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ABSTRACT: Operational Arctic sea ice forecasts are of crucial importance to science and to society in the Arctic region.

Currently, statistical and numerical climate models are widely used to generate the Arctic sea ice forecasts at weather time

scales. Numerical models require near-real-time input of relevant environmental conditions consistent with the model

equations and they are computationally expensive. In this study, we propose a deep learning approach, namely convolu-

tional long short-termmemory networks (ConvLSTM), to forecast sea ice in the Barents Sea at weather to subseasonal time

scales. This is an unsupervised learning approach. It makes use of historical records and it exploits the covariances between

different variables, including spatial and temporal relations. With input fields from reanalysis data, we demonstrate that

ConvLSTM is able to learn the variability of the Arctic sea ice and can forecast regional sea ice concentration skillfully at

weekly to monthly time scales. It preserves the physical consistency between predictors and predictands, and generally

outperforms forecasts with climatology, persistence, and a statistical model. Based on the known sources of predictability,

sensitivity tests with different climate fields as input for learning were performed. The impact of different predictors on the

quality of the forecasts are evaluated andwe demonstrate that the surface energy budget components have a large impact on

the predictability of sea ice at weather time scales. This method is a promising way to enhance operational Arctic sea ice

forecasting in the near future.
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1. Introduction

As one of the most noticeable frontiers with visible changes

due to global warming, the Arctic has received more and more

attention in recent decades. This is accompanied with in-

creased commercial and scientific activities as a result of sea

ice melting. This drives a demand for reliable operational sea

ice forecasts, especially for shipping companies and related

stakeholders (Gascard et al. 2017; Stephenson and Pincus

2018). Therefore, it is of crucial importance to improve oper-

ational Arctic sea ice forecasts at weather time scales.

The physical interactions between atmospheric and oceanic

conditions andArctic sea ice provide a basis for forecasting sea

ice characteristics. Predictability of Arctic sea ice at different

time scales in different seasons has been explored extensively

in many studies. Blanchard-Wrigglesworth et al. (2011a) in-

vestigated the temporal evolution of Arctic sea ice in obser-

vations and in ensemble climate model output. They found a

summer to summer and a melt season to growth season re-

emergence effect in sea ice which potentially serves as a good

predictor for Arctic sea ice forecasts at monthly to annual time

scales. Mohammadi-Aragh et al. (2018) studied the potential

predictability of Arctic sea ice in winter, including the defor-

mation and concentration of sea ice at weather time scales.

They noticed that the sea ice concentration (SIC) is predictable

throughout a 10-day forecast period.

In addition there are studies on longer range forecasts.

Guemas et al. (2016) reviewed progress on sea ice forecasts and

showed that predictability of Arctic sea ice at seasonal to de-

cadal time scales mainly originates from persistence or ad-

vection of sea ice anomalies, air–sea interaction, and changes in

radiative forcing. Krikken and Hazeleger (2015) analyzed the

natural variability of Arctic sea ice from an energy budget

perspective. They found strong correlations between the

Arctic energy balance components and the reemergence of sea

ice anomalies from themelt season to the growth season, which

extends the theory proposed by Blanchard-Wrigglesworth

et al. (2011a) and further confirms the essential role of the en-

ergy budget in sea ice forecasts. Another key element to the

predictability of sea ice is the sea ice thickness (SIT). Bonan et al.

(2019) explore the role of SIT on the summer predictability of
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sea ice and found that similar skill of SIT forecasts can be

obtained as a perfect model experiment. They also discussed

the predictability barrier in late spring and made suggestions

for the initialization of forecasts.

Cruz-García et al. (2019) examined seasonal-to-interannual

sea ice predictability with multiple climate models and re-

visited the essential role of the reemergence effect of sea ice

anomalies. They observed that SIC anomalies in the Barents

Sea have a strong negative correlation with the local sea sur-

face temperature (SST) anomalies. Moreover, Onarheim et al.

(2015) emphasized that ocean heat transport (OHT) variations

play an important role in the observed winter sea ice variance

in the Barents Sea. They claimed an increase in forecast skill at

annual times scales up to 2 years usingOHT. The knowledge of

sea ice predictability associated with different physical pro-

cesses provided by these studies underlines the importance of

choosing relevant predictors related to the target location and

time scale.

Currently, many operational Arctic sea ice forecasts are

produced by numerical climate models (e.g., Van Woert et al.

2004; Metzger et al. 2014; Hebert et al. 2015; Smith et al. 2013,

2016). These numerical models are built upon physical linkages

in the climate system and are able to generate accurate sea ice

forecasts, but they are computationally expensive, due to the

need for relatively high spatial and temporal resolutions, the

implementation of ensemble approaches to address uncer-

tainties, their dependency on the real-time input of observed

conditions for the data assimilation processes, and the calibra-

tion of model output. Moreover, dynamical models are imper-

fect and many processes have to be parameterized. Specifically

for sea ice there are several modeling challenges. For instance,

rheology, ice thickness distribution, wave–ice interaction, land-

fast ice, melt ponding, and floe size distribution (Leppäranta
et al. 2020). Many studies have shown that the forecast skill

strongly relies on the initialization (Blanchard-Wrigglesworth

et al. 2011b; Goessling et al. 2016), target location and time

scales (Cruz-García et al. 2019).

Some operational sea ice forecasts are generated by statis-

tical models (Howell et al. 2015; Yuan et al. 2016; Wang et al.

2019). Most of these statistical models are linear models, thus

they are not suited to learn nonlinear relations between variables

in the Arctic climate system. Given the importance of nonlinear

feedback mechanisms in the atmosphere, ocean and sea ice

coupled system in theArctic, wemay need nonlinear approaches

to forecast Arctic sea ice with a statistical model. This brings

contemporary machine learning techniques into scope.

Machine learning approaches, especially deep learning, are

widely embraced by many fields and are increasingly used to

deal with problems like clustering, classification, and regres-

sion (LeCun et al. 2015). Benefiting from large volumes of data

of Earth system (Knüsel et al. 2019), those deep learning

methods may be appropriate for the weather and climate do-

main (Reichstein et al. 2019). Although these applications still

have limitations, for example, they rely on the data from nu-

merical weather forecast or reanalysis for the training process

and this could be computationally very expensive depending

on the configuration as well as the tuning procedure, there are

many successful use cases. These cases are, for instance, the

representation of physical processes (e.g., Rasp et al. 2018),

weather and climate forecasts (e.g., Salman et al. 2015; Ham

et al. 2019), and extreme events detection (e.g., Gope et al.

2016). Deep learning based techniques could potentially be

used as an alternative method or an auxiliary approach for the

current state-of-the-art forecast systems, or even as a prelimi-

nary and fast forecast system. It can be viewed as an en-

hancement or supplement to our existing tools.

In this study, we consider sea ice forecasts at weekly time

scales and we perform extended-range sea ice forecasts in the

Barents Sea with a complex deep neural network (DNN),

namely the convolutional long short-term memory networks

(ConvLSTM). These intricate neural networks are built on top

of the basic structures, like convolutional neural networks

(CNN) and recurrent neural networks (RNN). Early studies

have shown that even these basic neural networks (NN) are

able to reproduce both the short-term evolution and the long-

term statistics of dynamical systems like a Lorenz system

(e.g., Chattopadhyay et al. 2020), which provides a basis for

learning the nonlinear relations between meteorological

fields and predicting the evolution of a weather-like system

in a chaotic regime.

To work with such complex spatial–temporal sequence

problems, ConvLSTM are useful (Xingjian et al. 2015). As a

novel combination of CNN and Long Short-Term Memory

(LSTM) networks (Fukushima 1980; Hochreiter and Schmidhuber

1997), ConvLSTM were first introduced by Xingjian et al.

(2015) when dealing with precipitation nowcasting. Until now,

many studies have shown thatConvLSTMare suitable forweather

forecasts at different time scales, like precipitation forecasts

(Xingjian et al. 2015; Kim et al. 2017), hurricane tracking and

forecasting (Kim et al. 2019), sea ice concentration (Kim et al.

2020) and sea ice motion forecasts (Petrou and Tian 2019).

However, most of those studies only incorporate a few variables

and were mostly data-driven without physical insights. In this pa-

per, except for the sea ice forecastswithConvLSTMusingmultiple

predictors, we also conducted a sensitivity analysis of predictors

and focus on the physical consistency between sea ice and other

meteorological fields in the trained and forecasted output.

The paper is organized as follows: The methodology and the

datasets used in this study are described in section 2. The re-

sults are shown in section 3, including constrained forecasts,

sensitivity tests of predictors and operational forecasts with

ConvLSTM. The discussion and a brief summary of this study

are given in sections 4 and 5, respectively.

2. Data and methodology

A detailed elaboration on the deep neural networks and

datasets used in this study is given in this section. In addition, a

brief summary about the hyper-parameter tuning of our neural

networks and an overview of the evaluation metrics is included

at the end of this section.

a. Convolutional long short-term memory networks

To enhance LSTM networks to include learning and fore-

casting spatial information, Xingjian et al. (2015) embedded

convolutional cells into LSTM cells and created a new
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neural network structure coined ConvLSTM. Consequently,

ConvLSTM inherits the ability of LSTM to ‘‘remember’’

and ‘‘forget,’’ which is achieved by the design of memory

cells and multiple gates that control the flow of information

(Hochreiter and Schmidhuber 1997). Also, the spatial aware-

ness of a convolutional network is added to a LSTM. These

aspects of the structure are relevant for weather and climate

problems. The structure of ConvLSTM can be defined and

explained by the following equations (Xingjian et al. 2015):

i
t
5s(W

xi
*x

t
1W

hi
*h

t21
1W

ci
+c

t21
1b

i
) ,

f
t
5s(W

xf
*x

t
1W

hf
*h

t21
1W

cf
+c

t21
1b

f
) ,

c
t
5 f

t
+c

t21
1 i

t
+tanh(W

xc
*x

t
1W

hc
*h

t21
1b

c
) ,

o
t
5s(W

xo
*x

t
1W

ho
*h

t21
1W

ct
+c

t
1b

o
) ,

h
t
5o

t
+tanh(c

t
) , (1)

with it the input gate, ft the forget gate, ct the cell state, ot the

output gate, ht the hidden state, W the weight matrix, x the

input, b the bias, * the convolutional operation, + the element-

wise product, s the sigmoid function, and tanh the hyperbolic

tangent function. The subscripts describe the correspondence of

the weight matrix to different gates and states. For instance,Wxi

indicates the weight matrix of input values related to the input

gate, while Whf represents the weight matrix of hidden states

corresponded to the forget gate. The subscript t indicates the

time step and will be elucidated in section 2c.

The structure of the ConvLSTM network is illustrated in

Fig. 1. At each time step, convolutions over the input fields

(e.g., data of the Arctic climate system) are performed. Then,

at each grid point, those values are fed into an LSTM cell. The

LSTM cells only differ in their input, and hence their memory,

but share all other parameters. This way, the number of pa-

rameters in the ConvLSTM is vaster than that of a convolu-

tional network that takes input as all fields at all time steps.

Multiple layers can be stacked to further increase the com-

plexity of the network if needed.

ConvLSTM networks are powerful tools for intricate

spatial–temporal sequence prediction problems. They are

likely suitable for sea ice forecasts. Physically, the use of filters

inside convolutional layers accounts for the local interactions

between multiple fields (e.g., temperature, wind) which affect

the formation of sea ice, and the advance and retreat of sea ice

at neighboring grid points. The temporal evolution of sea ice,

including the communication of neighbor points within the

convolutional cells, are tracked by the LSTM structure of the

network through its recurrence feature. Moreover, this ap-

proach is unsupervised learning and it can make use of his-

torical records of weather and climate states.

In this study, we perform many-to-one prediction, which

means sequences with spatial structure are taken as input and

spatial maps of one time step ahead will be the output by the

networks. The numerical processes, including training and

testing of ConvLSTM, are elaborated upon in detail in the

appendix. The ConvLSTM used in this study are constructed

on top of the Pytorch library, and our script is published on

Github (https://github.com/geek-yang/DLACs).

b. Reanalysis datasets

We train ConvLSTM and evaluate its capability to forecast sea

ice using reanalysis datasets, namely, ERA-Interim and ORAS4.

FIG. 1. Structure of the convolutional long short-term memory neural networks.
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ERA-Interim is a global atmospheric reanalysis dataset

produced by the European Centre for Medium-RangeWeather

Forecasts (ECMWF) (Dee et al. 2011), which covers the data-

rich period since 1979. It employs the cycle 31r2 of ECMWF’s

Integrated Forecast System (IFS) and generates atmospheric

state estimates using 4D-Var data assimilation with a T255

(;79km) horizontal resolution on 60 vertical levels (Berrisford

et al. 2009). We use the surface fields, including SIC, 2 m

temperature (T2M), sea level pressure (SLP), net surface

turbulent and radiation flux (SFlux), 10m zonal and merid-

ional wind (UV10m), and geopotential height at 850 hPa

(Z850) and 500 hPa (Z500), with a 0.758 3 0.758 horizontal
resolution (; 28.6 km 3 28.6 km, at 708N). We take 6-hourly

data with a range from 1979 to 2016 and the data are averaged

to weekly time scales.

Given a lack of detailed verification studies of the SIC

quality in ERA-Interim, we further verify the SIC field

in ERA-Interim with a satellite-based product, namely the

NOAA/NSIDC Climate Data Record of Passive Microwave

Sea Ice Concentration (version 3) (Peng et al. 2013). A point-

to-point comparison of the SIC in the Barents Sea between

ERA-Interim and the chosen satellite product is shown in

Fig. S1 in the online supplemental material. They look similar

in most of the areas, except for some places close to the con-

tinent as a result of land–sea mask and interpolation since the

native grids are different. To ensure the robustness of our re-

sults, we also perform our training and testing with the SIC

field from the chosen satellite-derived product and the results

are almost the same as those based on the SIC in ERA-Interim

(see Fig. S2).

The Ocean Reanalysis System 4, in short (ORAS4), is the

replacement of the reanalyses system ORAS3 used by the

ECMWF (Balmaseda et al. 2013). It implements Nucleus for

European Modelling of the Ocean (NEMO) as ocean model

(Madec 2008; Ferry et al. 2012) and uses NEMOVAR as the

data assimilation system (Mogensen et al. 2012). The model is

forced by atmosphere-derived daily surface fluxes, from ERA-

40 from 1957 to 1989 and ERA-Interim from 1989 onward.

ORAS4 produces analyses with a 3D-Var FGAT assimilation

scheme and spans from 1958 to the present. ORAS4 runs on

the ORCA1 grid, which is associated with a horizontal reso-

lution of 18 in the extratropics and a refined meridional reso-

lution up to 0.38 in the tropics. It has 42 vertical levels, 18 of

which are located in the upper 200m. We use the monthly

mean temperature on the native model grid from 1979 to 2016

to calculate the ocean heat content (OHC) from the sea surface

to 300m. Given the long memory effect in the ocean, OHC at

weekly time scales is interpolated from monthly fields.

We chose this combination because both datasets are

ECMWF reanalysis products and ORAS4 takes surface forc-

ing from ERA-Interim (Balmaseda et al. 2013). This combi-

nation is promising to provide a physically consistent picture of

the interaction between the atmosphere-, ocean-, and sea ice–

related processes. The selected fields are potential predictors

for the sea ice variations due to their physical relationships in

the Arctic (Krikken and Hazeleger 2015; Guemas et al. 2016).

In this study, we only focus on the Barents Sea. Following

the same definition of the Arctic regions as Walsh et al. (2019),

our domain is covered by the ERA-Interim grid with 24

(latitudinal) 3 56 (longitudinal) points. It is noteworthy that

this regional focus has a negative impact on the performance of

ConvLSTM. The sampling of convolutional layers is affected

by the cutoff of data close to the boundary of the Barents Sea.

This partially explains the relatively bad forecast quality in the

boundary regions, as we will show, and provides room for

improvement if a larger area is included in the future.

However, this comes with a computational cost.

c. Evaluation metrics

Two types of lead-time-dependent forecast were performed

in this study. One is called constrained forecast, which takes

input fields from the future, excluding SIC only, to test the

maximum expected predictability given the chosen forecast

methods and input fields. It can be described with the equation

shown below:

SIC
pred[tn1l11]

5ConvLSTM SIC
obs[t1,t2,...,tn]1pred[tn11,tn12 ,...,tn1l]

,
�

OHC
obs[t1,t2,...,tn ,tn11,tn12,...tn1l]

, . . .Þ. (2)

Here OHCobserve[tn1l ] is the observed OHC for the l leading

week. An extended analysis of the contributions from several

predictors was conducted based on the constrained forecast

formulation.

The other setup is called operational forecast, which uses

only historical records and the forecasts at a specific lead time

are based on the predicted fields of all variables (e.g., the week

n 1 2 forecast is made with all variables of the reanalysis time

series considered until the current step n and the week n 1 1

forecast). The procedure can be explained by the equa-

tion below:

SIC
pred[tn1l11]

, OHC
pred[tn1l11]

, . . .

5ConvLSTMðSICobs[t1,t2,...,tn]1pred[tn11,tn12,...,tn1l]
,

OHC
obs[t1,t2 ,...,tn]1pred[tn11,tn12,...,tn1l]

, . . .Þ (3)

Here SICobs[t1 ,t2,...,tn] and OHCobs[t1,t2,...,tn] are the time series of

observed SIC and OHC until the current time step, respec-

tively; and SICpred[tn1l] and OHCpredict[tn1l] are the predicted SIC

and OHC for the l leading week, respectively. We can assess

the performance of ConvLSTM with reforecasts, i.e., per-

forming forecasts over the reanalysis period as if they were

actual operational forecasts.

The configurations of constrained forecasts and operational

forecasts are illustrated in Fig. 2. The major differences be-

tween these two setups are as follows: the constrained forecasts

use predictors from the future to predict SIC, whereas the

operational forecasts use forecast predictands as predictors to

predict future SIC. The value of considering the constrained

forecasts is to gain insight into what forecasts of SIC would look

like if the ConvLSTMmodels were able to perfectly forecast the

predictors that are then used in the operational forecasts.

To evaluate the performance of sea ice forecast by the

ConvLSTM, several scores are calculated. The root-mean-square
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error (RMSE) is used to evaluate the sea ice forecast in the

chosen area. To evaluate the predicted data with both temporal

and spatial information, we define the RMSE in the follow-

ing way:

RMSE5
1

N
�
N

t51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
X

x51
�
Y

y51

a
x,y
SIC(predict)

x,y,t 2SIC(observe)
x,y,t

h i( )

�
X

x51
�
Y

y51

a
x,y

vuuuuuuut . (4)

Here x is the number of points in the longitudinal direction; y

is the number of points in latitudinal direction;X andY are the

total number of gridcell length in longitudinal and latitudinal

direction, respectively; t is the number of time step; N is the

total time steps; ax,y is the area of grid cell denoted by indices x

and y; and SIC(predict)
x,y,t and SIC(observe)

x,y,t are the predicted and

observed SIC, respectively.

The mean absolute error (MAE) is used to assess the fore-

casts on a pointwise basis. The spatial structure is preserved

(see Fig. 4). MAE is defined as follows:

MAE5
1

N
�
N

t51

ja
x,y
[SIC(predict)

x,y,t 2SIC(observe)
x,y,t ]j. (5)

For several applications, such as shipping and navigation in

the Arctic, it is also necessary to know if a certain area is open

water or covered by sea ice. This requires a binary forecast.

Following Van Woert et al. (2004) and Walsh et al. (2019), the

grid boxes with sea ice concentration less than 15% are re-

garded as open water areas. Based on this criterion, we intro-

duce the integrated ice-edge error score (IIEE), which is a

verification metric first proposed by Goessling et al. (2016), to

better represent the performance of binary forecasts. The score

is defined as the area where the forecast and the ‘‘truth’’ dis-

agree on the ice concentration being above or below 15% and

it can be further decomposed into two components, the over-

estimated (O) and underestimated (U) local sea ice extent,

respectively:

IIEE5O1U ,

O5

ð
A

max(c
f
2 c

t
, 0) dA,

U5

ð
A

max(c
t
2 c

f
, 0) dA,

c
f
, c

t
5

�
1, SIC. 15%

0, SIC, 15%
, (6)

whereA is the area of interest, and subscripts f and t denote the

forecast and the truth. By definition, overestimated local sea

ice extent means the failure of predicting a sea ice free area as

ice covered, while underestimated local sea ice extent is the

failure of predicting a sea ice–covered area as ice free.

Many studies assess their sea ice forecast systems against

persistence and climatology at weather time scales (VanWoert

et al. 2004; Metzger et al. 2014; Hebert et al. 2015; Smith et al.

2013, 2016). The reason is that, at weekly to submonthly time

scales, the persistence of sea ice anomalies is very high

(Blanchard-Wrigglesworth et al. 2011a; Guemas et al. 2016).

Therefore, it is very challenging to beat persistence at these

time scales. For instance, VanWoert et al. (2004) provide daily

ice analyses and 5-day forecasts with their polar ice forecast

system but this has almost no skill in winter against persistence.

Consequently, in this study, forecasts with the ConvLSTM

using different input fields will also be evaluated against

FIG. 2. Configurations of constrained forecast and operational forecast at starting time step T0 and lead time step T01x.
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persistence and climatology. The persistence is defined as the

SIC anomaly at lead time step 0 added to the climatology at

each lead time.We use the climatology based on a 10-yr sliding

window preceding the forecast time (e.g., Zampieri et al. 2018)

in order to take changes in the climatology into account.

To compare the ConvLSTM with numerical model-based

forecasts, we include two ensemble forecast datasets from the

subseasonal to seasonal prediction project (Vitart et al. 2017).

We use forecasts from the National Centers for Environmental

Prediction (NCEP) and the ECMWF ensemble forecasts.

These datasets were chosen because of their active sea ice

model, available time range (January 2015–December 2016),

and the forecast frequency.

The NCEP global ensemble forecast system generates real

time forecasts using the NCEP Climate Forecast System, ver-

sion 2 (CFSv2) (Saha et al. 2014). It consists of 16 ensemble

members and the forecast length is 45 days. The atmospheric

model has 64 model levels and its horizontal resolution is

T126 (;100 km), which is lower than the ERA-Interim (T255,

;80 km). Its ocean model is GFDL MOM4 (Pacanowski et al.

1991). It has a spatial resolution in the zonal direction of

0.58 and in the meridional direction, 0.258 from 108S to 108N,

progressively decreasing to 0.58 from 108 to 308, and is fixed

at 0.58 beyond 308 in both hemispheres. There are 40 levels

in vertical. The system is coupled to an active sea ice model,

which is part of the Modular Ocean Model (MOM4)

(Pacanowski et al. 1991).

Based on the Integrated Forecasting System (IFS), version

CY46R1, the ECMWF global ensemble forecast system has

51 members and it runs twice a week up to day 46. The at-

mospheric component of the system has a horizontal resolu-

tion of about 16 km up to day 15 and a relatively coarse

horizontal resolution of about 32 km after day 15. Vertically,

the atmospheric model has 91 model levels. The ocean model

is NEMO3.4.1 with a 0.258 horizontal resolution and 75 verti-

cal levels (Madec 2008; Ferry et al. 2012). The system is cou-

pled to the Louvain-la-Neuve Sea Ice Model (LIM2) (Rousset

et al. 2015).

Note that the output from the forecast systems in the S2S

project have been regridded to the same model grid. To

enable a direct comparison, we interpolate our ConvLSTM

results and ERA-Interim sea ice data to the model grid used

in the S2S project and weigh the results the same as the area

weight applied throughout the paper. More information

about these experiments can be found on the homepage of

the S2S project (https://confluence.ecmwf.int/display/S2S/

Models).

Sensitivity tests of the contribution from each predictor to

the skill of sea ice forecasts are conducted with the ConvLSTM

using SIC plus one extra predictor. To assess the change of

forecast skill with different predictors, we introduce a dimen-

sionless score with the definition given below:

Relative forecast skills core5
RMSE

sic
2RMSE

predictor

RMSE
sic

. (7)

With RMSEsic the RMSE of forecast with ConvLSTM using

only SIC, and RMSEpredictor the RMSE of forecast with

ConvLSTM using SIC and one extra predictor. More details

are provided in the section 3b.

d. Training and hyperparameter tuning

The networks are trained with reanalysis data from 1979 to

2008 (1440 weeks). Given the spatial resolution of input fields,

the training set includes 243 563 1440 points, thus 1440 points

for each node in the convolutional layer. Data from 2009 to

2012 is used for cross validation, allowing to implement an

early stop module and to avoid overfitting. Data from 2013 to

2016 is taken as the test set for evaluation. The weight matrix of

the ConvLSTM is updated by optimizing the loss function, for

which we use mean square error (MSE):

MSE5
1
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�
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t51

�
X

x51
�
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y51

a
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SIC(predict)
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x,y,t

h i( )2

�
X

x51
�
Y

y51

a2x,y

. (8)

Physically, this loss function measures the difference be-

tween the actual and forecasted SIC.

The training time varies from 8 to 12 h on a single GPU,

depending on the choices of hyperparameters (e.g., number of

epochs, filter size, number of layers). A brief summary of the

hyperparameter tuning of the ConvLSTM used in this study is

given in Table S1 in the supplemental material. With an as-

sessment based on the RMSE of sea ice forecasts for the first

leading week, the results show that a combination of a learning

rate equal to 0.01, three stacked ConvLSTM layers, a filter size

of 3 3 3, and 1500 epochs is the best. The learning curve ob-

tained with this combination of hyperparameters is shown in

Fig. S3 in the supplemental material. Although the loss stops

decreasing after 600 epochs, the model’s skill for anomalies

continues to increase.

It is worthwhile emphasizing the importance of the con-

volutional filter size. In each convolutional layer, the filter size

controls the exchange of information between neighboring

points. Physically, it accounts for the influence of for instance

SIC, OHC or SLP from adjacent regions on the selected area

(node). Given the physical consistency between regional at-

mospheric and oceanic fields, and the advection of sea ice

anomalies (Blanchard-Wrigglesworth et al. 2011a; Guemas

et al. 2016), this feature of the convolutional layer should im-

prove the forecast skill. Similarly, the number of stacked

ConvLSTM layers also relates to the communication of

neighboring points because of the filtering in each layer with

convolutions.

e. Baseline statistical model analysis

To set a baseline for our forecasts with ConvLSTMwith less

complex statistical models and to provide insight into its ability

to account for the nonlinearity between multiple physical

fields, we also fit a generalized linear model with a ‘‘logit’’ link

function. For conciseness, it is referred to as the baseline sta-

tistical model in this paper. This method is similar to the lo-

gistic regression, which means the nonlinear properties of the

input fields are covered. In this approach, each spatial location
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is modeled separately. While the fitted parameters vary over

space, the structure of the linear regression is the same ev-

erywhere. In particular, the SIC is predicted using an auto-

regressivemodel which includes the value of the previous three

weeks at that location, as well as the previous values of the

T2M and OHC. In addition, the SIC of all neighboring loca-

tions one week prior is used to establish whether spatial drift

is a relevant factor. For all terms, only linear parts are included,

although the percentage of sea ice content is first transformed

using the ‘‘logit’’ function. Finally, the model is fit using ridge

regression, where the optimal amount of regularization is de-

termined using fivefold cross validation over the training set.

The predictors are selected in terms of the balance between

their expected source of predictability and the cost of training.

Similarly, it uses the ‘‘constrained forecast’’ configuration as all

the input fields are from the reanalysis. Mathematically, this

generalized linear model with a logit link function can be ex-

pressed as

SIC(t)5b
t
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, (9)

where t is the current step; SIC(t) is the sea ice forecast

of current step; sin(t) and cos(t) are cycles with one year pe-

riod; b is the trainable weight for each term’ SICt2x,detrend,

T2Mt2x,detrend, and OHCt2x,detrend are the detrended SIC,

T2M, and OHC at the previous x time step, respectively; and

SICdirection
t21,detrend is the detrended SIC of neighboring point at

previous time step at certain location (i.e., N indicates north,

NE indicates northeast, etc.), excluding land pixels.

3. Results

a. Constrained predictability

Before implementing the novel deep neural network for sea

ice forecasts and performing retrospective analysis of skill, it is

worthwhile examining its capability in an ideal setup. We

performed lead-time-dependent constrained forecasts of SIC

with the ConvLSTM network using different combinations of

input fields. The RMSE of these forecasts against those given

by persistence and climatology with a lead time up to 6 weeks is

shown in Fig. 3a (details in Table S2). For all the forecasts

(except for climatology as it does not vary over time, by defi-

nition), RMSE increases with increased lead time. It is ob-

served that most of the forecasts with the ConvLSTM using

SIC and one extra field, such as OHC, Z500, SLP, and SFlux,

can outperform the forecasts with persistence and climatology.

The increase of RMSE as a function of lead time from these

forecasts with the ConvLSTM is smaller than that with per-

sistence and climatology. However, this is not true for some

combinations of input fields, for instance, SIC with T2M or

Z850. To obtain more insight on the impact of several pre-

dictors, an extended constrained SIC forecast with lead time up

to 16 weeks is shown in Fig. 7. It is found that with multiple

input fields, the performance of ConvLSTM is also stable at

long lead times. This time scale is beyond the scope of this

study though.

Forecasts with a ConvLSTM using only SIC also provides

better results than forecasts from persistence and climatology.

The nonlinearity introduced by the ConvLSTM effectively

contributes to the skill of the forecast. A comparison between

forecasts with our baseline statistical model and forecasts using

the ConvLSTM shows that the ConvLSTM produces slightly

better forecasts. They both significantly outperform a persis-

tence forecast.

As SIC has a strong seasonal cycle and the predictability is

known to be strongly seasonal dependent, we further evaluate

the forecasts by examining the error in eachmonth. TheRMSE

of the constrained forecast of SIC for the first week in each
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month with different predictors and methods is given in Fig. 3b

(details in Table S3). In general, the forecast error is larger in

winter than that in summer, which is similar to operational

forecasts with numerical models (Smith et al. 2016). This can

be explained by the large year-to-year variations of sea ice in

winter and a large open water area in summer (Perovich and

Richter-Menge 2009). Compared to the sea ice forecasts with

persistence, the ConvLSTM provides more skillful forecasts in

FIG. 3. RMSE of (a) the constrained forecast of SIC with a lead time up to 6 weeks and (b) the constrained

forecast of SIC for the first week in each month with ConvLSTM using different predictors against persistence,

climatology, and the baseline statistical model. The unit is square kilometers per grid cell.

FIG. 4. MAE of the constrained forecast of SIC for the first week in each month with ConvLSTM using SIC and OHC.
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winter and spring, but not for summer and early autumn.

Similarly, it was demonstrated by Goessling et al. (2016) that

the predictability of sea ice edge is relatively low from summer

to autumn at monthly time scales over the whole Arctic.

However, for the Barents Sea, it was shown by some studies

that the initialized seasonal forecasting models could show

monthly skill in the autumn (NDJ) up to 9 months in advance

(e.g., Bushuk et al. 2017). The better performance of the sea

ice forecast with the ConvLSTM in winter and during the

transition seasons shows that the ConvLSTM is able to cap-

ture the intricate sea ice variability in these seasons. This is

not so surprising given the significant role of SSTs on sea ice

predictability in this region in fall and winter (e.g., Guemas

et al. 2016). However, given the large ice free area in summer

from 2013 to 2016 in the Barents Sea, the worse performance

of the ConvLSTM than persistence seems to imply that

ConvLSTM tend to overpredict sea ice in summer. Similar

results are provided by forecast with the baseline statistical

model and forecasts using the ConvLSTM. Considering the

large difference between RMSE in each calendar month, it is

not surprising that the spread of RMSE in Fig. 3a is very large

(see Table S2 in the supplemental material).

The seasonal differences in forecast skill at more lead times

for the constrained forecasts are shown in Figs. S4–S6 in the

supplemental material. Similar to Fig. 3b but with different

lead times, these figures show that, in general, the error in-

creases with the increase of lead time, especially for the early

spring around March. For the ConvLSTM forecast with all the

chosen predictors, the reduction of skill is relatively smaller

than the others. Forecasts with the ConvLSTM cannot beat

persistence in autumn starting from October regardless of the

lead time. But they are always better than the persistence in the

transition, from spring to summer. At lead time step 6, fore-

casts with the ConvLSTM behave similar as the climatology in

terms of the loss.

To understand the source of forecast error in each month, it

is insightful to examine the spatial structure of the error. The

spatial distribution of the forecast error with the ConvLSTM

FIG. 5. Difference of the IIEE score of the constrained forecast of SIC for the first week in each month between ConvLSTM and

persistence (IIEEConvLSTM 2 IIEEpersistence). The SIC forecast with ConvLSTM uses SIC and OHC fields.
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using SIC and OHC is plotted in Fig. 4. In winter, the error

mainly comes from the coastal area close to the Eurasian

continent. Since the boundary sea ice dynamics is relatively

complex, it is difficult to forecast, which is also a challenge for

most of the operational numerical sea ice forecast systems

(e.g., Smith et al. 2013, 2016). In almost all seasons there is

also a contribution to the total error from regions with rapid

SIC variations near the northern boundary. Physically, pro-

cesses like sea ice advection, sea ice advance and retreat,

oceanic heat transport, and polar air–sea interaction, make

forecasting in this area extremely difficult (Årthun et al. 2012;

Smith et al. 2016). Note that the cutoff of data around the

selected boundary also influences the performance of the

ConvLSTM, which was discussed in section 2b.

In practice, it is useful to know whether a region is ice free or

not, for instance for shipping and related activities. A binary

evaluation was carried out based on the forecast made by the

ConvLSTM, based on persistence and climatology. We com-

puted the IIEE score of these forecasts and found that the

results are comparable among the forecasts with different

methods, except for that with climatology. To assess the fore-

cast skill locationwise, we plot the difference of IIEE score of

the SIC constrained forecast between the ConvLSTM (using

SIC and OHC) and persistence in Fig. 5. Since the IIEE indi-

cates either an overestimation or underestimation of sea ice

forecast, areas with lower scores have better forecast skill. In

general, the ConvLSTM has better forecast skill than persis-

tence in almost all months. During the transition time from

summer to winter, the ConvLSTM gives more skillful forecasts

than persistence, especially around the northern boundary of

the Barents Sea. In winter and spring, these two methods have

skill in different regions and the ConvLSTM is slightly better.

In summer, the differences are small.

We can learn more about the forecast skill of each method

by analyzing the overestimated and underestimated sea ice

extent separately. The overestimated and underestimated sea

ice extent of the constrained forecasts of SIC with the

ConvLSTM using different predictors against persistence, and

climatology are shown in Fig. 6. Given the definition of these

two components of IIEE (section 2c), in combination they can

be interpreted as a trade-off between overpredicting and un-

derpredicting. Climatology tends to overpredict the sea ice in

this area (;1203 103 km2), but at the same time it has the least

underestimated sea ice extent (;5 3 103 km2) than the other

methods. Almost all the forecasts with the ConvLSTM provide

better overestimated component of IIEE score but slightly

worse underestimated component of IIEE score than persis-

tence. It reflects that the ConvLSTM learns the temporal

evolution of sea ice, especially from an ice-free period to an

ice-covered period.

To conclude, the ConvLSTM is able to outperform persis-

tence and climatology when conducting sea ice forecasts at

weekly to submonthly time scales. However, a careful selection

of input fields should be made in terms of the physical consis-

tency between predictors and sea ice at chosen time scales. An

irrelevant predictor could ‘‘confuse’’ the neural network and

hence reduce the performance. It is noteworthy that with more

training data, the forecast skill of the ConvLSTM can be im-

proved dramatically. This might indicate that ConvLSTM is

good at finding nonlinear relations between variables which

could eventually contribute to the predictability of the entire

system, as long as the network is complicated enough, and the

training data are sufficient.

b. Sensitivity analysis of predictors

In the previous section, we found that the ConvLSTM

is skillful for SIC forecasts using multiple climate fields. The

generally better performance of the ConvLSTM than the base-

line statistical model indicates that ConvLSTM learns the non-

linear relations between input fields, and sea ice forecast

systems for weekly time scales can benefit from such repre-

sentation of nonlinearity. However, the performance could

also be attributed to the change of signal to noise ratio and

there is a possibility that the model only learns the noise from

these predictors. To understand whether these predictors

contribute to the forecast or they only pollute the prediction,

we apply Monte Carlo reshuffling to all the chosen predictors

with respect to the time sequences and use these reshuffled

predictors to forecast SIC. Note that the input SIC sequence is

not reshuffled. The result is shown in Fig. 7. It can be noticed

FIG. 6. (a) Overestimated and (b) underestimated local sea ice extent of the constrained forecast of SIC with

ConvLSTM using different predictors against persistence and climatology. The unit is square kilometers per

grid cell.
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that forecasts with reshuffled predictors are much worse than

those without reshuffling, especially for a long lead time. This

indicates that these predictors provide useful information

for the forecast. For a short period, for instance, up to lead

weeks 1 and 2, forecasts with randomly reshuffled series of

chosen predictors do not differ much compared to those

without reshuffling. This indicates that, in the first 2 weeks,

forecasts mainly rely on the memory of sea ice. This also ex-

plains why persistence is difficult to beat at weekly time scales.

Unfortunately, the information we have is not sufficient to

prove whether the improved forecasts benefit from the non-

linear relations between these variables or an increase of signal

to noise ratio. Given that these predictors contribute to the

predictability of SIC, we can further evaluate the contribution

from different predictors to sea ice forecasts by comparing the

forecasts using the same structure of the ConvLSTM, but

trained with different input fields.

Following the definition of our dimensionless relative fore-

cast skill scores in section 2c, the sensitivity analysis of pre-

dictors is shown in Fig. 8. Similar to section 3a, we analyze

the forecast skill based on lead-time-dependent constrained

forecasts up to 6 weeks, and for the first week in each month.

Positive scores indicate an improvement in forecast skill.

Note that the skill is relative to the ConvLSTMmodel that only

uses SIC as a predictor. In Fig. 8a, it can be observed that

OHC, SFlux, and Z500 add skill to the sea ice forecasts at

chosen time scales, while SLP, T2M, and Z850 reduce the skill.

Predictability fromOHC can be attributed to the long memory

of the ocean and the crucial role of OHC in the energy budget,

which is also claimed by Guemas et al. (2016); Cruz-García
et al. (2019). Furthermore, it is shown in Fig. 8b that OHC has

a significant contribution to the forecast skill in summer.

Another component of the energy budget, SFlux, also plays an

important role here since it has a direct relation to sea ice, that

is, the surface energy balance between open ocean and sea ice–

covered ocean is very different.We notice that it contributes to

the predictability with a lead time more than a week, which is

consistent with the lead–lag relations between sea ice melting

and the variability of surface fluxes found by Krikken and

Hazeleger (2015).

At weekly to submonthly time scales, Fig. 8 shows that some

surface fields, like SLP and T2M, and some near-surface at-

mospheric fields, do not contribute to improving sea ice fore-

casts with the ConvLSTM. It was reported by Onarheim et al.

(2015) and Mohammadi-Aragh et al. (2018) that the chaotic

behavior of the atmosphere causes the low predictability of the

near surface wind divergence and vorticity, which explains the

weak relationship between sea ice variability and SLP. The bad

performance of sea ice forecast with the ConvLSTM using SIC

and T2M suggests that the surface temperature field is not di-

rectly related to the variation of sea ice, especially in summer

as shown in Fig. 8b. This is the same for Z850.

In summary, for the extended-range sea ice forecasts in the

Barents Sea, meteorological and oceanic fields involved in the

energy budget (e.g., SFlux, OHC) can enhance the forecast

skill of the sea ice forecasts made by deep neural networks.

The same holds for the fields representing the free troposphere

(e.g., Z500). However, some surface fields (e.g., T2M, SLP)

and lower atmospheric fields (e.g., Z850) do not improve the

forecast quality in the selected region. Use of the ConvLSTM

can potentially help us understand the nonlinear relation-

ships between multiple selected variables, but limited physi-

cal information will be provided by this method. Note that

these conclusions about the predictability of sea ice are drawn

FIG. 7. RMSE of the constrained forecast of SIC with a lead time

up to 16 weeks with ConvLSTM using different predictors against

persistence and climatology. A ConvLSTM forecast with Monte

Carlo reshuffled predictors is included for comparison. The unit is

square kilometers per grid cell.

FIG. 8. RMSE-based relative forecast skill improvement of (a) the constrained forecast of SICwith a lead time up

to 6 weeks and (b) the constrained forecast of SIC for the first week in each month with ConvLSTM using different

predictors.
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for specific time scales and region. From this study it is un-

clear whether it can be generalized to other time scales and

locations.

c. Lead-time-dependent operational forecasts

In contrast to constrained forecasts, operational weather

forecasts can only proceed from a known state to the future

state with predicted fields. Therefore, to achieve a ‘‘more than

one step’’ sea ice forecast, we have to predict all the input fields

and use the predicted fields for further forecasts, specifically

with the ConvLSTM. Similar to evaluations of the constrained

forecasts given in section 3a, an assessment of the lead-time-

dependent forecasts with the ConvLSTM using different

combinations of input fields against persistence and climatol-

ogy are presented in this section. We emphasize that from now

on the presented forecasts with the ConvLSTM generate all

fields (the same variables as the input) and the loss function

also includes these fields. The presented forecasts are refor-

ecasts and these retrospective forecasts can be analyzed using

observations.

We first show the RMSE of lead-time-dependent forecasts

with different predictors and methods in Fig. 9a (details in

Table S4). In general, RMSE increases with the increased lead

time, which is similar to Fig. 3a. However, this time, almost all

the forecasts with the ConvLSTM outperform the forecasts

with persistence, except for the ConvLSTM forecast with all

the selected input fields. The ConvLSTM forecast are better

than the climatology with lead time from week 1 to week 5, in

general. The best forecast is given by ConvLSTMwith SIC and

Z850, which is very different from the constrained forecast

(Fig. 3a). Considering the RMSE in each month (Fig. 9b, de-

tails in Table S5), most of the forecasts with the ConvLSTMare

better than the persistence forecast in spring and autumn. All

the forecasts are comparable in winter but persistence is much

better in summer. Also, the forecasts with the ConvLSTM

using all given input fields are worse than the ConvLSTM

forecasts using fewer variables. The seasonal differences in

forecast skill at more lead times for the operational forecasts

are shown in Figs. S7–S9 in the supplemental material. The

results are analogous to those given by the constrained fore-

casts. The only difference is that the ConvLSTM forecasts with

one extra predictor (e.g., Z850, SFlux) show better skill in sea

ice forecasting for most of the time compared to that with all

chosen predictors, which is consistent with our analysis re-

garding Fig. 9.

The decrease in performance of the ConvLSTM with more

input variables than that with fewer variables can be attributed

to the training process of deep neural networks and the setup

of operational forecast. Based on this configuration, the num-

ber of input fields are equal to the number of output fields.

More input variables mean more output variables and there-

fore more model parameters, which in turn requires more

training data. Consequently, the operational forecast with

ConvLSTM is a trade-off between skill gain from predictors

and skill loss due to the difficulty in learning. Therefore, it is

necessary to choose the right combination of input fields for

the ConvLSTM, instead of using all the data in a purely data-

driven manner.

The spatial distribution of the forecast error for the first

week with the ConvLSTM using SIC and OHC is plotted in

Fig. 10. It is very similar to the result in Fig. 4. It is difficult for

the system to predict sea ice in winter and spring, and large

forecast errors are mainly found in the coastal area and the

northern boundary. In summer and autumn, the forecast errors

are relatively small. We now consider the binary forecast of sea

ice. The difference of the IIEE score of SIC forecasts between

the ConvLSTM (using SIC andOHC) and persistence is shown

in Fig. 11. Given the similarity of the spatial distribution of the

forecast errors between the constrained (Fig. 4) and opera-

tional (Fig. 10) forecasts, it is not surprising to find that the

ConvLSTM has better forecast skill than persistence in most of

the regions in the Barents Sea in almost all months. More ex-

planation on this can be found in the section 3a. Note that

starting from the second week the spatial distribution of the

forecast errors (RMSE and binary) becomes different for the

constrained and operational forecasts with ConvLSTM, but

the regions with high forecast skill with the ConvLSTM in

these two cases are still the same (not shown).

Compared to the constrained forecast, small differences are

found in the overestimated and underestimated components

of the IIEE score for the operational forecasts with the

ConvLSTM. The overestimated and underestimated local sea

FIG. 9. RMSE of (a) the operational forecast of SIC with a lead time up to 6 weeks and (b) the operational

forecast of SIC for the first week in each month with ConvLSTM using different predictors against persistence and

climatology. The unit is square kilometers per grid cell.
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ice extent of the lead-time-dependent operational SIC forecast

with the ConvLSTM using different predictors against persis-

tence and climatology are shown in Fig. 12. Still, most of the

forecasts with the ConvLSTM provide better overestimated

component of the IIEE score than persistence, except for the

ConvLSTM forecast using SFlux and all available predictors.

However, for the underestimated component of the IIEE

score, persistence has always more skill starting from the third

week. Considering both components of the IIEE score, it

can be noticed that the forecast with the ConvLSTM using all

the input fields significantly overpredicts the sea ice. Again,

it shows a caveat that rather than blindly using all the avail-

able data, a smart selection of input fields is necessary to im-

prove the sea ice forecast with the current structure of the

ConvLSTM.

In addition, we compare the ConvLSTM forecasts with the

NCEP and ECMWF ensemble forecasts considering period

2015–16. The results are shown in Fig. 13 (and spatial distri-

bution of error in Fig. S10). It can be noticed that the NCEP

ensemble forecast is worse than most of the ConvLSTM

forecasts within 4 lead weeks. This may originate from the

initialization since the NCEP ensemble forecast is initialized

by sea ice conditions fromClimate Forecast SystemReanalysis

(CFSR), and not from the ERA-Interim or any satellite-based

observations (e.g., NSIDC/NOAA Passive Microwave SIC).

The ECMWF ensemble forecast performs much better than

all the ConvLSTM forecasts for more than 2 weeks ahead.

Note that since the forecasts are evaluated against ERA-

Interim reanalysis and ECMWF ensemble forecasts use the

same IFS and similar configurations as ERA-Interim, it is not

completely a fair comparison. The forecast error grows slower

for the ECMWF ensemble forecast than the ConvLSTM

forecasts. Since for the first 2 weeks memory in sea ice has

significant impact on its variations, it reflects that forecasts with

ConvLSTM considerably rely on the memory of sea ice, and

the chosen numerical model can preserve the physical consis-

tency and therefore may provide better forecasts even for large

lead times. In general, at the lead time up to 2 weeks, the

forecasts with ConvLSTM are comparable to the best NWP-

based forecasts in S2S project.

FIG. 10. MAE of the operational forecast of SIC for the first week in each month with ConvLSTM using SIC and OHC.
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So far we have not discussed the forecast quality for various

start dates. It is useful to know if either there is a substantial de-

pendence of forecast errors on climate variability and change, or

whether the variations between forecast cases (start dates) are

large in comparison to the differences between forecast models

(ConvLSTM forecasts with different combination of input fields).

The former one can also be interpreted as whether the whole

temporal consistency is needed or not for a ConvLSTM.

FIG. 11. Difference of the IIEE score of the operational forecast of SIC for the first week in each month between ConvLSTM and persistence

(IIEEConvLSTM 2 IIEEpersistence). The SIC forecast with ConvLSTM uses SIC and OHC fields. The unit is square kilometers per grid cell.

FIG. 12. (a) Overestimated and (b) underestimated local sea ice extent of the operational forecast of SIC with

ConvLSTM using different predictors against persistence and climatology. The unit is square kilometers per grid cell.
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To address this we conducted an extra experiment in

which we performed Monte Carlo subsampling of the re-

analysis data with a 4-yr period. We randomly selected five

periods (20 years of data) to train the network and four

periods (4 years for each) as valid date. The results indicate

that, compared to the climatology and persistence, these

ConvLSTM forecasts do not show any skill considering each

start date at all lead weeks (not shown). This reflects that

this particular ConvLSTM was not able to determine the

state of the system and therefore could not provide reliable

forecasts. Indeed, this is not so surprising as forecasts with

the ConvLSTM are strongly dependent on memory and the

temporal order in the data must be preserved during training

and predicting. To gain more insight into the dependency of

forecasting on the temporal consistency, we performed a

follow-up test in which we provided the model with 20 years

of data following temporal order and then applied Monte

Carlo subsampling with the same setup. Also, this model

gained no skill (not shown). Only when the full time series

preceding the valid date were fed to the model, the ConvLSTM

started to generate meaningful forecasts. This again dem-

onstrates that forecasts using ConvLSTM rely on the cor-

rect temporal order to reproduce and skillfully forecast the

state of the system. This indicates that the common work-

flow used by NWP systems to determine skill for a range of

start dates, and therefore an error estimate of forecast

quality for a specific forecast system, cannot be transferred

meaningfully to ConvLSTM, given the insufficient length of

training data. This would only be possible with sufficient

length of training data such that the memory can be main-

tained in the samples.

There is another way to test the state dependency and

address the significance of the conclusions. Given the sus-

ceptibility of forecasts to the length of the training set, and a

strict requirement on the temporal order of input fields

during training and forecasting, we launched another ex-

periment with a reversed time series of the reanalysis data,

and chose data from 1979 to 1982 as testing set, data from

1983 to 1986 as cross-validation set, and the rest as training

set. The results are shown in Fig. S11 in the supplemental

material. Despite slightly different skill compared to those

shown in Fig. 9a, ConvLSTM forecasts with different com-

binations of input fields exhibit similar errors. From now on

we will refer to this experiment as ‘‘reversed operational

forecast 1979–82’’, and the former experiment with time

series following the correct temporal order as ‘‘operational

forecast 2013–16’’ (Fig. 9a).

By comparing these two operational forecasts, we can eval-

uate the skill of ConvLSTM for different start dates (between

1979–82 and 2013–16) and compare it to the skill of ConvLSTM

related to the choices of input fields (e.g., between ConvLSTM-

SIC/OHC and ConvLSTM-SIC in Fig. 9a) in a relatively fair

manner, as we can use the same amount of training data and

both systems show comparable forecast skill, although the

setups are slightly different. We highlight this comparison

quantitatively in Fig. 14. The mean difference of errors between

forecasts with different start dates were computed as the mean

absolute difference of RMSE between reversed operational

forecast 1979–82 and operational forecast 2013–16 with the

same input fields [(1/7)�7

n51(jRMSEConvLSTM2SIC/field(2013216)2
RMSEConvLSTM2SIC/field(1979282)j), with SIC/field indicating

different combinations of input fields shown in Figs. 9a and

S11], while the mean difference of RMSE between forecasts

with different input fields were obtained from reversed op-

erational forecast 1979–82 and operational forecast 2013–16

[(1/14)�14

n51(jRMSEConvLSTM2SIC/field 2RMSEConvLSTM2SICj),
concerning the forecasts in Figs. 9a and S11]. These two

cases have errors in skill that are similar. Therefore, these

experiments indicate that the ConvLSTM forecasts when

FIG. 13. RMSE of the operational forecast of SIC between 2015

and 2016 with a lead time up to 6 weeks with ConvLSTM using

different predictors against persistence, climatology, NCEP en-

semble forecast, and ECMWF ensemble forecast. The NCEP real-

time forecast and ECMWF ensemble forecast are provided by the

subseasonal to seasonal prediction project (S2S archive). The unit

is square kilometers per grid cell.

FIG. 14. Comparison between the mean difference of errors

among forecasts with different start dates and that among fore-

casts with different combination of input variables based on re-

versed operational forecast 1979–82 and operational forecast

2013–16, as a function of lead time. The mean difference of errors

between forecasts with different start dates were computed as

the mean absolute difference of RMSE between reversed oper-

ational forecast 1979–82 and operational forecast 2013–16 with

the same input fields [(1/7)�7

n51(jRMSEConvLSTM2SIC/field(2013216)2
RMSEConvLSTM2SIC/field(1979282)j), with SIC/field indicating differ-

ent combinations of input fields shown in Fig. 9 and Fig. S11], while

themean difference of RMSEbetween forecasts with different input

fields were obtained from reversed operational forecast 1979–82 and

operational forecast 2013–16 [(1/14)�14

n51(jRMSEConvLSTM2SIC/field 2
RMSEConvLSTM2SICj), concerning the forecasts in Fig. 9a and

Fig. S11]. The standard deviation at each lead week is included.
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properly trained are skillful and their forecast quality is

state-dependent just like forecasts with numerical models.

The mean differences between forecasts with different input

fields are smaller than those related to different start dates,

but in general they are of the same amplitude. Note that the

differences in skills between the forecasts of periods 1979–

82 and 2013–16 may also originate from the data richness

and quality linked to these two different eras.

To conclude, similar to constrained forecasts, the opera-

tional forecasts with the ConvLSTM provide better results

than persistence in most of the cases. However, unlike the

constrained forecasts, the coherence between the way of

learning (loss function and an increase in the number of

trainable parameters) and the way of predicting (forecast

based on predicted fields) with a neural network places a re-

quirement for appropriate choices of input variables, which

may a priori not be clear. However, in practice, it is natural to

select predictors related to their physical consistency with the

predicted variables. The results confirm this, with higher con-

tributions from OHC and SFlux and less clear contributions

from more atmospheric characteristics. It is noteworthy that

forecasts with ConvLSTM shows state-dependency and the

start dates have impact on the forecast quality, just like fore-

casts using numerical models.

d. Physical consistency of ConvLSTM forecasts

Deep learning techniques are often considered as brute

force approaches or black-box methods. There is a valid con-

cern that physical laws may be violated and physical relation-

ships may not hold in the neural network. There is no

constraint from first principle in its formulation. With this in

mind, we are interested in the physical interpretation of our

forecasts with the ConvLSTM. Our first impression comes

from themathematical description of the ConvLSTM [Eq. (1)],

which includes both linear and nonlinear operations. The

convolutional operations are all linear (e.g., Wxi*xt), and this

will maintain the physical consistency of input fields, at least

their linear relations. However, the nonlinear behavior caused

by the use of sigmoid functions and hyperbolic tangent func-

tions could potentially introduce further physical inconsistency

in the forecasts.

To evaluate whether the physical links between predicted

fields are preserved by the forecasts with the ConvLSTM, we

performed singular value decomposition (SVD) on the co-

variance map of two predicted fields (e.g., SIC and OHC)

within training sets (1979–2008), testing sets (2013–16), and

forecast data (2013–16) (Bretherton et al. 1992). Since this

method searches for the maximum covariance between given

variables, it is also known as the maximum covariance anal-

ysis (MCA) (Frankignoul et al. 2011). We first show three

SVD modes of the covariance map between SIC and OHC in

Fig. 15. These fields are expected to be related and OHC

varies relatively slowly. The first modes explain over 99% of

covariance, and they mainly represent the trend and clima-

tology, which can be regarded as fairly trivial. Therefore, it is

worthwhile to evaluate the second and third modes. In gen-

eral, the forecast data show similar patterns for both SIC and

OHC as training sets and testing sets in all three SVDmodes.

This indicates that forecasts with ConvLSTM are able to

preserve the physical links between given fields, which re-

flects the source of predictability within chosen fields and the

forecast skill of chosen neural networks. This is further

confirmed by the projection of SVD modes of the covariance

map between SIC and OHC on the actual time series of SIC

and OHC, which is shown in Fig. S12 in the supplemental

material.

Similar to the SVD of covariance map between SIC and

OHC, we also inspected other variables, for instance, the

SVD and SVD projection of the covariance map between

SIC and Z500 (Fig. 16 and S13). In this case, physically in-

terpretable results are obtained in the training and testing

datasets. However, the forecasts with the ConvLSTM fails

to provide similar coupled patterns of Z500 and SIC. In

particular Z500 seems like a spurious pattern. Given the

chaotic behavior of the atmospheric circulation and the re-

lated lack of predictability at extended range, it is not so

surprising that the predictability of Z500 at weekly time

scales is relatively low in the ConvLSTM (e.g., Hohenegger

and Schar 2007). Also, the distorted shape of the patterns

suggests that the cutoff of input fields around the boundary

also influences the physical consistency learned by the

ConvLSTM (see the SVDmode patterns of Z500 around the

boundary in Figs. 16 and S13).

We also checked the SVD of the covariance map between

SIC and SFlux, and that between SIC and Z850. The results are

shown in Figs. S14 and S15 in the supplemental material. Since

these decompositions were all based on the forecast of lead

week 1, the results do not differ substantially.

To conclude, depending on the physically interpretable

predictability of chosen meteorological and oceanic fields,

the ConvLSTM is able to preserve a realistic physical

consistency between various predictors and predictands

during forecasts. It should be noted that such analysis

based on SVD can only account for the linear relations of

the covariance between given fields. To further evaluate

the physical consistency during forecast with deep neural

networks, a choice of meteorological and oceanic fields

could be made based on some lead–lag analysis between

potential fields, similar to Krikken and Hazeleger (2015),

but at shorter time scales than they considered. Also, other

clustering techniques can be used that are not limited to

linear relationships.

4. Discussion

In this study, we introduce a deep neural network to predict

the sea ice in the Barents Sea. With the intention to adapt this

approach to the Arctic sea ice forecast problem and further

assess its capabilities, all the computations were performed

with reanalysis datasets. It is noteworthy that our results with

the ConvLSTM are comparable to those with the state-of-the-

art numerical climate models (Van Woert et al. 2004; Metzger

et al. 2014; Hebert et al. 2015; Smith et al. 2013, 2016). For

instance, our forecast errors with the ConvLSTM using SIC

and OHC shown in Fig. 10 are comparable to those with the

latest Global Ice Ocean Prediction System (GIOPS) employed
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by the Canadian Meteorological Centre (see their Figs. 4–7)

(Smith et al. 2016). We also inspect the errors based on the

normalized sea ice concentration and find a competitive re-

sult (e.g., Fig. S16 in the supplemental material). However,

we only include a brief assessment of the forecast skill be-

tween ConvLSTM and numerical weather forecast systems

(NCEP and ECMWF ensemble forecast in S2S project) and

an extended quantitative comparison between them is beyond

our scope. For future work, it is recommended to evaluate

ConvLSTM forecasts against numerical weather and sea-

sonal forecast systems consistently using the same observa-

tion dataset and an extensive range of metrics.

Typically, operational weather forecast systems are ensem-

ble forecast systems in order to sample several sources of un-

certainty (Gneiting et al. 2007). It is also possible for the deep

neural networks to model the uncertainty by either employing

the deep learning based ensemble approach (e.g., an ensemble

of deep neural networks) (Zaier et al. 2010; Wang et al. 2017),

or implementing probabilistic deep neural networks (e.g.,

Vandal et al. 2018; McDermott and Wikle 2019, with Bayesian

deep learning). For the deep learning based ensemble ap-

proach, the ensemble is generated through perturbing the

structure of neural networks (e.g., number of hidden layers,

filter size) and the size of input sequences, and therefore very

difficult to control. The latter is more common in practice and

this technique is generally known as Bayesian deep learning

(BDL) (Blundell et al. 2015; Fortunato et al. 2017; Kendall and

Gal 2017; Shridhar et al. 2019). With Bayesian deep learning, a

deterministic NN can easily be transformed into a probabilistic

NN, namely a Bayesian neural network (BNN), by replacing

the weight with a distribution. Through sampling the distri-

bution, an ensemble forecast can be generated to represent the

uncertainty in the forecast to avoid overconfident forecasting.

These techniques are able to capture both aleatoric and epi-

stemic uncertainty, but they are very expensive (Kendall and

Gal 2017).

FIG. 15. Covariance map of SIC and OHC for the (a),(d),(g) first; (b),(e),(h) second; and (c),(f),(i) third SVDmodes in (a)–(c) training,

(d)–(f) testing, and (g)–(i) forecast data for the first week, with shades indicating the dimensionless SIC and contour lines indicating the

dimensionless OHC. The SVD was performed on the covariance matrix of normalized SIC and OHC.
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This study is primarily a proof of concept of the capa-

bilities of ConvLSTM, which goes beyond the extensive use

of LSTMs in modern meteorological forecast literature.

For this study, incorporating an ensemble or Bayesian

network was beyond scope, but we will study it in our

following work.

Due to our limited access to the computational resources,

the experiments with the ConvLSTM were carried out with a

relatively simple network structure and a small dataset. Given

the nature of deep neural networks, there is still a lot of room

for improvement by increasing the complexity of the neural

network (e.g., add more LSTM layers), including more input

fields which are physically consistent with sea ice variability

(e.g., separate terms in the surface energy budget), enlarging

the input area to reduce the boundary effect, training sepa-

rate models for the forecasts with different lead time to avoid

the accumulation of forecast errors and account for the tel-

econnections between remote areas. Theoretically, a more

complicated deep neural network serves as a better represen-

tation of nonlinearity between variables, thus the nonlinear

relationship between all the meteorological fields in a chaotic

climate system. Our study has shown that this is far from

straightforward as the inclusion of noisy atmospheric fields

deteriorated the forecast skill.

Nevertheless, it should be noted that, compared to numeri-

cal weather forecast systems, the deep-learning-basedmethods

still have drawbacks. For instance, these methods always

have a very limited and specialized forecast target and they are

not flexible after expensive training and tuning processes.

Moreover, such data driven approaches normally require a

large training set and therefore the left validation data may not

be enough to allow for any statistical significance tests.

However, in terms of the fast development of deep learning

techniques and the corresponding evolution of hardware, these

deep learning approaches could potentially enhance weather

forecasts in the near future.

FIG. 16. Covariance map of SIC and Z500 for the (a),(d),(g) first; (b),(e),(h) second; and (c),(f),(i) third SVDmodes in (a)–(c) training,

(d)–(f) testing, and (g)–(i) forecast data for the first week, with shades indicating the dimensionless SIC and contour lines indicating the

dimensionless Z500. The SVD was performed on the covariance matrix of normalized SIC and Z500.
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5. Conclusions

AConvLSTM is a useful tool to incorporate both the spatial

and temporal information within meteorological fields in a

model. In this work, we demonstrate that this deep neural

network approach can effectively be used to predict sea ice

characteristics in the Barents Sea at weekly to submonthly time

scales. Different combinations of meteorological fields were

tested as input variables to train the neural networks and make

forecasts. Sea ice forecasts were evaluated against climatology,

persistence, and the baseline statistical model. They were also

compared to operational subseasonal to seasonal forecast

systems. It is found that in most cases, a ConvLSTM can out-

perform persistence and climatology for the extended-range

sea ice forecast up to lead week 5. However, the choices of

input meteorological fields should be made in a smart way

based on the physical consistency between sea ice variation and

the variability of predictors. Being dependent on the predict-

ability of chosen meteorological fields, an interpretation of

forecasts with the ConvLSTM in terms of observed linear re-

lationships indicates that the ConvLSTM is able to pre-

serve the physical consistency between various predictors

and predictands. In addition, it should be noted that forecasts

with ConvLSTM shows state-dependency and the start dates

have impact on the forecast quality, just like forecasts using

numerical models.

Both lead-time-dependent constrained and retrospective

forecasts were performed in this study and their results are

slightly different due to the criterion in the loss function.

Moreover, sensitivity tests were conducted based on the lead-

time-dependent constrained forecasts and we notice that en-

ergy budget related fields can add skill to the sea ice forecasts in

the Barents Sea at weekly to submonthly time scales. Krikken

and Hazeleger (2015) also found that OHC and SFlux have a

strong impact on the predictability of the Arctic sea ice. This

indicates the important role of the energy budget components

in the variability of Arctic sea ice and poses a request for ac-

curate and reliable quantification of the energy budget and a

deep understanding of the energy balance in the climate system

(Liu et al. 2020a,b). Moreover, the fields representing the

midtroposphere also have an impact on the predictability of

sea ice in the Barents Sea. In contrast, the atmospheric

circulation fields close to the surface seem to deteriorate the

performance of the deep neural network, thus reducing

the forecast skill. Although such deep neural networks are

‘‘black boxes,’’ they can potentially help us gain more knowl-

edge about the nonlinear relationship between multiple

meteorological fields.

So far, our experiments with ConvLSTM are limited to

simple network structures and small training datasets. It is

possible to improve the performance of ConvLSTM by in-

creasing the complexity of the network and including large

datasets for training. Fortunately, such attempts will hardly

influence the time to obtain a forecast, but the training cost

will increase. Compared to the relatively expensive opera-

tional numerical forecast systems based on numerical weather

models, this method with the ConvLSTM could be suitable for

forecasts where time to produce the forecast is limited. In

addition, the forecasts made by the ConvLSTM can also po-

tentially be assimilated by the operational weather forecast

systems to improve their robustness and reliability. Given its

advantages over the conventional way of weather forecast, as

well as the fast development of deep learning techniques and

the corresponding evolution of hardware, this method is

promising to serve as an additional fast and cost-efficient op-

erational sea ice forecast component of a forecast system in

the future.
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APPENDIX

Numerical Methods—ConvLSTM

The whole numerical processes of training the ConvLSTM

and making forecasts with ConvLSTM are illustrated in detail

in this part. We train ConvLSTM with the entire time series of

the training set (1979–2008), which is amatrix with a dimension

ofX3 243 563 1440 (X indicates the number of input fields).

The whole time series are fed into the ConvLSTM time step by

time step. Each time step contains X 3 24 3 56 points and the

convolution takes place in these input layers [e.g., Wxi*xt in

Eq. (1)]. During the convolution, the spatial structure (243 56)

is preserved by using paddings. After the convolutional pro-

cesses, the output (dimension Y 3 24 3 56, with Y indicating

number of channels) is fed into the LSTM layer and it will pass

through the input gate (it) in LSTM [see Eq. (1)]. The cell state

(ct) will be updated if this input gate is activated. At the same

time, the forget gate (ft) will decide if the previous cell state

(ct21) need to be forgotten or not. Finally, the output gate (ot)

will determine whether the hidden state (ht) shall include

contributions from the current cell state(ct). It will provide a

forecast for the next time step, and the hidden state (ht) and cell

state (ct) will be passed to the next time step for LSTM related

computations. The forecast will be evaluated using the chosen

loss function (MSE in this case, see section 2d) and it will

provide a training error for this time step.

This process will be repeated until every time step in the

time series of the train set has been fed into the ConvLSTM.

Then the aggregation of the training error from each time step

will be used to perform the back-propagation and one epoch of

training is complete by now. The whole training procedure will

be repeated until the required number of epoch is reached.

The convolutions take place though the implementation of

filters inside convolutional cells before the start of LSTM

processes. Therefore, the convolutions are included in the re-

currence. By introducing convolutional layers, communica-

tions between adjacent cells are enabled and flow of spatial
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information is allowed between time steps. In other words, the

cross correlations between neighboring nodes are learnt by

the neural network, both spatially and temporally. Multiple

LSTM layers can be stacked to improve the complexity of the

network.

The forecast (from 2013 to 2016 with testing set X 3 24 3
563 192) procedure is the same as above, except for the back-

propagation processes.
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