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Microbes grow in a wide variety of environments and must balance growth and stress
resistance. Despite the prevalence of such trade-offs, understanding of their role in
nonsteady environments is limited. In this study, we introduce a mathematical model
of “growth debt,” where microbes grow rapidly initially, paying later with slower
growth or heightened mortality. We first compare our model to a classical chemostat
experiment, validating our proposed dynamics and quantifying Escherichia coli’s stress
resistance dynamics. Extending the chemostat theory to include serial-dilution cultures,
we derive phase diagrams for the persistence of “debtor” microbes. We find that debtors
cannot coexist with nondebtors if “payment” is increased mortality but can coexist if it
lowers enzyme affinity. Surprisingly, weak noise considerably extends the persistence
of resistance elements, pertinent for antibiotic resistance management. Our microbial
debt theory, broadly applicable across many environments, bridges the gap between
chemostat and serial dilution systems.

microbial | consumer–resource | competition | antimicrobial

Microorganisms have shaped the world we live in and have adapted to thrive almost
anywhere, including the human body, desert soils, forest soils, and coral reefs (1–4).
Competition for limited resources is a central characteristic of microbial life, and this fierce
competition, ongoing since the first cell emerged billions of years ago, has led microbes
to explore astonishing ways to gain a growth advantage. However, our understanding
of the core principles behind microbial competition remains mostly limited to steady
environments.

In the microbial world, organisms commonly make a trade-off between hedging against
future adverse events and maximizing immediate growth (5). This trade-off manifests in
a variety of ecological contexts, many of them relevant to human health. For example,
carrying the genes necessary to resist antibiotics slows a microorganism’s growth in the
absence of antibiotic, but the organism’s growth will be maintained if antibiotics enter
the environment (6–9). Similarly, the malaria parasite Plasmodium falciparum incurs a
substantial growth defect by carrying a mutation that protects from antimalarial drugs
(10). This trade-off is not limited to drug resistance: Mutations in regulatory elements,
such as Escherichia coli’s rpoS, allow organisms to trade-off nutritional competence and
general stress resistance (11, 12). In principle, a similar tradeoff could be driven by
nongenetic mechanisms as observed in antibiotic persistence (13–16). To understand
the core principle behind this “grow now, pay later” phenomenon, we introduce the
metaphor of microbial debt—in which lacking the response capacity to future adverse
events, reaps an immediate speedup in growth that is then “paid back” in the future.
So, debtors are species that shift cost to the future (similar to interest paid on a loan) to
gain a benefit in the present. Yet, despite the ubiquity of debt-like mechanisms in nature,
theoretical understanding of debt in nonsteady environments is missing.

Debt causes a shift of cost from the present to the future, and its effect is
thereby strongly tied to temporal variation. Temporal variation is a known driver of
ecoevolution, impacting systems ranging from the microbiota of the Hadza people of
East Africa (17), the mucosa of mice (18), and antibiotic resistance evolution (19).
Evolutionarily, temporal variation can reduce the efficiency of natural selection and
increase the fixation probability of mutations (20). Perhaps the simplest, yet most
experimentally prevalent, example of temporal variation is serial-dilution batch culture—
in which microbes are subject to periodic dilution and nutrient replenishment. This is
substantially different from the chemostats—another common experimental system in
which nutrient supply and dilution occur continuously (21). Studying and comparing
the behaviors of chemostat and serial dilution systems, which represent two extremes of
environmental variation, can provide insights into the environmental fluctuations present
in real ecosystems. Although serial-dilution culturing is ubiquitous in experimental work
(22, 23), modeling efforts in this direction are still incomplete (24–27). In the context
of serial dilution cultures, we have recently shown that the effect of temporal variation

Significance

Microbes live in an uncertain
world: A nutrient-rich
environment can rapidly
turn hostile with changes in
temperature or the entry of
antimicrobial compounds. There
is an intrinsic trade-off between
preparing for such stressors and
capitalizing on immediate growth.
How microbes approach this
trade-off is of substantial practical
concern, determining the spread
of antimicrobial resistance (AMR).
Here, we develop a mathematical
theory to understand how
microbes manage these
trade-offs in time-varying
environments. Our framework
provides simple, experimentally
accessible predictions on when
these growth trade-offs become
ecologically advantageous
in different environments.
Importantly, the theory predicts
that even small noise in stressor
concentration can massively
extend the ecological lifetime
of resistance elements, with
implications for AMR
management.

Author contributions: J.G.L. and A.E. designed research;
J.G.L., Y.H., and A.E. performed research; J.G.L., Y.H., and
A.E. analyzed data; and J.G.L. and A.E. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
amir.erez1@mail.huji.ac.il.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2314900121/-/DCSupplemental.

Published April 8, 2024.

PNAS 2024 Vol. 121 No. 16 e2314900121 https://doi.org/10.1073/pnas.2314900121 1 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

T
R

E
C

H
T

 U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 , 
D

V
 E

C
O

L
 B

. F
. S

. G
."

 o
n 

A
pr

il 
24

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
13

1.
21

1.
10

3.
31

.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2314900121&domain=pdf&date_stamp=2024-04-04
https://orcid.org/0009-0000-4422-5824
https://orcid.org/0000-0002-2320-4984
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:amir.erez1@mail.huji.ac.il
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2314900121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2314900121/-/DCSupplemental


can be understood through the “early-bird” effect (24). The early-
bird effect arises from the temporal gap between the introduction
of nutrients and the inoculating mixture of microbes (at t = 0,
simultaneously); and the transfer of a fraction of the culture to
inoculate the next batch (a dilution event, at t = tf ). During this
time, the early-bird species exhibit rapid growth at the onset of
the batch cycle. Although their per-capita growth diminishes later
in the batch cycle, the significant size of the “early-bird” species
can still consume nutrients, consequently inhibiting the growth
of “late-bird” species. This effect can cause shifts in community
structure, shifts that do not occur in an equivalent chemostat. The
early-bird effect has recently been shown to control the assembly
of gut microbiome-derived ex vivo communities (28). It suggests
a possible advantage, unique to serial-dilution cultures: to pursue
a “debt” or “grow now, pay later” strategy which accelerates early
growth by shifting costs to the future.

Much theory has focused on the dynamics of microbial debt
trade-offs in fixed, chemostat-like conditions, showing that debt
trade-offs can enable coexistence of strains (29, 30). In some cases,
predictions from these chemostat theories have been qualitatively
verified experimentally (31). While these trade-offs have been
explored extensively in steady environments, less is understood
about their dynamics in fluctuating environments. Contempo-
rary understanding of the ecology of antibiotic resistance suggests
that variation can substantially alter the value of debt (32),
consistent with prior ecological theory on temporal variation (33)
and highlighting the need for further work. Biophysical theories
have been developed that predict optimal growth behaviors of
microbes under environmental fluctuations, frameworks which
can be applied to stress resistance phenotypes (14, 34). However,
despite recent progress (35), there remains a pressing need for
a comprehensive theoretical framework for trade-offs in serial
dilution systems, bridging across commonly used experimental
setups.

In this manuscript we ask: What are the consequences of accru-
ing debt for a microbe within the context of a consumer–resource
model? How does debt impact the growth dynamics of microbial
communities under serial-dilution conditions compared to those
in chemostat environments? We develop a modeling framework
to explore microbial debt and demonstrate its use to analyze
previously published experimental data. Our theory makes no
assumptions about the shape of the debt trade-off surface
(9, 31, 36). Though we consider only fixed and unchanging
trade-offs, it is possible to extend the model to account for non-
genetic adaptation (37). Our proposed model mimics a typical
serial-dilution experimental procedure, while also being directly
applicable to chemostats. We study the competition between
two species, a debtor and a nondebtor, and find that when debt
is compensated for by increased mortality, coexistence cannot
occur between debtor and nondebtor, regardless of whether
the mortality occurs in a punctuated or continuous manner.
However, when debt is paid through decreased metabolic enzyme
affinity, a stable coexistence state emerges. Intriguingly, when the
cost of debt is subject to noise, the losing species can survive for a
much longer time when compared to an equivalent deterministic
system. Therefore, noise can enhance the persistence of antibiotic
resistance elements.

Results
Chemostat Dynamics Reveal Growth-Debt Regulation in E. coli.
Before introducing our serial dilution model, we first present
the equivalent chemostat model as a baseline for the serial
dilution results and as a bridge to the existing, chemostat-
dominated literature. A single nutrient is provided at flux S,

and its concentration within the chemostat is denoted c(t). The
chemostat is well mixed and constantly diluted with dilution
rate �. Let Species N be a nondebtor (a microbe with resistance
to the stressor) with biomass density �N (t). Nutrient uptake
is controlled by g[c(t)], and growth is proportional to nutrient
uptake. The per-capita growth rate of Species N is E g[c(t)] where
E defines the maximal per-capita growth rate. In contrast, Species
D, the debtor species, with biomass density �D(t), has a higher
maximal growth rate,E+ΔE due to sacrificing its stress resistance
capability and diverting these resources to immediate growth.
The lack of stress resistance leads to constant stress-induced death
at rate !. The equations governing these chemostat dynamics are
therefore: 1

�N
d�N
dt = Eg[c]−�; 1

�D
d�D
dt = (E +ΔE)g[c]−�−!;

and dc
dt = S−�D(E+ΔE)g[c]−�NEg[c]. We show this model is

equivalent to a more general chemostat model with more variable
growth parameters in SI Appendix, 2. Note that we neglect �c in
the nutrient dynamics as the dominant nutrient depletion term
comes from the bacterial consumption (29, 38).

To validate our model assumptions and quantitatively show
the existence of debt trade-offs, we apply this chemostat model
to the classical experiments of Notley-McRobb et al. (11). These
experiments studied competition between wild-type (WT) E.
coli and mutants with defective rpoS genes, the transcription
factor governing stress response in E. coli. Here, the WT plays
the role of nondebtor and the mutants are debtors. In Fig. 1A,
we show the relative abundance of the nondebtor WT strain
in chemostats operating at different dilution rates. In these
low-stress chemostats, the community is rapidly overtaken by
the debtor rpoS mutants, well captured by our model fit (see
SI Appendix, 4 for details on fitting approach and methods).
However, these debtors have traded growth rate against stress
resistance, and are now far more vulnerable to stress. In Fig. 1B,
we show the temperature stress response of the community from
one chemostat as the debtor population increases. Initially, the
population is composed of nondebtors and many bacteria survive
the stressor. However, once debtors sweep the population almost
no bacteria survive the stressor. These stress survival dynamics
are well described by our model fit. Thus, debt trade-offs occur
within E. coli and are quantitatively consistent with our model
assumptions

In this chemostat formalism, when is growth debt worthwhile?
For this calculation, we define g[c] as the classical Monod function
c

c+K , whereK is the half-saturation coefficient. By comparing the
competitive ability of the nondebtor and debtor, we determine
that a stressor death penalty ! is worthwhile if the corresponding
benefit ΔE satisfies:

!/� ≤ ΔE/E, [1]

(For details, see SI Appendix, 1). Thus, at a higher dilution
rate, �, the relative cost of debt decreases. Eq. 1 predicts that
at perfect equilibrium, a linear relationship exists between the
inverse dilution rate 1/� and the growth advantage ΔE/E .
Therefore, to be consistent with the debtor mutants taking over
the population, as observed by Notley-McRobb (11), the cost of
debt should be smaller than this upper limit. In Fig. 1C, we show
the growth advantage of debtor mutants as a function of inverse
dilution rate. The debtor mutant ΔE/E is a reflection of E. coli’s
investment in stress resistance. A large debtor advantage indicates
that the nondebtor invests more resources in stress response,
while a small advantage indicates little investment. The linear
relationship shown in Fig. 1C indicates E. coli invests less in
stress resistance at higher growth rates: when 1/� is small, for the
debtor to take over, a smaller ΔE/E is required, in a proportional
manner consistent with our theory.
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A

B C

Fig. 1. Application of chemostat theory to experiments of Notley-McRobb
et al. validates model assumptions and shows existence of trade-offs between
maximal growth rate and stress resistance in E. coli (11). (A) Fit of chemostat
theory to rpoS evolution trajectories in pH 7 glucose-limited chemostats at
three different dilution rates �. Fit parameters: ΔE/E = [1.52 ± 0.52,0.37 ±
0.1,0.13 ± 0.04] at � = [0.1,0.3,0.6] h−1, respectively, and 0.025 ± 0.05. (B)
Fit of theory to community temperature stress assay at 60 ◦C. Samples
taken from glucose-limited � = 0.3 h−1 chemostats at different days. Fit
parameters: !N = 0.084± 0.014 min−1 and !D = 0.99± 1.92 min−1. (C) Plot
of debtor mutant advantage ΔE/E as a function of inverse dilution rate 1/�.
Values from fit in A.

Similar chemostat theories to those presented here have been
further developed. For example, it has been shown that with
additional information about the form of the rpoS trade-off
surface, one can qualitatively predict the outcome of E. coli
evolution within a chemostat (31). However, what happens
away from chemostat conditions in a fluctuating serial dilution
environment?

Serial Dilution Model Formulation. We now establish our serial
dilution model where two species compete for a single, limiting
nutrient in an environment influenced by a stressor. In a
serial dilution culture, microbes are grown in a well-mixed
environment for a given period of time, tf , before being diluted
into fresh media and allowed to grow again. We refer to the
new nutrient added after dilution as the “nutrient bolus.” A
single type of nutrient is provided, and its concentration within
a batch is denoted c(t) with c(t = 0) = c0. As in the chemostat,
let Species N be a nondebtor (a microbe with resistance to the
stressor) with biomass density �N (t), with per-capita growth rate
E g[c]. In contrast, Species D, the debtor species, with biomass
density �D(t), has higher maximal growth rate, E + ΔE due
to sacrificing its stress resistance capability. The lack of stress
resistance leads to two possible forms of stress-induced death: a
continuous death rate per unit time (!), and/or, an increased
dilution during dilution events (Ω). The within-batch dynamics
are therefore:

dc
dt

= −g[c] (E �N + (E + ΔE) �D) ,

1
�N

d�N
dt

= E g[c]− !N ,

1
�D

d�D
dt

= (E + ΔE) g[c]− !D. [2]

Here, !N and !D are the nondebtor and debtor within-batch
death rates, respectively. These death rates could be the result
of an antibiotic in the media or another stressor, such as
temperature, salinity, or pH. Note that the terms on the right-
hand side of the equations for �N/D are the per-capita growth
rates. It is possible to render these equations dimensionless by
measuring time in units of E , and concentration in units of K
(cf. SI Appendix, 5). However, since our model is easily applicable
to experimental data, we keep the dimensionful version of these
dynamics for more direct data comparison.

The second source of mortality in the model is not continuous,
but rather punctuated, happening only at the transition between
batches. We refer to the transition from batch to batch as
“dilution,” reflecting what occurs in laboratory serial dilution,
but it represents any number of potential punctuated stressors,
such as sudden heat or osmotic shock. When dilution happens,
each species is diluted by its species-specific factor ΩN or ΩD.
Thereby, dilution in our model generalizes the typical scenario
where a small volume of a well-mixed culture is used to inoculate
the next batch, diluting each species equally. In this generalized
version, the total inoculum size, �N (0) + �D(0), can vary from
batch to batch until steady state is reached. A schematic of these
mechanisms is shown in Fig. 2A. At the end time (tf ) of batch b,
each species gets diluted differently, and so, at the beginning of
batch b + 1,

�(b+1)
N (t = 0) = e−ΩN tf

(
�0

�0 + c0

)
�(b)N (tf ),

�(b+1)
D (t = 0) = e−ΩDtf

(
�0

�0 + c0

)
�(b)D (tf ). [3]

In the rest of this manuscript, we set ΩN = !N = 0 and drop
the subscript from ΩD and !D.
Nutrient utilization, g[c(t)]. We considered two general forms of
the utilization function g[c]: utilization that is proportional to the

B C

A

Fig. 2. Overview of serial dilution ecosystem with debt. (A) Schematic of the
serial dilution system with debt. In the continuous death case, the debtor
is able to initially grow more quickly, but loses biomass continuously. In the
punctuated death case, the debtor grows more quickly but is diluted more
severely at the end of the batch. (B) Example of growth functions. Linear
is g[c] = Ec, and Monod is g[c] = E

(
c

c+K
)

. (C) Time necessary for a single
nondebtor species to deplete 99% of the supplied nutrient t∗ for different
growth functions. In order to choose a single tf that is sufficiently long, we
select the t∗ for c0/K = 104 with a Monod growth function.
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nutrient concentration, c(t), and utilization that obeys Monod-
like nonlinearity. Specifically,

g[c] =
{ c

c+K Monod
c
K Linear [4]

The Monod function (21) when c � K corresponds to
linear consumption. At the opposite limit, at high nutrient
concentration, linear consumption is nonphysical as it implies
that a huge quantity of nutrient would be consumed almost
instantly. The Monod case is well established to model microbial
nutrient utilization (Fig. 2B). A generalization of the Monod
form is considered in SI Appendix, 8. For the rest of this
manuscript, we thus focus on the Monod form.
Batch time, tf . When modeling serial dilution, it is possible to
choose the batch time tf to be as long as necessary to consume
all resources (24, 25). However, here we also considered within-
batch mortality, and therefore arbitrarily long batches would
lead to the extinction of the susceptible species. A more realistic
view, in line with experimental practices, sets a fixed batch time,
tf . The time needed for consumption of most of the nutrient
depends on how much nutrient is provided. In this study, we
varied the supplied nutrient concentration, c0, over six orders of
magnitude. To ensure that most of the nutrient is consumed in all
relevant scenarios, we define tf based on the nutrient utilization
at high c0. Assuming Monod utilization with only one species
present, tf is defined as the time it takes to consume 99% of
c0 with c0/K = 104. Thereby, we ensure that at least 99% of
the nutrient will be consumed for all relevant scenarios explored
in this work. The dependence of tf on c0, while maintaining
c0−c(tf )

c0 = 0.99, is shown in Fig. 2C.

Equivalent Value of Debt Represented as Continuous and
Punctuated Mortality. In our model, when is microbial debt
worthwhile? Does it matter if the debt incurred is paid for
in a continuous or punctuated fashion? We quantify debt by
considering the dynamics within a single batch, i.e., a single
growth and dilution cycle. At a given batch b, it is possible to
integrate Eq. 2, given the initial inocula concentrations �(b)N,D(0).
At the end of this batch, t = tf , we have the following
populations:

�(b)N (tf ) = �(b)N (0)eE
∫ tf

0 g[c(t ′)] dt ′ ,

�(b)D (tf ) = �(b)D (0)eE(1+ΔE
E )

∫ tf
0 g[c(t ′)] dt ′−!tf . [5]

When going to the next batch, the debtor species gets diluted by
a multiplicative factor e−Ωtf beyond the �0

�0+c0 factor both species
get diluted by. Therefore, at the beginning of batch b + 1,

�(b+1)
N (0) =

�0

�0 + c0
�(b)N (tf ) ,

�(b+1)
D (0) = e−Ωtf

�0

�0 + c0
�(b)D (tf ). [6]

At steady state, equal growth implies that both species are
increased and decreased by the same fold-change. Therefore,
coexistence implies that,(

1
tf

∫ tf

0
g[c(t ′)] dt ′

)
︸ ︷︷ ︸

Time-averaged nutrient utilization

ΔE︸︷︷︸
Benefit per utilization

= !+ Ω︸ ︷︷ ︸
Cost

. [7]

Eq. 7 states that coexistence balances growth cost with benefit:
the growth benefit per nutrient utilized times the time-averaged
nutrient utilization equals the cost. In essence, the benefit from
accruing the debt in the form of increased growth must be equal
to the death cost incurred. This expression defines the border
between regimes in which debt is favorable and those in which it
is unfavorable Fig. 3A. In this choice of parametrization, the two
forms of debt, continuous (!) and punctuated (Ω), are equivalent
and their rates are additive.

Importantly, in the single-species case, even away from steady
state, the nutrient utilization integral is independent of g[c] if
the vast majority of the nutrients are consumed within the
batch, with

∫ tf
0 g[c(t)] dt ≈ 1

E log
(

1 + c0
�0

)
by mass balance.

Note that 1 + c0
�0

is the dilution factor of the serial dilution
system, a property determined by the experimentalist. This
is a tremendous simplification, since knowledge of g[c] is
unnecessary. It is especially useful to parameterize experimental
monoculture dynamics, without having to measure g[c]. For
example, application to an antibiotic resistance measurement
requires only the element’s carriage cost and the death rate of
cells without the resistance elements.

What happens when the debtor and nondebtor have different
nutrient-to-biomass conversion coefficients (yield)? We may
modify Eq. 5 to include yields by taking E → YNE and
(E + ΔE) → YD(E + ΔE). Then the cost–benefit balance,
Eq. 7, becomes

(
1
tf

∫ tf
0 g[c(t ′)] dt ′

) [
ΔE + E

(
1− YN

YD

)]
=

!
YD . Therefore: i) the time-averaged nutrient utilization term,
1
tf

∫
g dt ′, remains the same; ii) The debtor’s yield, YD, rescales

the cost of debt so that larger debtor yield allows larger debt;
iii) Interestingly, there is a contribution that is independent
of the debtor benefit per utilization, ΔE . Instead, it stems
from a difference between the nondebtor and debtor yields.
Accordingly, the debtor may remain competitive while incurring
debt without a maximal-growth-rate benefit, if it achieves higher
yield than the nondebtor. Thus, another debt-growth tradeoff
exists: The debtor can offset the cost of decreased stress resistance
by increasing yield.

We may similarly consider the chemostat limit of the serial-
dilution dynamics with yield. By substituting ! → !

YD and
ΔE
E →

ΔE
E +

(
1− YN

YD

)
we attain the chemostat coexistence

A B

Fig. 3. Serial dilution results in (A) Phase diagram of competition between
debtor and nondebtor as a function of bolus size c0/K and normalized death
penalty. The dashed line represents the phase boundary for the equivalent
chemostat system, diverging substantially from the serial dilution phase
boundary at high c0/K . This phase diagram captures both continuous and
punctuated death, with the y-axis being equivalently Ω/ΔE or !/ΔE (B) Within-
batch dynamics of a single species along the ΔE,! trade-off. Note that while
the debtor species grows rapidly initially, its final biomass may be much
lower due to death. Inset: (same axes). In competition with a nondebtor,
the increased early growth of the debtor consumes the nutrient and denies
nutrient from the nondebtor.

4 of 9 https://doi.org/10.1073/pnas.2314900121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

T
R

E
C

H
T

 U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 , 
D

V
 E

C
O

L
 B

. F
. S

. G
."

 o
n 

A
pr

il 
24

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
13

1.
21

1.
10

3.
31

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2314900121#supplementary-materials


condition that was derived directly from the chemostat version
of the dynamics in SI Appendix, 2. Thus, the same rescaling
of the cost with YD and the growth gain from the difference
in yields applies in the chemostat limit of the serial-dilution
dynamics.

Serial Dilution Cultures Show Diminishing Return on Debt at
High Nutrient Concentrations When Compared to a Chemostat.
We have determined the phase diagram for debt favorability in
a serial dilution system, but how does this compare to a system
with continuously supplied nutrient, i.e., a chemostat? If we
add a very small bolus, c0 � K , then dilute the culture by
a fraction close to 1, and repeat, it stands to reason that the
limiting behavior becomes continuous in time. As c0/K → 0,
the serial dilutions become effectively a chemostat, and so, we
expect that the continuous and punctuated dilution cases have the
same chemostat limit. To consider c0 � K , the chemostat limit,
we follow ref. 24, and linearize the dynamics around the small
parameter c0/K (for details see SI Appendix, 6). The chemostat
cost–benefit tradeoff then becomes Ω+!

ΔE
≈

c0
�0 Etf

, shown as
the dashed line in Fig. 3A. It is satisfying to note that this is
equivalent to the linear chemostat debt relation in Eq. 1 and thus
also consistent with the experimental analysis shown in Fig. 1C.

Why does the boundary between debtor and nondebtor dom-
inance in the serial-dilution culture deviate from its equivalent
chemostat at large c0? There is a diminishing return on debt as
more nutrient is supplied. The diminishing return and its relation
to the early-bird effect can be understood from Fig. 3B, showing
time-series of a debtor in a single batch, grown in monoculture,
with several values of (!,ΔE) pairs. The pairs lie along the
coexistence boundary with the nondebtor (Fig. 3A). As !,ΔE
are increased, the species grow more rapidly initially, (higher
slope in the semilog plot), then followed by an exponential loss
because of ! (downward slope). The initial debt, which gives
the rapid rise, is offset by the incurred death later in the batch.
Indeed, when the nondebtor species is introduced in a coculture,
both species reach the same level at the end of the batch (Inset of
Fig. 3B). This demonstrates the early-bird effect since the debtor
deprives the nondebtor from nutrient in the early growth phase,
though finally the debtor settles at a much lower population size
because of the debt payoff.

The results we have derived for both chemostat and serial
dilution rely on the assumption that there is instantaneous
use of the nutrient imported into cells for growth, but in
reality there is time delay between import of nutrient and
utilization of that nutrient for growth. In some types of cells
with dedicated nutrient storage capacity, such as phosphate-
accumulating organisms (39), this delay can be quite significant
and potentially complicate debt dynamics. In SI Appendix, 3,
we explore such time-delayed models. We find that these delays
have little effect on our chemostat results, as the time delay has no
impact on steady states when nutrients are supplied continuously.
In the chemostat case, the time delay can be captured by an
effective nondelayed growth function. Interestingly, trade-offs
between nutrient import rate and internal growth rate due
to internal nutrient amount manifest in this effective growth
function similarly to trade-offs between maximum growth and
nutrient affinity—explored in the following section. In the serial
dilution case, the effect of the time delay depends on whether the
internal nutrient pools are able to reach a pseudosteady state with
respect to the external nutrient environment during the batch.
If such a pseudosteady state is reached, the model outcome is

similar to the model with no time delay, but now using the
effective growth function instead of a Monod function. Using
prior literature data from E. coli (SI Appendix, 3), we estimate
that typical microbial growth operates in this regime. However,
it is a different scenario if this pseudosteady state is not reached,
e.g., if uptake of all nutrient within the environment occurs
before appreciable growth occurs. In this fast-uptake scenario, the
debt trade-off becomes entirely independent of the cell’s internal
growth parameters, instead being entirely controlled by the rate
of nutrient import. Interestingly, the resulting phase diagram
for nondebtor vs. debtor competition (SI Appendix, Fig. S2) is
qualitatively similar to Fig. 3A. The role of the debtor cost,
Ω/ΔE , is taken by the inverse of the advantage in import rate.
Thus, we find that our debt trade-off results are also applicable
when allowing for nutrient import and storage.

Debts Involving a Growth Affinity Trade-Off Allow Coexistence.
Thus far, we have examined trade-offs where the maximum
growth rate under normal conditions is counterbalanced by
mortality in the presence of a microbicidal stressor. However,
there are other forms of growth stress and payment, e.g., there
exist microbiostatic stressors that do not kill but rather inhibit the
growth of microbes. The inhibition can be considered as a penalty
on the maximum growth rate. Similarly, resistance mechanisms
can affect growth properties other than the maximum growth
rate. For example, resistance mutations may lead to a growth
defect that manifests most strongly at low nutrient concentra-
tions. Interestingly, the resistant phenotype (with higher maximal
growth rate and lower enzyme affinity) is now playing the role of
the debtor in a bacteriostatic environment, because it “grows now,
pays later.” The debtor in the bacteriostatic environment mutates
its enzymes to avoid the bacteriostatic effect, thereby sacrificing its
future growth at low nutrient concentration because the mutated
enzymes have lower affinity.

In our framework, growth penalties that are most severe in
low nutrient conditions would manifest in the Monod affinity,
K , increasing to K + ΔK (32, 40). Recent research on OmpF
porin channels empirically demonstrates this trade-off: Mutants
with enlarged pore sizes exhibit growth advantages in the
absence of antimicrobial agents, by facilitating nutrient uptake.
Yet the enlarged pores also increased antimicrobial entry into
the cell. Conversely, mutants with narrower channels restrict
antimicrobial entry but incur a growth cost, especially under
low-nutrient conditions (9). We derive mechanistically how
alterations in the efficiency of a transporter will manifest as an
effective increase in K in SI Appendix, 3. This trade-off is most
evident in serial-dilution cultures (9). Therefore, we shift our
perspective and study the debt trade-off in which the debtor
species has mutated so that it pays a growth cost in low-nutrient
environment, but gains a maximal growth rate ΔE . How does
this trade-off impact the value of debt?

We deduce the affinity-growth trade-off using an invasibility
calculation: When would a minuscule amount of an “invader”
species succeed in expanding under nutrient dynamics dictated
by a single dominant nondebtor? Namely, a species with lower
enzyme affinity, K + ΔK , but also higher maximal growth rate,
E + ΔE , is introduced to a system dominated by the single-
species dynamics of an unperturbed (K, E) species. How large
does ΔE need to be to offset the cost of the decreased affinity
K + ΔK ? Equivalent growth implies that E

∫ tf
0

c
c+K dt ′ =

E ln
(

1 + c0
�0

)
= (E + ΔE)

∫ tf
0

c
c+K+ΔK

dt ′. Expanding the
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perturbed Monod function at small ΔK /K , with f (K +ΔK ) =
f (K ) + df

dK

∣∣∣
K
ΔK + O(Δ2

K ), we write to leading order,

∫ tf

0

c dt ′

c + K + ΔK︸ ︷︷ ︸
I(tf )

=
∫ tf

0

c dt ′

c + K︸ ︷︷ ︸
I(tf )

−ΔK

∫ tf

0

c dt ′

(c + K )2︸ ︷︷ ︸
ΔI (tf )

, [8]

ΔE

E
=

ΔI

I
= ΔK

∫ tf
0

c
(c+K )2 dt ′∫ tf

0
c

c+K dt ′
.

At equilibrium, the relative gain in maximal growth rate,
ΔE/E , is offset by the relative loss in utilization, ΔI/I . It is
possible to approximate this relation at the low and high c0 limits,
(SI Appendix, 9). The integral ΔI and its approximate forms are
shown in Fig. 4A. To leading order, we have,

ΔE

E
≈

{ ΔK
K c0 � K

ΔK
c0

(
1 + ln (c0/K )

ln (c0/�0)

)
c0 � K

[9]

The relative cost at equilibrium behaves differently in the low
c0 (chemostat) and high c0 limits. At low c0, as in a chemostat,
the cost scales with ΔK . Therefore, for a given value of relative
gain, ΔE/E there is a fixed cost ΔK /K to maintain equilibrium,
no matter how much nutrient is provided. There is little enough
nutrient provided such that the growth function is linear in
the nutrient amount, leaving the difference in affinity, ΔK , as
the dominant term. A different picture emerges in the high c0
limit, where nutrient is initially saturating. Here, for a fixed gain,
ΔE/E = const, the cost ΔK ∼ c0, meaning that to maintain
equilibrium, if more nutrient is provided, a larger enzyme affinity
penalty can be supported. Said differently, the debtor takes over
for a fixed ΔK if c0 increases. The debtor advantage over the
chemostat limit is shown in the horizontal tendency of theΔK /c0
boundary in Fig. 4B. This is because ‘payment’ happens mostly
when c ≈ K +ΔK and when c0 � K andΔK , a larger c0 gives the
debtor an increasing span of growth with effectively no payment.

To complete the invasibility test, one must consider the
opposite situation, where the debtor dominates the culture,
dictating the nutrient dynamics with (K + ΔK , E + ΔE), and
an invasion attempt by the nondebtor. When can the nondebtor
invade? A similar derivation gives ΔE

E+ΔE
=

ΔI [K+ΔK ]

I[K+ΔK ]
, with the I

and ΔI integrals evolved under the debtor monoculture. As with
the previous boundary, we may approximate, (SI Appendix, 9).

A B

Fig. 4. The tradeoff between maximal growth rate, E + ΔE and reduced
affinity due to K + ΔK . (A) ΔI/ΔK depicts the loss of growth per biomass, and
its low and high c0/K approximations. (B) Phase diagram of the coexistence
and dominance regimes, and its leading order analytic approximation (Eq. 9,
white dashes). Black dashes: The chemostat limit of the phase boundary.
E = ΔE = 1 and K = 1. A coexistence region where both species support a
nonzero population emerges high c0.

A B

Fig. 5. The effect of noise in Ω. (A) Full curves—mean �N fraction. Shaded
area: SEM, averaged over 1,000 stochastic trajectories. Green curve—
deterministic convergence to nondebtor take-over. Dashed black—Gaussian
theory derived from the central limit theorem, cf. SI Appendix, 10. (B)
Time-series of the distribution of log10 �N/�D. Dots—distribution timeseries
calculated numerically, from the first batch until 4×105 batches. The widening
corresponds to a diffusion process and the drift to extinction of �D. Curves—
the corresponding Gaussian theory, cf. SI Appendix, 10. Inset: The constant
drift in the median value of �N/�D, identical for all three noise levels,
equivalent to the mode of the histograms.

Interestingly, a coexistence region emerges at high c0/K (Fig. 4B).
Coexistence is due to the different effect of the dominant species:
ΔE is measured against E when the nondebtor is dominant but
against E + ΔE when the debtor is dominant. This mode of
coexistence is similar to that seen in another recent serial dilution
theory (41) and falls into a broader class of “relative nonlinearity”
coexistence mechanisms (33).

Stochastic Stressor Dynamics Significantly Lengthen Lifetime
of Ecologically Unstable Species. The models explored in the
prior sections exhibit temporal variability, but in a deterministic
manner: dilution factors and stressor levels staying the same in all
batch cycles. However, in real ecosystems, the magnitude of the
stressor effect is variable. For example, antibiotic concentration
fluctuates in the environment (19), leaving a debtor species
disproportionately susceptible to extreme dilution. What is the
effect of such stochastic noise on the debt cost–benefit trade-
off? Let Ω fluctuate, drawing Ω in each batch from a uniform
distribution,Ω ∈ [Ω−ΔΩ,Ω+ΔΩ]. This corresponds to “pink”
or 1/Ω noise where extreme events occur at very low probability.

We consider a system with Ω > Ω∗ such that the debtor
is outcompeted in the deterministic version of the model. We
show this deterministic trajectory, batch to batch, plotting the
relative abundance of the nondebtor (Fig. 5A). To explore how
this extinction process is affected by noise, we plot the stochastic
trajectory averages of the equivalent system with two different
levels of Ω noise. Alternatively, these results can be derived
analytically using the central limit theorem, generalizing their
applicability across a large class of noise distributions (cf. SI
Appendix, 10). Intriguingly, the introduction of even a small
level of noise, constituting 10% of Ω, significantly decelerates
the extinction dynamics. With 10% noise, Ω ± 10%, the time
to extinction is approximately tripled, while with 50% noise, the
time to extinction is lengthened by orders of magnitude (Fig. 5A).
This behavior is symmetric to a reversal in roles: The same
behavior occurs with nondebtor extinction if the environment
favors debtors. Thus, noise in stressor severity can drastically
extend the lifetime of ecologically unstable microbes.

How does this seemingly minor noise in Ω produce such
drastic departures from the deterministic behavior? The key
observation is that Ω tf (and ! tf ) act on the population
abundances in logarithmic space (Eqs. 3 and 5). Thus, rather
than inducing a random walk of �N in linear space (which would
preserve the deterministic dynamics of the mean), this process is
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instead a random walk in log(�N /�D). In Fig. 5B we plot the
evolution of the distribution of the balance variable, log(�N /�D)
(42). As can be seen, the balance undergoes a canonical biased
random walk, with the distribution widening and simultaneously
its mean drifting. The drift is due to the induced extinction
because unfavorable debt conditions, Ω > Ω∗, were chosen.
As expected, the mean log(�N /�D) of the different noise levels,
including the deterministic dynamics, are all equal (Fig. 5 B,
Inset). As is known, the balance or log-ratio is the appropriate
degree of freedom to consider when studying the dynamics
of a composition (43, 44). Indeed, balances would be the
appropriate variables to consider in multispecies generalization
of our framework. This random walk in logarithmic space has
long tails for the relative abundances, �N

�N+�D , a quantity typically
relevant ecologically and measured in experiments. Thus, large,
rare events significantly influence an observed mean fraction even
when noise is relatively small. This suggests a broad distribution
of stress resistance traits even within a single species, consistent
with what has been observed in E. coli (12).

Conclusions and Discussion
Real-world microbes can incur debt by increasing immediate
growth while neglecting protection from future events. Here,
we proposed a theory for the impact of such debt trade-offs
on microbial competition. We began by formulating chemostat
debt dynamics and validating them with data from a classical
chemostat experiment, thereby exposing the dynamic debt
regulation behavior of E. coli. Notably, we validated the predicted
linear relationship between the inverse dilution rate and the
debtor advantage proposed by our chemostat theory. Having
established the basic debt dynamics, we extended our theory to
serial-dilution cultures. We found that growth debt where the
“payment” occurs continuously and where it occurs at the end of
the batch are equivalent and can be unified in a single framework.
We then constructed a universal phase diagram that delineates
the boundary where debt becomes competitively favorable, as a
function of nutrient amount in the system. This phase diagram
encompasses both serial dilution and chemostat dynamics, unify-
ing the two experimental systems. In the chemostat, the trade-off
line is proportional to the total nutrient supply. Conversely, in
the serial dilution setup, the addition of nutrients in a saturating
concentration results in a diminishing return on debt. The effect
of diminished return can be considerable: a nondebtor that would
typically go extinct in a high-nutrient chemostat may dominate
an equivalent serial dilution culture. However, we found that
not all forms of debt are the same: Debt associated with enzyme
affinity allows the coexistence of two species on a single resource,
violating the competitive exclusion principle by forming temporal
niches (41).

Experiments to test the predicted phase boundaries would
involve competitions between a debtor and nondebtor strain in
varying serial dilution environments. One could monitor the
persistence of an antibiotic resistance element in a community
across a range of antibiotic and nutrient concentrations (thus
varying ! and c0/K ) to construct an empirical version of the
phase diagram in Fig. 3A. The debtor could be a WT E. coli
with the nondebtor being that same strain with an antibiotic
resistance element. Ideally, this element would confer resistance
that does not inactivate the antibiotic (e.g., an efflux transporter),
to prevent benefit to nonresistant organisms (45). The resulting
phase diagram should feature a boundary defined by Eq. 7. To
construct a theoretical phase diagram for comparison, one could

measure death kinetics as a function of antibiotic concentration,
and in the absence of antibiotic use a competition experiment
to infer the cost of the element. In the chemostat analysis
(Fig. 1), we demonstrated how to estimate both values given
a set of experimental data. Evolution may complicate such an
experiment—discussed below.

Stochastic stressor dynamics, a realistic extension of the model,
revealed unexpected behavior. Even small fluctuations in the
stress level can significantly delay the extinction of a species due
to the compositional nature of the serial-dilution process. To
decouple the compositional effects, a log-ratio is used (42–44),
here, log �N

�D . As the system relaxes to steady state, the mean log-
ratio dynamics are the same in the deterministic and stochastic
systems. Conversely, the mean relative fraction �N

�N+�D changes
greatly with the addition of noise, leading to delayed extinctions.
The outcomes of our stochastic dynamics study hold considerable
implications for the management and control of antibiotic
resistance elements within environments. For example, rotating
antibiotics to reduce the prevalence of resistance elements has
been proposed as a means of limiting resistance proliferation
(46). Our findings indicate that the timescale for the depletion
of resistance elements in the environment may be significantly
longer than deterministic models (47) would estimate, limiting
the efficacy of rotation-based strategies. Our findings also extend
beyond antibiotic resistance, implying that stress resistance genes
could persist within communities for extended periods despite a
net loss of fitness. Noisy debt dynamics may broadly influence
the prevalence of accessory genes in bacteria.

The predictions on the influence of stressor noise on the
lifespan of resistance elements can be experimentally tested. The
model predicts that across many independent populations of
cells, populations subject to a more noisy stressor are expected
to have longer mean persistence of resistance elements (Fig.
5). One approach is to first identify a constant stressor level
at which a resistance element goes extinct over multiple serial
passages. For an antibiotic resistance element, this would be
a sub-MIC level of antibiotic that impedes growth, but does
not impose a large enough growth defect to allow persistence
of the element. With baseline stressor environment established,
one can run high-throughput batch cultures, each receiving a
randomized amount of antibiotic each passage, and with control
wells receiving the same mean amount). Resistance could be
measured as a population mean, as in Notley-McRobb et al. (11).
The model predicts that the mean level of resistance in the noisy
communities will exceed that in the constant-stressor controls.
Even in the presence of additional mechanisms evolving over
time, the impact of noise on overall resistance levels should still
be observable through community-wide assays. The distribution
of stress resistance levels observed in this experiment could also
be compared to those found in nature (12).

Our theory has explored only one form of stressor fluctuations.
In addition to interbatch stress level changes, stressor intensity
may also change during the batch, e.g., antibiotics can be
produced by other microbes, resulting in nontrivial stressor
dynamics (for a chemostat analysis of these dynamics, see ref. 29).
This may lead to large departures from our predicted behaviors:
For example, such antisymmetric microbial interactions have
been found in theory to lead to rock-paper-scissor dynamics
(48). Furthermore, we have not considered the case where the
dead bacteria contribute nutrient to the environment. Allowing
such recycling may weaken the debtor advantage since instead
of depriving the competitor of nutrient the debtor would then
simply store and then release the nutrient. In summary, while this
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manuscript covers the impact of exogenous stressors, to elucidate
the impact of endogenous stressors on debt will require further
work.

Focusing on the fundamental mechanisms underlying mi-
crobial debt, we considered only two species and a single
nutrient. Yet, natural microbial communities typically feature
many coexisting species. The mortality (!,Ω) debt trade-off is
not capable of supporting two species, so it would not support
multiple species coexistence. Conversely, the affinity debt trade-
off may support more than two species coexisting but may
require fine-tuning (41). Investigating debt dynamics within
complex, randomly assembled ecosystems (49) may shed light
on the functioning of multispecies communities, such as the gut
microbiome. Natural microbial communities also tend to feature
more than the single resource assumed in our model. Previously,
we demonstrated the “early-bird” effect, where the presence of
multiple resources can amplify the benefit of an early growth
advantage within a batch (24). This “early-bird” microbe can
leverage its larger population size later in the batch to deplete
resources it may not specialize in, depriving competitors. Thus,
we expect debt dynamics to influence ecosystems with multiple
species and resources in nontrivial ways.

Evolution is an important factor to consider, as the emergence
of new variants of debtor and nondebtor occurs by mutation
and subsequent competition with their ancestors. A promising
direction to analyze the evolution of debt strategies is by using
adaptive dynamics (50). Evolution may lead to the dominance
of a single strain in the chemostat context, as it tends to
minimize the steady-state nutrient level—the phenomenon of
“pessimization” observed widely in adaptive dynamics (50).
Pessimization is consistent with the pH 7 chemostat results of
Notley-McRobb et al. (11), where the debtor dominates. At other
pH values, partial rpoS mutants emerged and the chemostat
did not reach steady state, so we cannot conclude whether
the pessimization principle held in these cases. Note that later
work from the same authors demonstrated that it is possible to
qualitatively predict the outcomes of such evolution experiments
using a chemostat theory (31). In a serial dilution context, it
unclear whether the chemostat “pessimization” intuition holds,
particularly as the switch from chemostat to serial dilution also

can introduce additional stressors. For example, microbes can
substantially acidify growth media, exposing the community to
stress at the end of the batch (51). Such pH stress effectively
increases the cost of debt beyond what is currently in our model.
Additionally, close matching of these evolution data may require
additional information on the shape of the debt trade-off surface
(9, 31), outside the scope of this manuscript.

Through the ages, debt has been an ever-present part of human
life (52). Yet the omnipresence of debt in human life mirrors
a much older and more basic notion. When competition for
resources is fierce and resource levels change with time, a “grow
now, pay later” strategy can be exploited to gain an advantage over
one’s competitors, a manifestation of the “early-bird” effect (24).
Such an early-bird strategy is built on depriving competitors of
resources by growing quickly, even if it means paying a significant
future cost. Our work has shed light on how such fundamental
trade-offs influence the world.

Materials and Methods

This manuscript contains no new experimental data; hence, no experimental
methods are detailed. For details of the mathematical derivations, data fitting,
and analyses, see SI Appendix. Numerical simulations of the serial dilutions
model were carried out in MATLAB on the Hebrew University’s research
computing cluster.

Data, Materials, and Software Availability. Simulation code and re-
sults data have been deposited in Github (https://github.com/AmirErez/
MicrobialDebt) (53).
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