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A B S T R A C T

The increasing integration of renewable energy, particularly solar photovoltaic (PV) power, presents challenges
for power system operation. Accurate forecasts of renewable energy are both financially beneficial for
electricity suppliers and necessary for grid operators to optimize operation and avoid grid imbalances. This
paper proposes a forecasting framework to implement conformal prediction (CP) on top of point prediction
models, which predict the PV power on a day-ahead basis, to quantify the uncertainty of those predictions.
Simple and multiple linear regression, along with random forest regression, are used to construct the point
predictions based on weather forecasts. Several variants of CP, including weighted CP, CP with k-nearest
neighbors (KNN), CP with Mondrian binning, and conformal predictive systems, are built to transform the
point predictions into rigorous uncertainty intervals or cumulative distribution functions to enhance reliability.
The framework’s performance is evaluated using large datasets of weather predictions and PV power output
in the Netherlands. Results indicate that CP combined with KNN and/or Mondrian binning after a linear
regressor outperforms the corresponding linear quantile regressor. CP with KNN and Mondrian binning after
using random forest regression demonstrates the most accurate probabilistic PV power forecasts, improving
the weighted interval score by 14% compared to multiple linear quantile regression.
1. Introduction

Solar photovoltaic (PV) systems have seen an exponential growth
since the beginning of the century, triggered by supporting climate
policies and rapidly decreasing costs. Total solar PV power is expected
to increase on average by 13% per year from 2020 to 2030, raising
the combined share of PV and wind power in the global electricity
generation from 9% in 2019 to 30% in 2030 [1]. These sustainable
energy sources are free of direct carbon emissions. However, the inte-
gration of solar PV and wind energy in the power system poses serious
operational challenges due to their intermittency, non-dispatchability
and unpredictability [2]. This increases the overall uncertainty in the
power system operation and therefore the need for reliable predictions
of the PV power output.

Accurate PV power forecasting is essential for numerous decision-
making processes within power systems, such as reducing operating
reserve capacity, generating precise bids in electricity markets, and
maintaining grid stability [3,4]. This can potentially reduce integra-
tion costs associated with high PV penetration. Two main forecasting
approaches exist: point (or single-value) forecast and probabilistic fore-
cast. In point prediction approaches, one value is predicted for each
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time on the horizon. Existing literature reviews highlight extensive
research on solar irradiance and PV power forecasting [5–7], while
also emphasizing the necessity for reliable and accurate PV predictions
tailored to power system requirements, and for comparative analysis
among different point prediction models [8]. Probabilistic forecasting
approaches enhance the reliability of predictions by providing infor-
mation about their full probability distributions, thereby enhancing
informativeness, which is crucial for decision-making under risk, such
as bidding in electricity markets. A review of common probabilistic
methods used for PV power forecasting is provided in [9], while [10]
presents a comparative analysis of these methodologies and the factors
affecting their accuracy.

Conformal prediction (CP) is an emerging probabilistic forecasting
method [11]. In its most basic form, the residuals of predictions from
a calibration dataset are used to calibrate prediction intervals from
a test dataset. CP offers a measure of confidence or credibility by
transforming point predictions into prediction intervals with a prob-
abilistic guarantee of covering the true outcome [11]. This makes
CP particularly useful in situations with uncertainty where reliability
is essential, such as in decision-making processes. Moreover, CP is
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distribution-free and model-agnostic, meaning that it can be combined
with any point prediction model [11]. CP guarantees a user-specified
probability that on average the prediction interval contains the correct
value. This property is called marginal coverage. Conditional coverage
is a stronger property guaranteeing that for every test value, CP returns
an interval with the user-specified probability. Various adaptations
of CP contribute to conditional guarantees, making it a very flexible
and promising probabilistic forecasting method. Seminal research has
been done using CP on time-series data, demonstrating the promising
performance of this emerging probabilistic forecasting method [12–14].
However, time-series data is the broader category to which PV power
data belongs and therefore, current research on time-series data does
not account for the specific application requirements for PV output
power forecasting. The authors of [15,16] have used CP models to
predict wind power intervals. In [17], a CP model is used for day-ahead
energy demand forecasting. In these three papers, the proposed CP-
based models outperformed the benchmarks on accuracy or on interval
width and coverage. However, studies on using CP to quantify the
uncertainty of PV power predictions are still lacking and is, therefore,
one of the main novelties of this research.

This paper proposes and investigates the added value of a frame-
work using a wide variety of CP methods to enhance the reliability
of day-ahead solar PV power forecasting. This framework incorporates
simple and multiple linear regression (SLR and MLR) as well as random
forest regression (RFR) as point prediction models that predict the day-
ahead electricity supply of PV systems based on weather forecasts. The
residuals of the point predictions on the calibration dataset are used in
various variants of CP. This process results in calibrated prediction in-
tervals or cumulative distribution functions (CDFs) for the test dataset,
providing a quantification of the uncertainty associated with point
predictions. These prediction intervals and CDFs offer a probabilistic
guarantee of encompassing the true outcome. Finally, the performance
of this framework is assessed using weather predictions and PV power
measurements from the Netherlands. This research holds particular
relevance for electricity market participants seeking to maximize profit
while managing associated risks. Additionally, it offers valuable in-
sights for grid operators, aiding in the anticipation and mitigation of
expected grid imbalances. The main contributions of this article can be
summarized as:

• A novel framework using CP to enhance the reliability of proba-
bilistic day-ahead PV power forecasting.

• Developing and applying multiple CP variants to point prediction
models for quantifying uncertainty.

• Evaluating the performance and benchmarking the CP variants
using actual weather predictions and PV power data from the
Netherlands.

The structure of the paper is as follows. Section 2 provides a
escription of the machine learning-based regression models, the un-
ertainty quantification with linear quantile regression (LQR) and the
P methods. Section 3 presents a performance evaluation of the point
rediction models and the uncertainty quantification methods. Finally,
he paper is concluded in Section 4 which also provides pointers for
uture work.

. Methods

Regression methods are commonly used in solar power forecasting
pplications due to their ability to model the relationship between solar
rradiance, weather variables, and PV power output. Additionally, the
egression methods considered in this study offer simplicity, flexibility,
nd interpretability, making them suitable for capturing the complex
ynamics of solar PV power generation. Recently, deep learning models
ave received increasing attention, and although it is deemed very effi-
ient for image and language learning, this does not necessarily hold for
2
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tabular data. Multiple research projects show that RFR performs at least
as good as long-short-term-memory (LSTM) networks for forecasting of
electricity consumption or solar PV power [18,19]. For tabular data,
deep learning models are prone to be too sensitive to uninformative fea-
tures and too smooth while tree-based models consider these irregular
patterns and are more robust [20]. Therefore, simple machine learning
models should be considered for time-series forecasting [18,20,21]. For
this study, commonly known machine learning models (e.g., regression
methods) are used to generate point predictions of the PV power
output.

These point prediction models have some shortcomings in the con-
sidered PV power forecasting application. For instance, linear regres-
sion (LR) assumes a normal conditional distribution and a constant
variance for the response variable. Both assumptions do not apply to
the PV data. Additionally, LR only describes the relationship between
the independent variables and the mean of the response variable. On
the other hand, LQR points out relationships between a specific quantile
of the response variable and the independent variable(s), producing
probabilistic forecasts. Hence, LQR preserves more information about
the full conditional distribution of the response variable compared to
LR.

Machine learning models such as RFR fail to properly estimate
the uncertainty of their predictions [22] and most quantile methods
like quantile regression forests do not provide probabilistic guarantees,
which is where CP comes into play. CP is a relatively new framework
with an increasing amount of publications on the subject each year. In
Scopus, it has been rising from no publications in 2006 to 30 in 2015
and 73 in 2022.1 There are both conformal regressors and conformal
classifiers. Conformal regressors transform point predictions into uncer-
tainty intervals without the need for distributional assumptions on the
data [11]. Those uncertainty intervals are rigorous, indicating that they
have a probabilistic guarantee of covering the true outcome. In other
words, CP guarantees marginal coverage, for which the user chooses
the error rate, 𝛼. This study focuses on regression, and therefore any
mention of CP refers to conformal regressors.

The methods and steps followed in the paper are summarized in
Fig. 1. Section 2.1 starts with an explanation of the point predic-
tion models that are used which is followed by Section 2.2 on the
uncertainty quantification methods. The main uncertainty quantifica-
tion methods are presented by the various CP variants and they are
benchmarked against LQR methods.

2.1. Regression methods

Besides an RFR model, SLR and MLR are used in this research,
see Fig. 1. MLR is a simple yet effective regression model that is
widely adopted to forecast or estimate solar PV power [8,23]. Based
on training data, the MLR model uses a loss function to determine
the coefficients that explain a linear relation between the predictor
variables and the target variable.

𝐲 = 𝛽0 + 𝛽1𝐱1 + 𝛽2𝐱2 +⋯ +⋯ + 𝛽𝑘𝐱𝑘, (1)

here 𝑦 is the target variable (i.e., solar PV power), 𝛽s are the regres-
ion coefficients, 𝑥1, 𝑥2,… , 𝑥𝑘 are the predictor variables and 𝑘 is the
umber of predictor features. An SLR model is similar to a MLR model
ith 𝑘 = 1.

RFR is a tree-based regression model that has proven its value for
ime-series forecasting and regression applications [18,20]. It will also
e used in this research to forecast solar PV power and to compare its
erformance with SLR and MLR. RFR is expected to outperform the
R models as PV power data shows nonlinear relationships with its

1 Using scope title, abstract and keyword on the 6th of February 2023
ith the search query: (‘‘conformal predict*’’ OR ‘‘conformal inference’’ OR

‘conformal regressor’’).
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Fig. 1. A schematic of the general flow of the data with its form after each step
depicted on the right.

predictors [24], which LR cannot take into account [25]. Moreover,
RFR tends to yield more efficient conformal predictors compared to
other models [26]. RFR is an ensemble based model that consists of a
number of trees, each made up of 𝑛 layers and 2𝑛 decision nodes, with
𝑛 = 0 at the first layer. The decision trees are created independently and
are built by considering bootstrap samples of the training dataset. Next,
for each tree a random subset of the predictor features is considered to
construct the decision nodes by optimizing on a loss function, e.g., least
squares [27]. The output of an RFR model is equal to the conditional
mean of all constructed trees.

For SLR the predictor feature is surface solar radiation downwards
(SSRD), as it has the highest correlation with PV power. The model,
fitted with ordinary least squares, indeed shows a 𝑝-value of zero
for SSRD and, therefore, points out a significant relationship between
SSRD and PV power. To select the optimal predictor features for MLR,
forward subset selection is used in this research with 10-fold cross-
validation. The selected predictor features are time horizon, zonal wind
speed, total cloud cover, surface solar radiation (SSR) and the cosine of
the hour of the day (HoD). The variance inflation factor is calculated
showing no problematic collinearity between the selected features. The
hyperparameter tuning for RFR indicates that the model performs best
with 375 trees and by considering three features when looking for the
best split. The model is fitted with those hyperparameters and the test
datapoints are predicted with the fitted model. A couple of studies com-
pare the point prediction models preceding CP and conclude that RFR
yields more efficient conformal predictors compared to, among others,
neural networks, KNN and gradient boosted tree models [26,28].

2.2. Uncertainty quantification methods

For the quantification of uncertainty, simple linear quantile regres-
sion (SLQR) and multiple linear quantile regression (MLQR) are used
as benchmark models. Their predictive features are similar to those for
SLR and MLR. Basic CP and several variants on CP are used as well and
are explained in the sections below. A summary of the CP variants used
can be found in Table 1.

2.2.1. Basic CP
As a first step of the most basic variant for CP, a point prediction

model is used to predict on the calibration dataset after which the
residuals of these predictions are extracted. The absolute values of
the residuals are then called the nonconformity scores, indicating how
‘atypical’ a certain datapoint is. Secondly, the variable q̂ is defined
based on the chosen value of 𝛼 and the sorted nonconformity scores
such that a fraction 𝛼 of the calibration datapoints have nonconformity
3

Fig. 2. Example of how q̂ is extracted from the sorted nonconformity scores, where 𝛼
is chosen to be 0.10 following that 𝑞 is calculated as the percentile corresponding to
(1− 𝛼). The red line shows the value for q̂, in this case 0.55, where a fraction 𝛼 of the
nonconformity scores exceeds q̂.

scores exceeding q̂ (see Fig. 2, where 𝑞 is calculated as the percentile
corresponding to (1 − 𝛼). Lastly, the point prediction model is used
to predict the test data and q̂ is both added and subtracted from
the point predictions to derive the prediction intervals. This is shown
in Eq. (2), where 𝑃𝐼𝑖 stands for the prediction interval and 𝑝𝑝𝑖 is the
point prediction of test point 𝑖.

𝑃𝐼𝑖 = [𝑝𝑝𝑖 − 𝑞, 𝑝𝑝𝑖 + 𝑞]. (2)

As previously mentioned, marginal coverage is guaranteed with CP,
i.e. on average the chosen error rate, 𝛼, is realized. Satisfying the error
rate for each type of datapoint is called conditional coverage [11]. The
property of a method to give wider intervals for points that are harder
to predict than for ‘easy’ points, is called adaptivity. Most variants
on basic CP aim to increase adaptivity to approximate conditional
coverage. However, conditional coverage can, in most cases, only be
approached instead of fully achieved [11]. For this study, the basic CP
is extended with multiple variations which is described in the following
sections.

2.2.2. Weighted CP
To consider the distribution drift of time-series data, weighted

CP can be used implying increased pre-defined weights are given to
nonconformity scores of points closer to the test datapoint [11]. For this
study, a sliding window of 𝑘 preceding points in the test dataset with
their predicted and actual values are used as the calibration dataset for
a basic method for weighted CP. To account for the day-ahead forecast
horizon, the window of the 𝑘 points to be used for calibration is shifted
so that the 24 h before the considered test datapoint are not used for
calibrating the prediction interval of that test datapoint.

Additionally, distance-related weighted CP is adopted in this study,
where the 𝑘 preceding points are given weights according to their
time-based distance to the test point with increased weights for points
closer-by. The distance-related weights are linearly increasing such that
they add up to one which is shown in Eq. (3). In the equation 𝑘 = 1
is the furthest point away from the considered test point, and 𝑘 is the
closest point in time to the considered test point.

𝑤𝑒𝑖𝑔ℎ𝑡𝑘 = 𝑘
∑𝑘

𝑖=1 𝑖
= 𝑘

𝑘(𝑘+1)
2

= 2
𝑘 + 1

. (3)

Moreover, hour-related weighted CP is used, where in addition to
the basic weighted CP, only datapoints in the window of size 𝑘 with a
similar hour of the day as the test point are considered for the calibra-
tion dataset. ‘Similar’ is defined as not deviating more than one hour
from the hour of the considered test datapoint. Also, weighted CP with
both distance- and hour-related weights is evaluated where linearly
increasing weights are given to points closer-by the test datapoint, but
only if they have a similar hour of the day as the test datapoint.
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2.2.3. CP with uncertainty scalars
The most basic version of CP results in an interval width of 2 ∗ 𝑞

for all predictions, yet certain points are harder to estimate accurately
than others. In CP with uncertainty scalars, the so-called difficulty
estimates of the point predictions are implemented to adjust the inter-
val sizes [29]. Points with high difficulty estimate are expected to be
hard to estimate and thus more uncertain and, therefore, yield wider
prediction intervals with this CP variant. The nonconformity scores
are then formulated as the absolute values of the residuals from the
calibration dataset divided by their difficulty estimates (see Eq. (4),
where 𝑁𝑆𝑗 is the nonconformity score for calibration point 𝑗 and 𝑑𝑒𝑗
the difficulty estimate belonging to calibration point 𝑗).

𝑁𝑆𝑗 =
| 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗 |

𝑑𝑒𝑗
. (4)

Then, using those nonconformity scores q̂ is determined just as
in the basic CP. The prediction interval is in this case the difficulty
estimate of the test point multiplied by q̂ added and subtracted from the
point prediction (see Eq. (5), where 𝑃𝐼𝑖 and 𝑝𝑝𝑖 stand for the prediction
interval and point prediction, respectively, of test point 𝑖, and 𝑑𝑒𝑖 is the
difficulty estimate of test point 𝑖).

𝑃𝐼𝑖 = [𝑝𝑝𝑖 − 𝑑𝑒𝑖 ∗ 𝑞, 𝑝𝑝𝑖 + 𝑑𝑒𝑖 ∗ 𝑞]. (5)

For this study, two difficulty estimates, or uncertainty scalars, are
explored. Firstly, using the predicted residuals for a test point. To
predict the residuals a regression model is trained on the residuals from
the train dataset. This prediction model has the same characteristics
as the corresponding point prediction model used for predicting the
PV power. The second type of difficulty estimates is derived by taking
the average residuals of the k-nearest neighbors (KNN), the points
in the calibration dataset that are most similar with respect to the
independent variables. In an iterative process, the optimal value for
the parameter 𝑘 is determined to be 50. A lower value for the number
of neighbors leads to overfitting, while a higher value reduces the
adaptivity.

2.2.4. CP with Mondrian binning
CP can also be performed after splitting both the calibration and

the test dataset into Mondrian categories, which is called Mondrian
binning or simply binning. In Mondrian binning, a predefined number
of equal-sized bins are created from the calibration dataset based on
the predicted values for PV power. The threshold values for these bins
are extracted and applied to the test dataset. CP is then performed for
each bin separately resulting in a value for 𝑞𝑏 for each bin 𝑏 which is
then applied to the test datapoints belonging to that bin. This is shown
in Eq. (6), where 𝑃𝐼𝑖 and 𝑝𝑝𝑖 stand for the prediction interval and
point prediction, respectively, of test point 𝑖, and 𝑞𝑏 is the specific 𝑞 for
each bin 𝑏. In previous research, CP with bins was found to outperform
basic CP by differing the interval widths between bins and thus creating
adaptivity [30]. Based on empirical evaluation the optimal number of
bins in this study is found to be 15, as more than 15 bins leads to
overfitting, while fewer bins reduce the adaptivity.

𝑃𝐼𝑖 = [𝑝𝑝𝑖 − 𝑞𝑏, 𝑝𝑝𝑖 + 𝑞𝑏]. (6)

2.2.5. CPS
An upcoming CP variant is conformal predictive systems (CPS)

which outputs conformal predictive distributions (CPD), i.e. CDFs. CPS
uses the residuals instead of the absolute values of the residuals as non-
conformity scores [31]. Consequently, a prediction is not necessarily
centered in the middle of an interval. In other words, the intervals
can be ‘shifted’ and the left and right hand side of the intervals are
not by definition equal. Therefore, CPS is more flexible than CP and
thus preserves more information. Most of the variants for CP can also
be applied to CPS. In this study, both KNN and binning are used in
combination with CPS. Methods with either CPS, KNN and/or binning
are applied with the help of the crepes package (version 0.1.0). For the
other variants of CP no packages have been used, instead the functions
were built by the authors.
4

Table 1
Summary of the CP methods used in this study with their abbreviations.

Abbreviation Method

M1 Basic CP

M2 Weighted CP

M3 Distance-related weighted CP

M4 Hour-related weighted CP

M5 Distance- and hour-related weighted CP, a
combination of M3 and M4.

M6 CP with the predicted residuals as an
uncertainty scalar

M7 CP with KNN as an uncertainty scalar

M8 CP with Mondrian binning

M9 CP with KNN as an uncertainty scalar and with
Mondrian binning

M10 Basic CPS

M11 CPS with KNN as an uncertainty scalar

M12 CPS with Mondrian binning

M13 CPS with KNN as an uncertainty scalar and
with Mondrian binning

M14 CQR to conformalize intervals from SLQR and
MLQR.

2.2.6. CQR
Conformalized quantile regression (CQR) uses a quantile regres-

sion algorithm producing predictions for conditional quantiles as a
preceding model [11]. Similarly, a model outputting predictions for
specific confidence intervals can be used. Seeing that those predicted
quantile values or confidence intervals are already adaptive to the
predictive features, CQR has some inherited adaptivity as well. A
nonconformity score for CQR is the difference between the actual value
for a calibration point and its nearest predicted interval margin which
can be either the lower or the upper margin [11]. This difference is
negative if the actual value lies inside of the interval and positive
if it is outside of the interval. Similarly to the basic variant of CP,
these nonconformity scores are sorted in increasing order and q̂ is
defined based on 𝛼. Subsequently, the prediction intervals from the
test dataset are extended or reduced when considered too confident
or conservative, respectively [11]. This is shown in Eq. (7), where 𝑃𝐼𝑖
stands for the prediction interval of test point 𝑖, and 𝑙𝑏𝑖 and 𝑢𝑏𝑖 are the
lower and upper bounds for test point 𝑖 as predicted by the quantile
regressor. If, for instance, the error rate is lower than 𝛼 when applying
only a quantile regression model on the calibration dataset, q̂ will be
negative. Then the intervals are considered too conservative and the
intervals from the test dataset are contracted.

𝑃𝐼𝑖 = [𝑙𝑏𝑖 − 𝑞, 𝑢𝑏𝑖 + 𝑞]. (7)

3. Results and discussions

3.1. Datasets

The target data originate from an open-source dataset with power
measurements of 175 PV systems in the province of Utrecht, the Nether-
lands [32]. The power measurements have a one minute resolution and
cover January 2014 until December 2017. A quality control routine
with single and across system filters is already applied to the dataset in
the form of a Python package that is publicly available [32]. Partly due
to the quality control routine, this dataset contains many NaN values.
On average 29% of the data is missing, ranging from 12% to 77% for
the single PV systems. Therefore, in this research, the 175 PV systems
are aggregated as shown in Fig. 3. However, before this aggregation,
the values are normalized per PV system to level out differences in sizes

and to get values between zero and one. The resolution is converted
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Fig. 3. Flow diagram of the pre-processing steps of the PV and the predictor datasets.
CSI stands for clear sky irradiance and HoD for hour of the day.

Fig. 4. The normalized PV power values over time split into train, calibration and test
data. The 1st of January of 2016 and 2017 are used as breaking points to split the
dataset.

to hourly by taking the mean over the values in each hour. Python
3.8.10 is used for processing the data. A visual inspection of the hourly
aggregated data does not indicate outliers.

The dataset used for predictor data comes from the Meteorological
Archival and Retrieval System of the European Centre for Medium-
Range Weather Forecasts (ECMWF) [33]. This dataset contains hourly
weather predictions for January 2014 till December 2017 on noon of
day 𝑇 for day T+1, matching the requirements of the day-ahead solar
PV forecasting (e.g., 24 h ahead with a 1 h resolution). It contains
predictions on variables such as surface pressure, cloud cover, wind
speed, temperature, precipitation and solar radiance. The predictions
are for De Bilt, which is located in the province of Utrecht. First, some
units have been converted and the night values for SSR and SSRD have
been set to zero. Thereafter, the dataset contains no missing values,
outliers or anomalies.

Research has shown that machine learning models improve by
extending the dataset with physical relationships between PV power
and the environment [19,34]. Therefore, the data is complemented
with the cosine of the HoD to reflect its cyclic nature [23]. Additionally,
the clear sky irradiance, solar zenith and azimuth angle are included
with the help of the PVlib package as they reflect the position of the
sun over time [35]. The pre-processing of the datasets is summarized
in Fig. 3.

The dataset is split by date with years 2014 and 2015 as train
dataset, 2016 as calibration dataset and 2017 as test dataset as shown
in Fig. 4. Each year consists of around four to five thousand day value
datapoints. The night values are always zero, therefore, the model is
trained, calibrated and tested on the day values only.

3.2. Regression methods

Fig. 5 visualizes the point predictions from SLR, MLR and RFR on
the test dataset. Table 2 shows the adjusted R2 and RMSE for each point
prediction model on the test data. The RFR performs best due to its
ability to handle nonlinear relationships, followed by MLR and SLR in
that order.
5

Table 2
Values for the error metrics per point prediction model with the best value in bold.

Model Adjusted R2 RMSE

SLR 0.806 0.087
MLR 0.821 0.083
RFR 0.854 0.075

Table 3
The error metrics for the 90% confidence intervals with the abbreviations between
brackets showing what the metrics are an indicator of, namely marginal coverage (MC),
interval width (IW), and/or adaptivity (AD).

Evaluation
metric

Description

Breach Takes a value of 0 if the coverage is above 0.90, meaning that
between 90% and 100% of the test datapoints fall within their
predicted intervals. Otherwise, the breach is 0.90−the coverage.
For instance, if the coverage is 0.83, the breach is 0.07. A lower
value is preferred for this metric (MC)

Sharpness Average interval width (IW)

Calibration The sum of the penalties for predictions outside of the intervals.
A penalty is the distance to the nearest interval margin
multiplied by two divided by 𝛼. Therefore, for smaller values of
𝛼, the penalty is more severe (MC)

Interval score The sum of the sharpness and calibration (IW + MC)

SSC The lowest average coverage of all width bins (AD)

3.3. Uncertainty quantification methods

All LQR and CP models are evaluated on marginal coverage, interval
width, and adaptivity with the help of a few error metrics. The interval
score is an error metric consisting of two elements, namely sharpness
and calibration. Sharpness is the average interval width and calibration
is the sum of the penalties for test points outside of the interval which
become more severe for decreasing values of 𝛼 [36]. To evaluate
adaptivity of the CP methods, the size-stratified coverage (SSC) metric
is used [11]. For SSC, each test datapoint is placed in a bin based on the
interval width after which for each bin the coverage is calculated. In
an ideal situation, the coverage rate is equal to 1-𝛼 for each bin seeing
that the bins represent the difficulty of estimating the point. To get the
SSC, the lowest coverage rate is then extracted.

First, a few error metrics are collected for 𝛼 = 0.10, so for the 90%
confidence intervals. Thereafter, by taking 𝛼 between 0.02 and 0.98
with steps of 0.02, confidence intervals for 49 confidence levels are
gathered. A summary of the evaluation metrics considered for the 90%
confidence intervals in this study is provided in Table 3.

The scores for breach and SSC for MLQR and the CP methods
combined with RFR are shown in Table 4 and those results along with
the results of MLQR and the CP methods combined with SLR and MLR
are discussed in the following paragraphs. First, all results from the
90% confidence intervals are discussed.

For CQR, q̂ is consistently zero, therefore it can be concluded that
CQR (M14) does not change nor improve the results from the LQR mod-
els. LQR models are already adaptive to their predictive features. This
automatically results in adaptivity for CQR, making it an interesting
method to explore further. The current study only touches upon the
most basic form of CQR while additions like weights or binning are
expected to improve CQR.

Based on the size of the test dataset (4514 datapoints) and 𝛼 (0.10),
a formula proposed by [11] shows that a coverage of less than 89.2%
(𝜖 > 0.008) is the threshold value that is required for the CP methods
to be valid. For all weighted CP methods (M2 till M5) with a value
of 𝑘 below 100, an unacceptable breach is detected, indicating an
insufficient calibration set size. On the contrary, the following uncer-
tainty quantification methods result in marginal coverage over 90% for
all point prediction models: LQR, hour-related weights with K=300,
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Fig. 5. Upper scatter plots depict predicted against true response with a trend line (dashed) and ideal fit (solid) on the test dataset for SLR, MLR and RFR. The lower scatter plots
show the corresponding residuals against the true response on the test dataset.
Fig. 6. Normalized point predictions from the RFR model and confidence intervals from M9 after RFR for two days: a clear sky day (left) on June 1st 2017, and a day with cloud
cover (right) on June 5th 2017.
Table 4
Table showing the results gathered from the 90% confidence intervals and the 49
combined confidence levels for MLQR and RFR with M1 till M14 (see Table 1). M2 till
M5 are all for K=300. Lower values are preferred on all metrics, except SSC where a
high value indicates good performance. Cali. stands for calibration. Best value for WIS
is shown in bold.

Method Version 90% confidence intervals 49 confidence levels

Breach SSC WIS Sharpness Cali.

LQR MLQR 0.000 0.854 0.163 0.067 0.096
M1 RFR 0.000 0.825 0.152 0.040 0.111
M2 RFR 0.005 0.840 0.155 0.039 0.116
M3 RFR 0.005 0.843 0.155 0.039 0.116
M4 RFR 0.000 0.865 0.145 0.054 0.091
M5 RFR 0.000 0.869 0.145 0.055 0.090
M6 RFR 0.000 0.970 0.142 0.077 0.065
M7 RFR 0.000 0.808 0.142 0.044 0.098
M8 RFR 0.013 0.855 0.143 0.059 0.084
M9 RFR 0.003 0.863 0.140 0.061 0.079
M10 RFR 0.000 0.822 0.154 0.042 0.112
M11 RFR 0.002 0.802 0.143 0.045 0.098
M12 RFR 0.015 0.842 0.144 0.056 0.088
M13 RFR 0.000 0.876 0.142 0.057 0.085
M14 MLQR 0.000 0.854 0.163 0.067 0.096

predicted residuals as uncertainty scalars, KNN and/or binning after
an LR point prediction model and CQR.

Furthermore, it is shown that CP after MLR with hour-related
weights for K=300, CP with residuals as an uncertainty scalar after
RFR and CP and CPS with binning after MLR score best on adaptiv-
ity. However, the former produces very wide intervals. Besides, it is
concluded CPS methods have slightly better values for the SSC than
their corresponding CP methods (comparing M1 with M10, M7 with
M11, M8 with M12 and M9 with M13).
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As a consequence of the high accuracy of RFR as stated in Sec-
tion 3.2, the CP methods based on this point prediction model produce
the smallest intervals. Over all point prediction models, the method
with KNN (M7) and the method with distance- and hour-related weights
(M5) give the smallest intervals while LQR, the predicted residuals as
an uncertainty scalar (M6) and CQR (M14) result in wider intervals.
The latter methods do yield high marginal coverage as concluded
earlier in this section which could be explained by the wide intervals.

Generally, methods with a high breach have a high value for cali-
bration. Where the breach simply considers if a point falls in- or outside
the interval, calibration also penalizes more severe if the point is further
away from the interval. For the method with binning after RFR (M8),
the breach is quite high while the calibration is low. This indicates a
relatively large amount of points outside the interval, but that they are
quite close to the bounds of the interval.

By taking 𝛼 between 0.02 and 0.98 with steps of 0.02, confidence
intervals for 49 confidence levels are created. Fig. 6 shows an example
of confidence intervals predicted by M9 for two days with different
weather conditions in June 2017. Having multiple confidence intervals
for each datapoint allows for calculating the weighted interval score
(WIS) and its partials, sharpness and calibration. This is an elaborate
version of the interval score and is proven to approximate the contin-
uous ranked probability score (CRPS) [36]. Although both CRPS and
WIS are used to evaluate the performance of probabilistic forecasts,
WIS uniquely assesses prediction intervals. CRPS, on the other hand, is
based on CDFs, and while the CPS method generates CDFs, the majority
of the other considered CP methods output prediction intervals. This is
why WIS was preferred over CRPS in this study.

Fig. 7 shows the WIS for all LQR methods and CP methods in
combination with the point prediction models. It shows that for both LR
models, the best performing methods based on WIS are, in decreasing
order of performance: CP with KNN and/or bins (M7 till M9), LQR, CQR
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Fig. 7. Bar chart showing the WIS for several methods in combination with one of the
three point prediction models. M1 till M14 refer to the list of methods in Table 1.

(M14), the method with predicted residuals as an uncertainty scalar
(M6) and the method with hour-related weights (M4). Methods with
RFR as a point prediction model always outperform methods with LR
as point prediction models with respect to the WIS (as shown in Fig. 7).

The WIS and its partials for MLQR and for the CP methods combined
with RFR are shown in Table 4. A compromise is made on sharpness
to obtain a low WIS seeing that methods with low WIS values have
relatively high proportions of sharpness, while the ones with higher
WIS values have lower proportions for sharpness. CP with KNN and
bins after RFR (as shown in Table 4 under M9) is superior to all other
methods based on WIS followed by CP with predicted residuals as an
uncertainty scalar after RFR (M6), but they both lack sharpness. CP
with KNN after RFR (M7) has the third lowest WIS and scores better
on sharpness. The WIS values of comparable CP and CPS (i.e. M7 with
M11, M8 with M12, M9 with M13) methods are approximately similar.
Only when combined with RFR the WIS values for the CPS methods
are often higher than for the CP methods. CPS provides additional
flexibility as a point prediction is not necessarily centered in the middle
of an interval. Therefore, it is unexpected that the CP methods that
output prediction intervals perform equally well or better than the CPS
methods.

During pre-processing, the PV dataset has not been fully subjected to
a quality check. However, this dataset has already been pre-processed
with the help of a publicly available package [32]. A visual inspec-
tion of the hourly aggregated PV data showed no anomalies. Besides,
the 175 PV systems have been aggregated which results in increased
predictability since extreme values are leveled out and thus affect the
quantified uncertainty. Prediction is expected to become more difficult,
and thus more uncertain, when using single PV systems or smaller scale
aggregated PV systems. This would increase the added value of using
probabilistic forecasting compared to point predictions.

For the weighted CP method, the window of the 𝑘 points to be used
or calibration is shifted by 24 timestamps, because bids in the day-
head market are placed roughly 24 h before delivery. In practice, the
ids are not placed 24 h before delivery, but 12 till 36 h before delivery,
eeing that all bids are placed at noon. For higher values of K, the
mpact of this simplification will be negligible, but for smaller values
f 𝑘 this can have an impact on the results. For points just after noon,
here is less information for calibration in reality than is accounted for
n the simulation. While for points right before noon there is more
nformation in reality. This means that, due to this assumption, the
ours just before noon are not estimated as accurately as possible
nd have wider confidence intervals than they would have had with
dynamic shift of 12 to 36 timestamps while for hours just after noon,
7

he opposite holds.
4. Conclusions and future work

This study contributes to the existing knowledge on solar PV power
forecasting by exploring the potential of a forecasting framework based
on CP as a novel probabilistic forecasting method to enhance the
reliability of day-ahead PV power predictions. Three point prediction
models, namely SLR, MLR and RFR, were employed to generate day-
ahead point predictions of PV power. Subsequently, various LQR and
CP methods are used to quantify the uncertainty of the point predic-
tions in the form of prediction intervals or CDFs. One of the main
conclusions drawn from this paper is that employing CP with KNN
and/or binning after a LR model yields superior performance compared
to the corresponding LQR model. The most accurate representation
of uncertainty in this study was obtained when employing RFR in
combination with CP using KNN with fifty nearest neighbors and
fifteen Mondrian bins. This method led to a 14.0% improvement in the
weighted interval score compared to MLR. These findings underscore
the potential of utilizing CP to quantify the uncertainty of day-ahead
PV power predictions.

With the increasing amount of publications on CP, it is anticipated
that CP will continue to be explored and developed in the coming years,
further enhancing its potential. Future research can build upon this
study by exploring additional variants of CP, particularly additional
variants of CQR. To further improve the quantification of uncertainty, it
is of added value to use a predictor dataset with parameters indicating
the accuracy of the prediction which could be provided by ECMWF.
Such accuracy indicators can be used as uncertainty scalars for CP.

In a more practical sense, the proposed CP-based framework leads
to more reliable information about the probability distribution of PV
power and thus enhanced power predictions. This information can be
leveraged in market bidding strategies to increase financial gain for
PV power suppliers while mitigating associated risk. Additionally, grid
operators can use the uncertainty quantification methods, in combina-
tion with the point prediction models, to gain insight in the expected
grid imbalance in transmission networks or congestion in distribution
networks.
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