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Abstract. We present a review of recent work to analyze time series in
a robust manner using Wasserstein distances which are numerical costs
of an optimal transportation problem. Given a time series, the long-
term behavior of the dynamical system represented by the time series
is reconstructed by Takens delay embedding method. This results in
probability distributions over phase space and to each pair we then assign
a numerical distance that quantifies the differences in their dynamical
properties. From the totality of all these distances a low-dimensional
representation in a Euclidean space is derived. This representation shows
the functional relationships between the time series under study. For
example, it allows to assess synchronization properties and also offers a
new way of numerical bifurcation analysis. Several examples are given
to illustrate our results. This work is based on ongoing joint work with
Michael Muskulus [19,20].
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1 Introduction

In nonlinear time series analysis the center of attention is not at predicting single
trajectories, but rather on estimating the totality of possible states a system can
attain and their statistical properties. Of particular importance is the long-term
behavior of the system described by the the attractor [1,8,17], and the notion of
an invariant measure on the attractor that captures the statistical properties of a
dynamical system. Qualitative changes in the long-term dynamical behavior can
then be detected by comparing properties of the corresponding attractors and
invariant measures. Unfortunately, many of the present methods are based on
the assumption that the dynamics is given by a deterministic (possibly chaotic)
process, and this usually unverifiable assumption can lead to doubts about the
validity of the analysis. Moreover, commonly used measures such as Hausdorff
dimension and Lyapunov exponents are notoriously difficult to estimate. For this
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reason, Murray and Moeckel [18] introduced the so-called transportation distance
between attractors, which is a single number that expresses how closely the long-
term behavior of two dynamical systems resembles each other. In contrast to
general divergences such as the Kullback-Leibler divergence, mutual informa-
tion or the Kolmogorov-Smirnov statistic, the advantage of the transportation
distance is that it is a metric on the space of (reconstructed) dynamical sys-
tems. The transportation distance is based on a convex optimalization problem
that optimally matches two invariant measures, minimizing a cost functional.
Mathematically, it is an example of a Wasserstein distance between probabil-
ity measures [26]. Although computationally involved, Wasserstein distances are
much more robust than, for example, Hausdorff distance. Furthermore, these
distances have interesting theoretical features, for example interpolation prop-
erties that allow to reconstruct dynamical behaviors in between two invariant
measures.

Following the idea of Murray and Moeckel, a theory of distance based analysis
of dynamical systems was developed in the PhD thesis of Micheal Muskulus
which let to a number of applications, see [19,20] and the references given there.
Applications of our work are given in [10,21], and a related approach to compare
dynamical systems directly is given in [29]. In this paper we will review our
approach and demonstrate the feasibility by both using synthetic time series
obtained from a reference dynamical system and real time series derived from
measurements. Ongoing work is devoted to a rigorous foundation of our approach
for synthetic time series generated by an Axiom A dynamical system, we also
hope to use ideas from Benedicks and Carleson [3] to extend our rigorous analysis
to the Hénon map.

1.1 Time Series and Discrete Dynamical Systems

Let X ⊂ R
d and f : X → X be a given map. Consider the discrete dynamical

system
xn+1 = f(xn) for n = 0, 1, . . . (1)

starting from an initial point x0 ∈ X. The trajectory x = (x0, x1, . . . , xN ) gen-
erated by the discrete dynamical system modeled by f can be viewed as a (syn-
thetic) time series. A set A is called attracting with respect to a subset U ⊂ X if
for every neighborhood V of A , there exists a K = K(V ) such that fk(U) ⊂ V
for all k ≥ K. The basin of attraction of A is defined by

B(A ) = ∪k≥0 f−k(U). (2)

If B(A ) = X, then we call A a (global) attractor.
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In this paper we will consider time series generated by the Hénon map [9] to
obtain synthetic time series. The Hénon map is defined by H : R2 → R

2

(
x
y

)
�→

(
1 + y − ax2

bx

)
. (3)

Here a and b are real parameters and the corresponding discrete dynamical
system is given by (

xn+1

yn+1

)
= H

(
xn

yn

)
, n ≥ 0, (4)

where x0 ∈ R and y0 ∈ R are given initial conditions.

1.2 Attractor Reconstruction by Delay Embedding and Subdivision

Given a time series x = (x1, . . . , xN ) of N measurements of a single observable x,
a trajectory of a dynamical system is reconstructed by mapping each consecutive
block

x[i] = (xi, xi+q, . . . , xi+(k−1)q) (5)

of k values, sampled at discrete time intervals q, into a single point x[i] in the
reconstructed phase space Ω = R

k.
The intuitive idea is that the information contained in the block x[i] fully

describes the state of the dynamical system at time i, albeit in an implicit
fashion. From a statistical point of view, the reconstructed points in Ω capture
higher-order correlations in the time series. This procedure defines the so-called
delay-coordinate map F : RN → R

k. In [22] Sauer, Yorke and Casdagli showed,
under mild assumptions extending work by Takens [26], that almost every delay-
coordinate map F : RN → R

k is one-to-one on A provided that the embedding
dimension k is larger than twice the box counting dimension of A . Also, any
manifold structure within A will be preserved in F (A ). The optimal value of
the lag q and of the embedding dimension k can be estimated from the data [11]
(Fig. 1).

The result of the embedding process is a discrete trajectory in reconstructed
phase space Ω = R

k and this trajectory is interpreted as a probability measure
μ on Ω, where

μ[A] =
1

N ′

N ′∑
i=1

δx[i] [A], A ⊆ Ω, (6)

is the time average of the characteristic function of the points in phase space
visited; here δx[i] is the Dirac measure of the block x[i] and N ′ = N − (k − 1)q
is the length of the reconstructed series.

In the limit N ′ → ∞ the measure μ is invariant under the dynamics and
assuming that the system is subject to small random perturbations leads to
the uniqueness of the invariant measure under mild assumptions [12], which is
then called the natural invariant measure. If the time series is synthetic and the
underlying discrete dynamical system is available, subdivision methods allow to
approximate the attractor and its natural measure with arbitrary precision [6].
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Attractor Reconstruction

Delay embeddingProjection

Diffeomorphism

Fig. 1. The methodology of attractor reconstruction via delay embeddings. The true
attractor is projected into a time series by some measurement function

We shall illustrate the procedure for the Hénon map (3). For the parameter
values a = 1.0 and b = 0.54 and for the initial condition x0 = 0.1 and y0 = 0.0,
the time series for the x-coordinate is given by (Fig. 2).
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Fig. 2. Time series of the x-coordinate with x0 = 0.1 and y0 = 0.0

The time series consists of 3000 iterations and is relatively short as this is
the situation one often encounters in practice, and the attractor reconstruction
using Takens delay embedding is based on the entries [1000–3000]. In Fig. 3 we
give the reconstructed attractor.
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Henon system: Reconstructed attractor #4

Fig. 3. The measure μ for, respectively, a = 1.0, b = 0.54 and a = 1.0, b = 0.5065.
Note that the chaotic behavior disappears for the last set of parameter values and that
we have periodic behavior

The subdivision algorithm to approximate the attractor

Since the time series is synthetic and the underlying discrete dynamical system
is given by the Hénon map (3), we can use subdivision methods to approximate
the attractor and its natural measure. We recall the algorithm from Dellnitz and
Junge [6]:

Let Q ⊂ X be a compact set and let Bj , j = 0, 1, 2, . . ., be a finite collection
of compact subsets of Q with B0 = {Q}. Given the collection Bk−1, the
collection Bk will be constructed in two steps:

1. Choose a refinement B̃k of Bk−1 such that both collections of subsets of Q
have the same covering.

2. Let Bk = {B ∈ B̃k | f(B′) ∩ B �= ∅ for certain B′ ∈ B̃k}.

Put
Qk = ∪B∈Bk

B, (7)

then Qk approximates the attractor with precise error estimates [6].
The result of the subdivision algorithm applied to the Hénon map in given

in Figs. 4 and 5. Note that in the case of synthetic time series, we can use the
attractor produced by the subdivision method as a benchmark for the quality
of the reconstructed attractor using Takens delayed embedding.

2 The Wasserstein Distance

In the sequel we consider two time series x = (x1, . . . , xN ) and y = (y1, . . . , yN )
of N measurements of a single observables x and y, and assume that the delay-
coordinate map F [x] : RN → R

k and F [y] : RN → R
k have been constructed.

In order to compare the long-term behavior of dynamical systems that corre-
spond to x, respectively, y, we compute the Wasserstein distances of the natural
invariant measures corresponding to x and y.
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Fig. 4. Subdivision algorithm: iteration steps 4 and 6 for the Hénon map

Subdivision #8 of Henon attractor
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Fig. 5. Subdivision algorithm: iteration steps 8 and 18

Given two probability measures μ and ν on Ω, the Wasserstein distance
W (μ, ν) is defined as the solution of an optimal transportation problem in the
sense of Monge-Kantorovich [26]. The functional to be optimized is the total cost

C[π] =
∫

Ω×Ω

||x − y||2 dπ[x, y],

over the set Π(μ, ν) of all probability measures on the product Ω × Ω with
prescribed marginals μ and ν, such that

∫
Ω

dπ[U, y] = μ[U ],
∫

Ω

dπ[x, V ] = ν[V ]

for all measurable U, V ⊂ Ω and all π ∈ Π(μ, ν). Each measure π ∈ Π(μ, ν) is
interpreted as a transportation plan that specifies how much probability mass
π[x, y] is transferred from each location x ∈ Ω to each location y ∈ Ω, incurring
a contribution d2(x, y) · dπ[x, y] to the total cost.
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The Wasserstein distance is now defined by

W (μ, ν) = inf
π∈Π(μ,ν)

∫
Ω×Ω

||x − y||2 dπ[x, y] (8)

and defines a metric on the space of probability measures, see [5] for simple
proof that W defines a metric. For self-similar measures aspects of Wasserstein
distances can be computed explicitly [7].

Note that the cost per unit mass is given by a metric on the phase space Ω,
and that there are many choices for this metric. Here we only consider the
Euclidean metric because of equivariance under rotations

d2(x, y) = ||x − y||2 =

(
k∑

i=1

|xi − yi|2
)1/2

. (9)

Although all metrics on Ω are topologically equivalent, other metrics emphasize
different aspects of the statistical properties of the invariant measures. In ongoing
work, we are studying various properties and merits of different metrics.

Optimal transport problems arise in a number of applications in image analy-
sis, shape matching, and inverse modeling in physics, see [28] for references. The
measure theoretic Wasserstein formalism allows a unified treatment, but more
importantly in the present setting the natural measures correspond to finite sum
of Dirac measures. In this case the optimal transportation problem reduces to
a convex optimalization problem between two weighted point sets and can be
calculated by standard methods.

Following early work of Hitchcock [20,28], suppose discrete measures are
given by

μ =
n1∑
i=1

αiδxi
, ν =

n2∑
j=1

βjδyj
, (10)

where the supplies αi ∈ (0, 1] and the demands βj ∈ (0, 1] are normalized such
that

∑
i αi =

∑
j βj = 1.

Any measure in Π(μ, ν) can then be represented as a nonnegative
matrix (fij) that is feasible, which is to say that it fulfills the source and sink
conditions∑

j

fij = αi, i = 1, 2, . . . , n1 and
∑

i

fij = βj , j = 1, 2, . . . , n2. (11)

In this case the optimal transportation problem reduces to a special case of a
minimum cost flow problem, the so-called transportation problem

W (μ, ν) = min
∑
ij

fijcij , (12)

over all feasible flows fij , where cij = ||xi − yj ||2.
This minimization problem can in principle be solved using a general linear

programming solver [2,23], and in the examples in this paper we have used an
implementation by Löbel [13]. See Fig. 6 for an example.
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Fig. 6. Open circles correspond to the first measure, filled circles correspond to the
second measure. Left panel Initial configuration. Numbers indicate probability mass
at each point. Right panel An optimal transportation plan with Wasserstein distance
W ≈ 3.122. The numbers next to the arrows indicate how much probability mass is
transported from the first measure to the second measure

Since the algorithms for the transportation problem have at least a cubic
dependence on sample size. A practical solution is to resample smaller subseries
from the reconstructed trajectory and to estimate the Wasserstein distances
multiple times, bootstrapping its expected value. This reduces the computational
load [20].

3 Distance Matrices

The statistical analysis of distance matrices is a well developed topic in
multivariate analysis [4]. We give a short overview of techniques that are par-
ticularly useful in the analysis of Wasserstein distances. We assume that the
distance information is presented in the form of a single matrix M whose entries
Mij = W (μi, μj) represent the distance between two dynamical systems (which
are calculated from their invariant measures μi and μj , as discussed before). The
actual distance being used is left unspecified.

3.1 Reconstruction by Multidimensional Scaling

Multi-Dimensional Scaling (MDS) is the generic name for a number of techniques
that model distance data as points in a geometric (usually Euclidean) space. In
the application to dynamical systems, each point in this space represents a single
dynamical system and the space can be interpreted as the space of their possible
dynamical behavior. We therefore call this space the behavior space. It should
not be confused with the k-dimensional reconstruction space Ω used for each
single dynamical system in the calculations of the Wasserstein distances.
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Classical (also called metric) MDS is similar to principal component analysis
(PCA) and has been pioneered by Torgerson and Gower (see [4] for references).
Here we focus on classical MDS and refer to the Appendix of [20] for more recent
developments and variations.

Let us assume a priori that the distances Mij , 1 ≤ i, j ≤ n, are the dis-
tances between n points (representing n dynamical systems) in a m-dimensional
Euclidean space with m ≤ n. Denote the coordinates of the i-th point by
xi1, xi2, . . . , xim. In the following, we want to determine the n × m matrix
X = (xij) of the totality of these coordinates from the distances in Mij .

The squared distances M2
ij , 1 ≤ i, j ≤ n, can be expanded as

M2
ij =

m∑
l=1

(
x2

il + x2
jl − 2xilxjl

)
, (13)

which results in the matrix equation D2 = c1T
n + 1ncT − 2XXT . Here D2 repre-

sents the matrix with elements D2
ij = M2

ij , the vector c = (c1, . . . , cn)T consists
of the norms ci =

∑m
l=1 x2

il, and 1n is an n × 1 unit vector. Therefore, the scalar
product matrix B = XXT is given by

B = −1
2
JD2J, (14)

where J = I− 1
n1n1T

n and I denotes the n×n identity matrix. To find the classical
MDS coordinates from B, we factor B by its eigendecomposition (Singular Value
Decomposition):

B = QΛQT = (QΛ1/2)(QΛ1/2)T = XXT . (15)

Here Λ is the diagonal matrix with the eigenvalues of B on the diagonal. In
general, the dimension m is not known in advance, and has to be interpreted as
a parameter. Let the eigenvalues of B be ordered by decreasing size, and denote
by Qm the matrix of the first m columns of Q; these correspond to the first m
eigenvalues of B, in decreasing order. The coordinate matrix of classical MDS is
then given by

X = QmΛ1/2
m . (16)

The distances in the matrix M can now be represented as points in a Euclidean
space if X is real, or equivalently if the first m eigenvalues of B are nonnegative.
In that case, the coordinates in X are found up to a rotation.

The optimal maximal dimension m of the reconstruction can be determined
by considering the strain,

S = ||XXT − B||2 =
∑
ij

|(XXT )ij − Bij |2. (17)

The strain quantifies the error made by projecting the distances to the
m-dimensional subspace, and decreases monotonously as the reconstruction
dimension m is increased, as long as no negative eigenvalues are encountered
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under the m eigenvalues used in the reconstruction. However, the speed of
decrease varies with the dimensionality. A rapid fall in the beginning usually
turns into a much slower decrease above a certain dimensionality m∗ (see for
example Panel C in Figs. 14 and 15). The dimension m∗ so obtained is the choice
for m used in this paper.

Note that the primary use of the MDS reconstruction is dimension reduction.
This is particularly useful in exploratory data analysis. In the Hènon example,
we use a number of two-dimensional reconstructions of the behavior space for
visualization purposes (as more than two dimensions are obviously difficult to
assess visually). A different application of the MDS reconstruction is the classifi-
cation of time series by their dynamical properties (see Sect. 5), and in this case
we determine the optimal dimension of the behavior space by cross-validation of
the accuracy of Linear Discriminant Analysis (LDA).

3.2 Classification and Discriminant Analysis

Assume a number of points xi ∈ R
m are given, where 1 ≤ i ≤ n. Consider a

partition of the index set I = (1, . . . , n) into the indices I1 belonging to the first
class, and the remaining indices I2 = I \ I1. The weighted class means (also
called centroids) are

c1 =
1
n1

∑
i∈I1

xi, c2 =
1
n2

∑
i∈I2

xi, (18)

with corresponding intra-class variances

σ2
1 =

∑
i∈I1

(xi − c1)(xi − c1)T , σ2
2 =

∑
i∈I2

(xi − c2)(xi − c2)T . (19)

The overall mean is
x̄ =

1
n

∑
i

xi =
n1c1 + n2c2

n
. (20)

The goal of LDA is to find a vector w ∈ R
m that maximizes the generalized

Rayleigh quotient

J(w) =
wT (c1 − c2)(c1 − c2)Tw

wT (σ2
1 + σ2

2)w
. (21)

The motivation to do this is that the optimal direction maximizes the separation
(or inter-class scatter) of the means, scaled by the variances in that direction
(the corresponding sum of intra-class scatter), and which can, in some sense, be
considered the signal-to-noise ratio of the data.

The direction w is easily found by a spectral technique [24], and the method
is implemented in standard software packages (for example, see [15]). Points are
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then classified by their nearest neighbour in the projection onto the direction
of ω. Application of LDA to point coordinates in behavior space allows to classify
dynamical systems.

Note that it is not possible to apply LDA directly on distance matrices since
these are collinear. This is the main reason to adopt as a principle underlying
distance-based analysis of dynamical systems:

Principle 1. The reconstructed behavior space, i.e., the MDS coordinates
derived from a distance matrix, is the object at which all (statistical) analy-
sis starts.

In the statistical analysis we follow this principle and only consider points in
behavior space and no longer consider distance matrices directly.

3.3 Cross-Validation

In the case of LDA in behavior space, increasing the dimensionality m of the
behavior space inevitably improves the accuracy of classification (as long as
no negative eigenvalues are encountered). However, this does not usually tell
us more about the accuracy obtained when faced with the classification of an
additional data item of unknown class. The usual solution to assess predictive
accuracy in a useful way is to partition the available data into a training and a
test set of about the same size. After setting up the discrimination method on
the former, its accuracy is then tested on the latter. However, for small datasets
this is usually not feasible, so that we have to use cross-validation.

In leave-one-out cross-validation, the i-th data point is removed from the n
points available, the discriminant function is set up, and the i-th point classified,
for all possible values of i ≤ n. The average accuracy of all these classifications
is the (leave-one-out) cross-validated predictive accuracy of the classification.

Cross-validation of LDA in behavior space seems straightforward: first the
behavior space is constructed by the classical MDS solution, then the classifica-
tion of points in this space is cross-validated. Note however that a (often signif-
icant) bias is introduced, if the MDS reconstruction makes use of the distance
information of each point that is left out in the cross-validation step. Ideally,
when classifying the i-th point as an “unknown data item” we would like to
construct behavior space from a submatrix of the distance matrix, with the i-th
row and column removed, classifying the i-th point in this space. For simplicity,
let i = n, such that the coordinates of the last point need to be found in the
behavior space defined by the first n − 1 points. The idea is instead of deriv-
ing the scalar product matrix by the usual definition (14), the scalar product
matrix B is computed using

B = −1
2

(
I − 1

n − 1
1n−11T

n−1

)
D2

(
I − 1

n − 1
1n−11T

n−1

)
, (22)

where 1T
n−1 is used instead of 1T

n . Denote by b the fallible scalar products of the
cross-validated item with the others, and by β its squared norm. The coordinates
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y ∈ R
m of the last item are then given as the solution of the following nonlinear

optimization problem:

min
y∈Rm

(β − yT y)2 + 2
n∑

i=1

(bi − xT
i y)2, (23)

which can be solved by standard methods [20].

3.4 Statistical Significance by Permutation Tests

Given a partition of time series into two or more classes, we quantify the sig-
nificance of the separation between the classes by using the Multiple Response
Permutation Procedure (MRPP), see [16]. Assuming two classes of systems as
before, the usual MRPP statistic is given by

δ =
2∑

i=1

ni

n1 + n2
Δi, where Δi =

(
ni

2

)−1 ∑
k,l∈Ii

Mkl, i = 1, 2. (24)

Here Δi is the average distance of the i-th class.
Under the null hypothesis that the classes of dynamical systems arise from

the same (unknown) distribution of systems in behavior space, we can reassign
their class labels arbitrarily. For each of these

(
n1+n2

n1

)
labelings, the MRPP

statistic δ is calculated. The distribution of values of δ under all possible
relabelings is (for historical reasons) called the permutation distribution. The
significance probability (P-value) of this statistical test is given by the fraction
of labelings of the permutation distribution with a smaller value of δ than the
one obtained by the original class labels. Note that the δ statistic itself is gen-
erally not scale-invariant, but that the P-value derived from it can be used to
compare the quality of separation across different datasets. In practice the num-
ber of possible labelings to consider is usually too large, so the results in the
example sections are based on 105 randomly generated labelings, as is common
practice in statistics.

4 Example: The Hénon System

In this section we use the proposed approach to the synthetic time series gen-
erated by the Hénon map. As discussed before, bootstrapping the Wasserstein
distances leads to an error which is a combination of simulation error, due to
the finite number of bootstraps, plus a statistical error, due to the finite number
of points from the invariant measures sampled and the finite length of the time
series. Fortunately, the estimation of the self-distances W (μ, μ) allows to assess
these errors.
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The left panel of Fig. 7 shows the self-distances against the sample size used
for bootstrapping in a double logarithmic plot. Observe that the simulation
error is much smaller than the statistical error, so bootstrapping the Wasserstein
distances with the low number of 25 realizations seems sufficient in the present
setting.
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Fig. 7. Dependence of Wasserstein self-distances on sample size. Left panel Wasserstein
distances for embedding dimensions 1 (lowest curve) to 6 (highest curve). The deviation
from the true value of zero is an indication of the statistical error. The slope of the
regression lines is roughly −1/2, which is the typical scaling behavior of Monte-Carlo
simulation. Right panel CPU time needed for these calculations showing quadratic
dependence on sample size

The lowest line in Fig. 7 corresponds to a one-dimensional (trivial) embed-
ding. Increasing the embedding dimension leads to the lines above it, with the
highest one corresponding to a six-dimensional delay embedding. As expected,
the self-distances decrease with increasing sample size. Interestingly, the slope
of this decrease is −0.53 ± 0.03 (R2 = 0.989, P-value 4.4 × 10−6), in the double-
logarithmic plot (for embedding dimension k = 3, with similar values for the
other dimensions), which is consistent with the typical scaling behavior of Monte-
Carlo simulation. In other words, the error is mainly statistical, which is evidence
for the robustness of the Wasserstein distances. From the above we see that self-
distances can be used to assess errors in embeddings, and that they can also
provide an alternative way to estimate the optimal embedding dimension in
nonlinear time series analysis.
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Fig. 8. Dependence of Wasserstein self-distances on noise. Left panel Wasserstein dis-
tances for embedding dimensions 1 (lowest curve) to 6 (highest curve) and fixed sample
size N = 512. Right panel Wasserstein distances for sample sizes N ∈ {64, 128, 256, 512}
(from top to bottom) and fixed embedding dimension k = 3

4.1 Influence of Noise

To study the influence of additive noise, normally distributed random variates
were added to each point of the time series prior to reconstruction of the invariant
measures. The mean of the noise was zero, and the standard deviation a fixed
fraction of the standard deviation of the signal over time. Figure 8 shows the
dependence of the Wasserstein self-distances for different noise levels. In the
left panel, the embedding dimension was varied from one (lowest line) to six
(highest line), for a fixed sample size N = 512 and 25 bootstraps. The effect
of noise is higher for larger embedding dimensions, with a linear change in the
slope of the regression lines of 0.15 ± 0.01 (R2 = 0.99, P-value 8.0 · 10−5). The
error can partially be compensated by increasing the sample size, as can be seen
in the right panel of Fig. 8, for the case of a three-dimensional embedding. For
N = 512 sample points, the slope of the Wasserstein distances is 2.02±0.03 (with
similar values for other sample sizes), i.e., the statistical error doubles for noise
on the order of the original variability in the signal. This shows the robustness
of the Wasserstein distances with respect to noise, since the statistical error is of
the order of the signal-to-noise ratio, and not higher.

4.2 Visualizing Parameter Changes

A main goal of the distance analysis presented in Sect. 3 is the possibility to visu-
alize changes in dynamical behavior with respect to parameter changes, similar
to a bifurcation analysis. However, whereas in the usual bifurcation analysis only
regions of phase space are identified where the qualitative behavior of a dynam-
ical system changes, in the distance-based analysis of dynamical systems these
changes are quantified. This has not only potential applications in numerical
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Fig. 9. Invariant measures of the x-variable in the Hénon system, for different values
of the parameters. Left panel Variation in parameter a, with constant b = 0.3. Right
panel Variation in parameter b, with constant a = 1.4

bifurcation analysis, but also aids in quickly identifying interesting (for example,
atypical) regions of parameter space. We demonstrate this approach using the
synthetic time series generated by the Hénon map and vary the parameters a, b
of the Hénon map as follows

(a, b) = (ai, 0.3) and (a, b) = (1.4, bj), (25)

where ai = 1.4 − 0.05i, for 0 ≤ i ≤ 14, and bj = 0.3 + 0.02j, for −14 ≤ j ≤ 0. In
Fig. 9 the invariant measures of the x-variable, corresponding to the embedding
dimension k = 1 are shown. Dark areas correspond to large time averages, and
light areas to low time averages. On the top of the plots, the indices of the
corresponding parameter values are indicated.

Bootstrapping all mutual distances, again under 25 bootstraps with 512 sam-
ple points each, is used in the left panel of Fig. 10 to obtain a two-dimensional
projection of behavior space. Larger deviations of the parameters from (a0, b0) =
(1.4, 0.3) result in points that are farther away from the point 0 corresponding
to (a0, b0). Summarizing, the points are well-separated, although quite a few of
their distances are smaller than the mean self-distance 0.091 ± 0.005(indicated
by a circle in the left panel of Fig. 10). Note that the triangle inequality was not
violated, but subtracting more than 0.030 will violate it. Only the self-distances
have therefore been adjusted, by setting them to zero.

Theoretically, as the Wasserstein distances are true distances on the space of
(reconstructed) dynamical systems, it is clear that the points corresponding to
changes in one parameter only lie on a few distinct piecewise continuous curves in
behavior space. At a point where the dynamical system undergoes a bifurcation,
these curves are broken, i.e., a point past a bifurcation has a finite distance in
behavior space from a point before the bifurcation. The relatively large distance
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of point 10 (with parameter a10 = 0.9) from the points with indices larger than
11 as seen in Fig. 10 corresponds to the occurrence of such a bifurcation.

The right panel of Fig. 10 shows a two-dimensional reconstruction of the
Hénon system on a smaller scale, where the parameters were varied as ai =
1.4 − 0.0125i, for 0 ≤ i ≤ 14, and bj = 0.3 + 0.005j, for −14 ≤ j ≤ 0. Even on
this smaller scale, where the mean self-distances were 0.118 ± 0.003, the points
are relatively well separated and there are indications for bifurcations. Note that
the triangle inequality again holds, with a threshold of 0.070 before it is violated.

4.3 Coupling and Synchronization

Wasserstein distances also allow to quantify the coupling between two or more
dynamical systems, for example, to analyse synchronization phenomena in
dynamical systems. In this section we consider two unidirectionally coupled
chaotic Hénon maps similar to the example discussed in [25]. The systems are
given by the following equations

xn+1 = 1 + yn − 1.4x2
n, yn+1 = 0.3xn, (26)

un+1 = 1 + vn − 1.4(Cxn + (1 − C)un)un vn+1 = Bvn, (27)

and we call the (x, y) system the master and the (u, v) system the slave system.
The strength of the coupling is given by the coupling parameter C, which can
be varied from 0 (uncoupled systems) to 1 (strongly coupled systems) in steps
of size 0.05. The parameter B is either B = 0.3 (equal systems) or B = 0.1
(distinct systems).
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In Fig. 11 Wasserstein distances between the dynamics reconstructed from the
variables x and u, respectively, against coupling strength C are shown. The initial
conditions of the two Hénon systems were chosen uniformly from the interval
[0, 1] and the results for ten such randomly chosen initial conditions are depicted
in Fig. 11 as distinct lines (top). The dots correspond to the mean of the distances
over the ten realizations. The variation over the ten different initial conditions
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is considerably small, as expected. This shows that the approximations of the
invariant measures are considerably close to the true invariant measure which
does not depend on the initial condition. The bottom lines display corrected
distances, where the minimum of all distances has been subtracted. This seems
appropriate in the setting of synchronization analysis, and does not violate the
triangle inequality.

A further important feature of the Wasserstein distances can be seen in the
left panel of Fig. 11, where the distances for the two Hénon systems with equal
parameters (but distinct, randomly realized initial conditions) are depicted. As
the distances are calculated from (approximations of) invariant measures, these
equivalent systems are close in behavior space either when (i) they are strongly
coupled, but also (ii) when the coupling is minimal. In between, for increasing
coupling strengths the distances initially rise to about the four-fold value of the
distance for C = 0, and then fall back to values comparable to the uncoupled
case, from about C = 0.7 on.

The right panel of Fig. 11 shows the case of two unequal Hénon systems,
where the initial distances (C = 0) are positive and eventually decrease for
stronger coupling. Interestingly, also in this case one sees the phenomenon that
increasing coupling first results in a rise of the distances, that only decrease
after a certain threshold in coupling is crossed. This can be interpreted as fol-
lows: Weak forcing by the master system does not force the behavior of the
slave system to be closer to the forcing dynamics, rather the nonlinear slave
system offers some “resistance” to the forcing (similar to the phenomenon of
compensation in physiology). Only when the coupling strength is large enough
to overcome this resistance does the slave dynamics become more similar to the
masters’ (decompensation).

In Fig. 12 this phenomenon is illustrated in behavior space, reconstructed
by multidimensional scaling from the distances between the dynamics in the
u-variables (the slave systems) only. The left panel, for equal systems, shows a
closed curve, i.e., the dynamics of the slave systems is similar for both small
and large coupling strengths. The right panel, for unequal systems, shows the
occurrence of the compensation/decompensation phenomenon in the curves of
the right panel of Fig. 11.

5 Example: Classification of Lung Diseases Asthma
and COPD

An interesting concept to connect dynamical systems and physiological processes
is the notion of a dynamical disease, which was defined in a seminal paper [14]
as a change in the qualitative dynamics of a physiological control system when
one or more parameters are changed.
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5.1 Background

Both asthma and the condition known as chronic obstructive pulmonary dis-
ease (COPD) are obstructive lung diseases that affect a large number of people
worldwide, with increasing numbers expected in the future. In the early stages
they show similar symptoms, rendering correct diagnosis difficult. As different
treatments are needed, this is of considerable concern.
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Fig. 13. Example time series of respiratory resistance R(8) (upper curves) and respira-
tory reactance X(8) (lower curves) by forced oscillation technique during thirty seconds
of tidal breathing. Left panel A patient with mild asthma. Right panel A patient with
mild to severe chronic obstructive pulmonary disease. The horizontal lines indicate the
mean values used routinely in clinical assessment

An important diagnostically tool is the forced oscillation technique (FOT), as
it allows to assess lung function non-invasive and with comparatively little effort
[19]. By superimposing a range of pressure oscillations on the ambient air and
analyzing the response of the airway systems, a number of parameters can be
estimated that describe the mechanical properties of airway tissue. In particular,
for each forcing frequency ω, transfer impedance Z(ω) can be measured. This is a
complex quantity consisting of two independent variables. The real part of Z(ω)
represents airway resistance R(ω), and its imaginary part quantifies airway reac-
tance X(ω), i.e., the elasticity of the lung tissue. Both parameters are available
as time series, discretely sampled during a short period of tidal breathing. The
dynamics of R(ω) and X(ω) are influenced by the breathing process, anatom-
ical factors and various possible artifacts (deviations from normal breathing,
movements of the epiglottis, etc.). Clinicians usually only use the mean values
R̄(ω) and X̄(ω) of these parameters, averaged over the measurement period, but
clearly there is a lot more dynamical information contained in the time series,
see Fig. 13 for example time series of these fluctuations for two patients.
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Fig. 14. Results for distances in means (see text for details). Panel A Two dimensional
MDS reconstruction for patients suffering from asthma (open circles) and COPD (filled
squares). The patient number is shown below the symbols. Panel B Strain values
against reconstruction dimension. Panel C MRPP statistic for the two classes. The
value of δ for the labeling in panel A is indicated by the vertical line. The P-value is
shown in the upper left corner

5.2 Discrimination by Wasserstein Distances

The main motivation for the application of Wasserstein distances to this dataset
is the assumption that the two lung diseases affect the temporal dynamics of
transfer impedance in distinct ways, and not only its mean value. Considering
asthma and COPD as dynamical diseases, we assume an underlying dynami-
cal systems with different parameters for the different diseases. Although these
parameters are not accessible, it is then possible to discriminate the two diseases,
with the Wasserstein distances quantifying the differences in the shape of their
dynamics.

For simplicity, we only consider a two-dimensional reconstructing, where the
time series of R(8) and X(8) were combined into a series of two-dimensional
vectors with trivial embedding dimension k = 1, trivial lag q = 1, and a length of
about 12000 values (recorded at 16 Hz, the Nyquist frequency for the 8 Hz forced
oscillation, concatenating all 12 measurements into one long series per patient).
A more elaborated analysis will be presented elsewhere. Here we consider the
distribution of these points in Ω = R

2 an approximation of the invariant measure
of the underlying dynamical system.

The results for the squared sum of differences

dij =
(
(X̄i(8) − X̄j(8))2 + (R̄i(8) − R̄j(8))2

)1/2
(28)

in means (not the Wasserstein distances), are shown in Fig. 14 and the results
for the Wasserstein distance are shown in Fig. 15. Panel A on the left shows a
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Fig. 15. Results for Wasserstein distances. Panel A Two dimensional MDS reconstruc-
tion for patients suffering from asthma (open circles) and COPD (filled squares). The
patient number is shown below the symbols. Panel B Strain values against reconstruc-
tion dimension. Panel C MRPP statistic for the two classes. The value of δ for the
labeling in panel A is indicated by the vertical line. The P-value is shown in the upper
left corner

two-dimensional reconstruction of their behavior space by metric MDS. The
strain plot in Panel B suggests an optimal reconstruction occurs in two dimen-
sions, and indeed the classification confirms this. Although the maximal accu-
racy of classification is 0.88 in a 11-dimensional reconstruction (i.e., 88% of the
patients could be correctly classified), this drops to 0.72 in two dimensions when
cross-validated. The separation of the two classes is significant at the 0.033 level,
as indicated by the MRPP statistic in Panel C. Note that these distances vio-
lated the triangle inequality by 0.23, with mean self-distances of about 0.12.
The results for the Wasserstein distances W shown in Fig. 15 are much more pro-
nounced, significant at the 0.0003 level. The classification is even perfect in a 12-
dimensional reconstruction, with a maximal accuracy of 0.88 in a 9-dimensional
reconstruction when cross-validated. Although the information about the means
and their variance has been removed, the classification by Wasserstein distances
is actually better . From this we conclude that the dynamical information con-
tained in the fluctuations of respiratory impedance contains valuable clinical
information. Moreover, these distances respect the triangle inequality (with a
mean self-distance of about 0.25). See [19] for details and further information.

In ongoing work we are further improving the analysis by approximating the
nonlinear dynamics by a Markov process. In particular, we first describe the FOT
dynamics locally by a Fokker-Planck equation estimating the drift and diffusion
coefficients directly from the time series, and then use the improved dynamical
description to quantify differences between the FOT dynamics of different patient
groups, and between individual days for each patient separately.
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