
International Journal of Hygiene and Environmental Health 259 (2024) 114382

Available online 22 April 2024
1438-4639/© 2024 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Outdoor air pollution as a risk factor for testing positive for SARS-CoV-2: A 
nationwide test-negative case-control study in the Netherlands 

Mariana Simões a, Jelle Zorn b, Lenny Hogerwerf b, Guus J.M. Velders c,e, Lützen Portengen a, 
Miriam Gerlofs-Nijland f, Marieke Dijkema d, Maciek Strak f, José Jacobs f, Joost Wesseling e, 
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A B S T R A C T   

Air pollution is a known risk factor for several diseases, but the extent to which it influences COVID-19 compared 
to other respiratory diseases remains unclear. We performed a test-negative case-control study among people 
with COVID-19-compatible symptoms who were tested for SARS-CoV-2 infection, to assess whether their long- 
and short-term exposure to ambient air pollution (AAP) was associated with testing positive (vs. negative) for 
SARS-CoV-2. We used individual-level data for all adult residents in the Netherlands who were tested for SARS- 
CoV-2 between June and November 2020, when only symptomatic people were tested, and modeled ambient 
concentrations of PM10, PM2.5, NO2 and O3 at geocoded residential addresses. In long-term exposure analysis, 
we selected individuals who did not change residential address in 2017–2019 (1.7 million tests) and considered 
the average concentrations of PM10, PM2.5 and NO2 in that period, and different sources of PM (industry, 
livestock, other agricultural activities, road traffic, other Dutch sources, foreign sources). In short-term exposure 
analysis, individuals not changing residential address in the two weeks before testing day (2.7 million tests) were 
included in the analyses, thus considering 1- and 2-week average concentrations of PM10, PM2.5, NO2 and O3 
before testing day as exposure. Mixed-effects logistic regression analysis with adjustment for several con-
founders, including municipality and testing week to account for spatiotemporal variation in viral circulation, 
was used. Overall, there was no statistically significant effect of long-term exposure to the studied pollutants on 
the odds of testing positive vs. negative for SARS-CoV-2. However, significant positive associations of long-term 
exposure to PM10 and PM2.5 from specifically foreign and livestock sources, and to PM10 from other agricul-
tural sources, were observed. Short-term exposure to PM10 (adjusting for NO2) and PM2.5 were also positively 
associated with increased odds of testing positive for SARS-CoV-2. While these exposures seemed to increase 
COVID-19 risk relative to other respiratory diseases, the underlying biological mechanisms remain unclear. This 
study reinforces the need to continue to strive for better air quality to support public health.   

1. Introduction 

With the emergence of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 
2019 (COVID-19), the scientific community tried to understand the in-
fluence of various environmental factors on virus exposure and infection 
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susceptibility and severity. Studies showed that air pollution increased 
the risk of SARS-CoV-2 infection and COVID-19 severity by increasing 
host susceptibility to infection and aggravating the course of the disease, 
also through pre-existing conditions, such as obstructive pulmonary 
disease (COPD), diabetes and hypertension (Zang et al., 2022). 
Numerous epidemiological studies have investigated the impact of 
ambient air pollution (AAP) on different COVID-19 health outcomes 
using individual-level data, e.g. (Ali et al., 2021; Marquès and Domingo, 
2022; Heederik et al., 2020; Vandenbroucke et al., 2022), reporting 
mainly positive associations. Although these studies are an improve-
ment on earlier ecological studies, reviewed elsewhere (Zang et al., 
2022; Ali et al., 2021; Marquès and Domingo, 2022), which are known 
to be particularly prone to confounding (Heederik et al., 2020), they still 
suffer from some methodological challenges. A major shortcoming is 
that the used risk model ignores the main driver of COVID-19, namely 
exposure to SARS-CoV-2, but models AAP as a main determinant of 
COVID-19, whereas it is more a moderator of the association with 
COVID-19. Ignoring this can lead to bias in the obtained risk estimates. 
To mitigate bias in studies of the drivers of COVID-19, Vandenbroucke 
et al. proposed the use of a test-negative study design (TND) (Vanden-
broucke et al., 2020, 2022). 

TNDs compare exposures to risk factors (e.g. AAP) between in-
dividuals who tested positive and those who tested negative for the 
condition of interest (e.g. COVID-19). In this context, testing skews 
selectively towards individuals seeking medical help and is influenced 
by factors such as age, gender, socioeconomic status, access to health-
care, proximity to testing facilities, comorbidities, symptom severity, 
personality traits, etc. However, in a TND, all individuals are tested and 
the same selective forces can therefore be assumed to operate largely on 
both the test-positives (i.e., the ‘cases’) and test-negatives (i.e., the 
‘controls’), especially when testing is conditional on symptoms. This 
approach has the potential to yield more robust risk estimates. There is 
substantial methodological literature on TNDs (Sullivan et al., 2016; 
Foppa et al., 2016; Vandenbroucke and Pearce, 2019), including specific 
publications on COVID-19, e.g. (Vandenbroucke et al., 2020, 2022; 
Eekhout et al., 2023; Cerqueira-Silva et al., 2023). Furthermore, when 
studying air pollution and COVID-19, it is important to control for 
variation in viral circulation levels, i.e. the level of exposure to 
SARS-CoV-2, as person-to-person transmission is the driving force 
behind the COVID-19 pandemic, and spatiotemporal differences in 
COVID-19 associated with AAP might be confounded by the degree of 
concurrent local viral circulation (Heederik et al., 2020). Therefore, by 
comparing the exposure levels to AAP between test-positives and 
test-negatives in areas and periods of comparable viral circulation, it is 
possible to discern the extent to which air pollution has unique or spe-
cific effects on COVID-19, as risk factors of equal magnitude for both 
COVID-19 and other respiratory diseases are filtered out by design 
(Vandenbroucke et al., 2020, 2022). 

A study in the United Kingdom (UK) used a variant of the TND to 
assess multiple risk factors, including long-term exposure to AAP, for 
testing positive for SARS-CoV-2 (Chadeau-Hyam et al., 2020), reporting 
a consistent association with exposure to particulate matter (PM) with 
an aerodynamic diameter ≤2.5 μm (PM2.5). However, spatiotemporal 
variation in SARS-CoV-2 spread (that is, pattern changes in virus spread 
related to place and time (i.e., outbreak dynamics) was not explicitly 
accounted for. In this study, we applied a TND with spatiotemporal 
matching of test-positives and test-negatives by sampling people with 
and without a positive SARS-CoV-2 test who lived in the same munici-
pality and were tested on the same week. The aim of this study was to 
determine whether long- and short-term exposures to ambient concen-
trations of PM with an aerodynamic diameter ≤10 μm (PM10) and ≤2.5 
μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3, only for short-term 
exposure) were associated with increased risk of testing positive vs. 
negative for SARS-CoV-2. Furthermore, we investigated whether 
long-term exposure to specific sources of PM in the Netherlands, such as 
road traffic, agriculture and industry, were associated with increased 

risk of testing positive. 

2. Methods 

2.1. Study design, outcomes and populations 

We conducted a case-control study based on a TND using individual- 
level data on symptomatic test-positives and symptomatic test-negatives 
for SARS-CoV-2 infection in the Netherlands. 

In June 2020, public testing facilities for SARS-CoV-2 infection in the 
Dutch general population were opened in the 25 Public Health Services 
of the country. Test-confirmed SARS-CoV-2 infection is mandatorily 
notifiable in the Netherlands, and when such confirmation is made in a 
public testing facility, it is registered in a centralized database named 
‘CoronIT’. This database contains individual-level patient information 
on all test results, both positives and negatives, from all public testing 
facilities in the country. In this study, we included all test results with a 
sampling date from June 1st, 2020 to November 30th, 2020 (n ~ 4.4 
million tests) because during that period testing was restricted to people 
aged >12 years who had one or more symptoms compatible with 
COVID-19 (i.e., runny nose, cough, shortness of breath or difficulty 
breathing, fever, loss of taste or smell). Since a person could have 
multiple tests performed over time, we excluded tests from the same 
person after the first positive test, as some people can repeatedly test 
positive for SARS-CoV-2 months after infection. Molecular tests (RT- 
PCR) were the standard until January 2021 in the Netherlands, when 
rapid antigen tests started being used increasingly. Our study therefore 
included mainly data from RT-PCR tests. We also excluded tests from 
people employed in the healthcare sector and from people living in in-
stitutions (e.g., mental health institutions and nursing homes) due to 
their different risk of viral exposure, susceptibility to infection and/or 
eligibility for testing when compared to the general population. 
Furthermore, we excluded tests from children (<18 years) and from 
people who changed addresses (because of relocation, moving abroad, 
etc.) during the exposure periods considered (see later in section 2.3). 
Tests from people who lived within 1 km from the borders of the 
Netherlands with Belgium and Germany (for whom exposure could not 
be accurately estimated) were also excluded. Finally, we excluded tests 
with no data available on the urbanization degree of the area where 
these people lived, their household wealth, household size, neighbor-
hood socioeconomic status, exposure levels to AAP, as well as un-
matched tests at municipality of residence and week of testing; see Fig. 1 
for detailed exclusion steps. 

2.2. Air pollution data 

2.2.1. Long-term exposure 
For estimating long-term exposure to PM10, PM2.5 and NO2, a 

comprehensive methodology was employed (Velders et al., 2020; 
Velders and Diederen, 2009; Hoogerbrugge et al., 2021; Velders et al., 
2017). These methods are also used by the Dutch government to monitor 
compliance with the European Union (EU) air quality limit values 
(Directive, 2008/50/EC) within the Dutch National Air Quality Coop-
eration Program. These are annual averages of background concentra-
tions of these pollutant at a spatial resolution of 1 × 1 km (Velders et al., 
2020). To determine the spatial distribution maps, the Operational 
Priority Substances (OPS) dispersion model (van Jaarsveld and de 
Leeuw, 1993; van Pul et al., 2011; Sauter et al.) was used. This model 
estimates the yearly average PM concentrations by considering emis-
sions, dispersion, transport, chemical conversion, deposition, and 
meteorological conditions specific to each year. The OPS model relies on 
input data from official emissions reported to the Netherlands Pollutant 
Release and Transfer Register (Wever et al., 2020) and emissions from 
neighboring countries (EMEP Centre on Emission Inventories and Pro-
jections) (Hoogerbrugge et al., 2021; Projections ECoEIa, 2023). Data on 
type, strength and discharge height of emissions, as well as temporal and 
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spatial distribution of the collectively registered emissions, is therefore 
obtained per source from the register itself. Emission data is spatially 
distributed based on where emissions are released; data from companies 
subject to emission reporting, storage and transshipment, ports, sewage 
treatment plants and aviation, are known on location. Due to chemical 
reactivity of NO2 in the atmosphere, direct modeling of NO2 in the OPS 
model is not feasible. Instead, NO2 concentrations are calculated from 
the modeled NOx concentration and an empirical relationship between 
annual average measured NOx and NO2 concentrations (Velders et al., 
2014; van de Kassteele and Velders, 2006). Total PM10 and PM2.5 
concentrations represent the sum of the contributions from primary PM 
emissions, secondary aerosols, and sea salt. These concentrations are 
estimated on an annual basis and calibrated against the results from Air 
Quality Monitoring Networks at background locations in the 
Netherlands (www.luchtmeetnet.nl). The model is therefore calibrated 
using measurements from 35 to 45 stations distributed across the whole 
country that are part of this network. Each emission source contribution 
to the overall concentrations is estimated separately by the OPS model. 
Five main categories were considered here: industry, livestock farming, 
other agricultural activities, road traffic, foreign sources (i.e., outside 
the Netherlands), and other Dutch sources (miscellaneous) (Velders 
et al., 2017). Detailed methodologies for the calculation of emissions 
from these sources are available elsewhere: industry (Honig et al., 
2023), agriculture (van der Zee et al., 2023), traffic (Gerben Gei-
lenkirchen et al., 2023), and other sources (Honig et al., 2023; Vis-
schedijk et al., 2023). In this study, we focused on emission sources of 
PM10 and PM2.5, as they can have varying mixtures of components 
depending on their origin, whereas NO2 is the same molecule. To assess 
exposure, we extracted the annual average ambient concentrations of 

PM10, PM2.5 and NO2 for each address in the study population for the 
years 2017, 2018 and 2019: the average concentrations over this 
three-year period served as the long-term exposure variable in our 
analyses. 

2.2.2. Short-term exposure 
Air pollution data for the short-term exposure were obtained using 

the Residual Interpolation Optimized for Ozone (RIO) method, an 
interpolation method that produces hourly air pollution maps based on 
the spatial interpolation of AAP measurements (Mooibroek, 2014). This 
model first removes local site-dependent increases or decreases in con-
centrations, then performs a spatial interpolation using Ordinary Krig-
ing, after which the local effects are added again to the maps. Similarly 
to the OPS model used to estimate annual averages, the RIO model is 
also calibrated using measured data from the Dutch air quality moni-
toring network. Hourly data coverage for each station in the network is 
>90% (often larger >95%). From the hourly maps, daily averages of 
PM10, PM2.5, and NO2 and the maximum 8-h running average of O3 are 
calculated on a 4 × 4 km grid. This coarser resolution, compared to the 
annual (long-term exposure) maps, is due to lack of information on 
emissions and of measurement data on a finer scale. For this reason, 
obtaining emission source contributions for short-term exposure is not 
feasible, so an analysis by emission source was not performed for the 
short-term exposure. For our analysis, we estimated the average air 
pollution concentration for both one week and two weeks preceding the 
testing day. Average incubation period for SARS-CoV-2 infection is 
about 5 days (Galmiche et al., 2023), hence the average AAP concen-
trations 1 week before testing would capture the exposure around the 
time of infection, assuming that this could influence the risk of acquiring 

Fig. 1. Flow chart of selection criteria applied to the SARS-CoV-2 tests included in the analysis. 
GBA = Municipal population census register (“Gemeentelijke Basisadministratie” in Dutch). 
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the infection and allowing the infection to establish itself upon exposure. 
Moreover, assuming that air pollution also plays a role in infection 
severity, this period also entails the possibility that air pollution might 
have influenced the need for testing after infection because of, e.g., 
aggravation of symptoms. On the other hand, some people develop 
symptoms later than 5 days, hence the 2-week period as well. 

2.3. Data anonymization and linkage 

Statistics Netherlands (CBS) acted as a trusted third party for data 
anonymization and linkage by coupling a Record Identification Number 
(RIN) as a unique identifier to each individual in the CoronIT database. 
To this end, CBS uses a census reference register containing all muta-
tions due to death or relocation in the Dutch general population, 
including a complete housing history of all residents in the Netherlands. 
Through the residential addresses, the air pollution data were linked to 
the CoronIT data. The RIN numbers also allowed coupling to other in-
formation at CBS to define the study population and adjust for potential 
contextual confounding in the analyses (see section 2.3): household 
wealth (continuous variable, expressed in Euro, including income plus 
assets), household size (ordinal variable: 1, 2, 3, 4, ≥5 people), highest 
educational attainment (categorical variable, as defined by CBS: pri-
mary and lower secondary education, higher and senior secondary ed-
ucation and pre-university education, and higher professional and 
university education), migration background (categorical variable, as 
defined by CBS: autochthonous Dutch, Moroccan, Turkish, Surinamese, 
Former Dutch Antilles and Aruba, other non-Western countries, and 
other Western countries), occupation and nursing home attendance 
(categorical variable, both used to identify and exclude healthcare 
workers, Fig. 1), urbanicity of residence location (categorical variable, 
based on 500 m2 spatial resolution: extremely urbanised [≥2500 ad-
dresses/km2], strongly urbanised [1500–2500 addresses/km2], moder-
ately urbanised [1000–1500 addresses/km2], hardly urbanised [500- 
1000 addresses/km2] not urbanised [<500 addresses/km2], and 
neighborhood-level socio-economic status (SES, continuous variable, 
based on residential four-digit postal code [on average, circa 2000 res-
idential addresses] as function of income level, unemployment rate, and 
education level). 

2.4. Statistical analysis 

Mixed-effects logistic regression was used to assess the association 
between exposure to AAP and the odds of testing positive for SARS-CoV- 
2 among symptomatic people, controlling for the matching variables 
‘municipality of residence location’ and ‘week of testing’, as recom-
mended (Pearce, 2016). For long-term exposure analysis, PM10, PM2.5 
and NO2 over three years preceding the pandemic (2017–2019) were 
considered, whereas for short-term exposure analysis, 1- and 2-week 
average concentrations before testing day were considered. Effects of 
long- and short-term exposure were studied in separate analyses. Pri-
mary analyses consisted of single-pollutant models, followed by 
multi-pollutant models including either PM10 or PM2.5 plus NO2 
(long-term exposure), or either PM10 or PM2.5 plus NO2 and O3 
(short-term exposure). Emission source contributions for long-term 
exposure included all sources of PM10 or PM2.5. All models were 
adjusted for several covariates obtained from CBS: age (natural spline 
with five degrees of freedom), sex (binary, male or female), household 
wealth (natural spline with 15 degrees of freedom), household size, 
migration background, highest attained educational level (categorical) 
and neighborhood-level socioeconomic status (SES, a standardized score 
based on wealth, education and employment history of households in 
the neighborhood). A random intercept at district level was included in 
all models to account for spatial correlation of tests. Analyses were first 
performed at national level and then stratified by urban (1500 or more 
addresses/km2) and rural (1499 or less addresses/km2) areas. The 
reason for this stratification was two-fold: 1) the populations in these 

areas can differ in lifestyle factors and other exposures for which full 
control is difficult using demographic variables, and 2) the degree of 
urbanization can influence the composition and therefore the toxicity of 
the different PM fractions, although this is less relevant when individual 
emission sources are considered in the analyses. Generalized variance 
inflation factor (GVIF) was used to assess multicollinearity. Risk esti-
mates were expressed as odds ratios (OR) with corresponding 95% 
confidence intervals (CIs) per 1 μg/m3 increase in exposure. Risk esti-
mates at national level were also expressed per interquartile range (IQR) 
increase, as the IQR incorporates a measure of magnitude of exposure in 
the population. Statistical significance was set at p value < 0.05. All 
analyses were performed in R version 4.1.3 (2022-03-10) with packages 
“lme4” and “MatchIt”, within the remote secure environment of CBS. 

2.5. Sensitivity analyses 

To assess the robustness of results, several sensitivity analyses were 
performed in both long- and short-term analyses, as follows.  

● Restricting analyses in rural areas to the least urbanised areas with 
<1000 addresses/km2, in order to assess potential bias from 
including semi-urban environments in the analyses for rural areas.  

● Restricting analyses in urban areas to the most urbanised ones 
(≥2500 addresses/km2) where the highest air pollution concentra-
tions are usually found.  

● Using a longer period for the long-term exposure, 2015–2019 
(instead of 2017–2019), thereby also restricting the analysis to tests 
from people who did not change address in that period.  

● Including either ‘livestock’ or ‘other agricultural sources’ in the 
model for the long-term exposure to sources of PM, due to the 
observed correlations (Pearson r = 0.62–0.78, Fig. S2) and in-
dications of potential collinearity issues (GVIF >3) between these 
two sources. 

3. Results 

3.1. Descriptive statistics 

After applying the exclusion criteria for the long-term exposure 
analysis (Fig. 1), a total of 1,704,602 tests (of which 196,025 [11.5%] 
were positive) remained at national level, 750,110 tests (of which 
87,093 [11.6%] were positive) in rural areas, and 905,024 tests (of 
which 108,928 [12.0%] were positive) in urban areas. The distribution 
of positive and negative tests over age groups, gender, household 
wealth, household size, highest educational attainment, SES, migration 
background, urbanization and province are reported in Table 1; the 
spatial distribution of the cumulative proportion of positive tests is 
depicted in Fig. S1 (Appendix). Overall, the proportion of cases was 
higher among men, older individuals, larger households, and non- 
autochthonous people, particularly people of non-Western migration 
background, all variables controlled for in the models. This was 
observed in both rural and urban areas. Household wealth was slightly 
larger among cases from rural areas and lower among cases from urban 
areas. In general, similar to slightly higher AAP concentrations were 
observed among cases. Median air pollution concentrations (average for 
the period 2017–2019) were 18.63 μg/m3 [Interquartile range (IQR) 
17.63–19.26] for PM10, 11.20 μg/m3 [10.51–11.69] PM2.5 and 18.69 
μg/m3 [16.13–22.20] for NO2, at national level (concentrations for cases 
and controls are presented in Table 1). Concentrations from specific 
sources ranged from 0.13 μg/m3 from other agricultural sources and 
6.53 μg/m3 [5.96–7.56] from foreign sources. In general, national me-
dian air pollution concentrations were similar or slightly higher for 
cases, with exception of PM from livestock sources, which concentra-
tions were slightly higher for cases only in rural areas. 

For the short-term exposure analysis, 2,733,926 tests (of which 
280,398 [10.3%] were positive) were included at national level, 
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1,130,547 tests (of which 116,088 [10.3%] were positive) in rural areas, 
and 1,538,008 tests (of which 164,309 [10.7%] were positive) in urban 
areas. The distribution of positive and negative tests included in the 
short-term exposure analysis, over age groups, gender, household 
wealth, household size, highest educational attainment, SES, migration 
background, urbanization and province are reported in Table 2. Also 
here, higher proportions of cases were found among men, older in-
dividuals, larger households, and people with a non-Dutch background 
(i.e., people not born in the Netherlands or with their parents not born in 
the Netherlands, according to CBS definitions), both in rural and urban 
areas. Across the 12 Dutch provinces, the proportion of positive tests 
over time showed a peak in October, especially around the week of 
19–25 October, with no visual indication of coincidental peaks in 
exposure (Fig. S2, Appendix). Nationally, median 2-week average con-
centrations were slightly higher than 1-week average concentrations for 
all pollutants: 12.07 μg/m3 [10.30–15.31] and 12.43 μg/m3 
[10.53–15.83] for PM10, 6.37 μg/m3 [4.71–9.28] and 6.80 μg/m3 

[5.20–9.27] for PM2.5, 16.88 μg/m3 [13.20–20.76] and 16.94 μg/m3 

[13.45–20.45] for NO2, and 52.13 μg/m3 [45.56–65.18] and 51.78 μg/ 
m3 [45.37–67.82] for O3 (1-week and 2-week medians, respectively). 

Cases had somewhat lower PM10 and O3 median 1-week and 2-week 
average concentrations, while the opposite was observed for NO2 
(Table 2). For PM2.5, median 1-week concentration was lower for cases 
while median 2-week concentration was higher. 

In the long-term analyses, both total PM10 and PM2.5 correlated 
with total NO2, both nationally and in rural and urban areas (Pearson r 
= 0.75–0.82) (Fig. S3, Appendix). PM10 and PM2.5 from other agri-
cultural sources than livestock were moderately to highly correlated 
with livestock sources (Fig. S4, Appendix). Moderate to high correla-
tions between road traffic and other Dutch sources of PM10 and PM2.5 
were also observed. Spatial distribution of the three-year (2017–2019) 
average concentrations of PM10, PM2.5 and NO2, overall and by emis-
sion source, are reported in Figs. S5 and S6. For both overall PM10 and 
PM2.5, concentrations were lowest in the northern and highest at the 
central and southern parts of the country. Certain sources of PM were 
region-specific, with foreign concentrations being highest near the 
borders with Germany and Belgium, agricultural sources in the central 
and eastern parts, road traffic near the largest cities, and industry and 
other Dutch sources in the western part. Concentrations for NO2 were 
lowest in the northern and highest in the western parts of the country. 

Table 1 
Characteristics of test-positives (cases) and test-negatives (controls) in the long-term exposure analyses.  

Characteristic National Rural areas Urban areas 

Controls Cases Controls Cases Controls Cases 

N 1,508,577 196,025 663,017 87,093 796,096 108,928 
Women [n (%)] 783,148 (51.9) 92,100 (47.0) 337,950 (51.0) 39,280 (45.1) 419,619 (52.7) 52,818 (48.5) 
Age [median (IQR)] 46 (24.0) 49 (24.0) 47 (25.0) 50 (24.0) 45.00 (24.0) 48.00 (24.0) 
Household wealth (centile) [median (IQR)] 64 (42.0) 61 (45.0) 68 (38.0) 69 (38.0) 60.00 (45.0) 54.00 (48.0) 
Neighborhood socioeconomic status [mean (SD)] 0.05 (0.29) 0.01 (0.31) 0.15 (0.22) 0.15 (0.21) − 0.04 (0.31) − 0.11 (0.33) 
Household size [n (%)] 

1 person 229,251 (15.2) 22,825 (11.6) 65,526 (9.9) 7188 (8.3) 156,999 (19.7) 15,637 (14.4) 
2 people 439,239 (29.1) 55,089 (28.1) 194,638 (29.4) 25,711 (29.5) 228,868 (28.7) 29,374 (27.0) 
3 people 286,720 (19.0) 36,990 (18.9) 129,256 (19.5) 16,647 (19.1) 148,126 (18.6) 20,343 (18.7) 
4 people 393,426 (26.1) 50,809 (25.9) 193,986 (29.3) 24,795 (28.5) 186,454 (23.4) 26,014 (23.9) 
≥5 people 159,941 (10.6) 30,312 (15.5) 79,611 (12.0) 12,752 (14.6) 75,649 (9.5) 17,560 (16.1) 

Migration background [n (%)] 
Autochthonous 1,196,039 (79.3) 131,885 (67.3) 582,979 (87.9) 73,610 (84.5) 571,796 (71.8) 58,271 (53.5) 
Moroccan 32,154 (2.1) 13,600 (6.9) 4929 (0.7) 1727 (2.0) 26,608 (3.3) 11,873 (10.9) 
Turkish 40,406 (2.7) 14,992 (7.6) 7000 (1.1) 2285 (2.6) 32,589 (4.1) 12,707 (11.7) 
Surinamese 35,520 (2.4) 7299 (3.7) 6251 (0.9) 1102 (1.3) 28,602 (3.6) 6197 (5.7) 
Former Dutch Antilles and Aruba 11,218 (0.7) 1971 (1.0) 2413 (0.4) 339 (0.4) 8539 (1.1) 1632 (1.5) 
Other non-Western countries 52,745 (3.5) 11,378 (5.8) 12,767 (1.9) 2503 (2.9) 38,695 (4.9) 8875 (8.1) 
Western countries 140,495 (9.3) 14,900 (7.6) 46,678 (7.0) 5527 (6.3) 89,267 (11.2) 9373 (8.6) 

Highest educational attainment [n (%)] 
Primary and lower secondary education 186,976 (12.4) 32,422 (16.5) 77,798 (11.7) 11,100 (12.7) 103,815 (13.0) 21,322 (19.6) 
Higher secondary education 311,827 (20.7) 41,801 (21.3) 150,331 (22.7) 19,392 (22.3) 151,516 (19.0) 22,409 (20.6) 
Senior general secondary education and pre-university education 124,842 (8.3) 16,448 (8.4) 52703 (7.9) 7231 (8.3) 68068 (8.6) 9217 (8.5) 
Higher professional and university education 478,799 (31.7) 42,721 (21.8) 188,643 (28.5) 18,232 (20.9) 27,4871 (34.5) 24,488 (22.5) 
Unknown 406,133 (26.9) 62,633 (32.0) 193,542 (29.2) 31,138 (35.8) 197,826 (24.8) 31,492 (28.9) 

Urbanization degree [n (%)] 
Very highly urbanised (≥2500 addresses/km2) 403,743 (26.8) 56,771 (29.0) n/a n/a 400,663 (50.3) 56,771 (52.1) 
Highly urbanised (1500–2499 addresses/km2) 413,118 (27.4) 52,161 (26.6) n/a n/a 395,433 (49.7) 52,157 (47.9) 
Moderately urbanised (1000–1499 addresses/km2) 266,875 (17.7) 33,201 (16.9) 25,0656 (37.8) 33,201 (38.1) n/a n/a 
Lowly urbanised (500-999 addresses/km2) 242,697 (16.1) 30,093 (15.4) 23,4237 (35.3) 30,093 (34.6) n/a n/a 
Not urbanised (<500 addresses/km2) 182,144 (12.1) 23,799 (12.1) 17,8124 (26.9) 23,799 (27.3) n/a n/a 

PM10 overall [median (IQR)] (μg/m3) 18.61 (1.63) 18.72 (1.53) 17.99 (1.83) 18.08 (1.63) 19.09 (1.19) 19.14 (1.09) 
PM2.5 overall [median (IQR)] (μg/m3) 11.19 (1.19) 11.26 (1.08) 10.79 (1.55) 10.86 (1.28) 11.47 (1.02) 11.52 (0.96) 
NO2 overall [median (IQR)] (μg/m3) 18.64 (6.05) 19.13 (6.25) 16.68 (4.48) 16.85 (4.2) 21.24 (5.58) 21.80 (5.76) 
PM10 foreign [median (IQR)] (μg/m3) 6.52 (1.59) 6.61 (1.51) 6.87 (1.72) 7.01 (1.69) 6.43 (1.00) 6.47 (0.91) 
PM10 industry [median (IQR)] (μg/m3) 0.78 (0.23) 0.79 (0.24) 0.71 (0.21) 0.72 (0.2) 0.84 (0.25) 0.87 (0.27) 
PM10 agriculture, livestock [median (IQR)] ((μg/m3) 0.65 (0.42) 0.64 (0.41) 0.77 (0.53) 0.79 (0.53) 0.62 (0.36) 0.60 (0.29) 
PM10 agriculture, other [median (IQR)] (μg/m3) 0.13 (0.02) 0.13 (0.02) 0.13 (0.04) 0.13 (0.03) 0.13 (0.02) 0.13 (0.01) 
PM10 traffic [median (IQR)] (μg/m3) 1.22 (0.54) 1.24 (0.52) 1.01 (0.55) 1.02 (0.52) 1.34 (0.42) 1.36 (0.38) 
PM10 other sources [median (IQR)] (μg/m3) 2.45 (1.19) 2.54 (1.22) 1.92 (0.92) 1.96 (0.89) 2.97 (0.95) 3.04 (0.95) 
PM2.5 foreign [median (IQR)] (μg/m3) 5.48 (1.31) 5.55 (1.21) 5.73 (1.41) 5.83 (1.37) 5.39 (0.81) 5.44 (0.75) 
PM2.5 industry [median (IQR)] (μg/m3) 0.55 (0.14) 0.56 (0.15) 0.51 (0.14) 0.52 (0.14) 0.59 (0.15) 0.60 (0.16) 
PM2.5 agriculture, livestock [median (IQR)] (μg/m3) 0.56 (0.27) 0.55 (0.25) 0.59 (0.33) 0.60 (0.32) 0.55 (0.23) 0.53 (0.18) 
PM2.5 agriculture, other [median (IQR)] (μg/m3) 0.1 (0.01) 0.1 (0.01) 0.09 (0.02) 0.09 (0.03) 0.10 (0.01) 0.10 (0.01) 
PM2.5 traffic [median (IQR)] (μg/m3) 0.88 (0.37) 0.89 (0.35) 0.73 (0.41) 0.74 (0.38) 0.96 (0.28) 0.97 (0.26) 
PM2.5 other sources [median (IQR)] (μg/m3) 2.05 (0.97) 2.12 (0.98) 1.62 (0.77) 1.64 (0.74) 2.46 (0.74) 2.52 (0.74) 

n/a = not applicable. 
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Also in the short-term analyses, both total PM10 and PM2.5 correlated 
with total NO2, both nationally and in rural and urban areas (Pearson r 
= 0.49–0.72), and far less with O3 (Pearson r = 0.25–0.41) (Fig. S7, 
Appendix). 

In both single- and multi-pollutant models, all confounders were 
significantly associated with testing positive for SARS-CoV-2 
(Tables S1–S3, Appendix). In the multi-pollutant models for the 

overall analysis, there was no indication of strong collinearity ((GVIF(1/ 

(2*df)))2 < 2). However, the models for the source contribution analyses 
of PM10 and of PM2.5 showed potential for collinearity between live-
stock and other agricultural sources ((GVIF(1/(2*df)))2 >3); no other in-
dications of potential collinearity were found (all other (GVIF(1/(2*df)))2 

< 3). 

Table 2 
Characteristics of test-positives (cases) and test-negatives (controls) in the short-term exposure analyses.  

Characteristic National Rural areas Urban areas 

Controls Cases Controls Cases Controls Cases 

N 2,453,528 280,398 101,4459 116,088 137,3699 164,309 
Women [n (%)] 1,273,230 (51.9) 131,346 (46.8) 518,141 (51.1) 52,514 (45.2) 721,272 (52.5) 78,831 (48.0) 
Age [median (IQR)] 39 (24.0) 43 (28.0) 41 (25.0) 47 (27.0) 37 (24.0) 40 (27.0) 
Household wealth (centile) [median (IQR)] 61 (44.0) 59 (47.0) 65 (39.0) 67 (39.0) 56 (48.0) 51 (50.0) 
Neighborhood socioeconomic status [mean (SD)] 0.03 (0.29) − 0.01 (0.31) 0.15 (0.22) 0.15 (0.22) − 0.06 (0.31) − 0.12 (0.32) 
Household size [n (%)] 

1 person 473,148 (19.3) 45,322 (16.2) 117,815 (11.6) 11,593 (10.0) 345,165 (25.1) 33,729 (20.5) 
2 people 746,896 (30.4) 83,043 (29.6) 299,672 (29.5) 35,074 (30.2) 426,424 (31.0) 47,968 (29.2) 
3 people 462,813 (18.9) 50,972 (18.2) 207,312 (20.4) 22,300 (19.2) 242,895 (17.7) 28,672 (17.5) 
4 people 550,404 (22.4) 63,553 (22.7) 277,194 (27.3) 31,177 (26.9) 257,210 (18.7) 32,376 (19.7) 
≥5 people 220,267 (9.0) 37,508 (13.4) 112,466 (11.1) 15,944 (13.7) 102,005 (7.4) 21,564 (13.1) 

Migration background [n (%)] 
Autochthonous 1,900,907 (77.5) 185,101 (66.0) 879,087 (86.7) 96,040 (82.7) 968,114 (70.5) 89,060 (54.2) 
Moroccan 49,742 (2.0) 18,597 (6.6) 8213 (0.8) 2535 (2.2) 40,663 (3.0) 16,062 (9.8) 
Turkish 61,718 (2.5) 19,936 (7.1) 11,645 (1.1) 3251 (2.8) 49,031 (3.6) 16,685 (10.2) 
Surinamese 54,801 (2.2) 10,136 (3.6) 10,039 (1.0) 1586 (1.4) 43,842 (3.2) 8550 (5.2) 
Former Dutch Antilles and Aruba 21,471 (0.9) 3308 (1.2) 4530 (0.4) 590 (0.5) 16,549 (1.2) 2718 (1.7) 
Other non-Western countries 107,976 (4.4) 19,132 (6.8) 24,638 (2.4) 4115 (3.5) 81,156 (5.9) 15,017 (9.1) 
Western countries 256,913 (10.5) 24,188 (8.6) 76,307 (7.5) 7971 (6.9) 174,344 (12.7) 16,217 (9.9) 

Highest educational attainment [n (%)] 
Primary and lower secondary education 274,759 (11.2) 41,497 (14.8) 113,544 (11.2) 14,030 (12.1) 154,418 (11.2) 27,467 (16.7) 
Higher secondary education 521,870 (21.3) 62,508 (22.3) 246,995 (24.3) 27,828 (24.0) 260,858 (19.0) 34,680 (21.1) 
Senior general secondary education and pre-university education 239,090 (9.7) 28,507 (10.2) 81,548 (8.0) 9880 (8.5) 151,872 (11.1) 18,627 (11.3) 
Higher professional and university education 884,198 (36.0) 71,580 (25.5) 325,249 (32.1) 27,662 (23.8) 536,205 (39.0) 43,918 (26.7) 
Unknown 533,611 (21.7) 76,306 (27.2) 247,123 (24.4) 36,688 (31.6) 270,346 (19.7) 39,617 (24.1) 

Urbanization degree [n (%)] 
Extremely urbanised (≥2500 addresses/km2) 768,818 (31.3) 92,945 (33.1) n/a n/a 609,307 (55.6) 71,364 (56.6) 
Strongly urbanised (1500–2499 addresses/km2) 633,023 (25.8) 71,365 (25.5) n/a n/a 609,307 (44.4) 71,364 (43.4) 
Moderately urbanised (1000–1499 addresses/km2) 400,657 (16.3) 44,289 (15.8) 380,628 (37.5) 44,289 (38.2) n/a n/a 
Hardly urbanised (500-999 addresses/km2) 368,776 (15.0) 40,124 (14.3) 357,716 (35.3) 40,124 (34.6) n/a n/a 
Not urbanised (<500 addresses/km2) 282,254 (11.5) 31,675 (11.3) 276,115 (27.2) 31,675 (27.3) n/a n/a 

PM10 overall [median (IQR)] (μg/m3) 
1 week average 12.10 (5.03) 11.93 (4.62) 11.69 (5.21) 11.45 (4.59) 12.37 (4.93) 12.19 (4.59) 
2 weeks average 12.50 (5.34) 12.04 (4.94) 12.17 (5.29) 11.63 (4.86) 12.72 (5.46) 12.27 (5.09) 

PM2.5 overall [median (IQR)] (μg/m3) 
1 week average 6.37 (4.55) 6.51 (4.47) 6.25 (4.73) 6.33 (4.69) 6.48 (4.52) 6.62 (4.34) 
2 weeks average 6.79 (4.10) 6.73 (3.79) 6.80 (4.06) 6.65 (3.75) 6.85 (4.20) 6.77 (3.85) 

NO2 overall [median (IQR)] (μg/m3) 
1 week average 17.00 (7.53) 18.04 (7.96) 13.92 (6.87) 14.34 (7.10) 19.03 (6.51) 20.10 (6.73) 
2 weeks average 17.06 (7.04) 18.09 (7.17) 14.00 (6.20) 14.46 (6.14) 19.18 (5.94) 20.23 (5.75) 

O3 overall [median (IQR)] (μg/m3) 
1 week average 53.26 (21.63) 48.89 (10.41) 52.34 (19.50) 49.18 (9.57) 53.46 (22.33) 48.66 (11.00) 
2 weeks average 53.41 (24.53) 48.63 (9.67) 51.93 (22.35) 48.94 (8.78) 54.43 (25.08) 48.39 (10.87) 

n/a = not applicable. 

Table 3 
Overall effects (adjusted Odds Ratios) of the long-term exposure to air pollution (total PM10 and PM2.5 and NO2 concentrations) on testing positive for SARS-CoV-2.  

Pollutant Analysis Odds Ratio (95% Confidence Interval)a 

per IQR μg/m3 increaseb per 1 μg/m3 increase 

National National Rural areas Urban areas 

PM10 1 pollutant 1.005 (0.985–1.025) 1.003 (0.990–1.015) 1.017 (0.997–1.037) 0.992 (0.976–1.008) 
2 pollutants (+NO2) 1.010 (0.987–1.034) 1.006 (0.992–1.021) 1.020 (0.998–1.043) 0.991 (0.972–1.010) 

PM2.5 1 pollutant 0.994 (0.972–1.017) 0.995 (0.976–1.014) 1.013 (0.976–1.052) 0.988 (0.966–1.011) 
2 pollutants (+NO2) 0.996 (0.971–1.023) 0.997 (0.975–1.019) 0.998 (0.993–1.003) 0.987 (0.961–1.013) 

NO2 1 pollutant 0.994 (0.975–1.014) 0.999 (0.996–1.002) 1.000 (0.995–1.005) 0.999 (0.995–1.003) 
2 pollutants (+PM10) 0.990 (0.968–1.012) 0.998 (0.995–1.002) 1.018 (0.975–1.064) 1.001 (0.996–1.006) 
2 pollutants (+PM2.5) 0.996 (0.974–1.018) 0.999 (0.996–1.003) 0.999 (0.993–1.004) 1.001 (0.996–1.005)  

a Adjusted for sex, age, household wealth, household size, migration background, highest attained education level, neighborhood SES score, municipality and test 
week. 

b Interquartile range (IQR) for PM10 = 1.63 μg/m3, for PM2.5 = 1.18 μg/m3 and NO2 = 6.07 μg/m3. 
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3.2. Effects of long-term exposure 

3.2.1. Overall effects 
Single-pollutant models showed no statistically significant associa-

tions between exposure to PM10, PM2.5 and NO2 concentrations in the 
three years before the COVID-19 pandemic and the odds of testing 
positive for SARS-CoV-2 (vs. other respiratory diseases) among symp-
tomatic people, at national level, and in urban and rural areas. The same 
was also observed in multi-pollutant models (Table 3). 

3.2.2. Emission source contributions 
Of the total PM10 to which the study population was exposed, 35.1% 

was accounted for by foreign sources, followed by other Dutch sources 
(13.2%), road traffic (6.5%), industry (4.2%), livestock (3.5%), and 
other agricultural sources (0.7%). For total PM2.5, 48.9% of exposure in 
the study population was accounted for by foreign sources, followed by 
other Dutch sources (18.4%), road traffic (7.9%), livestock (5.0%), in-
dustry (4.9%), and other agricultural sources (0.9%). 

When looking at the effects of long-term exposure to different 
sources of air pollution (Table 4), significantly positive associations 
were found for PM10 from foreign sources (both at national level and in 
rural areas), livestock (nationally and in both rural and urban areas) and 
other agricultural sources (nationally). Other Dutch sources showed a 
significantly negative association. For PM2.5, a significantly positive 
association was observed for foreign sources at all levels and for live-
stock sources nationally, whereas a negative association was observed 
for industry nationally. 

Heterogeneity of the effect sizes of the source contributions was high 
(I2 >70%) in the national and rural strata, but low (I2 <25%) in the 
urban stratum. 

3.3. Effects of short-term exposure 

In single-pollutant models, average concentrations of PM10 1- or 2- 
weeks before the testing day were negatively associated with the odds of 
testing positive for SARS-CoV-2, whereas for PM2.5 the associations 
were positive. When adjusting for NO2 and O3, the associations with 
PM10 became positive, while those with PM2.5 remained positive. For 
NO2 and O3, all models showed negative associations with the odds of 
testing positive for SARS-CoV-2 (Table 5). 

3.4. Sensitivity analyses 

In general, results were robust to sensitivity analyses for both long- 
and short-term exposures (Figs. S8–S10, Appendix). Statistically signif-
icant changes in direction of the association were observed in the long- 
term exposure analysis, where positive associations with foreign sources 
of PM10 and PM2.5 appeared when the analysis was restricted to areas 
with the highest degrees of urbanization. No other changes were 
observed in the sensitivity analyses. 

4. Discussion 

This study assessed whether long- and short-term exposure to 
ambient concentrations of AAP increases the risk of acquiring SARS- 
CoV-2 infection as compared to other diseases showing symptoms 
compatible with COVID-19. We found that, overall, long-term exposure 
to PM10, PM2.5 or NO2 concentrations did not pose significant 
increased risks of testing positive for SARS-CoV-2, whereas significant 
risks from short-term exposure, particularly to PM2.5, were observed. 
However, when looking at specific sources of PM, we found that long- 
term exposure to PM10 and PM2.5 from foreign and livestock sources, 
and to PM10 from other agricultural sources, were associated with 
increased odds of SARS-CoV-2 positivity. It is worth stressing that the 
adopted study design can only detect effects of AAP on COVID-19 that 
are significantly different than the ones for other respiratory diseases 
composing our control group. In other words, the setting of the study 
filters out any effect of AAP that is common to all respiratory diseases, 
including COVID-19, thereby detecting only those effects that are spe-
cific or unique for COVID-19. 

Decades before the COVID-19 pandemic, it was recognized that 
exposure to AAP increases morbidity and mortality of several diseases, 
notably cardiovascular and respiratory diseases (Burnett et al., 2018), 
but also viral infections of the upper (Jaakkola et al., 1991; Fusco et al., 
2001) and lower (GBD 2016 Lower Respiratory Infections Collaborators, 
2018; Wong et al., 1999; Horne et al., 2018; Carugno et al., 2018) res-
piratory tract, including pneumonia (Nhung et al., 2017; Croft et al., 
2019; Neupane et al., 2010). Both short-term (Hirota et al., 2015; 
Ciencewicki et al., 2007; Li et al., 2010) and long-term exposure (Neu-
pane et al., 2010) to air pollution have been shown to weaken the im-
mune system and increase systemic inflammation, rendering individuals 
more susceptible to being infected with SARS-CoV-2. Experimental ev-
idence has shown that both PM and NO2 impact susceptibility and 

Table 4 
Emission source-specific effects (adjusted Odds Ratios) of the long-term exposure to air pollution from specific sources on testing positive for SARS-CoV-2.  

Pollutant Source Odds Ratio (95% Confidence Interval)a 

per IQR μg/m3 increaseb per 1 μg/m3 increase 

National National Rural areas Urban areas 

PM10 Foreign sources 1.152 (1.043–1.274) 1.093 (1.027–1.163) 1.116 (1.038–1.201) 0.950 (0.828–1.091) 
Industry 0.994 (0.987–1.001) 0.974 (0.946–1.003) 0.972 (0.929–1.017) 0.970 (0.934–1.008) 
Livestock 1.022 (1.008–1.036) 1.053 (1.020–1.088) 1.044 (1.009–1.080) 1.221 (1.024–1.456) 
Other agricultural sources 1.016 (1.005–1.027) 2.195 (1.271–3.791) 1.829 (0.955–3.502) 0.826 (0.221–3.088) 
Road traffic 1.006 (0.986–1.026) 1.011 (0.975–1.048) 1.024 (0.969–1.081) 0.996 (0.949–1.045) 
Other Dutch sources 0.971 (0.947–0.996) 0.976 (0.956–0.996) 0.960 (0.919–1.004) 1.005 (0.976–1.034) 
Heterogeneity test (Ib) 85.9% 78.2% 8.9% 

PM2.5 Foreign sources 1.180 (1.063–1.311) 1.136 (1.048–1.231) 1.162 (1.057–1.277) 0.948 (0.793–1.134) 
Industry 0.991 (0.984–0.999) 0.938 (0.888–0.991) 0.956 (0.879–1.040) 0.927 (0.864–0.995) 
Livestock 1.073 (1.024–1.124) 1.310 (1.095–1.568) 1.211 (0.989–1.482) 2.662 (1.367–5.183) 
Other agricultural sources 1.006 (0.991–1.023) 1.909 (0.393–9.274) 1.880 (0.275–12.842) 0.095 (0.004–2.422) 
Road traffic 1.005 (0.982–1.028) 1.013 (0.952–1.078) 1.031 (0.940–1.131) 0.978 (0.898–1.065) 
Other Dutch sources 0.972 (0.946–1.000) 0.971 (0.943–1.000) 0.953 (0.899–1.010) 1.018 (0.976–1.061) 
Heterogeneity test (Ib) 90.9% 74.4% 36.4%  

a Adjusted for sex, age, household wealth, household size, migration background, highest attained education level, neighborhood SES score, municipality and test 
week. 

b Interquartile range (IQR) for PM10 ‘foreign sources’ = 1.60 μg/m3, ‘industry’ = 0.23 μg/m3, ‘livestock’ = 0.42 μg/m3, ‘other agricultural sources’ = 0.02 μg/m3, 
‘road traffic’ = 0.54 μg/m3 and ‘other Dutch sources’ = 1.2 μg/m3. IQR for PM2.5 ‘foreign sources’ = 1.30 μg/m3, ‘industry’ = 0.14 μg/m3, ‘livestock’ = 0.26 μg/m3, 
‘other agricultural sources’ = 0.01 μg/m3, ‘road traffic’ = 0.37 μg/m3 and ‘other Dutch sources’ = 0.96 μg/m3. 
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Table 5 
Effects (adjusted Odds Ratios)of short-term exposure (average air pollution concentrations one and two weeks before testing day) at national level (whole country of the Netherlands) and stratified by rural and urban 
areas.  

Pollutant Analysis Odds Ratio (95% Confidence Interval)a 

One week before Two weeks before 

per IQR μg/m3 

increaseb 
per 1 μg/m3 increase per IQR μg/m3 

increasea 
per 1 μg/m3 increase 

National National Rural areas Urban areas National National Rural areas Urban areas 

PM10 1 pollutant 0.961 (0.949–0.973) 0.992 
(0.990–0.994) 

0.997 
(0.994–1.001) 

0.991 
(0.987–0.994) 

0.887 (0.869–0.906) 0.978 
(0.974–0.982) 

0.986 
(0.980–0.993) 

0.977 
(0.972–0.982) 

2 pollutants (+NO2) 1.024 (1.007–1.040) 1.005 
(1.001–1.008) 

1.007 
(1.002–1.012) 

1.000 
(0.995–1.004) 

0.956 (0.932–0.980) 0.991 
(0.987–0.996) 

0.994 
(0.987–1.001) 

0.986 
(0.980–0.992) 

2 pollutants (+O3) 0.955 (0.944–0.967) 0.991 
(0.989–0.993) 

0.994 
(0.991–0.998) 

0.991 
(0.988–0.994) 

0.973 (0.951–0.996) 0.995 
(0.991–0.999) 

0.999 
(0.993–1.006) 

0.994 
(0.988–1.000) 

3 pollutants (+NO2+O3) 1.073 (1.056–1.091) 1.014 
(1.011–1.018) 

1.011 
(1.006–1.016) 

1.011 
(1.007–1.016) 

1.132 (1.101–1.164) 1.024 
(1.018–1.029) 

1.018 
(1.010–1.026) 

1.016 
(1.009–1.024) 

PM2.5 1 pollutant 1.024 (1.012–1.036) 1.005 
(1.003–1.008) 

1.006 
(1.002–1.010) 

1.003 
(0.999–1.006) 

1.055 (1.035–1.075) 1.013 
(1.009–1.018) 

1.014 
(1.007–1.021) 

1.009 
(1.003–1.016) 

2 pollutants (+NO2) 1.151 (1.133–1.169) 1.031 
(1.028–1.035) 

1.025 
(1.020–1.031) 

1.025 
(1.020–1.030) 

1.169 (1.145–1.194) 1.039 
(1.034–1.045) 

1.031 
(1.022–1.039) 

1.031 
(1.023–1.038) 

2 pollutants (+O3) 0.997 (0.985–1.009) 0.999 
(0.997–1.002) 

0.999 
(0.995–1.003) 

1.000 
(0.996–1.003) 

1.079 (1.059–1.100) 1.019 
(1.014–1.024) 

1.015 
(1.008–1.022) 

1.019 
(1.013–1.025) 

3 pollutants (+NO2+O3) 1.140 (1.122–1.158) 1.029 
(1.025–1.033) 

1.020 
(1.015–1.025) 

1.027 
(1.022–1.032) 

1.222 (1.196–1.249) 1.051 
(1.045–1.056) 

1.036 
(1.028–1.044) 

1.046 
(1.039–1.054) 

NO2 1 pollutant 0.919 (0.907–0.931) 0.989 
(0.987–0.991) 

0.993 
(0.990–0.996) 

0.990 
(0.988–0.992) 

0.880 (0.866–0.895) 0.982 
(0.980–0.984) 

0.990 
(0.986–0.993) 

0.984 
(0.981–0.988) 

2 pollutants (+PM10) 0.903 (0.888–0.919) 0.987 
(0.984–0.989) 

0.990 
(0.987–0.993) 

0.991 
(0.988–0.994) 

0.895 (0.878–0.912) 0.984 
(0.982–0.987) 

0.991 
(0.987–0.995) 

0.990 
(0.986–0.994) 

2 pollutants (+PM2.5) 0.825 (0.811–0.840) 0.975 
(0.973–0.977) 

0.981 
(0.978–0.985) 

0.979 
(0.976–0.982) 

0.824 (0.809–0.839) 0.973 
(0.970–0.975) 

0.983 
(0.979–0.987) 

0.977 
(0.973–0.981) 

2 pollutants (+O3) 0.868 (0.856–0.880) 0.981 
(0.980–0.983) 

0.986 
(0.983–0.989) 

0.985 
(0.982–0.987) 

0.867 (0.853–0.881) 0.980 
(0.978–0.982) 

0.987 
(0.984–0.991) 

0.984 
(0.981–0.987) 

3 pollutants (+PM10+O3) 0.823 (0.807–0.838) 0.975 
(0.972–0.977) 

0.981 
(0.977–0.984) 

0.979 
(0.975–0.982) 

0.824 (0.808–0.841) 0.973 
(0.970–0.976) 

0.982 
(0.978–0.986) 

0.978 
(0.974–0.983) 

3 pollutants 
(+PM2.5+O3) 

0.788 (0.774–0.802) 0.969 
(0.967–0.971) 

0.977 
(0.974–0.981) 

0.972 
(0.969–0.975) 

0.797 (0.782–0.812) 0.968 
(0.965–0.971) 

0.979 
(0.975–0.983) 

0.972 
(0.968–0.975) 

O3 1 pollutant 0.891 (0.878–0.904) 0.994 
(0.993–0.995) 

0.995 
(0.993–0.996) 

0.995 
(0.994–0.996) 

0.711 (0.692–0.730) 0.985 
(0.984–0.986) 

0.987 
(0.985–0.989) 

0.987 
(0.985–0.988) 

2 pollutants (+NO2) 0.841 (0.828–0.854) 0.991 
(0.990–0.992) 

0.992 
(0.991–0.993) 

0.993 
(0.992–0.994) 

0.702 (0.684–0.721) 0.984 
(0.983–0.986) 

0.986 
(0.984–0.988) 

0.987 
(0.985–0.988) 

2 pollutants (+PM10) 0.889 (0.876–0.902) 0.994 
(0.993–0.995) 

0.994 
(0.993–0.995) 

0.995 
(0.994–0.996) 

0.722 (0.701–0.743) 0.986 
(0.984–0.987) 

0.987 
(0.985–0.989) 

0.988 
(0.986–0.989) 

2 pollutants (+PM2.5) 0.891 (0.878–0.905) 0.994 
(0.993–0.995) 

0.994 
(0.993–0.996) 

0.995 
(0.994–0.996) 

0.706 (0.687–0.725) 0.985 
(0.983–0.986) 

0.987 
(0.985–0.989) 

0.986 
(0.985–0.988) 

3 pollutants 
(+PM10+NO2) 

0.827 (0.814–0.841) 0.990 
(0.990–0.991) 

0.992 
(0.990–0.993) 

0.992 
(0.991–0.993) 

0.662 (0.643–0.682) 0.982 
(0.981–0.983) 

0.984 
(0.982–0.986) 

0.985 
(0.983–0.986) 

3 pollutants 
(+PM2.5+NO2) 

0.848 (0.834–0.861) 0.992 
(0.991–0.992) 

0.993 
(0.992–0.994) 

0.993 
(0.992–0.994) 

0.677 (0.659–0.696) 0.983 
(0.982–0.984) 

0.986 
(0.984–0.988) 

0.984 
(0.983–0.986)  

a Adjusted for sex, age, housolhd wealth, household size, migration background, highest attained education level, neighborhood SES score, municipality and test week. 
b Interquartile range (IQR) for 1-week PM10 = 5.01 μg/m3, PM2.5 = 4.57 μg/m3, NO2 = 7.56 μg/m3, O3 = 19.62 μg/m3. IQR for 2-week PM10 = 5.30 μg/m3, PM2.5 = 4.07 μg/m3, NO2 = 7.00 μg/m3, O3 = 22.45 μg/m3. 
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immune response to viral infections through various mechanisms, such 
as augmented or impaired innate and adaptive immunity (Hirota et al., 
2015; Ciencewicki et al., 2007), including skewed immune responses 
from predominantly antiviral to allergic Th2-predominant responses (Li 
et al., 2010), disrupted airway epithelial barrier function (Woodby et al., 
2021; Liu et al., 2019a), impaired cytotoxicity (Becker and Soukup, 
1999), and altered cell surface receptor expression (Lin et al., 2018; 
Spannhake et al., 2002). This latter is of particular interest for explaining 
how air pollution might affect COVID-19 differently. Indeed, air pollu-
tion can alter host cell surface receptor expression in a way that would 
favor coronavirus, including SARS-CoV-2, infection. This is because 
coronaviruses target the angiotensin converting enzyme 2 (ACE-2) re-
ceptor for entry into the cells (Lin et al., 2018; Frontera et al., 2020; 
Paital and Agrawal, 2021). The ACE-2 acts as the sole receptor for 
SARS-CoV-2 via its spike protein, and ACE-2 has been found to be 
overexpressed on airway epithelial cells under chronic exposure to PM 
(Lin et al., 2018; Frontera et al., 2020). A ‘double hit’ hypothesis has also 
been proposed (Frontera et al., 2020) in which chronic exposure to PM 
inducing alveolar ACE-2 receptor overexpression would increase viral 
load, depleting ACE-2 receptors and impairing host defenses (i.e., the 
‘first hit’). Concurrently, exposure to NO2 would provide a ‘second hit’ 
that would cause a more severe SARS-CoV-2 infection in ACE-2 depleted 
lungs, resulting in worse health outcomes (Frontera et al., 2020; Paital 
and Agrawal, 2021). Moreover, pre-existing health conditions, such as 
cardiovascular disease and lung cancer, for which long-term air pollu-
tion exposure is a risk factor, are, in turn, risk factors for COVID-19 by 
compromising overall health status and weakening immune responses 
over time (Singh et al., 2021). Although our study did not focus on 
severity of COVID-19 given infection (e.g. hospitalization, ICU admis-
sion or mortality), it is conceivable that worsening of health outcomes 
might increase the urgency of testing. Interestingly, we observed that in 
the short-term exposure analysis, adding NO2 led PM10 to become a risk 
factor, and increased the effect size of the already positive association of 
PM2.5. 

While long-term exposure to PM10 and PM2.5 from foreign and 
livestock sources, and to PM2.5 from other agricultural sources, showed 
significant positive (i.e., adverse for COVID-19) effects, other Dutch 
sources of PM10 and industrial sources of PM2.5 showed significant 
negative effects for COVID-19 risk. Given the study design, this does not 
mean that these two latter exposures are beneficial for COVID-19, but 
rather that they have significantly stronger detrimental effects for the 
different respiratory conditions other than COVID-19 present among the 
test-negatives. Without further information on these etiologies, it is not 
possible to provide a biological interpretation of the underlying mech-
anisms. Moreover, the effects observed for foreign sources and other 
Dutch sources (i.e., other than agriculture, industry and road traffic) 
cannot be interpreted in the same manner as the other sources. Indeed, 
while different sources emit different PM compositions with potentially 
different toxicities, hence potentially different effects on health, this 
cannot be disentangled when the sources are so broadly defined, as they 
are in turn composed of emissions from mixed sources as well. More-
over, their composition can differ per area (e.g., close to industries or 
not). Therefore, we included these sources to account for their back-
ground concentrations in the analysis, but the interpretation of these 
estimates remains limited. Similarly, source contribution of PM2.5, as 
compared to PM10, is more limited, as PM2.5 concentrations per source 
are more complicated to interpret due to co-dependence between 
sources for formation of secondary aerosols. 

In general, the effects observed nationally were also observed in 
either urban or rural areas, but relatively more consistently for PM from 
livestock. The Netherlands is a densely populated country with no major 
topographical features causing large climatological differences. More-
over, due to widespread intensive farming, the country also happens to 
have the largest livestock density in Europe (https://ec.europa.eu/eur 
ostat/statistics-explained/index.php?title=Agri-environmental_indicat 
or_-_livestock_patterns). Furthermore, because of its relatively small 

territorial extension and immediacy with Germany and Belgium, con-
tributions to PM concentrations from sources from abroad are generally 
high, especially in the most southern and eastern parts of the country, 
which also happen to be more devoted to agricultural activities (espe-
cially poultry and pig farms). Conversely, NO2 concentrations are 
highest in the more densely populated western parts where higher 
pollution from traffic and industrial activities can be found. The 
magnitude of the contribution of the different sources of air pollution 
varies between urban and rural areas (and so does the corresponding 
mixture of PM components and distribution of primary and secondary 
pollutants, as mentioned before), but this is also true for the exposed 
population in terms of density, susceptibility, lifestyle, mobility, be-
haviours, etc., including virus transmission patterns (Matz et al., 2015). 
Indeed, risk factors other than AAP also have a spatial distribution, and 
studies on these factors may also be confounded by patterns of virus 
spread. Jointly all factors shape virus spread. This might explain, at least 
in part, why the effects of PM observed here varied across sources and 
urbanization degrees. Our results add further evidence to the several 
studies that have shown that proximity to farms is associated with 
increased risk of various health outcomes, including respiratory condi-
tions (Freidl et al., 2017; Kalkowska et al., 2018; Klous et al., 2018; Post 
et al., 2021; Simões et al., 2022; Smit et al., 2012) and SARS-CoV-2 
infection as well (Hogerwerf et al., 2022). The proposed hypotheses 
about the underlying biological mechanisms include hypersensitization 
towards livestock-borne PM, including PM contaminated with microbes 
and endotoxins, also called bioPM, which would trigger innate immune 
responses contributing to respiratory disease, including COVID-19 (Liu 
et al., 2019b; Poole and Romberger, 2012; Sahlander et al., 2012; Dia-
mond and Kanneganti, 2022). However, the effects found here are, once 
again, signaling at best and more research is needed to corroborate 
whether and how these hypotheses would apply to COVID-19 as well. 

We observed negative associations for NO2 and O3 in the short-term 
exposure analyses. Again, this does not mean that they are beneficial for 
COVID-19, but rather that they pose a more pronounced risk for respi-
ratory conditions other than COVID-19, although the underlying reasons 
remain unclear. What we know is that increases in O3 are associated 
with decreased NO2 levels (Quan et al., 2014; Hashim et al., 2021), as 
also observed in our study (Fig. S7, Appendix). Measures implemented 
to contain the spread of COVID-19, such as lockdowns, are known to 
have impacted air quality due to reduction of certain economic activities 
and particularly less road traffic in general (and therefore reduced NO2 
concentrations as a consequence) due to fewer commuting and widely 
implemented ‘stay at home’ recommendations (Velders et al., 2021; 
Zheng et al., 2020; Bashir et al., 2020). Yet, staying at (and working 
from) home remained common even after the most stringent measures 
were lifted, as it was generally encouraged when/where possible to limit 
SARS-CoV-2 transmission; thus, it cannot be excluded that this might 
have also influenced the negative association observed here, as people 
might have increasingly refrained from moving during periods of 
increasing SARS-CoV-2 circulation. However, staying more at home also 
means increased exposure to indoor NO2 from, e.g., cooking on gas, 
whose possible compensatory effect cannot be studied here. While other 
studies on the short-term effects of air pollution on COVID-19 have also 
reported negative associations with NO2 (Bashir et al., 2020; Sangkham 
et al., 2021; Akan, 2022), it seems that in general NO2 has stronger ef-
fects on disease severity (Zang et al., 2022; Ali et al., 2021; Marquès and 
Domingo, 2022), supporting the aforementioned double hit hypothesis 
(Frontera et al., 2020). In general, however, the association with 
short-term exposure remains difficult to study (Katoto et al., 2021; 
Brunekreef et al., 2021; Walton et al., 2022; Carballo et al., 2022) 
because most analyses are based on very short periods with limited 
exposure contrast (Walton et al., 2022) against a background of complex 
SARS-CoV-2 infection dynamics, including different measures imple-
mented, vaccination campaigns, emergence of variants, altered mobility 
patterns, etc. 

This study has several limitations, some of which are intrinsic to the 
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outcome definition. For example, both sensitivity and specificity of 
SARS-CoV-2 tests may vary, and even when PCR is performed, it can 
vary in relation to the timing of symptom onset (Zou et al., 2020; Wölfel 
et al., 2020) and type of samples tested (Teo et al., 2021). Therefore, it is 
inevitable that there would be some misclassification of the outcome, 
and in the test-negative design, all false-negatives would fall in the 
control group and all false-positives in the case group. The resulting 
misclassification would then have most consequences in situations 
wherein the proportion of COVID-19 relative to other diseases is either 
very high or very low. However, in the relatively limited study period (i. 
e., 6 months, from June to November 2020), such situation did not really 
occur. Linked to this point, we could only analyze data of the so-called 
‘second wave’. The study period chosen was the best compromise 
possible between data availability/quality and study characteristics, as 
before June 2020 no suited data was available and after November 2020 
testing was extended to people without symptoms, and later on at the 
beginning of 2021 vaccination started and virus variants began to 
emerge, which complicates the interpretation of analyses due to po-
tential effects of immunity. In this regard, though, focusing on the sec-
ond wave also implies inclusion of potential effects of immunity. Indeed, 
it is known that as the epidemic progressed, some risk factors for 
SARS-CoV-2 infection at the beginning of the pandemic (e.g., having a 
job entailing contact with other people), paradoxically, became pro-
tective against new infections later. This is because people who acquired 
the infection first also built immunity against new infection earlier than 
others (Vandenbroucke et al., 2020). Regarding air pollution, therefore, 
it is possible that people at highest risk of COVID-19 because of exposure 
to air pollution acquired the infection earlier during the first wave, 
thereby turning up later in the study period mainly as seemingly 
test-negatives when having symptoms (from another cause). Although 
we excluded healthcare workers and people living in nursing homes in 
an effort to address this issue, the fact that other persons with acquired 
immunity that we could not account for were still included in our ana-
lyses might have muddled our risk estimates. Moreover, looking at later 
phases of the pandemic when the virus had spread everywhere in the 
country might have helped compensating for potential seeding effects 
and data reporting issues present at the beginning of the pandemic. 

One of the biggest sources of exposure misclassification in epide-
miological studies on health effects of exposure to air pollution is not 
taking time activity-patterns into account. Since this study was based on 
administrative data, it was impossible to obtain mobility information for 
the study population. As discussed above, the study period coincided 
with lockdown periods, when mobility of individuals outside their 
homes was greatly reduced, thereby decreasing the potential for expo-
sure misclassification. However, potential indoor sources might 
concomitantly have had a greater weight to the overall exposure to air 
pollutants, namely NO2 and it is difficult to ascertain how these two 
aspects might influence results. 

The spatial resolution of the exposure maps may also have contrib-
uted, to some extent, to exposure misclassification, especially for NO2, as 
this pollutant is known to have significant spatial variability close to 
busy roads. However, building higher resolutions maps of annual av-
erages becomes problematic because of loss of granularity in the emis-
sion data, that is, errors are introduced when building maps with 
resolution higher than 1 × 1 km. For example, while it is always known 
where roads are located, the respective volume of traffic and type of cars 
driven is not. This is less of an issue for PM10 and PM2.5, which can be 
transported over longer distances and are therefore more homogenously 
distributed over large areas. Exposure misclassification, which would be 
non-differential, and coarser resolution maps in the short-term exposure 
analysis, which would result in lower exposure contrast, might have 
both introduced bias towards the null. 

While test-negatives would have another reason than COVID-19 for 
their symptoms, most likely another respiratory infection, it cannot be 
excluded that some symptoms were also due to non-infectious condi-
tions (e.g., allergies, asthma, etc.) or even faked symptoms to access 

testing. Yet, our study period (June–November 2020) excludes the main 
allergy season (spring), so common conditions like hay fever can be 
expected to have played a relatively minor role. A first hypothesis was 
that AAP increases the baseline risk of the population exposed, resulting 
in higher prevalence of comorbidities associated with increased COVID- 
19 risk. However, mediation effects of comorbidities might be expected 
to be similar both for test-negatives and test-positives, and any differ-
ence would be likely to depend on the nature of the test-negatives and 
comorbidities in question, and whether these vary over space and time. 
Although we lacked specific data on comorbidities, other individual- 
level studies that included adjustment for comorbidities found mini-
mal changes in the estimates (English et al., 2022; Nobile et al., 2022; 
Ranzani et al., 2023). Moreover, adjustment for several other factors 
known to be associated with poor health outcomes, lifestyles and be-
haviors, as well as viral transmission (e.g., age, SES, income, country of 
origin, occupation, etc.) were accounted for in our analysis. While the 
effects are suggestive of certain mechanisms being at play, further 
studies are needed to understand the specific biological pathways 
involved. On the other hand, major strengths of the study include full 
nationwide coverage of the Netherlands’ population spanning both 
urban and rural areas in a period of varying viral circulation, with 
high-quality individual-level data on (both long- and short-term) expo-
sure and several potential confounders to include in the analyses. 
Moreover, the analyses addressed explicitly also potentially differential 
effects of various sources of air pollution emission. Although COVID-19 
diagnoses for cases that were not confirmed in public testing facilities 
could not be included in this study, altogether this study yielded high 
statistical power, robust analyses (as also confirmed by the sensitivity 
analyses), and quality of estimates due to availability of high-resolution 
data as well as limited residual confounding expected. 

In conclusion, there was no evidence that, overall, the AAP con-
centrations in the years before the COVID-19 pandemic had significantly 
different effects on the incidence of COVID-19 as compared to other 
respiratory diseases. Therefore, general recommendations about 
improving air quality to mitigate COVID-19 risk would be the same as 
for other respiratory diseases. However, there were signals that 
increased long-term exposure to PM emissions from agricultural sources, 
namely from livestock, was associated with higher odds of testing pos-
itive vs. negative for SARS-CoV-2 among people with COVID-19- 
compatible symptoms. This deserves more attention for full appraisal 
of the underlying biological mechanisms. The same can be said for the 
observed higher odds of testing positive for SARS-CoV-2 infection when 
exposed to higher concentrations of PM in in the prior 1–2 weeks. 
Overall, this study reinforces the need to continue current efforts for 
better air quality to support public health. 
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