
BOLD: Knowledge Graph Exploration and Analysis Platform
Egor Dmitriev
Utrecht University
Utrecht, Netherlands

egordmitriev2@gmail.com

Melisachew Wudage Chekol
Utrecht University
Utrecht, Netherlands
m.w.chekol@uu.nl

Mirko Tobias Schaefer
Utrecht University
Utrecht, Netherlands
m.t.schaefer@uu.nl

ABSTRACT
The linked open data (LOD) cloud maintains several interlinked
knowledge graphs. These graphs span various domains such as
government, media, life sciences, etc. The graphs are often manu-
ally curated or automatically extracted (e.g. YAGO—Yet Another
Great Ontology) using information extraction techniques. They
are used in various applications such as data governance, fraud
detection, fact checking, etc. Although the graphs in LOD are
widely used, they do not contain metadata about their represen-
tativeness (distribution of key features). Since most of the graphs
are automatically curated, bias can manifest due to sensitive
features and their causal influences, or through under (over)-
representation of certain entities (e.g. people) and relations (e.g.
president-of, works-for). The aim of this work is to develop a
system to automatically generate bias profiles (metadata about
the representativeness of data) for knowledge graphs. As a result,
the metadata can be used as a guide for users to choose bias
free (balanced) datasets for their studies. Moreover, it enables re-
searchers to quickly gauge the relevance of a graph for a problem
at hand (e.g. classification task).

1 INTRODUCTION
In this work, we develop a tool to automatically detect the differ-
ent kinds of bias that may exist in knowledge graphs. To motivate
our work, we performed an explorative and qualitative data analy-
sis on the Wikidata [11] knowledge graph in order to understand
where, and in which ways bias is expressed. In other words, we
want to investigate the types of bias and their causes. The types
of bias are uncovered through the descriptive statistics about the
data present in the knowledge graph, the causes are mostly due
to practises of knowledge curation in Wikidata.

In a preliminary investigation we focus on the class human,
we investigated all entities within Wikidata which are instances
of human. We also investigate which relationships are present
and which objects are associated with these entities. Our results
exemplify the skewedness of Wikidata: there are three times as
many men as there are women, the most common occupation
is researcher, the second-most common place of death is the
concentration camp Theresienstadt, etc. This skewedness result
comes from the different forms of bias. The over-representation of
researchers, western people and men is grounded in the cultural
context of the data authors (e.g. [2, 6]). The place of death refers
to another source of bias, i.e., the availability of information.
The descriptive statistics gives insight into which forms of bias
are present, and their degree. Our preliminary results, therefore,
underline the importance of further investigation and necessitate
a tool that allows (lay) users to do this.

In addition to representing skewed data, knowledge graphs
(KG) may contain incorrect information either due to an error

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

in the KG construction or intentionally supplied by content cu-
rators. Besides, KGs can also be incomplete. As an example, in
Freebase [1], over 70% of person entities have no known place
of birth and over 75% have no known nationality [4]. In Wiki-
data [11], we observe a similar behavior, for instance, over 97%
of humans have no known religion and over 83% of humans
have no known spoken, written or signed languages. Subsets of
both Wikidata and Freebase have been widely used for testing
knowledge graph completion models. However, these subsets
do not take into account the incompleteness of the KGs and are
prepared in a way to test solely the accuracy of models. However,
if the subsets are incomplete (or unbalanced), the models can be
biased [10]. For instance, the Wikidata12K [7] dataset contains
80% male and 20% female politicians. Clearly, this dataset is un-
balanced and a model trained on it will likely over-represent men
in its predictions. The observations described above motivated
our work to create BOLD (Bias in Open Linked Data), a system
that allows (lay) users to profile knowledge graphs. Specifically,
BOLD enables users to accomplish the following tasks:

• Seamless import of knowledge graphs from the linked
open data cloud (LODC)1 and Triply DB2,

• Interact with external SPARQL endpoints,
• Create persistent reports and share them with others,
• Run SPARQL or pre-built analysis queries,
• Explore KGs with interactive visualizations, and
• Select entities with fuzzy search.

During the conference, participants or users have the oppor-
tunity to engage with the BOLD system in a multitude of ways,
ensuring a rich and interactive experience. Users can choose
to either deploy BOLD on their individual machines, provid-
ing a personalized and hands-on exploration, or utilize our cen-
tralized setup for comprehensive testing. Users can seamlessly,
upload or import existing knowledge graphs, create SPARQL
queries, harness BOLD’s widgets to generate different distri-
butions of entities or visualize a subset of a given dataset. Al-
ternatively, users can also interact and explore with our ready-
made reports. Instructions, along with handy animations (in
the form of GIF files), on how to use BOLD are provide at the
address: https://egordmitriev.net/BOLD/user_manual/. An in-
stance of BOLD which runs in a web browser can be found at
https://egordmitriev.net/BOLDER/.

2 THE BOLD SYSTEM
The BOLDplatform depends on StarDog3 and PostgreSQL databases
for knowledge graph and state storage.

2.1 Architecture
The BOLD architecture is designed to be scalable and to handle
datasets of all sizes. Therefore we keep the data and the code

1https://lod-cloud.net/
2https://triply.cc/triplydb/
3https://www.stardog.com/

Demonstration Paper

 

 

Series ISSN: 2367-2005 814 10.48786/edbt.2024.77

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.77


Figure 1: Architecture of the BOLD system.

separate. Additionally, we define asynchronous execution archi-
tecture to allow for parallel execution of queries, dataset imports
and fault tolerance. A high level overview of the architecture is
given in Figure 1, where we can see the described separation. It
is also important to make the analysis and visualization exten-
sible so that new features can be added as required. In order to
achieve this, we separate the analysis and visualization from the
execution logic by strictly assigning these roles to the frontend
and backend.

The backend is responsible for the execution of queries and the
data management. It receives an execution plan in the form of a
report, with report cells containing SPARQL queries, and executes
them in parallel for a given dataset. The client side allows to
import/upload datasets (locally, from LODC or TriplyDB). The
import component does not work with third party services, but
with RDF data imports/uploads or SPARQL endpoints directly.
The data is either stored in a self-hosted local data cluster (using
StarDog triple store) or is accessed in a read-only fashion from an
external data cluster using SPARQL and Elasticsearch endpoints.
Moreover, the state of the workers is decoupled from the backend
server and vice-versa for fault tolerance.

Indexing. When a dataset is uploaded, English resource la-
bels and descriptions (if available) are used to create the full-
text search index in Tantivy, which abstracts most of the index
creation process. In addition to labels, we also tag their usage
(whether it is a subject, predicate, or object) and count their
occurrences to enhance search result quality.

2.2 User Interface
When the user logins into (or runs) the system, they see the page
shown in Figure 2. This is the main page where the user has the
option to create a dataset, interact with reports, see running tasks
or select existing or import datasets.

2.2.1 Datasets. ABOLDdataset represents an (imported) RDF
dataset. The dataset consists of a SPARQL endpoint and a search
index. Both can point to either a local or a remote resource. The
datasets can be shared between users and reports. There are two
main ways to import datasets into BOLD: direct import/upload
and via a SPARQL endpoint.

Figure 2: BOLD’smain pagewhere 5menu items are shown.

• Direct import - it is possible to import, an RDF dataset into
BOLD, and create a search index. This requires the ma-
chine, where BOLD is running, to have sufficient memory
and storage to store the dataset.

• SPARQL endpoint - it is possible to create a dataset from a
SPARQL endpoint and use an external search index. This
does not require the machine (where BOLD is running) to
have enough storage to store the dataset as it is accessed
directly from the endpoint.

2.2.2 Reports. A report cell contains either SPARQL queries
or a configurable widget which generates queries for the database.
The widgets can be configured to generate different plots. There
are 8 different widgets that allow to build histograms, pie charts,
retrieve subgraphs, browse taxonomies, and so on. As an example,
Figure 3(A) shows a widget for building a histogram about the sex
or gender distribution of American scientists, on the Wikidata
dataset. When the widget is executed, it produces the histogram
shown in sub-figure (C). The plot shows that the majority of
entities in Wikidata that are scientists have the sex/gender male
compared to females. For the other three categories, namely, non-
binary, trans woman and trans man, there is only a single entity.
In BOLD, it is also possible to input SPARQL queries in a report
cell as shown in Figure 3(B).

In Figure 4, we demonstrate the process of creating a BOLD
report. When the user navigates to the reports page, they en-
counter image (1). Here, users can choose from eight different
widgets using the "cell type" dropdown menu (image 2). If the
user selects "code," a cell with a pre-filled SPARQL query that can
be edited appears. Choosing a plot builder widget reveals image
(3). Using the plot builder, users can specify the entities and re-
lations for plotting. For example, in image (4), the user selects
Pokemon character types based on length. Image (5) displays
the user specifying the variables for plotting (type and length).
Upon executing the widget (image 6), a pie chart plot is generated
(image 7). Users have the option to transform the pie chart into a
bar plot (images 8 and 9).

2.2.3 Tasks. A BOLD task represents a collection of works
that can be scheduled and assigned to a worker. Tasks are meant
to be used for long-running tasks and run in parallel to avoid
blocking the main server.

2.3 Deployment
It is possible to set up a BOLD instance using Docker. In order to
do so, one needs to create a Docker configuration file specifying

815



B

A

C

Figure 3: A) Widget that is used to generate the barplot in (C) when run on Wikidata. B) A query to accomplish the same.

Table 1: The table illustrates the system memory require-
ment for BOLD per dataset size.

Number of triples Total system memory (in GB)
100 million 8
1 billion 32
10 billion 128
25 billion 256
50 billion 512

the triple store (StarDog, BlazeGraph4, etc) and search (Tantivy,
Elasticsearch, etc) database to use. Docker uses the configuration
file to execute the BOLD instance, starting the container that
runs on localhost with the default port set to 8000. For additional
information on setting up BOLD locally, we refer the reader
to the user manual which can be found at https://github.com/
UtrechtUniversity/BOLD-KB-Profiler. Alternatively, users can
also interact with the BOLD system through the streamlined web
interface5, which runs on top of the Wikidata knowledge graph.

In order to install BOLD, it is recommended to have twice
the amount of storage the datasets require, for instance, for the
YAGO [8] dataset (which is ∼60GB), one needs 120GB. In addi-
tion, at least 2 CPU cores, on the machine where BOLD runs,
must be allocated. These system requirements are mostly bound
by the StarDog database. While using StarDog is not mandatory,
if chosen, it is not possible to import full datasets; only external
SPARQL endpoints are allowed. Alternatively, (expert) users can
configure BOLD to work with other triple stores such as Blaze-
Graph or Virtuoso [5]. The memory requirements of BOLD are
tied to the size of the datasets. As shown in Table 1, a dataset
that has 50 billion triples requires at least 512GB of memory.

3 RELATEDWORK
Demartini [3] proposes methods to trace the provenance of crowd
sourced fact checking to enable bias transparency rather than
aiming at eliminating bias from a KG. Furthermore, they inves-
tigate how paid crowd sourcing can be used to understand con-
tributors’ implicit bias. Specifically, they recruit click workers

4https://blazegraph.com/
5https://egordmitriev.net/BOLDER/

to verify controversial facts and study the process as they do so.
They track what search engines are used and which position the
URL used to validate was ranked in the result page. An example
verification task is the question of whether Catalonia is a part
of Spain or an independent country. The paper proposes adding
both facts to the knowledge graph, with a statement testifying
how much support there is for each fact.

Wisesa et al. [12] introduces ProWD, a framework and tool for
profiling the completeness of Wikidata. Completeness measure
is based on Class-Facet-Attribute (CFA) profiles. For example one
could compare how often the attribute "educated at" or"date of
birth" compare between male, German computer scientists, and
female, Indonesian computer scientists.

Another tool used for analyzing the gender gap in Wikidata is
Denelezh6. It provides an overview of gender distribution among
all human entities that have different language labels. Across all
editions, only in the occupational category of actors, females are
present with more than 40% proportion. In addtion, the Wikidata
Concepts Monitor (WDCM7) tool provides an overview of the
different entities in Wikidata and which applications are using
them. Both tools have been used to evaluate how each of them
represents gender bias in Wikipedia. Denelezh can combine vari-
ous dimensions, such as occupation and country of citizenship,
to calculate gender bias in different categories of profession.

Although RDF-ANALYTICS [9] was not originally developed
for bias analysis. The authors claim that, it allows to explore
and create analytical queries on knowledge graphs. The tool
allows lay users to create queries without having to know dataset
vocabulary or the SPARQL query language, showcasing a flexible
and accessible analytical framework.

In contrast to BOLD, the aforementioned tools are tailored
specifically for Wikidata. They have limitations in terms of the
attributes that they can analyze; for instance, Humaniki8 and
Denelezh are primarily focused on addressing gender bias. Fur-
thermore, their analysis is confined in scope; for instance, ProWD
analyzes representativeness based on completeness, it does not
delve into analyzing the underlying values.

6https://denelezh.wmcloud.org/documentation/
7https://www.wikidata.org/wiki/Wikidata:Wikidata_Concepts_Monitor
8https://humaniki.wmcloud.org/search

816



1 2 3

4 5 6

7 8 9

Figure 4: Steps to create a pie chart or bar plot showing the distribution of Pokemon character types based on their length.

These initiatives, among others, indicate that there is a grow-
ing interest to identify bias in knowledge graphs. Given that
knowledge graphs are often collaborative repositories, it is im-
portant to provide users with accessible tools to identify potential
bias. While the mentioned examples are beneficial, they have
limitations in that they are either tailored to a specific knowl-
edge graph or focus on a restricted set of attributes. A general
framework/system (like BOLD) might provide more possibilities
to map bias in knowledge graphs and enable users to become
aware of the distribution of entities and attributes in a given
knowledge graph. It also allows for a wider range of users; while
expert users might utilize it for complex queries, lay users could
benefit from reports generated by expert users. With their own
subject specific expertise, these users can then decide which bias
is problematic, and how to address it.

ACKNOWLEDGMENTS
This work was supported by SIDN Fonds (www.sidnfonds.nl/).

REFERENCES
[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data. 1247–1250.

[2] Ewa S Callahan and Susan C Herring. 2011. Cultural bias in Wikipedia content
on famous persons. Journal of the American society for information science and
technology 62, 10 (2011), 1899–1915.

[3] Gianluca Demartini. 2019. Implicit Bias in Crowdsourced Knowledge Graphs.
In Companion Proceedings of The 2019 World Wide Web Conference (WWW
’19). Association for Computing Machinery, New York, NY, USA, 624–630.
https://doi.org/10.1145/3308560.3317307

[4] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowledge fusion. In Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining. 601–610.

[5] Orri Erling and Ivan Mikhailov. 2009. Virtuoso: RDF support in a native
RDBMS. In Semantic web information management: a model-based perspective.
Springer, 501–519.

[6] Eduardo Graells-Garrido, Mounia Lalmas, and Filippo Menczer. 2015. First
women, second sex: Gender bias in Wikipedia. In Proceedings of the 26th ACM
conference on hypertext & social media. 165–174.

[7] Julien Leblay and MelisachewWudage Chekol. 2018. Deriving validity time in
knowledge graph. In Companion Proceedings of the The Web Conference 2018.
1771–1776.

[8] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3:
A Knowledge Base from Multilingual Wikipedias. In Seventh Biennial Con-
ference on Innovative Data Systems Research, CIDR 2015, Asilomar, CA, USA,
January 4-7, 2015, Online Proceedings. www.cidrdb.org.

[9] Maria-Evangelia Papadaki and Yannis Tzitzikas. 2023. RDF-Analytics: Interac-
tive Analytics over RDF Knowledge Graphs. In Proceedings 26th International
Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece,
March 28-31, 2023. OpenProceedings.org, 807–810.

[10] Wessel Radstok, Melisachew Wudage Chekol, and Mirko T. Schäfer. 2021. Are
Knowledge Graph Embedding Models Biased, or Is it the Data That They Are
Trained on?. In Proceedings of the 2nd Wikidata Workshop (Wikidata 2021)
co-located with the 20th International Semantic Web Conference (ISWC 2021),
Virtual Conference, October 24, 2021 (CEUR Workshop Proceedings), Vol. 2982.
CEUR-WS.org.

[11] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[12] Avicenna Wisesa, Fariz Darari, Adila Krisnadhi, Werner Nutt, and Simon
Razniewski. 2019. Wikidata Completeness Profiling Using ProWD. In Proceed-
ings of the 10th International Conference on Knowledge Capture (K-CAP ’19).
Association for Computing Machinery, New York, NY, USA, 123–130.

817


