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INCOMPLETENESS OF BOUNDEDLY AXIOMATIZABLE THEORIES

ALI ENAYAT AND ALBERT VISSER

Abstract. Our main result (Theorem A) shows the incompleteness of any consistent sequential theory T formu-
lated in a finite language such that T is axiomatized by a collection of sentences of bounded quantifier-alternation-
depth. Our proof employs an appropriate reduction mechanism to rule out the possibility of completeness by
simply invoking Tarski’s Undefinability of Truth theorem. We also use the proof strategy of Theorem A to obtain
other incompleteness results (as in Theorems A+, B and B+).

Our main result (Theorem A) was prompted by the following question1 of Steffen Lempp and Dino Rossegger;
the question arose in the context of their joint work [AGLRZ] with Uri Andrews, David Gonzalez, and Hongyu
Zhu, in which they establish: For a complete first-order theory T , the set of models of T is Π0

ω-complete
under Wadge reducibility (i.e., reducibility via continuous functions) if and only if T does not admit a first-
order axiomatization by formulae of bounded quantifier complexity. In what follows PA− is the well-known
finitely axiomatized fragment of PA (Peano Arithmetic) whose axioms describe the non-negative substructure
of discretely ordered rings (with no instance of the induction scheme, hence the minus superscript), as in Kaye’s
text [K] on models of PA.

Question ♦. Is there a consistent completion of PA− that is axiomatized by a set of sentences of bounded
quantifier complexity?

Remark 1. It is well-known that the answer to the above question is in the negative when PA− is strengthened
to PA. This result follows from a theorem of Rabin [Ra] that states that for each n ∈ ω no consistent
extension of PA (in the same language) is axiomatized by a set of Σn-sentences.2 Rabin’s result refines an earlier
theorem of Ryll-Nardzewski [Ry] that states that no consistent extension of PA is finitely axiomatizable. Ryll-
Nardzewski and Rabin both employed model-theoretic arguments relying on nonstandard elements to prove the
aforementioned results (see Theorem 10.2 on p.132 of Kaye’s text [K] for a modern treatment). Rabin’s result
can be also established with an argument that mixes proof-theoretic machinery, partial satisfaction classes, and
Gödel’s second incompleteness theorem (see Theorem 2.36 of Chapter III of [HP] for an exposition). As shown
by Montague [Mon], a similar result can be established for any inductive sequential theory T , i.e., a sequential
theory that has the power to prove the full scheme of induction over its ‘natural numbers’ for all formulae in
the language of T (this involves a designated interpretation of a suitable base theory of the natural numbers).
In this more general setting the relevant hierarchy is based on the depth of quantifier alternations; canonical
examples of inductive sequential theories include all extensions of PA, Z (Zermelo set theory), Z2 (second order
arithmetic), and KM (Kelley-Morse theory of classes).

Theorems A and A+ are formulated for sequential theories. At first approximation, a theory is sequential if
it supports a modicum of coding machinery to handle finite sequences of all objects in the domain of discourse.
Sequentiality is a modest demand for theories of arithmetic and set theory; however, by a theorem of Visser
[V-2], (Robinson’s) Q is not sequential. There are many equivalent definitions of sequentiality; the original
definition due to Pudlák (used by Jeřábek [J-1] in his proof of sequentiality of PA−) is as follows: A theory T is
sequential if there is a formula N(x), together with appropriate formulae providing interpretations of equality,
and the operations of successor, addition, and multiplication for elements satisfying N(x) such that T proves
the translations of the axioms of Q (Robinson’s arithmetic) when relativized to N(x); and additionally, there is
a formula β(x, i, w) (whose intended meaning is that x is the i-th element of a sequence w) such that T proves
that every sequence can be extended by any given element of the domain of discourse, i.e., T proves:

1Thanks to Roman Kossak for bringing this interesting question to our attention. We are also indebted to Mateusz  Le lyk, Dino
Rossegger, and Saeed Salehi for their helpful feedback on the preliminary drafts of this paper, and to Emil Jeřábek for his perceptive
remarks on the penultimate draft.

2In his paper Rabin points out that this result was possibly known (but not published) by others, including Feferman, Wang,
Scott, Kreisel, and Tennenbaum.
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∀w, x, k ∃w′ ∀i, y

[

[N(k) ∧ i ≤ k]→

[

β(y, i, w′)↔
[i < k ∧ β(y, i, w)] ∨ [i = k ∧ y = x]

]]

.

For more information about sequentiality, see [V-4].

In light of the aforementioned proof3 of sequentiality PA− by Jeřábek [J-1], the following general result answers
Question ♦ in the negative. Note the condition of finiteness of the language in Theorem A cannot be eliminated,
as indicated in Remark 4.

• Throughout the paper Σ∗
n is the hierarchy of formulae whose measure of complexity is depth of quantifier

alternation, as in [V-4].

Theorem A. For any fixed n ∈ ω, every consistent sequential theory formulated in a finite language that is
axiomatized by a set of Σ∗

n-sentences is incomplete.

Remark 2. The proofs of our other theorems are all based on the proof of Theorem A; we provide a direct
proof of this theorem, employing a middle range level of abstraction, addressed to a non-specialist reader. The
three ingredients of the proof are (1) partial satisfaction predicates, (2) Rosser’s ‘trick’ used in his celebrated
generalization of Gödel’s first incompleteness theorem in which the technical hypothesis of ω-consistency (more
precisely: 1-consistency) is removed; and (3) Tarski’s Undefinability of Truth theorem4. Partial satisfaction
predicates were first introduced by Mostowski [Mos] in his proof demonstrating that PA is essentially reflexive
(i.e., PA and all of its extensions in the same language can prove the formal consistency of each of their finitely
axiomatized subtheories). The technology of partial satisfaction predicates was further elaborated in the context
of sequential theories by Montague [Mon], Pudlák [P-2], and finally Visser [V-4], whose variant we rely upon in
our proof. As we will see, our proof shows that for complete sequential theories formulated in a finite language
that are axiomatized by a set of Σ∗

n statements, the following equation holds:

Rosser provability from True Σ∗
n statements = Truth.

Thus the only use of diagonalization in our proof is the rudimentary Tarskian one. It should be stressed that
upon the completion of our paper we were informed by Emil Jeřábek that he struck upon the same idea in
2016 and established an abstract version of the above equation in a MathOverflow answer (as explained in
Remark 6). In the subsequent discussions with Emil, he kindly expressed a preference for us to proceed with
the publication of the paper with the minimal proviso that his aforementioned prior work be referenced, which
is precisely the course of action the authors settled on.

There is also a conceptual/pedagogical take-away to our approach. Let R be the well-known fragment
of PA introduced in the Tarski-Mostowski-Robinson monograph [TMR] within which all recursive functions
are representable. One can prove the (first) incompleteness theorem for a consistent computably enumerable
extension T of R, without any extra soundness assumptions about T , by first proving Tarski’s undefinability of
truth theorem with a straightforward diagonalization (with no need for the fixed point theorem, as in [TMR,
p.46]), and then the incompleteness of T can be demonstrated using a reductio ad absurdum by verifying that
the completeness of T implies that Rosser provability from T yields a truth definition5 (technically, this falls
under our Theorem A+, by setting A = ∅ in that theorem). Note that in contrast to the usual proof of the
incompleteness theorem using the fixed point theorem, our proof is not constructive, i.e., it does not yield an
algorithm that takes a description of a consistent computably enumerable extension T of R as input and outputs
a sentence that is independent of T .

Remark 3. As an alternative to the proof of Theorem A presented below, one can also derive Theorem A
(using Fact F below) from a version of Rosser’s Theorem due to Saeed Salehi; see [S]. The version proposed by
Salehi holds under certain abstract conditions. More specifically, viewed as an application of Salehi’s result, our

3Indeed Jeřábek’s result is stronger since it establishes the sequentiality of a weaker theory than the usual formulation of PA−.
This weaker theory is a universal theory and described by Jeřábek as the theory of discretely ordered commutative semirings with
a least element, a theory in which the existence of predecessors is unprovable.

4Tarski’s theorem [TMR, p.46] is very general; it states that if T is a theory formulated in a language L has the property that
the diagonal function ϕ(x) 7−→ ϕ(pϕq) is representable in T , then there is no L-formula V (x) such that T proves ψ ↔ V (pψq) for
all L-sentences ψ. It is well-known that the diagonal function is representable in the theory R of [TMR]; which in turn makes it
clear that the diagonal function is representable in sequential theories formulated in a finite language since (Robinson’s) Q, and a
fortiori R, is interpretable in sequential theories.

5Using additional machinery, Gödel’s second incompleteness theorem can also be derived from Tarski’s Undefinability of Truth
theorem; see [V-3].
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proof presented gives a realization of these conditions in the case at hand and a verification that our realization
works. Our proof follows an alternative route to the Rosser-style result since we employ a reduction to Tarski’s
undefinability of truth, where Salehi presents an argument that follows the traditional Rosser argument more
directly. Our different route can also be employed at the level of abstraction of Salehi’s work. Also, as
kindly pointed out by Mateusz  Le lyk, Theorem A follows from Proposition 31 of his joint recent work [LW]
with Bartosz Wcis lo (asserting the existence of so-called (n, k)-flexible formulae for computably enumerable
sequential theories).

Before presenting the proof of Theorem A, we state an important fact that plays a crucial role in the proof
of Theorem A. The following result was established by Visser in [V-1], and refined in [V-4]; this result refines
the work of Pudlák in [P-1] and [P-2] in which logical depth (length of the longest branch in the formation tree
of the formula) is used as a measure of complexity instead of the depth of quantifier alternations complexity.
Note that part (b) of the fact below is an immediate consequence of part (a).

Fact F. Suppose T is a sequential theory T formulated in a finite language L, and fix n ∈ ω. Fix some
interpretation N of arithmetic in T satisfying I∆0.

6

(a) There is a T -provable definable cut In of N and a formula Satn(x, y) such that, provably in T , Satn satisfies
the Tarskian compositional clauses for Σ∗

n-formulae in In (and for all variable assignments).

(b) There is a formula Truen(x) such that, provably in T, Truen(x) is extensional7, i.e., it respects the equivalence
relation representing equality in the interpretation N ; and for all models M |= T , and for all Σ∗

n-sentences ψ,
we have:

M |= (ψ ↔ Truen(pψq)) .

Proof of Theorem A. Suppose not, and let T be consistent completion of sequential theory formulated in a
finite language L. Then by the definition of sequentiality T is also sequential. Suppose to the contrary that for
some n ∈ ω, T is axiomatized by a set of Σ∗

n sentences, i.e., suppose (1) below:

(1) For some n ∈ ω, there is a set A of Σ∗
n sentences such that for all L-sentences ψ, ψ ∈ T iff A ⊢ ψ.

Our proof by contradiction of Theorem A will be complete once we verify Claim ♥ below since it contradicts
Tarski’s venerable Undefinability of Truth theorem.

CLAIM ♥. There is a unary L-formula ϕ(x) such that for all L-sentences ψ, T ⊢ ψ ↔ ϕ(pψq).

Since T is sequential, we can find an L-formula, denoted PrfTruen(π, x), that expresses “π is (the code for) a
first order proof of x from assumptions in Truen (i.e., from {x : Truen(x)}). In particular, for each standard
L-sentence ψ and standard π, and each model M of T , we have:

(2) M |= PrfTruen(π, pψq) iff π is (a code for) a proof of ψ from TrueMn := {ϕ : M |= Truen(pϕq)}.

Our proposed candidate of ϕ(x) for establishing Claim ♥ is the following formula ρ(x); our choice of the letter
ρ indicates the fact that the formula expresses Rosser-provability (from the true Σ∗

n sentences).

ρ(x) := ∃y [PrfTruen(y, x) ∧ ∀z < y ¬PrfTruen(z,¬x)] .

Thus our goal is to show that for all L-sentences ψ, T ⊢ ψ ↔ ρ(pψq). By the completeness theorem for first
order logic it suffices to show that for each model8 M of T , M |= ψ ↔ ρ(pψq). For the rest of the proof, let
M |= T . We will first show:

(3) For all L-sentences ψ, M |= ψ → ρ(pψq).

To show (3), assume ψ holds in M. Let A be as in (1), and note that A ⊆ TrueMn . By the assumptions about
T , there are finitely many sentences α1, ..., αn in A such that {α1, ..., αn} ⊢ ψ. Let π0 ∈ ω be (the code of) a
proof of ψ from {α1, ..., αn} . Thanks to (2) we have:

(4) M |= PrfTruen(π0, pψq).

The assumption of consistency of T coupled with (2) yields:

(5) M |= ∀z < π0 ¬PrfTruen(z, pψq).

6It is well-known Q has a definable cut that satisfies I∆0 (see Theorem 5.7 of [HP]), so every sequential theory supports such an
interpretation N .

7Without this extensionality stipulation, the numeral does not necessarily work as a term.
8The models are just a heuristic here. In fact the whole argument can be formulated in the complete theory T .
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This concludes the proof of (3).

To complete the proof of CLAIM ♥, we need to show that M |= ¬ψ → ¬ρ(pψq) for all L-sentences ψ. For this
purpose assume M |= ¬ψ.

By putting (1) and the assumption that M |= ¬ψ, we conclude that there is a standard proof π0 of ¬ψ from
TrueMn , which by (2) implies:

(6) For some π0 ∈ ω,M |= PrfTruen(π0, p¬ψq).

To see that M |= ¬ρ(pψq) suppose to the contrary that M |= ρ(pψq). By the choice of ρ, this means:

(7) For some m0 ∈M , M |= PrfTruen(m, pψq) ∧ ∀z < m0 ¬PrfTruen(z, p¬ψq).

The key observation is that putting (2) with the assumption M |= ¬ψ allows us to conclude that the m0 in
(7) must be a nonstandard element of M. Thus by standardness of π0 of (6) and the ordering properties of
‘natural numbers’ in M,M |= π0 < m0, which contradicts the second conjunct of (7). �

The following result is the analogue of Theorem A for sufficiently strong arithmetical theories. Recall that the
Σn-hierarchy of formulae is the usual hierarchy of arithmetical formulae in which Σ0-formulae are defined as
formulae in which all quantifiers are bounded (recall that Σ0 = Π0 = ∆0 here); I∆0 is the fragment of PA in
which the induction scheme is limited to ∆0-formulae, and Exp is the arithmetical sentence that asserts that
the exponential function 2x is total (it is well-known that the deductive closure of I∆0 goes well beyond that
of PA−; moreover Exp is not provable in I∆0).

Theorem B. For each n ∈ ω every consistent extension of I∆0+Exp (in the same language) that is axiomatized
by a set of Σn-sentences is incomplete.9

Proof. As shown by Gaifman and Dimitracopoulos [GD] (see Chapter V of [HP] for an exposition) for each
n ∈ ω there is a formula SatΣn

such that, provably in I∆0 + Exp, SatΣn
satisfies compositional clauses for all

Σn-formulae. In particular there is a formula TrueΣn
(x) such that for all models M of I∆0 + Exp, and for all

Σn-sentences ψ, ψ ∈ TrueMΣn
iff M |= ψ. We can now repeat the proof strategy of Theorem A with the use of

TrueMΣn
instead of TrueMn .

Alternatively, invoke the provability of the MRDP theorem on the Diophantine representability of computably
enumerable sets in I∆0 + Exp (also shown in [GD]). By the MRDP-theorem each Σn-formula is equivalent to
a Σ∗

n-formula in I∆0 + Exp, so Theorem A applies. �

With the help of Craig’s trick10 to obtain a computable axiomatization TCraig of an arbitrary computably
enumerable theory T , the proof strategy of Theorem A can be straightforwardly adapted by using PrfTCraig+Truen

instead of PrfTruen to establish the following strengthening of Theorem A:

9The set-theoretical analogue of Theorem B is Theorem C below concerning the well-known Levy hierarchy of formulae of set
theory. Theorem C can be proved with the same strategy as in the proof of Theorem A (and the first proof of Theorem B) thanks to
the availability of the relevant definable partial satisfaction classes in KP. Here KP is Kripke-Platek set theory with the scheme of
foundation limited to ΠLevy

1 -formulae (equivalently: the scheme of ∈-induction for ΣLevy
1 -formulae). Thus in contrast to Barwise’s

KP in [B], which includes the full scheme of foundation, our version of KP is finitely axiomatizable. Note that the axiom of infinity
is not among the axioms of KP. The existence of definable partial satisfaction classes in KP follows from two facts: (1) KP can prove
that every set is contained in a transitive set; and (2) KP can define the satisfaction predicate for all of its internal set structures (the

proofs of both of these facts can be found in Barwise’s monograph [B]; the proofs therein make it clear that only ΠLevy
1 -Foundation

is invoked). See also Theorem 2.9 of [EM] (the statement of which involves KP + the axiom of infinity, but the axiom of infinity
is not used in the proof). It is also worth pointing out that KP plus the negation of axiom of infinity is bi-interpretable with
the fragment IΣ1 of PA (we owe this observation to Fedor Pakhomov); indeed the two theories can be shown to be definitionally
equivalent.

Theorem C. For each n ∈ ω every consistent completion of KP (in the same language) that is axiomatized by a set of ΣLevy
n -

sentences is incomplete.
10Suppose T is computably enumerable. Fix an instance of a tautology τ in the language of T, and recursively define τ0 := τ

and τn+1 := τn ∧ τ . Then define T Craig as the result of replacing each ϕ ∈ T with τn ∧ϕ, where n is a witness for ϕ ∈ T . It can be
readily checked that T Craig is computable (indeed it is primitive recursive).
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Theorem A+. Let T be a computably enumerable sequential theory formulated in a finite language L and
suppose A is a collection of L-sentences such that A ⊆ Σ∗

n for some n ∈ ω and T ∪ A is consistent. Then
T ∪A is incomplete.11

Similarly, we can obtain the following strengthening of Theorem B:

Theorem B+. Let T be a computably enumerable extension of I∆0 + Exp (in the same language) and suppose
A is a collection of arithmetical sentences such that A ⊆ Σn for some n ∈ ω and T ∪ A is consistent. Then
T ∪A is incomplete.12

Remark 4. The assumption of finiteness of language cannot be lifted in Theorem A. For example, consider
the theory U = CT−

ω [IΣ1] of ω-iterated compositional truth over IΣ1 (without any induction for formulae
using nonarithmetical symbols, hence the minus superscript) formulated in an extension of the language LA
of arithmetic with infinitely many predicates {Tn+1 : n ∈ ω}, and Tarski-style compositional axioms that
stipulate that Tn+1 is compositional for all Ln-formulae, with L0 = LA and Ln+1 = Ln ∪ {Tn+1}. Then since
bi-conditionals of form ϕ ←→ Tn+1(pϕq) are provable in U for every Ln-sentence (thanks to the available
composition axioms) ANY complete extension V of U is axiomatized by U (which is of bounded complexity)
together with atomic sentences of form Tn+1(pϕq) where ϕ ∈ V and ϕ is an Ln-sentence, thus U axiomatizable
by a set of axioms of bounded quantifier complexity. Note that U is a sequential theory since it is an extension
of the sequential theory IΣ1. By strengthening U with a single axiom, namely the so-called axiom Int of
internal induction that uses T1 to state that all arithmetical instances of induction hold, we obtain a theory in
an infinite language, and axiomatized by a set of sentences of bounded quantifier complexity, whose deductive
closure extends PA and every completion of which is axiomatizable by a set of sentences of bounded complexity.
Let us also note that it is well-known that the technique of ‘M-logic’ of Krajewski-Kotlarski-Lachlan (see Kaye’s
text [K] for an exposition), or the more recent robust model-theoretic technique introduced in [EV] allow one
to show that CT−

ω [IΣ1] + Int is conservative over PA.

Alternatively, by starting with any theory T formulated in a language L, we can apply a process known in
model theory as Morleyization13 or atomization to obtain an extension T+ of T , formulated in an extension
L+ of L, such that T+ is axiomatized by adding a collection of sentences of bounded quantifier depth to T ,
and T+ has elimination of quantifiers in the sense that for each L+-formula ϕ(x1, ..., xn), there is an n-ary
predicate Pϕ ∈ L

+ such that the equivalence ϕ(x1, ..., xn) ↔ Pϕ(x1, ..., xn) is provable in T+. The advantage
of this second construction is that it does not require the resources to build conservative truth predicates.
The atomization of a theory is well-known to be model-theoretically conservative, whereas a truth-predicate of
the type T1 in the previous example is already not model-theoretically conservative since it imposes recursive
saturation on models of arithmetic supporting it (by a remarkable theorem of Lachlan; see Kaye’s text [K] for
an exposition).

Remark 5. In Theorem B, the theory I∆0 + Exp cannot be weakened to PA−, i.e., for some n ∈ ω there is a
consistent completion of PA− (in the same language) that is axiomatized by a set of Σn-sentences. The proof
of this and related results will appear in our upcoming paper with Mateusz  Le lyk. It will be hard to prove an
analogous result about I∆0 since the proof strategy of Theorem B makes it clear that the analogous result for
I∆0 implies that I∆0 does not prove that there is a Σ1-satisfaction predicate, which is known to be a tall order,
as indicated in [AKP].

Remark 6. The proof of Theorem A/A+ can be used to establish:

(▽) There is no consistent complete theory T interpreting R that is of the form T = T0 + A, where T0 is
computably enumerable, and A is a subset of some decidable set Γ of sentences for which T has a truth
predicate.

Theorem A/A+ then follows by putting (▽), with the choice of Γ := Σ∗
n, together with Fact F. Similarly,

Theorems B/B+ and Theorem C can be obtained from (▽) by invoking the corresponding well-known analogues

11Note that if A = ∅, then the proof strategy of Theorem A, when applied to the setting of Theorem A+, goes through for all
computably enumerable consistent extensions T of the Tarski-Mostowski-Robinson theory R, without the assumption of sequentiality
of T.

12Theorem C of footnote 9 also readily lends itself to an analogous strengthening.
13According to Hodges, atomization was introduced by Skolem in the 1920s, and has “nothing to do with Morley”. It is classically

known that the atomization of a theory can be axiomatized by sentences of the form ∀x1...∀xm∃y1...∃yk δ, where δ is quantifier-free.
See pp. 62-64 (especially Theorem 2.6.6) of Hodges’ majestic text [H].
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of Fact F. This more general approach is further explored in [V-5], but it should be noted that upon the
completion of our paper we were kindly informed by Emil Jeřábek that (▽) was formulated and established in
his MathOveflow answer [J-2].

We conclude with a question that is motivated by Theorem A and the fact that Q is not a sequential theory
[V-2].

Question #. Is it possible for a consistent completion of Q to be axiomatized by a collection of sentences of
bounded quantifier-depth?
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[S] S. Salehi, A Reunion of Gödel, Tarski, Carnap, and Rosser, Journal of Logic and Computation, exad001,

https://doi.org/10.1093/logcom/exad001
[TMR] A. Tarski, A. Mostowski, and R. Robinson, Undecidable Theories, North Holland, Amsterdam, 1953.
[V-1] A. Visser, The unprovability of small inconsistency, A study of local and global interpretability, Archive for Mathe-

matical Logic 32, no.4, pp. 275–298 (1993).
[V-2] A. Visser, On Q, Soft Computing 21, pp. 39–56 (2017). https://doi.org/10.1007/s00500-016-2341-5
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