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Abstract

The mystery of the universe stems from the inherent disorder on its spatial
scale and its constant evolution, which is manifested in the study of the dynamics
of disordered systems and materials. In this chapter, we introduce the basic
concepts of disordered materials and anomalous dynamics, the two central to the
theme of this thesis. An outline of this paper is also presented.
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1.1 Ordered and disordered materials

In material science, disordered materials can be defined clearly and straightfor-
wardly as having an arrangement of atoms/molecules that is not crystalline. Let’s
begin with crystals that are often regarded as structure with order. Crystals are
ordered since they can be obtained by periodical translation of an elementary
(geometric) cell in space. In other words, in a crystal an assembly of particles
(atoms or molecules) is packed in a regular structure along lines in space and
planes in a geometric lattice [1]. Disordered materials are without long range
order, but typically have significant local chemical and topological order. Unlike
the case of a crystal, the order rapidly decays with distance: distances of sec-
ond neighbors are more uncertain than for first neighbors, and so on. The decay
of these spatial correlations is an experimental observable that is accessible via
diffraction. Well-known disordered states of matter are liquids and gases, but
there are more disordered solids, such as polycrystals, glasses, polymer melts,
and gels. Also these have garnered widespread attention and research due to
their unique structures which exhibit intriguing transport, thermal conductivity,
and mechanical properties. Fig. 1.1 succinctly illustrates the comparison between
disordered solid materials and single crystals.

Crystalline Polycrystalline Amorphous

Disordered

Figure 1.1: The comparesion of crystalline and disordered states for solid.

In this thesis, polycrystalline graphene and amorphous silicon (a-Si) (as shown
in Fig. 1.2) have been selected as the two types of disordered solids for my pri-
mary research. Graphene, with its remarkable electrical, mechanical, and ther-
mal properties, has been a subject of intense research since its first isolation in
2004 by Andre Geim and Konstantin Novoselov [2]. This two-dimensional (2D),
one-atom-thick layer of carbon atoms arranged in a hexagonal lattice has shown
promise for revolutionizing fields ranging from electronics and energy storage to
materials science and nanotechnology [3–7].
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Due to the limitations of fabrication technology, the synthesized graphene is
mostly present in a polycrystalline state [8]. Polycrystalline graphene retains
many of the extraordinary properties of its single-crystal counterpart but in-
troduces new physics and phenomena due to the presence of grain boundaries.
These grain boundaries, typically characterized by their mismatch angles and the
arrangement of pentagonal, hexagonal, and heptagonal carbon rings, can signifi-
cantly impact the material’s overall properties [9–11].

Amorphous silicon (a-Si) is a non-crystalline form of silicon that has garnered
significant interest in the field of electronics and photovoltaics. Unlike its crys-
talline counterpart, amorphous silicon is characterized by a random network of
silicon atoms. This lack of long-range order gives a-Si unique electronic and opti-
cal properties that differ significantly from crystalline silicon (c-Si). Early studies
on the structure of amorphous silicon (a-Si) primarily relied on X-ray scattering
experiments and electron microscope imaging. Over the past half-century, the de-
velopment of computer-assisted research technologies has led to the proposition
of various structural topology models for a-Si, which have enhanced our under-
standing of its complex structure and propelled applications in various fields such
as optoelectronics and solar cells [12,13].

The electronic and mechanical properties of polycrystalline graphene and a-
Si have been well-studied over the past few decades. The dynamical proper-
ties related to mechanical characteristics are, however, still poorly understood.
Chapters 3 to 5 of this thesis discuss and investigate the dynamical properties of
polycrystalline graphene and a-Si in the hope of filling gaps in knowledge in this
research area.

(a) (b)

Figure 1.2: (a) A buckled polycrystalline graphene sample with grain boundaries
constituted by pairs of 5-7 rings are marked in white. (b) A sample of amorphous
silicon.
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1.2 Ising model

Figure 1.3: A schematic diagram of a two-dimensional square Ising lattice [14],
where red and blue arrows represent spins oriented upwards and downwards,
respectively.

The Ising model, named after the German physicist Ernst Ising [15], is a funda-
mental model in statistical mechanics and condensed matter physics. It serves as
a crucial framework for understanding the behavior of magnetic materials, ferro-
magnetism in particular. The Ising model is a binary spin system, where each
spin can take one of two possible values, typically denoted as ”up” or ”down”,
as shown in Fig. 1.3. Red and blue arrows represent spins oriented upwards and
downwards, respectively. In the simplest case of Ising model, without an external
field, the Hamiltonian of the Ising model on a L× L square lattice is defined as

H = −J
∑
⟨i,j⟩

sisj. (1.1)

Here, J is the interaction strength between spins, si = ±1 is the orientation of
the spin at site i, and the summation runs over all pairs of nearest-neighbor spin
sites. It has been proved that a phase transition does exist for spatial dimensions
d ≥ 2 [16]. The critical temperature has been reported to be Tc = 2/ln(1 +

√
2)

and 4.5116174(2) for d = 2 and d = 3, respectively [17].
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Several well-known algorithms have been proposed for the simulation study
of Ising dynamics. For example, Glauber dynamics [18, 19], Kawasaki Dynamics
[20], or cluster dynamics [21, 22]. The difference between Glauber and Kawasaki
dynamics is whether the magnetization is locally conserved or not. In Kawasaki
dynamics, the spins at neighboring sites are proposed to be exchanged, which
keeps the magnetization constant and is particularly useful for the study of the
conserved-order-parameter (COP) Ising model. The Wolff algorithm is usually
faster than Glauber dynamics. Glauber dynamics is solely considered in the the-
sis. Glauber dynamics is a single-spin-flip dynamics, where spin flips are proposed
at random locations, which are then either accepted or rejected according to the
Metropolis algorithm [18]. For a transition from state u to state v, the resulting
energy difference ∆E = Ev − Eu is measured. If ∆E < 0, the proposed flip is
always accepted; otherwise, the flip is accepted with the probability e−β∆E, with
inverse temperature β = (kT )−1, in which k is the Boltzmann constant and T is
temperature.

1.3 Anomalous dynamics

Figure 1.4: In a double-logarithmic plot, the variation of the mean square dis-
placement (MSD) with respective to time for normal and anomalous diffusion,
respectively. JKRIEGER/(CC BY-SA 3.0)

In classical Brownian motion or normal diffusion, the mean square displacement
(MSD) of particle motion exhibits a linear dependence on time, as described by
the Einstein-Smoluchowski equation:

⟨(r(t) − r(0))2⟩ = 2dDt, (1.2)
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where r(t) is the position at time t, d is the dimensionality and D is the so-
called diffusion coefficient. In the case of anomalous diffusion, the relationship
between the mean square displacement and time τ is no longer linear and follows
a power-law dependence:

⟨(r(t) − r(0))2⟩ ∝ tα, (1.3)

in which α is a positive exponent that is not equal to one. Based on the value of
α, anomalous diffusion can be categorized into two types.

When α > 1, the diffusion is referred to as superdiffusion or enhanced diffu-
sion. In this regime, particles move faster than they would during conventional
Brownian motion, and the mean square displacement grows more rapidly than
a linear function of time. This behavior may be due to long-distance movement
events or persistent driving forces such as convective flows in fluids [23].

When α < 1 the phenomenon is known as subdiffusion or slowed diffusion.
In subdiffusive behavior, the particle displacement increases slower than it would
in conventional Brownian motion. This is often due to the presence of obstacles
or traps, such as in porous media [24] or colloidal gels [25], where particles are
hindered by obstructions.

Anomalous diffusive behavior has been observed in a variety of natural and
engineered systems, including molecular motion within living cells [26, 27], time
series of economic indicators [28], and the spread of contaminants in the environ-
ment [29]. The study of anomalous diffusion contributes to a deeper understand-
ing and description of transport processes in these complex systems.

1.3.1 A simple example

A well-known one-dimensional (1D) particle diffusion model that exhibits anoma-
lous diffusion is the Single-File diffusion model (as shown in Fig. 1.5). In this
model, a sequence of particles is confined to a 1D channel, where each particle
is free to diffuse without the influence of an external potential field, perform-
ing random walks to the left or right. However, the particles cannot pass each
other, meaning that exclusion forces prevent them from swapping positions or
overlapping during movement. Consequently, the movement of any given particle
is constrained by its neighbors, differing from the traditional Brownian motion
or normal diffusion, where each particle moves independently without exclusion
forces.

For the Single-File Diffusion model, the anomalous diffusion exponent α is
typically 1/2, which means that the mean square displacement MSD ∝ t1/2. This
reflects a diffusion speed that is slower than that of normal diffusion. The reason
for this anomalous diffusion behavior can be understood through the constrained
dynamics of the particles. Since the particles cannot cross each other, their
movement is strongly influenced by the motion of the adjacent particles. As such,
even though all particles engage in unbiased random walks, their effective diffusion
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distance is reduced due to the confinement, leading to subdiffusive behavior.

The Single-File Diffusion model serves not only as a tool to understand anoma-
lous diffusive behavior but also to describe particle diffusion in practical problems,
such as ion transport in proteins and pores [30,31], and molecular diffusion in nan-
otubes [32]. The model is particularly useful in explaining diffusion constraints
within material and biological systems on a microscopic scale.

Figure 1.5: A typical Single-File diffusion model [33]. Diffusing particles in a
one-dimensional channel where mutual passage is excluded, i.e yj ≤ yj+1 − ∆ for
j = 1, . . . , N − 1.

1.3.2 Classical models

���

	��

���

����

���

������
�
��

Figure 1.6: Comparison of the 2D trajectories of three classic random models over
100 time steps. The probability density of fractional Brownian motion (fBm) is
Gaussian, but it can lead to anomalous diffusion. The continuous time random
walk (CTRW) model consists of waiting times and jumping lengths of different
distribution forms. In Lévy flights, the particle has finite velocity.

We list some classical models that can result in anomalous diffusion. The compar-
ison between these models and the anomalous dynamics in disordered materials
is discussed in Chapter 4.
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• Fractional Brownian Motion (fBm): This model was first introduced by
Kolmogorov in 1940 within the framework of Hilbert space [34]. Its proba-
bility density distribution function is Gaussian, but it can lead to anomalous
diffusion. Fig. 1.6(a) presents a typical two-dimensional trajectory of fBm.
fBm is a generalization of Brownian motion with long-range correlations,
where the step sizes are positively (persistent) or negatively (anti-persistent)
correlated with previous steps [35–38]. The stochastic integral expression
of fBm BH(t) can be represented as follows:

BH (t) =
1

Γ
(
H + 1

2

) (∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dB (s)

+

∫ t

0

(t− s)H− 1
2 dB (s)

)
(1.4)

Here B(t) represents Brownian motion, γ is the gamma function. H is
the Hurst exponent, H ∈ (0, 1). fBm shows sub-diffusive behavior when
H < 1/2, normal diffusion and super-diffusive behavior when H = 1/2 and
H > 1/2, respectively.

• Continuous-Time Random Walk (CTRW): CTRW is a model that effec-
tively describes the diffusion process of particles, which was introduced by
Montroll and Weiss in 1965 [39]. They extended the concept of regular
random walks on a lattice to a continuous time scale. This process exhibits
jumps at random intervals, where the waiting times and jump lengths often
follow heavy-tailed distributions, such as power-law distributions [40–44].
For a CTRW model characterized by different distributions of waiting times
ψ (t) and jump lengths ω (x), the model exhibits sub-diffusive behavior when
ψ (t) has a divergent first moment and ω (x) has a finite second moment. A
typical CTRW particle diffusion trajectory is shown in Fig. 1.6(b), where it
can clearly be seen that there are waiting times between each jump event.

• Lévy Flight: In this process, particles perform a random walk with step
lengths drawn from a heavy-tailed distribution like the Lévy distribution,
which has an infinite variance and mean that result in finite velocities of
particles and super-diffusive behavior [45–47]. Fig. 1.6(c) exhibits a typical
diffusion trajectory of particle in Lévy Flight model.

1.4 Organization of this thesis

The structure of this thesis follows the following arrangement:

In Chapter 1, two fundamental concepts are introduced that are central to
the theme of this thesis: disordered materials and anomalous dynamics. These
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basic concepts run throughout the entire thesis, serving as a foundation for the
subsequent chapters.

In Chapter 2, the dynamic critical behavior of the two-dimensional and three-
dimensional Ising model is studied in equilibrium state under Glauber dynamics.
Unlike the previous research, we focus on the mean square deviation (MSD) of
the magnetization M over time, as well as the autocorrelation function of M. We
numerically verify and speculate novel dynamic exponents.

In Chapter 3, the structural dynamical properties of polycrystalline graphene
is studied. The natural fluctuations of a sample of polycrystalline graphene are
separated into the dynamical equivalences of the bulk modulus and shear mod-
ulus. The analysis of their MSDs is studied, and a relationship between their
diffusion coefficients is established. The relationship between these diffusion co-
efficients and the response to external forces is constructed through the Einstein
equation.

In Chapter 4, we similarly constructed structural quantities in amorphous
silicon and studied their dynamical properties. We found that the MSD exhibits
normal diffusion behavior in the early stage, while the quantities related to the
shear modulus exhibit anomalous subdiffusive behavior over longer times: MSD ∼
ta (a < 1). We compare the dynamical behavior with classic models describing
anomalous diffusion, such as fractional Brownian motion (fBm) and continuous
random time walks (CRTW). We find the velocity autocorrelation function to be
negative, which is an essential difference with CRTW, but also holds for fBm.

In Chapter 5, the domain growth behavior in polycrystalline graphene is stud-
ied, which is an out-of-equilibrium process. We used a domain recognition algo-
rithm to quantify the coarsening process. We also describe the crystal orientation
distribution and defect density, as a function of time in the crystallization pro-
cess of polycrystalline graphene. We also discuss the effects of a substrate on the
domain growth.
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Abstract

We investigate the dynamical critical behavior of the two- and three-dimensional
Ising model with Glauber dynamics in equilibrium. In contrast to the usual stand-
ing, we focus on the mean-squared deviation of the magnetization M , MSDM , as a
function of time, as well as on the autocorrelation function of M . These two func-
tions are distinct but closely related. We find that MSDM features a first crossover
at time τ1 ∼ Lz1 , from ordinary diffusion with MSDM ∼ t, to anomalous diffusion
with MSDM ∼ tα. Purely on numerical grounds, we obtain the values z1 = 0.45(5)
and α = 0.752(5) for the two-dimensional Ising ferromagnet. Related to this, the
magnetization autocorrelation function crosses over from an exponential decay
to a stretched-exponential decay. At later times, we find a second crossover at
time τ2 ∼ Lz2 . Here, MSDM saturates to its late-time value ∼ L2+γ/ν , while the
autocorrelation function crosses over from stretched-exponential decay to simple
exponential one. We also confirm numerically the value z2 = 2.1665(12), earlier
reported as the single dynamic exponent. Continuity of MSDM requires that
α(z2 − z1) = γ/ν − z1. We speculate that z1 = 1/2 and α = 3/4, values that
indeed lead to the expected z2 = 13/6 result. A complementary analysis for the
three-dimensional Ising model provides the estimates z1 = 1.35(2), α = 0.90(2),
and z2 = 2.032(3). While z2 has attracted significant attention in the literature,
we argue that for all practical purposes z1 is more important, as it determines
the number of statistically independent measurements during a long simulation.

This chapter is partially based on the following publication:

Liu Z, Vatansever E, Barkema G T, et al. Critical dynamical behavior of the
Ising model[J]. Physical Review E, 2023, 108(3): 034118.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.108.034118
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.108.034118
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2.1 Introduction

Universality is a key concept in statistical physics [48]. Phenomena which at a
first glance seem completely unrelated, such as the liquid-gas phase transition
and the ferromagnetic-paramagnetic phase transition in magnetic materials, be-
long to the same universality class, sharing the same set of critical exponents and
other renormalization-group invariants that characterize their equilibrium behav-
ior around the critical point [49]. The Ising model [50], the simplest fruit-fly model
in statistical physics which lends itself well for theory and simulation, is found to
belong to the same universality class [51–53]. Studies of the critical equilibrium
properties of the Ising model are therefore of direct experimental relevance [51].

The concepts of critical phenomena can fortunately be extended to dynamical
processes – for a seminal review see Ref. [54]. However, while universality is well
established for equilibrium properties, it is not clear in how far it also extends
to dynamical properties [54–57]. As it is well-known, the onset of criticality
is marked by a divergence of both the correlation length ξ and the correlation
time τ . While the former divergence yields singularities in static quantities, the
latter manifests itself notably as critical slowing down. To describe dynamical
scaling properties, an additional exponent is required in addition to the static
exponents. This so-called dynamic exponent z links the divergences of length
and time scales, i.e., τ ∼ ξz [58, 59]. In a finite system, ξ is bounded by the
linear system size L, so that τ ∼ Lz at the incipient critical point. The dynamic
critical exponent z has been numerically computed to be z = 2.1665(12) at two
dimensions by Nightingale and Blöte [58]. Note the value z = 2.0245(15) at three
dimensions [59].

In the chapter we attempt to extend our knowledge in the field by highlight-
ing an overlooked aspect of dynamic critical phenomena using single spin-flip
(Glauber) dynamics on the two- and three-dimensional Ising ferromagnet. In
contrast to the standard belief that the dynamical critical behavior is character-
ized by a single dynamic exponent z, we provide numerical evidence that there
is another dynamic critical exponent, considerably smaller than the most studied
one, which appears to be of greater practical relevance. In particular, we provide
a more refined description of the magnetization autocorrelation function featur-
ing three regimes that are separated by two crossover times, namely τ1 ∼ Lz1 and
τ2 ∼ Lz2 , where z1 is a newly identified dynamic exponent and z2 the already
well-known exponent [56–59].

The rest of the chapter is laid out as follows: In Sec. 2.1 we introduce the model
and outline the numerical details of our implementation. In Sec. 2.2 we introduce
the key observables under study and elaborate on the analysis of the numerical
data, placing our findings into context. Finally, in Sec. 2.3 we critically summarize
the main outcomes of this work in the framework of the current literature and
also set an outlook for future studies.
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We consider the nearest-neighbor, zero-field Ising model with Hamiltonian

H = −J
∑
⟨i,j⟩

σiσj, (2.1)

where J > 0 indicates ferromagnetic interactions, σi = ±1 denotes the spin on
lattice site i, and ⟨. . .⟩ refers to summation over nearest neighbors only. Here,
we study the two- and three-dimensional Ising model on the square (L × L)
and simple cubic (L× L× L) lattices respectively, employing periodic boundary
conditions. Many equilibrium properties of these models are known, especially
at two dimensions where exact results are available, such as the location of the
critical temperature, i.e., Tc = 2/ ln

(
1 +

√
2
)

= 2.269185 . . . [16]. For the three-
dimensional model on the other hand, there is a wealth of high-accuracy estimates
of critical parameters from various approximation methods, see Ref. [60] and ref-
erences therein. One such prominent example is the value of the critical point
Tc = 4.511523 . . ., recently proposed in Ref. [61] via large-scale numerical simu-
lations.

The Ising model is without doubt a prototypical model for studying dynami-
cal properties. For this purpose, an elementary move is a proposed flip of a single
spin at a random location, which is then accepted or rejected according to the
Metropolis algorithm [18]. One unit of time then consists of N = L2 elemen-
tary moves at two dimensions (similarly, N = L3 at three dimensions). This
dynamics is often referred to as Glauber dynamics [62–64], even though Glauber
originally used a slightly different acceptance probability. Note that transition
rates in Glauber dynamics are never higher, but always at least half of those of
single spin-flip Metropolis dynamics, so that all dynamic exponents are shared.
Other commonly used dynamical algorithms in the extensive literature are the
spin-exchange (Kawasaki) dynamics [65–67], as well as numerous types of cluster
algorithms [68–70]. Yet, these are outside the scope of the current work.

On the technical side, our numerical simulations of the Ising model were per-
formed at the critical temperature [16, 61] using single spin-flip dynamics and
systems with linear sizes within the range L = {16 − 96} at two dimensions
(accordingly, L ∈ {10 − 40} at three dimensions). We note that the simulation
time needed for a single realization on a node of a Dual Intel Xeon E5-2690 V4
processor was 1 hour for L = 96 at two dimensions. The analogous CPU time
was 35 minutes for L = 40 at three dimensions. For each system size L, 104−105

independent realizations have been generated at both dimensions.
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2.2 Results and Analysis
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Figure 2.1: (a) Mean-square displacement of the magnetization ⟨∆M2(t)⟩ vs.
time t. (b) The normalized autocorrelation ĈM(t) = ⟨M(t)M(0)⟩/⟨M2(0)⟩ as a
function of t. Results for the two-dimensional Ising model.
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Figure 2.2: (a) Data collapse of MSDM(t) curves over various system sizes around
the first crossover Lz1 , with a scaling form of MSDM(t)/(L2t) ∼ t/Lz1 , where z1 is
0.45±0.05. MSDM(t) turns over from the normal diffusion (∼ L2t) to anomalous
diffusion (∼ L2+z1−αz1tα) at t = Lz1 . (b) Data collapse for − ln (ĈM(t)) over
various L around t = Lz1 with a scaling factor L−γ/ν (note that γ/ν = 1.75 for
the two-dimensional Ising model). ĈM(t) shifts from exponential to stretched
exponential around t = Lz1 . Results for the two-dimensional Ising model.

The two key observables that allow us to elaborate on some new aspects of the
dynamical behavior of the Ising ferromagnet are based on the order parameter
(magnetization) of the system

M =
∑
i

σi. (2.2)
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The first is the mean-squared deviation of the magnetization

MSDM(t) = ⟨(∆M(t))2⟩ = ⟨(M(t) −M(0))2⟩, (2.3)

and the second the magnetization’s autocorrelation function, defined as

CM(t) = ⟨M(t) ·M(0)⟩. (2.4)

We start the presentation with the two-dimensional Ising model and the
raw numerical data, as shown in Fig. 2.1. In particular Fig. 2.1(a) depicts the
MSDM(t), whereas Fig. 2.1(b) the normalized autocorrelation ĈM(t) = ⟨M(t)M(0)⟩
/⟨M2(0)⟩, both as a function of time. Three distinct regimes can be identified,
separated by two crossover correlation times, τ1 and τ2.

At short times t, the dynamics consist of L2t proposed spin flips at spatially
separated locations, of which a fraction f ≈ 0.14 is accepted, as determined
numerically. The dynamics thus involve fL2t uncorrelated changes of ∆M = ±2.
Consequently, MSDM in the short-time regime is given by

MSDM = 4fL2t (t≪ τ1). (2.5)

At these short times, the magnetization does not have enough time to change
significantly. Hence, it stays close to its value at t = 0. The expectation of the
squared magnetization is related to the magnetic susceptibility [52]

χ =
β

L2
⟨M2⟩. (2.6)

Thus, in the short-time regime,

CM(t) ≈ kbTL
2χ ∼ L2+γ/ν (t≪ τ1). (2.7)

Here, we used the equilibrium property χ ∼ Lγ/ν .

On the other hand, at very long times the two values of the magnetization are
uncorrelated so that ⟨M(t) ·M(0)⟩ is small as compared to ⟨M2⟩. Hence we can
derive that MSDM saturates as follows

MSDM(t) = ⟨M(t)2 +M(0)2 − 2M(t)M(0)⟩
≈ 2⟨M2⟩ ≈ 2kbTL

2χ.
(2.8)
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Figure 2.3: (a) Data collapse of MSDM(t) curves at the second crossover t ≈ Lz2 ,
with a scaling form of MSDM(t)/(Lλt) ∼ t/Lz2 , the numerically found λ and z2
are 2 + γ/ν − z2 and 2.1667, respectively. MSDM(t)(t) gradually transforms to
saturation (∼ L2+γ/ν) from the anomalous diffusion (∼ L2+z1−αz1tα). (b) Data
collapse for − ln (ĈM(t)) around t = Lz2 , where the scaling factor L−z2 leads to
an excellent collapse. ĈM(t) is expected to turn over from stretched exponential
to exponential around t = Lz2 . Results for the two-dimensional Ising model.

���� ��� ��� ���
���

���

���

���

���

��	

��


��� ��� ���
����

����

���

�
�
�
�
�
�
�

���

�
�
�
�
�
�
�

���

Figure 2.4: Similar to Fig. 2.1 but for the three-dimensional Ising model.

Rather than an operational procedure, the dynamics can also be formulated
as the application of the transition matrix A to a state vector S⃗. This is a rather
unpractical formulation as A is a sparse matrix of size 2L2 ×2L2

, but nevertheless
useful for the sake of argument. This transition matrix has an eigenvalue of
e0 = 1, with an eigenvector in which each element lies the likelihood of that state
(the Boltzmann distribution). It also has a second-highest eigenvalue e1 ≈ 1,
which determines the ultimate exponential decay of the autocorrelation. At long
times t, the dynamical matrix is applied tL2 times. Thus, expressed in A the



22 CHAPTER 2. Critical dynamical behavior of the Ising model

dynamics can be written as

CM(t) = ⟨S⃗tAtL2

S⃗0⟩. (2.9)

For long times, the decay of the autocorrelation function is dominated by the
largest non-zero eigenvector and eigenvalue

CM(t) ∼ etL
2

1 ∼ exp [−t/τ2], (2.10)

in which τ2 = −L2 ln (e1). It is very hard to obtain τ2 via e1 numerically unless
L is a very small number, but this provides a valid argument to show that the
magnetization autocorrelation function will decay exponentially at long times
for finite L. Let us point out here that at times between τ1 and τ2 many modes
contribute and the sum of their exponential is well-approximated by the stretched-
exponential function.

As it is natural, the intermediate regime has to connect the short- and long-
time regimes monotonically. The numerical data suggest that this happens via
anomalous diffusion, i.e., MSDM ∼ tα, whereas the autocorrelation function seems
to decay as a stretched-exponential with the same anomalous exponent α.

Clearly, the key quantities that we want to establish in this manuscript are
the dynamic exponents z1 and z2, as well as the anomalous exponent α. To this
end, we use the method of finite-size scaling [51–53]. Figure 2.2 embodies the
collapse of MSDM(t) curves for the wide range of system sizes studied around
the first transition point, obtained for z1 = 0.45 ± 0.05. At the intermediate
regime of this plot, the curve is expected to decay as ∼ tα−1. Numerically, we
estimate the anomalous exponent to be α = 0.752 ± 0.005. Figure 2.3 now
illustrates an analogous collapse of the curves for around the second transition
point. This is attained by plotting − ln (CM(t)/CM(0))/(L−z2t) as a function of
t/Lz2 , where z2 = 2.1665 is set equal to the value for z as reported by Nightingale
and Blöte [58].

The intermediate regime for MSDM starts at time τ1 ∼ Lz1 at a value of
⟨(∆M)2⟩ ∼ L2+z1 , then increases following a power-law mode with an exponent
α, until it reaches its saturation value ∼ L2+γ/ν at time τ2 ∼ Lz2 . Assuming a
single power-law function in the intermediate regime, the anomalous exponent is
expected to be

α = (γ/ν − z1)/(z2 − z1). (2.11)

Purely based on numerical findings, we speculate that z1 = 1/2 and α = 3/4;
in that case, we obtain from Eq. (2.11) that z2 = 13/6 = 2.1667 in excellent
agreement with the most accurate numerical estimates [58].

To further corroborate on the main aftermath of our work, we undertook a
parallel examination of the three-dimensional Ising ferromagnet. Analogously
to the analysis sketched above for the two-dimensional Ising model, we obtained
data collapses around the first and second crossover times. Figures 2.4 - 2.6 below
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summarize our main findings: Fig. 2.4 exhibits the raw data, Fig. 2.5 suggests
that MSDM(t)/(L3t) is a function of t/Lz1 with z1 = 1.35 ± 0.02, and Fig.2.6
that − ln (ĈM(t))/(L−z2t) is a function of t/Lz2 with z2 = 2.032±0.003. Thus, as
in two dimensions, the dynamical critical behavior features two crossover times
characterized by two dynamic critical exponents. Additionally, the exponent of
the intermediate anomalous diffusion α for the three-dimensional Ising ferromag-
net is numerically found to be 0.90 ± 0.02. An overview of critical exponents
reported in this manuscript is given in Tab. 2.1.

Table 2.1: A summary of critical exponents as reported in this manuscript for
the two-dimensional (2D) and three-dimensional (3D) Ising ferromagnet. The
last two columns refer to exact [51] or high-precision [60] estimates of the critical
exponents γ and ν that have been used in the data collapse.

z1 z2 α γ ν
2D 0.45(5) 2.1665(12) 0.752(5) 7/4 1
3D 1.35(2) 2.032(3) 0.90(2) 1.237075(10) 0.629971(4)
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Figure 2.5: Data collapse around the first crossover for the three-dimensional
Ising model. (a) MSDM(t) collapse over various L, with a scaling form of
MSDM(t)/(L3t) ∼ t/Lz1 , where the numerically found estimate for z1 is 1.35 ±
0.02. MSDM(t) turns over from normal diffusion (∼ L3t) to anomalous diffu-
sion (∼ L3+z1−αz1tα) at t = Lz1 . (b) − ln (ĈM(t)) collapse around t = Lz1 with
a scaling factor L−γ/ν (note that γ/ν = 1.9637 in the three-dimensional Ising
universality class [53]). ĈM(t) shifts from exponential to stretched exponential
around t = Lz1 .
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Figure 2.6: Data collapse around the second crossover for the three-dimensional
Ising model. (a) MSDM(t) collapse at t ≈ Lz2 , with a scaling form of
MSDM(t)/(Lλt) ∼ t/Lz2 , the numerically found λ and z2 are 3 + γ/ν − z2
and 2.032 ± 0.003, respectively. MSDM(t) gradually transforms to saturation
(∼ L3+γ/ν) from the anomalous diffusion (∼ L3+z1−αz1tα). (b) Data collapse for
− ln (ĈM(t)) around t = Lz2 , where the scaling factor L−z2 leads to excellent col-
lapse. ĈM(t) is expected to turn over from stretched exponential to exponential
around t = Lz2 .

2.3 Summary and outlook

We analyzed the results of extensive simulations of the two- and three-dimensional
Ising model with Glauber dynamics. In particular, we scrutinized the mean-
squared deviation and autocorrelation function of the magnetization, showcasing
the existence of three dynamical regimes, separated by two crossover times at τ1 ∼
Lz1 and τ2 ∼ Lz2 . In the short-time regime, the mean-squared deviation of the
magnetization shows ordinary diffusive behavior and the autocorrelation function
exponential decay. In the second intermediate regime the mean-squared deviation
is characterized by anomalous diffusive behavior and the autocorrelation function
decays as a stretched-exponential way. Finally, in the third late-time regime the
mean-squared deviation saturates at a constant value while the autocorrelation
function again decays exponentially.

The second crossover to the exponential decay of the autocorrelation function
has been extensively studied in the literature. Nightingale and Blöte reported
that this exponential decay sets in at a time determined by the dynamic critical
exponent z = 2.1665(12) [58]; this is in agreement with our estimate z2 at the
second crossover. To the best of our knowledge, the first crossover has not yet
been reported or was assumed to occur at some fixed time (i.e., z1 = 0) without
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substantiation. The simulations and analysis captured here clearly manifest the
existence of this first crossover at a time governed by a new dynamic critical expo-
nent z1. We should stress here that earlier work on non-equilibrium dynamics has
also suggested the presence of a new exponent θ [71] akin to the newly introduced
exponent z1 of the present work. The authors of Ref. [71] considered a quench
from a high temperature configuration with an initial magnetization M(0) to the
critical temperature Tc; the exponent θ was introduced to describe the behavior
in the critical initial slip.

We also postulated a speculative argument about the crossover times at two
dimensions. Purely on numerical grounds, we suspect the first crossover to cor-
respond to a dynamic exponent z1 = 1/2, and the exponent of the anomalous
diffusion to be α = 3/4. In this case, we showed that the second crossover is
governed by the exponent z2 = 13/6, in full agreement with the numerical result
z = 2.1665(12). At this stage, the development of a solid theoretical argument
supporting the presence of the numerically observed first crossover and the rele-
vant dynamic and anomalous diffusion exponent z1 and α respectively is called
for.

To sum up, we hope that the relevance of our work will be twofold: (i) On the
practical side, for obtaining statistically uncorrelated samples the proper sam-
pling frequency should be set by the newly reported exponent z1: the correlation
between consecutive samples which are separated by (multiples of) τ1 ∼ Lz1 has
decayed in a stretched-exponential way to a value which is as small as one would
want. Hence, for obtaining statistically uncorrelated samples it is not necessary
to sample with an interval scaling as τ2. (ii) On the theoretical side, the critical
dynamical behavior of the Ising model with Glauber dynamics is much richer than
reported till date featuring two distinct crossovers. Thus, if dynamic universality
exists, it must also be much more substantial and needs further investigation.

Closing, we would like to raise some motivational comments for future work. In
a recent paper [72] it was shown that the ϕ4 model with local dynamics appears
to belong to the same dynamic universality class as the Ising model; this was
done by probing numerically the dynamic critical exponent which was found to
be z = 2.17(3). If indeed this is the case, then also the exponent z1 should apply
to the ϕ4 model; see also Refs. [73–75] for extensive aspects on the dynamic Ising
universality. Furthermore, in Ref. [76] the Ising model with Kawasaki dynamics
was studied and the authors reported that the Fourier modes of the magnetization
are in very close agreement with the dynamical eigenmodes, suggesting that z =
4 − η = 15/4. Investigating this aspect under the prism of the newly introduced
exponent z1 might be another intriguing continuation of our work [77]. We plan
to pursue these and other relevant open questions in the near future.
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Abstract

The exceptional properties of the two-dimensional material graphene make it
attractive for multiple functional applications, whose large-area samples are typ-
ically polycrystalline. Here, we study the mechanical properties of graphene in
computer simulations and connect these to the experimentally relevant mechani-
cal properties. In particular, we study the fluctuations in the lateral dimensions
of the periodic simulation cell. We show that over short time scales, both the area
A and the aspect ratio B of the rectangular periodic box show diffusive behavior
under zero external field during dynamical evolution, with diffusion coefficients
DA and DB that are related to each other. At longer times, fluctuations in A
are bounded, while those in B are not. This makes the direct determination of
DB much more accurate, from which DA can then be derived indirectly. We then
show that the dynamic behavior of polycrystalline graphene under external forces
can also be derived from DA and DB via the Nernst-Einstein relation. Addition-
ally, we study how the diffusion coefficients depend on structural properties of
the polycrystalline graphene, in particular, the density of defects.

This chapter is partially based on the following publication:

Liu Z, Panja D, Barkema G T. Structural dynamics of polycrystalline graphene[J].
Physical Review E, 2022, 105(4): 044116.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.044116
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.044116
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3.1 Introduction

Graphite is a material in which layers of carbon atoms are stacked relatively
loosely on top of each other. Each layer consists of carbon atoms, arranged in a
honeycomb lattice. A single such layer is called graphene. This material has many
exotic properties, both mechanical and electronic. Experimentally produced sam-
ples of graphene are usually polycrystalline, containing many intrinsic [8, 78, 79],
as well as extrinsic [80] lattice defects. Unsaturated carbon bonds are energeti-
cally very costly [81–85], and therefore extremely rare in the bulk of the material.
Polycrystalline graphene samples are therefore almost exclusively three-fold coor-
dinated, and well described by a continuous random network (CRN) model [86],
introduced by Zachariasen almost 90 years ago.

Polycrystalline graphene is continuously evolving in time, from one CRN-like
state to another. A mechanism by which such a topological change can happen,
was introduced by Wooten, Winer, and Weaire (WWW) in the context of the the
simulation of samples of amorphous Si and Ge. This so-called WWW algorithm
became the standard modeling approach for the dynamics of these kind of models
[87,88].

In the WWW approach, a configuration Ci consists of a list of the coordinates
of all N atoms, coupled with an explicit list of the bonds between them. From this
configuration Ci, a trial configuration C ′

i is produced via a bond transposition: a
sequence of carbon atoms {i, j, k, l} is selected, connected with explicit bonds i-j,
j-k and k-l. The first and last of these bonds are then replaced by bonds i-k and j-
l, while bond j-k is preserved. After this change in topology, the atoms are allowed
to relax their positions. This simulation approach requires a potential that uses
the explicit list of bonds, for instance the Keating potential [89] for amorphous
silicon. The resulting configuration is then called the trial configuration C ′

i. The
proposed change to this trial configuration is either accepted, i.e. Ci+1 = C ′

i, or
rejected, i.e. Ci+1 = Ci. The acceptance probability is determined by the energy
difference via the Metropolis criterion:

P = min{1, exp(−β∆E)}, (3.1)

where β = (kBT )−1, with Boltzmann constant kB and temperature T , and ∆E =
E(C ′)−E(C) is the change in energy due to the bond transposition. In this way,
the simulation produces a Markov chain C0 . . . CM , satisfying detailed balance.

The properties of polycrystalline graphene sheets have been a topic of in-
tense research already for some time [90–94]. More recently, Ma et al. reported
that the thermal conductivity of polycrystalline graphene films dramatically de-
creases with decreasing grain size [95]. The work of Gao et al. shows that the
existence of single-vacancy point defect can reduce the thermal conductivities of
graphene [96]. Wu et al. reported the magnetotransport properties of zigzag-
edged graphene nanoribbons on an h-BN substrate [97]. Additionally, strain
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effects on the transport properties of triangular and hexagonal graphene flakes
were studied in the work of Torres et al. [98].

This chapter reports on the dynamical properties of polycrystalline graphene.
In particular, we study two geometric quantities that are readily accessible in
computer simulations without having a clear experimental counterpart. In our
simulations, the Lx×Ly graphene sample is rectangular, with periodic boundary
conditions in the x- and y-directions; the quantities of interest are the area A =
LxLy and the aspect ratio B = Lx/Ly, and their mean square displacements
(MSDs) under simulations in which the dynamics is the WWW algorithm. The
results show that in the absence of external forces, MSDA and MSDB initially
both increase linearly in time. At longer times, MSDA saturates due to geometric
limitations, while MSDB keeps increasing linearly at all times. We measure the
diffusion coefficients DA and DB, and demonstrate that the two are related.

We then continue to show that DA and DB govern the response of the sample
to stretching and shear forces respectively, following the Nernst-Einstein relation.

The main relevance of the research presented here lies in establishing the
relation between observables that are readily accessible in simulations but without
a clear experimental counterpart (A and B and their dynamics), and mechanical
properties of real-life graphene (e.g. response to external stretching and shear
forces). Additionally, we demonstrate a clear relation between MSDA and MSDB,
thereby also relating the bulk- and the shear-properties. Thus far, much less is
known about this shape fluctuation-driven diffusive behavior; our work provides
insight into the dynamics and mechanics of polycrystalline graphene.

3.2 The model

For simulating graphene, we use a recently developed effective semiempirical elas-
tic potential [99]:

E0 =
3

16

α

d2

∑
i,j

(r2ij − d2)2 +
3

8
βd2

∑
j,i,k

(
θjik −

2π

3

)2

+ γ
∑
i,jkl

r2i,jkl. (3.2)

Here, rij is the distance between two bonded atoms, θjik is the angle between the
two bonds connecting atom i to atoms j and k, and ri,jkl is the distance between
atom i and the plane through the three atoms j, k and l connected to atom i.
The parameter α = 26.060 eV/Å2 controls bond-stretching and is fitted to the
bulk modulus, β = 5.511 eV/Å2 controls bond-shearing and is fitted to the shear
modulus, γ = 0.517 eV/Å2 describes the stability of the graphene sheet against
buckling, and d = 1.420 Å is the ideal bond length for graphene. The parameters
in the potential (3.2) are obtained by fitting to DFT calculations [99].

This potential has been used for the study of various mechanical properties
of single-layer graphene, such as the vibrational density of states of defected and
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polycrystalline graphene [100] as well as of various types of carbon nanotubes
[101], the structure of twisted and buckled bilayer graphene [102], the shape
of nanobubbles trapped under a layer of graphene [103], and the discontinuous
evolution of defected graphene under stretching [104].

The initial polycrystalline graphene samples are generated as in [105]. Here,
N/2 random points are placed in a square simulation box with periodic boundary
conditions, and the Voronoi diagram is generated: around each random point, its
Voronoi cell is the region in which this random point is nearer than any other ran-
dom point. We then translate the boundaries between neighboring Voronoi cells
into bonds, and the locations where three boundaries meet into atomic positions.
In this way, we have created a three-fold coordinated CRN which is homoge-
neous and isotropic (i.e. does not have preferred directions). It is, however, an
energetically unfavorable configuration; therefore, we then evolve the sample us-
ing the improved bond-switching WWW algorithm to relax it, while preserving
crystalline density.

Up to this point, the sample is completely planar (i.e., all z-coordinates are
zero). After some initial relaxation, we then assign small random numbers to
the z-coordinates followed by energy minimization, which results in a buckled
configuration. At this point, we also allow the box lengths Lx and Ly to relax.
We do not relax the box lengths already in poorly relaxed samples, because then
the sheet tends to develop all kinds of unphysical structures.

In our implementation, we use the fast inertial relaxation engine algorithm
(FIRE) for local energy minimization [106]; the values of the parameters in this
algorithm (Nmin, finc, fdec, αstart and fα) are taken as suggested in Ref. [107]. Fig-
ure 3.1 presents an initial polycrystalline graphene sample with periodic boundary
condition generated from a Voronoi diagram and evolved based on the WWW-
algorithm.

3.3 Dynamics of fluctuations in sample shapes

The oblong polycrystalline graphene sheet in our simulations has lengths Lx and
Ly in the x- and the y-directions respectively, as shown in Fig. 3.1. These are
not fixed quantities, but they fluctuate when bond transpositions are made.

Given that the sample is essentially two-dimensional, throughout this chapter
we consider two geometric quantities defined as follows:

A(t) = Lx(t)Ly(t) and B(t) = Lx(t)/Ly(t). (3.3)

Physically, for a flat, rectangular and homogeneous isotropic sample, the stiffness
matrix is reduced and the mechanical properties of system can be efficiently char-
acterized by two independent in-plane modes due to orthorhombic symmetry, It
is easiest to associate A(t) and B(t) to fluctuations in the sample shape in the
“bulk” and the “shear” modes respectively at the macroscopic scale without these
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Lx LxLy

Figure 3.1: (color online) An initial buckled polycrystalline graphene sample
with periodic boundary condition generated from a Voronoi diagram and evolved
based on the WWW-algorithm. Lx and Ly represent the lateral dimensions of
the sample.

symmetries breaking. We then track the dynamics of shape fluctuations of the
sample in terms of their mean-square displacements MSDA(t) = ⟨[A(t) −A(0)]2⟩
and MSDB(t) = ⟨[B(t) − B(0)]2⟩, with the angular brackets denoting ensemble
averages for a sample of fixed number of atoms and (more or less) constant den-
sity of defects. (We will soon see that the diffusion coefficients are functions of
both these quantities.) Characteristic fluctuations in A and B for a sample with
1352 atoms are shown in Fig. 3.2 panel (a), and correspondingly, their MSDs
are shown in panels (b) and (c). Therein we find that fluctuations in A are rela-
tively much smaller in magnitude than those in B. Intuitively this makes sense,
since relaxations through the shear mode is energetically much more favorable
than through the bulk mode. This is also reflected in the MSDs. After a linear
increase in time, MSDA saturates at longer times, while MSDB increases linearly
at all times. From the data for MSDA before it saturates, and MSDB at all times,
we identify the diffusion coefficients DA and DB, obtained from fitting the data
to the relation given by

MSD(t) = 2Dt. (3.4)
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Figure 3.2: (color online) (a) Typical fluctuations in A and B in time for a
sample with N = 1352; note that the range of fluctuations in B are considerably
higher than in A. (b) MSDA(t) and MSDB(t) for this sample. The measured
diffusion coefficients, as per Eq. (3.4) are DA ≈ 1.737 × 10−4 Å4/[MC unit] and
DB ≈ 2.544 × 10−9 [MC unit]−1. See text for details.

Since time is measured in MC units (bond transposition moves are being
attempted once per unit of MC time), and length is measured in Å, the units of
DA and DB are Å4/[MC unit] and [MC unit]−1 respectively. Time all throughout
the chapter is measured in MC units.

3.3.1 DB increases linearly with defect density

An interesting question is what determines DB for a sample with a given number
of atoms N . As we expect DB to be equal to zero for a perfect graphene sample,
our first guess is that DB might depend on the density of defects. In our computer
simulations of perfectly three-fold coordinated networks, defects are topological,
in particular rings which are not six-fold. A convenient measure of the defect
density ρ is then obtained by the number of such rings per area. Note that rings
are almost exclusively 5-, 6- and 7-fold in the well-relaxed samples as we studied.
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Since 5- and 7-fold rings generally appear and disappear in pairs, one can expect
that the ratio of N5/N7 (N represents the number of 5- for 7-fold rings) is close
to unity.
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Figure 3.3: (color online) DB plotted for four differently-sized samples, each with
four different defect densities (points: simulation data, lines: best fit passing
through origin). Error bars represent standard error of the mean, obtained from
the ensemble of simulation runs. See text for details.

In order to test our intuition, we simulate graphene samples for four different
atom numbers (around N = 2000), each with four different defect densities. The
results are shown in Fig. 3.3. Points represent simulation data with statistical
error bars, and dashes lines are best fit lines with each line passing through
the origin (corresponding to DB = 0 at ρ = 0). Even though there is no a
priori reason for DB to increase linearly with ρ for every value of N , Fig. 3.3
demonstrates that the linear scaling holds for the range of defect densities we
simulated. Also clear is the decreasing trend in DB with increasing N for a
certain defect density. On a technical side, each point is obtained from averaging
over 10 independent samples, and each sample is simulated 16 times over 30,000
attempted bond transpositions at a temperature of kT = 0.25 eV within each
run. We perform further averaging over the initial time. The CPU time of a
single attempted bond transposition is on average 0.76 s for samples (N=2000).

3.3.2 Relation between DA and DB

Further, since both A and B bear relations to Lx and Ly, one would expect them
to be related through these length parameters, which we establish below. In order
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to do so, having denoted the change in A and B over a small time interval dt for
samples with dimensions Lx and Ly by dA and dB respectively, we express them
in terms of small changes dLx and dLy as

⟨dA2⟩ =
〈
[LydLx + LxdLy]

2〉 and

⟨dB2⟩ =

〈
1

L4
y

[LydLx − LxdLy]
2

〉
. (3.5)

Using ⟨dLxdLy⟩ = 0 after an ensemble averaging, Eq. (3.5) leads to the simplified
form

⟨dA2⟩ = L2
y ⟨dL2

x⟩ + L2
x ⟨dL2

y⟩ and

⟨dB2⟩ =
1

L4
y

[
L2
y ⟨dL2

x⟩ + L2
x ⟨dL2

y⟩
]
, (3.6)

i.e., ⟨dA2⟩/⟨dB2⟩ = L4
y. If we extend this analysis to finite times, for which Ly

does not appreciably change, then we expect the ratio DA/DB to behave ∼ L4
y.
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Figure 3.4: (color online) The ratio DA/DB vs L4
y for different N -values and

defects densities [points: simulation data, lines: best-fit of the form DA/DB =
k(⟨ρ⟩)L4

y]. Error bars represent standard error of the mean, obtained from the
ensemble of simulation runs. The points located a color bar are measured with
the same N . The inner plot shows that k(⟨ρ⟩) also bears a linear relation with
⟨ρ⟩ obtained from averaging in the ranges: k(⟨ρ⟩) = 0.02078⟨ρ⟩ + 0.0028.
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In Fig. 3.4 we plotDA/DB forN=800, 1800, 2048, 2178, 2450 and five different
ranges with approximate defect densities. We indeed observe that DA/DB ∼
L4
y: once again, simulation data are shown as points, while the dashed lines

are the best-fit DA/DB = k(ρ)L4
y lines through the data points. The k-values,

summarized in Tab. 3.1, are plotted as an inset to Fig. 3.4. Here we determine
k by using statistical quantity ⟨ρ⟩ obtained from averaging in the ranges, these
k(⟨ρ⟩) vs ⟨ρ⟩ points also lie on a straight line, whose best-fit estimate is k(⟨ρ⟩) =
0.02078⟨ρ⟩ + 0.0028.
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Figure 3.5: (color online) (a) A suspended graphene sample naturally tends
to buckle, dz is the thickness of the sample. (b) The variation of dz for four
differently-sized samples, the initial defects densities for all sample are fixed at
around 0.15. (c) MSDdz for these samples.

⟨ρ⟩ k(⟨ρ⟩)
0.16433 6.24 × 10−3

0.21065 7.20 × 10−3

0.26154 8.14 × 10−3

0.31323 9.35 × 10−3

0.36670 1.04 × 10−2

Table 3.1: Values of k for different values of ⟨ρ⟩, corresponding to the best-fit
DA/DB = k(⟨ρ⟩)L4

y lines in Fig. 3.4.
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N ⟨Lx,initial⟩(Å) ⟨Ly,initial⟩(Å)

800 45.35 45.72
1800 68.47 68.95
2048 73.91 72.58
2178 75.78 75.39
2450 80.15 80.38

Table 3.2: Dimensions of initial configurations obtained after optimization. Av-
eraging for each N was done over 5 (⟨ρ⟩ values listed in the table 3.1) × 10
(independent samples) × 16 (repetitions).

3.3.3 MSD in the z-direction

The graphene in our simulations is free-floating, and the presence of defects causes
it to buckle, i.e., the carbon atoms show displacements in the out-of-plane direc-
tion. During bond transpositions, the buckling structure changes. To quantify
the dynamics of buckling, we determine the minimal and maximal values of the
z-coordinates of the atoms, and the difference dz = zmax−zmin; this is illustrated
in the top panel of Fig. 3.5.

MSDdz(t) = ⟨[dz(t) − dz(0)]2⟩. (3.7)

Analogous to our analysis of the dynamics of Lx(t) and Ly(t), we then deter-
mine the MSDdz of dz(t). The results for various system sizes are shown in figure
3.5, in samples with a defect density around 0.15, simulated at a temperature
of kT = 0.25 eV. Fig. 3.5(b) shows that the dz fluctuates around a level ≈ 11
Å, which is the typical equilibrium amplitude of the buckling for these samples;
out-of-plane displacement-related studies can be found in our previous simula-
tions [99]. Fig. 3.5(c) shows that the initial behavior is diffusive, with a diffusion
coefficient that is insensitive to N .

3.3.4 Summary: defect density determines shape fluctua-
tion dynamics

In summary so far, we have established that the density of defects determines
DB, and that the ratio DA/DB = k(⟨ρ⟩)L4

y in Sec. 3.3.2. Putting these results
together then implies that the density of defects is the sole determining factor for
the dynamics of fluctuations in the sample shapes.

3.4 Sample response to external forces

That the fluctuations in quantity B lead to diffusive behavior without being lim-
ited by geometric constraints made us follow-up with the response of the samples
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to externally applied forces. In particular, if we apply a (weak) force FB to excite
the shear mode, then we expect the (linear) response in terms of “mobility” µB

in the relation vB = µBFB for the “deformation velocity vB of the sample along
the B-direction” to satisfy the Einstein relation

µB =
DB

kBT
; i.e., vB =

DB

kBT
FB, (3.8)

where kB is the Boltzmann constant and T is the temperature of the sample.
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Figure 3.6: (color online) (a) A relaxed polycrystalline graphene sample. Elon-
gated domains arise if the sample is stretched significantly within a short period
of time. (b-c) vB directly measured vs. predicted by the Nernst-Einstein rela-
tion (3.8). Error bars represent standard error of the mean, obtained from the
ensemble of simulation runs. (d) Change in B in time when a constant stretching
force is applied to the sample, restoring tendencies of elongated domains cause
slower-than-linear increases at longer times (t > 1000).

In order to check for this relation in our simulations, we add an extra “force
term” in the Hamiltonian in Eq. (3.2), to have the new Hamiltonian as

E = E0 + c
Lx

Ly

≡ E0 + cB, (3.9)
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and calculate vB in the following manner, for the applied force FB = ∂E/∂B = c.

The behavior of the aspect ratio B as a function of time, under a constant
force fB, is shown in figure 3.6(a), for forces fB = ±800, 900, 1000 and 1100 eV/Å.
The curves in this figure are obtained by averaging over 8 independent samples,
each one simulated 32 times for each value of the force. At relatively short
times, B increases linearly in time. Afterwards, the shear rate has a tendency
to slow down. We speculate that this slowing down at longer times might be
due to deformation of domains: Initially, these crystalline domains are isotropic,
but after the sample has sheared over quite some distance, the domains become
elongated. The tendency to restore isotropy makes the sample resist further
deformation. This is illustrated in fig. 3.6(a). There is no a priori reason to
assume that the increase in energy due to shearing is harmonic. In analogy to
the quartic increase of the length of a circle under this type of deformation,
we rather expect highly non-linear behavior. At short times, where the sample
has not deformed significantly, the change in B as a response to the force fB is
expected to be given by the Nernst-Einstein equation Eq. (3.7). To test this,
we obtained the short-time shear velocity vB by fitting the slopes in figure 6a for
the various forces. These measurements of vB are plotted in figures 6b and 6c,
as a function of fB. Also plotted in figures 3.6(b) and 3.6(c) are the theoretical
expectations as obtained from the Nernst-Einstein equation, in which we used the
earlier obtained values for DB. The figures 6b and 6c show agreement between
the direct measurements of vB and the theoretical expectations, indicating that
with forces of these strengths the mechanical response is well-understood.

3.5 Conclusion

Computer simulations of materials at the atomistic level usually involve samples
containing typically a few thousand atoms, with periodic boundary conditions.
Quantities that can be easily and reliably measured in such simulations, are for
instance the evolution in time of the lateral sizes of the periodic box, such as
their fluctuations. In the simulations on graphene as presented here, the directly
observable quantities are the lateral lengths Lx and Ly of the rectangular periodic
box. The dynamics of Lx and Ly are coupled and can be better understood by
considering the area A = LxLy and aspect ratio B = Lx/Ly. Specifically, we
concentrate on the mean-squared displacements of A and B. At short times, in
which only a few atomic rearrangements occur, A and B show ordinary diffusive
behavior, with diffusion coefficients DA and DB. We show that if the changes in
Lx and Ly are uncorrelated, DA and DB can be obtained from each other. While
this might not seem very surprising at first sight, it does connect the dynamics
of shear mode and bulk mode — two quantities that are usually assumed to be
uncorrelated — at short times.

At longer times, A and B show different behavior. Graphene has a char-
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acteristic density, which translates directly into a preferred value for A around
which it fluctuates. The amplitude of the fluctuations in A are determined by the
bulk modulus, which is an equilibrium property and therefore computationally
obtainable from simulations without realistic dynamics. The aspect ratio B does
not have an energetically preferred value, and its diffusive behavior is therefore
unrestricted. A practical consequence is that in simulations the quantity DB can
be determined more accurately than DA, as the latter shows a crossover from
short-time diffusive behavior to late-time saturation.

In our simulations, we have studied samples of polycrystalline graphene with
a variation in the amount of structural relaxation, the size of the crystalline
domains, and the density of structural defects (mainly fivefold and sevenfold
rings). In our simulations, we show a linear relation between the number of such
structural defects and the diffusion coefficient DB. In well-relaxed samples, large
crystalline domains are separated from each other by rows of structural defects.
Consequently, the number of defects decreases linearly with the average domain
size. We therefore expect also that the diffusion coefficient DB decreases linearly
with the average domain size. In this context it will be useful to deepen this
connection to domain size engineering [91,108,109], fabrication of polycrystalline
graphene [110–112], mechanics of grain boundaries [113,114].

From a materials science point of view, as well as from an experimental point
of view, the mechanical behavior of a sample of graphene under external forces is
important. We show that the deformation of graphene under an external shear
force is related to the quantity DB which is readily accessible in simulations, via
the Nerst-Einstein relation. For this purpose, the external shear force is translated
into a force fB on the quantity B, after which the shear rate vB = ∂B/∂t can be
obtained from equation (3.8), in which the diffusion coefficient DB is used. And
the mechanical deformation can then be readily obtained from vB.

We have limited ourselves to a relatively modest dynamical range of Lx and
Ly, as well as relatively mild deformation forces. Consequentially, in our simu-
lations the domains do not get deformed to elongated shapes but retain circular
symmetry. If the material would be stretched significantly in a time that is short
enough to rule out complete structural rearrangement, elongated domains should
arise, and the sample would experience restoring forces back towards its original
shape. This is illustrated in Fig. 3.6(a). We speculate that this mechanism would
actually slow down the shearing process, making the shear distance non-linear in
time. Our simulations show signs of the onset of decreasing shear rate in time
[Fig. 3.6(d)]. A quantitative study of this phenomenon, in which the possible
relation between elongation of domains and non-linear shear is investigated both
in experiments and mechanism, such as strengthening or weakening of graphene
[10, 115, 116], fracture toughness [117–119], mechanical mutability [120], requires
very long simulations, which we will pick up in future work. We believe these
investigations enhance our understanding of the mechanical properties of poly-
crystalline graphene.
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Abstract

We perform extensive simulations and systematic statistical analyses on the
structural dynamics of a model of amorphous silicon. The simulations follow
the dynamics introduced by Wooten, Winer and Weaire: the energy is obtained
with the Keating potential, and the dynamics consists of bond transpositions
proposed at random locations and accepted with the Metropolis acceptance ra-
tio. The structural quantities we track are the variations in time of the lateral
lengths (Lx, Ly, Lz) of the cuboid simulation cell. We transform these quantities
into the volume V and two aspect ratios B1 and B2. Our analysis reveals that
at short times, the mean squared displacement (MSD) for all of them exhibits
normal diffusion. At longer times, they cross over to anomalous diffusion, with
a temperature-dependent anomalous exponent α < 1. We analyze our findings
in the light of two standard models in statistical physics that feature anomalous
dynamics, viz., continuous time random walker (CTRW) and fractional Brown-
ian motion (fBm). We obtain the distribution of waiting times, and find that the
data are consistent with a stretched-exponential decay. We also show that the
three quantities, V , B1 and B2 exhibit negative velocity autocorrelation functions.
These observations together suggest that the dynamics of the material belong to
the fBm class.
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4.1 Introduction

Amorphous silicon (a-Si) has attracted a lot of attention in the computational
materials science community over the last decades, partly because it is a material
with many applications, and partly because it has become a prototypical example
of a covalently bonded disordered material that lends itself well for simulations,
as many empirical and semi-empirical potentials are readily available. There exist
a myriad of experimental and simulation research works on the properties of a-
Si, studying thermal transport [121,122], structure and defects recognition [123],
electronic properties and applications for solar cells [124–126], and vibrational
properties [127]. Compared to structural and electronic properties, the dynamics
of a-Si is less studied. In this chapter we fill the knowledge gap on how struc-
tural properties of the material evolve in time. Dynamics of covalently-bonded
materials are well-known to be extremely slow. On the one hand, it makes them
highly stable, but on the other it renders them nearly impossible to be accessed
by experimental time scales. Computer simulations can provide a way forward,
but there too, simulation studies of a-Si dynamics have often focused on how
to generate well-relaxed samples as efficiently as possible, but do not study the
fundamental properties of its dynamics.

In this chapter, we employ a relatively simple model for the dynamics of a-
Si, as first introduced by Wooten, Winer and Weaire (WWW) [87]. The atomic
structure in this model is described as a so-called continuous random network
(CRN), in which each silicon atom has exactly four covalent bonds to other sil-
icon neighbors. To each CRN-configuration, an energy is attributed using the
Keating potential [89]. The dynamics consists of a sequence of bond transposi-
tions proposed at random locations, and accepted or rejected according to the
Metropolis algorithm. This technique allows for the simulation of the dynamics
of a-Si over time scales that are much longer than those accessible to molecular
dynamics (MD), at the expense of being a much cruder description. There is a
however a connection between the two time scales. Within our Monte Carlo (MC)
dynamics, the probability that a specific bond transposition is proposed in one
MC unit of time is 2/(4 ∗ 3 ∗ 3 ∗N) = 1/(18N). Here, factors 1/N , 1/4, 1/3 and
1/3 respectively arise from picking a random atom (out of N total atoms), then
one of its four neighbours, next twice one of the three remaining neighbors, and
the factor of 2 comes from the possibility to generate the same string of atoms
from two different ends. The acceptance probability is then exp(−β∆E), where
∆E is the energy difference between the initial and final states. Thus, the rate
of structural changes in the sample is (1/18N) exp(−β∆E).

In molecular dynamics (MD), the rate would be ν exp(−βB) where ν is the
attempt frequency, often found to be around 10−12 s−1=1 ps−1, and B is the
energy barrier between the initial and final states. The energy barrier B and
the energy change ∆E are correlated, but loosely. For instance, we know that
B has to be higher than ∆E. For example, from earlier work [Ref. [128], Table
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1] we know that on average for bond transpositions (WWW events), ⟨∆E⟩ =
4.0 eV and ⟨B⟩ = 2.2 eV. As a rough estimate of ∆E − B, we can then take
⟨B⟩ − ⟨∆E⟩ = 1.8 eV. Our simulations were carried out at a temperature of 0.14
eV, with N = 2000 atoms. We then obtain that one unit of MC time corresponds
roughly to (1/(18N)) exp(1.8/0.14) ps ≈ 10 ps.

In our simulations, we use a cuboid simulation cell with periodic boundary
conditions, and lateral dimensions Lx×Ly×Lz. At all times, these lateral dimen-
sions, together with all the atoms, constitute N+3 degrees of freedom. After each
WWW move, the bond list is updated, and all degrees of freedom are minimized
to the global minimum of energy, and consequently these lateral dimensions of
the simulation cell will fluctuate in time. In our case, these fluctuations are easily
accessible in simulations, and are closely related to the mechanical deformations
under (small) external forces, and therefore a standard approach for understand-
ing the mechanical shear and stress properties of the bulk material. All dynamics
studied in the chapter is performed at the temperature below the melting tem-
perature of a-Si (1750K[129]).

We transform the three quantities Lx(t), Ly(t) and Lz(t) into three other
quantities, which are the volume V (t) ≡ Lx(t) · Ly(t) · Lz(t) and the two aspect
ratios B1(t) = Ly(t)/Lz(t) and B2(t) = Ly(t) · Lz(t)/L

2
x(t). The aspect ratios

B1(t) and B2(t) are two (almost) unconstrained degrees of freedom, which can
vary over a wide range of values without preference. This however does not hold
for the volume V (t) as it is constrained to fluctuate around an ideal value set by
the number of atoms and the ideal density. (It is well-known that well-relaxed
samples of a-Si can be obtained within a wide range of densities: fluctuations of
several percent are easily observed. Thus, the constraint is rather loose for this
specific material.)

The focus of this chapter lies on the dynamics of V , B1 and B2. The moti-
vation for this choice is that these are quantities that lend themselves well for
computer simulations studies, and are directly connected to the mechanical be-
havior under shear, stress, etc., which are of experimental relevance. Our findings
indicate that over short time scales, all three quantities exhibit diffusive behav-
ior; this is to be expected, as over a short time, the dynamics consist of local
atomic rearrangements which cause random changes in B1, B2 and V which are
uncorrelated. At longer times, a negative velocity autocorrelation emerges: a
positive change induces a bias at later times to be followed by a negative change,
vice versa. These correlations are strong enough to change the dynamics from
ordinary to anomalous diffusion: the mean squared deviations MSD1, MSD2 and
MSDV for B1, B2 and V can be fitted by a power-law ∼ tα with α < 1. The ex-
ponent is found to be temperature-dependent. (Given that V (t) is constrained to
fluctuate around an ideal value as noted above would mean that the mean-square
displacement of V must reach a plateau at a long time. Our simulation times are
however not long enough, i.e., the mean-square displacement of V does not reach
a high enough value to be influenced by the constraint.)
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We analyze our findings in the light of standard models for anomalous dif-
fusion, viz., the continuous time random walk (CTRW) model and fractional
Brownian motion (fBm). For this purpose, we also determine numerically the dis-
tribution of the waiting times. This distribution can be well fitted by a function
with stretched-exponential decay. Although this is different from homogeneous,
memoryless materials, where the decay is expected to be exponential, the decay
is still too steep to be the sole explanation of anomalous diffusion. We also de-
termine the velocity autocorrelation functions, and find them to be negative at
all times.

The organization of this chapter is as follows. In Sec. 4.2, we introduce the
model and simulation methods in detail. In Sec. 4.3.1, we define the structural
quantities related to the mechanical properties, analyze the trajectories extracted
from simulations, investigate the short-time behavior of mean-square displace-
ments, and describe the relationships among the different diffusion coefficients.
In Sec. 4.3.2, we analyze the probability distribution, both on waiting time and
jump length, characterize sub-diffusive behaviors at long times, and reflect on the
classification of the model. In Sec. 4.4 we summarize and conclude the chapter.

4.2 The model

The Keating potential is one of the simplest and most efficient models for de-
scribing a-Si. It uses an explicit list of bonds: whether two atoms interact with
each other or not, is thus determined by this bond list, and not by the distance
between the atoms. It is defined as

E =
3

16

α

d2

∑
<ij>

(rij · rij − d2)2 +
3

8

β

d2

∑
<ijk>

(rij · rik +
1

3
d2)2. (4.1)

Here, rij is the bond vector between atoms i and j. d = 2.35 Å is the ideal
bond length for pure crystal silicon. α is two-body term constant, taken to be
2.965eVÅ/d2, β is the three-body term, set as 0.285α.

At the beginning of each simulation, an initial sample has to be prepared. In
order to ensure that our initial sample is homogeneous and isotropic, we start
with randomly placed points in a cubic box, and then determine the Voronoi
diagram between these random points. The set of edges in the Voronoi diagram
forms a fourfold-coordinated CRN, and each edge is then seen as a bond of the
initial explicit bond list. At the locations where four edges meet, a silicon atom
is placed. From this moment on, the initial random points no longer have a role.
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Lz

Lx Ly

Figure 4.1: (color online) An initial sample of amorphous silicon with 2000 atoms,
each connected to four neighboring atoms. The bonds have comparable length
(2.35Å with a spread of 0.085Å), and the bond angles are close to the tetra-
hedral angle (109.46◦ with a spread of 9.5◦). The sample has been generated,
starting from a Voronoi diagram and then evolved using the WWW-algorithm,
as discussed in Sec. 4.2. It is a cuboid with periodic boundaries on the lateral
dimensions Lx, Ly and Lz.
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Figure 4.2: (color online) Diagram of a bond transposition which is part of the
WWW algorithm. A string of connected atoms ABCD is chosen, then the bonds
AB and CD are replaced by AC and BD. The new string is subsequently relaxed
by the following local energy minimization.
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Next, the atomic positions are allowed to relax, while preserving the explicit
bond list; this is done by a straightforward local energy minimization (imple-
mented as discussed below). The resulting initial sample is homogeneous and
isotropic, but poorly relaxed. An often used characterization of the degree of
relaxation is via the spread in bond angles. While in experimental a-Si samples,
the angular spread ranges from 10 degrees for well-relaxed samples to 12 degrees
for poorly relaxed samples, these initial Voronoi-created samples have an angular
spread of 15 degrees or more. In order to relax the sample, we follow the procedure
initially proposed by Wooten, Winer and Weaire (WWW). Randomly, somewhere
in the sample, a string of four connected atoms ABCD is chosen. Next, a bond
transposition is made: the bonds connecting these four atoms are reconnected, by
replacing the bonds AB and CD by bonds AC and BD, as shown in Fig. 4.2. This
is followed by a local energy minimization [130] under the new explicit bond list,
which changes the atomic coordinates slightly. This proposed bond transposition
is then either accepted or rejected, according to the Metropolis criterion [18]. The
acceptance probability is given by

Pacc = Min [1, exp(−β∆E)] , (4.2)

where ∆E is the change in energy due to the proposed bond transposition, and
β = (kBT )−1 with temperature T and Boltzmann constant kB. Typically, many
thousands of such bond transpositions are required, for obtaining a well-relaxed
a-Si sample.

The time-consuming part of this WWW algorithm is the local energy mini-
mization. Our algorithm of choice for doing this, is the fast inertial relaxation
engine (FIRE) algorithm. Typical parameters are set as same as in the Ref. [107]:
Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.1 and fα = 0.99. Other custom pa-
rameters here are set as ∆tMD = 0.06, ∆tmax ∼ 10∆tMD and the velocity Verlet
method is chosen for integration in time.

To improve the computational efficiency, we use early rejection of ‘hopeless’
moves, as discussed in Ref. [130–132]. At each proposed bond transposition, a
threshold value for the energy is set. If the energy after relaxation stays above
the threshold, the proposed move is rejected, otherwise it is surely accepted.
During energy minimization after a proposed bond transposition, the total force
is monitored, and used to make a conservative estimate of the energy that would
be obtained after full minimization. If it is clear that this energy stays above
the threshold, the bond transposition is rejected well before the time-costly full
relaxation is achieved. In well-relaxed samples, this early-rejection gives a speed-
up of one or two orders of magnitude.
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4.3 Dynamics of fluctuations in sample shapes
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Figure 4.3: (color online) (a) Typical fluctuations of V , B1 and B2 (from top
to bottom) evolved up to 5×106 Monte Carlo steps (MCS) for a sample with
N = 423 atoms under T = 1400K. While, given enough time, B1 and B2 can
take a wide range of values, V will only show fluctuations around its ideal value
which is set by the density of the a-Si sample. The inset in the bottom panel
exhibits stalling events (see text for details). (b) Measurements of the MSD for
V , B1 and B2 respectively . B1 and B2 are multiplied by 106 to have the same
scale as V . The results are obtained from averaging over 10 starting samples
with 423 atoms (T = 1400K), each evolved 50 times with different random seeds
over 107 proposed bond transpositions to achieve a good statistical performance,
which offset the noise generated by a single evolution. At short times, all three
curves of the MSD initially increase linear in time, i.e. show ordinary diffusion.
After ∼ 104 attempted bond transpositions, the increase slows down significantly.
All curves show a crossover to subdiffusive behavior. For the MSDV we expect
eventually saturation; this seems to be at times beyond those of our simulations.

As shown in Fig. 4.1, we perform our simulations in the periodic and cuboid
simulation box Lx×Ly×Lz in the x-, y- and the z-directions respectively. These
are however not fixed quantities, but are allowed fluctuate when the bond trans-
positions are made as the sample evolves in time.

Throughout this chapter, we consider three geometric quantities, defined as
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follows:

V (t) = Lx(t)Ly(t)Lz(t),

B1(t) = Ly(t)/Lz(t),

B2(t) = Ly(t)Lz(t)/L
2
x(t). (4.3)

Physically, for a cuboid sample such as ours, the dynamics of shape fluctu-
ations of the sample can be efficiently characterized by associating V (t) to the
dynamics of the “bulk” mode, and B1(t) and B2(t) with that of the “shear”
modes. Fig. 4.3(a) shows the trajectories for these quantities in Monte-Carlo
time at short times. The stalling events seen therein (inset, Fig. 4.3(a)) result
from the rejected bond transpositions at short time intervals. Figure 4.3(b) dis-
plays the MSD for V , B1 and B2, respectively. At short times, there are only
few bond transpositions which occur at spatially separated locations, and thus
these are uncorrelated events, which yield normal diffusive behavior. At longer
times, this spatial separation breaks down, and the bond transpositions start to
feel each other; for instance, a bond transposition which leads to local contrac-
tion has an enhanced probability to be followed by another bond transposition
that leads to local expansion. The cross-over point represents the transition from
normal diffusion to anomalous diffusion of the physical quantity under study.

4.3.1 Diffusive behavior at short times

At short times, we track the dynamics of shape fluctuations of the samples in
terms of the mean-square displacements MSDV (t) = ⟨[V (t)−V (0)]2⟩, MSD1(t) =
⟨[B1(t) − B1(0)]2⟩ and MSD2(t) = ⟨[B2(t) − B2(0)]2⟩, with the angular brackets
denoting ensemble averages for a sample of fixed number of atoms and (more
or less) constant energy. As shown in Fig. 4.3(b), At short times, all three
quantities exhibit ordinary diffusive behavior, i.e. MSD(t)∼ t. V is expected to
saturate after super long times due to the constraint of structural density, while
significant crossovers (nearly at 104) to sub-diffusion can be observed in MSD1(t)
and MSD2(t) i.e. MSD(t) ∼ tα (α < 1). Here the results are obtained from
averaging 10 starting samples (N = 423) each evolved 50 times.

MSD(t) = 2Dt. (4.4)

By fitting the MSD for V , B1 and B2 we extract the corresponding diffusion
coefficients D. Since V , B1 and B2 all bear relations to Lx, Ly and Lz, one would
expect them to be related through these length parameters, which we establish
below. In order to do so, having denoted the change in V , B1 and B2 over a
small time interval dt for samples with dimensions Lx and Ly by dV , dB1 and
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dB2 respectively, we express them in terms of small changes dLx, dLy and dLz as

⟨dV 2⟩ =
〈
[LyLzdLx + LzLxdLy + LxLydLz]

2〉
⟨dB2

1⟩ =

〈
1

L4
z

[LzdLy − LydLz]
2

〉
and

⟨dB2
2⟩ =

〈
1

L6
x

[LxLydLz + LzLxdLy − 2LyLzdLx]2
〉
. (4.5)

Numerically, we find that cross-terms such as ⟨dLxdLy⟩ etc. are much smaller
than terms like ⟨dL2

x⟩. Similarly, it can be argued that thermal kicking on a sample
acts like a force in the x-, y- and z- directions as stretching forces, and the sample
cannot distinguish among the three directions. In particular, if the condition holds
that the extension of the sample along the x-direction is inversely proportional to
the corresponding spring constant (LyLz)

−1, then ⟨dL2
x⟩ ∼ (LyLz)

−2 etc. These
two assumptions lead to the following scaling relations between the diffusion
coefficients:

DV /DB1 ∝ ⟨L2
xL

4
z⟩

DB1/DB2 ∝ ⟨L4
x/L

4
z⟩

DV /DB2 ∝ ⟨L6
x⟩ . (4.6)
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Figure 4.4: (a)-(c) Double logarithmic plots showing the relations between
any two of the diffusion coefficient of the quantities we construct, which are
built through statistical value of the lateral lengths. DV ∼ α1⟨L2

xL
4
z⟩DB1 ,

DV ∼ α2⟨L4
x⟩DB2 , DB1 ∼ α3⟨L4

x/L
4
y⟩DB2 , here α1, α2 and α3 are constants

and numerically obtained from our simulations as: 0.0584, 0.3302 and 0.0195,
respectively

The numerical results are shown in the Fig. 4.4, the diffusion coefficients
(corresponding to the short time part in the Fig. 4.3(b)) are measured ac-
cording to the Eq. 4.4, the four data points in each plots are measured over
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N = 423, 1000, 1500 and 2000. Data is collected by averaging over 10 initial sam-
ples, each evolved 50 times over 107 proposed bond transpositions. It is numer-
ically found that DV ∼ α1⟨L2

xL
4
z⟩DB1 , DV ∼ α2⟨L6

x⟩DB2 , DB1 ∼ α3⟨L4
x/L

4
z⟩DB2 ,

the factors α1, α2 and α3 are constant and fitted from our simulations: 0.0584,
0.3302 and 0.0195, respectively, we infer that these values are more likely to de-
pend on factors such as sample size, amount of data, measurement time length,
system noise, etc., which can be used as references in future experiments.

4.3.2 Characterizing material dynamics at long times
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Figure 4.5: (a) Waiting time distribution fitted to Eq. (4.7) for N = 423
at various temperatures (up to τw =3,000), inset: fit for lager scales (up to
τw =20,000). (b) Monte Carlo time t for a sample with N = 423, measured
in the number of proposed bond transpositions, in comparison with the event
time τ , measured in the number of accepted bond transpositions. Each dot
in this scatter plot is a measurement of both times, elapsed between accepted
bond transpositions. The data show a linear relation between t and τ , with a
temperature-dependent scale factor. As is to be expected, there is some spread
in the data points at short times, which decreases with increasing times.

In comparison to the short time dynamics, the dynamics at long times is much
more noisy, simply because obtaining very long time series for an a-Si sample is not
easy. Just to give an idea, a run on a single core of Intel i7-9700k CPU, our sim-
ulations require 0.005s/step for a sample with 1000 atoms for T = 1500K. Given
that the crossover event often takes place at 104 steps, at least 106 steps, and
averaging over 50 independent sample runs, costing five days, would be required
for obtaining results with good statistics (larger samples and lower temperatures
would require even longer times.) To complicate matters, we also have to deal
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with the stalling events. Fortunately, we have found a way to go around the
complications due to the stalling events, as described in Sec. 4.3.2 below.

Stalling events complicate handling of time-series data

The stalling events pose us with a difficulty on how to cleanly handle the dynamics
data at long times: specifically, V , B1 and B2 changing only at irregular time
intervals means that ensemble averages, calculated standardly from time-series
data, is bound to be very noisy (it is!) at long times. Stalling events are a
manifestation of the MC procedure: over a stalling period, which is synonymous
to a waiting time (i.e., the sample configuration is waiting for a change), all
proposed bond transposition events in the MC procedure are rejected. That said,
the stalling events also provide us with the opportunity to measure time in units
of accepted bond transposition moves, τ , instead of the standard units of MC
time t, measured in units of attempted bond transposition moves. Clearly, the
quantity τ increases by unity at every accepted move, even though the MC time
between two successive accepted moves, the waiting time can be widely different
due to stochasticity of the process. Indeed, when measured in units of τ , we find
that the dynamical quantities at long times are far less noisy, and for this reason,
throughout this section we measure time in units of τ .

But before we get to the dynamics, we present the probability distribution of
the waiting time Pw(t) in Fig. 4.5(a) for a sample with N = 423 and a couple of
different temperature values. Plotting the data in log-linear plot, and subsequent
analysis, reveals that the Pw(t) data are well fitted by the following formula:

Pw(t) = atbe−(τw/τc)d , (4.7)

where a is a normalization constant. The fitting parameters are noted in Table
4.1. In particular, we note that the waiting time distributions do not have power-
law tails. We will return to this aspect later in this section. Moreover, in Fig.
4.5(b) we also show that the mean waiting time is a constant throughout the
duration of the simulation (the constant corresponds to the inverse rate of the
accepted moves).

Table 4.1: Parameters for the fitted waiting time distribution in Fig. 4.5(a).

Temperature (K) a b τc d
1400 2.070 ×10−5 0.767 125.000 0.474
1500 4.721 ×10−5 0.615 195.100 0.525
1600 1.179 ×10−4 0.466 274.800 0.595
1700 3.315 ×10−4 0.300 350.000 0.667
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Anomalous diffusion of V , B1 and B2
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Figure 4.6: (color online) (a)-(c) Measurement of the exponent α in log(τ) scale
for various temperatures with fixed N = 423. α is smaller then 1 throughout
the entire time, which indicates a subdiffusive behavior for the corresponding
mean-square displacement. After an initial period of crossover time, α eventually
converges to a small value (0.1-0.3). (d) The anomalous exponent (as defined in
Eq. 4.8) as obtained from the MSD of B1, B2 and V , as a function of temperature.
At higher temperatures, the values of α obtained from the MSD of V are lower
than those for B1 and B2, probably because large deviations of the density away
from the crystalline value are suppressed (as discussed in the text).
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Double logarithmic plots of the mean-square displacements reveal that the dy-
namics of V , B1 and B2 is no longer diffusive, i.e., they are anomalous, at long
times. Assuming that the MSDV (τ), MSDB1(τ) and MSDB2(τ) increase as a
power-law in τ at long times, we compute the effective exponents for these vari-
ables, collectively denoted by Q, as

αQ (τ) =
d log [MSDQ]

d log τ
. (4.8)

An example plot for αQ is shown for N = 423 in Fig. 4.6(a)-(c) above. The
exponents we find are dependent on temperature (shown in Fig. 4.6(d)). It
seems to us that lower temperature leads to lower subdiffusion exponent, even
though measuring exact exponents properly is difficult given long run times. The
approximate exponents for each quantities at various temperature are list in Tab.
4.2.

Table 4.2: The anomalous diffusive exponent α for V , B1, and B2 with fixed
N = 423 and various T .

Quantity T (K) α
V 1400 0.06
V 1500 0.13
V 1600 0.16
V 1700 0.20
B1 1400 0.07
B1 1500 0.14
B1 1600 0.18
B1 1700 0.25
B2 1400 0.09
B2 1500 0.13
B2 1600 0.19
B2 1700 0.25

Further analysis of anomalous diffusion

Long runtimes required to obtain long time series of sample snapshots prevent
us to pinpoint the exponents with higher numerical accuracy. Nevertheless, we
can still reflect on the nature of the anomalous diffusion we observe here for a-Si.
In particular, in the past work of two of us, we have observed that anomalous
diffusion in materials tend to belong to the fractional Brownian motion (fBm)
class, while their stochastic dynamics described by Generalized Langevin equa-
tion (GLE) with power-law memory [133–136], with the exponent of the power-
law memory, within the numerical accuracy, matching the anomalous diffusion
exponent really well. The memory can be interpreted in terms of restoring forces:
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when thermal fluctuations move a sample configuration one way, subsequent fluc-
tuations tend to undo that move. If the simulations of a-Si were amenable to
reach sufficiently long times, we would be able to perform a similar analysis here
as well; unfortunately that is not the case.
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Figure 4.7: Normalized velocity auto-correlation functions (VACF) of V , B1 and
B2 for various temperatures with fixed N = 423 (a)-(c) , and (d)-(f) for various
the number of atoms with a fixed temperature of 1500K. The VACF are clearly
negative at very short times, indicating that there is a restoring tendency: if in one
bond transposition, the sample shears one way, the following bond transposition
has a bias in favor of undoing the earlier shear. It also implies the autocorrelation
is weaker for a larger system.
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CQ
v (τ) =

⟨vQ (τ) vQ (0)⟩〈
(vQ (0))2

〉 . (4.9)

That said, given that the waiting times do not have a power-law tail, as
demonstrated in Fig. 4.5 rules out a continuous-time random walk (CTRW) type
stochastic process for V , B1 and B2. To completely rule out CTRW, we plot
the velocity autocorrelation function (VACF) for these quantities in Fig. 4.7,
VACF CQ

v (τ) is defined in Eq. 4.9 for quantity Q, where vQ (τ) = ∂Q/∂τ is the
velocity of the quantity Q. These data rather cleanly demonstrate that the VACF
is negative for τ ̸= 0, and approaches zero for large τ from below the x-axis.

For completeness, we also present the jump length distributions of B1, B2

and V in Fig. 4.8. Note that these distributions do not feature fat tails, thereby
ruling out Levy-flight like effects.

4.4 Discussion
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Figure 4.8: (color online) Double logarithmic plots of the jump length distribution
for B1, B2 and V (N = 423, T = 1500K). None of these distributions feature fat
(power-law) tails, thereby ruling out Levy-flight behavior.
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This manuscript studies the structural dynamics of a model of amorphous silicon,
in particular the fluctuations in the volume V of the simulation box, as well as
in its aspect ratios B1 and B2. The simulations show that these three variables
show ordinary diffusive behavior at very short times, crossing over to anomalous
diffusion at longer times: their MSDs can be well fitted with a power-law MSD∼
tα with α < 1. We find that the anomalous exponent α is temperature-dependent.

Various models in statistical physics exist that also feature anomalous dynam-
ics; two well-known examples are the continuous time random walker (CTRW)
and fractional Brownian motion (fBM). In further investigation, we present the
distribution of the waiting times, as well as the velocity autocorrelation functions.
These further results show that the observed anomalous dynamics is consistent
with fBM-like behavior, and not with CTRW-like behavior.

The observed fluctuations in the shape of the simulation cell are directly re-
lated to deformations of the material under external compression and shear forces.
Our findings are therefore directly linked to experiment.





CHAPTER 5

Domain coarsening in polycrystalline
graphene
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Abstract

Graphene is a two-dimensional carbon allotrope which exhibits exceptional
properties, making it highly suitable for a wide range of applications. Practical
graphene fabrication often yields a polycrystalline structure with many inher-
ent defects, which significantly influence its performance. In this study, we uti-
lize a Monte Carlo approach based on the optimized Wooten, Winer and Weaire
(WWW) algorithm to simulate the crystalline domain coarsening process of poly-
crystalline graphene. Our sample configurations show excellent agreement with
experimental data. We conduct statistical analyses of the bond and angle distri-
bution, temporal evolution of the defect distribution, and spatial correlation of
the lattice orientation that follows a stretched exponential distribution. Further-
more, we thoroughly investigate the diffusion behavior of defects and find that
the changes in domain size follow a power-law distribution. We briefly discuss
the possible connections of these results to (and differences from) domain growth
processes in other statistical models, such as the Ising dynamics. We also exam-
ine the impact of buckling of polycrystalline graphene on the crystallization rate
under substrate effects. Our findings may offer valuable guidance and insights for
both theoretical investigations and experimental advancements.

This chapter is partially based on the following publication:

Liu Z, Panja D, Barkema G T. Domain Growth in Polycrystalline Graphene[J].
Nanomaterials, 2023, 13(24): 3127.

https://www.mdpi.com/2079-4991/13/24/3127
https://www.mdpi.com/2079-4991/13/24/3127
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5.1 Introduction

Graphene is a two-dimensional (2D) material in which carbon atoms are organized
in the structure of a honeycomb lattice. It exhibits a wide range of appealing prop-
erties in comparison to more conventional materials, including exceptionally high
strength and toughness [137–142], remarkable thermal conductivity [143–147],
and outstanding electrical conductivity [148]. As a result, use of graphene-based
devices has witnessed a substantial surge in recent years [149–152]. Graphene
can be fabricated experimentally through different methods, such as chemical va-
por deposition (CVD) [153–156], epitaxial growth on silicon carbide [157, 158],
and liquid-phase exfoliation [159, 160]. However, graphene produced using these
techniques typically exists in a polycrystalline form, which means that the struc-
ture consists of many crystalline domains, each with its own lattice orientation.
Neighboring domains are separated by strings of defects, usually five-fold and
seven-fold rings. A sample of polycrystalline graphene is depicted in Fig. 5.1(d).
Polycrystalline graphene grown on substrates often exhibits out-of-plane buck-
ling near defects, a phenomenon that has been reported in numerous experiments
and simulations [8, 161, 162]. Buckling can significantly affect the properties of
graphene, however, its impact on the growth process is still less understood.

The structure of polycrystalline graphene is not stationary in time. Changes
in the bonded structure occur all the time via the so-called bond translocations. If
such a bond translocation occurs in the middle of a crystalline region, four six-fold
rings evolve into two five- and two sevenfold rings [middle panel of Fig. 5.1(b)],
a structure known as a Stone-Wales defect. Occasionally arising Stone-Wales
defects in otherwise crystalline graphene tend not to last, and in due time, the
crystalline structure is restored. If a bond translocation occurs in the immediate
vicinity of a five- and sevenfold ring, the result is that this 5-7 pair is actually
displaced sideways [right panel of Fig. 5.1(b)]. Via this mechanism, the domain
walls separating the crystalline regions, consisting of alternating strings of five-
and sevenfold rings, can actually wander.

The global effect of this wandering of the domain walls is coarsening or domain
growth: bigger domains tend to grow at the expense of smaller ones, because of
energetic considerations, and the density of domains decreases in time.

Here we study the domain growth process in graphene using computer simu-
lations. First, in order to understand the force that drives the coarsening process,
we study the energetics of polycrystalline graphene: in particular, we show that
the total energy of the system increases monotonically with the number of 5- and
7-fold rings in a more or less linear fashion (Fig. 5.4). Next, we study the evolu-
tion in time of the defect density, spatial correlation of the lattice orientation and
the average domain size. We find that the defect density scales as t−1/3 in flat
polycrystalline graphene, the spatial correlation of the lattice orientation is well
fitted by a stretched exponential function, and the average size of the domains
grows like t1/6. We discuss similarities to the domain growth process (so-called
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Ostwald ripening) in the Ising model. We also investigate the influence of buck-
ling on the coarsening process and find that buckling of polycrystalline graphene
slows it down. This implies that graphene samples with better crystallinity are
best produced if the graphene is kept as flat as possible by a substrate.

This chapter is organized as follows. First, in Sec. 5.2, we describe our
model for graphene, including its dynamics. In Sec. 5.3, we validate our model,
and present that the structures resulting from simulations are in good agreement
with experimental data. Next in Sec. 5.4, we present a statistical analysis of the
spread in bond lengths and bond angles, structural disorder and defect density, as
a function of time. We also present an extensive study of the lattice orientations,
both in its spatial distribution and its dynamics. In Sec. 5.4.2, we analyses the
diffusive behavior of defects and the separation of crystal phases. In section 5.4.3,
we discuss the influence of binding to the substrate for buckled polycrystalline
graphene. We conclude the chapter with a summary in Sec. 5.5.

5.2 Model

The overwhelming majority of carbon atoms in graphene are covalently bonded
to three neighboring atoms; undercoordinated carbon atoms do exist, but at a
density which is so low, that it can be safely neglected. In this work, we use the
recently developed semiempirical energy potential which has the following form
[99]:

E =
3

16

α

d2

∑
i,j

(
r2ij − d2

)2
+

3

8
βd2

∑
j,i,k

(
θjik −

2π

3

)2

+ γ
∑
i,jkl

r2i,jkl. (5.1)

Here, rij is the distance between two bonded atoms i and j, θjik is the angle
between the two bonds connecting atom i to atoms j and k and ri,jkl is the out-of-
plane distance from atom i to the plane through the three atoms j, k and l. The
parameter α is chosen as 26.060eV/Å2 to control bond stretching and is fitted to
the bulk modulus. The parameter β = 5.511eV/Å2 governs bond shearing and
is fitted to the shear modulus. The parameter γ = 0.517eV/Å2 describes the
stability of the graphene sheet against buckling; note that this third out-of-plane
term is zero in perfectly flat graphene (2D simulations). d = 1.420Å is the ideal
bond length for pure graphene. All these parameters are obtained by fitting to
density functional theory (DFT) calculations [99]. Note that the elastic potential
strictly requires the bond list where each atom is bonded to exactly three atoms;
the number of bonds equals therefore 3N/2, in which N is the number of atoms.
This potential enables one to efficiently estimate the energies of the relatively
stable configurations encountered in our simulations of graphene coarsening.
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Figure 5.1: (a) Elementary move in the structural evolution of polycrystalline
graphene, also known as a bond transposition. In a string of four carbon atoms
A-B-C-D, the bonds A-B and C-D are replaced by bonds A-C and B-D, leaving
the central bond B-C untouched. (b) Left panel: if a bond transposition occurs
in crystalline graphene, it results in two oppositely oriented pairs of 5-7 rings.
Right panel: if a bond transposition occurs in the immediate vicinity of a 5-7
pair, it effectively displaces sideways.The atoms marked in orange are selected
for the bond transposition. (c) Visualization of an initial sample, created from
a Voronoi network as described in the text. Note that the network is disordered
and homogeneous, with at most tiny crystalline regions. (d) Same network after
structural relaxation with 9 × 104 proposed bond transitions, when crystalline
regions have appeared. In this figure, 5-, 7- and 8-fold rings are marked in different
colors.

Simulations of covalently-bonded materials are typically slow and computa-
tionally expensive; their high stability causes the relevant experimental time scales
to be well beyond those accessible by standard molecular dynamics simulations.
Here we employ a relatively simple and accurate model for dynamics of polycrys-
talline graphene, which was initially applied for generating silicon samples with
realistic structures. The model constructs atomic configurations generated by the
evolution of a continuous random network (CRN) via bond transpositions, which
is a well-established and widely used method to generate realistic atomic con-
figurations of carbon/silicon materials. More specifically, we use the algorithm
introduced in Ref. [131], an improved version of the original method of Wooten,
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Winer and Weaire [87]. The improved bond transposition procedure consists of
the following sequential steps: (1) constructing a comprehensive list of bonds in
the current sample configuration; (2) randomly selecting four connected atoms
(ABCD); (3) breaking the bonds between AB and CD and forming new bonds
between AC and BD, as shown in Fig. 5.1(a); (4) performing global energy min-
imization and comparing the energy Ea after the bond switch with a predefined
energy threshold, defined as:

Et = Eb − kBT ln (s) , (5.2)

where kB is Boltzmann constant, T is temperature, Eb is the energy before the
bond transposition and s is a uniform random number between 0 and 1. If the
energy Ea after the bond transposition is less then Et, the proposed change is
accepted; otherwise, it is rejected, and the atoms and bond list are restored.

To accelerate the evolution program, we first relax only the atoms in the
near vicinity of the bond transposition, bringing the total energy down to El.
We then estimate the energy Ea after global relaxation (without performing the
global minimization), employing a local energy criterion in term of the linear
relationship between local minimum energy and the total remaining forces |F |2:

Ea ≈ El − cf |F |2 (5.3)

Here, cf is a linear factor obtained from simulations. In our recent work [104],
we found that the performance of the local decision depends on the set of atoms
allowed to move during the local relaxation; and for this, a shell of atoms was
selected with the shortest-path distance l from the atoms involved in the bond
transpositions. In the simulations discussed in the chapter, l and cf are chosen as
3 and 6×10−3 s2u−1 to achieve the best performance, respectively. Note that the
quantity cf is expressed in units of seconds squared over the atomic mass unit.

The minimization approach exerted in our simulations is the so-called fast
inertial relaxation engine (FIRE) algorithm, in which parameters corresponding
to Ref. [107] are set as: Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.1 and
fα = 0.99. Other custom parameters here are set to be ∆tMD = 0.03 and
∆tmax ∼ 10∆tMD. The velocity Verlet method is chosen for the integration in
time.

The domain growth presented in this chapter consists of Monte Carlo (MC)
dynamics, consisting of a sequence of proposed bond transpositions described
above. The time scale in this MC dynamics can be related to standard molecular
dynamics method (MD). Within our MC dynamics, the probability that a specific
bond transposition is proposed in one MC unit of time is 2/(3∗2∗2∗N) = 1/(6N).
Here, factors 1/N , 1/3, 1/2 and 1/2 respectively arise from selecting a random
atom (out of N total atoms), then one of its three neighbors, next twice one
of the two remaining neighbors, and the factor of 2 comes from the possibility
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to generate the same string of atoms from two different ends. The acceptance
probability is then exp(−β∆E), where ∆E is the energy difference between the
initial and final states. Thus, the rate of structural changes in the sample is
(1/6N) exp(−β∆E). In molecular dynamics (MD), the rate would be ν exp(−βB)
where ν is the attempt frequency, often found to be around 10−12 s−1=1 ps−1, and
B is the energy barrier between the initial and final states. The energy barrier
B is roughly equal to the sum of the energy for breaking a single bond and, if
positive, the energy change ∆E.

Fig. 5.1(c) to (d) demonstrate the evolution process of polycrystalline graphene
samples. Fig. 5.1(c) presents a Voronoi diagram with a random structure, pro-
viding an initial disordered state. Note that this initial state merely provides a
homogeneous disordered network without orientational bias, and does not reflect
any practical physical process. The construction of the Voronoi diagram involves
several steps: (1) randomly choose a set of points within a simulation box; (2) for
each seed point, determine its region, i.e. the set of points which are nearer to
it, than to another seed point. (3) construct the boundaries of the Voronoi cells,
which are formed by the perpendicular bisectors of the lines connecting neigh-
boring seed points; (4) these boundaries are considered the covalent bonds, and
the positions where three of these meet are considered as “atom’. Each “atom”
within the Voronoi diagram is strictly limited to having three neighbors, and pe-
riodic boundary conditions (PBC) are applied to ensure a constant number of
atoms (N) and bonds (3N/2) within the simulation box. Fig. 5.1(d) shows the
evolution of a polycrystalline graphene structure with a defined defect density
achieved by implementing 9 × 104 proposed bond transpositions. The nanocrys-
talline domains with distinct crystal orientations are separated by domain walls
consisting mainly of 5- and 7-fold rings. Further, individual defect islands emerge
within the crystalline domains.

5.3 Model validation

The model was first introduced in Ref. [99], which is based on Kirkwood’s poten-
tial [163]. This potential has been used, for instance, for studying the structural
dynamics of single-layer polycrystalline graphene[132], for studying the long-range
relaxation of structural defects [99], for probing crystallinity of graphene samples
via their vibrational spectrum [100] and for the study of the discontinuous evo-
lution of the structure of stretching polycrystalline graphene [104].

Crystalline graphene is a 2D material, but as soon as the structure has defects
— in particular if it is polycrystalline — the carbon atoms tend to relief stress
by buckling, i.e. displace with respect to each other in the out-of-plane direction.
For free-floating graphene in vacuum, the buckling can have an amplitude of
many angstroms, while for graphene attached to a substrate, the amplitude of
the buckling away from the substrate is suppressed significantly. In the first part
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of our simulations, we confine the graphene to a 2D plane without any buckling;
further on, we relax the constraint to the plane and allow for buckling.
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Figure 5.2: Comparison of the normalized radial distribution function g(r) of our
generated sample and experiment, at comparable defect density. The two curves
match very well, up to about the first ten peaks.

In order to ensure the validity of the obtained samples, we employ the radial
distribution function (RDF) as defined in Eq. (5.4), which characterizes the
average spatial distribution of particles in a system. The RDF is defined as [164]

g (r) =
lim
∆r→0

Nr

π(r+∆r)2−πr2

ρ
(5.4)

where r is the radial distance from reference particle, ρ is the average atoms den-
sity and Nr is the number of atoms between r and r + ∆r. Starting from the
initial configuration [Fig. 5.1(c)] we let the sample evolve in time. We then com-
pare in Fig. 5.2, the normalized radial distribution function of the samples [Eq.
(5.4)] on the 2D plane when the defect density reaches the same value (∼20%) as
in the experiment of Eder et al. [165]. (The defect density is defined as the ratio
of non-hexagonal rings to the total number of rings.) The comparison reveals an
excellent simulation-experiment agreement. Note also that the simulated samples
we used have similar long-range disorder as the ones observed in real polycrys-
talline graphene.
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5.4 Results

5.4.1 Domain growth in flat polycrystalline graphene

For studying domain growth of realistic polycrystalline graphene samples, at t = 0
we start with one consisting of 9800 atoms and a defect density of ∼ 20%. We
then evolve it for 4.5 × 105 Monte Carlo steps (MCS) under weak pressure and
quench to 3000K, a temperature significantly below the melting temperature of
polycrystalline graphene. To improve our statistics, all statistical data presented
in the chapter is obtained by repeating the evolution process 50 times using
different random number seeds. The simulations were performed on an Intel i7-
9700 CPU, with an average runtime of approximately 0.02s per MCS. Figures
5.3(a) and 5.3(b) display the distributions of bond angles and bond lengths for
different times, respectively. Note here that in flat polycrystalline graphene, the
third term in the potential function [Eq. (5.1)] related to dihedral angles can
be neglected due to the absence of out-of-plane forces. Consequently, the bond
angles gradually approach the ideal value of 120◦, while the bond lengths tend
to converge to 1.42Å. Figure 5.3(c) illustrates the time-dependent changes of the
RDF in the range of 5Å to 10Å. With increasing time, distinct peaks of the RDF
appear at multiple positions, indicating the gradual appearance of longer-ranged
order and an increase in the domain area. Figure 5.3(d) displays the power-
law behavior of the defect density as a function of time, with an exponent of
−0.330 ± 0.002. Based on this result, we speculate that the exponent for the
defect density decrease under ideal conditions (adequate statistical sampling) is
−1/3 at T = 3000K. Eq. 5.2 indicates that temperature can affect the evolution
by either increasing or decreasing the acceptance rate.

Figure 5.4 shows the linear relationship between the total energy and the
number of 5-7 pairs; it can be linearly fitted by f(x) = 1.75x + 7.86. As a
reference, this corresponds to the formation energy of a single Stone Wales (SW)
defect in the flat polycrystalline graphene by nearly 3.5eV [99], as each SW defect
consists of two 5-7 pairs.

During the growth process of polycrystalline graphene, it is common to ob-
serve the formation of domains with different lattice orientations. The lattice
orientation of these domains is complex and influenced by various factors, such
as the motion of individual defects, the alignment of domain boundaries, and
external pressure. These factors can exert torques to the domains, leading to a
certain degree of lattice rotation within the domains. For graphene, the range
of the lattice orientation is −30◦ to 30◦, with positive values indicating orienta-
tions corresponding to rotations around the z-axis in the positive direction and
negative values indicating orientations pointing towards the negative direction of
rotation around the z-axis. Identification of the crystal orientation in disordered
2D materials relies on descriptors to quantify the local order in atomic systems
[166–169]. Here, we applied polyhedral template matching (PTM) to identify
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Figure 5.3: Time evolution of the distribution of (a) the bond angles and (b) the
bond lengths in planar samples of graphene. With increasing simulation times,
both distributions become narrower. (c) Time evolution of the radial distribution
function. With increasing simulation time, the peaks at longer distance become
increasingly pronounced. (d) Density of defects (5- and 7-rings) as a function of
simulation time. The decay can be well fitted by a power-law decay t−1/3 (solid
line).
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Figure 5.4: Total energy as a function of the number of defects (pairs of 5- and
7-rings) in planar graphene. The data can be well fitted with a linear relation:
E = 1.75x + 7.86. As a reference, a single SW defect consists of two such pairs
and would thus correspond to a defect formation energy of 3.5 eV.

the lattice orientation of atoms in polycrystalline graphene [170]. This method
enables to classify structures according to the topology of the local atomic envi-
ronment, without any ambiguity in the classification, and with greater reliability
than, e.g., common neighbor analysis in the presence of thermal fluctuations. It is
important to note the custom parameter root-mean squared deviation (RMSD),
a higher RMSD cutoff will lead to more identifications (and fewer defect atoms),
though possibly at the expense of false positives. A lower RMSD cutoff will result
in fewer structural identifications (and more defect atoms and greater sensitivity
to perturbations of the lattice), though possibly at the expense of false negatives.
The RMSD has been set to 0.1 in our simulations to achieve optimal identifica-
tion results. With this setting, the hexagonal lattice structure and defects can
be identified relatively accurately. However, the identification performance for
defects is not as robust as the ring identification algorithm used in the previous
text, which can identify non-hexagonal ring defects with 100% accuracy.
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Figure 5.5: Analysis of the orientation of the hexagons in the lattice structure.
(a) Normalized correlation function Cori

s of the orientations as defined in Eq.
(5.5), as a function of distance r, for various times. The data show a linear trend
if (− ln(Cori

s )) is plotted as a function of distance r in a double-logarithmic plot,
indicating that the correlation function Cori

s decays as a stretched-exponential. (b)
Histogram of the hexagon orientations at different times. While the crystalline
regions grow in time, these histograms become increasingly rugged. (c ) Evolution
of the maps of the hexagon orientations. Some regions grow (while conserving
their orientation), at the expense of other regions that shrink and sometimes
disappear.

In order to investigate the spatial distribution of the lattice orientation, we
define the normalized spatial correlation of the lattice orientation Cori

s below,

Cori
s (∆r) =

⟨oi × oj⟩
⟨o2i ⟩

, (5.5)

where oi and oj are the orientation of atoms i and j, respectively, r⃗i and r⃗j are
the corresponding position, and with the fixed distance ∆r = |r⃗i − r⃗j|. Figure
5.5(a) shows the variation of Cori

s as a function of ∆r at different times t and
corresponding defect density D. The vertical axis shows ln[− ln(Cori

s )], while
the horizontal axis is logarithmically scaled. The data exhibits a straight decay
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pattern in the figure, suggesting a trend that follows stretched exponential decay
with a form like Cori

s ∼ e−(∆r/b)c . Due to the limitations of sample size and the
effects of periodic boundary conditions, there is a significant amount of noise
present on spatial scales larger than 20 Å. As a result, it becomes difficult to
present the spatial correlation lattice orientation at larger scales. As shown in
Fig. 5.5(a), the reference lines indicate that an anomalous exponent c is observed
in the range from 1 to 1.5.

The histogram distribution plots in Fig. 5.5(b) illustrate the quantitative
analysis of lattice orientations at three different times. Evidently, that there is a
symmetry around zero orientation, indicating that the polycrystalline graphene
can be regarded as a binary mixture composed of two types of regions: those with
orientations greater than zero degrees and those with orientations less than zero
degrees, in equal proportions. The average size of the binary mixture corresponds
to the intersection between the correlation curve and the x-axis in Fig. 5.5(a).
In the histogram, three prominent peaks are observed in the intervals (−30◦)-
(−20◦), (−10◦)-(10◦), and (20◦)-(30◦), suggesting a higher concentration of atomic
orientations within these ranges. Further, we observe that as time progresses from
t = 0 to t = 4.5 × 105 in terms of MCS, the intensity of these peaks increases,
which is also in line with the lattice orientation distribution map shown in Fig.
5.5(c). There is a trend suggesting that smaller regions with the same orientation
have a higher tendency to merge into larger regions, and regions with similar
orientations are more prone to fusion.

5.4.2 Dynamics of crystal phases

In the samples of polycrystalline graphene, crystal phases can be identified, each
consisting of carbon atoms organized in a honeycomb lattice structure, with an
orientation that differs from one domain to another. At the boundaries between
domains, the three-fold coordination of the bond structure is preserved, but the
honeycomb structure is discontinued by the presence of strings of 5- and 7-fold
rings.

Identifying different crystal phases and their orientations can be challeng-
ing. In our simulations, we employ a method called graph clustering to identify
the phases and their orientations. This approach is sensitive enough to detect
sub-phases with subtle differences in domain orientations. The local structural
environment and orientation of each atom is determined using the PTM algo-
rithm, then graph edge weights are initialized as exp(−d2/3), where d is the
misorientation in degrees between two neighboring atoms. Domains are built
up by contracting edges using the Node Pair Sampling method of Bonald et al.
[171]. In our simulations, two important parameters, the merge threshold and
the minimum grain size are set to 11 and 10, respectively, to achieve the best
performance.
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Figure 5.6: (a) A polycrystalline graphene with 9800 atoms, 36 crystal phases are
identified by using the graph clustering algorithm. Green, yellow and blue boxes
represent three different kinds of defect structures, details see the text. (b) The
average domain area changes in time, which approximately scales as a power law
with 1/3 exponent. (c) Movement of a defect island from the inside domain to
grain boundary, showing the diffusive behavior of defect.

Our simulations show that the dynamics of the domain structure in polycrys-
talline graphene are dominated by the motion of defects and domain boundaries.
As shown in Fig. 5.6(a), 36 crystal phases (domains) were identified in a poly-
crystalline graphene consisting of 9800 atoms. Qualitatively, we observe various
mechanisms that together constitute the dynamics of the domain structure. First,
domain boundaries formed by strings of 5- and 7-rings separate the domains (in
the green box of Fig. 5.6(a)). These domain boundaries are mobile, as is also
observed experimentally using electron scanning microscopy. Second, isolated de-
fects within the crystal domain exert a planar force on the adjacent lattices (in
the yellow box of Fig. 5.6(a)). Third, shear stress generated by grain boundaries
on both sides of the domain shears it into two fragments (in the blue box of Fig.
5.6(a)). During the domain growth process, the motion of defects can be classified
into two scenarios. Some defects spontaneously disappear due to energy reduc-
tion, while others undergo diffusion motion. Figure 5.6(c) illustrates an example
of defect diffusion, where a defect island located at the center of a domain moves
to the adjacent continuous grain boundary after approximately 1.3×105 Monte
Carlo steps. Upon reaching the grain boundary, it cannot cross over to the crystal
domain on the other side of the grain boundary.

We continue with a quantitative discussion of the evolution of the domain
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structure. The number of atoms in the domain is used as a representative measure
of the domain area. In Fig. 5.6 (b), the average domain size is plotted as a
function of time. It, square root of average domain area, exhibits a power-law
increase with an exponent of 1/6. Given that the domains do not show a fractal
structure, this is consistent with the decay exponent of defect density shown in
Fig. 5.3(d).

At a first glance, the domain growth process in graphene resembles that of
many other systems showing Ostwald ripening. A prototypical domain growth
process is that in the Ising model [52]. With spin-flip (Glauber) dynamics, the
theoretical framework is known as “Model A’, in which domains of aligned spins
grow proportional to t1/2. If the magnetization is locally conserved, as in spin-
exchange (Kawasaki) dynamics, the theoretical framework is known as ”Model
B”, in which these domains grow proportional to t1/3. In the case at hand, we do
observe a growth exponent close to 1/3, but it is less clear that a local conservation
law is active. There are a number of differences between the domain growth in
graphene and the Ising model. For instance, the domains in graphene have a
continuously varying orientation, rather than only “up” and “down’; additionally,
long-ranged interactions might play a role, especially if buckling is allowed; and
while some domain walls can easily move in some directions, the motion can be
blocked in other directions. In future work, we hope to make a clearer connection
between domain growth in graphene and the extensive literature on Ostwald
ripening.

5.4.3 Domain growth in buckled polycrystalline graphene

The lowest-energy state of crystalline graphene in vacuum is a purely 2D struc-
ture. At finite temperature already, the carbon atoms will show out-of-plane
displacements. Once structural defects are introduced, a free-floating layer of
graphene will show even more structure in the out-of-plane direction. This buck-
ling is suppressed significantly, but not completely, if the layer of graphene is
placed on a substrate. For the current study on domain growth, the main effect
of the substrate is the suppression of buckling. We therefore incorporate the main
effect of the substrate by adding a harmonic confining energy term, defined as

Es = K
N∑
i

z2i (5.6)

Here, N is the number of atoms, zi is the normal-to-plane coordinate of the atom.
The parameter K sets the strength of the interaction with substrate. Tison
et al. [79] have reported that the buckling resulting from defects and domain
boundaries extends to typically 5 to 20Å; according to our previous investigations,
this corresponds to a range of K values between 0.05 and 0.3. Figure 5.7(a)
displays a buckled polycrystalline graphene growing on a substrate, while Fig.
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5.7(b) focuses on the evolution of defect density in time. Specifically, the density
of non-hexagonal rings divided by t−1/3 (the decay rate in the flat case), for various
K values ranging from 0.01 to 2.00 eV Å−2.

Notably, our findings indicate that the buckling of polycrystalline graphene
significantly slows down the domain growth process. As the value of K increases,
D(t)/t−1/3 tends to reach a constant value in a shorter time. The difference for
various K is however weak, because the higher buckling height ∆z resulting from
crystallization counteracts the suppression of substrates. In conclusion, flatter
graphene exhibits faster coarsening. This intriguing observation highlights the
intricate interplay between buckling, substrate effects, and defect dynamics in
the crystallization process of graphene.

��� ���
 ��� ���
 ���

�

�

�

	

��

��

��� ���

�

	

��

��

�	�����
�	�����
�	�����
�	�����
�	�����

��
����
��
����
��
����
��
����
��
����

𝐷
(𝑡
)/
𝑡−

1/
3

𝑡

𝐷
(𝑡
)/
𝑡−

1/
3

𝑡

Figure 5.7: (a) A brief schematic diagram illustrating the growth of buckled
polycrystalline graphene on a substrate. (b) Defect density of buckled polycrys-
talline graphene growing on various substrates divided by t−1/3 (the decay rate
in the flat case) over time. The inner figure is plotted on a double-logarithmic
scale, demonstrating that the buckling of polycrystalline graphene slows down the
crystallization rate. All samples are evolved start from an initial configuration
with 20% defects density. Since well-crystallized sample leads to higher buckling
height ∆z, which counteracts the suppression of substrate, the difference is weak
for various values of K (eV Å−2).

5.5 Summary

In this chapter, we employed a recently developed and extensively validated model
to investigate the dynamics of domain growth in polycrystalline graphene. The
dynamics consists of a sequence of proposed bond transpositions at random lo-
cations, accepted or rejected according to Metropolis method. The technique en-
ables access to much longer time scales, compared to molecular dynamics (MD)
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method. The studied domain growth process is performed under zero pressure,
quenching the system from infinite temperature to approximately 3000K. The
radial distribution function shows that the spatial structures of our generated
samples have good agreement with ones in experiments at the same defect den-
sity.

Through the simulations and analysis, the dynamics revealed underlying sta-
tistical mechanisms behind domain growth in polycrystalline graphene. Flat and
buckled graphene are both investigated. For the flat case, we find that bond an-
gles and bond lengths converged respectively towards 120◦ and 1.42Åas a function
of time. The long-range disorder exhibited a gradual reduction, and the defect
density, represented by the proportion of non-hexagonal rings, followed a power-
law distribution with an exponent of −1/3 found from our simulations over time.
In addition, the spatial correlation of lattice orientations statistically follows a
stretched exponential form with less flat tail over times.

We identified different domains within polycrystalline graphene, and delved
into discussions regarding phase separation and defect diffusion motion, the av-
erage domain size exhibits a power-law increase with an exponent of 1/6 over
times. We briefly compared the domain growth in polycrystalline graphene with
the Ising dynamics. It was found that a similar growth exponent close to 1/3
was observed in the Kawasaki dynamics with a conserved magnetization density.
However, the domain growth in polycrystalline graphene exhibits more complex-
ity. Nevertheless, we believe that this correlation will provide some guidance for
our future related research.

For the buckled case, we briefly investigated the evolution of buckled polycrys-
talline graphene on substrates. Our findings demonstrated that the undulating
buckling of polycrystalline graphene led to a reduction in the crystallization rate.

Our work may provide crucial insights into the dynamics of polycrystalline
graphene during crystallization processes, which is difficult to achieve in experi-
ments and MD simulations. Our findings also contribute to a deeper understand-
ing of the development of advanced materials and the optimization of graphene-
based applications. Moreover, the observation of reduced crystallization rates in
buckled polycrystalline graphene on substrates emphasizes the need for careful
consideration of substrate effects in future graphene-related research.





Summary

We have performed extensive computer simulations to study the dynamical prop-
erties. First, we study the Ising model with spin-flip dynamics at its critical point,
and find that the magnetization shows anomalous dynamics, i.e. its mean squared
deviation (MSD) does not increase linearly with increasing time, but instead as a
power-law with an anomalous exponent α < 1. Next, we study also the dynamical
behavior of models of disordered materials, looking for anomalous dynamics. In
particular, we simulate models of polycrystalline graphene and amorphous silicon
(a-Si), in which the dynamics consists of a sequence of bond transpositions, in
systems with periodic boundary conditions at zero pressure. We analyze the fluc-
tuations of the area resp. volume of the periodic cell, as well as aspect ratios of
the periodic cell. To characterize the anomalous dynamical properties over time
scales we use two important statistical measures: the mean square displacement
(MSD) and the autocorrelation function.

In Chapter 2, we have analyzed the results of extensive simulations of the two-
and three-dimensional (2D and 3D) Ising model with Glauber dynamics. The
MSD and the autocorrelation function of the magnetization reveal two crossover
times, τ1 ∼ Lz1 and τ2 ∼ Lz2 , and three separate dynamical regimes. In the
short-time regime, MSDM exhibits normal diffusion behavior, and the autocorre-
lation function displays an exponential decay. In the second, intermediate regime,
MSDM shows anomalous diffusive behavior, and the autocorrelation function de-
cays in a stretched-exponential form. In the third, long-time regime, MSDM

tends to saturate at a fixed value, while the autocorrelation function shows an
exponential decay again. The first crossover time is dominated by the dynamic
critical exponent z1 which was reported for the first time. Our simulation results
reveal that z1 is 0.45(5) and 1.32(2) for 2D and 3D cases, respectively. Purely
based on numerical grounds, we speculate that z1 is 1/2 for the 2D case. With the
measured anomalous diffusion exponent α in the intermediate regime being 3/4
and 0.90(2), the derived second dynamic critical exponent z2 is 13/6 and 2.032(3)
for 2D and 3D, respectively, which align well with earlier reports. Due to the
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existence of universality, the discovery of the first anomalous critical exponent
z1 in the Ising model with Glauber dynamics gives us reason to conjecture the
presence of similar anomalous dynamical critical exponents in the Ising model
with Kawasaki dynamics, the ϕ4 model, and even more broadly, in a much wider
range of systems.

In Chapter 3, we constructed two structure-related quantities in two-dimensional
polycrystalline graphene, namely the area A = LxLy and the aspect ratio B =
Lx/Ly, where Lx and Ly are the lengths of the two sides of a rectangular poly-
crystalline graphene sample. A and B can easily be correlated to the material’s
bulk modulus and shear modulus. Then, under constant temperature and zero
pressure, the dynamic evolution of A(t) and B(t) was constructed after applying a
series of WWW moves. The mean square displacement reveals that both MSDA

and MSDB exhibit normal diffusive behavior with diffusion coefficient DA and
DB at short times. After a long time, due to a preferred value of the area, MSDA

tends to saturate around a certain value, while MSDB keeps increasing. This
makes the direct determination of DB much more accurate than DA. Our simu-
lations also demonstrated that DB can be linearly predicted based on the initial
defect density under a fixed sample size, from which DA can then be derived in-
directly. We then show that the dynamic behavior of B(t) under external forces
can also be derived from DB via the Nernst-Einstein relation. Our simulation
results are in good agreement with theoretical predictions. The shear distance
under external forces exhibits non-linearity (a decreasing shear rate) over time.
We speculate that it results from elongated domains experiencing restoring forces
that push them back toward their original shapes. Additionally, we also study
the dynamics of the atomic coordinates in the out-of plane direction in buckled
polycrystalline graphene and show that these present normal diffusive behavior.

In Chapter 4, similarly, we construct three structural-related quantities in
amorphous silicon, which are the volume V = LxLyLz, related to the bulk mod-
ulus, and the aspect ratios B1 = Ly/Lz and B2 = LyLz/L

2
x, both related to

the shear modulus. Our analysis reveals that at short times, the MSD for all of
them exhibits normal diffusion. At longer times, they cross over to anomalous
diffusion, with a temperature-dependent anomalous exponent α < 1. We ana-
lyze our findings in the light of two standard models in statistical physics that
feature anomalous dynamics, viz., continuous time random walker (CTRW) and
fractional Brownian motion (fBm). We obtain the distribution of waiting times,
and find that the data are consistent with a stretched-exponential decay. We also
show that the three quantities, V , B1 and B2 exhibit negative velocity autocor-
relation functions. These observations together suggest that the dynamics of the
material belong to the fBm class.

In Chapter 5, we employed simulations to study the domain growth process
in flat polycrystalline graphene at a temperature of 3000K (below the melting
point) and zero pressure. The polycrystalline graphene samples we generated
were structurally well matched with experimental data, as verified by the radial
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distribution function. During the domain growth process, the bond angles and
bond lengths statistically tended to 120◦ and 1.42Å, respectively. Meanwhile, the
long-range disorder significantly diminished, and the defect density decayed over
time in a power-law form. We also investigated the spatial autocorrelation func-
tion of crystal orientations, which showed a decline in the stretched exponential
form. The statistics and spatial distribution of the crystal orientations visually
demonstrated that large-area domains tend to ”engulf” adjacent small-area do-
mains. Subsequently, we investigated the grain size growth with time, and found
this to be related to a power-law with an exponent close to 1/3. This reminded
us of systems also exhibiting Ostwald ripening, such as the Ising model below the
critical temperature. In the Ising model with Kawasaki dynamics, known as an
example of ”Model B”, the exponent for domain growth is also 1/3. However,
the process of domain growth in polycrystalline graphene is influenced by more
complex factors. We believe that our discussion can provide reference for future
research. Finally, we studied the effect of the substrate on the domain growth
process in buckled polycrystalline graphene, and although this effect is weak, our
simulation results showed that a stronger graphene buckling tends to reduce the
crystallization rate.





Samenvatting

Met behulp van computersimulaties hebben wij dynamische eigenschappen bestu-
deerd. Als eerste hebben we het Ising model bestudeerd, met spin-flip dynamica
in het kritische punt, en we vinden dat de magnetisatie anomaal dynamisch gedrag
vertoont, oftewel dat de gemiddelde kwadratische verandering niet lineair groeit
met de tijd, maar in de plaats daarvan een machtswet volgt met een anomale
exponent α < 1. Vervolgens hebben we ook het dynamisch gedrag bestudeerd
van modellen van ongeordende materialen, met oog voor anomaal dynamisch ge-
drag. Meer specifiek hebben we modellen gesimuleerd van polykristallijn grafeen
en amorf silicium, waarbij de dynamica bestaat uit bondtransposities, in syste-
men met periodieke randvoorwaarden en zonder externe druk. We analyseren
de fluctuaties van het oppervlak, resp. volume van de periodieke cel, alsmede
de relatieve verhoudingen van de periodieke cel. Om de anomale dynamische ei-
genschappen als functie van tijd te karakteriseren gebruiken we twee maten: de
gemiddelde kwadratische verandering en de autocorrelatie-functie.

In hoofdstuk 2 presenteren we de resultaten van grootschalige simulaties van
het Ising model in twee en drie dimensies, met Glauber dynamica. De gemiddelde
kwadratische verandering en de autocorrelatie-functie van de magnetisatie laten
overgangen zien op twee verschillende tijden τ1 ∼ Lz1 en τ2 ∼ Lz2 , en drie dynami-
sche regimes. In het vroege regime vertoont de gemiddelde kwadratische verande-
ring normaal diffusief gedrag en vervalt de autocorrelatie-functie exponentieel. In
het tweede, tussenliggende regime vertoont de gemiddelde kwadratische verande-
ring anomaal diffusief gedrag en de autocorrelatie-functie stretched-exponentieel
verval. In het derde regime, over lange tijden, benadert de gemiddelde kwadrati-
sche verandering van de magnetisatie een constante, en vervalt de autocorrelatie-
functie weer exponentieel. De eerste overgang gebeurt op een tijd bepaald door
een dynamische kritische exponent z1 die voor het eerst gerapporteerd wordt.
Onze simulaties laten zien dat z1 gelijk is aan 0.45(5) and 1.32(2) in respectie-
velijk 2D en 3D. Puur gebaseerd op numerieke resultaten speculeren we dat z1
gelijk is aan 1/2 in twee dimensies. In combinatie met een anomale exponent
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α in het tussenliggende regime die 3/4 en 2.032(3) is voor respectievelijk 2D en
3D, levert dat een tweede kritische dynamische exponent z2 op van 13/6 resp.
2.032(3) voor 2D en 3D, in lijn met eerder gerapporteerde waarden. In het licht
van universaliteit verwachten wij dat het door ons gerapporteerde gedrag van het
Ising model met Glauber dynamica ook vertoond wordt door het Ising model met
Kawasaki dynamica, het ϕ4 model en veel meer modellen.

In hoofdstuk 3 bestudeerden we twee structurele grootheden in twee-dimensionaal
polykristallijn grafeen, namelijk de oppervlakte A = LxLy en de lengteverhou-
ding B = Lx/Ly, waarin Lx en Ly de lengtes zijn van de twee zijden van het
rechthoekige sample van polykristallijn grafeen. A en B zijn direct gerelateerd
aan de bulk modulus en shear modulus van het materiaal. Vervolgens bestu-
deerden we de evolutie van A(t) en B(t) tijdens een serie van bond transposities,
bij constante temperatuur en zonder externe druk. De gemiddelde kwadratische
verandering MSDA en MSDB van A en B laten normaal diffusief gedrag zien
over korte tijdschalen, met diffusieconstanten DA en DB. Over lange tijden laat
MSDA afvlakking zien naar een constante, door de voorkeur voor een bepaalde
oppervlakte A, en MSDB blijft stijgen. Hierdoor kan DB met een grotere nauw-
keurigheid bepaald worden dan DA, Onze simulaties laten zien dat DB bepaald
wordt door de aanvankelijke dichtheid van defects, en daarvanuit kan DA indirect
bepaald worden. Vervolgens laten we zien dat de evolutie van B(t) onder een
externe schuifkracht afgeleid kan worden met de Nernst-Einstein relatie, gebruik
makend van DB. Onze simulaties bevestigen de theoretische verwachtingen. Ook
laten we zien dat de afschuifafstand onder een externe schuifkracht uiteindelijk
minder dan lineair groeit met de tijd. We speculeren dat dit het gevolg is van
krachten die domeinen die in één richting uitrekken door de afschuiving, terugdu-
wen naar hun oorspronkelijke vorm. Ten slotte bestuderen we de dynamica van de
koolstofatomen in gerimpeld grafeen, in de richting loodrecht op het grafeenvlak,
en we laten zien dat deze normaal diffusief gedrag vertonen.

Hoofstuk 4 lijkt sterk op het voorgaande hoofstuk, maar dan wordt amorf si-
licium bestudeerd, waarin het volume V = LxLyLz gerelateerd is aan de bulk
modulus, en de verhoudingen B1 = Ly/Lz en B2 = LyLz/L

2
x aan de shear

modulus. Uit onze analyse blijkt dat over korte tijdschalen, de gemiddelde
kwadratische verandering van al deze variabelen normaal diffusief gedrag ver-
toont. Over langere tijdschalen gaat dit over in anomaal diffusief gedrag, met een
temperatuur-afhankelijke anomale exponent α < 1. We vergelijken onze resulta-
ten met twee statistisch-fysische standaardmodellen die anomaal-diffusief gedrag
vertonen: continuous time random walker (CTRW) en fractional Brownian mo-
tion (fBm). We bepalen de distributie van de verblijftijden, en vinden dat deze
data consistent zijn met stretched-exponentieel verval. We laten ook zien dat
de drie variabelen V , B1 en B2 een negatieve snelheids-autocorrelatie laten zien.
Gecombineerd suggereren deze bevindingen dat de dynamica van het materiaal
behoort tot de fBm-klasse.

In hoofdstuk 5 gebruiken we simulaties voor de studie van domeingroei in vlak
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polykristallijn grafeen bij een temperatuur van 3000K (onder de smelttempera-
tuur), in afwezigheid van externe druk. De structuur van onze samples van poly-
kristallijn grafeen komt goed overeen met experimentele data, zoals blijkt uit de
radiële distributiefunctie. Tijdens de domeingroei convergeren de bindingshoeken
en bondlengtes naar respectievelijk 120◦ and 1.42Å. Dit terwijl de ongeordend-
heid afneemt en de concentratie van defects daalt volgens een machtswet. We
onderzoeken ook de ruimtelijke autocorrelatie van de kristaloriëntaties, die een
stretched-exponentiële daling vertoont. De statistiek en een visuele inspectie van
de ruimtelijke verdeling van de kristaloriëntaties laten zien dat kleine domeinen
vaak omringd zijn door grotere domeinen. Vervolgens bepalen we de groeisnel-
heid van de domeinen, en vinden dat deze een machtswet met exponent 1/3 volgt.
Systemen met Ostwald ripening in de klasse “Model B”, zoals het Ising model
met Kawasaki dynamica, hebben ook een groei-exponent van 1/3. Het groeipro-
ces in polykristallijn grafeen is echter meer complex. Mogelijk kan ons onderzoek
een basis zijn voor toekomstig onderzoek. Ook hebben we gekeken naar het effect
van het substraat op de domeingroei in gerimpeld grafeen, en al is het effect niet
sterk, onze resultaten tonen wel aan dat sterkere rimpels leiden tot minder snelle
domeingroei.
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