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Gauge-gravity duality comes to the laboratory: Evidence of momentum-dependent scaling
exponents in the nodal electron self-energy of cuprate strange metals
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We show that the momentum-dependent scaling exponents of the holographic fermion self-energy of the
conformal-to-AdS2 Gubser-Rocha model can describe new findings from angle-resolved photoemission spec-
troscopy experiments on a single-layer (Pb,Bi)2Sr2−xLaxCuO6+δ copper oxide. In particular, it was recently
observed in high-precision measurements on constant energy cuts along the nodal direction that the spectral
function departs from the Lorentzian line shape that is expected from the power-law-liquid model of a nodal
self-energy, with an imaginary part featureless in momentum as �′′

PLL(ω) ∝ (ω2)α . By direct comparison with
experimental results, we provide evidence that this departure from either a Fermi liquid or the power-law liquid,
resulting in an asymmetry of the spectral function as a function of momentum around the central peak, is captured
at low temperature and all dopings by a semiholographic model that predicts a momentum-dependent scaling
exponent in the electron self-energy as �(ω, k) ∝ ω(−ω2)α(1−(k−kF )/kF )−1/2, with h̄kF the Fermi momentum.

DOI: 10.1103/PhysRevB.109.155140

I. INTRODUCTION

Back in 1986, in one of the most exciting experimen-
tal discoveries in condensed-matter physics, the phenomenon
of high-temperature superconductivity was observed for the
first time in a layered copper-oxide perovskite by Bednorz
and Müller [1]. Since then, other copper-oxide compounds,
or cuprates—a class of materials whose common trait is a
layered structure of CuO2 planes—have been found with in-
creasingly higher critical temperatures. These sit well above
the expected limit from the BCS theory of superconductiv-
ity [2] that successfully describes the underlying physics of
“conventional” superconductors. The desire to understand this
phenomenon sparked a huge effort from both the experimental
and the theoretical community to unveil the mystery behind
the anomalous behavior of copper-oxide materials [3,4], that
eludes an explanation within the standard Fermi-liquid frame-
work. This effort is still ongoing, underlining the challenges
that these materials present due to the strongly interacting
physics at play [3,5,6].

Peculiarities do not lie within the superconducting phase
only but also in the normal phase of the cuprates just above the
maximum critical temperature in the phase diagram, known as
the strange-metal regime. As the name suggests, this phase is
characterized by a non-Fermi-liquid behavior as highlighted,
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for example, by an anomalous temperature behavior of the
Hall angle [7] and by a linear-in-T resistivity, that does
not saturate at high temperatures [8–13] and persists at low
temperatures even if superconductivity is suppressed by a
magnetic field [14]. There have been a variety of attempts
and techniques to model the properties of high-Tc cuprates,
such as t − J models, starting from the physics of the Mott
insulator in the underdoped region of the cuprate phase di-
agram [5,15,16], the marginal Fermi liquid for describing
the optimally doped strange metal [17,18], and stripe phases
in high-temperature superconductors [19–23], to mention a
few. One technique, with roots in high-energy and particle
physics, that has been used to describe a class of non-Fermi
liquids that at low energies shares some of the properties of
the strange-metal phase, is based on the gauge/gravity (holo-
graphic) duality [24–27]. It relates the response of a strongly
interacting system to a higher-dimensional gravitational the-
ory and it has proven to be a powerful tool when applied to
strongly interacting condensed-matter systems to model their
qualitative behavior [28–30], as it is able to describe some of
the anomalous properties observed in transport experiments
on cuprates [28]. Moreover, angle-resolved photoemission
spectroscopy (ARPES) measurements pointed to a possible
explanation of the phenomenology of the strange metal in
the presence of a particular quantum critical phase that is
local in space, and hence featureless in momentum [3,31], in
accordance with the marginal Fermi-liquid model [32]. This is
also well captured by the holographic realization of a strongly
interacting fermion system [27,33–37], that reproduces the
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FIG. 1. Comparison of the smoothed experimental data (blue dots) for an overdoped sample with α = 0.65 [see Eq. (2)] at T = 8 K, with
a Lorentzian fit based on the PLL (green line), and a fit based on the holographic prediction in Eq. (2) (red line). While there is little difference
up to energies E − EF = −0.1 eV, (left panel), it is evident that the holographic model accurately captures the peak asymmetry as we move
further away from the Fermi surface (right panel). The details of the fit are presented in Sec. V.

marginal Fermi-liquid results near the Fermi surface. How-
ever, moving away from the Fermi surface these holographic
models start to deviate from the completely featureless in mo-
mentum scaling of the marginal Fermi liquid, as they predict
momentum-dependent scaling exponents [27,33,34].

Our main objective in this paper is to bring holography
to the test of experimental ARPES measurements along the
nodal line of a single-layer cuprate. In particular, we aim
to verify if its prediction of momentum-dependent scaling
exponents in the electron self-energy can explain the re-
cently observed peak asymmetry in experimental data [38],
that show deviations from the previously proposed power-
law liquid (PLL) model [31]. Such a model is characterized
by a momentum-independent self-energy, with an imaginary
part obeying �′′

PLL(ω; T = 0) ∝ (ω2)α . Here α is a scaling
exponent increasing (approximately linearly) with doping,
from α = 1/2 at optimal doping towards, but never reach-
ing, the Fermi-liquid value of 1 [38,39] at higher dopings.
The analysis of the experimental data from ARPES measure-
ments is performed on each momentum distribution curve
(MDC), which measures the spectral function as a function
of momentum at a fixed (negative) energy h̄ω. For a range of
energies close to the Fermi surface, the PLL model predicts a
Lorentzian lineshape for the distribution peaks as

A(k; ω) = W (ω)

π

�(ω)/2

(k − k∗(ω))2 + (�(ω)/2)2
, (1)

where �(ω) = 2�′′
PLL(ω)/vF + G0(ω) is the full width at

half maximum (FWHM), with G0(ω) describing contributions
other than the electron self-energy to the width in the data,
e.g., due to phonons, impurities, and instrument sensitivity.
We define � ≡ �′ − i�′′, thus a negative imaginary part of
the self-energy requires �′′ > 0. The real part instead mod-
ifies the dispersion relation determining k∗(ω) � kF + ω/vF

with kF the Fermi wave number and vF the renormalized
Fermi velocity.

In holography, a prediction, common to a large class of
models proposed for the theoretical description of non-Fermi
liquid, is that the electron self-energy is dominated by its

frequency dependence � ∝ ω(−ω2)νk−1/2, with the momen-
tum dependence confined to its scaling exponent νk , and
ω = ω + i0. Notice that in the literature this result is often
quoted as � ∝ ω2νk , here however, in the range of interest to
us 1/2 < νk < 1, we want to make the analytic structure of
the self-energy explicit, with a branch cut everywhere on the
real axis. In particular, we show that in the model analyzed in
this paper, we have

�(ω, k; T = 0) ∝ ω(−ω2)α(1−(k−kF )/kF ), (2)

and we explain how this peculiar momentum dependence,
which reduces to the PLL form for the sharp distribution peaks
near the Fermi surface, provides a much better description of
the experimental data away from the Fermi surface. Indeed,
this is found to well describe deviations from the typical
symmetric Lorentzian shape of the peaks, as observed in
very recent high-quality angle-resolved photoemission mea-
surements [38], that are reproduced in Fig. 1, convincingly
breaking the long-standing assumption of a self-energy that
is completely independent of momentum. Note that, while
our analysis arises from a holographic calculation of the
self-energy, momentum-dependent exponents have also been
theorized in a one-dimensional nonlinear-Luttinger liquid
model [40]. The successful description of nodal MDCs by a
momentum-dependent scaling exponent could, then, also hint
at the emergence of one-dimensional physics along the nodal
line.

In the hope of making this paper more accessible to a wider
audience, we start first with a brief summary of holographic
fermions in Sec. II, where we introduce the gravitational
background used and its main properties, and explain how to
compute fermionic spectral functions in such a background.
The reader already familiar with holography might want
to skip straight to Sec. V where the main new results are
presented, and refer back to the first sections to check the
notation, the conventions adopted as well as details of the
derivations that led to the model given there. In Sec. III,
we then show how the low-energy behavior of the spectral
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function is related to the solution of the Dirac equation in the
geometry of the deep interior of the space-time, and in partic-
ular how this leads to an imaginary part of the self-energy
described by momentum-dependent scaling exponents. We
also explain how this gives rise to an asymmetry in the
spectral function peaks. In Sec. IV, we introduce a semiholo-
graphic construction as proposed in Ref. [41] and explain
the limitations of this approach in describing quantitatively
experimental data due to the nonuniversal real part of the self-
energy. We then proceed to decouple the nonuniversal physics
from the low-energy emergent quantum critical behavior to
accurately model ARPES measurements on a single CuO2-
layer cuprate. The details of the modeling of the experimental
data are the topic of Sec. V, where we, in particular, explain
how we need to interpret the holographic fermion response
as the one for the holes with an emergent particle-hole sym-
metry. We also show that changing parameters in the Dirac
equation allows for a proper fit of the cuprate fermionic self-
energy at different dopings, and we finally introduce also the
self-energy corrections due to the coupling to phonon degrees
of freedom, to correctly capture the experimentally observed
behavior of the MDCs at both low temperatures and higher
frequencies.

II. INTRODUCTION TO FERMIONS IN
EINSTEIN-MAXWELL-DILATON THEORIES

In this section, we summarize how to use the tools pro-
vided by the so-called AdS/CFT correspondence to compute
fermionic spectral functions for a strongly interacting sys-
tem. In particular, we introduce the gravitational background
used for the computation and explain how it captures some
key characteristics of the cuprates, as well as remind the
reader how to add fermions in this background to compute
the Green’s function of probe fermions in the holography
framework. Although the foundations on which this section is
based can be found in Refs. [34,35,42], we use it here to
introduce the notation adopted throughout the paper, with
special emphasis on deriving the solution in terms of the
boundary energy scales, kBT , and the chemical potential μ,
and in keeping track of dimensionful factors.

A. Gravitational background

For our background we use a 3D Einstein-Maxwell-
dilaton theory [43] (where with the notation nD, we use
the condensed-matter convention to denote with n the num-
ber of spatial dimensions only). This has been proposed as
a holographic dual for the description of the low-energy
physics of the strange-metal phase of the 2D and strongly
interacting cuprates, as it captures the linear in temperature
behavior of the resistivity, it does not become unstable in the
zero-temperature limit and, as we will show in this paper, it
describes extremely well their fermionic response obtained by
ARPES measurements. This is part of a large class of models
characterized by a dynamical scaling exponent z = ∞—of
which the most studied one is the Reissner-Nordström back-
ground [35]—that describes an emergent low-energy quantum
critical phase where, under a scaling transformation, time
scales while space does not. This implies that momentum

becomes dimensionless under scaling and the electron self-
energy is, hence, dominated by the frequency dependence.
The Gubser-Rocha model considered here is further charac-
terized by a hyperscaling-violating exponent θ = −∞, with
−θ/z = 1, that allows, once broken translational symmetry
is accounted for in the model, for the linear in temperature
resistivity ρ and entropy S as ρ ∝ S ∝ T (d−θ )/z in d spatial
dimensions of the boundary [29]. To clarify the terminology,
we want to point out that the model presented in this paper
is that of a non-Fermi liquid with translation invariance, so
it has infinite conductivity at all temperatures. In this paper,
we are interested in the fermionic self-energy alone and not
on transport properties so we do not consider disorder in the
system,1 for transport properties in such a model with broken
translational symmetry, see for example Ref. [44].

The gravitational action for the Gubser-Rocha model [43]
is

SEMD = c3

16πG

∫
drd (ct )d2x

√−g

[
R − (∂μφ)2

2

+ 6

L2
cosh

(
φ√
3

)
− eφ/

√
3

4g2
F

F 2
μν

]
, (3)

with r denoting the additional spacial direction of the curved
bulk space-time, R the Ricci scalar, φ a dimensionless scalar
field known as the dilaton, and Fμν the electromagnetic tensor
with coupling constant

g2
F = c4μ0

16πG
, (4)

where [μ0] = m kg/C2 is a constant with the dimension of
a magnetic permittivity. Finally, L is the anti-de Sitter (AdS)
radius. The equations of motion following from the action in
Eq. (3) define a metric of the form

ds2 = e2α(r)(− f (r)dt2 + dx2) + dr2e−2α(r)/ f (r) (5)

and are solved by

A0(r) = gF

√
3Q(r0 + Q)

L

(
1 − r0 + Q

r + Q

)
,

φ(r) =
√

3

2
ln

(
1 + Q

r

)
,

α(r) = ln
( r

L

)
+ 3

4
ln

(
1 + Q

r

)
,

f (r) = 1 −
(

r0 + Q

r + Q

)3

, (6)

with Q a positive integration constant with the dimension of
a length and r0 ∈ [0,∞) the horizon radius. The chemical

1Without disorder, our model is translationally invariant and it,
hence, has an infinite conductivity at all T . Given that a strange metal
is defined by its linear-in-T resistivity, it would be more appropriate
to refer to the model as that of a non-Fermi liquid. However, since
we do not consider transport here but only the fermionic self-energy
that we compare to the spectral function measured by ARPES of
the strange metal phase of a cuprate, we still sometimes refer to the
model as one for a strange metal with a little abuse of nomenclature.

155140-3



MAURI, SMIT, GOLDEN, AND STOOF PHYSICAL REVIEW B 109, 155140 (2024)

potential μ of the boundary field theory is defined through
the asymptotic behavior of the bulk gauge field

lim
r→∞ A0(r) = gF

√
3Q(r0 + Q)

L
≡ μ

cq
, (7)

with q the electric charge so that μ has dimensions of an
energy, and c the speed of light. At high energies, it describes
a system with a relativistic linear dispersion h̄ω = ±h̄ck − μ

in the spectral function of the density operator dual to the
Maxwell field. However, we are ultimately interested in the
effective description of the electronic response in the cuprates,
where near the Fermi energy the dispersion can also be lin-
earized, but with a velocity vF much smaller than the speed of
light. Hence, we interpret the speed c in the holographic model
as the (bare) Fermi velocity of the electron system near the
Fermi surface. We come back to this point later on in Sec. V.
The temperature of the boundary field theory can be computed
from the black-hole horizon in the bulk space-time

kBT = ch̄

L

3
√

r0(r0 + Q)

4πL
, (8)

and we can see that, contrary to the Reissner-Nordström
solution that is unstable at low temperatures, in the Gubser-
Rocha model T → 0 for r0 → 0, hence the entropy, S ∝
Abh = ∫

dxdy e2α(r0 ) ∼ √
r0 for r0 → 0, vanishes in the zero-

temperature limit.
For better clarity as well as for numerical computations,

we want to work with dimensionless quantities, by expressing
everything in terms of physical constants and the dimensionful
scale L of the theory, that is by measuring distances in units
of L and energies in terms of h̄c/L. We, therefore, define
the dimensionless coordinates (r̃, t̃, x̃) ≡ (r, ct, x)/L, and we
adsorb the gauge coupling into the field Ãμ ≡ Aμ/gF . The
action in terms of these dimensionless coordinates and fields
then becomes

S̃EMD = c3L2

16π h̄G

∫
dr̃ dt̃ d2x̃

√−g

×
[

R − (∂μφ)2

2
+ 6 cosh

(
φ√
3

)
− eφ/

√
3

4
F̃ 2

μν

]
.

(9)

We further define a dimensionless electric charge q̃ ≡ qLgF /h̄
so that limr→∞ Ã0 = Lμ/q̃h̄c ≡ μ̃/q̃, and temperature T̃ ≡
LkBT/h̄c. From now on, we will use dimensionless quantities
only, unless explicitly stated otherwise, so we will drop the
tilde for notational convenience.

The solutions in Eq. (6) can then be expressed in terms of
the boundary field theory (dimensionless) chemical potential
and temperature, to take the form

A0(r) = μ

q

⎛
⎜⎝1 −

1 + q2 (4πT )2

3μ2

1 + √
3q r

μ

√
1 + q2 (4πT )2

3μ2

⎞
⎟⎠,

φ(r) =
√

3

2
ln

⎛
⎜⎝1 + 1

√
3q r

μ

√
1 + q2 (4πT )2

3μ2

⎞
⎟⎠,

α(r) = ln (r) + 3

4
ln

⎛
⎜⎝1 + 1

√
3q r

μ

√
1 + q2 (4πT )2

3μ2

⎞
⎟⎠,

f (r) = 1 −

⎛
⎜⎝ 1 + q2 (4πT )2

3μ2

1 + √
3q r

μ

√
1 + q2 (4πT )2

3μ2

⎞
⎟⎠

3

, (10)

making it explicit that the solution depends only on the energy
scale μ/q and on the dimensionless ratio qT/μ, as expected
from the scaling symmetry of a deformed conformal field
theory (CFT).

B. Holographic fermions

In order to use the tools of holography to compute the
spectral function of a fermionic boundary operator O, we need
to add a Dirac action to the higher-dimensional gravitational
background action SEMD [29,33–35], that, reverting to dimen-
sionful units for a moment, takes the form:

S = SEMD − ig f

∫
drd (ct )d2x

√−gψ̄

×
[

eμ
a �a

(
h̄c

[
∂μ + 1

4
ωμbc�

bc

]
− iqcAμ

)
− mc2

]
ψ,

(11)

with �a the Dirac gamma matrices, ψ̄ ≡ ψ†�0, �bc ≡
2[�b, �c], the vielbein eμ

a is defined by eμ
a eν

bgμν = ημν and
the spin connection is ωμbc, which ensures that local Lorentz
symmetries are preserved and is defined as

ωμcb = ηcaωμ
a

b = ηca
(
ea
λeν

b�
λ
μν − eν

b∂μea
ν

)
, (12)

where �λ
μν ≡ 1/2gλσ (∂μgσν + ∂νgσμ − ∂σ gμν ) are the

Christoffel symbols (the index structure should avoid the
confusion with the � matrices). Finally, g f is a coupling
constant with the dimension of an inverse velocity.
Introducing the dimensionless variables of the previous
section, we see that there are only two dimensionless
parameters characterizing the fermions, namely q̃ and
the dimensionless mass m̃ = mcL/h̄, as the action takes
the form

S̃ = S̃EMD − ig̃ f

∫
dr̃dt̃d2x̃

√−gψ̄

×
[

eμ
a �a

([
∂μ + 1

4
ωμbc�

bc

]
− iq̃Ãμ

)
− m̃

]
ψ , (13)

where again, we are going to drop the tilde from now on, as
we always use rescaled quantities unless explicitly mentioned
otherwise.

In particular, since we are interested in a 2D boundary
theory, we specified above already to the case d = 2. In
agreement with this, we now choose a representation of the
� matrices of the form

�r =
(

1 0
0 −1

)
, and �μ =

(
0 γ μ

γ μ 0

)
, (14)

with γ μ the 2D gamma matrices. For definiteness, we choose
a basis as in Ref. [35]: γ 0 = iσ2, γ 1 = σ1, γ 2 = σ3, with σ
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the Pauli matrices. We can then decompose ψ in terms of
the chirality eigenvectors of �r , namely ψ = ψR + ψL with
�rψR = ψR and �rψL = −ψL. Upon variation of the Dirac
action in Eq. (13), we straightforwardly obtain the Dirac equa-
tion in curved space-time for the field ψ as[

eμ
a �a

([
∂μ + 1

4
ωμbc�

bc

]
− iqAμ

)
− m

]
ψ = 0, (15)

and similarly, we can obtain the equation of motion for ψ̄ . The
boundary term arising from the variation of the action is given
by

δS∂ = −ig f

∫
∂

dtd2x
√−hψ̄�rδψ (16)

= −ig f

∫
∂

dtd2x
√−h(ψ̄LδψR − ψ̄RδψL ), (17)

since terms of the form ψ̄CδψC = ψ
†
C�0δψC = 0, with C =

R, L. Here h is the determinant of the induced metric on
the boundary hμν = gμν − nμnν , nμ being the normal vector
orthogonal to the boundary.

If we now introduce a boundary term of the form

S∂ = −ig f

∫
dtd2x

√−hψ̄RψL, (18)

the on-shell action is stationary upon imposing the boundary
condition δψR = 0. We then interpret the boundary value of
the field ψR as the source of a boundary fermionic operator,
with ψL determining its one-point function. In order to make
this split explicit, we define ψ± such that ψR = (ψ+

0 ) and ψL =
( 0
ψ−), where ψ± are two-components Dirac spinors. These are

not independent, but related by the Dirac equation by

ψ−(r, ω, k) = −iξ (r, ω, k)ψ+(r, ω, k), (19)

where we adopted momentum-space representation for later
convenience. Inserting Eq. (19) into the Fourier transform of
the boundary action, we obtain

S∂ = − ig f lim
�→∞

∫
r=�

dωd2k

(2π )3

√−hψ
†
+(r, ω, k)γ 0

× (−iξ (r, ω, k))ψ+(r, ω, k), (20)

where � is an ultraviolet (UV) cutoff scale.
Near the boundary (as r → ∞) the mass term becomes the

dominant one in the Dirac equation and ψ behaves as

ψ =
(

ψ
(0)
+
0

)
r−3/2+m(1 + · · · ) +

(
0

ψ
(0)
−

)
r−3/2−m(1 + · · · ),

(21)

where the “. . . ” stand for lower-order terms in the large-r
limit and we restricted ourselves to m ∈ (−1/2, 1/2). We can
then interpret ψ

(0)
+ = limr→∞ r3/2−mψ+ as the source of the

two-dimensional boundary Dirac operator Ō−, with confor-
mal dimension � = 3/2 + m, whose one-point function is
〈Ō−〉 = ψ̄

(0)
− . We then define the Green’s function from the

effective boundary action that can be written as

S∂ = − i
∫

dωd2k

(2π )3
ψ

(0)†
+ (ω, k)γ 0

× (−ig f lim
�→∞

�2mξ (r = �,ω, k))ψ (0)
+ (ω, k)

= − i
∫

dωd2k

(2π )3
ψ

(0)†
+ (ω, k)γ 0(−iGH (ω, k)γ 0)ψ (0)

+ (ω, k),

(22)

where we used 〈O−〉 = −iGHγ 0ψ
(0)
+ [35], so that the holo-

graphic Green’s function is

GH = 〈O−O†
−〉 ≡ (−g f lim

�→∞
�2mξ (r = �)γ 0). (23)

Notice that in the mass range −1/2 < m < 1/2, both terms
in the expansion in Eq. (21) are normalizable and there are,
therefore, two possible quantizations. The one implicitly used
above is known as standard quantization, where ψ

(0)
+ is the

fixed source. However, in what is known as alternative quan-
tization we exchange the role of coefficients, i.e., ψ

(0)
+ is

now considered a dynamical field we can integrate over and
we then have that ξ is proportional to the inverse of the
Green’s function, i.e., Galt

H ≡ −G−1
H = 〈O+O†

+〉, where the
last equality underlies that this alternative Green’s function is
the two-point function associated to a fermionic operator O+
with conformal dimension � = 3/2 − m.2 It is also important
to point out the fact that we are considering the Green’s func-
tion for probe fermions, as we are interested in the behavior of
the electronic self-energy near the Fermi surface due to inter-
actions, and not on transport. To study the latter, one needs
to go beyond the probe limit and consider the background
charged matter as, e.g., in Refs. [44–46]. The relationship
between probe fermions and background spectrum is a matter
of ongoing research, see also the discussion at the end of
section 4.4 in Ref. [28].

Given that we are ultimately interested in studying the
response function, it is typical to derive an equation for
the components of the matrix ξ directly. Introducing the

rescaled fields ψ± = (−ggrr )−1/4e−iωt+ik·x
(−iy±

z±

)
and using

the rotational symmetry to set without loss of generality the
momentum along the x axis, i.e., k = (k, 0, 0), the bulk Dirac
equation derived from the gravitational action in Eq. (11)
reads

(∂r ∓ m
√

grr )y± = ±
√

grr

gxx

(
k −

√
grr

−gtt
(ω + qAt )

)
z∓,

(24)

(∂r ± m
√

grr )z∓ = ±
√

grr

gxx

(
k +

√
grr

−gtt
(ω + qAt )

)
y±.

(25)

2As you can see, the dimension of the operator in standard and
alternative quantization is related by m → −m, if we indeed always
define the source as the leading order term in the expansion in
Eq. (21), then changing the sign of m exchanges the roles of the
coefficients as the source and operator response, effectively going
from standard to alternative quantization.

155140-5



MAURI, SMIT, GOLDEN, AND STOOF PHYSICAL REVIEW B 109, 155140 (2024)

FIG. 2. Peak in the fermionic spectral function at the Fermi en-
ergy, normalized to peak height, and a zoomed-in version (top right),
showing the presence of a Fermi surface. Here we used m = −0.49,
q = 0.27 at T/μ = 0.0045.

Finally, defining the field ratios ξ+ = y−/z+, ξ− = z−/y+, we
can now show that the Green’s function is

GH = g f lim
�→∞

�2m

(
ξ+(r = �,ω, k) 0

0 ξ−(r = �,ω, k)

)
,

(26)

where ξ± are solutions to

∂rξ± = − 2m
√

grrξ± ∓
√

grr

gxx

[(
k ∓

√
grr

−gtt
(ω + qAt )

)

−
(

k ±
√

grr

−gtt
(ω + qAt )

)
ξ 2
±

]
, (27)

with the infalling boundary conditions at the black-hole hori-
zon for the fermionic field ψ corresponding to ξ±(r = r0) = i
at any nonzero frequency (the boundary conditions at zero fre-
quency become ξ = ±√

gxx(r0)m/k −
√

gxx(r0)m2/k2 + 1)
[33,47]. Furthermore, it follows from Eq. (27), that the solu-
tions for ξ± satisfy ξ

(m)
± (ω, k) = −1/ξ

(−m)
∓ (ω, k). Hence, the

Green’s function for −m, when m ∈ (−1/2, 1/2), is simply
equivalent to the Green’s function in alternative quantization.
We can also see that ξ+(ω, k) = ξ−(ω,−k), allowing us to
focus only on one component of the Green’s function matrix.
We then solve the equation numerically by integrating from
the horizon to a UV cutoff � = 10−8 to compute GH accord-
ing to Eq. (26) Notice, from the large-r expansion of Eq. (27)
that extra care is needed to treat the limiting cases m → ±1/2,
see, e.g., Ref. [33]. This is not a problem, however, in the case
analyzed in this paper, where we fix m = −0.49.

The spectral function for the holographic fermion high-
lights the presence of a Fermi surface at a nonzero k ≡ kF ,
as shown in Fig. 2 by a sharp peak at ω = 0, corresponding
to the Fermi energy. Depending on the m and q parameters in
the Dirac equation, there can be zero, one, or multiple Fermi
surfaces [35,42]. However, for the values of the mass and the
charge that we use in the rest of the paper, we always deal with
a single well-defined Fermi surface, as in the example shown
in Fig. 3.

The physics of the Green’s function near the Fermi surface
is well captured by a familiar form for the two-point function

FIG. 3. Spectral function for a fermionic operator computed
from holography. It is symmetric in momentum and it shows a
linear dispersion expected for a massless fermion, with the cone
shifted down by the chemical potential. Here we used m = −0.49
and q = 0.27.

of a fermionic particle

GH � Z

−ω + vH (k − kF ) − i�′′(ω, k)
, (28)

with �′′(ω, k) > 0 governing the decay rate of the excitations
and, hence, determining the shape of the peaks observed in
ARPES experiments. For this reason, �′′(ω, k) is the main fo-
cus of this paper and we analyze it in detail in the next section.
In many holographic theories, as in the Gubser-Rocha model
used here, kF , vH , and Z can only be determined numerically,
for general m and q, from the full solution of Eq. (27). In
particular, we keep the value of m = −0.49 fixed throughout
the paper (the reason for this is mentioned in Sec. V D) while
we vary the value of q to fit ARPES data at different doping
levels. The values for the above quantities as a function of q
are shown in Fig. 4.

III. NEAR-HORIZON GEOMETRY AND IR EMERGENT
SEMI-LOCAL QUANTUM LIQUID

Here we show that the near-horizon geometry implies a
low-energy scaling of the zero-temperature Green’s function
of the form ω(−ω2)νk−1/2, where the leading momentum de-
pendence only enters through the k-dependent exponent. In
particular, we show that in the solvable EMD background
solution proposed by Gubser and Rocha [43] the exponent
depends only on the rescaled momentum qk/μ.

A. Near-horizon Dirac equation

The holographic duality has found application in
condensed-matter physics as it allows for a qualitative de-
scription of the emergent infrared (IR) physics in strongly
interacting systems governed by a universal quantum critical
phase. The extra “radial” dimension in the dual gravitational
theory geometrizes the energy scale of the field theory, and the
near-horizon geometry controls all the low-energy dissipative
processes. As such, in application to condensed-matter prob-
lems we are interested in this inner region, and holography
can be thought of as an effective field theory that describes
the low-energy physics up to ultraviolet (UV) coefficients
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FIG. 4. Numerical results for the dependence on the charge q of the quantities determining the Green’s function near the Fermi surface.
We fixed the mass m = −0.49 and we used a value kBT/μ = 4.5×10−3.

that depend on the particular UV completion, i.e., on the
asymptotic (large-r in our conventions) form of the dual
space-time. That is to say, in the regime where T, ω � μ,
we have Im[GH (ω, k; T )] ∝ Im[Gk (ω; T )], with Gk the IR
Green’s function that can be obtained by solving the Dirac
equation in the geometry of the deep interior of the space-
time only. This is exactly the focus of this section. In the
case at hand, we show that in the emergent geometry—that
is conformal to AdS2×R2 at T = 0, with the AdS2 replaced
by a Schwarzschild black-hole geometry at nonzero T —
the Dirac equation can be solved analytically [42]. This
gives rise to a self-energy scaling �(ω, k) = Ckω(−ω2)νk−1/2,
with Ck ∈ R and the momentum-dependent scaling expo-
nent νk ∝ q|k|/μ. In a narrow momentum range near kF the
scaling exponent can then be considered constant νk � νkF

and we immediately see that we recover the physics of the

power-law-liquid self-energy proposed to describe the results
of ARPES measurements on cuprates [31]. In later sections,
we however argue that away from the Fermi surface, the
experimentally observed peaks span a momentum range large
enough to be able to observe an effect of the momentum
dependence in the scaling exponent. In particular, we see
that the momentum dependence implies that the peaks in the
MDCs, described by a symmetric Lorentzian in the power-law
liquid, become asymmetric as more spectral weight is shifted
towards |k| < |kF |, as also noticeable by looking closely at
the tails of the distribution in Fig. 2. Given the relevant role of
the geometry of the deep interior of the space-time, below we
explicitly compute its form.

In the following, we are going to focus on the ξ−
component of the Green’s function, hence the relevant equa-
tions from Eq. (15) are

∂r

(
y+
z−

)
=

⎛
⎝ m

√
grr

√
grr

gxx
k −

√
grr

−gtt
(ω + qAt )√

grr

gxx
k +

√
grr

−gtt
(ω + qAt ) −m

√
grr

⎞
⎠(

y+
z−

)
. (29)

Expanding the EMD metric from Eq. (10), in the low-energy, low-temperature limit, to leading order in r/μ, we find

√
grr � 1

33/8 μ

q1/4

(
r
μ

)3/4√
1 − q (4πT/μ)2

3
√

3
μ

r

,
√

grr

gxx
� 1

μ2

q
r
μ

√
1 − q (4πT/μ)2

3
√

3
μ

r

,
√

grr

−gtt
� 1

33/4 μ2√
q

(
r
μ

)3/2
(1 − q (4πT/μ)2

3
√

3
μ

r )
,

A0 �
√

3μ
r

μ
. (30)
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In order to compute the IR Green’s function Gk (ω, k; T )
we now need to solve Eq. (29) in such a geometry. The
computation for fermions in a 3D boundary theory, in the
(4 + 1)-dimensional generalization of the background used
here was first done by Gubser and Ren [42]. Here, however,
we are interested in describing a single-layer cuprate strange
metal and hence we consider a boundary theory in two spatial

dimensions dual to a (3 + 1)-dimensional bulk space-time. In
the following, we go through the details of the computation
for fermions in two dimensions to show that it can be recast
in the same form as the one for the three-dimensional theory
in Ref. [42], to obtain the same temperature and frequency
dependence, with the only difference being in the prefactor.
The Dirac equation in the background of Eqs. (30) becomes

r

√
1 − q

(4πT/μ)2

3
√

3

μ

r
∂r

(
y+
z−

)
=

⎛
⎜⎜⎜⎝

m
33/8 q1/4

(
r
μ

)1/4
q k

μ
− √

q ω/μ

33/4
√

r/μ
1√

1−q (4πT/μ)2

3
√

3
μ

r

+ q3/2

31/4

√
r
μ

q k
μ

+ √
q ω/μ

33/4
√

r/μ
1√

1−q (4πT/μ)2

3
√

3
μ

r

+ q3/2

31/4

√
r
μ

− m
33/8 q1/4

(
r
μ

)1/4

⎞
⎟⎟⎟⎠

×
(

y+
z−

)
.

(31)

We can immediately see an important distinction compared
to the Reissner-Nordström background (see, for example,
Ref. [34]). In the Reissner-Nordström near-horizon regime,
the momentum term scales with the same power of r/μ as
the terms involving the mass and charge of the fermion.
On the contrary, here the mass and gauge terms are sub-
leading in the small r/μ expansion and the IR solution
then does not depend explicitly on these two quantities.
In this limit, we are then left to solve the differential
equation

r∂r

(
y+
z−

)
=

(
0 F (−ω, k, r)

F (ω, k, r) 0

)(
y+
z−

)
, (32)

where we defined

F2D(ω, k, r) ≡ q
k

μ
+ √

q
ω

33/4√rμ

1√
1 − q

3
√

3
(4πT )2

μr

. (33)

Similarly, for a three-dimensional boundary theory, we have
[42]

F3D(ω, k, r) ≡ q
k

μ
+ ω

2r

1√
1 − (πT )2

r2

. (34)

By the variable redefinitions shown in Table I, the Dirac

TABLE I. Change of variables for the low-energy solution in a
2D and 3D boundary theory.

2D boundary theory 3D boundary theory

ζ = 2
√

q ω

33/4√
rμ

ζ = ω

2r

νk = 2q k
μ

νk = q k
μ

δ0 = 2πT
ω

δ0 = 2πT
ω

equation takes the same form in both boundary dimensions,
namely,

− ζ

√
1 − ζ 2δ2

0 ∂ζ

(
y+
z−

)

=
⎛
⎝ 0 −ζ/

√
1 − ζ 2δ2

0 + νk

ζ

√
1 − ζ 2δ2

0 + νk 0

⎞
⎠(

y+
z−

)
.

(35)

We start by carrying out the computation at zero tem-
perature, i.e., we first set δ0 = 0. The boundary of the
conformal-to-AdS2 space-time is at ζ → 0, and we can al-
ready see that the asymptotic behavior of the solution takes
the form of C1ζ

−|νk | + C2ζ
|νk |. In order to put the equation in

a more familiar form, it is convenient to perform a change of
variables [42] as(

u+
u−

)
= 1√

2

(
1 i
1 −i

)(
y+
z−

)
(36)

so that we get

∂2
ζ u+ + ∂ζ u+

ζ
+ u+

(
i

ζ
− ν2

k

ζ 2
+ 1

)
= 0, (37)

u− = − ζ

iνk
(∂ζ u+ + iu+), (38)

where we recognize in Eq. (37) the Whittaker equation with
two possible solutions of the form

u+(ζ ) =C
iνk√

ζ
W±1/2,νk (±2iζ ). (39)

Near the horizon ζ → ∞, the solution behaves as u+ ∝ e∓iζ ,
and by imposing the infalling-wave condition at the horizon
(corresponding to eiζ ) the solution becomes

u+(ζ ) =C
iνk√

ζ
W−1/2,νk (−2iζ ), (40)

u−(ζ ) =C
1√
ζ

W1/2,νk (−2iζ ), (41)
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that in terms of the original variables is

y+(ζ ) = C

2
√

ζ

(
iνkW−1/2,νk (−2iζ ) + W1/2,νk (−2iζ )

)
,

z−(ζ ) = C

2
√

ζ

(
νkW−1/2,νk (−2iζ ) + iW1/2,νk (−2iζ )

)
. (42)

The IR Green’s function can then be extracted by expanding this exact IR solution for ζ → 0(
y+
z−

)
= C

2

[(−1
1

)(
(−2i)1+νk �[−2νk]

−�[−νk]
+ O(ζ )

)
ζ νk +

(
1
1

)(
(2i)νk �[1/2 + νk]√

π
− (2i)νk �[−1/2 + νk]

2
√

π
ζ

)
ζ−νk

]
, (43)

where we used the notation �[x] for the gamma function, and we get

Gk = i
(−i)2νk 4−νk �[1/2 − νk]

�[1/2 + νk]
ζ 2νk r|2qk/μ|. (44)

Explicitly we thus obtain

q2|qk|/μG2D
k /μ2|qk|/μ = i(−i)4|qk|/μ �[1/2 − 2|qk|/μ]

�[1/2 + 2|qk|/μ]

(
qω

33/4μ

)4 |qk|
μ

= ω(−ω2)2 |qk|
μ

−1/2 �[1/2 − 2|qk|/μ]

�[1/2 + 2|qk|/μ]

(
q2

33/2μ2

)2 |qk|
μ

, (45)

q2|qk|/μG3D
k /μ2|qk|/μ = i(−i)2|qk|/μ �[1/2 − |qk|/μ]

�[1/2 + |qk|/μ]

(
qω

4μ

)2 |qk|
μ

= ω(−ω2)
2|qk|

μ
−1/2 �[1/2 − |qk|/μ]

�[1/2 + |qk|/μ]

(
q2

16μ2

) |qk|
μ

, (46)

where in the second line of Eqs. (45) and (46), ω has to be
thought as usual as the limit ω + i0. At nonzero temperature,
but with T/μ � 1, generalizing the result obtained by Gubser
[42] according to the definitions in Table I, we find ultimately

qνkG2D
k /μνk = i

(
q

2πT

33/4μ

)2νk �[1/2 − νk]

�[1/2 + νk]

× �[1/2 + νk − i ω
2πT ]

�[1/2 − νk − i ω
2πT ]

. (47)

Upon expanding the gamma functions for ω/2πT → ∞ we
recover the zero-temperature solution in Eq. (45).

First, a few observations about the result just obtained.
The first peculiarity of this background is that νk ∝ |qk/μ|
with no other terms coming from the mass and charge of
the fermion. In comparison, in the Reissner-Nordström (see,
e.g., Ch. 9 of Ref. [29]) the scaling exponent takes the form
νk =

√
2q2/μ2k2 + m2/6 − q2/3. In such models, there is an

instability at small momenta and large values of the ratio
q2/m2, where we find a pathological log-oscillatory behavior
(as the exponent becomes imaginary) [35,36]. In the opposite
limit of small q2/m2 the scaling exponent assumes the gen-
eral form νk ∝

√
(k/μ)2 + 1/ξ 2, with ξ = ξ (m2, q2) setting

a correlation length with the Green’s function decaying (at
least) exponentially as G ∝ e−x/ξ at large x � ξ [34]. These
features are both absent in the Gubser-Rocha model, as shown
in Eq. (45), allowing for more freedom in setting the values of
m and q.

The imaginary part of the analytical result in Eqs. (45) and
(47) is finite for every value of νk . However, this is not the
case for the real part that contains a pole for every value of
momenta such that νk = 1/2 + n, n ∈ N. These divergences,
though, are not present in the full Green’s function, as it can be
seen in Fig. 3, where, in the full solution obtained numerically,
we observe a linear dispersion for every value of k/μ in the

range of interest, according to Eq. (28). This is because, when
the IR solution is matched with the outer solution to compute
the full Green’s function, as explained below, these simple
poles are in fact canceled by divergences in the matching
coefficients [36].

B. Matching procedure and comparison with the ansatz

In this section, we briefly remind the reader of the rela-
tionship between the infrared Green’s function and the full
one for the boundary fermionic operator O. The basic idea
is that we divide the space-time into two regions, the inner
region for small r/μ where we solved the Dirac equation as
explained in the previous section, and an outer region where
r � ω, T and we can solve the equations in a series expansion
in these two quantities. For ω, T � μ, these two regions
overlap when ω, T � r and r � μ. In this overlap region, we
can then match the two solutions. The details of this matching
procedure between the solutions to the Dirac equation in the
inner and outer region of the space-time are nicely outlined
in, for example, Refs. [34,36]. We ultimately have that the full
holographic Green’s function can be written as

GH (ω, k; T )μ−2m

= b+(ω, k, T ) + b−(ω, k, T )Gk (ω; T )μ−2νk

a+(ω, k, T ) + a−(ω, k, T )Gk (ω; T )μ−2νk
, (48)

where the coefficients b±, a± depend on the full space-time
and, in most cases, as it is in this paper, they can only be
computed numerically. They are all real and have an analytic
expansion in terms of ω and T

a±(ω, k, T ) = a(0,0)
± (k) + ωa(1,0)

± (k) + Ta(0,1)
± (k) + · · · ,

(49)

for ω, T � μ and similarly for b±. The expansion coefficients
depend on momentum and can be Taylor expanded as well.
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FIG. 5. Imaginary part of the numerical self-energy (circles) for different values of fixed momentum and temperatures in the range of
interest, together with a fit to the analytical low-energy result (lines). We can clearly see that the low-energy behavior of the imaginary part of
the self-energy is indeed well described by the AdS2×R2 solution.

Notice that, from the structure of Eq. (48), an analogous
relation holds for the Green’s function in alternative quantiza-
tion. In particular, we therefore expect that for small energies
and temperatures, we can accurately describe the dissipative
physics, encoded in the imaginary part of the inverse Green’s
function with a form

Im[GH (ω, k; T )−1μ2m] � −C(ω, k, T )Im[Gk (ω; T )μ−2νk ],

(50)

with Gk (ω; T ) given in Eq. (47) and C admitting an ana-
lytical expansion in its variables. For qk/μ in the range of
interest to us, we expect it to be well described by C =
C (0) + kC (k) + TC (T ) + ωC (ω) + · · · , with the dominant cor-
rection coming from the k dependence and only small energy
and temperature-dependent corrections, as we are interested

in describing low-energy excitations near the Fermi surface
where k/μ � ω/μ, T/μ. We verified this numerically for
different values of the holographic fermion charge q in the
range needed to describe the ARPES data and show this in
Fig. 5. We see that the imaginary part of the full solution is
very accurately described by the IR results at all values of tem-
peratures considered, with the coefficient C(ω, k, T ) linear in
k as shown, for example, in Fig. 6 for a value of the exponent
α = 0.65 [from Eq. (2)] and qT/μ = 0.005. The real part of
the Green’s function, on the contrary, cannot be understood in
terms of the emergent geometry only, as it depends on the full
solution and it has to be analyzed numerically.

We can further see from Eq. (48) that the Green’s function
for O shows a Fermi surface whenever there exists a value of
momentum k ≡ kF such that a(0,0)

+ (k = kF ) = 0. Expanding
the Green’s function near this point, we see that it can be
written as

GH (ω, k; T )/μ2m � b(0,0)
+ (kF )

∂ka(0,0)
+ (kF )(k − kF ) + ωa(1,0)

+ (kF ) + a(0,0)
− (kF )GkF (ω; T )μ−2νkF

, (51)

justifying the form used in Eq. (28) in the previous section.
We now understand that kF /μ, as well as Z and vH , require
the full solutions and depend therefore on the UV completion
of the theory, while �′′ is, up to a prefactor, fully determined

by the imaginary part of Gk . In particular then, near the Fermi
surface, we recover the PLL self-energy �′′ ∝ (ω2)α , pro-
posed as a model of the cuprates strange metal, by fine-tuning
the charge of the bulk fermion such that νkF = 2qkF /μ ≡ α,
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FIG. 6. Example of the momentum dependence of the coefficient C resulting from a fit of the numerical solution at fixed temperature
T/μ = 0.005, with a function of the form of Eq. (50) with an energy-independent coefficient C(ω, k, T ) � C(0, k, T ). It shows that the latter
coefficient is linear in k/μ as expected from the argument in the main text, while temperature corrections are quadratic and thus negligible at
sufficiently low temperatures where C(ω, k, T ) � C(0, k, 0).

with α = 1/2 at optimal doping and increasing approximately
linearly with doping towards the Fermi-liquid value of 1 [38].

The full solution starts to deviate from the IR analytical
behavior for small values of h̄ck/μ, reintroducing for a mo-
ment dimensionful units. However, we are only interested in
describing the MDC peaks near the Fermi momentum with
qh̄ckF /μ ≡ α/2 ∈ [0.25, 0.5). As noted in Sec. II, we con-
sider c as a velocity of the same order of the Fermi velocity.
We can verify that this interpretation is consistent with the
infrared regime h̄ω, kBT � μ corresponding to an energy and
temperature range of experimental interest. Since we have
qh̄ω/μ = αh̄ω/2h̄ckF , choosing for estimation purposes a ve-
locity h̄c = 4 eV Å and kF = 0.5 Å−1, we have that, choosing,
for example, the largest values shown in Fig. 5, qh̄ω/μ = 0.05
corresponds to an energy h̄ω ∈ (0.2 eV, 0.4 eV] depending on
the value of α ∈ [0.25, 0.5). This is also where the range of
validity of the linear approximation in the dispersion observed
in the ARPES measurements starts to break down, and we
hence do not expect the low-energy holographic description
to be valid anymore. Accordingly, the highest temperature
shown is qkBT/μ = 0.005 which corresponds to the high
temperatures T ∈ (232 K, 465 K].

IV. SEMIHOLOGRAPHY AND EFFECTIVE
LOW-ENERGY RESPONSE

As we have shown, holography provides us with a way to
compute the low-energy response function of strongly inter-
acting systems at nonzero temperature and chemical potential
and for any dimensionality, a task not easily achievable with
such a generality within other frameworks. However, when
comparing with experimental measurements, we have to keep
in mind that the holographic model considered does not fully
correspond, at all energies, to the theory of an electron sys-
tem, but it has to be regarded as yielding an effective theory
capturing the low-energy behavior of a fermionic massless
composite operator, whose UV behavior might be far from
what is expected from a metal in the laboratory. This is also
clear from the fact that the holographic Green’s function

presented above does not satisfy the electronic sum rule and
obeys

1

π

∫ +∞

−∞
dω Im[GH (ω, k)] �= 1, ∀k. (52)

We want, hence, to write down a low-energy effective action
to decouple the dissipative physics related to the interior of the
space-time from the ultraviolet conformal field theory of the
asymptotically AdS space-time. This is done in an approach
known as semiholography [41,48], that considers the effec-
tive action as arising from a fermionic field χ , living on the
boundary of the space-time whose decay is controlled by the
interaction with the strongly coupled sector described by the
holographic fermionic operator O, so that the effective action
takes the form

Seff =
∫

dωdd k

(2π )d+1
(χ†(−h̄ω + ε(k) − μ)χ

+ gkχ
†O + gkO†χ ) + Sstrong(O), (53)

with gk a momentum-dependent (assumed real) coupling con-
stant, and Sstrong the action from the near-horizon holographic
sector. The Green’s function for the fermion field then be-
comes

Gχχ (ω, k) = h̄

−h̄ω + ε(k) − μ − g2
kGk (ω)

≡ 1

G0(ω, k)−1 + �(ω, k)
, (54)

with −g2
kGk (ω)/h̄ assuming the role of the electron self-

energy (Gk (ω) being the IR Green’s function presented
above).

It is this semiholographic construction that we considered
in what follows, as we are, in the first instance, primarily
interested in understanding if there is evidence in the cuprates
of the peculiar physics arising from the universal infrared be-
havior described by the gauge-gravity duality. Only after this
question is answered affirmatively can we undertake the more
challenging problem of a complete description of the theory.
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We, therefore, start with the simplest approach of modeling
the Green’s function near the Fermi surface by

Gχχ (ω, k) = h̄

−h̄ω + h̄vF (k − kF ) − ig2
kIm[Gk (ω)]

, (55)

where we now consider the renormalized Fermi velocity vF

to be a k-independent adjustable parameter, incorporating the
real contribution of the self-energy that renormalizes the bare
velocity vB, and the freedom in g2

k > 0 is set to match the
measured peak width near the Fermi surface. In this way, the
holographic input is all in the imaginary part of the electron
self-energy h̄�′′(ω, k) ≡ g2

kIm[Gk (ω)].
It is interesting to notice that Gursoy et al. in Ref. [41]

proposed a semiholography approach where the fermion is
coupled to the full holographic theory (and not only to the
IR emergent sector), as they showed that such theory satisfies
the ARPES sum rule in Eq. (52). However, as we show in the
Appendix, this does not allow for a description of the observed
peak width.

V. COMPARING HOLOGRAPHY TO ARPES DATA

The purpose of this paper is to show that the simple semi-
holographic model presented above is able to describe the
energy and momentum dependence of the cuprate spectral
function measured in ARPES experiments, and, in particular,
we argue that it is a step forward compared to the momentum-
independent self-energy of the power-law liquid. While the
latter is accurate near the Fermi surface, the former provides
a better comparison with the data over a larger range of ener-
gies. We, hence, explain here how to compare the holographic
prediction to the experimental data from Ref. [38]. We start by
looking at the zero-temperature solution and leave the discus-
sion about temperature corrections, only relevant as kBT � ω,
to a later section.

The analysis of the electronic MDCs is based on a fit of the
form of Eq. (1)

A(ω, k) = W (ω)

π

�(ω, k)/2

(k − k∗(ω))2 + (�(ω, k)/2)2
, (56)

where �(ω, k) = 2�′′(ω, k)/vF + G0(ω)/vF , with G0(ω) a
momentum-independent contribution usually attributed to the
electron-phonon interaction and disorder. The ARPES mea-
surements on the cuprate strange metal have generally been
analyzed in a framework in which the self-energy is domi-
nated by the frequency dependence. It has then been assumed
that it could be modeled with a momentum-independent
ansatz, the power-law liquid:

h̄�′′
PLL = h̄�′′

PLL(ω, T ) = ((h̄ω)2 + (βkBT )2)α

(h̄ωN )2α−1
, (57)

with h̄ωN = 0.5 eV a fixed energy scale, β a constant with
an experimentally determined value around π [31], and α a
doping-dependent exponent with α = 1/2 at optimal doping
and 1/2 < α < 1 as we move into the overdoped region of
the phase diagram. As a first-order test of the semiholographic
prediction, according to Eq. (55), we simply replace the PLL’s
imaginary part of the self-energy with the semiholographic
result h̄�′′(ω, k) ≡ g2

kIm[Gk (ω)]. Notice that, by neglecting
the real part of the self-energy, this approach is independent

of the UV completion of our holographic theory. One could
argue that, given a nonlinear momentum dependence, the real
part of the self-energy should introduce some nonlinearity in
the dispersion relation, as well as momentum dependence in
W = W (ω, k) in Eq. (56). From the experimental fact that
the peak position near the Fermi surface is well described
by a linear dispersion with a phonon kink, we consider it
a reasonable first step to only assume that the real part of
the self-energy simply renormalizes the Fermi velocity. It is
nonetheless a very interesting problem to consider the effect
of a full holographic self-energy on the dispersion and nor-
malization, but that is left for future work.

A. Particle-hole symmetry

Near the Fermi energy, the MDC peaks are sharp and
the holographic prediction for the imaginary part of the self-
energy is well approximated by the momentum-independent
form of the PLL, i.e., �′′ ∝ (ω2)νkF with the identification
α ≡ νkF = 2q|kF |/μ. In particular, we see that the value of
the charge q in the bulk Dirac equation can be used to de-
scribe the doping dependence of the power-law exponent, with
α approximately linear in q since the value of kF /μ varies
very little as a function of q (see Fig. 4). As we move away
from the Fermi level, however, the observed peaks become
broad enough (the FWHM is of the same order of magni-
tude as the Fermi momentum) that we expect to be able to
notice deviations from the symmetric Lorentzian shape due
to the effect of the k-dependent exponent as �′′(ω, k, T =
0) ∝ (ω2)α(1+(k−kF )/kF ). It is easy to see that this implies more
spectral weight in the tail of the peak for |k| < |k∗| as shown
in an example in Fig. 2. This is in contrast with experimental
findings along the nodal line, where the peaks appear as if they
are “tilted” in the other direction, with more spectral weight
for |k| > |k∗|. We believe that this is due to the holographic
fermion in the bulk being dual to a fermionic operator for the
hole, O(ω, k) ≡ Oh(ω, k), hence the semiholographic effec-
tive theory, Eq. (53), describes the response of a hole system,
χ (ω, k) ≡ χh(ω, k). On the other hand, ARPES measures the
response of the electrons in cuprates, associated with χe(ω, k).

In practice, this implies that ARPES measurements below
the Fermi surface correspond to positive values of h̄ω in the
semiholographic spectral function, as we depict in Fig. 7.
The semiholographic spectral function, in the right panel of
Fig. 7 then describes the hole response in the nodal direction.
The left-hand panel in Fig. 7 represents photoemission data
and thus necessarily is in an electron picture. Since the semi-
holographic spectral function in the right-hand panel is in the
hole picture, the red line shows the unoccupied hole states,
which corresponds to the red line in the occupied electron
states in the left-hand panel. We thus need to identify the
zero of the momentum axis with the (π, π ) point, and the
rotationally invariant Fermi surface at ω = 0 of the semiholo-
graphic spectral function, then, corresponds to the “round”
Fermi surface around the (π, π ) point of Fig. 8. Assuming an
emergent particle-hole symmetry near the Fermi surface, we
hence identify the position of the (0,0) point along the nodal
direction at 2kF . Performing a particle-hole conjugation on the
fermionic composite operator Oh(ω, k) → O†

e (−ω, 2kF − k),
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FIG. 7. With (semi)holography we obtain the spectral function for the holes (right panel). In an emergent particle-hole symmetry near the
Fermi surface, we relate the ARPES MDC along the nodal line for the electrons in a cuprate at E < EF , with momentum origin at the (0,0)
point with the holographic distribution at the corresponding h̄ω/μ = (EF − E )/μ > 0 (dashed red line). The origin of the momentum axis is
at 2h̄ckF /μ.

transforms the self-energy as

h̄�h(ω, k) = −g2
kGk (ω) → +g2

2kF −kG∗
2kF −k (−ω)

= h̄�e(ω, k) ∝ −g2
2kF −k (−ω)

× (−ω2)α(1−(k−kF )/kF )−1/2, (58)

where we used the fact that g2
k is real and we dropped the abso-

lute value in the exponent as we always consider 0� k < 2kF .
In summary, the electronic spectral function at E < EF , as

measured in ARPES MDCs, is described in our semiholo-
graphic framework by the peaks for positive frequencies, as
depicted in Fig. 7, with the momentum k measured along
the nodal direction from the (0,0) point. From now on, we
simply use the notation h̄�(ω, k) = −g2

kGk (ω) to refer to the
self-energy for the electron as in Eq. (58), with the scaling
exponent α(k) ≡ α(1 − (k − kF )/kF ).

FIG. 8. Structure of the Fermi surface. The origin of the momen-
tum axis is set at the (0,0) point, with measurements performed along
the nodal line. The holographic model describes the response of the
hole system from the (π, π ) point, within an emergent particle-hole
symmetry where the (π, π ) point is assumed at 2kF along the nodal
direction.

B. Fit-function and the phonon

In data collected from ARPES measurements, there is a
kink in the dispersion relation, as shown in Fig. 9, at about
E − EF � 0.07 eV. This kink is associated with a jump in
the lifetime of the excitations and it is generally attributed
to the electron-phonon interaction. This gives an additional
contribution to the imaginary part of the self-energy that is
accounted for in the experimental fitting procedure by the
addition of a momentum-independent parameter G0(ω). As

FIG. 9. Plot of the dispersion relation from ARPES measure-
ments along the nodal direction at optimal doping and low-
temperature (blue line), and comparison with a linear dispersion
E − EF = h̄vF (k − kF ), with vF = 2.9 eV Å (red line). We can see a
kink in the linear dispersion around E − EF = −0.07 eV.
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explained in more details in Ref. [38], the analysis of the ex-
perimental data is done by fitting each momentum-dependent

curve, i.e., a slice at constant energy as, for example, in
Fig. 10), with the ansatz

A(ω, k) = W (ω)

π

�(ω,k)/2︷ ︸︸ ︷
λ fkωN

2

[(
ω

ωN

)2]α(k)

+ G0(ω)

2

(k − k∗(ω))2 +

⎛
⎜⎜⎜⎝λ fkωN

2

[(
ω

ωN

)2]α(k)

︸ ︷︷ ︸
�′′(ω,k)/vF

+G0(ω)
2

⎞
⎟⎟⎟⎠

2 , (59)

where λ is a doping-independent constant that is determined
by a two-dimensional fit for momenta and energies near the
Fermi level, and is then fixed and does not enter as a fit
parameter in the MDC fits. It is also kept fixed independently
of the model used for the self-energy. In addition, h̄ωN =
0.5 eV is an energy scale related to the microscopic details
of the CuO2 layer [31]. Finally, W (ω), k∗(ω) and G0(ω) are
fit functions. W (ω) is the overall normalization, that we won’t
discuss here, k∗(ω) the dispersion that we expect to take the
form k∗(ω) = kF − ω/vF plus a renormalization contribution
from the phonon as explained below. Finally, G0(ω) accounts
for the contribution to the width of the peak that does not
come from the electron self-energy, and we expect it to be
well described by a model of the electron-phonon interaction.
In order to check this, we compare the results for G0(ω)
with a simple approximation for a dispersionless phonon, with
characteristic frequency obeying h̄ωph = 0.07 eV, given by

�ph(ω)

vF
= Gph

2π
ln

(
ω − ωph − i�

ω + ωph + i�

)
, (60)

with, as we will shortly see, � > 0 even at T = 0, likely due
to the smearing of the Fermi surface due to strong interactions
in the system. This has the effect of smoothing out the step
function in the imaginary part of the phonon self-energy, as
well as the kink in the dispersion.

For the PLL, fk = 1 and α(k) = α, while for the semiholo-
graphic model presented above α(k) = α(1 − (k − kF )/kF )
from Eq. (58), and from the imaginary part in Eq. (45), we
have

fk = g2
k

(
ωNα

33/42kF

)2α(k)
�[1/2 − α(k)]

�[1/2 + α(k)]
cos(πα(k)), (61)

where we used the fact that α ≡ 2qkF /μ in the first prefac-
tor. Remember that, upon reintroducing dimensionful units,
this prefactor reads αωN/2h̄ckF . This then contains an un-
known velocity that, however, can be adsorbed into the
coupling constant g2

k . Specifically, as we would like to keep
the model as simple as possible, we consider a coupling g2

k =
C0(1/β0)2(α(k)), with C0 a momentum-independent constant
that is uniquely determined by requiring that at the Fermi
momentum we recover the form of the PLL, that is fkF = 1.
Then the self-energy in Eq. (59) takes the form (temporarily

reintroducing dimensionful quantities for clarity)

�′′(ω, k)

vF
= λh̄ωN

2

(
αh̄ωN

33/42h̄cβ0kF

)−α
k−kF

kF �[1/2 + α]

�[1/2 − α]

× �[1/2 − α(k)]

�[1/2 − α(k)]

cos(πα(k))

cos(πα)

(
ω2

ω2
N

)α(k)

,

α(k) = α

(
1 − k − kF

kF

)
. (62)

Here β0 is such that h̄cβ0 � 0.21 eV Å, chosen by comparison
with experimental data. It is a fixed constant, independent of
doping and temperature, and it does thus not introduce any
extra fitting parameter compared to the PLL model.

Below, in Fig. 10, we present the comparison of the fit
to a “cleaned-up” version of data from Ref. [38] at low-
temperature and near optimal doping (T = 8 K, α = 0.51),
where the width due to the instrumental resolution and fluc-
tuations in the data have been removed by a combination
of deconvolution and smoothing, respectively. We show one
branch of the dispersion, but the fit is working on both
branches, so as to correctly account for the overlap of the
tail of each branch on the line shape of the other. Near the
Fermi surface, both models provide a good fit to the data, but
as we move away from EF the semiholographic model (red
line in the figures) does a much better job in describing the
data by capturing extremely well the peak asymmetry over
the entire energy range where the dispersion is approximately
linear. We start to see deviations from the holographic model
at h̄ω = E − EF < −0.25 eV. However, from the right panel
of Fig. 11, one can see that this energy is one at which the
approximation of a linear dispersion seems to break down. We
stress again here that, while we cannot claim with certainty
the origin of this observed asymmetry, many other possible
simple explanations—that are not rooted in the momentum-
dependence of the electron self-energy—have been analyzed
and ruled out in Ref. [38]. To validate the fit procedure,
we have to check that what we obtain for G0(ω) can have a
reasonable physical explanation and, in particular, whether it
is consistent with the contribution from the electron-phonon
interaction as per Eq. (60). Notice that in the way the fit is
performed, the contribution of the phonon to �′′(ω, k) and
the dispersion relation are two independent parameters, but,
within the validity of the phonon-model approximation, we
expect them to be related. We therefore perform a fit of G0(ω)
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FIG. 10. Comparison of the (smoothed) experimental MDC (blue dots) for a sample at optimal doping α = 0.51 at T = 8 K, with a
Lorentzian fit based on the PLL (green line), and a fit based on the semiholographic prediction for the self-energy in Eq. (62) (red line). Near
the Fermi surface both models provide a good fit, but as we move away from the Fermi surface the holographic model provides a better fit,
being able to capture the asymmetry in the peak. Deep below the Fermi surface, for E − EF � −0.25, we start to see deviations even for the
semiholographic model. This is, however, where we expect the low-energy approximation to break down, as is also indicated by the dispersion
becoming nonlinear in Fig. 11.

for both the power-law liquid and the semiholographic model
to determine � and Gph from Eq. (60), and check them against
the dispersion k∗(ω):

k∗(ω) − kF
?≈ ω

vF
+ Gph

2π
Re

[
ln

(
ω − ωph − i�

ω + ωph + i�

)]
. (63)

The renormalized velocity vF is left as a parameter in the
fit for the dispersion, but we expect a value vF � 3 eV Å
[49]. In Fig. 11, we show the result of the fit of this model
(continuous line) to the extracted values of G0(ω) (dots) for
the PLL (green) and the semiholographic (red) fit function.
The semiholographic fit function, in contrast with the PLL,
seems to give a description for G0(ω) consistent with an
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FIG. 11. (Left) Fit of G0(ω) in Eq. (59) to the electron-phonon model in Eq. (60) for a PLL fit function (green line), giving Gph � 0.020
and � � 0.034, and the semiholographic one (red line), that gives Gph � 0.031 and � � 0.030 (it can be seen that there is a deviation at very
small energy, probably related to some leftover disorder). (Right) Comparison between the experimentally observed dispersion relation (blue
dots) with the dispersion as expected from the electron-phonon model given the parameters Gph and � obtained from the fit. We see that the
semiholographic model provides a better fit to the dispersions with h̄vF � 2.9 eV Å, while the PLL fit does not properly capture the phonon
kink and gives h̄vF � 2.7 eV Å.

electron-phonon model, nicely reproducing the dispersion (in-
cluding the kink at h̄ωph = 0.07 eV) with h̄vF = 2.9 eV Å, up
to energies where it ceases to be linear. While we should be
careful in considering this as further evidence of the validity
of the model as there could be other experimental factors
influencing G0(ω) that we might be overlooking, the success
of such a simple semiholographic model with a phonon in
accurately depicting the results of ARPES measurements on a
single-layer cuprate provides a simple and useful benchmark
to compare to other theoretical models at low-temperature.
A further test that is left for future work could be to check
if the value found for � can be related to the density dis-
tribution arising from the semiholographic Green’s function
N (k) ∝ ∫ 0

−∞ dωIm[Tr[Gχχ ]].

C. Doping dependence

We now repeat the analysis presented above for a pair of
overdoped samples at the same low temperature T = 8 K
and show the results in Figs. 12 and 13 for α = 0.82 and
Figs. 14 and 15 for α = 0.61. Note that the only quantities
that change with doping in the fit function Eq. (59) are the
scaling exponent α and kF = kF (α)—both determined by a
PLL fit near the Fermi surface—while all the other parameters
are kept fixed. We see again, also in both overdoped cases, that
the semiholographic model provides a better description of the
data at higher energies, as well as of the phonon contribution
and dispersion relation.3 The slight disagreement near the
Fermi surface between G0(ω) and the phonon model could
simply arise from the fact that near EF the approximation used
for the phonon self-energy in Eq. (60) deviates the most from
the Fermi-Dirac distribution with a smeared out Fermi surface
(see also Fig. 17).

3For the phonon, we considered the Fermi velocity doping indepen-
dent while we allowed the coupling Gph and the factor � to change
with doping.

D. Temperature corrections

As we have seen above, the zero-temperature IR Green’s
function provides a compelling model to describe ARPES
data at low temperatures and in the range of frequencies
of interest. Moving closer to room temperatures, we want
to compare experimental data with the non-zero-temperature
semiholographic prediction from Eq. (47). The PLL instead
generalizes to

�′′
PLL ∝ ((h̄ω)2 + (βkBT )2)α , (64)

that has been shown to well capture the temperature behavior
with a value of the parameter β believed to be π , and found to
lie between 3 and 4 depending on doping, see Ref. [38]. There,
ARPES data were also compared with a “semiholographic in-
spired” generalization, where the self-energy from the power-
law liquid model was simply generalized by making the expo-
nent momentum-dependent ((h̄ω)2 + (βkBT )2)α/(h̄ωN )2α →
((h̄ω)2 + (βkBT )2)α(k)/(h̄ωN )2α(k), with α(k) as in Eq. (62)
and all the other parameters kept as in the PLL. This provided
an accurate description of the temperature dependence. On
the other hand, the semiholographic model seems to present
a rather different temperature behavior as per Eq. (47). It
is first interesting to notice that, when α(k) = 1, the latter
equation simplifies to the Fermi-liquid form

G2D
k /μ = q

4i

3
√

3μ2
((h̄ω)2 + (πkBT )2), (65)

consistent with the PLL temperature behavior. However, the
factor in front of the temperature term becomes smaller
for α(k) < 1. In Fig. 16, we show the ratio (�′′(h̄ω =
0, kBT = ε, kF )/�′′(h̄ω = ε, kBT = 0, kF ))1/2α for the semi-
holographic prediction from Eq. (47), where ε � 1. This ratio
corresponds to β for the PLL liquid. We also checked this re-
lation numerically, where at small frequencies and especially
for lower values of νk there are corrections to the analytical
formula coming from the m and q terms in the bulk Dirac
equation. We thus explored the mass parameter space between
(−1/2, 1/2) to find the values of m that bring the ratio closest
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FIG. 12. Comparison of the PLL fit (green line) and semiholographic fit (red line) to MDC data (blue dots) for an overdoped sample with
α = 0.61 at T = 8 K. Near the Fermi surface, both models provide a good fit to the data, while further away from it the semiholographic model
accounts for the asymmetry in the peak.

to the expected value of π even at lower νk . We find that
this happens as we approach the lower limit of allowed mass
m = −1/2. However, even in this limit, the temperature pref-
actor is still lower than the expected value for all dopings, as
seen from the red line in Fig. 16.

Given this premise, we then do not expect the
semiholographic model to properly describe the temperature
behavior, in fact, if we keep the coupling gk fixed to the
value found for the low-temperature case, we should find

that the model underestimates the width of the ARPES peak
for h̄ω � kBT compared to the prediction from the PLL.
By repeating the fitting procedure explained above, we find
that the semiholographic model still accurately describes the
asymmetric peak shape in the MDCs, as shown in Fig. 19.
However, G0(ω) departs from the expected high-temperature
generalization of the electron-phonon self-energy. We
generalize Eq. (60) to nonzero temperature by requiring
that in the limit � → 0 the imaginary part of the model gives

FIG. 13. (Left) Fit to G0(ω) with the electron-phonon model and comparison with the dispersion relation (right), for the overdoped sample
with α = 0.65. We see here as well that the semiholographic fit function provides a description consistent with the electron-phonon model.
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FIG. 14. Details of the PLL fit (green line) and semiholographic fit (red line) to MDC data blue dots for an overdoped sample with α = 0.82
at T = 8 K, both near and deep below the Fermi surface.

a good approximation of the Fermi-Dirac distribution, that is

�ph

vF
= Gph

2π
ln

(
h̄ω − h̄ωph − i(h̄� + 4kBT/π )

h̄ω − h̄ωph + i(h̄� + 4kBT/π )

)
, (66)

where the values for Gph and � are kept fixed to the ones at
T = 0. In Fig. 17, we show the comparison between the imag-
inary part of this approximation and a Fermi-Dirac distribu-
tion, while in Fig. 18, we show the effect of temperature on the
divergence in the real part at the phonon frequency. This gen-
eralization gives a good description of the dispersion at higher
temperatures as it can be seen in the right panel of Fig. 20,
which compares to the experimental data at T = 205 K. The
contribution to �′′(ω, k) that does not come from the electron-
electron contribution to the self-energy is, however, larger
than what is predicted by the simple addition of the electron-
phonon interaction, as shown in the left panel of Fig. 20. Here,
we also make the comparison with the “semiholographic in-
spired” model mentioned above and presented in Ref. [38]
(blue line in Fig. 19 and blue dots in 20). This difference
between G0(ω) and the expected electron-phonon contri-
bution might signal a shortcoming of the semiholographic
model considered in this paper in describing the nonzero
temperature behavior of the cuprate strange metal, hinting at
the necessity of searching for other models in the large class

of z = ∞ holographic theory with a temperature behavior
that more closely resembles the experimental behavior. On
the other hand, it might also be that a proper description at
nonzero temperature must take into account contributions to
the self-energy, other than the phonon, that are activated at
nonzero temperature, contributing to G0(ω), or corrections to
the coupling gk → gk (1 + c1T + . . . ), that we did not con-
sider here. While we believe in the importance of pointing out
a possible shortcoming here, we leave a deeper analysis and
identification of viable resolutions to future studies.

VI. CONCLUSIONS

The main aim of this paper is to provide a simple
phenomenological model that can describe the momen-
tum distribution curves measured in high-resolution angle-
resolved photoemission spectroscopy experiments on the
strange metal phase on optimally doped and overdoped single-
layer cuprates. In particular, we propose a model coming from
a semiholographic theory based on the Gubser-Rocha model
of a non-Fermi liquid, and test it on recent experimental data
[38]. We find that such a model plus an electron-phonon
contribution very accurately describes the behavior of the
observed spectral functions in the form of the momentum
distribution curves (MDCs), and provides an improvement

FIG. 15. (Left) Fit to G0(ω) with the electron-phonon model and comparison with the dispersion relation (right), for the overdoped sample
with α = 0.81.
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FIG. 16. Plot of the ratio (�′′(ω = 0, kBT = ε, kF )/�′′(ω =
ε, kBT = 0, kF ))1/2α from the analytical semiholographic model
(blue line), and from the full numerical solution (red line), where
there are corrections dependent on the mass m in the bulk Dirac equa-
tion. In the PLL this ratio is the fit parameter β, with experimentally
determined values between 3 and 4.

over the previously proposed power-law-liquid (PLL) model
in the low-temperature limit, based on the following.

(1) It gives a better fit to the MDC peaks over a much
larger range of energy below the Fermi surface. This is be-
cause it captures an asymmetry observed in the experimental
MDCs that shifts more spectral weight towards the tail of the
distribution for |k| > |k∗|, and it reduces to the PLL result
near the Fermi energy where this asymmetry is too small to
be observed. While there could be some alternative, noncon-
ventional explanation of this asymmetry, we argue in favor of
it coming from properties of the electron self-energy, as other
possible simple causes have been analyzed and ruled out in
Ref. [38].

(2) It is compatible with a simple model of the electron-
phonon interaction that well describes—to a better degree
than in the power-law liquid—both the observed dispersion
relation and the contributions to the self-energy other than that
from electron-electron interactions.

The most practically important implication of these results
is that, with just a few fit parameters, we can provide a
phenomenological description, across a large range of ener-
gies and dopings, of low-temperature momentum distribution
curves in cuprates along the nodal direction. This description
can be used as a benchmark to compare various theories on
the self-energy in the strongly interacting cuprates. Up to a
normalization we, in fact, have that

A(ω, k) ∝ Im

⎡
⎢⎣ 1

k − (
kF − ω

vF

) − i λ fkωN

2

[(
ω
ωN

)2
]α(1−(k−kF )/kF )

+ Gph

2π
ln

(
ω−ωph−i�
ω+ωph+i�

)
⎤
⎥⎦, (67)

where fk is given in Eq. (61). The parameter λ and the ex-
ponent α are fixed to the PLL values at low energies, and
the only fit parameters for each MDC are vF , Gph and �.
Remember that these are constant parameters, in contrast with
the fit functions k∗(ω) and G0(ω) as in Eq. (59). We stress
especially that—while our model is rooted in the holographic
duality and we believe these results provide good arguments in
favor of the use of this technique in the description of the non-
Fermi liquid—the validity of the model is independent of its

holographic origin. We note that momentum-dependent scal-
ing exponents have also been predicted in a one-dimensional
nonlinear-Luttinger liquid model [40], hinting, perhaps, at the
emergence of one-dimensional physics governing the electron
response along the nodal direction in copper-oxide layers.

We have also shown the shortcomings of the semi-
holographic model adopted in this paper, in the fact that
it underestimates the temperature contribution to the self-
energy. However, our model is based on the specific choice of

FIG. 17. Comparison between the Fermi-Dirac distribution (red solid line) and the imaginary part of the approximation in Eq. (66) (black
dashed line) with � = 0.
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FIG. 18. Plot of the real part of the approximation to the
electron-phonon contribution in Eq. (66), with � = 0. We can see a
divergence at the phonon frequency h̄ωph = 0.07 eV as we approach
zero temperature.

the Gubser-Rocha dual gravitational theory, which was simply
dictated by the fact that it is perhaps the most simple model
among the ones proposed for the description of the strange
metal phase, and it allows for an analytical solution of the
gravitational background. We find it already remarkable that
it gives such an accurate description at low temperatures, and a
not-so-large discrepancy in the temperature dependence might
simply point to the need for a more refined dual gravitational
theory among the large class of conformal-to-AdS2 metals.
The differences observed at elevated temperatures might also
be due to the need for a temperature-dependent coupling
g2

k (T ) in Eq. (61). This could be the topic of further research,
although this would go against our main goal of providing a
simple phenomenological model with as few adjustable pa-
rameters as possible. Moreover, as we have shown in Fig. 20,
at high temperatures it appears that there are contributions to
G0(ω) that cannot simply be explained within the electron-
phonon interaction, pointing to the fact that we are possibly
ignoring some other effects that might change the analysis
of the results if included. This is also a matter that requires
further investigation in future studies.

Finally, we are careful not to claim that the momentum-
dependence in the scaling exponent of the self-energy is the

only possible explanation of the observed asymmetry, as there
could be other factors that might generate this shift in the
spectral weight, some of which, though, are carefully ana-
lyzed and ruled out in Ref. [38]. Moreover, it is important
to understand that, while the asymmetry could be accounted
for by simply adding an additional momentum dependence
as an extra parameter in the phenomenological PLL model of
the electron self-energy, the model presented here predicts the
form of this momentum dependence, and it is far from trivial
that MDC experimental results across a large range of energies
can be so well described by this function, without adding any
additional adjustable parameter to the PLL model.
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APPENDIX: LIMITATIONS OF THE SEMIHOLOGRAPHIC
APPROACH FOR A CONSISTENT ELECTRONIC

SUM RULE

In this Appendix, we show that the construction proposed
in Ref. [41] to compute the single-particle fermionic Green’s
function from holography, does not allow to model the data
within the approach used in this paper. In Ref. [41], it was
shown that by writing down an action coupling the fermion
with the full holographic theory, and not only the IR emergent
sector, we find

Gχχ (ω, k) = h̄

−h̄ω + ε(k) − μ + g2
kG−1

H (ω, k)

≈
ω�μ

h̄

−h̄ω + ε̃(k) − μ − g̃2
kGk (ω, k)

, (A1)

and we, hence, obtain a spectral function that satisfies the
electronic sum rule for masses in the range (−1/2, 1/2).
In fact, in this mass range, the contribution from the

FIG. 19. Comparison of the PLL fit (green line) and semiholographic fit (red line) to MDC data (blue dots) for an optimally doped sample
α = 0.51 at high temperature T = 205 K. Here, also added for comparison, is the “holographic inspired” model of Ref. [38] (blue line). We
see that the semiholographic model still provides a better fit than the PLL to the asymmetric peak far from the Fermi surface, however, this
implies a G0(ω) that cannot be simply described by the electron-phonon model as shown in Fig. 20 below.
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FIG. 20. (Left) Results for G0(ω) in Eq. (59) from the fit of the MDC data to a PLL fit function (green dots), the “semiholographic inspired
model” of Ref. [38], (blue dots), and the semiholographic model (red dots) and comparison with the prediction from the high-temperature
generalization of the electron-phonon model (solid lines) as in Eq. (66), with the parameter Gph and � as obtained from the fit at low-
temperature. While we see that in all three cases away from the Fermi surface there are contributions to G0(ω) that are not explained by the
simple model of electron-phonon interactions, the semiholographic model also shows deviations near the Fermi surface, as expected, due to the
different prediction of the temperature behavior of the electron self-energy. The deviations from the electron-phonon model are also evident in
the discrepancy between the expected and measured dispersion (right).

holographic Green’s function is subleading at high energies
where Eq. (A1) reduces to that of a free fermion so that
the electronic sum rule for Gχχ is satisfied, pointing to the
possibility that this construction could be used to obtain in a
consistent way the spectral function for a single electron in a
strongly interacting theory at all energies. Notice, however,

that in this way the nonuniversal ultraviolet physics of the
holographic theory enters into the spectral function, modi-
fying the dispersion relation and, as we will shortly show,
imposing a lower limit on the lifetime of the excitations near
the Fermi surface. Combining Eqs. (28) and (A1), we can see
in fact that the Green’s function takes the low-energy form

Gχχ (ω, k) � h̄

−h̄ω
(
1 + g2

k/Z
) + (

h̄vB + g2
k h̄vH/Z

)
(k − kF ) − ig2

kCIm[Gk (ω)]
,

Im[Gχχ (ω, k)] � Z̃

vF

�(ω, k)/2

(k − k∗(ω))2 + �(ω, k)2/4
, (A2)

where Z̃ = Z/(Z + g2
k ), k∗(ω) = kF + ω/vF , vF (k) =

vB
1+g2

kvB/ZvH

1+g2
k/Z

, vB is the bare Fermi velocity, and �(ω, k) =
g2

k

vF (1+g2
k/Z )

CIm[Gk (ω)]. We thus see that the lifetime of the

electronic excitations as a function of the adjustable parameter
g2

k is bounded from below, with a minimum as we approach
the holographic result for limgk→∞ Gχχ (ω, k) ∝ GH (ω, k). In
this limit, given the small value of Z as shown in Fig. 4, the
holographic prediction gives very sharp peaks near the Fermi

surface, and cannot then offer a quantitative description of
the much broader peaks measured in ARPES experiments.
This is an indication that the holographic theory considered
here does not provide a proper description of the electronic
excitations at all energies and the UV completion of the
theory, influencing the low-energy behavior through the
values of Z , kF , and vF has to be modified if we want to write
down a full theory of the cuprate strange metal valid across
the entire energy range observed. This is, however, outside
the scope of our present work.
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