lag to materialize. For our

empirical example, we make use of data from Kuster et al. (2012), with measures

of self-esteem, depressive symptoms, and rumination collected on a bimonthly basis.

Hence, an estimate of the cross-lagged effect of self-esteem on depression is the ex-

pected change in depressive symptoms two months later for a one-unit increase in

self-esteem. In contrast, the joint effect is a combination of causal effects at vary-

ing time-lags: The CDE of X1 relates to six months, the CDE of X2 relates to four

months, and the CDE of X3 relates to two months. It can be regarded as a mix of
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short- and longer-term effects, describing the effect of repeated bimonthly interven-

tions on self-esteem across a six-month period. This makes it possible, at least in

principle, that the separate CDEs that make up the joint effect all have significant

effects on the outcome independently, but when considered jointly, they cancel each

other out (e.g., when the longer-term effects are in the opposite direction as short-term

effects, or vice versa).

7.1.4 Causal identification assumptions

When estimating the effects discussed above from empirical data, a causal interpreta-

tion thereof relies critically on both causal identification assumptions and parametric

assumptions. While the focus of this article is on a comparison of the parametric

assumptions that a SEM and a SNMM with G-estimation make, causal identification

assumptions are fundamental to a causal interpretation of estimates. Therefore, we

briefly introduce two central causal identification assumptions here, namely condi-

tional exchangeability and consistency. The plausibility of these assumptions for our

empirical example is elaborated upon in the Discussion section; for the purpose of

this article, we continue as if these assumptions hold. Introductions to causal identi-

fication assumptions are given by Hernán and Robins (2020) and Imbens and Rubin

(2015).

Both exchangeability and consistency concern potential outcomes and observed

variables. A potential outcome, denoted by Y x, is an outcome for a particular in-

dividual that would be observed if the individual had that exposure X “ x. For

example, suppose that we are only looking at self-esteem at time point 3 X3, then Y
5

would be the end-of-study depression if an individual had a self-esteem score of five

at time point 3, and Y 1 would be the end-of-study depression if an individual had a

self-esteem score of one. In reality, an individual has only a single self-esteem score

at time point 3, and thus we can only observe one potential outcome (also referred

to as the factual), the others remain unknown (referred to as the counterfactuals).

Similarly, we can have potential outcomes for exposure regimes, Y tx1,x2,x3u, which is

the outcome for a particular individual that would be observed if the individual had

the exposure regime tx1, x2, x3u. Potential outcomes are the fundamental building

blocks of much of the causal inference literature as they are used to define causal

effects. In fact, we have already implicitly used these above to explain joint effects as

differences between end-of-study outcomes that follow from two different regimes (i.e.,

as a contrast of two potential outcomes). What causal identification assumptions do,

is link the causal effect of interest (in terms of potential outcomes) to the data from

which we attempt to estimate this effect.

The assumption of (conditional) exchangeability states that the potential out-

comes are independent from their observed value on the exposure X (conditional on
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a set of covariates).1 It is a condition that is reasonable in the context of a randomized

controlled trial, but is likely to be violated to some degree in nonexperimental settings.

To make the assumption plausible, researchers condition on covariates that confound

the targeted effect. The set of covariates to be adjusted for can be determined using

the d-separation rules by Pearl (1995).2 In practice, the major challenge is making

sure that all identified confounders have actually been measured. Unfortunately, this

cannot be tested with data, but should be evaluated by the researcher based on the-

ory, existing literature, and/or expert opinion (Goetghebeur et al., 2020; Petersen &

Van der Laan, 2014). Note that the assumption of exchangeability merely concerns

which confounders should be accounted for, not how they should be accounted for.

The latter concerns estimation rather than identification, and which is where SEMs

and SNMMs with G-estimation show some key differences.

The consistency assumption states that the potential outcomes can be tied to ob-

served variables, meaning that, for example, the potential outcome Y t5,5,5u is the same

as the observed Y for individuals with exposure regime t5, 5, 5u (Hernán & Robins,

2020). In practice, this assumption implies that these constructs are well-defined,

including being specific about the (hypothetical) intervention that could set an indi-

vidual’s exposure regime to t5, 5, 5u (even if the intervention is impractical, unethical,

or impossible to carry out; Robins & Greenland, 2000). For our example, changing

an individual’s self-esteem can be accomplished by having participants partake in

some form of therapy, or by giving them a compliment. If multiple versions of an

intervention on self-esteem have different effects, then observed outcomes might not

necessarily equal the potential outcomes, and it remains unclear how numerical esti-

mates of “the effect” relate to the “the effect” as formulated in the research question

(Hernán, 2016; Pearl, 2018).

7.1.5 Conclusion

Different disciplines investigate different kind of prospective causal effects using lon-

gitudinal observational data, with psychological researcher focused largely on cross-

lagged effects, and biomedical researcher more focused on joint effects. However,

there is no inherent reason why joint effects would not be interesting for psychology,

and we are of the opinion that an exclusive focus on cross-lagged effects is unneces-

sarily limiting. Once researchers have decided which causal effect is interesting for

their particular research project, and have evaluated the plausibility of the causal

1Researchers from other scientific disciplines might be more familiar with closely-related assump-
tions such unconfounded assignment, unconfoundedness, no unmeasured confounding, ignorability,
(conditional) independence of treatment and potential outcomes, and exogeneity (cf. Angrist & Pis-
chke, 2009; Hernán & Robins, 2020; Imbens & Rubin, 2015).

2We do not provide an introduction to these graphical rules here, but the interested reader is
referred to Hernán and Robins (2020) and Pearl (2009).
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identification assumptions, they can estimate the effect one of several approaches.

7.2 Estimation approaches

We focus on two estimation approaches: The use of cross-lagged panel models (CLPMs)

within the framework of structural equation modeling, and the use of a SNMM with

G-estimation. We discuss the statistical specification of CLPMs and SNMMs: Which

dependencies of a causal DAG need to be correctly specified, and how are differences

herein across approaches (dis)advantageous when the goal is to estimate the targeted

causal effect? To help clarify some key characteristics of SNMMs with G-estimation,

we also briefly discuss a repeated multiple regression approach for estimating joint

effects.

7.2.1 CLPMs in the structural equation modeling framework

One of the most popular classes of SEMs in psychology for assessing prospective

causal relations between variables is CLPMs (Usami et al., 2019; Zyphur, Allison, et

al., 2020; Zyphur, Voelkle, et al., 2020). In this section, we outline some of the defining

characteristics of this specific structural equation modeling approach for estimating

causal effects, and discuss its advantages and disadvantages.

7.2.1.1 The basic idea

Cross-lagged panel models typically attempt to model the entire causal structure of

the process under study. In a longitudinal context, this includes specifying a model

for (a) the outcome, modeling how the outcome depends on previous exposure and

covariates; (b) the time-varying exposure, modeling how the exposure depends on

previous exposures and covariates; and (c) the time-varying covariates, modeling how

the covariate depends on previous exposures and covariates. For our example, this

modeling approach implies that the causal DAG in Figure 7.1 would be interpreted

as a path diagram, with all individual dependencies (arrows) specified. In practice,

covariances between the residuals at the same wave are usually added to the model

to capture the direct effects of unobserved time-varying confounders whose effects are

limited to a single time point, and who themselves show no dependencies over time.

Such confounding variables are not assumed in the causal DAG of Figure 7.1, which

implies that estimation of residual covariances would be redundant.

Once all causal dependencies are estimated, estimates of cross-lagged effects can

be read off directly as the regression coefficients of the boldfaced paths in Figure 7.2a.

Instead, CDEs can be obtained as combinations of the paths that make up a particular

CDE (as visualized in boldface in Figures 7.2b to 7.2d). For example, using the path
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tracing rules by Wright (1934), the CDE of X1 is a combination of the regression

coefficients on the paths X1 Ñ L2 Ñ L3 Ñ Y4; X1 Ñ L2 Ñ Y3 Ñ Y4; X1 Ñ Y2 Ñ

L3 Ñ Y4; and X1 Ñ Y2 Ñ Y3 Ñ Y4. This CDE is thus the effect of X1 on Y4 that is

mediated by all covariates in L and previous depression symptoms Y , and does not

go through future X’s. The same principle applies for the specification of the CDEs

of X2 and X3. With estimates of the CDEs, we can predict individuals’ outcomes

under various exposure regimes. Comparisons of two predicted outcomes that follow

from different regimes are then estimates of particular joint effects.

7.2.1.2 Advantages

One of the advantages of CLPMs is that they allow for the estimation of multiple

causal effects of interest simultaneously. For example, a single CLPM can estimate

all cross-lagged effects, as well as additionally specified joint effect parameters in a

single model, allowing researchers to investigate multiple hypotheses at the same time.

Furthermore, as CLPMs are commonly based on the specification of all dependencies

in a causal DAG, the problem of exposure-confounder feedback is not applicable:

If the assumed causal structure in the causal DAG is correct, and all parametric

assumptions underlying the CLPM are true (i.e., all effects are linear, and the residuals

are normally distributed), then the CLPM results in unbiased estimates.

Other advantages are related to some of the powerful statistical techniques that

have been incorporated in the structural equation modeling framework. One major

advantage is the ability to include latent variables in models. This is not only useful

for measuring unobserved constructs using multiple indicators (Loeys et al., 2014),

but also has advantages from a causal perspective. For example, it can be used to

control for (unobserved) time-invariant confounders that have a time-invariant effect

across time (Usami, 2021) or that have a time varying effect (if you free the factor

loadings; Kenny & Zautra, 2001), as well as measurement error (Kenny & Zautra,

1995). Second, SEMs are relatively easy to use as many software packages have

implemented structural equation modeling techniques—for example, the R packages

lavaan (Rosseel, 2012) and OpenMx (Neale et al., 2016), Mplus (L. K. Muthén &

Muthén, 2017), or Stata (StataCorp, 2023)—and syntax for specifying various SEMs

is widely available. Many of these software packages have implemented multiple

estimators (e.g., maximum likelihood, weighted least squares, Bayesian), as well as

model fit indices that can be used to evaluate the fit of the specified SEM to the data.

Third, many structural equation modeling software packages can handle various types

of incomplete data through the use of full information maximum likelihood (FIML;

Arbuckle, 1996). This is convenient as missing data are the norm rather than the

exception in non-experimental longitudinal settings (van Buuren, 2018, p. 7). With

FIML, all available data of individuals in the analysis are used assuming the missing
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data are missing completely at random (MCAR), or at random (MAR). This is a big

advantage compared to listwise deletion which, especially for longitudinal data, can

result in (unnecessary) loss of large portions of a dataset.

7.2.1.3 Disadvantages

The cross-lagged panel modeling approach also has several disadvantages from a causal

inference point-of-view. First, it implies that parts of the causal DAG are modeled

that are not necessary for identification and estimation of targeted causal effects.

This is a risk, as parametric misspecication of any dependency in the SEM, such as

wrongly assuming a causal effect to be linear, whereas, in fact, it is nonlinear, can

lead to bias that propagates to other effects in the model as well (VanderWeele, 2012).

Take the effect X3 Ñ Y4 for example, which is of interest as both a cross-lagged ef-

fect, and as the CDE of X3. Obtaining an unbiased estimate requires, amongst other

things, correctly adjusting for covariates that could confound this relationship (i.e.,

the conditional exchangeability assumption). Based on the causal DAG in Figure 7.1

and using the d-separation rules, it can be shown that adjustment for covariates L3,

Y3, and C is enough to block all noncausal pathways between X3 and Y4: It does

not require modeling how these covariates themselves depend on previous covariates.

However, since structural equation modeling is concerned with modeling a data gen-

erating mechanism in its entirety, the causal structure of these covariates is typically

modeled as well. This is often required to achieve desirable levels of model fit for

the SEM as a whole; yet, it is redundant if the researcher is exclusively interested in

obtaining unbiased estimates of specific causal dependencies. Similar arguments apply

when estimating other cross-lagged effects or CDEs. Van der Laan and Rose (2011)

point out that such unnecessary modeling only increases the potential for model mis-

specification, and ultimately results in bias for the estimates of the targeted causal

effects (see also Naimi et al., 2016). This point has been made before in the context

of cross-lagged panel models (Allison et al., 2017; Bollen, 1989), but does not appear

to have been picked up in current structural equation modeling practices.

A second disadvantage of cross-lagged panel modeling approaches to causal in-

ference is that the incorporation of multiple time-varying covariates in a SEM can

quickly become unwieldy. This also applies if bidirectional lag-0, or lag-2 effects (or

further) are to be included, or if quadratic terms are added to the model to specify

nonlinear dependencies (B. O. Muthén & Asparouhov, 2022a). Such extensions (and

many others) of basic linear SEMs can dramatically increase the number of param-

eters that need to be estimated, and can steeply increase the size of the covariance

matrices that need to be modeled, thereby requiring increasingly large sample sizes

to find a stable solution for the parameter estimates. For our example, if we were to

interpret the causal DAG in Figure 7.1 as a path diagram, it would include (at least,
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excluding covariances, and residual covariances) 65 parameters, that is: 39 regression

parameters, 1 variance, and 12 residual variances, 1 mean, and 12 intercepts. The

inclusion of 1 additional time-varying covariate with a similar lag-1 causal structure

adds 21 regression coefficients, 4 residual variances, and 4 intercepts to the model.

As psychological mechanisms can involve a plethora of time-varying covariates that

researchers (should) want to adjust for, attempts to model the entire causal system

can quickly become practically prohibitive.

Third, including categorical variables as covariates in CLPMs is challenging, as

the estimated regression coefficients are then on different scales, making it difficult

to combine coefficients to compute CDEs. Suppose that the time-varying covariate

L is categorical, for example use of antidepressants. This implies that regressions of

L on other variables, for example, for the path X2 Ñ L3, concern logistic or probit

regressions, resulting in logistic (e.g., odds ratios) and probit regression coefficients,

respectively (B. O. Muthén et al., 2016). It becomes challenging to combine these

coefficients with linear regression coefficients from other paths in the SEM, for instance

L3 Ñ Y4, to compute the CDEs of interest. While these computations are possible

for relatively simple situations with a single categorical time-varying covariate, this

process becomes increasingly involved when the number of time-varying categorical

covariates increases (B. O. Muthén et al., 2016; Nguyen et al., 2016).

7.2.2 Repeated multiple regression

In the causal inference literature, the causal inference approaches are usually pre-

sented in the context of exposure-confounder feedback (VanderWeele, 2021). In the

presence of this problem, standard regression methods that attempt to simultaneously

estimate all CDEs that make up a particular joint treatment effect—for example, by

regressing the outcome on all exposures and covariates—are inadequate, leading to

biased estimates of joint effects. However, it is possible to use standard regression

methods in a “repeated” manner: Multiple standard regression models are then fitted,

one for the estimation of each CDE separately. This makes it possible to work with

distinct sets of covariates to adjust for confounding, thereby preventing the problem

of exposure-confounder feedback. We explore this method as a first step towards the

explanation of SNMMs with G-estimation.

Figure 7.3 illustrates the three regression models that must be specified to estimate

the joint effect of X on end-of-study Y4 (assuming the causal DAG in Figure 7.1).

Again, the set of covariates to condition on in each model can be determined from

the causal DAG in Figure 7.1 and using the d-separation rules by Pearl (1995). For

example, to estimate the CDE of X3, we need to adjust for L3, Y3, and C, as shown

in Figure 7.3a. Under the causal identification assumptions (see Section 7.1.4) and

the parametric assumptions of this regression model (i.e., the functional form of the
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(a) Regression model for estimating CDE of X3 on Y4.
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(b) Regression model for estimating CDE of X2 on Y4.
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(c) Regression model for estimating CDE of X1 on Y4.

Figure 7.3: Overview of the regression models that need to be correctly specified for
estimating the joint effect of X on Y using standard regression methods.

modeled dependencies is correct), the regression coefficient of X3 obtained with this

regression model is an unbiased estimate of the CDE of X3 on Y4.

To estimate the CDE of X2, we fit a second regression model, this time adjusting

for L2, Y2, C, and X3, as shown in Figure 7.3b. Adjustment for X3 is required to

block the effect of X2 on Y4 that goes through the future exposure (by definition of a

CDE, this is not allowed). In this regression model, we can block the effect of X2 on

Y4 which goes through X3 simply by including X3 as an additional covariate in the

model. Under the causal identification assumptions and the parametric assumptions

of this regression model, the regression coefficient of X2 is an unbiased estimate of

the CDE of X2 on Y4.

Finally, the CDE of X1 can be estimated by the regression model illustrated in

Figure 7.3c. Here we include L1, Y1, and C as covariates to control for confounding.
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Future exposures X2 and X3 are included in the regression model to block the effect of

X1 on Y4 through X2 and X3. Similarly, under the causal identification assumptions

and the parametric assumptions of this regression model, the regression coefficient of

X1 is an unbiased estimate of the CDE of X1 on Y4.

Compared to a CLPM, the regression models in this repeated procedure rely on

the specification of fewer dependencies to get unbiased estimates of the targeted causal

effects. Specifically, no model is specified for time-varying covariates L and Y (before

the end-of-study), and the CDEs are specified directly rather than indirectly through

the individual dependencies underlying them. For this reason, this approach has a

lower risk of parametric model misspecification. This difference becomes even starker

when lag-0 or lag-2 effects are added to the causal DAG, implying that CLPMs and

repeated multiple regression models need to condition on a larger set of covariates

to adjust for confounding. Furthermore, these regression models can also be fitted

within the structural equation modeling framework. As such, researchers can combine

advantages of structural equation modeling techniques (e.g., the use of FIML for miss-

ing data handling, the ability to impose constraints over time on parameters, control

for measurement error), with the advantages of this sequential regression approach.

A disadvantage is that this approach does not estimate the CDEs simultaneously,

requiring researchers to fit multiple models themselves.

The use of SNMMs with G-estimation shows some resemblance with the repeated

approach here, in that the CDEs are estimated separately as well (i.e., sequentially,

each with a different set of covariates to adjust for), and that G-estimation of the

CDEs of X2 and X1 requires adjustment for future exposures as well. However, with

SNMMs, adjustment for future exposures is done differently; G-estimation methods

are derived from a different principle than the repeated regression methods here; and

G-estimation methods are doubly-robust, implying that estimates of causal effects

converge to the true value (as sample size increases) even if part of the model is

misspecified. This latter characteristic is hugely appealing from a causal inference

point of view.

7.2.3 SNMMs using G-estimation

SNMMs with the associated method of G-estimation are described as a flexible and

robust method for investigating joint effects in the presence of exposure-confounder

feedback. What makes this approach challenging for psychological researchers to learn

about is that (a) its use in the literature is described for diverse research problems, for

instance for assessing both joint effects, for mediation analysis, or for survival analysis;

(b) there exist multiple different G-estimation methods for fitting SNMMs to data; (c)

these different methods each have different features that make them (dis)advantageous

for specific research settings; and (d) there is little comprehensive software that has
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implemented all these methods. Therefore, our goal in this subsection is to provide

the reader with a basic understanding of what a SNMM is, what the essence of G-

estimation is, and what the (dis)advantages of this approach are compared to CLPMs.

We focus specifically on the G-estimation method as described by Vansteelandt and

Sjolander (2016). Like the repeated regression approach, this method is repeated in

nature, and has the advantage that it can be implemented with standard regression

methods, but also within the structural equation modeling framework (Loh & Ren,

2023b). The key additional advantage that it has over repeated multiple regression

is that it is doubly-robust.

7.2.3.1 The basic idea

We have already seen that joint effects are a collection of CDEs (Daniel et al., 2013),

and that CDEs can be represented as contrasts of end-of-study outcomes that follow

from two different regimes. An SNMM is a model for these contrasts, where each

CDE is equated to a causal parameter ψt. G-estimation is a sequential process that

estimates the ψt’s, starting with the last CDE, and then working backwards through

time.

The joint effect can be represented as a comparison of the regimes tx1, x2, x3u

with tx1 ` 1, x2 ` 1, x3 ` 1u. We start with the CDE of X3 on Y4, which can be

parameterized as

EpY
tx1,x2,x3`1u

4 ´ Y
tx1,x2,x3u

4 |C “ c, L3 “ l3, Y3 “ y3q “ ψ3. (7.1)

The term on the left-hand side is the difference in the expected outcome of end-of-

study Y4 if all individuals followed the regime tx1, x2, x3 ` 1u versus if all followed

the regime tx1, x2, x3u; hence, the only difference is in the exposure at the third time

point. We condition on those covariates that are sufficient to block all noncausal

paths between X3 and Y4, that is, C “ c, L3 “ l2, and Y3 “ y3 according to the

causal DAG in Figure 7.1. The causal effect is equated to the parameter ψ3. For the

purpose of this paper, we start with a basic SNMM here (e.g., no interaction term

is included here implying an absence of moderation), although Equation 7.1 can be

extended.

To estimate ψ3, we make use of G-estimation, which is any estimation procedure

that can be derived from the conditional exchangeability assumption (Vansteelandt

& Joffe, 2014). As discussed in subsection 7.1.4, conditional exchangeability states

that the potential outcomes are independent from observed exposure conditional on

covariates. For didactical reasons, we assume linearity here such that we can write
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this independence assumption as

CovpY
tx1,x2,x

˚
3 u

4 , X3 | C,L3, Y3q “ 0, (7.2)

where Y tx1,x2,x
˚
3 u represents the potential outcome for the treatment regimes with

x1 and x2 set to their actual observed values, while x˚
3 is set to a specific value, for

instance zero, for all people.

This expression in Equation 7.2 may at first appear unrelated to our parameter

of interest ψ3, and also rather impractical, as the potential outcome term Y tx1,x2,x
˚
3 u

is not actually observed (Naimi et al., 2016). However, through the SNMM, we can

connect ψ3 and Equation 7.2 (Vansteelandt & Joffe, 2014). To see this, suppose we

want to compute the expected end-of-study depression score for each individual if their

self-esteem score at the third wave had been set zero, that is, Y tx1,x2,0u; however, we

only have Y tx1,x2,x3u. But recall that ψ3 is the difference in the (expected) potential

outcomes, when there is a one unit difference in x3 (when going from the observed x3

to x3 ` 1). Hence, when going from the actual observed x3 to x˚
3 “ 0, the (expected)

change in the potential outcomes is Y
tx1,x2,x3u

4 ´ Y
tx1,x2,0u

4 “ ψ3x3. Since, under

consistency, Y
tx1,x2,x3u

4 “ Y4 (i.e., our observed end-of-study outcome), this implies

we can write

Y
tx1,x2,0u

4 “ Y4 ´ ψ3X3. (7.3)

Plugging Equation 7.3 into Equation 7.2 then leads to

CovpY4 ´ ψ3X3, X3 | C,L3, Y3q “ 0 (7.4)

This shows the essence of G-estimation: Finding a value for ψ3 such that Equation 7.4

holds.3

Multiple methods have been developed for finding ψ3. For example, Hernán and

Robins (2020) describe (for didactical reasons) a grid search, simply plugging in a

range of values for ψ3 until you find the value such that Equation 7.2 holds. However,

we continue with the method by Vansteelandt and Sjolander (2016). It relies on

fitting regression models for both the exposures and the outcome; a model for the

covariates is not required. How this procedure can be derived from the conditional

exchangeability assumption is shown in their appendix.

The method consists of three steps. First, a regression model for the exposure

X3 is specified, conditional on a set of covariates for blocking all noncausal paths,

L3, Y3, and C. Figure 7.4a illustrates this exposure model, which Vansteelandt and

3Note that, for continuous measures, the potential outcome for an exposure score of zero,
Y tx1,x2,0u, might not be substantively meaningful on itself as zero may lay outside the measure-
ment range. However, for dichotomous exposures (commonly used for applications of SNMMs) a
zero-score can represent a “no treatment” condition.
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Sjolander (2016) also refer to generally as the propensity score (PS) model. Second,

from the exposure model, predicted values for the exposure X3 are calculated, which

we denote by X̂3. These values would be referred to as “propensity scores” if the

exposure was dichotomous, but work essentially the same for continuous exposures.

The idea of this score is that it contains all information from variables that are needed

to block noncausal paths (Imbens & Rubin, 2015). Third, a regression model for the

outcome is specified conditional on the observed exposure X3, the covariates L3,

Y3, C, and X̂3. By conditioning on the PS X̂3 and the covariates L3, Y3, C, we

attempt to block all noncausal pathways by conditioning on both the PS, and a set

of covariates. If only the exposure model in step 1 is correctly specified, then this

procedure is comparable to regression adjustment on the propensity score, and the

additional covariates only increase precision (Vansteelandt & Daniel, 2014). If only

the covariate-outcome relations in the outcome model are correctly specified, then we

block all noncausal paths akin to the repeated multiple regression approach, and the

additional PS covariate merely leads to an overfitted outcome model. The regression

coefficient of X3 is the G-estimate of ψ3, that is ψ̂3: It is unbiased with both the

exposure model and the outcome model correctly specified, and consistent when only

one of both models is correct (i.e., this method is doubly-robust). Both the exposure

model to obtain the PS, and outcome model to obtain an estimate of ψ3 can be fitted

using standard OLS regression, or using maximum likelihood within the structural

equation modeling framework (Loh & Ren, 2023b).

This entire procedure works similarly for estimating the CDEs of X2 and X1. In

the SNMM, the CDE of X2 is parameterized as

EpY
tx1,x2`1,0u

4 ´ Y
tx1,x2,0u

4 |C “ c, L2 “ l2, Y2 “ y2q “ ψ2, (7.5)

The term on the left-hand side represents the difference in the expected outcome of

end-of-study Y if all individuals were exposed to the regime tx1, x2 ` 1, 0u versus

if all individuals were exposed to tx1, x2, 0u. Again, we condition on covariates to

block all noncausal paths, C “ c, L2 “ l2, and Y2 “ y2. To get the unique effect

of X2 (i.e., not going through future exposure), we additionally need to adjust for

future exposure. Unlike the repeated multiple regression approach—in which we

included future exposure as an additional covariate in the model—this method relies

on computing a new outcome variable as if everyone had the same value on future

exposures: When future exposures are a constant, they cannot have a causal effect

on the outcome. In practice, future exposure value is commonly set to zero for all

individuals such that the new outcome can be computed by

Yblipped-down “ Y4 ´ ψ̂3X3. (7.6)
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(d) Outcome model for the CDE ofX2 on end-of-
study the X3-free end-of-study outcome. Future
exposure is set to X3 “ 0, such that the depen-
dency X3 Ñ Y4 ´ ψ̂3X3 is removed.
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(e) Exposure model for G-estimation of Equa-
tion 7.7.
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(f) Outcome model for the CDE ofX1 on theX2-
and-X3-free end-of-study outcome. Future expo-
sures are set to X2 “ 0 and X3 “ 0.

Figure 7.4: Overview of the regression models that need to be correctly specified in the
fitting procedure of an SNMM.
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This equation is similar to Equation 7.3, except that we plug ψ̂3 into ψ3. The new

outcome is also referred to as the “blipped-down version of Y” or the “candidate

counterfactual”, and represents the outcome if unaffected by the exposure at occasion

3. To estimate ψ2, we first estimate an exposure model again, regressing X2 on the

covariates L2, Y2, and C (see Figure 7.4c). Second, we compute the predicted values

of exposure at time point 2, the PS score X̂2. Third, we fit a regression model for

the blipped-down outcome conditional on the covariates, observed exposure X2, and

predicted exposure X̂2 (see Figure 7.4d, in which future exposure X3 is set to 0). The

regression coefficient of X2 is then an estimate of ψ2.

Finally, in the SNMM, the CDE of X1 is parameterized as

EpY
tx1`1,0,0u

4 ´ Y
tx1,0,0u

4 |C “ c, L1 “ l1, Y1 “ y1q “ ψ1. (7.7)

The term on the left-hand side represents the difference in the expected outcome of

end-of-study Y4 if all individuals were exposed to the regime tx1 ` 1, 0, 0u versus if

all individuals were exposed to tx1, 0, 0u. We control for a those covariates that block

noncaual pathsways between X1 and the outcome, C, L1, Y1, and additionally for

future exposures by setting them to X2 “ 0 and X3 “ 0. As such, new blipped-down

versions of Y are computed by

Yblipped-down “ Y4 ´ ψ̂3X3 ´ ψ̂2X2. (7.8)

To estimate ψ1, first fit an PS model for X1 given C, L1, and Y1 (see Figure 7.4e).

Second, computed the predicted exposure X̂1. Third, fit a regression model for the

outcome given the covariates C, L1, Y1, observed exposure X1, and predicted expo-

sure X̂1 (see Figure 7.4f, in which future exposures X2 and X3 are set to 0). The

regression coefficient of X1 is then an estimate of ψ1. This completes the procedure

for obtaining point estimates for the CDEs of self-esteem on end-of-study depression

using a basic SNMM via G-estimation. To obtain confidence intervals for these es-

timates, Vansteelandt and Sjolander (2016) recommend the use of non-parametric

bootstrapping.

7.2.3.2 Advantages

Like the repeated multiple regression approach, SNMMs with G-estimation have a

lower risk of model misspecification compared to cross-lagged panel modeling ap-

proaches as no model needs to be specified for time-varying covariates L and Y (be-

fore the end-of-study), and the CDEs are obtained directly (Naimi et al., 2016).

Furthermore, because this procedure is doubly-robust, the reliance on parametric as-

sumptions being correctly specified is further reduced. Additionally, forgoing the need

to model the covariates L means that researchers can more easily adjust for multiple
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time-varying covariates, and it provides them with increased flexibility for specify-

ing functional forms of dependencies in the exposure model and regression model

(compared to CLPMs).

The basic SNMM that we introduced here can be extended such that researchers

can explore a wider range of research questions. For example, Tompsett et al. (2022)

and Vansteelandt and Sjolander (2016) discuss extensions including interactions (to

investigate effect modification) and time-varying outcomes. Finally, Loh and Ren

(2023b) illustrate how the SNMM fitting procedure can be performed within the

structural equation modeling framework. As such, researchers can combine advan-

tages of structural equation modeling techniques (e.g., the use of FIML for missing

data handling, the ability to impose constraints over time on parameters, control for

measurement error etc.), with the advantages of SNMMs with G-estimation.

7.2.3.3 Disadvantages

Vansteelandt and Sjolander (2016) describe the G-estimation procedure using stan-

dard regression methods, and recommend the use of inverse probability weighting to

account for missing data. A disadvantage of such a missing data handling approach

is that it only supports right-censored missing data: Once an individual has a miss-

ing value at a particular time point, all future observed values of this individual are

deleted as well. In practice, there are many possible missing data patterns, and this

restriction is likely to result in the deletion of observed information. An alternative

would be to use a multiple imputation procedure (van Buuren, 2018), or to fit the

required models in the structural equation modeling framework and rely on FIML

(Loh & Ren, 2023b). Furthermore, the implementation of G-estimation of SNMM in

software, for example in R packages such as gestTools (Tompsett et al., 2022) and

DTRreg (Wallace et al., 2017), is currently still inflexible. Specifically, these packages

are often tailored to situations which include lag-0 effects, and it can be challenging

to adjust the data file, and the input for required arguments in such a way that these

R packages work for situations without contemporaneous effects (as for our empirical

example). Alternatively, researchers can code the G-estimation procedure themselves,

which requires a basic knowledge of coding.

7.2.4 Conclusion

Cross-lagged panel modeling and structural nested mean modeling can both be used

to investigate research questions of joint effects. We highlight some key differences.

First, cross-lagged panel modeling approaches attempt to model the entire data gen-

erating mechanism, which requires the correct specification of the functional form

(i.e., potential nonlinearities and/or interactions between variables) of all dependen-
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cies of the exposure, outcome, and time-varying covariates. The specification of a

large number of dependencies increases the risk of model misspecification and conse-

quently invalid inferences. SNMMs with the G-estimation, however, do not require

postulating a model for time-varying covariates. Furthermore, the structural nested

mean modeling procedure by Vansteelandt and Sjolander (2016) is doubly-robust: It

requires the specification of a model for the exposures and the outcome, and still re-

sults in consistent estimates of CDE when either model is misspecified, thereby further

reducing reliance on parametric assumptions. Second, by forgoing the specification

of a covariate model, researchers have increased flexibility for including a large set of

covariates compared to cross-lagged panel approaches. This is advantageous as the

addition of multiple covariates is usually warranted to make the causal assumption of

conditional exchangeability plausible. Third, estimates of joint effects using a cross-

lagged panel modeling approach are obtained as linear combinations of path-specific

coefficients. However, in the presence of both binary and continuous covariates, some

path-coefficients represent linear regression coefficients, whereas others are interpreted

as logit or probit regression coefficients. It can be challenging to combine these paths

to obtain the CDEs of interest. Instead, in SNMMS, the CDEs are obtained directly.

There are additional differences between cross-lagged panel modeling and struc-

tural nested mean modeling that are not inherent to the models themselves, but rather

concern their application in practice. For example, missing data handling in the G-

estimation approach is predominantly done via inverse probability weighting (Hernán

& Robins, 2020; Vansteelandt & Sjolander, 2016). This can be disadvantageous as

it requires missing data to have a right-censoring structure. In practice, many other

missing data patterns may occur, resulting in unnecessary loss of data when a right-

censoring structure is enforced. However, when SNMMs with G-estimation is used

within the structural equation modeling framework (e.g., Loeys et al., 2014; Loh &

Ren, 2023b), then researchers can take advantage of structural equation modeling

techniques for missing data handling, as well as latent variables. Such applications of

SNMMs within the structural equation modeling framework seem promising, but are

rare in practice.

Finally, joint effects can be investigated alternatively by using repeated multiple

regression methods. The major difference between the standard regression approach

and the structural nested mean modeling approach by Vansteelandt and Sjolander

(2016), is that repeated multiple regression is not doubly-robust. Causal inference

advocates would argue that this is shortcoming of this method as it is therefore

more reliant on correct model specification than structural nested mean modeling

approaches.

151



Chapter 7

7.3 Empirical example: Joint effect of self-esteem

on depression

To illustrate the approaches for assessing joint effects in a psychological context, we

reanalyze self-esteem and depression data from Kuster et al. (2012). Using an online

survey, five repeated measures (at two-month intervals) of self-esteem, rumination,

and depression symptoms were collected in a German-speaking convenience sample

of N “ 663 individuals largely residing in Switzerland (96%). The original study

fitted a bivariate cross-lagged panel model (CLPM) to the data to study cross-lagged

effects between self-esteem and depression, and a trivariate CLPM to assess whether

the relationship between self-esteem and depression was mediated by rumination.

Instead, we will attempt to estimate joint effects of self-esteem on depression, with

depression at time point 5 as our end-of-study outcome of interest Y5. For pedagogical

purposes, we restrict ourselves to the inclusion of rumination as the sole time-varying

covariate although, arguably, many more baseline and time-varying covariates should

be included to make the causal assumption of exchangeability plausible.

Self-esteem was measured with the ten-item Rosenberg Self-Esteem Scale, with

responses measured on a five-point scale ranging from one (strongly disagree) to five

(strongly agree; Rosenberg, 1965; Von Collani & Herzberg, 2003). Depression symp-

toms were assessed using the twenty-item Center for Epidemiologic Studies Depression

Scale in which participants were asked to assess how frequently they had experienced

each symptom within the preceding thirty days. Participants responses were mea-

sured on a four-point scale from zero (rarely or none of the time) to three (most or

all of the time; Hautzinger & Bailer, 1993; Radloff, 1977). Rumination was measured

using the eight-item rumination subscale of the Rumination-Reflection Questionnaire,

with responses measured on five-point scales ranging from one (strongly disagree) to

five (strongly agree; Trapnell & Campbell, 1999). Self-esteem and depression mea-

sures were made publicly available by Orth et al. (2021). Rumination measures were

made available upon request by Kuster et al. (2012).

7.3.1 Statistical analyses

For all analyses, it is assumed that the causal DAG in Figure 7.1 corresponds to

the causal process by which the data in the sample were generated. To prevent

the results from being influenced by differences in how missing data are handled, a

complete data set was created first by single imputation using the R package mice

(van Buuren, 2018).

For the cross-lagged panel modeling approach, we use the the causal DAG as the

basis for a path diagram, and extended it with covariances amongst the variables at
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the first wave, and residuals at waves 2 and later. This is essentially tantamount

to the trivariate cross-lagged panel model (CLPM) as in the original study. It was

fitted to the complete data using the R package lavaan (Rosseel, 2012). The CDEs of

self-esteem at time points 1, 2, 3, and 4 on Y5 were specified as linear combinations

of paths in the model, and computed as additional parameters (i.e., quantities) in the

model.

For the SNMM with G-estimation, the procedure by Vansteelandt and Sjolander

(2016) was followed. For completeness, we also fitted repeated multiple linear re-

gression models to estimate joint effects. For all analysis approaches, 95% confidence

intervals were created based on the nonparametric bootstrap with 999 bootstrap sam-

ples using the R package boot (version 1.3-28; Canty & Ripley, 2022). All analyses

were performed in base R (version 4.2.2; R Core Team, 2022). Annotated code can

be found in the online supplementary materials.

7.3.2 Results

The column “CLPM” of Table 7.1 contains the CLPM estimates and 95% confidence

intervals of the joint effect of self-esteem on end-of-study depression. Overall, fit

indices indicated bad model fit, χ2p54q “ 755.962, p ă .001, CFI = .926, TLI = .857,

RMSEA = .140, SRMR = 0.078 (Browne & Cudeck, 1992; Hu & Bentler, 1999; Little,

2013).4 All estimated CDEs are negative, with the CDEs at time points 1, 2, and

4 denoting significance at the α “ 0.05 level. For example, the CDE at time point

1 implies that an increase in self-esteem reduces depression 8 months later even if

self-esteem at time points 2, 3, and 4 are held constant.

Results for the SNMM are presented in the column “SNMM” of Table 7.1. The

estimates of the CDEs at time points 2, 3, and 4 are similar to those of the CLPM in

terms of sign and significance. However, the CDE at time point 1 is not significant

in the SNMM (whereas it is in the CLPM).

Results for the repeated multiple linear regressions are presented in the column

“Rep. regr.” of Table 7.1. In contrast to results from the CLPM and the SNMM,

the estimate of the CDE at time point 1 is positive and significant, implying that

an increase in self-esteem is expected to lead to an increase in depression symptoms

eight months later. The CDE at time point 2, however, is nonsignificant. Akin to the

CLPM and the SNMM, the CDE at time point 3 is nonsignificant as well. The CDE

4In the SEM literature, this is commonly interpreted as a sign of model misspecification, warrant-
ing changes to the model (e.g., the inclusion of lag-2 effects or a random intercept factor). However,
in the causal inference literature, some researchers argued that the importance of model fit for causal
inference is greatly reduced for multiple reasons: (1) Lüdtke and Robitzsch (2022) and Orth et al.
(2021) argue that model fit is uninformative about the appropriateness of a SEM in relation to a
research question; (2) Tomarken and Waller (2005) argues that model fit is uninformative about the
plausibility of the conditional exchangeability assumptions as encoded in an assumed causal DAG.
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CDE CLPM SNMM Rep. regr.

SE1 Ñ DE5 -0.027* [-0.042, -0.014] 0.004 [-0.037, 0.050] 0.195* [0.119, 0.263]
SE2 Ñ DE5 -0.092* [-0.124, -0.063] -0.072* [-0.128, -0.021] 0.015 [-0.063, 0.094]
SE3 Ñ DE5 -0.014 [-0.043, 0.015] 0.017 [-0.035, 0.066] 0.093 [-0.002, 0.177]
SE4 Ñ DE5 -0.129* [-0.185, -0.073] -0.129* [-0.189, -0.077] -0.129* [-0.183, -0.077]

Table 7.1: Point estimates and 95% bootstrap confidence intervals (in square brackets)
of the controlled direct effects of self-esteem on end-of-study depression, estimated using
cross lagged panel modeling (“CLPM”), structural nested mean modeling (“SNMM”), and
repeated multiple linear regression (“Rep. regr.”). Analyses are based on the causal DAG
of Figure 7.1. Asterisks (*) denote significance at the α “ .05 level.

at time point 4 is equivalent to that of the CLPM, and similar to that of the SNMM

in terms of sign and significance.

In general, the results from the CLPM approach and SNMM approach are similar

for this particular example. Differences in the effect estimates across approaches

(and their significance) can be due to numerous factors. First, these approaches

rely on different (sets of) parametric assumptions. For example, violations of the

linearity assumption of the dependencies of the variable rumination do not impact

the validity of the SNMM (and the repeated multiple linear regression) estimates,

whereas they are expected to bias estimates in the CLPM. Moreover, the SNMM

here is doubly-robust, implying that potential misspecification in the outcome models

still results in consistent estimates from the SNMM if the exposure model is correct

(and vice versa). It is unknown which exact parametric assumptions are incorrect,

and to what degree, but given the complex nature of the phenomenon under study,

some degree of violation is expected. Second, it is likely that there are numerous

confounding covariates, both time-varying and time-invariant, that have not been

taken into account here, violating the causal conditional exchangeability assumption

(this is further elaborated upon in the Discussion). Such violations might impact

both modeling approaches differently; future studies are needed to gain more insight

in this, under various settings of violation.

7.4 Discussion

Cross-lagged panel modeling is widely used by psychological researchers as a structural

equation modeling approach for assessing lag-1 relationships between two variables

over time. While some (e.g., Bollen & Pearl, 2013) argue that SEM is a good frame-

work for causal inference, there is critique in the causal inference literature that this

popular modeling practice is not a viable option if the goal is to investigate causal

relationships. One of the main points of concern is that attempts to model a causal

process in its entirety has a high potential of model misspecification, and is unneces-
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sary if interest is limited to a set of well-defined causal effects. This problem is only

exacerbated with the inclusion of multiple time-invariant and time-varying covariates,

which researchers would want to do to make the causal identification assumption of

conditional exchangeability plausible in nonexperimental data.

In this article, we explored this concern using an empirical psychological exam-

ple. Taking inspiration from disciplines such as epidemiology and biostatistics, we

introduced joint effects as an alternative causal effect that can be interesting for psy-

chologists to target. While these effects can be specified akin to a cross-lagged panel

modeling approach within a structural equation modeling framework, they are tra-

ditionally estimated with SNMMs using G-estimation. This is an appealing method

as it does not require the specification of a model for covariates, and is flexible in

accommodating a large set of (time-varying) covariates, and lag-0 and lag-2 (or fur-

ther) effects. Furthermore, the implementation of G-estimation by Vansteelandt and

Sjolander (2016) is robust to misspecification in either the exposure model or the

outcome model, further reducing this method’s reliance on parametric assumptions.

These properties provide a motivation for psychological researchers to seriously con-

sider the use of SNMM with G-estimation to investigate causal relationships between

variables in panel data.

To further support integration of formal causal inference methods with literature

on psychological research methods, we discuss some overlap between these strands of

literature next. We also consider some limitations of empirical example, and extend

our analyses of the empirical data.

7.4.1 Controlling for stable, between-person differences

A much-discussed idea in psychology, and the social sciences more generally, is the

separation of longitudinal data into stable, between-person differences, and temporal,

within-person fluctuations (Asparouhov & Muthén, 2019; Hamaker et al., 2015; Kreft

et al., 1995). The idea has been discussed extensively in the context of cross-lagged

effects, but equally applies to the investigation of joint effects. The appeal is that a

decomposition of observed variance allows researchers to better align effect estimates

from statistical analyses with their research questions about (causal) effects at the

within-person level (Raudenbush & Bryk, 2022). This line of thinking has inspired

many researchers in the social sciences, and led to the development of many (cross-

lagged) panel models in the structural equation modeling framework (Usami et al.,

2019). One particularly popular model is the random intercept cross-lagged panel

model (Hamaker et al., 2015): By including a random intercept factor to separate the

two sources of variance, the lagged effects can be interpreted as pertaining to effects at

within-person level. Usami (2021) describes how the inclusion of the random intercept

factor has the additional advantage of controlling for unobserved heterogeneity.
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While this idea has sparked much excitement (and debate) in the psychological

literature, it has passed the epidemiological and biostatistics literature relatively un-

noticed. Only recently, Usami (2022) introduced a method for combining the random

intercept cross-lagged panel model with structural nested mean modeling approaches

for estimating CDEs. This development combines strengths of analysis approaches

from different strands of literature. Work on making these developments broadly

applicable for applied researchers is ongoing (Usami, 2023).

7.4.2 Lag-0 effects

The causal DAG of Figure 7.1 does not include direct effects of variables on other

variables at the same time point (contemporaneous effects). While the vast majority

of the SEM literature on cross-lagged panel modeling makes this (implicit) assumption

(merely controlling for relationships between contemporaneous variables through the

inclusion of a residual covariance), causal DAGs in epidemiological and biomedical

literature do commonly include contemporaneous effects. In (bio)medical settings,

the decision to give an individual a treatment X at a particular time point often

depends on a range of previous covariates, as well as current values of covariates (e.g.,

blood results). The addition of contemporaneous effects in a causal DAG reflects

this, and it has consequences for the interpretation of causal effects in the DAG.

Subsequent statistical analyses, whether it is a cross-lagged panel modeling approach

in the structural equation modeling framework, or an SNMM approach, then also

need to take this contemporaneous effects into account. Ignoring these effects (i.e.,

wrongly assuming the DAG in Figure 7.1 is correct) can create a mismatch between

the targeted causal effect, and the estimated effect.

Recently, this issue has been brought up in the SEM literature by B. O. Muthén

and Asparouhov (2022a). They state that the addition of contemporaneous effects to

cross-lagged panel models (replacing residual covariances at the same wave) may be

warranted based on the timing of measurements in datasets, especially when there

are long time intervals between subsequent measurements. Based on a reanalysis of

five empirical datasets using cross-lagged panels both with and without lag-0 effects,

they also argue that there might not be enough information in the data to make

an informed decision about whether or not the contemporaneous effect can be safely

ignored. As the omission of such effects from the causal DAG is a stronger assumption

than their inclusion (i.e., it amounts to constraining these paths to zero; Bollen &

Pearl, 2013), it is therefore advisable to always include these effects whenever there

is doubt about whether or not they exist, and to clarify if these causal paths are of

substantive interest. B. O. Muthén and Asparouhov (2022a) recommend reporting

results from models both with and without lag-0 effects.
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7.4.3 Lag-2 effects

Different rationales for inclusion of lag-2 effects in statistical models have been pro-

vided in the SEM literature and the causal inference literature. In cross-lagged panel

modeling, the addition of lag-2 autoregressive effects is sometimes discussed in the

context of achieving adequate model fit (Hamaker et al., 2015; B. O. Muthén & As-

parouhov, 2022b). This is related to the discussion on controlling for stable, between-

person differences, with lag-2 autoregressive effects interpreted as the stabilizing in-

fluences underlying trait-like differences between individuals (Asendorpf, 2021). In

the causal inference literature, however, lag-2 (and further) autoregressive and cross-

lagged effects are usually considered for confounding control. Whenever exposures or

covariates have effects that span multiple lags, it is possible that confounding cannot

be adjusted for by merely controlling for immediately prior variables in statistical

analyses. This is the case when, for example, in the causal DAG of Figure 7.1 L1

directly effects X3 (a lag-2 cross-lagged effect) and Y4 (a lag-3 cross-lagged effect).

Then, to unbiasedly estimate the CDE of X3 on end-of-study Y4, additional lagged

covariates need to be included as controls in the analyses. So while the control of im-

mediately prior (i.e., lag-1) exposures and covariates is usually important for control

of confounding of CDEs, it might be advisable to also consider lag-2 (and longer) ef-

fects in causal DAGs, and adjust the statistical analyses based on this (VanderWeele,

2021). Others, such as Daniel et al. (2013) and Vansteelandt and Sjolander (2016),

advise to condition on the entire exposure and covariate history in analyses.

7.4.4 Limitations of the empirical example

For this article, we have used an empirical example that is close to the cross-lagged

panel modeling practices that many psychological researchers are familiar with. How-

ever, from a causal inference point-of-view, there are some serious concerns. First,

the causal assumption of (conditional) exchangeability is compromised, as we have

not included any time-invariant covariates that have been found to confound the rela-

tionship between self-esteem and depression, such as gender, social economic status,

or personality traits like neuroticism (Mu et al., 2019). There are also likely to be

a numerous time-varying covariates, such as substance use, relationship status, re-

lationship satisfaction, job success, and academic performance, that have not been

included in the analyses (Boden et al., 2008). Second, we argue that the causal as-

sumption of consistency is compromised as well. There are numerous options for a(n)

(hypothetical) intervention on self-esteem, each of which might have a different effect

on the outcome. Information on how self-esteem was increased was also not present

in the empirical data. As such, our research question is ill-defined making it difficult

to link our theoretical interest to the observed data (Hernán, 2016).
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CDE CLPM (lag-1,2) SNMM (lag-1,2,3)

SE1 Ñ DE5 -0.070* [-0.113, -0.030] 0.037 [-0.044, 0.117]
SE2 Ñ DE5 -0.084* [-0.137, -0.034] -0.154* [-0.243, -0.061]
SE3 Ñ DE5 0.020 [-0.066, 0.107] 0.016 [-0.086, 0.118]
SE4 Ñ DE5 -0.110* [-0.193, -0.032] -0.096* [-0.182, -0.017]

Table 7.2: Point estimates and 95% bootstrap confidence intervals (in square brackets)
of the controlled direct effects of self-esteem on end-of-study depression, estimated using a
CLPM and structural nested mean models. Compared to the analyses in Table 7.1, the
models are extended with lag-2 (and lag-3) effects. Asterisks (*) denote significance at the
α “ .05 level.

One aspect that can be improved using the available data is the conditional in-

dependence assumptions that are represented in the causal DAG in Figure 7.1, and

that serve as the basis for our statistical analyses. The omission of lag-2 (and longer)

effects are conditional independence assumptions that are regularly made in cross-

lagged panel modeling, but that can negatively affect the validity of estimates when

violated (VanderWeele, 2012). To prevent making these assumptions at all, we extend

the CLPM with lag-2 effects, and SNMM with lag-2 and lag-3 effects. The results are

presented in Table 7.2.

The inclusion of lag-2 effects significantly improved model fit compared to the

CLPM with lag-1 effects, ∆χ2p27q “ 471.598 with p ă .001, although overall model

fit remains subpar, χ2p27q “ 284.364, p ă .001, CFI = .973, TLI = .895, RMSEA =

.120, SRMR = 0.035. Numerical results from the CLPM changes somewhat with the

inclusion of lag-2 effects, most significantly the CDE of self-esteem point 1 (the effect

of which is now stronger): The conclusions drawn would be the same. Results from

the SNMM also changed somewhat numerically, but not substantively. The choice of

which model’s results to report might not be obvious in practice. The consistency

of these results across methods, gives some degree of confidence that the results are

not unduly reliant on parametric assumptions specific to any one analysis approach.

If the results were to differ significantly across methods, then one could argue that

the SNMM with lag-1, lag-2, and lag-3 effects makes fewest causal and parametric

assumptions, and hence produced most reliable results. At the same time, violations of

the causal identification assumptions imply that the results of this empirical example

from any method should not be interpreted causally.
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7.5 Conclusion

We discussed joint effects as an alternative causal effect to cross-lagged effects, and dis-

cussed the use of SNMM with G-estimation as an alternative modeling approach. We

hope that this introduction and the empirical example allows psychological researchers

to make better informed decisions about which kind of causal effect is interesting to

target, while also managing the number of parametric assumptions that one needs to

make during the statistical analyses. While explicit causal reasoning is not unique

to causal inference methods in the epidemiological and biostatistical literature, the

statistical (parametric) advantages of an SNMM approach should be a motivation for

psychological researchers to gain experience with this modeling approach. This article

aids in developing an intuition for some of the concepts that this modeling approach

builds on. We recommend the recent work of Loh and Ren (2023b) and the work of

Loeys et al. (2014) as introductions to the G-estimation procedure itself. The works

of Daniel et al. (2013), Hernán and Robins (2020), and Naimi et al. (2016) are useful

as more detailed introductions to other causal inference methods from an biomedical

perspective.
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CHAPTER 8

Discussion

For some time now, the use of structural equation modeling (SEM) has been fully

established as a statistical modeling framework in psychological research. A common

area of application is for the analysis of longitudinal observational data (i.e., panel

data), in which relations between variables over time are investigated. In this disserta-

tion I studied and applied popular classes of longitudinal SEM-models for descriptive,

predictive, and causal research questions. In Chapter 2, a relatively straight-forward

multivariate regression model was specified in the SEM framework to investigate the

associations between individual development of social emotion regulation, and later

social well-being. In Chapter 3 I used k-fold cross-validation to compare the out-of-

sample prediction performance of three latent growth curve models (LGCMs) for pre-

dicting patients’ reduction of posttraumatic stress disorder symptoms four weeks after

completion of a clinical treatment program. Chapters 4 and 5 studied and extended

the random intercept cross-lagged panel model, which is a popular method amongst

psychologists for investigating relations between variables over time. In Chapters 6

and 7 cross-lagged panel modeling approaches were compared to analysis methods

from the potential outcomes framework, in particular the use of inverse probability

weighting (IPW) estimation of marginal structural models (MSMs), and structural

nested mean models (SNMMs) with the associated method of G-estimation.

The popularity and accessibility of SEM in the social sciences is also associated

with an increasing concern about misconceptions of SEM, and ignorance about its

constraints and limitations (Tomarken & Waller, 2005). Chapters 6 and 7 discussed

some concerns in relation to cross-lagged panel modeling approaches and causal in-

ference, specifically the critiques of Van der Laan and Rose (2011) and VanderWeele

(2012) who point out that SEM models depend heavily on conditional independence

and parametric assumptions; since these are likely to be violated—at least to some

degree—in practice, they state that SEM models are prone to bias when one attempts
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to infer causal effects from observational data. As argued in Chapter 6, these claims

should be of concern whenever SEM models are used for applied causal research. In

practice, however, empirical researchers appear unbothered by these concerns, and

many estimated relationships between variables in SEM models are frequently inter-

preted causally, albeit implicitly (Grosz et al., 2020; Hamaker et al., 2020). Further-

more, adaptation of alternative causal inference methods that have been developed

in disciplines like epidemiology and biostatistics (and within the potential outcomes

framework) is still lacking in the psychological literature, despite the fact that these

methods rely on fewer parametric assumptions, offer a principled approach for reason-

ing explicitly about causality, and therefore, in principle, should lead to more robust

causal conclusions.

In this chapter, I continue the discussion in Chapters 6 and 7 on the use of SEM

for causal inference in psychology. Specifically, I consider three lessons that I have

drawn about how the SEM approach and potential outcomes approach to causal

inference can complement each other. The focus in this discussion on Chapters 6

and 7 is because these topics have been of primary interest to me in the latter half

of my PhD project, and will play a central role in my research as a postdoc. This

does not imply that I value the work done in other chapters of this dissertation

less. Instead, I consider collaborations with applied researchers as vital means for

explaining novel and complex statistical methods to the end-users of the methods

that we, as statisticians, develop. Similarly, didactical treatments of existing methods,

such as the random intercept cross-lagged panel model discussed in Chapters 4 and

5, are important as well to inform applied researchers about how these methods are

best applied, as well as their limitations.

8.1 Lesson 1: Increase focus on Phases 1 and 2 of

causal research in psychology

Chapter 6 describes three phases of causal research, namely (1) the formulation of

a causal research question using potential outcomes, that is, formulate a causal es-

timand; (2) the identification of the causal estimand, translating it into a statistical

estimand; and (3) estimation of the statistical estimand from a finite random sam-

ple using a statistical model (inspired by Goetghebeur et al., 2020; Petersen & Van

der Laan, 2014). While SEM models are compatible with the potential outcomes-

framework (De Stavola et al., 2015; Moerkerke et al., 2015; B. O. Muthén et al.,

2016), typical applications of SEM for causal inference ignore Phases 1 and 2, and are

mainly concerned with estimation of statistical models (Kunicki et al., 2023). This is

problematic, as a research question needs to be well-defined in Phase 1 to be able to

derive something from it that is statistically testable. Furthermore, identification of
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a causal estimand in Phase 2 is needed to link the theoretical constructs in a research

question to observable data. The steps taken in both phases are fundamental for esti-

mation in Phase 3, and for interpretation of the estimates. If the research question is

ill-defined (i.e., ambiguous), and not carefully identified, then it remains unclear how

the numerical estimates that are obtained in Phase 3 relate to the research question,

and how valid these estimates actually are.

However, implementing a change to increased focus on Phases 1 and 2 in the causal

research practices of psychological researchers is no mean feat. It requires effort on

behalf of empirical researchers themselves—who are well-advised to get acquainted

with the potential outcomes approach for causal inference—and of methodologists

who would need to write accessible papers that outline how potential outcomes ap-

proaches work in a psychological context. I hope that Chapters 6 and 7 are useful

first steps in this regard. Moreover, I believe that it is important that methodologists

and statisticians also become actively involved in empirical research to aid in imple-

menting the potential outcomes approach in psychological research, and performing

the, sometimes rather complex, potential outcomes methods. Doing so also helps

to set good examples for other empirical researchers, and can inform methodologists

about practical (or conceptual) issues of potential outcomes methods that empirical

researchers run into. Finally, increased awareness of the importance of Phases 1 and

2 for causal research also requires adjustments to our statistical education. Currently

many SEM-related courses, and statistics courses in general, appear to focus predom-

inantly on estimation methods, with relatively little attention devoted to how one

carefully formulates a well-defined causal estimand, and how to identify it. Inclusion

of these topics in methodological and statistical education, along with practical, and

didactical examples about how Phases 1 and 2 work in psychological settings, might

greatly contribute to increase focus on Phases 1 and 2 in causal psychological research.

8.2 Lesson 2: Avoid unnecessary modeling

Once a research question has been carefully formulated in Phase 1 of causal research

(resulting in a causal estimand), researchers should evaluate if the causal estimand

can be estimated from observable data (i.e., Phase 2). A commonly used instrument

for this is the use of directed acyclical graphs (DAGs, a visualization of the data gen-

erating mechanism) in combination with the d-separation rules, to determine which

set of covariates needs to be adjusted for to obtain unbiased estimates of specific

effects (i.e., which covariates need to be adjusted for to close backdoor-paths; Pearl,

2009; Petersen & Van der Laan, 2014). Typically, from these DAGs it can be derived

that a causal estimand can be identified without specifying a statistical model for

time-varying covariates in the adjustment set. This point is described in more detail

163



Chapter 8

in Chapter 6. However, SEM approaches, and in particular cross-lagged panel mod-

eling approaches, typically model the entire data generating mechanism, including

specifying a statistical model for the time-varying covariates. Such SEM models thus

model more than strictly necessary for identification of the causal estimand. This in-

creases the risk of violating parametric assumptions that the model makes, and while

such violations do not always lead to significant bias (as demonstrated for specific

scenario’s in Chapter 6), it might be generally advisable to use methods that relax

the parametric assumptions as much as possible (VanderWeele & Vansteelandt, 2010).

Especially when including many covariates, the number of parametric assumptions,

and the risk of bias associated with it, can increase dramatically, and unnecessarily

so from a purely causal perspective (VanderWeele, 2012).

Here I also want to critically reflect on my own work in Chapter 4. This chapter ad-

dresses some of the statistical modeling questions that applied researchers have voiced

about the random intercept cross-lagged panel model (RI-CLPM), and presents three

extensions of this model. The RI-CLPM has rapidly increased in popularity among

psychological researchers in recent years for studying causal processes between vari-

ables over time, and in the online supplementary materials of this chapter I describe

how the RI-CLPM can be extended with a third time-varying variable. Researchers

might be interested in this extension as a way to include an additional covariate for

confounding-control. Specifically, I describe how a third time-varying variable L can

be modeled similarly to the two time-varying variables X and Y : That is, decompos-

ing L into a between-person component and within-person components, and including

lagged relationships between the within-person components. Looking back, I find this

advice incomplete from a causal inference point-of-view, as it forgoes any discussion

about the necessity of specifying specific lagged effects for the within-components of

L. In fact, using the d-separation rules it can be shown that modeling the dependen-

cies of L are unnecessary if the interest is solely in the cross-lagged effects between X

and Y .

8.3 Lesson 3: The SEM framework can play an im-

portant role in causal research in psychology

The advantages of the potential outcomes framework for causal inference in relation

to SEM approaches are clearly outlined in Chapters 6 and 7, and related papers (De

Stavola et al., 2015; Loeys et al., 2014; Loh & Ren, 2023b; Moerkerke et al., 2015;

B. O. Muthén et al., 2016). The potential outcomes framework provides researchers

with a principled approach for formulating an explicit causal question, and identify-

ing the causal estimand. Furthermore, the causal inference methods that have been

derived from the potential outcomes framework rely on fewer parametric assumptions
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compared to popular SEM models. Therefore, I have occasionally asked myself the

question if there is still a role for SEM in causal inference?

My answer is “yes”, but I think it is important to clearly distinguish between the

general SEM framework, and specific (classes of) SEM models. The work done in

Chapters 6 and 7 has made me more critical of the use of cross-lagged panel models

as a class of SEM models in causal research: Methods from the potential outcomes

framework such as IPW esimation of MSMs and SNMMs with G-estimation simply

rely less on conditional independence and parametric assumptions than cross-lagged

panel models. However, there are some clear reasons why such methods from the

potential outcomes framework cannot be readily adapted in psychological research.

One reason is that many of the psychological constructs of interest are latent in nature,

for example attitudes, emotions, and psychopathology. To study these constructs

in quantitative research, measurements models are required to capture the latent

constructs statistically, and the general SEM framework has been incredibly successful

in providing researchers with the tools to do so. In epidemiology—the discipline that

much of the methodological research into potential outcomes methods takes place

in—latent variables are encountered only rarely. In such biomedical disciplines, the

exposures and outcomes are more commonly directly observable and well-defined,

pertaining to, for example, some treatment that individuals did (or did not) receive,

cell counts, and/or the occurrence of some event (e.g., death, diagnosis), etc. I believe

that this mismatch between the (latent) practice of psychological researchers and the

potential outcomes framework is one of the reasons why psychological researchers

have not widely taken up potential outcomes approaches yet.

Luckily, the potential outcomes approach and SEM are not polar opposites that

detract. In contrast many of the causal inference methods derived from the potential

outcomes framework, such as IPW estimation and G-estimation, can actually be

performed within the SEM framework (e.g., see Loeys et al., 2014; Loh et al., 2020;

Loh & Ren, 2023b). This allows researchers to combine the desirable properties of

the SEM framework, such as the incorporation of latent variables, the possibility

to easily impose parameter constraints, (relatively) easy control for measurement

error, and flexible techniques for dealing with missing data handling (e.g, the use

of full information maximum likelihood), with the advantages of potential outcomes

methods for causal inference. I am convinced that the combination of methods from

the potential outcomes framework and the latent variable capabilities of the SEM

framework is a promising avenue for future methodological research, and can much

improve causal inference in psychology.
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Lüdtke, O., & Robitzsch, A. (2022). A comparison of different approaches for es-

timating cross-lagged effects from a causal inference perspective. Structural

Equation Modeling: A Multidisciplinary Journal, 29 (6), 888–907. https ://

doi.org/10.1080/10705511.2022.2065278

Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Matu-

ration of cognitive processes from late childhood to adulthood. Child Devel-

opment, 75 (5), 1357–1372. https://doi.org/10.1111/j.1467-8624.2004.00745.x

Luna, B., Padmanabhan, A., & O’Hearn, K. (2010). What has fMRI told us about the

development of cognitive control through adolescence? Brain and Cognition,

72 (1), 101–113. https://doi.org/10.1016/j.bandc.2009.08.005

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and

determination of sample size for covariance structure modeling. Psychological

Methods, 1 (2), 130–149. https://doi.org/10.1037/1082-989X.1.2.130

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum,

A. S., Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone,

S. M., Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl,

E. A., Perrone, A. J., Cordova, M., Doyle, O., . . . Dosenbach, N. U. F. (2022).

Reproducible brain-wide association studies require thousands of individuals.

Nature, 603 (7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9

Martin, D. J., Garske, J. P., & Davis, M. K. (2000). Relation of the therapeutic

alliance with outcome and other variables: A meta-analytic review. Journal

of Consulting and Clinical Psychology, 68 (3), 438–450. https://doi.org/10.

1037/0022-006X.68.3.438

181

https://doi.org/10.1080/10705511.2014.915372
https://doi.org/10.1080/00273171.2019.1681251
https://doi.org/10.1037/met0000574
https://doi.org/10.1177/25152459231174029
https://doi.org/10.1177/25152459231174029
https://doi.org/10.1080/10705511.2022.2065278
https://doi.org/10.1080/10705511.2022.2065278
https://doi.org/10.1111/j.1467-8624.2004.00745.x
https://doi.org/10.1016/j.bandc.2009.08.005
https://doi.org/10.1037/1082-989X.1.2.130
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1037/0022-006X.68.3.438
https://doi.org/10.1037/0022-006X.68.3.438


References

Matsueda, R. L. (2023). A brief history of structural equation modeling. In R. H.

Hoyle (Ed.), Handbook of structural equation modeling (2nd).

Mavranezouli, I., Megnin-Viggars, O., Grey, N., Bhutani, G., Leach, J., Daly, C.,

Dias, S., Welton, N. J., Katona, C., El-Leithy, S., Greenberg, N., Stockton,

S., & Pilling, S. (2020). Cost-effectiveness of psychological treatments for

post-traumatic stress disorder in adults (S. McDonald, Ed.). PLOS ONE,

15 (4), e0232245. https://doi.org/10.1371/journal.pone.0232245

Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical

power and accuracy in parameter estimation. Annual Review of Psychology,

59 (1), 537–563. https://doi.org/10.1146/annurev.psych.59.103006.093735

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance.

Psychometrika, 58 (4), 525–543. https://doi.org/10.1007/BF02294825

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55 (1), 107–

122. https://doi.org/10.1007/BF02294746

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures.

Psychological Bulletin, 105 (1), 156–166. https : / /doi . org/10 . 1037/0033 -

2909.105.1.156

Millsap, R. E. (2011). Statistical approaches to measurement invariance. Routledge/-

Taylor & Francis Group.

Mitchell, T. R., & James, L. R. (2001). Building better theory: Time and the specifi-

cation of when things happen. The Academy of Management Review, 26 (4),

530. https://doi.org/10.2307/3560240

Moerkerke, B., Loeys, T., & Vansteelandt, S. (2015). Structural equation modeling

versus marginal structural modeling for assessing mediation in the presence

of posttreatment confounding. Psychological Methods, 20 (2), 204–220. https:

//doi.org/10.1037/a0036368

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to

evaluate statistical methods. Statistics in Medicine, 38 (11), 2074–2102. https:

//doi.org/10.1002/sim.8086

Mu, W., Luo, J., Rieger, S., Trautwein, U., & Roberts, B. W. (2019). The relation-

ship between self-esteem and depression when controlling for neuroticism (S.

Vazire & S. Vazire, Eds.). Collabra: Psychology, 5 (1), 11. https://doi.org/10.

1525/collabra.204

Mulder, J. D., & Hamaker, E. L. (2021). Three extensions of the random intercept

cross-lagged panel model. Structural Equation Modeling: A Multidisciplinary

Journal, 28 (4), 638–648. https://doi.org/10.1080/10705511.2020.1784738

Mundlak, Y. (1978). On the pooling of time series and cross section data. Economet-

rica, 46 (1), 69. https://doi.org/10.2307/1913646

182

https://doi.org/10.1371/journal.pone.0232245
https://doi.org/10.1146/annurev.psych.59.103006.093735
https://doi.org/10.1007/BF02294825
https://doi.org/10.1007/BF02294746
https://doi.org/10.1037/0033-2909.105.1.156
https://doi.org/10.1037/0033-2909.105.1.156
https://doi.org/10.2307/3560240
https://doi.org/10.1037/a0036368
https://doi.org/10.1037/a0036368
https://doi.org/10.1002/sim.8086
https://doi.org/10.1002/sim.8086
https://doi.org/10.1525/collabra.204
https://doi.org/10.1525/collabra.204
https://doi.org/10.1080/10705511.2020.1784738
https://doi.org/10.2307/1913646


References

R

Muthén, B. O., & Asparouhov, T. (2022a). Can cross-lagged panel modeling be relied

on to establish cross-lagged effects? https://www.statmodel.com/download/

WT5.pdf

Muthén, B. O., & Asparouhov, T. (2022b). Recent advances in modeling short and

long longitudinal data. https://www.statmodel.com/download/ASA2022.pdf

Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2016). Regression and mediation

analysis using Mplus. Muthén & Muthén.

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to de-

cide on sample size and determine power. Structural Equation Modeling:

A Multidisciplinary Journal, 9 (4), 599–620. https : / / doi . org / 10 . 1207 /

S15328007SEM0904 8

Muthén, L. K., & Muthén, B. O. (2009). Categorical latent variable modeling using

Mplus: Cross-sectional data. https://statmodel.com/download/Topic%205.

pdf

Muthén, L. K., & Muthén, B. O. (2017). Mplus user’s guide. Muthén & Muthén.

Naimi, A. I., Cole, S. R., & Kennedy, E. H. (2016). An introduction to G methods.

International Journal of Epidemiology, 46 (2), 756–762. https://doi.org/10.

1093/ije/dyw323

Narmandakh, A., Roest, A. M., Jonge, P. D., & Oldehinkel, A. J. (2020). The bidi-

rectional association between sleep problems and anxiety symptoms in ado-

lescents: A TRAILS report. Sleep Medicine, 67, 39–46. https://doi.org/10.

1016/j.sleep.2019.10.018

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick,

R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2016).

OpenMx 2.0: Extended structural equation and statistical modeling. Psy-

chometrika, 81 (2), 535–549. https://doi.org/10.1007/s11336-014-9435-8

Nesdale, D., & Lambert, A. (2007). Effects of experimentally manipulated peer rejec-

tion on children’s negative affect, self-esteem, and maladaptive social behav-

ior. International Journal of Behavioral Development, 31 (2), 115–122. https:

//doi.org/10.1177/0165025407073579

Neuhaus, J. M., & Kalbfleisch, J. D. (1998). Between- and within-cluster covariate

effects in the analysis of clustered data. Biometrics, 54 (2), 638. https://doi.

org/10.2307/3109770

Nezlek, J. B. (2001). Multilevel random coefficient analyses of event- and interval-

contingent data in social and personality psychology research. Personality

and Social Psychology Bulletin, 27 (7), 771–785. https://doi.org/10.1177/

0146167201277001

Nguyen, T. Q., Webb-Vargas, Y., Koning, I. M., & Stuart, E. A. (2016). Causal

mediation analysis with a binary outcome and multiple continuous or ordinal

183

https://www.statmodel.com/download/WT5.pdf
https://www.statmodel.com/download/WT5.pdf
https://www.statmodel.com/download/ASA2022.pdf
https://doi.org/10.1207/S15328007SEM0904_8
https://doi.org/10.1207/S15328007SEM0904_8
https://statmodel.com/download/Topic%205.pdf
https://statmodel.com/download/Topic%205.pdf
https://doi.org/10.1093/ije/dyw323
https://doi.org/10.1093/ije/dyw323
https://doi.org/10.1016/j.sleep.2019.10.018
https://doi.org/10.1016/j.sleep.2019.10.018
https://doi.org/10.1007/s11336-014-9435-8
https://doi.org/10.1177/0165025407073579
https://doi.org/10.1177/0165025407073579
https://doi.org/10.2307/3109770
https://doi.org/10.2307/3109770
https://doi.org/10.1177/0146167201277001
https://doi.org/10.1177/0146167201277001


References

mediators: Simulations and application to an alcohol intervention. Structural

Equation Modeling: A Multidisciplinary Journal, 23 (3), 368–383. https ://

doi.org/10.1080/10705511.2015.1062730

Nijdam, M. J., Gersons, B. P. R., Reitsma, J. B., De Jongh, A., & Olff, M. (2012).

Brief eclectic psychotherapy v. eye movement desensitisation and reprocess-

ing therapy for post-traumatic stress disorder: Randomised controlled trial.

British Journal of Psychiatry, 200 (3), 224–231. https://doi.org/10.1192/bjp.

bp.111.099234

Nolan, C. R. (2016). Bending without breaking: A narrative review of trauma-sensitive

yoga for women with PTSD. Complementary Therapies in Clinical Practice,

24, 32–40. https://doi.org/10.1016/j.ctcp.2016.05.006

Oertzen, T., Hertzog, C., Lindenberger, U., & Ghisletta, P. (2010). The effect of mul-

tiple indicators on the power to detect inter-individual differences in change.

British Journal of Mathematical and Statistical Psychology, 63 (3), 627–646.

https://doi.org/10.1348/000711010X486633

Ormel, J., Rijsdijk, F. V., Sullivan, M., van Sonderen, E., & Kempen, G. I. J. M.

(2002). Temporal and reciprocal relationship between IADL/ADL disability

and depressive symptoms in late life. The Journals of Gerontology Series B:

Psychological Sciences and Social Sciences, 57 (4), P338–P347. https://doi.

org/10.1093/geronb/57.4.P338

Ormel, J., & Schaufeli, W. B. (1991). Stability and change in psychological distress

and their relationship with self-esteem and locus of control: A dynamic equi-

librium model. Journal of Personality and Social Psychology, 60 (2), 288–299.

https://doi.org/10.1037/0022-3514.60.2.288

Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021). Testing prospec-

tive effects in longitudinal research: Comparing seven competing cross-lagged

models. Journal of Personality and Social Psychology, 120 (4), 1013–1034.

https://doi.org/10.1037/pspp0000358

O’Shaughnessy, E. S., Berl, M. M., Moore, E. N., & Gaillard, W. D. (2008). Pe-

diatric functional magnetic resonance imaging (fMRI): Issues and applica-

tions. Journal of Child Neurology, 23 (7), 791–801. https://doi.org/10.1177/

0883073807313047

Ousey, G. C., Wilcox, P., & Fisher, B. S. (2011). Something old, something new:

Revisiting competing hypotheses of the victimization-offending relationship

among adolescents. Journal of Quantitative Criminology, 27 (1), 53–84. https:

//doi.org/10.1007/s10940-010-9099-1

Ozkok, O., Vaulont, M. J., Zyphur, M. J., Zhang, Z., Preacher, K. J., Koval, P.,

& Zheng, Y. (2022). Interaction rffects in cross-lagged panel models: SEM

with latent interactions applied to work-family conflict, job satisfaction, and

184

https://doi.org/10.1080/10705511.2015.1062730
https://doi.org/10.1080/10705511.2015.1062730
https://doi.org/10.1192/bjp.bp.111.099234
https://doi.org/10.1192/bjp.bp.111.099234
https://doi.org/10.1016/j.ctcp.2016.05.006
https://doi.org/10.1348/000711010X486633
https://doi.org/10.1093/geronb/57.4.P338
https://doi.org/10.1093/geronb/57.4.P338
https://doi.org/10.1037/0022-3514.60.2.288
https://doi.org/10.1037/pspp0000358
https://doi.org/10.1177/0883073807313047
https://doi.org/10.1177/0883073807313047
https://doi.org/10.1007/s10940-010-9099-1
https://doi.org/10.1007/s10940-010-9099-1


References

R

gender. Organizational Research Methods, 25 (4), 673–715. https://doi.org/

10.1177/10944281211043733

Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo ex-

periments: Design and implementation. Structural Equation Modeling: A Mul-

tidisciplinary Journal, 8 (2), 287–312. https://doi.org/10.1207/S15328007SEM0802

7

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82 (4), 669–688.

https://doi.org/10.1093/biomet/82.4.669

Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge

University Press. https://doi.org/10.1017/CBO9780511803161

Pearl, J. (2010). On the consistency rule in causal inference: Axiom, definition, as-

sumption, or theorem? Epidemiology, 21 (6), 872–875. https://doi.org/10.

1097/EDE.0b013e3181f5d3fd

Pearl, J. (2018). Does obesity shorten life? Or is it the soda? On non-manipulable

causes. Journal of Causal Inference, 6 (2), 20182001. https ://doi .org/10 .

1515/jci-2018-2001

Petersen, M. L., & Van der Laan, M. J. (2014). Causal models and learning from

data: Integrating causal modeling and statistical estimation. Epidemiology,

25 (3), 418–426. https://doi.org/10.1097/EDE.0000000000000078

Price, M., Szafranski, D. D., Van Stolk-Cooke, K., & Gros, D. F. (2016). Investigation

of abbreviated 4 and 8 item versions of the PTSD Checklist 5. Psychiatry

Research, 239, 124–130. https://doi.org/10.1016/j.psychres.2016.03.014

Prinstein, M. J., & Aikins, J. W. (2004). Cognitive moderators of the longitudinal as-

sociation between peer rejection and adolescent depressive symptoms. Journal

of Abnormal Child Psychology, 32 (2), 147–158. https://doi.org/10.1023/B:

JACP.0000019767.55592.63

Prinstein, M. J., & La Greca, A. M. (2004). Childhood peer rejection and aggression

as predictors of adolescent girls’ externalizing and health risk behaviors: A 6-

year longitudinal study. Journal of Consulting and Clinical Psychology, 72 (1),

103–112. https://doi.org/10.1037/0022-006X.72.1.103

R Core Team. (2022). R: A language and environment for statistical computing.

Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in

the general population. Applied Psychological Measurement, 1 (3), 385–401.

https://doi.org/10.1177/014662167700100306

Ragsdale, K. A., Watkins, L. E., Sherrill, A. M., Zwiebach, L., & Rothbaum, B. O.

(2020). Advances in PTSD treatment delivery: Evidence base and future di-

rections for intensive outpatient programs. Current Treatment Options in

Psychiatry, 7 (3), 291–300. https://doi.org/10.1007/s40501-020-00219-7

185

https://doi.org/10.1177/10944281211043733
https://doi.org/10.1177/10944281211043733
https://doi.org/10.1207/S15328007SEM0802_7
https://doi.org/10.1207/S15328007SEM0802_7
https://doi.org/10.1093/biomet/82.4.669
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1097/EDE.0b013e3181f5d3fd
https://doi.org/10.1097/EDE.0b013e3181f5d3fd
https://doi.org/10.1515/jci-2018-2001
https://doi.org/10.1515/jci-2018-2001
https://doi.org/10.1097/EDE.0000000000000078
https://doi.org/10.1016/j.psychres.2016.03.014
https://doi.org/10.1023/B:JACP.0000019767.55592.63
https://doi.org/10.1023/B:JACP.0000019767.55592.63
https://doi.org/10.1037/0022-006X.72.1.103
https://doi.org/10.1177/014662167700100306
https://doi.org/10.1007/s40501-020-00219-7


References

Raudenbush, S. W., & Bryk, S. W. R. A. S. (2022). Hierarchical linear models: Ap-

plications and data analysis methods. SAGE Publications.

Riva, P., Romero Lauro, L. J., DeWall, C. N., Chester, D. S., & Bushman, B. J. (2015).

Reducing aggressive responses to social exclusion using transcranial direct

current stimulation. Social Cognitive and Affective Neuroscience, 10 (3), 352–

356. https://doi.org/10.1093/scan/nsu053

Robins, J. M. (1986). A new approach to causal inference in mortality studies with

a sustained exposure period: Application to control of the healthy worker

survivor effect. Mathematical Modelling, 7 (9-12), 1393–1512. https : //doi .

org/10.1016/0270-0255(86)90088-6

Robins, J. M., & Greenland, S. (2000). Causal inference without counterfactuals: Com-

ment. Journal of the American Statistical Association, 95 (450), 431. https:

//doi.org/10.2307/2669381

Robins, J. M., Hernán, M. A., & Brumback, B. (2000). Marginal structural models

and causal inference in epidemiology. Epidemiology, 11 (5), 550–560. http :

//www.jstor.org/stable/3703997

Rogosa, D. (1980). A critique of cross-lagged correlation. Psychological Bulletin, 88 (2),

245–258. https://doi.org/10.1037/0033-2909.88.2.245

Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphi-

cal causal models for observational data. Advances in Methods and Prac-

tices in Psychological Science, 1 (1), 27–42. https : / / doi . org / 10 . 1177 /

2515245917745629

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score

in observational studies for causal effects. Biometrika, 70 (1), 41–55. https:

//doi.org/10.1093/biomet/70.1.41

Rosenbaum, S., Vancampfort, D., Steel, Z., Newby, J., Ward, P. B., & Stubbs, B.

(2015). Physical activity in the treatment of Post-traumatic stress disorder:

A systematic review and meta-analysis. Psychiatry Research, 230 (2), 130–

136. https://doi.org/10.1016/j.psychres.2015.10.017

Rosenberg, M. (1965). Society and the adolescent self-image. Princeton University

Press.

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal

of Statistical Software, 48 (2). https://doi.org/10.18637/jss.v048.i02

Rosseel, Y. (2020). Small sample solutions for structural equation modeling. In R. Van

de Schoot & M. Miocevic (Eds.), Small sample size solutions (pp. 226–238).

Routledge.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and

nonrandomized studies. Journal of Educational Psychology, 66 (5), 688–701.

https://doi.org/10.1037/h0037350

186

https://doi.org/10.1093/scan/nsu053
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.2307/2669381
https://doi.org/10.2307/2669381
http://www.jstor.org/stable/3703997
http://www.jstor.org/stable/3703997
https://doi.org/10.1037/0033-2909.88.2.245
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1016/j.psychres.2015.10.017
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1037/h0037350


References

R

Rubin, D. B. (Ed.). (1987). Multiple Imputation for Nonresponse in Surveys. John

Wiley & Sons, Inc. https://doi.org/10.1002/9780470316696

Rudolph, K. D., Davis, M. M., Skymba, H. V., Modi, H. H., & Telzer, E. H. (2021).

Social experience calibrates neural sensitivity to social feedback during ado-

lescence: A functional connectivity approach. Developmental Cognitive Neu-

roscience, 47, 100903. https://doi.org/10.1016/j.dcn.2020.100903

Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance

structure analysis. Psychometrika, 50 (1), 83–90. https://doi.org/10.1007/

BF02294150

Scherpenzeel, A. C. (2018). “True” longitudinal and probability-based internet panels:

Evidence from the netherlands. In M. Das, P. Ester, & L. Kaczmirek (Eds.),

Social and Behavioral Research and the Internet (1st ed., pp. 77–104). Rout-

ledge. https://doi.org/10.4324/9780203844922-4

Schottenbauer, M. A., Glass, C. R., Arnkoff, D. B., Tendick, V., & Gray, S. H. (2008).

Nonresponse and dropout rates in outcome studies on PTSD: Review and

methodological considerations. Psychiatry: Interpersonal and Biological Pro-

cesses, 71 (2), 134–168. https://doi.org/10.1521/psyc.2008.71.2.134

Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility

to social context. Developmental Cognitive Neuroscience, 19, 1–18. https :

//doi.org/10.1016/j.dcn.2015.12.009

Seddig, D. (2020). Individual attitudes toward deviant behavior and perceived at-

titudes of friends: Self-stereotyping and social projection in adolescence and

emerging adulthood. Journal of Youth and Adolescence, 49 (3), 664–677. https:

//doi.org/10.1007/s10964-019-01123-x
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Structureel vergelijkingsmodeleren (in het Engels “structural equation modeling”,

kortweg “SEM”) is een breed toepasbare techniek voor statistische analyses. Het

is voornamelijk populair als analysemethode onder psychologen en sociale- en ge-

dragswetenschappers, en vele verschillende SEM-modellen zijn reeds ontwikkeld voor

een breed scala aan onderzoeksvragen en toepassingen. Eén van de unieke kenmerken

van SEM is de mogelijkheid om “latente variabelen” te definiëren. Dit zijn variabe-

len die niet direct geobserveerd kunnen worden, maar worden afgeleid op basis van

één, of meerdere gemeten “indicatoren”. Deze latente variabelen kunnen worden ge-

bruikt om inhoudelijke concepten te meten —bijvoorbeeld de mate van depressie bij

een persoon aan de hand van diens antwoorden op een depressie-vragenlijst—maar

ze worden ook gebruikt voor puur statistische concepten, zoals meetfout, clusters, of

groei-componenten.

Dit proefschrift gaat over het toepassen, het verder ontwikkelen, en het kritisch

evalueren van SEM modellen, specifiek voor de analyse van longitudinale observa-

tionele data. De term “longitudinaal” refereert hier naar een studie-opzet waarbij

participanten herhaaldelijk zijn gemeten (bijvoorbeeld, elke maand, voor een jaar

lang). De term “observationeel” refereert naar de niet-experimentele aard van de

metingen: Er is geen interventie toegepast door onderzoekers om de score van parti-

cipanten op bepaalde variabelen te manipuleren, er is slechts passief geobserveerd/-

gemeten. Om een goede afweging te kunnen maken over welke specifiek longitudinaal

SEM model gebruikt kan worden, moet eerst duidelijk zijn of een onderzoeksvraag

beschrijvend, voorspellend, of oorzakelijk van aart is. Dit onderscheid is belangrijk

omdat de onderliggende problemen/zorgen bij statistische analyses verschillen per

type onderzoeksvraag.

Bij beschrijvend onderzoek is het voornaamste doel om eigenschappen van de

data, van groepen, of van personen, samen te vatten. Vaak wordt hierbij gekeken

naar (cor)relaties tussen variabelen, maar worden deze niet gëınterpreteerd als oor-

zakelijk. Bij voorspellend onderzoek is het primaire doel om nieuwe voorspellingen

te doen op basis van reeds gemeten data. Deze voorspellingen kunnen worden ge-

bruikt om bepaalde individuen te selecteren, te monitoren, of te screenen. Een groot

punt van aandacht is hier het minimaliseren van de voorspellingsfout bij nieuwe data
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(“out-of-sample”). Bij oorzakelijk onderzoek is het doel om inzicht te krijgen in het

onderliggende causale mechanisme (of een specifiek deel daarvan) van een bepaald

proces. Om dit te doen op basis van observationele data is er gedegen theorie nodig

over het proces wat onderzocht wordt. Een van de grootste zorgen bij dit type on-

derzoek is het voorkomen van schijnverbanden, dat zijn misleidende relaties tussen

variabelen die niet daadwerkelijk oorzakelijk zijn.

In dit proefschrift worden SEM modellen toegepast, verder ontwikkeld, en geëva-

lueerd voor zowel beschrijvend, voorspellend, als oorzakelijk onderzoek. Verder zijn

de hoofdstukken een mix van toegepast en methodologisch onderzoek, en betreft het

onderzoek in verschillende disciplines: van neurowetenschappen en klinische psycho-

logie, tot epidemiologie en biostatistiek.

Hoofdstuk 2 is een samenwerking met dr. Michelle Achterberg en dr. Simone Dob-

belaar, en betreft de emotieregulatie van kinderen. Dit toegepaste longitudinale on-

derzoek is tweedelig. Allereerst beschreven wij de algemene ontwikkeling van neurale-

en gedragsresponse op sociale afwijzing bij kinderen in de leeftijd van 7 tot 13 jaar oud,

evenals individuele verschillen in de ontwikkeling. Hiervoor is gebruik gemaakt van

een Bayesiaans multilevel model. Ten tweede onderzochten wij de relaties tussen deze

individuele verschillen in ontwikkeling van kinderen en hun sociaal-welbevinden in

hun vroege adolescentie. Hiervoor hebben wij gebruik gemaakt van een multivariaat

regressiemodel binnen SEM.

Hoofdstuk 3 is een toegepast, longitudinaal project samen met Valentijn Alting

van Geuseau en dr. Suzy Matthijsen. Het betreft een recent ontwikkeld, twee-

weken durend klinisch behandelprogramma voor patiënten met een posttraumatische

stressstoornis (PTSS) bij Altrecht, een instelling voor geestelijke gezondheidszorg.

Wegens kostenoverwegingen en de hoge mate van patiënten-uitval was er interesse

in het vroegtijdig voorspellen of een patiënt in het behandelprogramma baat zou

hebben bij het afmaken van de behandeling. Het doel van deze studie was dus om

PTSS-afname vier weken na het behandelprogramma te voorspellen op basis van

de PTSS-symptoomontwikkeling gedurende het programma. Hiervoor is gebruik ge-

maakt van k-voudige kruisvalidatie om de “out-of-sample”-voorspellingsfout van vijf

verschillende latente groeicurve-modellen te vergelijken.

Hoofdstuk 4 is een samenwerking met prof. dr. Ellen Hamaker waarin we drie

uitbreidingen van het random intercept cross-lagged panel model (RI-CLPM) hebben

besproken, namelijk (a) het includeren van een stabiele tussenpersoon-variabele als

voorspeller of uitkomst in het model; (b) het specificeren van een meervoudige-groep-

extensie; en (c) het includeren van meerdere indicatoren voor latente constructen

binnen het model. Een belangrijk onderdeel van dit project is een website die als

online bijlage dient. Hierop kunnen lezers R code en Mplus syntax vinden, evenals

voorbeelddata en antwoorden op veelgestelde vragen.

196



Nederlandse samenvatting

Hoofdstuk 5 introduceert een strategie voor poweranalyse specifiek voor het RI-

CLPM. Deze strategie is ontworpen om zo gebruiksvriendelijk mogelijk te zijn, en is

tevens gëımplementeerd in de R package powRICLPM.

Hoofdstuk 6 is een samenwerking met dr. Kim Luijken, dr. Bas Penning de Vries,

en dr. Ellen Hamaker. Het doel van deze studie was tweeledig. Ten eerste diende

de studie om inzicht te geven in kritiek vanuit de causale inferentie literatuur op

het gebruik van SEM-modellen voor causaal onderzoek. Hiertoe hebben we eerst be-

schreven hoe het gebruik van SEM past binnen het veelgebruikte potential outcomes

kader, en hoe het in verhouding staat tot een andere analysemethode, namelijk het ge-

bruik van marginal structural models met inverse probability weighting (IPW-MSM).

Ten tweede, hebben we in deze studie onderzocht wat de finite-sample performance is

van padanlayse (een SEM-methode) en IPW-MSM bij schendingen van parametrische

aannames waar de methoden op berusten. Hierbij is gebruik gemaakt van simulaties.

Hoofdstuk 7 is een samenwerking met dr. Satoshi Usami en dr. Ellen Hamaker.

We hebben cross-lagged effecten met zogenaamde joint effecten vergeleken, evenals

twee methodes om deze effecten te schatten: cross-lagged panel modellen (SEM-

modellen), en structural nested mean modellen in combinatie met G-estimation vanuit

de potential outcomes literatuur. Hierbij hebben we gebruik gemaakt van een empi-

risch psychologisch voorbeeld over zelfvertrouwen en depressie. Daarnaast leveren we

een bijdrage aan de integratie tussen de SEM literatuur en de potential outcomes li-

teratuur door onderwerpen te bespreken die voornamelijk óf in de SEM literatuur, of

in de potential outcomes literatuur worden besproken, maar niet in beide: Deze on-

derwerpen betreffen (a) het scheiden van tussen-persoon- en binnen-persoonvariantie,

(b) het gebruik van lag-0 relaties, en (c) het gebruik van lag-2 relaties.
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