
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 53, \mathrm{N}\mathrm{o}. 2, \mathrm{p}\mathrm{p}. 315--345

FAST METRIC EMBEDDING INTO THE HAMMING CUBE\ast 

SJOERD DIRKSEN\dagger , SHAHAR MENDELSON\ddagger , AND ALEXANDER STOLLENWERK\S 

Abstract. We consider the problem of embedding a subset of \BbbR n into a low-dimensional Ham-
ming cube in an almost isometric way. We construct a simple, data-oblivious, and computationally
efficient map that achieves this task with high probability; we first apply a specific structured ran-
dom matrix, which we call the double circulant matrix; using that a matrix requires linear storage
and matrix-vector multiplication that can be performed in near-linear time. We then binarize each
vector by comparing each of its entries to a random threshold, selected uniformly at random from
a well-chosen interval. We estimate the number of bits required for this encoding scheme in terms
of two natural geometric complexity parameters of the set: its Euclidean covering numbers and its
localized Gaussian complexity. The estimate we derive turns out to be the best that one can hope
for, up to logarithmic terms. The key to the proof is a phenomenon of independent interest: we show
that the double circulant matrix mimics the behavior of the Gaussian matrix in two important ways.
First, it maps an arbitrary set in \BbbR n into a set of well-spread vectors. Second, it yields a fast near-
isometric embedding of any finite subset of \ell n2 into \ell m1 . This embedding achieves the same dimension
reduction as the Gaussian matrix in near-linear time, under an optimal condition---up to logarithmic
factors---on the number of points to be embedded. This improves a well-known construction due to
Ailon and Chazelle.

Key words. dimension reduction, Johnson--Lindenstrauss embeddings, Hamming cube, circulant
matrices, Gaussian width
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1. Introduction. In modern data analysis one is frequently confronted with
sets that contain a large number of points, and each point is represented by a high-
dimensional vector. This high-dimensionality causes significant storage consumption
and comes at a high computational cost. In an attempt at addressing those issues,
dimension reduction techniques have been used, for example, in clustering schemes
[37], computational geometry [22], and numerical linear algebra [44, 46] (see, e.g., [6]
and the references therein for many more examples). The idea is to map the given
set into a lower-dimensional space, while preserving its key features. And obviously,
what counts as a key feature changes according to the application one has in mind.

The Gaussian random matrix A\in \BbbR m\times n, whose entries are independent, standard
Gaussian random variables, is a surprisingly powerful and versatile tool that is fre-
quently used in dimension reduction methods. The most basic result of that flavor is
the (Gaussian formulation of the) Johnson--Lindenstrauss lemma [31]: if f :\BbbR n \rightarrow \BbbR m

is defined by f(x) = 1\surd 
m
Ax, then for any finite set T and \epsilon > 0,
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316 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

(1 - \epsilon )\| x - y\| 22 \leq \| f(x) - f(y)\| 22 \leq (1 + \epsilon )\| x - y\| 22 for all x, y \in T(1.1)

with high probability, provided that m \gtrsim \epsilon  - 2 log | T | . Here, and throughout this
article, | T | denotes the number of points in T , a\lesssim b means that a\leq cb for an absolute
constant c > 0, and a\sim b means a\lesssim b and b\lesssim a.

The Johnson--Lindenstrauss lemma is remarkable in at least two respects. First,
the map f is data-oblivious, i.e., it is constructed without any prior information on
the set one wishes to embed. This property is crucial in certain applications, e.g., one-
pass streaming applications [9] and data structural problems such as nearest neighbor
search [19]. Second, the Johnson--Lindenstrauss embedding is in general optimal:
Larsen and Nelson [35] showed that if \epsilon >min\{ n, | T | \}  - 0.49, then any map f : T \rightarrow \BbbR m

that satisfies (1.1) must also satisfy that m\gtrsim \epsilon  - 2 log | T | .
Despite this general optimality, the embedding dimension achieved by the Gauss-

ian matrix can be substantially lower. Indeed, for a set T , let

T \prime =

\biggl\{ 
x - y

\| x - y\| 2
: x \not = y, x, y \in T

\biggr\} 
,(1.2)

denote by G the standard Gaussian random vector, and let

\ell \ast (S) =\BbbE sup
x\in S

| \langle G,x\rangle | (1.3)

be the Gaussian mean width of a set S. A result due to Gordon [18] shows that for
T \subset \BbbR n, f satisfies (1.1) with high probability if m \gtrsim \epsilon  - 2\ell 2\ast (T

\prime ). Gordon's result is
an instance-adaptive version of the Johnson--Lindenstrauss lemma: if T \prime is as in (1.2),
then \ell 2\ast (T

\prime ) is always upper bounded by c log | T | for an absolute constant c > 0, and
it may be substantially lower if T has a low-complexity structure, e.g., if it consists
of sparse vectors or if it belongs to a low-dimensional subspace or manifold.

It is also known that the Gaussian random matrix can be used to define dimension
reduction schemes that go beyond the Euclidean setting. Most relevant to this work is
the fact that it is possible to embed subsets of \ell n2 into the Hamming cube \{  - 1,1\} m in
an almost isometric way---by combining the Gaussian matrix with a straightforward
binarization scheme (see [39, 42] when T \subset Sn - 1 and [14] for T \subset \BbbR n).

At the same time, using the Gaussian matrix in dimension reduction schemes
is problematic from a computational perspective. First, a typical realization of the
matrix is fully populated and unstructured; thus, simply storing it requires plenty of
memory (O(mn)). Second, and more importantly, it takes significant time (O(mn))
to compute a matrix-vector product Ax. It is therefore highly desirable to find an
alternative to the Gaussian matrix: specifically, some structured random matrix that
requires less storage space and supports fast matrix-vector multiplication. Obviously,
one would want that matrix to be as effective in dimension reduction as the Gaussian
matrix, resulting in the best of both worlds: an optimal data-oblivious embedding
that is computationally efficient.

Our main result achieves this goal for binary embeddings: we identify a com-
putationally friendly replacement for the Gaussian matrix that leads to a near-
isometric embedding of an arbitrary subset of \BbbR n into a low-dimensional Ham-
ming cube.

The heart of the proof of this result is to show that the matrix we define---the
double circulant matrix---mimics the behavior of the Gaussian matrix in two impor-
tant ways: it yields an almost isometric embedding of any subset of \ell n2 into \ell m1 and, at
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 317

the same time, it maps an arbitrary set in \BbbR n into a set of well-spread vectors. We will
make these statements precise in section 1.2. This behavior is remarkable because the
double circulant matrix has limited randomness and its entries are strongly dependent.
Although this may be somewhat speculative, we believe that the Gaussian behavior
exhibited by the double circulant matrix will have many additional applications---well
beyond the scope of binary embeddings.

1.1. Main result. Before stating our main result, we recall a binary embedding
that is based on the Gaussian matrix and was studied in [14]. For a matrix A\in \BbbR m\times n

we consider the map f :\BbbR n \rightarrow \{  - 1,1\} m defined by

f(x) = sign(Ax+ \tau ),(1.4)

where \tau is uniformly distributed in [ - \lambda ,\lambda ]m and is independent of A, and the sign-
function is applied componentwise. In what follows, \ell \ast (T ) denotes the Gaussian mean
width of a set T (as in (1.3)) and \scrN (T, \theta ) is the Euclidean covering number of T at
scale \theta , i.e., the smallest number of open Euclidean balls of radius \theta needed to cover
the set T . Our starting point is the following fact, which was established in [14]. Here
and throughout, dH denotes the Hamming distance on \{  - 1,1\} m.

Theorem 1.1. There exist absolute constants c0, . . . , c3 such that the following
holds. Let T \subset \BbbR n and put R= supt\in T \| t\| 2. Set 0< \delta \leq R

2 , u\geq 1, and let

0< \theta \leq c0
\delta \sqrt{} 

log(e\lambda /\delta )
, \lambda \geq c1R

\sqrt{} 
log(R/\delta ).

Suppose that

m\geq c2

\biggl( 
\lambda 2 log\scrN (T, \theta )

\delta 2
+ \lambda 

\ell 2\ast ((T  - T )\cap \theta Bn
2 )

\delta 3

\biggr) 
.(1.5)

If A \in \BbbR m\times n is the standard Gaussian matrix and \tau is uniformly distributed in
[ - \lambda ,\lambda ]m and independent of A, then with probability at least 1 - 2exp( - c3\delta 

2m/\lambda 2),
the map f(t) = sign(At+ \tau ) satisfies

sup
x,y\in T

\bigm| \bigm| \bigm| \bigm| \bigm| 
\surd 
2\pi \lambda 

m
dH(f(x), f(y)) - \| x - y\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \delta .(1.6)

Although the bound on the dimension m in (1.5) seems unnatural, it is, in fact,
optimal. We refer the reader to [14] for the proof of this surprising fact.

In what follows we show that a version of Theorem 1.1 is true for a certain
computationally friendly matrix---the double circulant matrix. To define that ma-
trix, let I \subset [n] with | I| = m and set RIx =

\sum 
i\in I xiei. For vectors x, y \in \BbbR n,

let \Gamma xy = x \circledast y; thus \Gamma x \in \BbbR n\times n is the discrete convolution operator with x. Let
Dx = diag(x1, . . . , xn) \in \BbbR n\times n be the diagonal matrix defined by x, let G \in \BbbR n be
the standard Gaussian vector, and set \varepsilon \prime \prime , \varepsilon \prime , \varepsilon \in \BbbR n to be Rademacher vectors, i.e.,
vectors consisting of independent random variables taking values 1 and  - 1 with equal
probability. We assume throughout that G,\varepsilon \prime \prime , \varepsilon \prime , and \varepsilon are independent.

Definition 1.2. The double circulant matrix A\in \BbbR m\times n is defined by

A=
1\surd 
n
RI\Gamma GD\varepsilon \prime \prime \Gamma \varepsilon \prime D\varepsilon .(1.7)

Clearly, A requires O(n) storage capacity, and it is well known that matrix-vector
multiplication for a circulant matrix can be carried out in time O(n logn) by exploiting
the fast Fourier transform.
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318 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

Our main result is that the binary embedding endowed by the double circulant
matrix performs as well as the Gaussian embedding (up to logarithmic factors in n
and with a worse success probability).

Theorem 1.3. For any \gamma \geq 1, there exist \~c0, . . . , \~c3 that depend only (polynomi-
ally) on log(n) and \gamma such that the following holds. Fix 0 < \delta < R/2, let T \subset RBn

2 ,
and set

\theta =
\delta 

\~c0
\sqrt{} 
log(e\lambda /\delta )

, \lambda \geq \~c1R
\sqrt{} 
log(R/\delta ).

Suppose that n\geq \~c2m and

m\geq \~c3

\biggl( 
\lambda 2 log\scrN (T, \theta )

\delta 2
+ \lambda 

\ell 2\ast ((T  - T )\cap \theta Bn
2 )

\delta 3

\biggr) 
.(1.8)

Let A\in \BbbR m\times n be the double circulant matrix. If \tau is uniformly distributed in [ - \lambda ,\lambda ]m

and independent of A, then with probability at least 1 - n - \gamma , the map f(t) = sign(At+\tau )
satisfies

sup
x,y\in T

\bigm| \bigm| \bigm| \bigm| \bigm| 
\surd 
2\pi \lambda 

m
dH(f(x), f(y)) - \| x - y\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \delta .

This result significantly improves on earlier attempts to create a computationally
efficient, oblivious near-isometric embedding into the Hamming cube- see section 1.4
for details.

1.2. The Gaussian behavior of the double circulant matrix. The proof of
Theorem 1.1 is based on two well-known properties of the standard Gaussian matrix.

First, if A \in \BbbR m\times n is the Gaussian matrix, then for any T \subset \BbbR n, with high
probability, A is an embedding of T into \ell m1 , in the following sense: for any u> 0

\BbbP 
\biggl( 
sup
z\in T

\bigm| \bigm| \bigm| 1
m

\sqrt{} 
\pi 

2
\| Az\| 1  - \| z\| 2

\bigm| \bigm| \bigm| \leq 4\ell \ast (T )\surd 
m

+ u

\biggr) 
\leq 2e - mu2/(2\scrR (T )2),(1.9)

where \scrR (T ) = supx\in T \| x\| 2. The proof of this fact can be found in [42] (see Lemma
2.1 there).

Second, the Gaussian matrix maps any T into a set of ``well-spread"" vectors: for
any 1\leq k\leq m and u\geq 1, with probability at least 1 - 2exp( - cu2k log(em/k)),

sup
z\in T

\| Az\| [k] \leq C
\Bigl( 
\ell \ast (T ) + u\scrR (T )

\sqrt{} 
k log(em/k)

\Bigr) 
,(1.10)

where

\| x\| [k] = sup
| I| =k

\Biggl( \sum 
i\in I

x2
i

\Biggr) 1/2

.

The proof can be found, for example, in [14] (see Theorem 2.5 there).
Together with a generic binary embedding result, stated in Theorem 2.1, these

two facts imply Theorem 1.1.
With that in mind, the heart of the proof of Theorem 1.3 is to show that the

double circulant matrix ``acts as the Gaussian matrix""; specifically, that it satisfies
suitable versions of (1.9) and (1.10). This behavior is surprising in view of the limited

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 319

randomness in the double circulant matrix and the strong dependence of its entries.
As a result, the approaches used to prove (1.9) and (1.10) fail in the case of the
double circulant matrix. We will develop an entirely new approach to establish those
properties.

We first develop a general recipe for constructing a matrix that maps an arbitrary
set to a collection of vectors that are well spread. The key feature that we introduce
for this purpose is the notion of strong regularity. Intuitively, a matrix B \in \BbbR m\times n is
strongly regular if it acts as a Euclidean almost-isometry on sparse vectors, and also
maps sparse vectors into well-spread ones (see Definition 3.1 for a formulation of the
strong regularity property). We prove that the matrix BD\varepsilon , obtained by randomizing
the column signs of a strongly regular matrix B, satisfies an estimate similar to (1.10)
for an arbitrary set T and with high probability with respect to \varepsilon . The accurate
formulation of this statement can be found in section 3.

Next, with the notion of strong regularity in mind, the second component of the
proof of Theorem 1.3 is to show that

B =
1\surd 
mn

RI\Gamma GD\varepsilon \prime \prime \Gamma \varepsilon \prime 

is strongly regular (obviously, A=
\surd 
mBD\varepsilon ). That fact is established in section 4 by

using known (but nontrivial) tools, developed in [33] and [13].
Combining those facts, it follows that a typical realization of the double circulant

matrix A maps an arbitrary set to a collection of well-spread vectors, thus leading to
an estimate as in (1.10).

Once a version of (1.10) is established, we turn our attention to (1.9): showing
that just like the Gaussian matrix, the double circulant matrix satisfies a uniform
\ell 1-concentration phenomenon. To that end, we first prove that for a fixed vector y,

the random variable \| RI\Gamma Gy\| 1 concentrates sharply around its mean m
\sqrt{} 

2
\pi \| y\| 2 if

the discrete Fourier transform of y is well-spread- see section 5. The exact notion of
well-spread needed here is clarified in what follows. Next, recalling that

A=
1\surd 
n
RI\Gamma GD\varepsilon \prime \prime \Gamma \varepsilon \prime D\varepsilon ,

we prove that \| At\| 1 concentrates by showing that the discrete Fourier transform of
D\varepsilon \prime \prime \Gamma \varepsilon \prime D\varepsilon t is well-spread. The concentration for any fixed vector t \in T is sufficiently
strong to derive a uniform concentration estimate in a straightforward manner- see
section 6. Note that in this final part of the argument we make essential use of the
fact that A is a double circulant matrix- simplifying the construction to a ``single""
circulant matrix of the form RI\Gamma GD\varepsilon \prime \prime , say, would require a nontrivial effort (if it is
possible at all).

1.3. Fast \ell 2-\ell 1 dimension reduction of finite sets. As a side product, our
analysis yields a result of independent interest: a new fast embedding of any finite set
of points in \ell n2 into \ell m1 . The embedding has runtime O(n logn) and achieves the same
dimension reduction as the Gaussian matrix. This improves a well-known construction
by Ailon and Chazelle [2]; most significantly, we remove a strong restriction on the
cardinality of the set that one wishes to embed. The condition obtained here is
optimal up to a polylogarithmic factor if the goal is maximal dimension reduction-
see the next section for a detailed discussion. Note that the embedding dimension | I| 
lies between m/2 and 3m/2, say, with probability at least 1 - e - cm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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320 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

Theorem 1.4. For any \gamma \geq 1, there exist \~c0, \~c1, \~c2 that depend only (polynomially)
on \gamma such that the following holds. Let m \leq n/(\~c0 log

4(n)) and consider the scaled
double circulant matrix C = 1

m

\sqrt{} 
\pi 
2A, where I is chosen using random selectors: I =

\{ i \in [n] : \theta i = 1\} , where \theta 1, . . . , \theta n are independent and 1 - \BbbP (\theta i = 0) = \BbbP (\theta i = 1) =
m/n. Let T \subset \BbbR n be finite and let \epsilon \leq log - 5/2(n). Then, C satisfies

(1 - \epsilon )\| x - y\| 2 \leq \| Cx - Cy\| 1 \leq (1 + \epsilon )\| x - y\| 2 for all x, y \in T(1.11)

with probability at least 1 - n - \gamma if m\geq \~c1\epsilon 
 - 2 log | T | and | T | \leq exp(\epsilon 2n/(\~c2 log

6(n))).

Remark 1.5. If T is finite, then one can similarly improve Theorem 1.3 by selecting
I using independent and identically distributed (i.i.d.) random selectors. In this case,
one can show that this result remains true under the optimal condition m\gtrsim \delta  - 2 log | T | 
if n \geq \~c\delta  - 2 log | T | and \~c depends only (polynomially) on log(n) and \gamma . We omit the
details of this argument.

1.4. Related work.
Fast \ell 2-\ell 2 dimension reduction with circulant matrices. Numerous works have pro-
posed and analyzed computationally efficient random matrices for \ell 2-\ell 2 dimension re-
duction (see, e.g., [1, 2, 3, 6, 10, 16, 17, 20, 30, 32, 34, 45] and the references therein).
We will only highlight the successful use of random circulant matrices for this task-
an approach that was first considered by Hinrichs and Vyb\'{\i}ral [20]. They proved that
the matrix C = 1\surd 

m
RI\Gamma \varepsilon \prime D\varepsilon satisfies (1.1) with large probability if m\sim \epsilon  - 2 log3(| T | ).

This was later improved to m \sim \epsilon  - 2 log2(| T | ) [45] and shown not to be improvable
further if m| T | \leq n [17]- however, it is possible to improve the scaling in terms of | T | 
to log | T | at the expense of additional logarithmic factors in the dimension (by com-
bining [33] and [34]). In fact, the main result of [40] (see also Theorem 3.2 from [38]
below) shows that C satisfies (1.1) with high probability under the refined condition
m \gtrsim \epsilon  - 2\ell 2\ast (T

\prime ) log4(n). These results show that C can serve as a computationally
efficient replacement of the Gaussian matrix for \ell 2-\ell 2 dimension reduction.

Fast \ell 2-\ell 1 dimension reduction. In their groundbreaking paper [2], Ailon and
Chazelle initiated the study of fast Johnson--Lindenstrauss transforms that use struc-
tured random matrices that support fast matrix-vector multiplication. Although most
subsequent works have focused on alternative fast transforms and improved guaran-
tees for \ell 2-\ell 2 dimension reduction (see, e.g., [16, 20, 30, 34, 45]), the original work [2]
also studied computationally efficient \ell 2-\ell 1 dimension reduction of finite point sets,
motivated by approximate nearest neighbor search.

Ailon and Chazelle's original transform takes the form C = 1
m

\sqrt{} 
\pi 
2PHD\varepsilon , where

D\varepsilon is as before, H \in \BbbR n\times n is a normalized Hadamard matrix, and P \in \BbbR m\times n is a
sparsified Gaussian matrix: it has i.i.d. entries which are equal to 0 with probability
1 - q and equal to a Gaussian with mean zero and variance 1/q with probability q,
where q needs to be picked appropriately. It satisfies (1.11) if q\sim min\{ log(| T | )/(n\epsilon ),1\} 
and m\sim \epsilon  - 2 log(| T | ). The runtime is

O(n log(n) +min\{ n\epsilon  - 2 log(| T | ), \epsilon  - 3 log2(| T | )\} )
so that it achieves O(n logn) runtime under an appropriate restriction on the num-
ber of points in T : | T | must be O\epsilon (exp(n

1/2)). Essentially the same bottleneck
appears in the alternative construction in [3]. This bottleneck was recently improved
to O\epsilon (exp(n

1 - \zeta )) by the method of [5], but this improvement applies only for the
related problem of simultaneously embedding a subset T \prime of T in time O(| T \prime | n logn),
where T \prime has at least polynomial size ng(\zeta ) (for a certain function g). We improve
these results in two steps.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 321

In the case of \ell 2-\ell 2 dimension reduction, it is well known that one can construct
structured random matrices with improved runtime O(n logn) (without a restriction
on the number of points) if one is willing to raise the embedding dimension by a
polylogarithmic factor in | T | and/or n (see, e.g., [20, 30, 34, 45]). As a first step, we
make an analogous contribution for fast \ell 2-\ell 1 dimension reduction: we show that the
scaled double circulant matrix C = 1

m

\sqrt{} 
\pi 
2A satisfies (1.11) with high probability if

m\gtrsim \epsilon  - 2 log(| T | ) log6(n) (see Corollary 6.2 for T \prime as in (1.2)).
Theorem 1.4 improves this further by using a double circulant matrix with I

picked using random selectors: it achieves the same dimension reduction as the
Gaussian matrix (m \sim \epsilon  - 2 log | T | ) under the significantly relaxed restriction that
| T | = O\epsilon (exp(n/ log

6(n)))- which is nearly optimal if one is interested in dimension
reduction (i.e., ensuring that m \leq n). Note that beyond the dimension reduction
setting, Indyk [23] showed that for any distortion \epsilon > 1/ logn there is an embedding
of all of \ell n2 into \ell m1 with m=O(n1+o(1)) and runtime O(n1+o(1)).

Finally, let us mention for completeness a less closely related result on fast \ell 2-\ell 1
dimension reduction derived in the context of one-bit compressed sensing [12]. It was
shown there that the matrix C = 1

m

\sqrt{} 
\pi 
2RI\Gamma G, where I is picked using i.i.d. random

selectors, satisfies (1.11) with high probability on the set of all s-sparse vectors if
m\gtrsim \epsilon  - 2s log(n/s\epsilon ), provided that the sparsity level s is small enough (e.g., if s\leq \epsilon 

\surd 
n).

Binary encoding of Euclidean distances. Theorem 1.3 fits into a more general
line of work [15, 21, 24, 25, 26, 27, 28, 29, 41, 47, 48, 49] that strives to create an ef-
ficient binary encoding of all Euclidean distances in a given set T (see also [4], which
focuses on inner products and squared distances). This task consists in construct-
ing a computationally efficient embedding map f : T \rightarrow \{  - 1,1\} m and reconstruction
map d : \{  - 1,1\} m \times \{  - 1,1\} m \rightarrow \BbbR such that for any pair x, y \in T , d(f(x), f(y)) is
an accurate proxy of \| x  - y\| 2. The binary encoding in Theorem 1.3 stands out in
comparison to the aforementioned works in achieving all of the following properties
simultaneously:

(i) The embedding map f is a metric embedding into the Hamming cube, i.e.,
the reconstruction map d is (a constant multiple of) the natural Hamming
distance, as in [15, 41, 47, 48]. Consequently, the number of bit operations
needed to compute d(f(x), f(y)), is minimal---one only needs to directly com-
pare two bit strings.

(ii) The embedding time O(n logn) of our construction, i.e., the time needed
to compute f(x) for a given x, is on par with the best existing results
[4, 15, 21, 41, 47, 48].

(iii) The construction is data-oblivious, as in [4, 15, 21, 26, 27, 28, 29, 41, 47, 48, 49].
(iv) The bit complexity of our encoding, i.e., the number of bits (or dimension of

the Hamming cube) required to encode the Euclidean distances within the
given set of points, is optimal for finite sets (when picking I using random
selectors; see Remark 1.5). Indeed, any oblivious random binary encoding
scheme (f, d) that embeds, with some given probability, any given finite set
of N points into \{  - 1,1\} m with an additive error of \delta , must satisfy m \geq 
c\delta  - 2 logN (see [14], whose proof is based on [4]). Similar (near-)optimal
bit complexity estimates were achieved in [15, 21, 26, 27, 28, 47, 49] (see also
[25] and [4] for methods with optimal bit complexity for the related tasks of
encoding distances up to a multiplicative error and encoding squared distances
up to an additive error, respectively).
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322 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

(v) The bit complexity estimate is in terms of more refined complexity measures
of the dataset than the cardinality of the set which, in particular, makes the
result applicable to arbitrary infinite datasets in \BbbR n (as in [21, 26, 27, 28]).

Let us comment in more detail on prior works [15, 41, 47, 48] that have the same
goal of constructing a fast, data-oblivious metric embedding into the Hamming cube.
These works all considered finite sets of vectors on the unit sphere and strived to find a
structured random matrix A\in \BbbR m\times n that supports fast-matrix vector multiplication
so that with high probability

| dH(sign(Ax), sign(Ay)) - dSn - 1
(x, y)| \leq \delta for all x, y \in T,(1.12)

where dSn - 1(x, y) is the normalized geodesic distance on the sphere. If A is standard
Gaussian, then it is straightforward to see that this holds under the optimal condition
m \gtrsim \delta  - 2 log | T | . As was remarked in [15, 47], by simply applying a fast or sparse
Johnson--Lindenstrauss transform before applying the Gaussian matrix, one obtains
(1.12) under the same condition with runtime O(n logn) if the number of points is
small (e.g., if log | T | \lesssim \delta 2

\surd 
n in the case of a fast Johnson--Lindenstrauss transform). It

was observed empirically in [48] that A=RI\Gamma GD\varepsilon performs well and that performance
deteriorates if D\varepsilon is left out. The latter was rigorously established in [15]: it exhibits
a two-point set for which (1.12) fails with positive probability if A=RI\Gamma G. The best
result in the former direction stems from [41]: it considers A=RI\Gamma GDG1

HDG2
, where

I consists of m indices selected uniformly at random and G,G1,G2 are independent
standard Gaussians, and shows that (1.12) holds if m \gtrsim \delta  - 3 log | T | and log | T | \lesssim 
\delta 2n1/3. Even though the embedding time of this transform is O(n logn) without
restrictions, the guarantee is worse than for the simple combination of the standard
Gaussian matrix and a fast or sparse Johnson--Lindenstrauss transform. Finally, let us
mention that [15] (which fixed a proof gap in [47]) established a binary encoding with
optimal bit complexity and runtime O(n logn) under the relaxed condition log | T | \lesssim 
\delta 
\surd 
n/
\sqrt{} 

log(1/\delta ). However, this encoding is not a metric embedding, as it no longer
uses the Hamming metric as the reconstruction map. Nevertheless, it illustrates that
it is nontrivial to overcome the bottleneck on the number of points to be embedded.

Our work improves over these earlier attempts to create a fast metric embedding
into the Hamming cube. We do not require an artificial restriction on the number
of points to be embedded, achieve an embedding time O(n logn), and achieve a bit
complexity that is optimal for finite datasets. Moreover, our bit complexity estimate
is in terms of more refined complexity measures than the cardinality of the dataset
and in particular allows for the embedding of infinite sets. This bit complexity es-
timate matches (up to logarithmic factors) the one for the Gaussian embedding in
Theorem 1.1, which is known to be optimal for the Gaussian embedding [14]. These
improvements are made possible by the Gaussian behavior of the double circulant ma-
trix established in this work (uniform \ell 1-concentration and mapping into well-spread
vectors), together with the use of the uniformly random shifts in (1.4).

Let us finally mention two binary encodings that improve over our construction
at the expense of some of the listed properties (i)--(v). First, the dependence of m on
the additive error parameter \delta can be improved (beyond the lower bound mentioned
under (iv)) if an additional relative error term is present: this was achieved in [21]
using a binary encoding that combines a fast Johnson--Lindenstrauss embedding with
a so-called noise shaping method (see also [49]). A downside of this encoding is that it
is not a metric embedding into the Hamming cube. Second, it is possible to preserve
distances up to (only) a multiplicative error. This is the goal of a different binary
encoding scheme developed by Indyk and Wagner [24, 25], which achieves the minimal
bit complexity for a finite set for this setting. This scheme is, however, not a metric
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 323

embedding, data-adaptive rather than oblivious, and has a higher computational com-
plexity.

2. A generic binary embedding result. The starting point of the proof of
Theorem 1.3 is a generic embedding result from [14], which we now outline. Let
A \in \BbbR m\times n be a matrix and for a parameter \lambda > 0, let \tau be uniformly distributed in
[ - \lambda ,\lambda ]m. Consider f :\BbbR n \rightarrow \{  - 1,1\} m, defined by

f(x) = sign(Ax+ \tau ),(2.1)

where the sign-function is applied componentwise, and denote the normalized Ham-
ming distance on \{  - 1,1\} m by

\~d(x, y) =
2\lambda \kappa 

m
dH(x, y).

The constant \kappa turns out to be an absolute constant in our application, and its value
is specified in what follows.

Let 0< \theta < \delta , and set T\theta \subset T to be a \theta -net of T of minimal cardinality. Finally,
assume that A ``acts well"" on T in the following sense:

(a) A satisfies uniform \ell 1-concentration on T\theta :

sup
x,y\in T\theta 

\bigm| \bigm| \bigm| \kappa 
m
\| A(x - y)\| 1  - \| x - y\| 2

\bigm| \bigm| \bigm| \leq \delta .(2.2)

(b) A maps T to `well-spread' vectors: For k= \lfloor \delta m/\lambda \rfloor we have that

1\surd 
k
sup
x\in T\theta 

\| Ax\| [k] \leq \lambda (2.3)

and

1\surd 
k

sup
x\in (T - T )\cap \theta Bn

2

\| Ax\| [k] \leq \delta .(2.4)

Then one has the following:

Theorem 2.1. [14] There exist absolute constants c1, c2, and c3 such that the
following holds. Let

m\geq c1\lambda 
2\kappa 2 log\scrN (T, \theta )

\delta 2

and assume that A satisfies (2.2), (2.3), and (2.4). Then with probability at least
1 - 2exp( - c2\delta 

2m/\lambda 2\kappa 2),

sup
x,y\in T

\bigm| \bigm| \bigm| \~d(f(x), f(y)) - \| x - y\| 2
\bigm| \bigm| \bigm| \leq c3(\kappa + 1)\delta .

If A is the standard Gaussian matrix and the conditions of Theorem 1.1 hold,
then (2.2), (2.3), and (2.4) (with \kappa =

\sqrt{} 
\pi /2) are immediate outcomes of (1.9) and

(1.10).
Thanks to Theorem 2.1, it is clear that proving the analogs of (2.2), (2.3), and

(2.4) would yield a binary embedding estimate- and the proof of Theorem 1.3. The
rest of the article is devoted to the proof of those estimates for the double circulant
matrix.
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324 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

3. Strong regularity. For x \in \BbbR n, set \| x\| 0 = | supp(x)| . The vector x is called
s-sparse if \| x\| 0 \leq s. Denote by Us \subset Sn - 1 the set of all s-sparse vectors on the
Euclidean unit sphere and let

\Sigma s,n = \{ x\in \BbbR n : \| x\| 0 \leq s, \| x\| 2 \leq 1\} 

be the set of s-sparse vectors in the Euclidean unit ball.
A matrix B \in \BbbR m\times n satisfies the (s, \delta )-Restricted Isometry Property if

sup
x\in Us

\bigm| \bigm| \| Bx\| 22  - \| x\| 22
\bigm| \bigm| \leq \delta ,

and we denote this property by RIP(s, \delta ).
The following definition is of crucial importance in the context of the proof.

Definition 3.1. Let \rho > 0 and set s\rho = \lceil \rho  - 2\rceil . A matrix B\in \BbbR m\times n is \rho -regular
if it satisfies RIP(r, \rho 

\surd 
r) for all 1 \leq r \leq s\rho . It is \rho -strongly regular if it is \rho -regular

and, in addition, satisfies

sup
x\in \Sigma r,n

\| Bx\| [r] \leq \rho 
\surd 
r for all 1\leq r\leq s\rho .

In other words, thinking of the case where \rho is small, B is regular if it is an almost
Euclidean isometry on sufficiently sparse unit vectors, and it is strongly regular if
additionally, for any sufficiently sparse unit vector x, Bx is relatively well-spread: if
x is r-sparse, then 1 - \rho 

\surd 
r \leq \| Bx\| 22 \leq 1 + \rho 

\surd 
r but the contribution of the r largest

coordinates of Bx to its Euclidean norm is at most \rho 
\surd 
r.

To put this notion in perspective, consider the standard Gaussian matrix A \in 
\BbbR m\times n. Then for any u\geq 1, with probability at least 1 - 2exp( - c0u

2r log(em/r)),

sup
x\in Ur

\bigm| \bigm| \bigm| \bigm| 1

m
\| Ax\| 22  - \| x\| 22

\bigm| \bigm| \bigm| \bigm| \leq c1u

\sqrt{} 
r log(em/r)

m

and

sup
x\in \Sigma r,n

1\surd 
m
\| Ax\| [r] \leq c1u

\sqrt{} 
r log(em/r)

m
.

Hence, by taking the union bound over 1 \leq r \leq m we find that with nontrivial

probability, the Gaussian matrix 1\surd 
m
A is strongly \rho -regular for \rho \sim 

\sqrt{} 
logm
m .

The main result of this section is that by randomizing the columns of a strongly
regular matrix B using independent random signs, one obtains a matrix that is ``well-
behaved"" on an arbitrary set. To formulate this claim, let D\varepsilon be a diagonal matrix
whose diagonal entries are independent, symmetric, random signs \varepsilon 1, . . . , \varepsilon n.

Theorem 3.2. There exist absolute constants c1 and c2 such that the following
holds. Let 0 < \rho < 1/

\sqrt{} 
log(m+ n) and consider 1 \leq k \leq m. Assume that B \in \BbbR m\times n

is \rho -strongly regular. If T \subset \BbbR n, R\geq \scrR (T ), and u\geq 1 then with probability at least

1 - 2exp
\bigl( 
 - c1u

2
\bigl[ 
\ell 2\ast (T ) +R2k log(em/k)

\bigr] 
/R2

\bigr) 
with respect to \varepsilon , we have that

sup
x\in T

\| BD\varepsilon x\| [k]

\leq c2u
2
\Bigl[ 
\rho 
\Bigl( 
\ell \ast (T ) +R \cdot 

\sqrt{} 
k log(em/k)

\Bigr) 
+ \rho 2R - 1

\bigl( 
\ell 2\ast (T ) +R2 \cdot k log(em/k)

\bigr) \Bigr] 
.
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 325

The proof of Theorem 3.2 is based on the following analogous result on column
randomization of a regular matrix, which was established in [38]. In this result we
use

d\ast (T ) =

\biggl( 
\ell \ast (T )

\scrR (T )

\biggr) 2

(3.1)

to denote the Dvoretzky--Milman dimension (or stable dimension) of a set T \subset \BbbR n.

Theorem 3.3. There exist absolute constants c1, c2 > 0 such that the following
holds. Let 0 < \rho < 1/

\surd 
logn. Assume that B \in \BbbR m\times n is \rho -regular. Then for any

T \subset \BbbR n and u\geq 1, with probability at least 1 - 2exp( - c1u
2d\ast (T )) with respect to \varepsilon ,

sup
x\in T

\bigm| \bigm| \| BD\varepsilon x\| 22  - \| x\| 22
\bigm| \bigm| \leq c2u

2\scrR 2(T ) \cdot (\rho 
\sqrt{} 

d\ast (T ) + \rho 2d\ast (T )).

The following simple lemma is the key to the proof of Theorem 3.2. In what
follows, Idm \in \BbbR m\times m denotes the identity matrix.

Lemma 3.4. Let B \in \BbbR m\times n, \rho > 0. If B is \rho -strongly regular, then
\bigl[ 
B Idm

\bigr] 
\in 

\BbbR m\times (n+m) is 3\rho -regular.

Proof. Let 1\leq r\leq \lceil (3\rho ) - 2\rceil \leq \lceil \rho  - 2\rceil . Clearly,

sup
x\in \Sigma r,n

sup
y\in \Sigma r,m

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| \bigl[ B Idm

\bigr] \biggl[ x
y

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - 
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ xy

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq sup

x\in \Sigma r,n

\bigm| \bigm| \| Bx\| 22  - \| x\| 22
\bigm| \bigm| + 2 sup

x\in \Sigma r,n

sup
y\in \Sigma r,m

| \langle Bx,y\rangle | 

= sup
x\in \Sigma r,n

\bigm| \bigm| \| Bx\| 22  - \| x\| 22
\bigm| \bigm| + 2 sup

x\in \Sigma r,n

\| Bx\| [r] \leq 3\rho 
\surd 
r,

and the result follows.

Proof of Theorem 3.2. Set R \geq \scrR (T ) = supt\in T \| t\| 2 and consider T \prime = \{ t/R :
t \in T\} . We shall use the fact that \Sigma k,m is an unconditional set: for any choice of
signs \zeta 1, . . . , \zeta m, D\zeta \Sigma k,m = \Sigma k,m. This allows one to introduce additional random-
ness. Indeed, let \zeta 1, . . . , \zeta m be independent, symmetric random signs that are also
independent of (\varepsilon i)

n
i=1. Then

sup
x\in T

\| BD\varepsilon x\| [k] =R sup
x\in T \prime 

\| BD\varepsilon x\| [k](3.2)

and

sup
x\in T \prime 

\| BD\varepsilon x\| [k] = sup
x\in T \prime 

sup
y\in \Sigma k,m

| \langle BD\varepsilon x, y\rangle | = sup
x\in T \prime 

sup
y\in \Sigma k,m

| \langle BD\varepsilon x,D\zeta y\rangle | .

Moreover, by the polarization identity,

| \langle BD\varepsilon x,D\zeta y\rangle | =
1

4

\bigm| \bigm| \bigm| \| BD\varepsilon x+D\zeta y\| 22  - \| BD\varepsilon x - D\zeta y\| 22
\bigm| \bigm| \bigm| 

=
1

4

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| \bigl[ BD\varepsilon D\zeta 

\bigr] \biggl[ x
y

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - 
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ xy

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - 

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigl[ BD\varepsilon D\zeta 

\bigr] \biggl[ x
 - y

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - 
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ x

 - y

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| .
Clearly, \bigl[ 

BD\varepsilon D\zeta 

\bigr] 
=
\bigl[ 
B Idm

\bigr] \biggl[ D\varepsilon 0
0 D\zeta 

\biggr] 
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326 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

and hence

sup
x\in T \prime 

\| BD\varepsilon x\| [k] \leq 
1

2
sup

(x,y)T\in \~T

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| \bigl[ B Idm

\bigr] \biggl[ D\varepsilon 0
0 D\zeta 

\biggr] \biggl[ 
x
y

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - 
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ xy

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

\bigm| \bigm| \bigm| \bigm| \bigm| ,(3.3)

where \~T = T \prime \times \Sigma k,m. Lemma 3.4 implies that
\bigl[ 
B Idm

\bigr] 
is 3\rho -regular, and one

may therefore invoke Theorem 3.3 for the set \~T . The result follows thanks to the
straightforward observations that \ell \ast ( \~T )\sim \ell \ast (T

\prime )+\ell \ast (\Sigma k,m), \ell \ast (\Sigma k,m)\sim 
\sqrt{} 

k log(em/k),
and \scrR ( \~T ) =supt\in \~T \| t\| 2 \sim 1.

Remark 3.5. It is useful to present the estimate from Theorem 3.2 in terms of the
following parameter. For a set T \subset \BbbR n, R\geq \scrR (T ), and 1\leq k\leq m define

Qk(T,R) = \rho 
\bigl( 
\ell 2\ast (T ) +R2k log(em/k)

\bigr) 1/2
.(3.4)

Theorem 3.2 implies that with probability at least 1  - 2exp( - c1u
2[\ell 2\ast (T ) + R2k log

(em/k)]/R2)

sup
x\in T

\| BD\varepsilon x\| [k] \leq c2u
2max\{ Qk(T ,R),R - 1Q2

k(T ,R)\} .(3.5)

In particular, if Qk(T,R) \leq R, as will be the case in the situations that interest us,
the dominating term in the estimate from Theorem 3.2 is \sim u2Qk(T ,R).

3.1. Strong regularity and Theorem 2.1. Let us return to the last two con-
ditions that are required in the generic embedding result from Theorem 2.1. If T\theta is
a \theta -net of T of minimal cardinality and k= \lfloor \delta m/\lambda \rfloor , one has to show that

sup
x\in T\theta 

\| Ax\| [k] \leq \lambda 
\surd 
k(3.6)

and

sup
x\in (T - T )\cap \theta Bn

2

\| Ax\| [k] \leq \delta 
\surd 
k(3.7)

hold for the matrix

A=RI\Gamma GD\varepsilon \prime \prime 
1\surd 
n
\Gamma \varepsilon \prime D\varepsilon .

Set

B =
1\surd 
m
RI\Gamma GD\varepsilon \prime \prime 

1\surd 
n
\Gamma \varepsilon \prime 

and observe that A=
\surd 
mBD\varepsilon . We will spend considerable effort in showing that B

is \rho -strongly regular, where \Upsilon :=\rho m1/2 is independent of m and is at most polyloga-
rithmic in n (see Theorem 4.1). Before going down that long road, let us first show
its benefit: combined with the following result, it will establish (3.6) and (3.7).

Theorem 3.6. For u \geq 1 there exist constants \~c1, \~c2 that depend only (polyno-
mially) on u and absolute constants c3,c4 such that the following holds. Let 0 < \rho <

1\surd 
log(m+n)

be such that \Upsilon = \rho m1/2 \geq 1. Let B \in \BbbR m\times n be \rho -strongly regular, set

0< \delta \leq \scrR (T ), and consider

\lambda \geq \~c1max

\biggl\{ 
\delta \Upsilon 2 log(e\Upsilon ),\Upsilon \scrR (T ) log1/2

\biggl( 
\Upsilon \scrR (T )

\delta 

\biggr) \biggr\} 
.
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 327

Put

0< \theta \leq \delta 

\~c2\Upsilon 
log - 1/2

\biggl( 
\lambda 

\delta 

\biggr) 
.

If

m\geq c3
\lambda 

log
\bigl( 
e\lambda 
\delta 

\bigr) max

\biggl\{ 
\ell 2\ast (T\theta )

\delta \scrR 2(T )
,
\ell 2\ast ((T  - T )\cap \theta Bn

2 )

\delta \theta 2

\biggr\} 
,(3.8)

then with probability at least 1 - 2exp( - c4u
2m\delta /\lambda ), the matrix A=

\surd 
mBD\varepsilon satisfies

(3.6) and (3.7).

Remark 3.7. To put the estimate (3.8) in Theorem 3.6 in a more familiar form,
observe that

\ell 2\ast (T\theta )\lesssim \scrR 2(T\theta ) log | T\theta | \lesssim \scrR 2(T ) log\scrN (T, \theta ).

Hence, by choosing \theta as large as possible, the second term on the right-hand side of
(3.8) leads to the \ell 2\ast /\delta 

3 term in (1.8) from Theorem 1.3 (up to polylogarithmic factors
in n), while the first term is dominated by the entropic term in (1.8).

Proof. Set k= \lfloor \delta m/\lambda \rfloor and define K\theta = (T - T )\cap \theta Bn
2 . We will apply the estimate

in Remark 3.5 for the sets T\theta and K\theta . To that end, observe that \scrR (T\theta )\leq \scrR (T ) and
\scrR (K\theta )\leq \theta . Let use write Q(T\theta ) :=Qk(T\theta ,\scrR (T )) and Q(K\theta ) :=Qk(K\theta , \theta ) and observe
that

Q(T\theta )\sim \rho \scrR (T )

\biggl( 
\ell 2\ast (T\theta )

\scrR 2(T )
+

\delta 

\lambda 
m log

\biggl( 
e\lambda 

\delta 

\biggr) \biggr) 1/2

and

Q(K\theta )\sim \rho \theta 

\biggl( 
\ell 2\ast (K\theta )

\theta 2
+

\delta 

\lambda 
m log

\biggl( 
e\lambda 

\delta 

\biggr) \biggr) 1/2

.

We begin by imposing conditions that ensure that

Q(T\theta )\leq \scrR (T ) and Q(K\theta )\leq \theta ,(3.9)

so that both Q(T\theta ) and Q(K\theta ) are the dominant terms in the estimate (3.5) for the
sets T\theta and K\theta , respectively. Observe that if (3.8) holds with c3 \geq 1, then

max

\biggl\{ 
\ell 2\ast (T\theta )

\scrR 2(T )
,
\ell 2\ast (K\theta )

\theta 2

\biggr\} 
\leq \delta 

\lambda 
m log

\biggl( 
e\lambda 

\delta 

\biggr) 
and, hence, (3.9) holds if we ensure that

\rho 
\surd 
m \cdot 
\biggl( 
\delta 

\lambda 
log

\biggl( 
e\lambda 

\delta 

\biggr) \biggr) 1/2

\leq 1

4
.

Since \Upsilon = \rho 
\surd 
m, the latter condition is satisfied if

\lambda 

\delta 
\geq c1\Upsilon 

2 log(e\Upsilon ).(3.10)
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328 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

To summarize, if (3.8) and (3.10) hold, then Remark 3.5 implies that

sup
x\in T\theta 

\| Ax\| [k] = sup
x\in T\theta 

\surd 
m\| BD\varepsilon x\| [k] \lesssim u2

\surd 
mQ(T\theta )

and

sup
x\in K\theta 

\| Ax\| [k] \lesssim u2
\surd 
mQ(K\theta ).

Thus, to establish (3.6) and (3.7), all that remains is to show that

u2
\surd 
mQ(T\theta )\leq \lambda 

\surd 
k and u2

\surd 
mQ(K\theta )\leq \delta 

\surd 
k,

i.e., that

u2\Upsilon \scrR (T )

\biggl( 
\delta 

\lambda 
log

\biggl( 
e\lambda 

\delta 

\biggr) \biggr) 1/2

\leq 
\surd 
\delta 
\surd 
\lambda (3.11)

and that

u2\Upsilon \theta 

\biggl( 
\delta 

\lambda 
log

\biggl( 
e\lambda 

\delta 

\biggr) \biggr) 1/2

\leq \delta 

\sqrt{} 
\delta 

\lambda 
.(3.12)

A straightforward computation shows that (3.11) holds if

\lambda \geq c1(u)\Upsilon \scrR (T ) log1/2
\biggl( 
\Upsilon \scrR (T )

\delta 

\biggr) 
,(3.13)

and (3.12) holds if

\theta \leq \delta 

c2(u)\Upsilon 
log - 1/2

\biggl( 
e\lambda 

\delta 

\biggr) 
.(3.14)

This completes the proof.

4. Strong regularity features of the double circulant matrix. Recall that
the double circulant matrix is

A=RI\Gamma GD\varepsilon \prime \prime 
1\surd 
n
\Gamma \varepsilon \prime D\varepsilon =

\surd 
mBD\varepsilon ,

where I \subset \{ 1, . . . , n\} is a fixed set of indices of cardinality m, G is the standard
Gaussian random vector in \BbbR n, and \varepsilon , \varepsilon \prime , and \varepsilon \prime \prime are uniformly distributed in \{  - 1,1\} n.
Moreover, G, \varepsilon , \varepsilon \prime , and \varepsilon \prime \prime are all independent. Also, for every x\in \BbbR n, we have that

\Gamma Gx=G\circledast x=\Gamma xG

is the discrete circular convolution of G and x. And, denoting by \scrF \in \BbbC n\times n the
discrete Fourier matrix, we have that \Gamma xG=

\surd 
nUDWxOG, where

O=W =
\scrF \surd 
n

and U =
\scrF  - 1

\surd 
n

=W \ast .(4.1)

In particular, U , W , and O are Hadamard-type matrices, i.e., they are unitary and all
their entries are bounded by 1\surd 

n
.

In light of Theorem 2.1, a key part of the analysis of the embedding procedure is
to show that A maps an arbitrary set T into ``well-spread vectors"", specifically, that
(3.6) and (3.7) hold. By invoking Theorem 3.6, that can be established by proving
that B possesses the following strong regularity property:

Theorem 4.1. For \gamma \geq 1 there are constants \~c1 and \~c2 that depend only (polyno-
mially) on \gamma such that the following holds. If m\leq n/(\~c1 log

4 n), then with probability

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

6/
24

 to
 1

31
.2

11
.1

2.
11

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FAST METRIC EMBEDDING INTO THE HAMMING CUBE 329

at least 1 - n - \gamma with respect to G\otimes \varepsilon \prime \otimes \varepsilon \prime \prime , the random matrix B is \rho -strongly regular
for

\rho = \~c2
log5/2 n\surd 

m
.

Note that \Upsilon =\rho 
\surd 
m is polylogarithmic in n, as required.

The idea behind the proof of Theorem 4.1 is outlined in the next section. The
full proof is presented in Appendix B.

4.1. Highlights of the proof of Theorem 4.1. The proof is based on two
well-known facts that are formulated in what follows. The first fact is an outcome of
[33], on the behavior of second-order chaos processes (see also Theorem 6.5 in [11] for
the refinement that is used here). The bound is based on Talagrand's \gamma 2-functional.
For a detailed exposition on chaining methods and the \gamma -functionals in a general
setup, we refer the reader to [43].

Definition 4.2. Let \scrA be a subset of a normed space. An admissible sequence of
\scrA is a collection of sets \scrA \ell \subset \scrA , where | \scrA 0| = 1 and for \ell \geq 1, | \scrA \ell | \leq 22

\ell 

. For a\in \scrA ,
let \pi \ell a\in \scrA \ell be a nearest point to a in \scrA \ell with respect to the underlying norm. Define

\gamma 2(\scrA ,\| \cdot \| ) = inf sup
a\in \scrA 

\left(  \| \pi 0a\| +
\sum 
\ell \geq 1

2\ell /2\| \pi \ell a - \pi \ell  - 1a\| 

\right)  ,

where the infimum is taken with respect to all admissible sequences of \scrA .

In the setup we focus on here, \scrA is a class of matrices. Denote by \| \cdot \| 2\rightarrow 2 the standard
operator norm, let \| \cdot \| HS be the Hilbert--Schmidt norm, and put

dHS(\scrA ) = sup
A\in \scrA 

\| A\| HS , d2\rightarrow 2(\scrA ) = sup
A\in \scrA 

\| A\| 2\rightarrow 2.

Let \gamma 2(\scrA ) \equiv \gamma 2(\scrA ,\| \cdot \| 2\rightarrow 2) be the \gamma 2-functional of \scrA with respect to the operator
norm.

Recall that a centered random variable \xi is L-subgaussian if for every p \geq 2,
\| \xi \| Lp \leq L

\surd 
p\| \xi \| L2 . A random vector X is L-subgaussian if it is centered and for any

t\in \BbbR n, \langle X, t\rangle is an L-subgaussian random variable.

Theorem 4.3. There is an absolute constant C > 0 such that the following holds.
Let \xi be a random vector whose coordinates (\xi i)

n
i=1 are independent, mean-zero, vari-

ance 1 random variables that are also L-subgaussian. Then for any u \geq 1, with
probability at least 1 - 2exp( - u),

sup
A\in \scrA 

\bigm| \bigm| \| A\xi \| 22  - \BbbE \| A\xi \| 22
\bigm| \bigm| \leq CL2

\Bigl( 
\gamma 2
2(\scrA ) + dHS(\scrA )\gamma 2(\scrA ) +

\surd 
udHS(\scrA )d2\rightarrow 2(\scrA )

+ ud22\rightarrow 2(\scrA )
\Bigr) 
.

To see why Theorem 4.3 is useful for establishing regularity, let us return to the
random operator

B =
1\surd 
m
RI\Gamma GD\varepsilon \prime \prime 

1\surd 
n
\Gamma \varepsilon \prime .

Set

\Psi =D\varepsilon \prime \prime 
1\surd 
n
\Gamma \varepsilon \prime ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

6/
24

 to
 1

31
.2

11
.1

2.
11

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



330 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

then, for every x\in \BbbR n,

Bx=
1\surd 
m
RI\Gamma G\Psi x=

1\surd 
m
RI\Gamma \Psi xG.

Therefore,

sup
x\in \Sigma r,n

\bigm| \bigm| \| Bx\| 22  - \| x\| 22
\bigm| \bigm| \leq sup

x\in \Sigma r,n

\bigm| \bigm| \| Bx\| 22  - \BbbE G\| Bx\| 22
\bigm| \bigm| + sup

x\in \Sigma r,n

\bigm| \bigm| \BbbE G\| Bx\| 22  - \| x\| 22
\bigm| \bigm| ,(4.2)

and by a straightforward computation,

\BbbE G\| Bx\| 22 =\BbbE G

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

=
1

n
\| \Gamma \varepsilon \prime x\| 22=

1

n
\| \Gamma x\varepsilon 

\prime \| 22.(4.3)

Hence, (4.2) becomes

sup
x\in \Sigma r,n

\bigm| \bigm| \| Bx\| 22  - \| x\| 22
\bigm| \bigm| 

\leq sup
x\in \Sigma r,n

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 

m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - \BbbE G

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\bigm| \bigm| \bigm| \bigm| \bigm| + sup
x\in \Sigma r,n

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 

n
\Gamma x\varepsilon 

\prime 
\bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - \| x\| 22

\bigm| \bigm| \bigm| \bigm| \bigm| 
(4.4)

and

\| x\| 22 =\BbbE \varepsilon \prime 

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
n
\Gamma x\varepsilon 

\prime 
\bigm\| \bigm\| \bigm\| \bigm\| 2
2

.

The two terms in (4.4) are exactly in the form that is dealt with in Theorem 4.3.
Taking into account the regularity estimates we are looking for, the classes of matrices
of interest are \biggl\{ 

1\surd 
m
RI\Gamma \Psi x : x\in \Sigma r,n

\biggr\} 
for r\leq m(4.5)

and \biggl\{ 
1\surd 
n
\Gamma x : x\in \Sigma r,n

\biggr\} 
for r\leq n.(4.6)

The key estimate in the case of (4.6) was established in [33]:

Theorem 4.4. For L,\gamma \geq 1 there are constants \~c0 and \~c1 depending only (poly-
nomially) on L and \gamma , respectively, such that the following holds. Let \xi be as in
Theorem 4.3 and set 1\leq r\leq n. Then with probability at least 1 - 2exp( - \gamma log4(n)/\~c0),

sup
x\in \Sigma r,n

\bigm| \bigm| \bigm| \bigm| 1

n
\| \Gamma x\xi \| 22  - \| x\| 22

\bigm| \bigm| \bigm| \bigm| \leq \rho 
\surd 
r

for

\rho = \~c1
log2 n\surd 

n
.

Obtaining a similar estimate for the class (4.5) is technically more involved but is
based on similar ideas. The details are presented in Appendix B.
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 331

Next, one has to establish the strong regularity of B. That is based on the
following fact, which is a straightforward generalization of Theorem 3.4 from [13]. To
formulate the claim, consider two unitary matrices \scrO ,\scrU \in \BbbC n\times n, and let \scrW \in \BbbC n\times n.
Set

d\scrU =
\surd 
n max

1\leq i,j\leq n
| \scrU ij | and d\scrW =

\surd 
n max

1\leq i,j\leq n
| \scrW ij | ,

and assume further that

sup
x\in \Sigma r,n

\| \scrW x\| 2 \leq 2.

Note, for example, that if \scrU and \scrW are Hadamard-type matrices then d\scrU \leq 1, d\scrW \leq 1,
and the condition on \scrW is trivially satisfied.

Theorem 4.5. For L\geq 1 there exist constants \~c1 and \~c2 that depend only (poly-
nomially) on L such that the following holds. Let \zeta be an L-subgaussian random
vector, set 1\leq r\leq n, and let u\geq 1. Then with probability at least 1 - e - u/\~c1 ,

sup
x\in \Sigma r,n

\| \scrU D\scrW x\scrO \zeta \| [r] \leq \~c2

\sqrt{} 
r

n
max\{ d\scrU , d\scrW \} 

\bigl( 
log(n) log(r) +

\surd 
u
\bigr) 
.

The proof of Theorem 4.5 is based on a straightforward modification of the argument
used to prove Theorem 3.4 in [13]; its details are omitted.

Let us return to the random matrix B. To establish \rho -strong regularity, one has
to estimate supx\in \Sigma r,n

\| Bx\| [r] for every 1\leq r\leq m. Since

Bx=
1\surd 
m
RI\Gamma \Psi xG

and \| RI\Gamma \Psi xG\| [r] \leq \| \Gamma \Psi xG\| [r], it suffices to control

\| \Gamma \Psi xG\| [r] =
\surd 
n\| UDW\Psi xOG\| [r]

for the Hadamard-type matrices U , W , and O defined in (4.1). Thus, a high proba-
bility (with respect to G) estimate on supx\in \Sigma r,n

\| UDW\Psi xOG\| [r] follows from Theo-
rem 4.5 once one shows that

sup
x\in \Sigma r,n

\| W\Psi x\| 2 = sup
x\in \Sigma r,n

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
n
D\varepsilon \prime \prime \Gamma \varepsilon \prime x

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 2.(4.7)

The proof of (4.7) is straightforward, thanks to Theorem 4.4. Indeed,\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
n
D\varepsilon \prime \prime \Gamma \varepsilon \prime x

\bigm\| \bigm\| \bigm\| \bigm\| 
2

=

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
n
\Gamma x\varepsilon 

\prime 
\bigm\| \bigm\| \bigm\| \bigm\| 
2

,

and by Theorem 4.4, with high probability with respect to \varepsilon \prime ,

sup
x\in \Sigma r,n

\bigm| \bigm| \| \Gamma x\varepsilon 
\prime \| 22  - \BbbE \| \Gamma x\varepsilon 

\prime \| 22
\bigm| \bigm| 

is well-behaved.
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332 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

5. Concentration of the Gaussian convolution operator. Next, let us turn
to the second ingredient needed for the application of the generic embedding result,
formulated in Theorem 2.1: proving the \ell 1-concentration phenomenon for the double
circulant matrix.

Let G be the standard Gaussian random vector in \BbbR n and for a fixed x \in \BbbR n

and I \subset \{ 1, . . . , n\} , consider the partial convolution RI(x \circledast G). The first order of
business is to study the concentration of \| RI(x\circledast G)\| around its mean. An important
ingredient in the analysis is the following immediate consequence of the Gaussian
concentration theorem for Lipschitz functions (see, e.g., [36]).

Theorem 5.1. Let S \subset \BbbR n and set \scrR (S) = supx\in S \| x\| 2. Then for u> 0,

\BbbP 
\biggl( \bigm| \bigm| \bigm| \bigm| sup

x\in S
\langle G,x\rangle  - \BbbE sup

x\in S
\langle G,x\rangle 

\bigm| \bigm| \bigm| \bigm| \geq u\scrR (S)

\biggr) 
\leq 2exp( - cu2),

where c is an absolute constant.

To formulate the concentration estimate for convolutions, recall that W =\scrF /
\surd 
n,

where \scrF is the discrete Fourier matrix. Below we will consider a general norm \| \cdot \| :
\BbbR n \rightarrow \BbbR and use \scrB to denote the corresponding unit ball. Recall that the dual norm
is defined by

\| x\| \ast = sup
y\in \scrB 

\langle x, y\rangle 

and that for any x\in \BbbR n

\| x\| = sup
y\in \scrB \circ 

\langle x, y\rangle ,

where \scrB \circ = \{ x\in \BbbR n : \| x\| \ast \leq 1\} is the dual unit ball (see, e.g., [7, Appendix A.1.6]).
In the application below we consider the \ell 1-norm, in which case the dual norm is the
\ell \infty -norm.

Theorem 5.2. There is an absolute constant c > 0 such that the following holds.
For any I \subset \{ 1, . . . , n\} and u> 0, with probability at least 1 - 2exp( - cu2),

| \| RI(x\circledast G)\|  - \BbbE \| RI(x\circledast G)\| | \leq 
\surd 
n\scrR (RI\scrB \circ ) inf

\{ y,z:x=y+z\} 
(u\| Wz\| \infty +2\| WG\| \infty \| y\| 2).

Proof. Fix a decomposition x= y+ z and observe that

x\circledast G= y\circledast G+ z \circledast G= y\circledast G+
\surd 
nUDWzOG,

where, as before, O=W and U =W \ast . Clearly,

y\circledast G=W \ast W (y\circledast G) =
\surd 
nW \ast 

\Biggl( 
n\sum 

i=1

(Wy)i(WG)iei

\Biggr) 
,

R\ast 
I =RI , and, hence, almost surely,

\| RI(y\circledast G)\| =
\surd 
n

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| RIW
\ast 

\Biggl( 
n\sum 

i=1

(Wy)i(WG)iei

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 
\surd 
n sup

a\in Bn
2

\| RIW
\ast a\| \cdot 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

(Wy)i(WG)iei

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
\surd 
n\scrR (RI\scrB \circ ) \cdot \| WG\| \infty \| y\| 2;(5.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

6/
24

 to
 1

31
.2

11
.1

2.
11

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FAST METRIC EMBEDDING INTO THE HAMMING CUBE 333

in particular, this estimate also holds for \BbbE \| RI(y\circledast G)\| .
Next, observe that

\| RI(z \circledast G)\| =
\bigm\| \bigm\| \surd nRIUDWzOG

\bigm\| \bigm\| =\surd 
n sup

t\in B\circ 
\langle G,O\ast D\ast 

WzU
\ast R\ast 

I t\rangle 

and

sup
t\in B\circ 

\| O\ast D\ast 
WzU

\ast R\ast 
I t\| 2 \leq \| Wz\| \infty \cdot \scrR (RI\scrB \circ ).

Hence, by Theorem 5.1, for u> 0, with probability at least 1 - 2exp( - cu2),

| \| RI(z \circledast G)\|  - \BbbE \| RI(z \circledast G)\| | \leq u
\surd 
n \cdot \scrR (RI\scrB \circ ) \cdot \| Wz\| \infty .(5.2)

The claim follows by combining (5.1) and (5.2).

To apply this result for the \ell n1 -norm, note that for every x\in \BbbR n,

\BbbE \| RI(x\circledast G)\| 1 =\BbbE | g| \cdot m\| x\| 2 =
\sqrt{} 

2

\pi 
m\| x\| 2,

and \scrR (RI\scrB \circ ) = supt\in BI
\infty 
\| t\| 2 =

\surd 
m. Hence, for u > 0, with probability at least

1 - 2exp( - cu2),\bigm| \bigm| \bigm| \bigm| \bigm| \| RI(x\circledast G)\| 1  - 
\sqrt{} 

2

\pi 
m\| x\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \surd 
nm inf

x=y+z
(u\| Wz\| \infty + 2\| WG\| \infty \| y\| 2) .(5.3)

With (5.3) in mind, let us show that when the Fourier transform of x is well-
spread, \| RI(x \circledast G)\| 1 exhibits a sharp concentration around its mean. One useful
notion of ``being well-spread"" is that there is some 1 \leq r \leq n and 1 \leq \Lambda \leq 

\surd 
n such

that

\| Wx\| [r] \leq 
\Lambda \surd 
n
\| x\| 2.(5.4)

Corollary 5.3. There is an absolute constant c > 0 such that the following
holds. Let x satisfy (5.4). For any \delta > 0, with probability at least

1 - 2exp
\Bigl( 
 - c\delta 2

mr

\Lambda 2

\Bigr) 
,

we have that\bigm| \bigm| \bigm| \bigm| \bigm| \| RI(x\circledast G)\| 1  - 
\sqrt{} 

2

\pi 
m\| x\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sqrt{} 

2

\pi 
m\| x\| 2

\biggl( 
\delta +

\surd 
2\pi 

\Lambda \surd 
m
\| WG\| \infty 

\biggr) 
.(5.5)

Proof. Let J be the set of indices corresponding to the largest r coordinates of
(| (Wx)i| )ni=1. Using the invertibility of W , one may write x = y + z, where Wy =
RJWx and Wz =RJcWx. By (5.4),

\| y\| 2= \| Wy\| 2 = \| Wx\| [r] \leq 
\Lambda \surd 
n
\| x\| 2 and \| Wz\| \infty \leq 1\surd 

r
\| Wx\| [r] \leq 

\Lambda \surd 
rn

\| x\| 2.

Hence, (5.3) implies that with probability at least 1 - 2exp( - cu2),\bigm| \bigm| \bigm| \bigm| \bigm| \| RI(x\circledast G)\| 1  - 
\sqrt{} 

2

\pi 
m\| x\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \surd 
nm (u\| Wz\| \infty + 2\| WG\| \infty \| y\| 2)

\leq \| x\| 2
\surd 
m

\biggl( 
u

\Lambda \surd 
r
+ 2\| WG\| \infty \Lambda 

\biggr) 
.(5.6)

The claim follows by setting u=
\sqrt{} 

2
\pi \delta (

\surd 
mr/\Lambda ).
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334 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

It is straightforward to verify that a similar estimate holds if instead of (5.4) we
only have an upper estimate on \| Wx\| [r]. That is the form we use in what follows.

Corollary 5.4. There is an absolute constant c such that the following holds.
Let x satisfy that \| Wx\| [r] \leq \Lambda \surd 

n
. Then for \delta > 0, with probability at least

1 - 2exp
\Bigl( 
 - c\delta 2

mr

\Lambda 2

\Bigr) 
,

we have that\bigm| \bigm| \bigm| \bigm| \bigm| \| RI(x\circledast G)\| 1  - 
\sqrt{} 

2

\pi 
m\| x\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sqrt{} 

2

\pi 
m

\biggl( 
\delta +

\surd 
2\pi 

\Lambda \surd 
m
\| WG\| \infty 

\biggr) 
.(5.7)

We will apply Corollary 5.4 to a finite set that is in a `good position' - namely,
consisting of vectors for which there is enough control on \| W \cdot \| [r].

To put Corollary 5.4 in some perspective, let us consider our benchmark- the
Gaussian matrix.

5.1. The Gaussian benchmark. Let \Gamma = n - 1/2
\sum n

i=1 \langle Gi, \cdot \rangle ei be the normal-
ized standard Gaussian matrix. Consider T \subset \BbbR n and let us explore the outcome of
Corollary 5.4 for points in the set \Gamma T . To that end, pick the largest 1 \leq r \leq n such
that

r log
\Bigl( en

r

\Bigr) 
\leq 
\biggl( 
\ell \ast (T )

\scrR (T )

\biggr) 2

= d\ast (T ).

Assuming that d\ast (T )\geq logn, r is well-defined and satisfies r\sim d\ast (T )/ log(en/d\ast (T )).
By the proof of [14, Theorem 2.5], for any u\geq 1, we have

\| W\Gamma t\| [r] \leq Cu
\ell \ast (T )\surd 

n
(5.8)

with probability at least 1 - 2exp( - cu2d\ast (T )). Denote that event by \Omega u, and let us
invoke Corollary 5.4, where for every t\in T we set

r\sim d\ast (T )

log(en/d\ast (T ))
and \Lambda \sim \ell \ast (T ).

It follows that conditioned on \Omega u, for \delta > 0 and every t\in T , with probability at least

1 - 2exp

\biggl( 
 - c0\delta 

2 md\ast (T )

\ell 2\ast (T ) log(en/d
\ast (T ))

\biggr) 
= 1 - 2exp

\biggl( 
 - c0\delta 

2 m

\scrR 2(T ) log(en/d\ast (T ))

\biggr) 
with respect to G we have that\bigm| \bigm| \bigm| \bigm| \bigm| \| RI(\Gamma t\circledast G)\| 1  - 

\sqrt{} 
2

\pi 
m\| \Gamma t\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq c1m

\biggl( 
\delta +

\ell \ast (T )\surd 
m

\| WG\| \infty 
\biggr) 
.

In the next section we will show that the double circulant matrix A satisfies an
almost identical inequality.
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 335

6. Uniform \ell 1-concentration for the double circulant matrix. Fix 1 \leq 
r\leq n. Corollary 5.4 implies that for any t\in \BbbR n, if

1\surd 
n
\| WD\varepsilon \prime \prime \Gamma \varepsilon \prime D\varepsilon t\| [r] \leq 

\Lambda \surd 
n
,(6.1)

then with high probability with respect to G, \| At\| 1 concentrates around its mean.
Thus, the key question is whether, with high probability, for every t \in T , (6.1) holds
for suitable values of \Lambda and r. We will show that with high probability, one may set

r\sim d\ast (T )

log
\Bigl( 

en
d\ast (T )

\Bigr) and \Lambda \sim \Upsilon \ell \ast (T ),where \Upsilon \sim log5/2 n,(6.2)

where d\ast (T ) is defined as in (3.1). Up to the factor of \Upsilon , this is the same as in the
Gaussian case.

Theorem 6.1. For \gamma \geq 1 there exist constants \~c1, \~c2 depending only (polynomi-
ally) on \gamma , and an event \Omega 1 with probability at least 1 - n - \gamma with respect to \varepsilon \prime \otimes \varepsilon \prime \prime 

such that the following holds. Let T \subset \BbbR n and assume that logn\leq d\ast (T )\leq n/ log5 n.
There is an event \Omega 2,T with probability at least 1 - 2exp( - \gamma d\ast (T )) with respect to \varepsilon ,
such that, conditioned on \Omega 1 and \Omega 2,T , for every t\in T , with probability at least

1 - 2exp

\left(   - \delta 2
m

\~c1\scrR 2(T )\Upsilon 2 log
\Bigl( 

en
d\ast (T )

\Bigr) 
\right)  

with respect to G,\bigm| \bigm| \bigm| \bigm| \bigm| 1

m
\| At\| 1  - 

\sqrt{} 
2

\pi 

1\surd 
n
\| \Gamma \varepsilon \prime D\varepsilon t\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \~c2

\biggl( 
\delta +

\| WG\| \infty \Upsilon \ell \ast (T )\surd 
m

\biggr) 
,(6.3)

where \Upsilon \sim log5/2 n.

Therefore, up to the factors of \Upsilon in the probability estimate and in (6.3), Theo-
rem 6.1 shows that the \ell 1-concentration phenomenon exhibited by the double circu-
lant matrix is the same as exhibited by the standard Gaussian matrix. The proof of
Theorem 6.1 is presented in the next section.

Corollary 6.2. Let \gamma \geq 1. There exists a constant \~c1 depending only (polyno-
mially) on \gamma such that the following holds. Let T \prime be a finite set. If logn\leq d\ast (T \prime )\leq 
c0n/ log

5 n, m\leq n, and

m\geq \~c1\scrR 2(T \prime )
log | T \prime | 

\delta 2
\cdot log6 n

then with probability at least 1 - n - \gamma with respect to G\otimes \varepsilon \otimes \varepsilon \prime \otimes \varepsilon \prime \prime ,

sup
t\in T \prime 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

m
\| At\| 1  - 

\sqrt{} 
2

\pi 
\| t\| 2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \delta .

Proof. By Hoeffding's inequality and a union bound, with probability at least
1 - n - \gamma with respect to G,

\| WG\| \infty \leq c0
\sqrt{} 
\gamma logn.
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336 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

Hence, by Theorem 6.1, we only need to establish uniform concentration of
1\surd 
n
\| \Gamma \varepsilon \prime D\varepsilon t\| 2 around \| t\| 2 for all t \in T \prime . Set \~T = \{ t/\| t\| 2 : t \in T \prime \} . Using that

| a - 1| = | a2 - 1| 
a+1 \leq | a2  - 1| if a\geq 0, we find

sup
t\in T \prime 

\bigm| \bigm| \bigm| 1\surd 
n
\| \Gamma \varepsilon \prime D\varepsilon t\| 2  - \| t\| 2

\bigm| \bigm| \bigm| = sup
t\in T \prime 

\| t\| 2
\bigm| \bigm| \bigm| 1\surd 

n

\bigm\| \bigm\| \bigm\| \Gamma \varepsilon \prime D\varepsilon 
t

\| t\| 2

\bigm\| \bigm\| \bigm\| 
2
 - 1
\bigm| \bigm| \bigm| 

\leq \scrR (T \prime ) sup
t\in \~T

\bigm| \bigm| \bigm| 1
n
\| \Gamma \varepsilon \prime D\varepsilon t\| 22  - 1

\bigm| \bigm| \bigm| .
By Theorem 4.4, with probability at least 1 - 2exp( - c1\gamma log

4 n) with respect to \varepsilon \prime ,
the matrix n - 1/2\Gamma \varepsilon \prime is \rho -regular for

\rho = c2(\gamma )
log2 n\surd 

n
.

On that event, Theorem 3.3 implies that with probability at least 1 - exp( - c3u
2d\ast ( \~T ))

with respect to \varepsilon ,

sup
t\in \~T

\bigm| \bigm| \bigm| 1
n
\| \Gamma \varepsilon \prime D\varepsilon t\| 22  - 1

\bigm| \bigm| \bigm| \leq c4(\gamma )u
2\scrR ( \~T )

\biggl( 
\rho 

\sqrt{} 
d\ast ( \~T ) + \rho 2d\ast ( \~T )

\biggr) 
\sim c5(\gamma )u

2

\Biggl( 
log2(n)

\sqrt{} 
log | T \prime | \surd 
n

+
log4(n) log | T \prime | 

n

\Biggr) 
,

as \scrR ( \~T ) = 1 and d\ast ( \~T ) = \ell 2\ast ( \~T )\lesssim log | T \prime | . Setting u2 = c6\gamma log(n), we conclude that

sup
t\in T \prime 

\bigm| \bigm| \bigm| 1\surd 
n
\| \Gamma \varepsilon \prime D\varepsilon t\| 2  - \| t\| 2

\bigm| \bigm| \bigm| \leq \delta 

with probability at least 1  - n - \gamma under the assumed bound on m (which then also
holds for n).

Remark 6.3. The caveat that log(n)\leq d\ast (T )\leq n/ log5 n is there only for the sake
of a simpler presentation. In any case, since we are making no attempt of obtaining
a result that is accurate at the logarithmic level, that is not a real issue. Indeed, the
condition log(n)\leq d\ast (T ) can be ensured by replacing T by T \cup \{ ei, i= 1, . . . , n\} - this
only leads to an additional logarithmic factor. If d\ast (T ) \geq n/ log5 n then replacing T
by the Euclidean ball \scrR (T )Bn

2 comes at most at a logarithmic price, and the latter
case can be analyzed directly, by noting that Qk(rB

n
2 , r)\sim \rho r

\surd 
n.

Corollary 6.2 is the final ingredient needed in the proof of Theorem 1.3.

Proof of Theorem 1.3. Recall the three conditions required in Theorem 2.1: let
T\theta be a \theta -net of T of minimal cardinality and set k= \lfloor \delta m/\lambda \rfloor . One has to show that

(1) supx\in T\theta 
\| Ax\| [k] \leq \lambda 

\surd 
k;

(2) supx\in (T - T )\cap \theta Bn
2
\| Ax\| [k] \leq \delta 

\surd 
k;

(3) supx\in (T\theta  - T\theta )

\bigm| \bigm| \kappa 
m\| Ax\| 1  - \| x\| 2

\bigm| \bigm| \leq \delta 
for the matrix

A=RI\Gamma GD\varepsilon \prime \prime 
1

n1/2
\Gamma \varepsilon \prime D\varepsilon =

\surd 
mBD\varepsilon .

The proof that the three conditions are satisfied with the wanted probability is an
immediate outcome of Theorem 3.6 combined with Theorem 4.1 - used to establish
(1) and (2); and Corollary 6.2, which implies (3) (for \kappa =

\sqrt{} 
\pi /2).
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FAST METRIC EMBEDDING INTO THE HAMMING CUBE 337

6.1. Proof of Theorem 1.4. Let T \prime be the set of normalized differences defined
in (1.2). Let AI =

\sqrt{} 
\pi 
2A be the rescaled double circulant matrix with index set I \subset [n].

Consider independent selectors \theta 1, . . . , \theta n satisfying \BbbP (\theta i = 1) = 1 - \BbbP (\theta i = 0) = m
n and

let I\theta = \{ i\in [n] : \theta i = 1\} be the set of selected indices. Clearly,

1

m
\BbbE \theta \| AI\theta z\| 1 =

1

n
\| A[n]z\| 1

for any z \in \BbbR n and hence

sup
z\in T \prime 

\bigm| \bigm| \bigm| \bigm| 1m\| AI\theta z\| 1  - 1

\bigm| \bigm| \bigm| \bigm| \leq sup
z\in T \prime 

\bigm| \bigm| \bigm| \bigm| 1m\| AI\theta z\| 1  - 
1

m
\BbbE \theta \| AI\theta z\| 1

\bigm| \bigm| \bigm| \bigm| + sup
z\in T \prime 

\bigm| \bigm| \bigm| \bigm| 1n\| A[n]z\| 1  - 1

\bigm| \bigm| \bigm| \bigm| .
By Corollary 6.2, if n\gtrsim c(\gamma )\epsilon  - 2 log | T | log6 n, then

sup
z\in T \prime 

\bigm| \bigm| \bigm| \bigm| 1n\| A[n]z\| 1  - 1

\bigm| \bigm| \bigm| \bigm| \leq \epsilon 

with probability at least 1 - n - \gamma .
To control the first term, set X\theta ,z = 1

m\| AI\theta z\| 1  - 1
m\BbbE \theta \| AI\theta z\| 1 and let \theta \prime be an

independent copy of \theta . By a symmetrization argument (see (6.3) in [36]),

\BbbP \theta 

\biggl( 
sup
z\in T \prime 

| X\theta ,z| \geq 4\epsilon 

\biggr) 
\leq \BbbP \theta ,\theta \prime 

\biggl( 
sup
z\in T \prime 

| X\theta ,z  - X\theta \prime ,z| \geq 2\epsilon 

\biggr) 
+ sup

z\in T \prime 
\BbbP \theta (| X\theta ,z| \geq 2\epsilon ).(6.4)

Observe that X\theta ,z  - X\theta \prime ,z has the same distribution as

1

m

n\sum 
i=1

\zeta i(\theta i  - \theta \prime i)| \langle ai, z\rangle | ,

where the ai are the rows of A[n] and \zeta is a Rademacher vector that is independent
of all other random variables. Hence, it is standard to verify that

\BbbP \theta ,\theta \prime 

\biggl( 
sup
z\in T \prime 

| X\theta ,z  - X\theta \prime ,z| \geq 2\epsilon 

\biggr) 
\leq 2\BbbP \theta ,\zeta 

\Biggl( 
sup
z\in T \prime 

1

m

n\sum 
i=1

\zeta i\theta i| \langle ai, z\rangle | \geq \epsilon 

\Biggr) 
.

Observe that the event \{ m/2\leq | I\theta | \leq 3m/2\} holds with \theta -probability at least 1 - e - cm.
On this event, Theorem 4.1 shows that with probability at least 1 - n - \gamma with respect
to G\otimes \varepsilon \prime \otimes \varepsilon \prime \prime 

BI\theta =
1\sqrt{} 
| I\theta | 

RI\theta \Gamma GD\varepsilon \prime \prime 
1\surd 
n
\Gamma \varepsilon \prime 

is \rho -regular for \rho = c(\gamma ) log5/2(n)/
\surd 
m. Since AI\theta =

\sqrt{} 
| I\theta | BI\theta D\varepsilon , we can use Theo-

rem 3.3 to conclude that with probability at least 1 - n - \gamma with respect to G \otimes \varepsilon \otimes 
\varepsilon \prime \otimes \varepsilon \prime \prime ,

sup
z\in T \prime 

1

m

n\sum 
i=1

\theta i| \langle ai, z\rangle | 2 = sup
z\in T \prime 

1

m
\| AI\theta z\| 22 \leq c,

where c is an absolute constant, provided that

m\geq c(\gamma ) log | T | log5(n).(6.5)
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338 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

Clearly, (6.5) is satisfied when m \geq c(\gamma )\epsilon  - 2 log | T | and \epsilon \leq log - 5/2(n). In particular,
all of the above events hold simultaneously with probability at least 1 - e - cm  - n - \gamma 

with respect to \theta \otimes G\otimes \varepsilon \otimes \varepsilon \prime \otimes \varepsilon \prime \prime . Conditioned on that event, Hoeffding's inequality
implies that

\BbbP \zeta 

\Biggl( 
1

m

n\sum 
i=1

\zeta i\theta i| \langle ai, z\rangle | \geq \epsilon 

\Biggr) 
\leq 2e - cm\epsilon 2

for any z \in T \prime . Recalling that m\gtrsim \epsilon  - 2 log | T | , a union bound yields

\BbbP \zeta 

\Biggl( 
sup
z\in T \prime 

1

m

n\sum 
i=1

\zeta i\theta i| \langle ai, z\rangle | \geq \epsilon 

\Biggr) 
\leq 2e - c\prime m\epsilon 2 .

In a similar, but simpler manner one can estimate the second term on the right-hand
side of (6.4), which completes the proof.

6.2. Proof of Theorem 6.1. As we noted previously, to prove Theorem 6.1 it
remains to show that (6.1) holds with the parameters specified in (6.2). The random
vectors \varepsilon , \varepsilon \prime , and \varepsilon \prime \prime each play a different role in the argument, leading to the somewhat
cumbersome formulation of Theorem 6.1.

First, we show that for a typical realization of \varepsilon \prime \otimes \varepsilon \prime \prime , the matrix n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime 

is \rho -strongly regular for \rho of the order of n - 1/2 log5/2 n. Clearly, that fact has nothing
to with the identity of the set T , but rather only with the way in which the ma-
trix n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime acts on sparse vectors. Second, given a set T , Theorem 3.3 and
Theorem 3.2 imply that (conditioned on the fact that n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime is \rho -strongly
regular), with high probability with respect to \varepsilon , n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime D\varepsilon ``acts well"" on T .
These two steps are formulated in Theorem 6.4 and Corollary 6.5.

Theorem 6.4. For \gamma \geq 1 there is a constant \~c that depends only (polynomially)
on \gamma such that the following holds. With probability at least 1 - n - \gamma with respect to
\varepsilon \prime \otimes \varepsilon \prime \prime , the matrix n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime is \rho -strongly regular for

\rho = \~c
log5/2 n\surd 

n
.

We prove Theorem 6.4 in the next section. We first show how it implies (6.1)
and, hence, Theorem 6.1 as well.

Corollary 6.5. Set \Upsilon = \rho 
\surd 
n and let T \subset \BbbR n. Assume that logn \leq d\ast (T ) \leq 

c1n/\Upsilon 
2 and set r to satisfy that d\ast (T ) \sim r log(en/r). Then on the event from The-

orem 6.4, with probability at least 1  - 2exp( - c2u
2d\ast (T )) with respect to \varepsilon , we have

that for any t\in T ,

\| n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime D\varepsilon t\| [r] \leq c3u
2\Upsilon 

\ell \ast (T )\surd 
n

Proof. On the event from Theorem 6.4, Theorem 3.2 and Remark 3.5 imply that
for T \subset \BbbR n, with probability at least 1 - 2exp( - c0u

2[d\ast (T )+ r log(en/r)]) with respect
to \varepsilon , for every t\in T ,

\| n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime D\varepsilon t\| [r] \leq c1u
2max\{ Q(T ),\scrR  - 1(T )Q2(T )\} ,

where

Q(T ) :=Qr(T,\scrR (T )) = \rho \scrR (T )(d\ast (T ) + r log(en/r))1/2.
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D
ow

nl
oa

de
d 

05
/0

6/
24

 to
 1

31
.2

11
.1

2.
11

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FAST METRIC EMBEDDING INTO THE HAMMING CUBE 339

By setting r to satisfy that d\ast (T )\sim r log(en/r), we have that Q(T )\sim \rho \scrR (T )
\sqrt{} 

d\ast (T ).
Note that Q(T ) \geq \scrR  - 1(T )Q2(T ) provided that Q(T ) \leq \scrR (T ). Since \Upsilon = \rho 

\surd 
n, this

condition is satisfied if d\ast (T )\leq n/\Upsilon 2. This yields the asserted estimate.

6.3. Proof of Theorem 6.4. The proof follows two steps:
Step 1: Proof of regularity.

The first step in the proof is to establish that with high probability with respect
to \varepsilon \prime \otimes \varepsilon \prime \prime , the matrix n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime is regular, i.e., it acts in a norm preserving way
on sparse vectors. Observe that for any t\in \BbbR n and any realization of \varepsilon \prime \prime ,

\| n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime \| 2 = \| n - 1/2\Gamma \varepsilon \prime \| 2.

Thus, it suffices to establish the regularity of n - 1/2\Gamma \varepsilon \prime . This follows immediately from
Theorem 4.4, by which implies:

With probability at least 1 - 2exp( - c1\gamma log
4 n) with respect to \varepsilon \prime , the matrix

n - 1/2\Gamma \varepsilon \prime is \rho -regular for

\rho = c2(\gamma )
log2 n\surd 

n
.(6.6)

Step 2: Proof of strong regularity.
Recall that for any x \in \BbbR n we have \Gamma \varepsilon \prime x = \Gamma x\varepsilon 

\prime and \Gamma x =
\surd 
nUDWxO, where

U,W , and O are as in (4.1). Therefore,

n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime x=WD\varepsilon \prime \prime UDWxO\varepsilon \prime .

Note that this is a random vector of the form \scrU D\scrW x\scrO \xi for

\scrU =WD\varepsilon \prime \prime U, \scrW =W, \scrO =O, and \xi = \varepsilon \prime .

Therefore, to establish strong regularity, we invoke Theorem 4.5. To that end, observe
that the matrix \scrW = W is of Hadamard-type; in particular, d\scrW = 1 and trivially,
supx\in \Sigma r,n

\| \scrW x\| 2 \leq 2. To estimate

d\scrU =
\surd 
n max

1\leq i,j\leq n
| (WD\varepsilon \prime \prime U)ij | ,

we use the following fact.

Lemma 6.6. There is an absolute constant c > 0 such that the following holds for
any \gamma \geq 1 : for any V1, V2 \in \BbbC n\times n, with probability at least 1 - n - \gamma 

max
1\leq i,j\leq n

| (V1D\varepsilon \prime \prime V2)ij | \leq c
\sqrt{} 
\gamma logn max

1\leq i\leq n
\| V \ast 

1 ei\| 2 max
1\leq i,j\leq n

| (V2)ij | .

The proof of Lemma 6.6 is standard and is presented in Appendix A.
Since W and U are Hadamard-type matrices, Lemma 6.6 shows that there is an

event with probability at least 1 - n - \gamma (with respect to \varepsilon \prime \prime ) such that

d\scrU \leq c1
\sqrt{} 
\gamma logn.
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340 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

On that event, it follows from Theorem 4.5 that there is an absolute constant c2 such
that with probability at least 1 - 2exp( - c2u) with respect to \varepsilon \prime ,

sup
x\in \Sigma r,n

\| n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime x\| [r] \leq c3

\sqrt{} 
r

n
\cdot 
\sqrt{} 
logn

\bigl( 
log(n) log(r) +

\surd 
u
\bigr) 
.(6.7)

In particular, setting u\sim \gamma log4 n and taking the union bound over 1\leq r\leq n, we
have that with probability at least 1 - 2exp( - c2\gamma log

4 n) with respect to \varepsilon \prime ,

sup
x\in \Sigma r,n

\| n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime x\| [r] \leq c4(\gamma )

\sqrt{} 
r

n
log5/2 n for every 1\leq r\leq n.(6.8)

In particular:

On an event with probability at least 1 - n - \gamma  - exp( - c5\gamma log
4 n) with respect

to \varepsilon \prime \otimes \varepsilon \prime \prime , n - 1/2WD\varepsilon \prime \prime \Gamma \varepsilon \prime is \rho -strongly regular for

\rho = c4(\gamma )
log5/2 n\surd 

n
.

That completes the proof of Theorem 6.4.

Appendix A. Proof of Lemma 6.6. For any 1\leq i, j \leq n,

(V1D\varepsilon \prime \prime V2)ij = \langle V1D\varepsilon \prime \prime V2ej , ei\rangle = \langle \varepsilon \prime \prime ,D\ast 
V2ejV

\ast 
1 ei\rangle .

Moreover,

\| D\ast 
V2ejV

\ast 
1 ei\| 2\leq \| DV2ej\| 2\rightarrow 2\| V \ast 

1 ei\| 2=\| V2ej\| \infty \| V \ast 
1 ei\| 2\leq max

1\leq i\leq n
\| V \ast 

1 ei\| 2 max
1\leq i,j\leq n

| (V2)ij | .

By Hoeffding's inequality, for any u> 0,

\BbbP 
\Bigl( 
| \langle \varepsilon \prime \prime ,D\ast 

V2ejV
\ast 
1 ei\rangle | \geq u max

1\leq i\leq n
\| V \ast 

1 ei\| 2 max
1\leq i,j\leq n

| (V2)ij | 
\Bigr) 
\leq 2exp( - u2/2).

The result now follows by taking a union bound over all i and j.

Appendix B. Proof of Theorem 4.1. The goal is to show that with probabil-
ity at least 1 - n - \gamma with respect toG\otimes \varepsilon \prime \otimes \varepsilon \prime \prime , the matrixB =m - 1/2RI\Gamma GD\varepsilon \prime \prime n

 - 1/2\Gamma \varepsilon \prime 

is \rho -strongly regular for \rho \sim c(\gamma )m - 1/2 log5/2 n.
Recall that \Psi = n - 1/2D\varepsilon \prime \prime \Gamma \varepsilon \prime , and thus, for every x\in \BbbR n,

Bx=
1\surd 
m
RI\Gamma G\Psi x=

1\surd 
m
RI\Gamma \Psi xG.

B.1. Regularity of \bfitB . As we have noted in (4.4), to establish regularity it
suffices to estimate

sup
x\in \Sigma r,n

\bigm| \bigm| \| Bx\| 22  - \| x\| 22
\bigm| \bigm| 

\leq sup
x\in \Sigma r,n

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 

m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - \BbbE G

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\bigm| \bigm| \bigm| \bigm| \bigm| + sup
x\in \Sigma r,n

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 

n
\Gamma x\varepsilon 

\prime 
\bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - \| x\| 22

\bigm| \bigm| \bigm| \bigm| \bigm| .
(B.1)
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As it happens, the proof that n - 1/2\Gamma \varepsilon \prime is \rho -regular for \rho \sim c(\gamma ) log
2 n\surd 
n

is standard and

was used previously in this presentation (see (6.6)). Hence, all that remains is to
estimate

sup
x\in \Sigma r,n

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 

m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

 - \BbbE G

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\bigm| \bigm| \bigm| \bigm| \bigm| 
for 1\leq r\leq m. To that end we invoke Theorem 4.3 for the class of matrices

\scrA r = \{ RI\Gamma \Psi x : x\in \Sigma r,n\} 

in the case \xi = G. To estimate the quantities in Theorem 4.3 we follow an almost
identical argument to the one used in [33]. We will therefore only outline it here. Let
x, y \in \BbbR n. Then

\| RI\Gamma \Psi x  - RI\Gamma \Psi y\| 2\rightarrow 2 \leq \| \Gamma \Psi (x - y)\| 2\rightarrow 2 =
\surd 
n\| \Psi (x - y)\| \infty 

and, in particular,

sup
x\in \Sigma r,n

\| RI\Gamma \Psi x\| 2\rightarrow 2 \leq sup
x\in \Sigma r,n

\surd 
n\| \Psi x\| \infty .

Set \| x\| :=
\surd 
n\| \Psi x\| \infty . Estimating the \gamma 2-functional by an entropy integral (see, e.g.,

[43]), we find that for an absolute constant c0,

\gamma 2(\scrA r,\| \cdot \| 2\rightarrow 2)\leq \gamma 2(\Sigma r,n,\| \cdot \| )\leq c0

\int \infty 

0

log1/2\scrN (\Sigma r,n,\| \cdot \| , u) du.(B.2)

To estimate the right-hand side, we use two entropic estimates. The first is based on
Maurey's lemma and is essentially due to Carl [8] (see also [33] for a proof).

Lemma B.1. There exists an absolute constant c such that the following holds.
Let \| \cdot \| be a norm on \BbbR n. Let U \subset \BbbR n be a finite set and assume that for every
1\leq k\leq | U | and every subset \{ u1, . . . , uk\} \subset U of cardinality k, \BbbE \varepsilon \| 

\sum k
i=1 \varepsilon iui\| \leq \alpha 

\surd 
k.

Then for every t > 0,

log\scrN (conv(U),\| \cdot \| , t)\leq c
\Bigl( \alpha 
t

\Bigr) 2
log | U | .

In our case, \Sigma r,n \subset conv(U), where U = \{ \pm 2
\surd 
rei : 1\leq i\leq n\} , and \| x\| =

\surd 
n\| \Psi x\| \infty .

Note that for any x1, . . . , xk \in \BbbR n

\BbbE 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
k\sum 

i=1

\varepsilon ixi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq c0
\sqrt{} 

logn

\Biggl( 
k\sum 

i=1

\| xi\| 2\infty 

\Biggr) 1/2

.

Hence, if J \subset \{ 1, . . . , n\} and | J | = k, we have that

\BbbE \varepsilon 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
i\in J

\varepsilon iei

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| =\BbbE \varepsilon 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
i\in J

\varepsilon i
\surd 
n\Psi ei

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq c0
\sqrt{} 
logn

\Biggl( \sum 
i\in J

\| 
\surd 
n\Psi ei\| 2\infty 

\Biggr) 1/2

\leq c0
\sqrt{} 
logn max

1\leq i,j\leq n

\surd 
n| \Psi ij | \cdot 

\surd 
k.
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342 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

Now, condition on the event on which

max
1\leq i,j\leq n

\surd 
n| \Psi ij | \leq c1

\sqrt{} 
\gamma logn.(B.3)

Since \Psi = n - 1/2D\varepsilon \prime \prime \Gamma \varepsilon \prime , Lemma 6.6 (with V1 = Idn and V2 = 1\surd 
n
\Gamma \varepsilon \prime ) shows that

this event holds with probability at least 1 - n - \gamma with respect to \varepsilon \prime \prime . On that event,
Lemma B.1 with

\alpha = c0
\surd 
r
\sqrt{} 
logn max

1\leq i,j\leq n

\surd 
n| \Psi ij | \leq c2(\gamma )

\surd 
r logn

implies that for every t > 0

log\scrN (\Sigma r,n,\| \cdot \| , t)\leq c3(\gamma )
r

t2
log3 n.

The second entropic estimate we require is volumetric: \Sigma r,n is the union of the
Euclidean unit balls BJ

2 that are supported on sets J \subset \{ 1, . . . , n\} , where | J | = r. If
x, y \in BJ

2 then

\| x - y\| =
\surd 
n\| \Psi (x - y)\| \infty \leq max

1\leq i\leq n
| 
\surd 
n \langle \Psi \ast ei, x - y\rangle | \leq max

1\leq i,j\leq n

\surd 
n| \Psi ij | \| x - y\| 1

\leq max
1\leq i,j\leq n

\surd 
n| \Psi ij | 

\surd 
r\| x - y\| 2 \leq c4(\gamma )

\sqrt{} 
logn

\surd 
r\| x - y\| 2,

where we again used (B.3). Hence, for any t > 0

log\scrN (\Sigma r,n,\| \cdot \| , t)= log\scrN 
\bigl( 
\cup | J| =rB

J
2 ,\| \cdot \| , t

\bigr) 
\leq max

| J| =r
log\scrN (BJ

2 ,\| \cdot \| 2, t\prime ) + r log(en/r),

where

t\prime =
t

c4(\gamma )
\surd 
logn

\surd 
r
.

Now the entropy estimate follows from a standard volumetric argument.
Conditioned on the event (B.3) and using these two entropic estimates for large

and small u, respectively, in the entropy integral in (B.2), it follows from a standard
computation that for any 1\leq r\leq n,

\gamma 2(\scrA r,\| \cdot \| 2\rightarrow 2)\leq c5(\gamma )
\surd 
r log5/2 n.

A similar argument shows that d2\rightarrow 2(\scrA r)\leq c6(\gamma )
\surd 
r
\surd 
logn.

Finally, let us estimate

dHS(\scrA r) = sup
x\in \Sigma r,n

\| RI\Gamma \Psi x\| HS \leq 
\surd 
m sup

x\in \Sigma r,n

\| \Psi x\| 2.

Observe that

sup
x\in \Sigma r,n

\| \Psi x\| 2 =
1\surd 
n

sup
x\in \Sigma r,n

\| \Gamma \varepsilon \prime x\| 2.

We have that \BbbE \| \Gamma x\varepsilon 
\prime \| 22 = n\| x\| 22 \leq n, and if

a := sup
x\in \Sigma r,n

\bigm| \bigm| \| \Gamma x\varepsilon 
\prime \| 22  - \BbbE \| \Gamma x\varepsilon 

\prime \| 22
\bigm| \bigm| ,
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then

1\surd 
n

sup
x\in \Sigma r,n

\| \Gamma \varepsilon \prime x\| 2 \leq 
1\surd 
n
(a+ n)

1/2
.

Using Theorem 4.4 it follows that with probability at least 1  - 2exp( - c7\gamma log
4(n))

with respect to \varepsilon \prime , for all 1\leq r\leq m

sup
x\in \Sigma r,n

\bigm| \bigm| \| \Gamma x\varepsilon 
\prime \| 22  - \BbbE \| \Gamma x\varepsilon 

\prime \| 22
\bigm| \bigm| \leq n,

provided that n\geq c8(\gamma )m log4(n), implying that

sup
x\in \Sigma r,n

\| \Psi x\| 2 =
1\surd 
n

sup
x\in \Sigma r,n

\| \Gamma \varepsilon \prime x\| 2 \leq 2.(B.4)

Therefore, conditioned on the above event it follows that

dHS(\scrA r)\leq 2
\surd 
m.

Combining these estimates with Theorem 4.3 and a union bound over all 1\leq r \leq m,
we have that with probability at least 1 - 2exp( - c9\gamma log

4 n) with respect to G, the

matrix B is \rho -regular for \rho = c10(\gamma )
log5/2 n\surd 

m
.

B.2. Strong regularity of \bfitB . To complete the proof of Theorem 4.1 one has
to show that for every 1\leq r\leq m,

sup
x\in \Sigma r,n

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
m
RI\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 
[r]

\leq \rho 
\surd 
r.

To that end, it suffices to prove that

sup
x\in \Sigma r,n

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
m
\Gamma \Psi xG

\bigm\| \bigm\| \bigm\| \bigm\| 
[r]

=

\sqrt{} 
n

m
sup

x\in \Sigma r,n

\| UDW\Psi xOG\| [r] \leq \rho 
\surd 
r.

Thus, the proof of Theorem 4.1 is completed once the following lemma is established.

Lemma B.2. For \gamma > 1 there exist constants \~c0 and \~c1 depending only (polynomi-
ally) on \gamma such that the following holds. Let n\geq \~c0m log4 n. With probability at least
1 - n - \gamma with respect to G\otimes \varepsilon \prime \otimes \varepsilon \prime \prime , for every 1\leq r\leq m,

sup
x\in \Sigma r,n

\| UDW\Psi xOG\| [r] \leq \~c1

\sqrt{} 
r

n
log5/2 n.

Proof. Using the notation of Theorem 4.5,

UDW\Psi xOG= \scrU D\scrW x\scrO \xi ,

where

\scrU =U, \scrW =W\Psi , \scrO =O, and \xi =G.

Just as in (B.4), with probability at least 1 - 2exp( - c0\gamma log
4(n)) with respect to \varepsilon \prime ,

for all 1\leq r\leq m,

sup
x\in \Sigma r,n

\| \scrW x\| 2 = sup
x\in \Sigma r,n

\| W\Psi x\| 2 =
1\surd 
n

sup
x\in \Sigma r,n

\| \Gamma \varepsilon \prime x\| 2 \leq 2.
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344 S. DIRKSEN, S. MENDELSON, AND A. STOLLENWERK

Moreover, by Lemma 6.6 (with V1 =W and V2 =
1\surd 
n
\Gamma \varepsilon \prime )

d\scrW = max
1\leq i,j\leq n

\surd 
n| (W\Psi )ij | \leq c1

\sqrt{} 
\gamma logn

with probability at least 1 - n - \gamma with respect to \varepsilon \prime \prime . The result now follows by applying
Theorem 4.5 conditioned on those two events.
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