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• Block validation consistently showed 
lower performance compared to random 
validation. 

• Local performance showed more vari-
ability than global performance but a 
similar mean. 

• Performance in areas with fewer 
weather stations showed more vari-
ability and error. 

• Models capture the same seasonal pat-
terns as weather stations. 

• Models’ increased resolution capture 
within city temperature contrasts.  
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A B S T R A C T   

To improve our understanding of the health impacts of high and low temperatures, epidemiological studies 
require spatiotemporally resolved ambient temperature (Ta) surfaces. Exposure assessment over various Euro-
pean cities for multi-cohort studies requires high resolution and harmonized exposures over larger spatiotem-
poral extents. Our aim was to develop daily mean, minimum and maximum ambient temperature surfaces with a 
1 × 1 km resolution for Europe for the 2003–2020 period. We used a two-stage random forest modelling 
approach. Random forest was used to (1) impute missing satellite derived Land Surface Temperature (LST) using 
vegetation and weather variables and to (2) use the gap-filled LST together with land use and meteorological 
variables to model spatial and temporal variation in Ta measured at weather stations. To assess performance, we 
validated these models using random and block validation. In addition to global performance, and to assess 
model stability, we reported model performance at a higher granularity (local). Globally, our models explained 
on average more than 81 % and 93 % of the variability in the block validation sets for LST and Ta respectively. 

* Corresponding author at: Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil Basel, Switzerland. 
E-mail address: Alonso.bussalleu@unibas.ch (A. Bussalleu).  

Contents lists available at ScienceDirect 

Science of the Total Environment 

journal homepage: www.elsevier.com/locate/scitotenv 

https://doi.org/10.1016/j.scitotenv.2024.172454 
Received 20 December 2023; Received in revised form 4 April 2024; Accepted 11 April 2024   

mailto:Alonso.bussalleu@unibas.ch
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2024.172454
https://doi.org/10.1016/j.scitotenv.2024.172454
https://doi.org/10.1016/j.scitotenv.2024.172454
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2024.172454&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Science of the Total Environment 928 (2024) 172454

2

Average RMSE was 1.3, 1.9 and 1.7 ◦C for mean, min and max ambient temperature respectively, indicating a 
generally good performance. For Ta models, local performance was stable across most of the spatiotemporal 
extent, but showed lower performance in areas with low observation density. Overall, model stability and 
performance were lower when using block validation compared to random validation. The presented models will 
facilitate harmonized high-resolution exposure assignment for multi-cohort studies at a European scale.   

1. Introduction 

Research investigating associations between temperature and health 
primarily focuses on time series studies linking daily ambient temper-
ature (Ta) to citywide daily mortality counts or hospital admissions 
(Baccini et al., 2008; Gasparrini et al., 2015; Wu et al., 2022a; Wu et al., 
2022b; Zhao et al., 2021). These studies commonly assign exposure at 
the city level using data of one or more weather stations. Although 
weather stations can accurately measure temperature over time, they 
are sparse, unevenly distributed and often located outside the major 
cities. Monitoring data thus lack the spatial representativeness to cap-
ture small scale contrasts and typically underestimate the variation in 
ambient temperature across urban areas during warm periods (Kloog, 
2019). Furthermore, when studying long-term temperature effects on 
health, temporal changes in within city contrast are important and 
require resolved high-resolution temperature surfaces (Ganzleben and 
Kazmierczak, 2020; Hart and Sailor, 2008; Heaviside et al., 2016; 
Macintyre et al., 2018). 

Climate reanalysis models offer a standardized approach to assign 
exposure over large areas or in areas without weather stations and are 
able to capture similar citywide temperature-mortality associations as 
station data (Masselot et al., 2023; Mistry et al., 2022). However, 
currently these global models, like for example ECMWF ERA5-land, are 
too coarse (resolution 10 × 10 km) to capture within city contrasts 
(Masselot et al., 2023). Remotely sensed surface temperature has been 
used directly as an alternative to characterize exposure (Chakraborty 
et al., 2020; Hsu et al., 2021), but it tends to overestimate the UHI effect 
(Azevedo et al., 2016; Venter et al., 2021) and Ta-LST differences can be 
as large as 20 ◦C and are modulated by elevation, hour of the day, 
seasonality and land cover characteristics (Pepin et al., 2016). Surface 
temperature data can however be extremely useful when combined with 
other land-use data and air temperature observations. 

Statistical models are commonly used in environmental epidemio-
logical studies to create high-resolution and spatiotemporally resolved 
environmental exposure maps (Hoek, 2017; Kloog, 2019; Kloog and 
Zhang, 2023). These empirical models combine environmental mea-
surements with predictor variables such as large-scale meteorological 
data, land use inventories and satellite observations measured at 
different resolutions (Kloog, 2019). 

The Land Surface Temperature (LST) product from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) instrument onboard the 
AQUA and TERRA satellites has been used to inform empirical tem-
perature models due to its global coverage, frequent overpass time 
(twice daily) and fine spatial resolution (1 × 1 km) (Flückiger et al., 
2022; Hough et al., 2020; Kloog et al., 2017; Rosenfeld et al., 2017; Zhou 
et al., 2020). MODIS LST is affected by weather conditions (i.e. cloudi-
ness), leaving gaps on its record. Some recent national Ta models in 
Israel (Zhou et al., 2020), Switzerland (Flückiger et al., 2022) and 
Sweden (Jin et al., 2022) have used a 2-stage approach where missing 
LST is imputed using weather reanalysis predictors and other land use 
variables to produce a gap-filled LST surface. The gap-filled LST is then 
used to calibrate the Ta ~ LST association at all weather station loca-
tions. Temperature models that include satellite predictors have suc-
cessfully being used in studies investigating associations between 
temperature and mortality (Lee et al., 2016; Shi et al., 2015), birth 
outcomes (Kloog et al., 2015) and to calibrate health warning systems 
(Ragettli et al., 2023). 

While many gridded ambient temperature products exist (De Ridder 

et al., 2015; Fick and Hijmans, 2017; Haylock et al., 2008; Kilibarda 
et al., 2014; Verdin et al., 2020: Zhang et al., 2022a, Zhang et al., 
2022b), to our knowledge none of the available products cover Europe 
at a daily 1 × 1 km resolution for the 2003–2020 period using a two- 
stage hybrid modelling approach. 

This study addresses the need for high spatiotemporal continental 
temperature models to facilitate harmonized exposure assessment in 
large multi-cohort studies investigating associations of short- and long- 
term exposure to temperature and health across Europe. Here we aim to 
develop Europe-wide daily 1 × 1 km resolution models for mean, min-
imum and maximum ambient temperature for the 2003–2020 period. 
This work was performed in the framework of the EXPANSE (EXposome 
Powered tools for healthy living in urbAN SEttings) project (Vlaanderen 
et al., 2021). EXPANSE aims to evaluate the association of the urban 
exposome with cardiometabolic and pulmonary health for more than 55 
million Europeans. 

2. Methods 

We estimated daily ambient temperatures (Ta) across Europe at a 1 
× 1 km spatial resolution for 18 years between 2003 and 2020 using a 
two-stage approach. In stage 1, we created daily gap-filled LST surfaces 
using a range of meteorological predictor variables and in stage 2 we 
modelled daily mean, minimum and maximum ambient air temperature 
from weather stations using LST from stage 1 plus additional meteoro-
logical and land use variables. 

In both stages, we used a random forest regression (RF) model and 
tested the robustness of the models using customized validation ap-
proaches. We evaluated performance for the model in the full spatio-
temporal domain (global) and for smaller extents (local). 

2.1. Study area 

The study area includes the European Union countries plus Iceland, 
United Kingdom, Switzerland, Norway and the Balkan countries (43 
countries in total, Fig. A.1). Excluding the water masses, this area ex-
tends for approximately 5′037′854 km2. 

Europe can be divided into subtropical, temperate, cold and 
circumpolar climate groups which are further influenced by the prox-
imity to the coastlines, latitude and longitude (maritime, transitional/ 
intermediate, continental and polar/subpolar) (Pinborg and Larsson, 
2002). Areas with a high degree of urbanization are Belgium, the 
Netherlands and West Germany (Rhine-Ruhr) and the cities of Paris, 
Madrid, Berlin and Milano (eurostat, 2022). 

2.2. Ambient temperature 

We obtained daily mean, minimum and maximum temperature 
measurements collected by weather station networks from 2 publicly 
available data repositories: The European Climate Assessment & Dataset 
(ECA&D) (Klein Tank, 2002) and the Global Surface Summary of the 
Day (GSOD) (NOAA, 2021). ECAD compiles and harmonizes data from 
85 partner institutions in 65 countries across Europe while GSOD uses 
worldwide data collected by the United States commerce and defense 
departments. We also included the observations from two national 
monitoring networks: The Swiss Federal Office of Meteorology and 
Climatology (MeteoSwiss) (MeteoSwiss, 2021); and The Czech Hydro-
meteorological Institute (CHMI) (CHMI, 2021), to complement the data 
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in these countries. After quality control and harmonization daily Ta 
observations were linked to a 1 × 1 km grid cell at the European 
Terrestrial Reference System 1989 projection (EPSG:3035, here EU 
GRID). More information about each dataset and the steps carried out to 
harmonize the four datasets can be found in the supplementary infor-
mation (appendix B). 

2.3. Spatiotemporal predictor variables 

2.3.1. Land surface temperature (LST) 
We used the day and night LST observations from the MODIS in-

strument onboard the AQUA (MYD11A1v061) and TERRA 
(MOD11A1v061) satellites (myd_day, myd_night, mod_day, mod_night 
respectively, Table A.2). Both satellites have a circular sun-synchronous 
polar orbit completed every 99 min (14 orbits per day). During each 
orbit, MODIS gathers data from a 2300 km wide swath. Terra crosses the 
equator at 10:30 am/pm with a descending orbit, while Aqua at 1:30 
am/pm with an ascending orbit, thus compared to Aqua, Terra typically 
measures warmer temperatures during the night and colder tempera-
tures during the day. MYD11A1v061 and MOD11A1v061 have cali-
bration changes and polarization corrections that improve validation 
compared to previous versions. We filtered the granules within the area 
of interest for the selected period using EARTHDATA SEARCH 
(https://search.earthdata.nasa.gov/search) and downloaded a list with 
the links to all selected granules, which were downloaded using R. We 
considered as valid observations all grid cells that were produced with 
an average LST error ≤2 K as reported on the quality indicator bitmask 
following Hough (Hough et al., 2020). MODIS products have a sinu-
soidal coordinate system (SR-ORG:6842). 

Following Kloog et al. (2017), Zhou et al. (2020) and Flückiger et al. 
(2022), we included the following predictor variables (Table A.2), which 
have shown to help explain spatial and temporal variations of LST and 
Ta: 

2.3.2. Normalized Difference Vegetation Index (NDVI) 
We use monthly 1 × 1 km NDVI from the TERRA satellite 

(MOD13A3v061) as a predictor variable for the stage 1 and stage 2 
models. We filtered grid cells that fell in land, coastlines & shorelines 
and shallow inland water bodies. The filtering was based on the prod-
uct’s quality indicator bitmask. While NDVI data availability was almost 
complete for the model’s extent (the average depth of observations per 
grid cell and the mean daily spatial coverage of the study area were 99 % 
and 98 % respectively, Table A.3), there was a clear seasonal and lat-
itudinal pattern as all grid cells located at higher latitudes had missing 
information and on average less valid observations, during winter 
months (Figs. A.1 & A.4). Missing NDVI values occur because of 
misclassification of certain land areas as water and sensor malfunction 
(saturation in ice/snow covered areas). Most gaps occur in winter, at 
higher latitudes or in mountainous regions. Higher latitudes presented 
one single large gap that covered the north of Norway, Sweden and 
Finland every year during January. Gaps in mountainous regions were 
smaller and appear randomly. The extent of these gaps changed yearly. 

2.3.3. Weather data (ERA5) 
We extracted Boundary layer height, Total cloud cover, Skin tem-

perature, 2-meter air temperature, Soil temperature level 1, wind speed 
(calculated form U & V 10 m wind components), Total precipitation and 
Surface pressure from the “ERA5 hourly data on single levels from 1940 
to present” (ERA5) dataset. ERA5 is the global climate reanalysis model 
from the European Centre from Medium-Range Weather Forecasts 
(ECMWF) with a horizontal resolution of 0.25 × 0.25◦ (~27 × 27 km). 
Hourly data was first aggregated into daily averages and later resampled 
to the LST modelling reference grid (SR-ORG:6842) using bilinear 
interpolation. Due to the lack of certain variables (boundary layer height 
and total cloud cover) and missing coverage in coastal regions, we 
decided to use the coarser, but complete ERA5 product instead of ERA5- 

land higher resolution (~9 × 9 km) products. We considered coastal 
areas important as a large portion of the European population lives in 
coastal regions. 

2.3.4. Land use variables 
We represented land use using the Corine Land Cover inventory 

(CLC), the imperviousness product (IMD) from the Copernicus pro-
gramme, and population density (POP) by the Gridded Population of 
World model version4 (GPWv4) (Table A.2). For CLC we aggregated 
land use classes into urban fabric (I), industrial infrastructure (II), barren 
areas (III), urban vegetation (IV), agricultural areas (V), natural areas 
(VI), snow & ice (VII), wetlands (VIII), and water (IX). CLC and GPWv4 
datasets are available at Google Earth Engine (GEE) and IMD images 
were downloaded from the Copernicus Land Monitoring service 
(https://land.copernicus.eu/). 

2.3.5. Elevation (ELV) 
We extracted and processed elevation (ELV) from the Global 30 Arc- 

Second Elevation product (GTOPO30) available in GEE. To match the 
analysis resolution, this product was resampled to the LST model 
reference grid using bilinear interpolation. 

2.3.6. Linking LST & Ta models reference grids 
We extracted LST, NDVI, weather data, and elevation and produced 

the gap-filled LST surfaces using the MODIS sinusoidal projection (SR- 
ORG:6842). To align these surfaces with the EU GRID used in stage 2 (Ta 
modelling), we linked the cells from both reference grids based on 
proximity using nearest neighbor interpolation. 

A complete table with information about predictor variables can be 
found in the supplementary information (Table A.2). 

2.4. Statistical methods 

We followed a two-stage modelling approach based on random forest 
(RF) similar to Zhou et al. (2020) and Flückiger et al. (2022). The first 
stage aims at creating gap-free daily surfaces for four MODIS LST 
products, whereas the second stage aims at creating daily Tmean, Tmin 
and Tmax surfaces. We first discuss the common statistical issues for 
stage 1 and stage 2 modelling (Algorithm, tuning and variable selec-
tion), then discuss stage 1 and stage 2 analyses in more detail and finally 
we present the model validation strategy. 

2.4.1. Random forest algorithm 
RF (Breiman, 2001) is able to handle non-linearity and interactions 

and can accommodate correlated predictors without compromising 
model performance, making it an efficient algorithm (Belgiu and Drăguţ, 
2016). RF has also showed good predictive performance compare to 
other methods (Chen et al., 2019; Li et al., 2011; Liu et al., 2022; Noi 
et al., 2017). 

RF requires hyperparameter tuning as performance is affected by the 
number of variables use to split a tree node (mtry) and the number of 
trees to grow (ntree) (Genuer et al., 2010). As the number of (noisy) 
predictor variables increases, a higher mtry is required, whereas ntree 
should increase until results are stable. Including correlated predictors 
limits model interpretability as the signal is diluted between the corre-
lated predictors and their individual variable importance decreases 
(Genuer et al., 2010). Furthermore, by increasing the size of the dataset, 
the number of trees or the number of predictors has exponential pen-
alties on computational time and memory requirements. For these rea-
sons, we avoided including highly correlated predictors in the LST and 
TA models. Moreover, in case of spatiotemporal models, the sample 
should also be balanced across the model’s spatial and temporal extent 
(unbiased) and the training set should be representative of the area of 
interest. We used R ‘ranger’ package (Wright and Ziegler, 2017) to 
perform the RF regressions in both stages. 

We test the effect of the number of trees and the number of variables 
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per split for stage 1 (ntrees: 100, 200, 300; mtry: 4, 5, 6, 7) and stage 2 
(ntrees: 100, 300, 500; mtry: 4, 7, 12, 16). 

For stage 1 and due to the large volume of data, we trained individual 
RF models for smaller temporal extents following Zhou et al., 2020, who 
trained daily LST models for every month in Israel for the same reason. 
In addition, we used only a fraction of the available data to train the 
models. To balance data density across the extent and avoid overfitting 
models to data rich areas, we followed a sampling scheme stratified by 
date and block. We tested multiple sampling proportions (1 %, 5 %, 25 % 
and 50 % of land grid cells by block/date) and modelling extents (in 
days: 10, 30, 90, 180, 365). 

For stage 2 we tested different modelling extents (14 months starting 
in December, one calendar year or 12 months starting in July), the effect 
of representing date as Julian day or a pair of sines and cosines and the 
effect of only including day or night LST products when calculating 
LSTmean and LSTvar (see Section 2.4.4). 

Table C.5 and Figs. C.6–C.8, and Table C.9 and Figs. C.10–C.12 show 
tested configurations, and their performance for stage 1 and stage 2 
respectively. 

2.4.2. Variable selection 
To exclude highly correlated variables from model training we used 

the variance inflation factor (VIF, see appendix C.2. for formula and 
calculation). VIF is a measure of collinearity as it calculates how much of 
the variance of a given predictor variable can be explained by the other 
predictors assuming a linear relationship. We sequentially filter out the 
predictor with the highest VIF until VIF ≤ 10 for all predictors. Specif-
ically, in stage 1 we excluded soil and 2 m temperature due to its high 
correlation with skin temperature (Fig. C.3); and in stage 2 we excluded 
all three temperature variables from ERA5 due to their high correlation 
with the much higher resolution gapfilled LST from stage 1 (Fig. C.4). 

2.4.3. Stage 1: LST modelling 
Cloud cover limits satellite retrieval, creating gaps in the daily LST 

surfaces. The size and location of these gaps is influenced by seasonality, 
local weather patterns and local satellite overpass time. In order to 
impute the missing values and create gap-free surfaces, we use RF 
regression to model the relationship between LST and location (latitude, 
longitude and elevation), date (Julian date), NDVI and weather vari-
ables from ERA5 (temperature, cloud cover, boundary layer height, 

precipitation and wind speed). We trained models separately for each of 
the four LST products. These models were later used to predict missing 
LST values. 

Final model configuration was monthly models trained with 1 % of 
the possible pixels with 100 trees and 4 variables per split. Stage 1 
models for each of the four LST products are represented with Eq. (1):  

where LSTij represents the LST value in degrees Kelvin for grid cell i and 
day j of one of the four LST products, LATi, LONi,ELVi represent the 
latitude, longitude and elevation (in meters) of grid cell i centroid and 
YDAYj represents the Julian date for date j. Additional predictors 

include, monthly NDVI (NDVIij) for grid cell i and date j and ERA5 cloud 
cover (ERA5ccij, in percentages), boundary layer heights (ERA5BLHij, in 
meters), skin temperature (ERA5SKTij, in degrees Kelvin, which repre-
sents the temperature of earth’s surface), wind speed (ERA5WSij, in m/s), 
precipitation (ERA5PRij, in meters) and surface pressure (ERA5spij, in Pa) 
for grid cell i and date j. 

Final models to fill LST gaps were trained using the sampled pixels 
from all the blocks, thus covering the whole extent. 

Grid cells with missing NDVI values (only affecting on average less 
than 0.1 % of grid cells) could not be imputed using our modelling 
approach and were filled using focal averages from all surrounding grid 
cells in a 5 km buffer (120 cells, window size = 11). We were unable to 
fill the larger gap on the northernmost latitudes without increasing 
window size, thus the modelling extent becomes smaller during some 
winter months (Fig. A.1). 

2.4.4. Stage 2: Ta modelling 
Ta weather stations are unevenly distributed in space, showing a 

higher density of stations in for example Germany (Fig. A.1). The 
number of stations increased over time and not all stations were active 
during the whole period (Table B.5). Moreover, weather station’s loca-
tion within cities is not random, with airports and parks being common 
areas for sensor deployment (Kloog, 2019). In stage 2 our aim therefore 
was to explain the variation in daily Tmax, Tmean and Tmin observa-
tions from weather station networks using the predictor variables 
LSTmean, LSTvar, NDVI, latitude, longitude Julian date and weather 
variables. The developed yearly RF models were used to predict ambient 
temperature across our whole study area particularly in grids without 
observations. 

To improve stability, better capture daily variability, limit the effect 
of local observation time during satellite overpass and avoid using 
highly correlated predictors, we reduced the four gap-free daily MODIS 
LST surfaces produced in stage 1 into daily average and a daily variance 
surfaces (LSTmean, LSTvar). We hypothesize that together; LSTmean 
and LSTvar can provide additional information about the daily vari-
ability in temperature observed in the four LST products and help cali-
brate the LST-Ta relationship. 

Final models configurations used the observations from the same 
calendar year, 100 trees and 7 variables per split. 

After removing highly correlated predictors, the Stage 2 models are 
represented with Eq. (2):  

where TA(min,mean,max)ij represents the observed average Ta value in 
degrees Celsius within grid cell i and date j for each temperature set, 
LATi, LONi,ELVi the latitude longitude and mean elevation (meters) of 

grid cell i, YDAYj the Julian date for day j, NDVIij, LSTmeanij, LSTvarij the 
monthly NDVI and daily LSTmean and LSTvar for grid cell i and date j. 
ERA5 variables were the same as in stage 1 (excluding skin temperature 
due to a high correlation with LSTmean). Yearly land use for each grid 
cell i and date j was represented by impervious surface density (IMDij) 

LSTij ∼ RF
(
LATi,LONi,YDAYj,ELVi,NDVIij,ERA5CCij,ERA5blhij ,ERA5SKTij ,ERA5WSij,ERA5PRij ,ERA5SPij

)
(1)   

TA(min,mean,max)ij ∼ RF
(
LATi,LONi,ELVi,YDAYj,NDVIij,LSTmeanij,LSTvarij,ERA5ccij,ERA5blhij,ERA5wsij,ERA5prij,ERA5spij, IMDij,

CLCurbanfabricij ,CLCindustrialij,CLCbarrenij,CLCurbangreenij ,CLCagricultureij,CLCsnowiceij ,CLCwetlandsij,CLCwaterij,POPij
) (2)   
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(0–100 %), population density (POPij) and the area (as proportion 0–1) 
covered by urban fabric (CLCurban fabricij), industrial infrastructure 
(CLCindustrialij), barren areas (CLCbarrenij), urban vegetation 
(CLCurban greenij), agriculture fields (CLCagricultureij), snow & ice 
(CLCsnowij), wetlands (CLCwetlands ij) and water (CLCwaterij). 

Final models to predict daily 1 × 1 km Tmean, Tmin and Tmax were 
trained using all the observations from the available weather stations. 

2.4.5. Model validation 
We used two validation approaches, block validation and random 

validation, likely resulting in underestimation and overestimation of 
performance respectively. 

Model validation requires training and validation sets to be inde-
pendent, which can be attained by using different observations for 
model training and validation as long as sampling is at random, 
balanced and representative (Wadoux et al., 2021). Validation methods 
for spatiotemporal models should also account for the data autocorre-
lation structure as close observations might not be statistically inde-
pendent (Belgiu and Drăguţ, 2016; Hengl et al., 2018). 

To meet validation requirements and better understand the effect of 
data density and distribution on model performance, we used random 
and block cross validation (random-CV and block-CV respectively). 
Random-CV splits data in equally sized folds that are sequentially left 
out from model training and are used for model validation. Random-CV 
assumes that validations sets are independent and ideally distributed 
and it does not account for the data autocorrelation structure. Obser-
vations are grouped into folds at random, thus observations used by 
model training can be near to observations used for model validation 
and high information density areas will also be overrepresented in the 
training and validation sets (overfitting). 

In contrast, for block-CV observations are grouped based on spatial 
and temporal proximity across the model extent into blocks. Similar to 
random-CV, spatiotemporal blocks are aggregated into folds for model 
validation and training. In block-CV observations within validation 
blocks are distant from those used for training, thus validation blocks are 
spatiotemporally “independent” from the training set. For this reason, 
block-CV can provide more realistic performance indicators for models 
trained with uneven data distributions. Following Roberts (Roberts 
et al., 2017), our target for the spatiotemporal extent of CV blocks was to 
mimic the size of real data gaps (stage 1) or the extent of the autocor-
relation structure (stage 2). By using spatiotemporal blocks for block- 
CV, the training set will include observations from the entire spatio-
temporal extent. 

To define the spatial and temporal extent of CV blocks, we analyzed 
the data dependence structure by visually inspecting variograms 
(following Roberts et al., 2017). More information on the calculation 
can be found in Appendix C.1. 

For stage 1, we evaluated model performance using a combination of 
external validation (similar to random-CV) and 5-fold block-CV. After 
the stratified sampling, sampled pixels were aggregated into blocks, and 
blocks were randomly assigned into five folds, each with approximately 
20 % of the blocks. For external validation (random), we sampled 
random pixels within the blocks used for model training, so that for each 
block and date we had two equally sized groups of different pixels, one 
for training and one for validation. For block-CV, we validated the 
trained model with the fold left out for validation which only had ob-
servations in blocks that were not sampled for model training (spatially 
and temporally independent). Thus, pixel samples from each fold and 
from each block were used four times for model training and external 
(random) validation, and one time for block-CV. 

For stage 2, we evaluated model performance using 10-fold random- 
CV and 10-fold block-CV as explained above, with each fold for block-CV 
and for random-CV holding 10 % of the blocks and 10 % of the Ta ob-
servations respectively. Due to the number and clustered distribution of 
grid cells with valid Ta observations, we increased folds to 10 to 

maximize the number of observations for model training and avoid 
extrapolation following (Roberts et al., 2017). 

2.4.6. Global & local performance 
Validation results were presented at two scales: local performance 

was obtained by calculating the performance for each spatiotemporal 
block fold wise and averaging fold results within blocks; global perfor-
mance was obtained by calculating performance fold wise and taking the 
mean (traditional approach). Local performance can provide discrete 
information about model stability across its spatiotemporal extent, and 
when averaged, we can compare mean local performance (with each 
block weighting the same independently of the number of observations 
or area) to global model performance (unweighted). 

Performance statistics were reported as the mean absolute error 
(MAE), the root mean square error (RMSE) and the coefficient of 
determination (R2) for the whole model (global) and aggregated at the 
spatiotemporal block scale (local) for both Random-CV and Block-CV. 

We calculated R2 using the following formula: 

R2 = 1 −
RSS
TSS

= 1 −
∑

(Xi − Xmi)
2

∑
(Xi − X̂)

2 (3)  

where the residual sum of squares (RSS) is calculated as the squared 
difference between observed values (Xi) and modelled values (Xmi), and 
the total sum of squares (TSS) is calculated as the squared difference 
between observed values and the mean of the observations within the 
validation set (X̂ represents the average of observations within a fold for 
global performance, and the average of the observations within a 
spatiotemporal block and fold for local performance). The comparison of 
global and local performance is primarily based upon RMSE and MAE 
and less on R2. The reason is that there is lower variance in measure-
ments in local areas compared to the global domain. 

Due to the clustered distribution of LST and Ta observations, and to 
improve interpretation while limiting the effect of reporting local per-
formance in blocks with very few observations, we avoid calculating 
local performance in uninformative areas using information sufficiency 
thresholds. For stage 1, we only evaluated local performance in blocks 
with more than 0.5 % of all land pixels or more than 100 pixels available 
for validation. For stage 2 we filter out all local fold values calculated 
with less than 10 sampled observations, we assigned NA to all local R2 

folds showing infinite values (no variability within observations), and 
the value of − 1 to all local R2 values showing values bellow − 1 (2 * TSS 
< RSS), and only calculated local performance in blocks with more than 
28 observations. 

3. Results 

3.1. LST and weather station data availability, temperature distribution 
and definition of spatiotemporal blocks 

Valid LST measurements were not evenly distributed across space or 
time, or between day and night products (Table A.3, Figs. A.4–A.5). 
However, within day and night products, data availability showed the 
same trends. Across the spatial extent, each grid cell had on average 40 
% and 20 % of valid daily information for day LST and night LST 
products respectively (Table A.3 & Fig. A.5). However, on average, only 
20 % of the grid cells across the spatial extent had valid LST measure-
ments for each day (Table A.3 & Fig. A.4). During some days, there were 
no valid LST measurements across the whole extent for day and night 
products from both satellites (Fig. A.4). 

Overall, the mean daily LST range was of approximately 51 ◦C for 
day products and 42 ◦C for night products (Table A.6, Fig. A.7). 

Figs. C.18 and C.19 show semivariograms of respectively the tem-
poral and spatial extend of the dependence structure in the LST data set. 
As the variance stabilizes around 10 day difference and 500 km distance, 
we use this information to create 500 × 500 km blocks with a temporal 
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depth of 10 days (Fig. A.1). In total more than 33,300 spatiotemporal 
blocks were used to cover the whole spatiotemporal extent (50 spatial 
blocks * 37 temporal blocks per year), of which more than 99 % con-
tained valid observations. On average spatiotemporal blocks had 
approximately 20 % of valid observations, but valid observations for any 
given spatiotemporal block could be as low as 0.01 % (Fig. A.8). 

The number of Ta stations and, thus the number of grid cells with 
valid Ta measurements increased gradually over the years by approxi-
mately 1000 stations between 2003 and 2020, with an average of 4626, 
4474 and 4634 per year for Tmean, Tmin and Tmax respectively 
(Table B.5). Station density was highest in the center of the modelling 
extent (Germany, Switzerland, Czech Republic and Austria; Figs. A.1, 
E.1). The number of years that stations remain active also showed 
variability as some stations stop recording and other were added 
(Fig. E.1). 

Figs. C.20 and C.21 show semivariograms of respectively the tem-
poral and spatial extend of the dependence structure in the weather 
station data set. Spatial and temporal variance would increase with 
increasing distances, but the steeper increases were found between the 
pairs of stations located within 50 to 100 km apart and during the first 
lag days. Based on these findings and considering the clustered Ta sta-
tion distribution, we created 125 × 125 km blocks with a temporal depth 
of 30 days. In total 120,510 spatiotemporal blocks were used to cover 
the entire spatiotemporal extent (515 spatial blocks * 13 temporal 
blocks per year). Although very few blocks did not include any valid Ta 
observations, the distribution of stations (and of observations) was 
strongly clustered with 10 % of blocks having only one station, 50 % 
having 5 or less, 90 % having 21 or less and the richer 10 % of blocks 
having from 21 up to 184 stations (Fig. E.1). 

Ta daily range was on average 40.7 ◦C, 39.04 ◦C and 40.33 ◦C for 
Tmean, Tmin and Tmax respectively (Table B.5). The lowest and highest 
recorded temperatures were − 50 ◦C and 49.9 ◦C. However, these were 
very extreme temperatures as the minimum 1 % and maximum 99 % 
percentiles were − 24.06 ◦C and 35 ◦C respectively (Table B.5). Mean 
year temperature was on average 8.5 ◦C, 4.4 ◦C and 12.7 ◦C for Tmean, 
Tmin and Tmax respectively (Table B.5). 

3.2. Stage 1 - LST modelling 

We modelled daily LST across Europe for the period 2003–2020 for 
Aqua and Terra satellites day and night products. These models imputed 
missing LST data, thus creating gap filled surfaces. However, imputed 
values represent LST values under cloud-free conditions and validation 
only occurred in cloud-free pixels. Thus, we report the validation 

accuracy of estimated LST of clear-sky pixels only. 
Table 1 shows aggregated global and local performance indicators 

for each validation strategy and LST product. The average R2 for all four 
products at the global resolution was higher compared to that at the 
local resolution for block-CV (global block-CV mean 0.847, local block- 
CV mean 0.498) and at a lesser extent for random (external) validation 
(0.954 v 0.834). For RMSE and MAE this trend was not observed, sug-
gesting similar performance of the model at global and local scale and 
the overall spatiotemporal stability of models. 

No clear differences were observed in mean R2s between night and 
day products (0.779 v 0.787). On the contrary, on average, a lower 
RMSE (2.057 ◦C v 2.505 ◦C) and MAE (1.487 ◦C v 1.858 ◦C) were found 
when comparing night and day products. 

As expected, block-CV (mean overall R2 0.672; RMSE 2.923 ◦C; MAE 
2.213 ◦C) consistently showed less optimistic results and more vari-
ability than external random validation (mean overall R2 0.894; RMSE 
1.639 ◦C; MAE 1.132 ◦C). 

Local performance informed about the models’ stability across its 
spatiotemporal extent (Fig. 1) and showed a wider distribution in all 
cases, especially in the block-CV R2, where local performance for some 
blocks was lower and even negative (Table 1, Figs. D.2 & D.3). Despite 
the magnitude differences in RMSE and MAE between validation stra-
tegies, the spatiotemporal patterns in local performance remained 
similar between validation strategies for all LST products (Figs. 1 & D.1). 

Seasonality, but not annual differences played an important role at 
understanding performance variability at the local and global resolution 
(Figs. D.5–D.6). Performance remain stable across years independently 
of the resolution, validation strategy and the performance indicator 
(Figs. D5–D6). During warmer periods, RMSE increased for daily LST 
products independently of the resolution and validation strategy 
(Figs. 1, D.2 & D.5). For night products, random RMSE remain relatively 
stable between months, but block-CV RMSE decreased during warmer 
months (Figs. D.4 & D.5). In contrast, R2 remained relatively stable for 
night products across validations strategies and resolutions (Fig. D.6) 
decreasing only for random-CV for daily products during warmer 
months (Figs. D2, D.3 & D.6). 

High latitude blocks, especially those encompassing Iceland, Norway 
and northern Britain and Ireland showed lower performance in all 
models independently of the product compared to blocks in continental 
Europe (excluding the Alpine region). The Alpine region showed higher 
error compared to the surrounding blocks in night product models, 
especially during colder months. Southern blocks’ performance was 
lower than that of central Europe blocks for day products, especially 
during warmer months (Figs. 1 & D.1–D.4). 

Table 1 
Model performance by product, validation strategy and resolution for Land Surface Temperature models (LST - stage 1) for three common performance indicators 
(MAE = mean absolute error, R2 

= coefficient of determination (variance explained), RMSE = root mean square error). Local performance reports the average of all 
spatiotemporal block values and its distribution (p10-p50-p90). Global performance reports the average between all monthly (models’ temporal extent) model values 
and its distribution. Spatiotemporal blocks that did not meet the minimum information requirements (0.5 % available data and 100+ observations) were not included 
in the calculations for local performance. MAE and RMSE are expressed in degrees Celsius.  

Product Validation strategy Resolution MAE (◦C) R2 RMSE (◦C) 

mod_day Block-CV Local 2.4 (1.8–2.3–3.1) 0.505 (0.244–0.533–0.736) 3.1 (2.3–3.0–4.0) 
Global 2.3 (2.1–2.3–2.5) 0.866 (0.819–0.874–0.90) 3.1 (2.8–3.1–3.3) 

External (random) Local 1.3 (0.7–1.3–1.8) 0.829 (0.709–0.843–0.932) 1.8 (1.1–1.8–2.5) 
Global 1.2 (0.9–1.2–1.6) 0.956 (0.925–0.961–0.977) 1.7 (1.4–1.7–2.2) 

mod_night Block-CV Local 2.0 (1.3–1.9–2.9) 0.505 (0.229–0.53–0.757) 2.6 (1.7–2.5–3.8) 
Global 2.0 (1.7–1.9–2.4) 0.833 (0.793–0.837–0.866) 2.7 (2.3–2.6–3.2) 

External (random) Local 1.0 (0.6–0.8–1.5) 0.855 (0.746–0.876–0.938) 1.4 (0.9–1.3–2.1) 
Global 0.9 (0.8–0.9–0.9) 0.957 (0.947–0.957–0.968) 1.4 (1.3–1.3–1.5) 

myd_day Block-CV Local 2.5 (1.8–2.4–3.2) 0.506 (0.243–0.534–0.74) 3.2 (2.4–3.2–4.2) 
Global 2.4 (2.1–2.4–2.7) 0.872 (0.823–0.879–0.906) 3.2 (2.9–3.2–3.5) 

External (random) Local 1.4 (0.8–1.4–2.0) 0.812 (0.671–0.828–0.93) 2.0 (1.1–2.0–2.7) 
Global 1.3 (0.9–1.4–1.8) 0.953 (0.918–0.959–0.978) 1.9 (1.4–1.9–2.4) 

myd_night Block-CV Local 2.1 (1.4–2.0–2.9) 0.474 (0.216–0.495–0.714) 2.7 (1.9–2.6–3.8) 
Global 2.0 (1.7–2.0–2.5) 0.817 (0.777–0.821–0.849) 2.7 (2.3–2.7–3.3) 

External (random) Local 1.0 (0.7–0.9–1.5) 0.838 (0.727–0.856–0.927) 1.5 (1.0–1.4–2.2) 
Global 0.9 (0.9–0.9–1.0) 0.951 (0.939–0.951–0.963) 1.4 (1.3–1.4–1.5)  
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Variable importance showed that ERA5 Skin temperature, latitude, 
NDVI and ERA5 Cloud coverage were on average the most important 
predictors of LST across all products with some seasonal variability 
(Fig. D.7). 

The resulting four daily 1 × 1 km gap-filled MODIS-LST products that 
were included in the Ta modelling stage as LSTmean and LSTvar. 

3.3. Stage 2 – TA modelling 

Table 2 shows the mean MAE, R2 and RMSE and the distribution of 

these local and global performance indicators for each validation 
strategy and product. Even with the strictest validation strategy (local 
block cross validation), models indicated an overall good performance 
(Table 2). Overall Tmean models performed the best followed by Tmax 
and Tmin. Compared to LST, we found more variability in performance 
between years (Fig. E.2) than between months (Fig. E.3). As with stage 
1, performance indicators showed on average a lower overall R2 locally 
(R2 = 0.7) compared to the overall global R2 estimate (R2 = 0.96). Block- 
CV showed the higher mean MAE and RMSE performance and lower 
explained variability independently of the product or the resolution 

Fig. 1. Local block-CV RMSE for the AQUA satellite day product (myd_day). Upper left and bottom right panels shows the RMSE distribution by spatial block (~500 
km^2) and temporal block (~10 day) respectively, allowing visualization of average trends and extreme values. The upper right panel shows the complex patterns in 
RMSE by aggregating yearly values by spatiotemporal block by taking the average. The bottom left panel represents mean performance by spatial block. Highlighted 
blocks and areas represent areas where the minimum information requirements were not met at least once (0.5 % available data and at least 100 observations). These 
values were excluded from the calculations in all panels. Similar panels for other the other products and performance indicators can be found in the supplementary 
material (Figs. D.1–D3). 
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(Table 2). On average, RMSE and MAE were similar for local versus 
global validation, with smaller differences between validation strategies 
compared to stage1 (Tables 1 & 2), thus suggesting that overall models 
were stable across their spatiotemporal extent. Global R2 showed a 
modestly higher random-CV performance compared that of block-CV. 

Local block-CV RMSE showed strong spatial patterns that follow 
European geographic features (Fig. 2). Specifically, average spatial 
performance was consistently lower in coastal and mountain regions in 
all Ta models (Figs. 2, E.4–E.10). 

Overall, LSTmean was the strongest predictor of Ta in all models 
followed by Julian date, NDVI and LSTvar and latitude (Fig. E.11). Land 
use and weather variables showed a small contribution to variable 
importance for all models (Fig. E.11). 

To illustrate the models’ predictions, Fig. 3 shows local daily vari-
ability in mean temperature for five European cities during a warm day 
(2017-06-19). Due to its higher spatial resolution, the Ta and LST models 
developed are better at capturing within city and urban-rural Ta con-
trasts compared to ERA5-land 2mt products and weather station data 
(Fig. 3). This increased resolution allow researchers to map UHI and 
investigate its effects on health, while also capturing regional patterns in 
Ta (Fig. 4). 

Fig. 4 shows regional and city wide contrasts in mean temperature 
and temporal contrasts in daily Tmean for summer 2017. Modelled area 
weighted daily Tmean captures the same temporal variability than 
weather stations (Fig. 4 central panels), but can also inform about long- 
term temperature contrasts over urban areas. Tmean models clearly 
show prominent geographical features such as mountain ranges and 
large river valleys, but also urban heat islands and local contrasts within 
city limits (Fig. 4 left and right panels). 

4. Discussion 

This paper describes the model development of Europe-wide daily 
mean, minimum and maximum temperature at 1 × 1 km resolution for 
the 2003–2020 period. We used random forest in a 2 stage modelling 
framework to firstly gap fill missing data in satellite derived LST and 
secondly to model ground based Ta combining LST with weather station 
data and other spatiotemporal predictor variables. Overall, the models 
showed a good performance at both the global and local scale. 

4.1. Comparison with previous temperature models 

Our LST imputation models (stage 1) show a similar performance to 
LST models used in other studies using RF (Noi et al., 2017; Xiao et al., 
2021) or other approaches (Shiff et al., 2021; Zhang et al., 2022b). 

Our stage 2 models showed similar performance as studies using 

comparable modelling techniques to estimate daily Ta. Several studies 
developed models to estimate mean Ta in France, Northeastern USA, 
Southeastern USA, Israel and Sweden with reported random-CV RMSE 
ranging between 1.52 ◦C and 2.16 ◦C (Kloog et al., 2017; Kloog et al., 
2014; Shi et al., 2016; Zhou et al., 2020; Jin et al., 2022; Rosenfeld et al., 
2017). Hough et al. (2020), Flückiger et al. (2022) and Nikolaou et al. 
(2023) included Tmin and Tmax models in addition to Tmean for 
France, Switzerland and Germany respectively; with a random-CV RMSE 
ranging between 1.03 ◦C and 1.89 ◦C. 

Some models estimate Ta using three stages (Kloog et al., 2014; Shi 
et al., 2016; Kloog et al., 2017; Rosenfeld et al., 2017; Hough et al., 
2020; Nikolaou et al., 2023). The first stage calibrates the Ta ~ LST 
relationship in grid cells where both weather station and satellite ob-
servations are available. The second stage predicts Ta were LST is 
available. In the third stage, grid cells without Ta or LST observations 
are filled using the relationship between the predicted Ta grid cells and 
the surrounding Ta data (from weather stations within a buffer or using 
inverse distance weighting) and additional covariates. Even though the 
LST record is incomplete and the available data is clustered, the major 
advantage of remotely sensed MODIS LST is its coverage and depth (up 
to four observations per day). Our results also showed the overall good 
performance of our four LST models (Table 1), the ability of LST to 
capture small scale temperature contrasts (Figs. 3 & 4). Gap-filling LST 
using weather reanalysis data strengthens Ta modelling as it leverages 
the available data directly by allowing to keep more Ta records for 
calibrating the Ta ~ LST relationship and for model validation (I); and 
indirectly by using the relative abundance of LST observations to create 
resolved and informative Ta predictors independent of the weather 
station distribution (II). Furthermore it reduces the spatiotemporal bias 
towards clear sky conditions when calibrating the Ta ~ LST relationship. 
While stage 1 was able to produce gap-free LST surfaces, LST models 
were biased towards clear-sky conditions. Thus, gap-filled LST values 
might represent surface temperature less accurately than LST 
observations. 

Due to its high temporal coverage (18 years) and spatial (1 × 1 km) 
resolution, our models and the resulting temperature surfaces allow the 
investigation of long-term health effects of temperature while taking 
into account within city variation. Temperature surfaces can also be 
aggregated over space and/or time to match health data at different 
resolutions and can provided improved population weighted exposure 
estimates at the city level for investigating the effect of heatwaves on 
health. 

By increasing the spatial resolution, from ~9x9km (ERA5-Land) to 1 
× 1 km (our models), we were able to capture within city temperature 
variability and thus the UHI effect (Fig. 3). At the city scale, LSTmean 
showed more variability and larger temperature contrasts compared to 

Table 2 
Model performance by product, validation strategy and resolution for ambient temperature models (TA - stage 2) for three common performance indicators. Local 
performance reports the average of all spatiotemporal block values and its distribution (p10-p50-p90). Global performance reports the average between all yearly 
model values and its distribution. Following Eq. (1) R2 can take negative values when model performance is lower than the local average. To limit the effect of very 
small sample sizes on local R2 and improve interpretability, we filter out all local fold values calculated with less than 10 sampled observations, we assigned NA to all 
local R2 folds showing infinite values, the value of − 1 to all local R2 values showing values bellow − 1, and only calculated local performance in blocks with more than 
28 observations. MAE and RMSE are expressed in degrees Celsius.  

Product Validation strategy Resolution MAE (◦C) R2 RMSE (◦C) 

Tmean Block-CV Global 1.1 (1.1–1.1–1.1) 0.971 (0.966–0.971–0.974) 1.5 (1.4–1.5–1.5) 
Local 1.1 (0.7–1–1.5) 0.736 (0.49–0.799–0.917) 1.4 (0.9–1.3–1.9) 

Random-CV Global 0.9 (0.9–0.9–0.9) 0.979 (0.976–0.979–0.982) 1.2 (1.2–1.2–1.3) 
Local 0.9 (0.6–0.9–1.3) 0.792 (0.591–0.844–0.938) 1.2 (0.8–1.1–1.6) 

Tmin Block-CV Global 1.5 (1.5–1.5–1.6) 0.936 (0.927–0.937–0.944) 2 (2–2–2.1) 
Local 1.6 (1.1–1.5–2.1) 0.594 (0.307–0.651–0.83) 2 (1.4–1.9–2.7) 

Random-CV Global 1.3 (1.3–1.3–1.4) 0.952 (0.946–0.953–0.959) 1.8 (1.7–1.8–1.8) 
Local 1.4 (1–1.3–1.8) 0.666 (0.415–0.717–0.87) 1.7 (1.2–1.7–2.3) 

Tmax Block-CV Global 1.4 (1.4–1.4–1.5) 0.96 (0.957–0.961–0.964) 1.9 (1.9–1.9–2) 
Local 1.4 (0.9–1.3–2) 0.678 (0.391–0.747–0.896) 1.8 (1.2–1.7–2.5) 

Random-CV Global 1.2 (1.2–1.2–1.2) 0.972 (0.969–0.972–0.975) 1.6 (1.6–1.6–1.7) 
Local 1.2 (0.8–1.2–1.7) 0.747 (0.508–0.806–0.923) 1.6 (1–1.5–2.2)  
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Tmean (Fig. 3). LST has been found to overestimate the UHI effect 
(Azevedo et al., 2016; Venter et al., 2021), thus agreeing with our 
findings and justifying our approach to use LST only as one of the pre-
dictor variables in our stage 2 Ta model. 

4.2. Model structure 

Variable importance showed that ERA5 skin temperature is a good 
predictor in the stage 1 models and that LSTmean and LSTvar were 
important predictors of Ta in stage 2. Although Flückiger et al. (2022) 
used LSTmean to model Ta for Switzerland, we argue that adding LSTvar 

provides a more complete representation of daily temperatures. Our 
models showed that land use variables ranked low in importance for all 
Ta models while variables that represent seasonal and regional patterns 
like NDVI, date and latitude had the highest importance after including 
LST. Furthermore, land use variables are stable over time and do not 
explain any seasonal variation. As the modelled spatiotemporal extent is 
large and RF relies on minimizing the variance at each split (node) for 
model fitting and calculating variable importance, predictors that affect 
regional contrast in the response will drive model calibration. In 
contrast, there is more room for interventions at the local scale and in-
formation regarding the drivers of local contrast can have an important 

Fig. 2. Local block-CV RMSE for the average temperature models (Tmean). Upper left and bottom right panels shows the RMSE distribution by country and month 
(~ temporal block) respectively, being able to visualize average trends and extreme values. The upper right panel shows the complex patterns in RMSE by 
aggregating yearly values by country and month by taking the average. The bottom left panel represents mean RMSE by spatial block (~125 km^2). Shared blocks 
between countries (dashed lines) were included for each country average. Similar panels for other the other products and performance indicators can be found in the 
supplementary material. 
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effect on policy. While LSTmean and LSTvar are likely to incorporate 
some information regarding land use characteristics, we argue that in 
spite of its limited global importance, land use predictors should be kept 
in Ta models as they represent the mechanisms that drive temperature 
pattern in urban areas. Due to the clustered distribution of Ta stations 
very few areas had the station density to inform about local Ta contrast 
related to land use characteristics. While high density station clusters 
can provide an accurate representation of local contrast in Ta and of 
predictor space, these differences are often modulated by regional 
weather patterns and might not be extrapolated. Future research should 
provide more accurate descriptors of variable importance at the local 
scale and make a better use of high-density station clusters by an addi-
tional layer of local models. As models increase the spatial resolution to 
better capture small-scale temperature contrast within urban environ-
ments, discussion should also focus on whether the used weather station 
networks accurately cover the model’s extent at such resolution. 

4.3. Validation strategies 

With an increasing spatiotemporal extent of the study area, finding 
datasets that accurately represent the area and period of interest be-
comes more difficult. Moreover, traditional random-CV assumes that the 
training and validation sets are independent and representative and 
provides biased performance indicators otherwise, specially under 
cluster distributions (de Bruin et al., 2022; Wadoux et al., 2021). Evi-
dence suggest that due to the data autocorrelation structure close ob-
servations might not be independent (Roberts et al., 2017), and Meyer 
and Pebesma (2022) showed that a probable cause of overoptimistic 
performance when using random-CV is that samples used for training 
are clustered and very distant from the prediction areas. Ta weather 
station networks are designed to calibrate meteorological models and/or 
to provide local weather information at for example airports leading to 
an uneven spatial distribution. Remote sensed LST is biased towards 
clear sky conditions and clear sky conditions are linked to weather 
patterns that also affect temperature towards both extremes (heat during 

Fig. 3. Spatial Contrast in daily Temperature for five European cities (from left to right: Paris, Budapest, Roma, Stockholm, London) for June 19th 2017. First row: 
modelled Tmean; second row: Average of the four modelled LST surfaces (LST_mean); third row: ERA5 land 2 m Temperature, fourth row: Transect values for Tmean 
(black), LST_mean (red), ERA5 land 2mt (blue) and weather station values (black). X axis represents longitude. Points within maps represent the location of weather 
stations and the recorded average ambient temperature. 
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day and minimum temperature in the night). In our case, both initial LST 
and Ta datasets showed a strongly clustered distribution (Figs. A.5 & 
E.1). Improving training set representativeness for large scale Ta models 
could be achieved by improving the accessibility to national and private 
weather monitoring networks, using crowdsourced meteorological sta-
tions (Fenner et al., 2021; Venter et al., 2021) and using alternative 
remote sensing products (Zhu et al., 2017). However, for the time being, 
researchers can still provide less biased performance estimators by 
balancing observation density through sampling or applying weights, or 
use alternative validation approaches (Meyer and Pebesma, 2021; 
Meyer and Pebesma, 2022; Sarafian et al., 2021; de Bruin et al., 2022; 
Roberts et al., 2017). De Bruin et al. (2022) and Wadoux et al. (2021) 
showed that, although block-CV overestimates error under balanced and 
representative sample distributions, under clustered and gapped sample 
distributions random-CV underestimates error and Block-CV is the least 
bias validation approach. We argue that random-CV might reflect model 
performance better in areas with high data density whereas block-CV 
better reflects performance in areas with little or no information, and 

that using block and random CV together provides additional informa-
tion to manage model expectations while also allowing for model 
comparisons. 

4.4. Global versus local model performance 

Global R2 values are sensitive to the spatiotemporal extent of a 
model. As the spatiotemporal extent increases the central tendency is 
less representative of particular regions and provides less valuable in-
formation on how the model is performing locally (Meyer and Pebesma, 
2021; Meyer and Pebesma, 2022). Local performance consistently 
showed less optimistic values than global performance independently of 
the validation strategy in both stages. We also found that block-CV 
shows higher variability in local performance and a lower central ten-
dency compared to random-CV (Table 2). Meyer and Pebesma (2022) 
report striking differences between global and local performance and 
Wadoux et al. (2021) and de Bruin et al. (2022) report the overall 
negative effects of clustering on modelled map accuracy. While we 

Fig. 4. Summer temperature 2017. Left panel: Average Summer Temperature (JJA) from Tmean surfaces for year 2017; Center panel: Daily temperature for five 
European cities (from top to bottom: Paris, Budapest, Roma, Stockholm, London) for the period June–August 2017. Daily area-aggregated average from Tmean 
models (black) and weather stations daily averages (blue); Right panel: Average Summer Temperature from daily Tmean surfaces for year 2017 in 5 European cities. 

A. Bussalleu et al.                                                                                                                                                                                                                               



Science of the Total Environment 928 (2024) 172454

12

report important differences between mean local R2 and global R2, and 
differences in local RMSE and MAE across the spatiotemporal extent, it is 
important to highlight that average local RMSE and MAE were very 
close to those reported globally (Tables 1 & 2). These findings indicate 
that, on average, models perform well at the local level. While local 
block-CV showed increased variability and decreased performance 
compared to global validation and random-CV, it also shows that models 
were stable across most of the spatiotemporal extent with a local block- 
CV RMSE lower than 3 ◦C for approximately 96 % of spatiotemporal 
blocks included in the calculations, and a local block-CV R2 higher than 
0.5 for approximately 82 % (mean = 89.525, min = 75.079, max =
83.746) of the spatiotemporal blocks included in the calculations. Local 
performance was able to clearly point areas and periods were the model 
had limited applicability, such as Poland and Iceland for Tmax models or 
Iceland for Tmin models (Figs. E.4–E.10). Thus, the use of multiple 
validation strategies and of local performance estimators improved 
model understanding while providing realistic expectations and 
explicitly addressed issues in accuracy assessment that can damage 
scientific credibility if left unchecked (Roberts et al., 2017; Meyer and 
Pebesma, 2022). Furthermore, we did not detect an increase in local 
block-CV performance with increasing local data density or sampled 
proportion in stage 1 (Fig. D.8). We believe that this difference is due to 
the stratified sampling of LST data in stage 1. We decided not to do this 
in stage 2 as the Ta station distribution was more clustered with very few 
blocks having enough stations to inform about local contrasts. Increased 
measurement error and bias in exposure-response estimates has been 
linked to decreasing sample sizes in simulation studies (Basagana et al., 
2013). We found a similar trend between local performance and infor-
mation density (Fig. E.12), suggesting better exposure estimates in data 
rich areas. Sensitivity of local and global model performance to local 
information density and clustering could also inform sampling strategies 
and help at visualizing overfitting (Crosetto et al., 2000). Here, areas 
with a high degree of urbanization were also data rich areas and had 
high local performance (Figs. 2, E.1, E.4–E.10), thus suggesting accurate 
exposure estimates for these densely populated areas (eurostat, 2022). 
Further research is required on how differences in local performance and 
model stability across the spatiotemporal extent affect exposure- 
response relationships over larger areas. 

Wang et al. (2020) recently provided a theoretical framework for 
addressing spatial stratified heterogeneity, spatial autocorrelation and 
the distinction between population and sample in spatial modelling 
referred to as the spatial statistics trinity. Our sample is clearly not a 
random sample of the population, as some countries have a much larger 
sample density. Temperature data also exhibited spatial autocorrelation. 
We applied these concepts in the block-validation approach and showed 
that performance statistics were indeed modestly worse compared to 
random validation, ignoring these features. Spatial stratified heteroge-
neity is what we aimed at predicting with our GIS and satellite derived 
predictor variables. Future temperature modelling might benefit from a 
more explicit application of this framework as another method to 
characterize possible bias or uncertainty in the temperature estimates as 
a result of the uneven spatial distribution of weather station data, the 
dependent variable in our models. 

4.5. Limitations 

Due to missing predictors (boundary layer height and cloud cover) 
and uncompleted records near coastal regions in the higher resolution 
ERA5-land dataset (~9 km) we decided to use the coarser ERA5 dataset 
(~27 km). Being important predictors of LST, stage 1 modelling could 
potentially benefit from a complete record of weather predictors at a 
higher resolution and future research should consider using ERA5-Land 
data to gap fill LST. Exploratory analysis found that for 2 m temperature 
from both datasets (after projection to the 1 × 1 EU reference grid using 
bilinear interpolation), the distribution of daily average pixel wise dif-
ferences was 0.64, 0.77 and 0.89 for the median and 75 and 95 

percentiles respectively, with higher differences in colder periods. When 
aggregating daily differences by pixel, the distribution of average pixel- 
wise differences was 0.51, 0.66 and 1.28 for the median and the 75 and 
95 percentiles respectively. 

The shape and position of blocks were arbitrarily selected. For this 
reason, blocks located in coastal areas are smaller than those fully 
covered by land. Area differences further increases the variability in the 
number and density of observations per block. In addition, within a 
block, observations can be clustered in a smaller area following mete-
orological or land use patterns, affecting local representativeness. 
Moreover, block-CV can be influenced by the specific combination of 
blocks, used for model training. Future research using block-CV and 
local performance should consider running multiple replicas with 
different points of origin for drawing blocks, thus limiting the effect of 
specific training sets on block performance and decreasing the effect of 
block shape, area and position. Further improvements could include 
using clustering algorithms (i.e. k-means clustering) to create more 
organic spatiotemporal blocks and creating folds so that they are equally 
good representations of multivariate predictor space (Roberts et al., 
2017). 

Local R2 can inform about spatiotemporal patterns in performance, 
but it was also sensitive to the data distribution, local data density and 
the size of the local validation set. We observed that the variability of 
local random-CV performance estimators between folds increased with 
decreasing local data density and spatiotemporal blocks with very small 
validation sets also showed unrealistically low R2 values. Future 
research could consider increasing the number and density of weather 
stations, observation weighting or using areas of applicability following 
Sarafian et al. (2021) or Meyer and Pebesma (2021). 

Finally, here we selected RF as our modelling algorithm a priori and 
focused on developing a customized and model agnostic validation 
strategy and aggregating performance at a higher resolution. Future 
research could apply the developed workflow to compare performance 
between different modelling algorithms. 

5. Conclusion 

This work provides Europe wide daily temperature models at 1 × 1 
km resolution that will allow harmonizing exposure assessment for 
multi-cohort studies. Ta models showed overall good performance, even 
under strict validation strategies. Due to its improved spatial resolution 
compared to ERA5-land our Ta models capture local contrast and 
decrease exposure misclassification. Furthermore, mean, minimum and 
maximum ambient temperature surfaces were developed to provide 
different exposure estimates that can be related to health outcomes. 
Tmean surfaces had the highest performance and Tmin the lowest. While 
all Ta models showed spatiotemporal differences in performance, all 
models were relatively stable. We found that local performance in areas 
with low information density showed more variability and higher error. 
While denser Ta monitoring networks across larger areas would improve 
model accuracy and stability, our findings also support the need for local 
performance indicators and improved validation strategies, especially 
when modelling at large geographical extents. 
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Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: a review of applications 
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 
Chakraborty, T., Hsu, A., Manya, D., Sheriff, G., 2020. A spatially explicit surface urban 

heat island database for the United States: characterization, uncertainties, and 
possible applications. ISPRS J. Photogrammetry Remote Sensing 168, 74–88. 

Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., 
van Donkelaar, A., Hvidtfeldt, U.A., Katsouyanni, K., Janssen, N.A.H., Martin, R.V., 
Samoli, E., Schwartz, P.E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K., 
Vienneau, D., Vermeulen, R., Brunekreef, B., Hoek, G., 2019. A comparison of linear 
regression, regularization, and machine learning algorithms to develop Europe-wide 
spatial models of fine particles and nitrogen dioxide. Environ. Int. 130, 104934. 

CHMI, 2021. Daily Average, Mean and Max Air Temperatures [Online] [accessed. 12. 06. 
2021]. Available from. https://www.chmi.cz/historicka-data/pocasi/zakladni-i 
nformace. 

Crosetto, M., Tarantola, S., Saltelli, A., 2000. Sensitivity and uncertainty analysis in 
spatial modelling based on GIS. Agric. Ecosyst. Environ. 81, 71–79. 

de Bruin, S., Brus, D.J., Heuvelink, G.B.M., van Ebbenhorst Tengbergen, T., Wadoux, A. 
M.J.C., 2022. Dealing with clustered samples for assessing map accuracy by cross- 
validation. Eco. Inform. 69. 

De Ridder, K., Lauwaet, D., Maiheu, B., 2015. UrbClim – a fast urban boundary layer 
climate model. Urban Clim. 12, 21–48. 

eurostat, 2022. Urban-rural Europe - introduction. In: Eurostat Statistics Explained. http 
s://ec.europa.eu/eurostat/statistics-explained/index.php?title=Urban-rural_Europe 
_-_introduction (Accessed 20 Jul 2023).  

Fenner, D., Bechtel, B., Demuzere, M., Kittner, J., Meier, F., 2021. CrowdQC+—a 
quality-control for crowdsourced air-temperature observations enabling world-wide 
Urban climate applications. Front. Environ. Sci. 9. 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate 
surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. 

Flückiger, B., Kloog, I., Ragettli, M.S., Eeftens, M., Röösli, M., de Hoogh, K., 2022. 
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