
Neuromorphic Computing and
Engineering

     

PAPER • OPEN ACCESS

Advanced iontronic spiking modes with multiscale
diffusive dynamics in a fluidic circuit
To cite this article: T M Kamsma et al 2024 Neuromorph. Comput. Eng. 4 024003

 

View the article online for updates and enhancements.

You may also like
Soft iontronic delivery devices based on
an intrinsically stretchable ion selective
membrane
Dennis Cherian, Samuel Lienemann,
Tobias Abrahamsson et al.

-

A tutorial of characterization methods on
flexible pressure sensors: fundamental
and applications
Yongbiao Wan, Zhiguang Qiu, Jun Yuan
et al.

-

Frequency dependent sensitivity of
hydrogel iontronic sensor
Haiyang Liu, Haoyu Guo, Meng Yang et
al.

-

This content was downloaded from IP address 77.161.211.187 on 07/05/2024 at 08:14

https://doi.org/10.1088/2634-4386/ad40ca
/article/10.1088/2058-8585/ac356e
/article/10.1088/2058-8585/ac356e
/article/10.1088/2058-8585/ac356e
/article/10.1088/1361-6463/ad0e95
/article/10.1088/1361-6463/ad0e95
/article/10.1088/1361-6463/ad0e95
/article/10.1088/1361-665X/aca7a3
/article/10.1088/1361-665X/aca7a3


Neuromorph. Comput. Eng. 4 (2024) 024003 https://doi.org/10.1088/2634-4386/ad40ca

OPEN ACCESS

RECEIVED

26 January 2024

REVISED

11 April 2024

ACCEPTED FOR PUBLICATION

19 April 2024

PUBLISHED

30 April 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Advanced iontronic spiking modes with multiscale diffusive
dynamics in a fluidic circuit
TM Kamsma1,2,∗, E A Rossing1, C Spitoni2 and R van Roij1,∗
1 Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
2 Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
∗ Authors to whom any correspondence should be addressed.

E-mail: t.m.kamsma@uu.nl and r.vanroij@uu.nl

Keywords: iontronic spiking, ion channel memristor, microfluidic circuit, tonic bursting, phasic bursting, mixed mode spiking,
threshold variability

Supplementary material for this article is available online

Abstract
Fluidic iontronics is emerging as a distinctive platform for implementing neuromorphic circuits,
characterised by its reliance on the same aqueous medium and ionic signal carriers as the brain.
Drawing upon recent theoretical advancements in both iontronic spiking circuits and in dynamic
conductance of conical ion channels, which form fluidic memristors, we expand the repertoire of
proposed neuronal spiking dynamics in iontronic circuits. Through a modelled circuit containing
channels that carry a bipolar surface charge, we extract phasic bursting, mixed-mode spiking, tonic
bursting, and threshold variability, all with spike voltages and frequencies within the typical range
for mammalian neurons. These features are possible due to the strong dependence of the typical
conductance memory retention time on the channel length, enabling timescales varying from
individual spikes to bursts of multiple spikes within a single circuit. These advanced forms of
neuronal-like spiking support the exploration of aqueous iontronics as an interesting platform for
neuromorphic circuits.

1. Introduction

In the pursuit of brain-inspired circuits the focus is often on the synaptic properties of neuromorphic
devices, where synapses are considered as primary computational units in neuromorphic computing [1].
Consequently, due to their analogous behaviour to synapses, memristors have significantly shaped and
driven research in this domain, where the time- and history-dependent conductance of memristors offers a
versatile platform for emulating features of synaptic plasticity [2–4]. However, synapses are not the only
components in the brain which can be emulated with memristors. The biological ion channels responsible
for generating action potentials also exhibit memristive behaviour [5]. This is underscored by the seminal
Hodgkin–Huxley (HH) model [6], which mathematically describes the axonal membrane potential by
treating the membrane as an equivalent electric circuit in which the ion channels embedded in the axonal
membrane are modelled as circuit components. The mathematical models for these ion channels were later
recognised as descriptions of memristors [7]. Although both synapses and axonal ion channels are neuronal
components that can be described and emulated by memristors, they are explicitly distinct biological
structures which carry out different tasks. This biological nuance sometimes leads to confusion and
inaccurate descriptions of memristive devices in the brain, such as incorrectly associating the HHmodel with
descriptions of synapses [8]. Nevertheless, the intriguing connection between memristors and the HH model
has also sparked considerable interest [5, 9] and neuronal signalling has inspired various circuits that capture
various features of neuronal spiking [10, 11].

Biological neurons feature a wealth of different spiking modes, which can be clearly categorised and used
to judge the quality of neuron models [12]. Typically the most basic features to consider are tonic spiking, a
regular train of voltage spikes with constant frequency, and phasic spiking, a single isolated voltage spike. In
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the case of phasic spiking, the neuron model should also obey the all-or-none law [4, 13], i.e. a voltage spike
is either fully generated upon a sufficiently strong impulse, or the voltage fails to spike, with no intermediate
transition in between. However, many more neuronal firing modes are recognised and this signalling
behaviour of neurons has inspired various circuits that can emulate a wide array of different modes of
neuronal spiking [10, 11]. Examples, that will also feature in the present study, include phasic bursting,mixed
mode spiking, tonic bursting (otherwise known as chattering [14]), and threshold variability [12]. In phasic
bursting, a single burst of several spikes emerges upon applying a sustained stimulus, after which the system
again settles to a steady state, despite the constant and sustained current stimulus. Mixed mode spiking
consists of an initial burst of spikes upon a sustained stimulus, followed by tonic spiking. In tonic bursting,
short periods of spiking, i.e. bursts, are interchanged by short periods of no spiking at all. Lastly, threshold
variability indicates that the threshold for a neuron to spike can depend on the prior activity of the neuron.

The vast majority of neuromorphic devices (both spiking and synaptic) consist (at least partially) of
solid-state components [2, 3, 10, 11], which results in fundamental differences with biological neurons. For
instance, while solid-state devices typically rely on a single information carrier, such as electrons or holes,
driven only by electric forces, neurons employ the transport of various ions and molecules in parallel, while
combining electrical and chemical regulation, both for signalling [16] and for synaptic transmission [17–19].
Additionally, the fast dynamics of solid state components can be a disadvantage when temporal inputs are
natural or biological signals as the typical timescales of those inputs can be significantly slower than those of
solid-state devices, therefore requiring complicated virtual clocks for synchronisation [20, 21]. Recent work
tries to address and overcome these limitations through electrochemical coupling of solid-state components
to ionic systems, both in the context of synaptic devices [22, 23] and for spiking circuits [24–26]. However, a
newly emerging direction proposes to omit solid-state components altogether, and hence the need for any
chemical or ionic coupling, by implementing neuromorphic features in an aqueous electrolyte medium
[27–34]. These (fluidic) iontronic devices have recently garnered significant interest, offering the promise of
multiple information carriers, chemical regulation, and bio-integrability [35], although sacrificing on the
high speeds obtainable by solid state devices. Unlike traditional solid-state neuromorphic circuits, fluidic
iontronic circuits leverage the dynamic interplay of ions within an aqueous electrolyte, mirroring the
conductive and fluidic characteristics inherent in biological neuronal environments. This departure from
solid-state components introduces a novel dimension to neuromorphic computing, offering the potential for
closer emulation of the brain’s aqueous dynamics [36, 37]. Recent advances include chemical regulation [30,
31] and initial demonstrations of iontronic neuromorphic computing [38]. However, the development of
neuromorphic iontronic devices is still in its infancy, requiring further theoretical explorations and
experimental investigations to establish their capabilities in emulating complex neuronal functionalities [28,
34, 35].

In the recent rise of interest in iontronic neuromorphics, spiking circuits also received some attention in
the form of theoretical studies, where HH-inspired iontronic circuits are modelled and shown to exhibit
features of neuronal spiking [15, 29]. These proposals feature a circuit composed of an aqueous electrolyte
medium, akin to the neuronal medium that the HH model describes, and rely on fluidic iontronic
memristors to induce neuronal spiking. Initially, tonic spiking was shown to emerge from a circuit
containing Angstrom-scale slits [29], shortly after which an alternative iontronic circuit exploiting conical
ion channels was proposed that exhibits both the characteristic all-or-none phasic spiking and tonic spiking
[15]. Thus, the two modes that are typically considered first [11, 12] have been theoretically predicted to also
emerge from fluidic iontronic circuits. However, no proposals yet exist to also include other spiking modes.

In this work we expand upon the previously reported features of neuronal spiking in fluidic iontronics
[15, 29]. By building upon a previously reported iontronic circuit [15] and a physical description of the
dynamical conductance of conical channels with a bipolar (BP) surface charge [39], i.e. positive at the base
and negative at the tip, we can unlock various new forms of spiking dynamics. Due to the strong dependence
of the typical conductance memory retention time on the channel length, we can implement timescales
varying from individual spikes to bursts of multiple spikes within a single circuit, thereby enabling new
spiking modes. Specifically these spiking modes are the aforementioned phasic bursting, mixed mode
spiking, tonic bursting, and threshold variability [12].

2. Iontronic circuit and BP channels

Conical fluidic ion channels act as iontronic volatile memristors [40] and are being investigated as possible
candidates for synaptic devices [41] and spiking circuits [15, 39]. Using theoretical models that quantitatively
explain the memristive behaviour of conical channels, it was shown that HH-inspired fluidic circuits
containing three conical channels and a capacitor exhibit tonic and phasic spiking [15, 39]. This modelled
circuit was originally composed of conical ion channels with a homogeneous unipolar (UP) surface charge
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Figure 1. (a) Schematic representation of the proposed fluidic iontronic circuit featuring four channels of three different types.
Two short channels of equal length L± = 1µmwith fast dynamics on a typical timescale τ± ≈ 0.042ms and conductances g±(t),
a longer channel of length Ls = 15µm with slower dynamics on a typical timescale τs ≈ 9.4ms and conductance gs(t), and an
even longer channel of length Lss = 90µm with conductance gss(t) and the slowest dynamics over a typical timescale
τss ≈ 338ms. These channels are connected in series with batteries with potential E± =±114mV and Es = Ess =−180mV,
respectively, and in parallel to a capacitor of capacitance C= 0.05 pF. A time-dependent stimulus current I(t) can be imposed
through the circuit and a potential Vm(t) forms over the circuit that is equivalent to the neuronal membrane potential [6]. (b)
Schematic of an individual bipolar channel of length Li, with base radius Ri,b and tip radius Ri,t, connecting two aqueous 1:1
electrolyte reservoirs of concentration ρb = 2mM. The wall of all four channels carries an inhomogeneous surface charge that
linearly decreases from 0.1 enm−2 at the base to−0.05 enm−2 at the tip. Adapted figure with permission from [15], Copyright
(2023) by the American Physical Society.

[15] and was later modified by replacing the UP channels with conical channels carrying a BP
inhomogeneous surface charge [39], positive at the base and negative at the tip. BP fluidic channels and
(Janus) membranes have long drawn great interest as current rectifiers [42–47] for applications in e.g.
sensing [47] and osmotic energy conversion [47–49]. BP channels also show potential for iontronic
memristors as a modification from a UP to a BP surface charge led, for an individual conical channel, to a
much more pronounced current–voltage hysteresis loop upon applying an AC voltage, i.e. a stronger
conductance memory effect.

Here we consider a circuit containing several of these conical BP channels, with different lengths Li. An
important feature of these BP channel memristors is that their typical conductance memory timescale is
dictated by the channel lengths Li according to

τi =
L2i
12D

, (1)

with D= 2µm2ms−1 the diffusion coefficient of the ions [39], which we assume to be identical for all ionic
species for convenience. As we will discuss in section 3.6, the combination of channels of various lengths in a
single circuit gives rise to dynamics on the timescale of individual spikes and of bursts of spikes.

To unlock additional features of neuronal firing, beyond tonic and phasic spiking, we introduce the
circuit schematically depicted in figure 1(a), containing a capacitor with capacitance C= 0.05 pF, a typical
capacitance for a mammalian neuronal membrane with an area of order∼0.1 µm2 [50, 51], i.e. of the same
order as the cross-sectional area of a channel. This capacitor is connected in parallel with four BP conical
channels with conductances g+(t), g−(t), gs(t), and gss(t), and four batteries each in series with the conical
channels. The channels are taken to be of varying lengths L± = 1µm, Ls = 15µm, and Lss = 90µm. Through
equation (1) this translates to timescales τ± ≈ 0.042ms for the two fast channels, τs ≈ 9.4ms for the slow
channel, and τss ≈ 338ms for the super slow channel. The batteries have potentials E± =±114mV for the
two fast channels, and Es = Ess =−180mV for the slow and super slow channels. These batteries, which
mimic the Nernst potential caused by ionic concentration differences inside and outside the neuron in the
HH model [6], are considered to be actual batteries in the microfluidic circuit of interest here, but their
potentials are comparable to their biological Nernst potential counterparts [52].

In figure 1(b) we show a schematic depiction of a BP channel of length Li, implemented in the circuit in
figure 1(a), with base- and tip radii Ri,b and Ri,t = Ri,b −∆Ri, respectively, and thus with radius
Ri(x) = Ri,b − x∆Ri/Li for positions x ∈ [0,Li] in the channel. The channel connects two 1:1 aqueous
electrolyte reservoirs with the viscosity η = 1.01mPa · s and the electric permittivity ε= 0.71nF ·m−1 of
water. The cationic and anionic bulk concentrations are given by ρb = 2 mM, comparable to the extracellular
potassium concentration in biological neurons [52], which gives rise to a Debye length λD ≈ 6.8nm. The
channels carry a surface charge that linearly decreases from eσ0 = 0.1 enm−2 at the broad base to
−0.05 enm−2 at the narrow tip, thereby changing by σ ′ =−3σ0/2 over the channel length and forming a BP
surface charge profile. These charge densities correspond to Gouy–Chapman zeta potentials that vary
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between 92mV and−61mV. For the short fast channels and the slow channel we fix Ri,b = 200 nm and
Ri,t = 50 nm, while the super slow channel is narrower with Rss,b = 120 nm and Rss,t = 30 nm. Thus, in all
cases the channel radii are substantially larger than the Debye length, such that overlap of electric double
layers is not prominent.

To fully resolve the dynamics of the circuit depicted in figure 1(a), we have to know how the
conductances gi(t) of the BP channels evolve. For this we use an analytical model that quantitatively
describes the steady-state and dynamical conductance properties of BP channels [39]. BP channels exhibit
voltage-dependent salt concentration polarisation in steady-state, with the radially averaged salt
concentration ρi,s(x,Vi) described by

ρi,s (x,Vi) = 2ρb −
1

Pei (Vi)/Vi

2e(σ0∆Ri +σ ′Ri,b)

kBTR2
i,t

Ri,b (1− x/Li)

Ri (x)
− e

−Pei(Vi)
(1−x/Li)Ri,t

Ri(x) − 1

e
−Pei(Vi)

Ri,t
Ri,b − 1

 , (2)

with Pei(Vi) = Qi(Vi)Li/(πDR2
i,t) the Péclet number at the narrow end and Qi(Vi) =−πRi,tRi,bεψeffVi/

(ηLi) the volume flow through the channel. The system is considered to be at a temperature of 293.15 K and
the effective surface potential ψeff =−25mV is taken to be the same as in [39] as we consider the same
surface charge distributions here. The accumulation or depletion of salt affects the conductance of the
channel according to

gi,∞ (Vi) = gi,0
Li

2ρb
´ Li
0

(
ρi,s (x,Vi)

)−1
dx
, (3)

with gi,0 = (πRi,tRi,b/Li)(2ρbe2D/kBT) the homogeneous channel conductance. In the numerical evaluation
of equation (3) we replace ρi,s(x,Vi) by Max

[
0.2ρb,ρi,s(x,Vi)

]
to avoid nonphysical negative concentrations

that can emerge due to the strong voltage-dependent salt depletion of BP channels [39]. This approach does
induce a sharper drop in conductance, compared to full finite-element simulations, when concentrations
start to approach the imposed minimum of 0.2ρb, discussed in more detail in the supplemental material.
This artefact complicates the circuit equations we introduce below. To help smooth over this sharper drop we
employ a third-order interpolation to evaluate equation (3) between voltages spaced at intervals of 0.025V,
ranging from−0.3125 to 0.3125V. A more sophisticated theoretical model of individual channels in the
future should obviate the need for such an ad hoc approach, but for now this effective method suffices.

Since it takes a typical time τ i as per equation (1) for salt to accumulate or deplete, the channel exhibits a
(volatile) memory conductance with typical memory retention time τ i. The resulting dynamic conductance
gi(t) was found to be well described by

dgi (t)

dt
=

gi,∞ (Vi (t))− gi (t)

τi
, (4)

where Vi(t) is the potential difference between base and tip of the channel, gi,∞(Vi) is the voltage-dependent
steady-state conductance of the channel as per equation (3), and τ i is the typical conductance memory
retention timescale of the channel given by equation (1) [39].

With differential equations for each of the dynamic conductances gi(t), we only need one additional
equation to close the set that describes the time-evolution of the ‘membrane’ potential Vm(t), here the
potential over the capacitor. This additional equation is provided by Kirchhoff ’s law

C
dVm (t)

dt
= I(t)−

∑
i

gi (t)(Vm (t)− Ei) , (5)

where i ∈ {+,−, s, ss} and the conductances gi(t) each evolve according to equation (4) with their
corresponding gi,∞(Vi(t)) and τ i. The voltage arguments Vi(t) over the channels are given by
V−(t) = Vm(t)− E−, V+(t) =−Vm(t)+ E+, Vs(t) =−Vm(t)+ Es, and Vss(t) =−Vm(t)+ Ess, with the
different signs of the potentials corresponding to the different orientations of the channels as depicted in
figure 1(a). Using the initial conditions V(0) =−70mV and gi(0) = gi,0, with gi,0 as defined below
equation (3), we numerically solve the closed set of equations (1), (4) and (5) for various current stimuli I(t).
The system is given at least 10 s to settle into a steady state before applying a current I(t), we offset the time in
the results to omit this in the plots.
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Figure 2. Various modes of voltage spiking (blue curves) extracted by modelling one and the same iontronic circuit driven by
different time-dependent currents (red curves), with (a) tonic spiking [15, 29] for I= 19.05 pA and (b) phasic spiking [15] for
I= 18.4 pA reported before in iontronic circuits. The newly introduced modes of iontronic spiking dynamics include (c) phasic
bursting for I= 19.01 pA, i.e. a burst of spikes followed by a return to a steady state upon a sustained stimulus, (d) mixed-mode
spiking for I= 19.02 pA, i.e. an initial high-frequency burst of spikes followed by a transition into lower frequency tonic spiking,
(e) tonic bursting for I= 19.04 pA, i.e. a short burst of spiking alternating with periods of quiescence, and (f) threshold
variability, with variations in the firing threshold influenced by prior activity. The negative and positive current stimuli are of the
same magnitude for I= 18.3 pA but with different time intervals between the negative and the subsequent positive pulse. The
firing threshold is temporarily lowered by the negative pulse and therefore the positive pulse only surpasses the (variable) firing
threshold when the time between the current pulses is sufficiently short.

Note that τ± ≪ τs, τss, additionally τ± is much faster than the typical response time of Vm(t) too as we
will see later, so the two short channels actually act as quasi-instantaneous current rectifiers due to their
comparatively fast dynamics, rather than memristors, as we will more extensively discuss in section 3.6.

3. Advanced iontronic spiking modes

Upon numerically evaluating the membrane potential Vm(t) that emerges from the proposed fluidic
iontronic circuit introduced in section 2 for various stimuli, we reveal the remarkable diversity of typical
neuronal firing modes [12] shown in figure 2, which we will discuss individually below. We stress that all
spiking modes discussed below originate from one and the same iontronic circuit, with the stimulus current
I(t) the only difference between the spiking modes. Additionally, we note that all spikes exhibit voltage
amplitudes and spiking frequencies that are typical for mammalian neurons [13].

3.1. Tonic spiking and phasic spiking
The earlier reported foundational tonic [15, 29] and phasic spiking [15] also emerge from the circuit we
consider here. Tonic spiking, characterised by a regular train of voltage spikes as shown in figure 2(a), and
phasic spiking, featuring a single isolated voltage spike as shown in figure 2(b), appear for the present system
parameters under sustained current stimuli of 18.40 pA and 19.05 pA, respectively. The phasic spiking
current stimulus of 18.40 pA is just above the threshold for any spiking to occur, unless we consider the
variability of the threshold as discussed in section 3.5. The sustained current of figure 2(b) does give rise,
after the single voltage pulse, to a steady voltage that differs from the initial voltage. An all-or-none spike can
also appear upon a pulse stimulus, after which the voltage settles back to its initial steady-state [39].

The dynamics here are governed by the typical RC-like time of the circuit that determines the time it
takes for the (de)polarisation of Vm(t), while the timescale τs dictates the typical width of a spike; the short
channels respond on such fast timescales that their dynamics can be assumed to be instantaneous [15, 53].
Although the timescale τss does not play a role in these spiking modes as these also appear without the super
slow channel [39], a small influence of the super slow channel is still visible in the case of tonic spiking. The
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spiking frequency initially is slightly higher immediately after the stimulus is applied and then gradually
settles into a lower frequency over a time∼τss. This actually corresponds to the spiking mode of spike
frequency adaptation [12], but since this effect is so minor in our results, we choose not to explicitly
distinguish it as an additional emerging spiking mode.

3.2. Phasic bursting
Imposing a sustained current stimulus to the circuit of 19.01 pA elicits phasic bursting, a spiking mode where
a burst of spikes occurs, followed by a return to a (new) steady state, despite the sustained stimulus. This
mode is made possible by the super slow channel. The initial burst has a duration of the typical timescale
∼τss of the super slow channel, after which this channel has had sufficient time to increase its conductance to
return the system to a steady state.

3.3. Mixedmode
Under a sustained stimulus of 19.02 pA we find mixed mode spiking, i.e. the iontronic circuit transitions
from an initial high-frequency burst of spikes with a duration of∼τss, into a lower frequency tonic spiking,
with the individual spikes now separated by∼τss, as shown in figure 2(d). In this case the initial burst is a
transient, of typical time∼τss, as the system settles into the periodic solution of the tonic spiking.

3.4. Tonic bursting
Tonic bursting entails short bursts of spiking interspersed with periods of quiescence. When imposing a
sustained stimulus of 19.04 pA we find that the circuit exhibits a periodic behaviour of high frequency burst
as shown in figure 2(e). The durations of the bursts and periods of quiescence are dictated by the slow
dynamics of longest channel, as the super slow channel periodically increases and decreases in conductance,
visible by the fact that each burst or quiescence period has a duration of order∼τss ≈ 338ms.

3.5. Threshold variability
Our findings also unveil threshold variability, wherein the firing threshold of the neuron is influenced by
prior activity. As shown in figure 2(f), when imposing a negative and positive stimulus pulse of magnitude
±18.30 pA (just below the threshold mentioned in section 3.1) of duration 0.02 s, separated by 0.18 s
(between the end of the first pulse and the beginning of the second) no spike occurs. However, when we
impose precisely the same pulses but now separated by 0.01 s we find that a full spike occurs. Thus in the first
set of pulses, the threshold for spiking was not reached, but in the second instance it was reached with exactly
the same pulses, showing that the prior activity of the circuit can influence the threshold for spiking. This is a
result of the slow channel with timescale τs decreasing in conductance as a result of the negative pulse, while
the super slow channel actually plays no role in this spiking mode as it is also observed without the super
slow channel. If the interval is much larger than τs ≈ 9.4ms, as it is for the first set of pulses, then the slow
channel reverts to its steady-state before the second pulse. However, if the interval between the stimuli is of
the order of τs = 9.4ms (or smaller), as is the case in the second set of pulses where the interval is 10ms, then
the slow channel still has a lowered conductance when the second pulse arrives, making the system more
susceptible to stimuli and thereby lowering the firing threshold.

3.6. Roles of the different channels
To elucidate the circuit design as shown in figure 1(b) we heuristically describe the roles the various channels
play. Firstly, since τ± is much shorter than the typical response time of Vm(t) and since τ± ≪ τs, τss, the two
short channels actually act as quasi-instantaneous current rectifiers, rather than memristors, though we solve
the dynamic equation for all channels for completeness. Tonic and phasic spiking, which occur without the
super slow channel, were already remarked to also emerge by using the instantaneous conductance
g∞,±(V(t)) [15] in equation (5), reducing such a three channel circuit to a two-dimensional dynamic system
with dynamic variables Vm(t) and gs(t) [53]. By extension the results we present here are represented by the
three dynamic variables Vm(t), gs(t), and gss(t). In figure 3 we show these dynamic variables during the tonic
bursting shown in figure 2(e).

All channels drive Vm(t) toward their respective battery potentials. When Vm(t) is near E± the respective
corresponding short fast channel has a high conductance and maintains Vm(t) in that state, forming
temporary stable states between which Vm(t) switches during spiking. The slow channel, which drives Vm(t)
towards Es =−180mV, is in a low conductance state when Vm(t) is negative, allowing Vm(t) to depolarise
and switch to the positive voltage state upon a stimulus. Following the increase in Vm(t), the slow channel
increases in conductance over a timescale τs as we show in figure 3(a), resulting in a consequent downward
shift of Vm(t). This behaviour analogously resembles the delayed activation of K+ channels in the HH model
[6]. The super slow channel, operating over a timescale τss, plays a role akin to the slow channel. However, as
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Figure 3. Evolution of the three (relevant) dynamic variables Vm(t), gs(t), and gss(t) during the limit cycle of the tonic bursting
case shown in figure 2(e). (a) Dynamic variables Vm(t) and gs(t) during a single spike. At low gs(t) the potential Vm(t) can switch
to a positive voltage. Due to the delayed increase of gs(t) after a timescale τs in response to the increase of Vm(t), the conductance
gs(t) drives Vm(t) down again, forming the spike. (b) Dynamic variables Vm(t) and gss(t) during a burst of spikes. After three
spikes gss(t) increased sufficiently, in response to the increase of Vm(t) during the spikes, to halt the spiking. Without spiking,
gss(t) decreases over a timescale τss after which the spiking starts again, creating tonic bursting. (c) The three dynamic variables
Vm(t), gs(t), and gss(t) in a phase portrait during tonic bursting, showing a characteristic bursting phase diagram with three loops
(blue) where gss(t) changes little, corresponding to the three spikes, and a trajectory connecting the third and first loop (red)
where gss(t) returns from high to low, corresponding to the periods of quiescence.

we show in figure 3(b), it takes several spikes for the super slow channel to sufficiently increase in
conductance and drive Vm(t) towards its negative battery potential Ess =−180mV, consequently
suppressing spiking. The resulting period of quiescence lasts a time∼τss, forming a bursting process. The salt
accumulation and depletion underpinning the conductance change of the super slow channel bear similarity
to the slow intracellular Ca2+ accumulation and depletion implicated in regulating bursting in biological
neurons [54–56]. Combining the three relevant dynamic variables Vm(t), gs(t), and gss(t) in one phase
portrait yields figure 3(c), revealing a characteristic bursting trajectory with three loops (blue) and a path
connecting the third and first loop (red), corresponding to the three spikes and to the periods of quiescence,
respectively.

4. Discussion and conclusion

Previously reported fluidic iontronic circuits have demonstrated tonic spiking [15, 29] and phasic spiking
[15]. In this study, we extend the repertoire of emergent spiking modes by introducing a new HH-like fluidic
iontronic circuit, consisting of a capacitor and four iontronic memristors, that exhibits phasic bursting,
mixed-mode spiking, tonic bursting, and threshold variability [12], as well as the earlier reported tonic and
phasic spiking [15, 29]. The spikes in our proposed modes exhibit voltages and frequencies that align with
those observed in mammalian neurons [13]. Moreover, the capacitance, battery potentials and salt
concentration in the circuit are comparable to their biological counterparts [52]. Our theoretical framework
builds upon a previously proposed iontronic circuit that exhibits tonic and phasic spiking [15] and a physical
model for conical ion channels with a BP (rather than UP) surface charge [39]. These channels are
memristive [39] and their typical conductance memory retention time is dependent on the channel length.
By varying the lengths of the four channels we can incorporate timescales on the order of a single spike and
of entire bursts in a single circuit, allowing for the spiking and bursting processes that emerge from one and
the same circuit.

While our theoretical framework in principle is fully physical, a limitation is the parameter sensitivity of
the system, at least for the system parameters we considered. The stimuli strengths that induce different
spiking modes are only separated by∼0.01–0.1 pA on the scale of about 20 pA. Notably, if wider current
stimuli intervals are found for spiking, then it is possible that class 2 spiking [12] can also be distinguished as
a separate feature as the transitions in frequency seem to be discontinuous, but class 1 or 2 spiking is typically
evaluated over varying stimuli intervals which in our case are too narrow to meaningfully investigate this.
Additionally, although spiking was found to emerge for a wide range of different parameter configurations,
the spiking is sensitive to small individual changes of the short fast channels or their respective batteries,
where (at least one mode of) spiking only appeared in the tight interval E± ∈ ± [113,114.8]mV. The short
fast channels play no dynamic roles in the circuit, but rather act as instantaneous current rectifiers that create
the stable voltage states between which Vm oscillates during spiking due to the dynamic switching of the
(super) slow channel. Hence, no memristive properties are required for the short fast channels, which only
offer a current rectification of around≈21 [39], and other (perhaps better performing) diodic devices from
the wide range of iontronic current rectifiers [57–61] could be considered. Although some devices can be
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described by similar theoretical models as we use here [38, 61], our analysis is limited to devices for which we
have an analytical quantitative model, but iontronic devices that lack such models are still feasible for
experimental fabrication. For the (super) slow channels we do require the specific (length-dependent)
volatile dynamics we find for the iontronic memristors of concern here, but in this case the system is
far more stable against parameter shifts, thereby supporting the use of the (super) slow channels as
described here. At least one mode of spiking emerges for changing a single parameter at a time in the range
Es ∈ [−200,−90]mV, Ess ∈ [−450,−140]mV, while the capacitance can even span orders of magnitude
C ∈ [10−6,10−1] pF. Therefore, the three components that govern the circuit dynamics, i.e. the (super) slow
channels and the capacitor, are relatively robust once the short fast channels are in order.

The above suggestion for future improvements using other fluidic devices is supported by the fact that
the results presented here are already an expansion on results we derived earlier for simpler UP conical
channels carrying a homogeneous surface charge. Tonic bursting also emerges from a similar circuit with UP
channels, but with circuit parameters (i.e. higher battery potentials, lower salt concentration, lower
capacitance) and spiking voltages that are further removed from their biological analogues. The results and
specific parameters for the UP channel circuit are laid out in the supplemental material. The emergence of
tonic bursting in a different circuit with different fluidic memristors shows that the bursting spiking modes
we present are not inherently dependent on the BP conical channels we consider here. Therefore, possible
further improvements can be achieved by considering fluidic iontronic devices with an even wider range of
attainable conductances. However, this is an issue of individual device physics and here we mostly focused on
the overall circuit architecture and the spiking modes it enables.

In summary, we have considerably expanded the range of spiking modes proposed to emerge from
iontronic fluidic circuits, entailing phasic bursting, mixed-mode spiking, tonic bursting, and threshold
variability. The alignment of the spikes in our results with typical mammalian neuronal voltages and
frequencies, combined with various circuit parameters that are comparable to their biological counterparts,
further supports the potential that fluidic iontronics carry for neuromorphic spiking circuits. Moreover,
since these biologically realistic spikes emerge from a circuit that is based upon the same aqueous electrolyte
medium as in neurons, a unique perspective is the future possible integration with biological systems.
However, the present system is rather sensitive to stimulus strengths and other circuit parameters, especially
in the short fast channels, a limitation that may be mitigated by implementing fluidic devices with a broader
range of available conductances. Nevertheless, we showed that the multiscale diffusive timescales of fluidic
iontronic memristors of different lengths facilitate a relatively simple circuit that exhibits various advanced
modes of neuronal spiking. Consequently, this work contributes to the ongoing exploration of fluidic
iontronics as a promising platform for neuromorphic circuits, providing theoretical insights and proposed
applications, thereby paving the way for future advancements in this burgeoning field.
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